Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* auditsc.c -- System-call auditing support
3 * Handles all system-call specific auditing features.
4 *
5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
7 * Copyright (C) 2005, 2006 IBM Corporation
8 * All Rights Reserved.
9 *
10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 *
12 * Many of the ideas implemented here are from Stephen C. Tweedie,
13 * especially the idea of avoiding a copy by using getname.
14 *
15 * The method for actual interception of syscall entry and exit (not in
16 * this file -- see entry.S) is based on a GPL'd patch written by
17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
18 *
19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
20 * 2006.
21 *
22 * The support of additional filter rules compares (>, <, >=, <=) was
23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
24 *
25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
26 * filesystem information.
27 *
28 * Subject and object context labeling support added by <danjones@us.ibm.com>
29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
30 */
31
32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
33
34#include <linux/init.h>
35#include <asm/types.h>
36#include <linux/atomic.h>
37#include <linux/fs.h>
38#include <linux/namei.h>
39#include <linux/mm.h>
40#include <linux/export.h>
41#include <linux/slab.h>
42#include <linux/mount.h>
43#include <linux/socket.h>
44#include <linux/mqueue.h>
45#include <linux/audit.h>
46#include <linux/personality.h>
47#include <linux/time.h>
48#include <linux/netlink.h>
49#include <linux/compiler.h>
50#include <asm/unistd.h>
51#include <linux/security.h>
52#include <linux/list.h>
53#include <linux/binfmts.h>
54#include <linux/highmem.h>
55#include <linux/syscalls.h>
56#include <asm/syscall.h>
57#include <linux/capability.h>
58#include <linux/fs_struct.h>
59#include <linux/compat.h>
60#include <linux/ctype.h>
61#include <linux/string.h>
62#include <linux/uaccess.h>
63#include <linux/fsnotify_backend.h>
64#include <uapi/linux/limits.h>
65#include <uapi/linux/netfilter/nf_tables.h>
66#include <uapi/linux/openat2.h> // struct open_how
67#include <uapi/linux/fanotify.h>
68
69#include "audit.h"
70
71/* flags stating the success for a syscall */
72#define AUDITSC_INVALID 0
73#define AUDITSC_SUCCESS 1
74#define AUDITSC_FAILURE 2
75
76/* no execve audit message should be longer than this (userspace limits),
77 * see the note near the top of audit_log_execve_info() about this value */
78#define MAX_EXECVE_AUDIT_LEN 7500
79
80/* max length to print of cmdline/proctitle value during audit */
81#define MAX_PROCTITLE_AUDIT_LEN 128
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_aux_data {
90 struct audit_aux_data *next;
91 int type;
92};
93
94/* Number of target pids per aux struct. */
95#define AUDIT_AUX_PIDS 16
96
97struct audit_aux_data_pids {
98 struct audit_aux_data d;
99 pid_t target_pid[AUDIT_AUX_PIDS];
100 kuid_t target_auid[AUDIT_AUX_PIDS];
101 kuid_t target_uid[AUDIT_AUX_PIDS];
102 unsigned int target_sessionid[AUDIT_AUX_PIDS];
103 struct lsm_prop target_ref[AUDIT_AUX_PIDS];
104 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
105 int pid_count;
106};
107
108struct audit_aux_data_bprm_fcaps {
109 struct audit_aux_data d;
110 struct audit_cap_data fcap;
111 unsigned int fcap_ver;
112 struct audit_cap_data old_pcap;
113 struct audit_cap_data new_pcap;
114};
115
116struct audit_tree_refs {
117 struct audit_tree_refs *next;
118 struct audit_chunk *c[31];
119};
120
121struct audit_nfcfgop_tab {
122 enum audit_nfcfgop op;
123 const char *s;
124};
125
126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
127 { AUDIT_XT_OP_REGISTER, "xt_register" },
128 { AUDIT_XT_OP_REPLACE, "xt_replace" },
129 { AUDIT_XT_OP_UNREGISTER, "xt_unregister" },
130 { AUDIT_NFT_OP_TABLE_REGISTER, "nft_register_table" },
131 { AUDIT_NFT_OP_TABLE_UNREGISTER, "nft_unregister_table" },
132 { AUDIT_NFT_OP_CHAIN_REGISTER, "nft_register_chain" },
133 { AUDIT_NFT_OP_CHAIN_UNREGISTER, "nft_unregister_chain" },
134 { AUDIT_NFT_OP_RULE_REGISTER, "nft_register_rule" },
135 { AUDIT_NFT_OP_RULE_UNREGISTER, "nft_unregister_rule" },
136 { AUDIT_NFT_OP_SET_REGISTER, "nft_register_set" },
137 { AUDIT_NFT_OP_SET_UNREGISTER, "nft_unregister_set" },
138 { AUDIT_NFT_OP_SETELEM_REGISTER, "nft_register_setelem" },
139 { AUDIT_NFT_OP_SETELEM_UNREGISTER, "nft_unregister_setelem" },
140 { AUDIT_NFT_OP_GEN_REGISTER, "nft_register_gen" },
141 { AUDIT_NFT_OP_OBJ_REGISTER, "nft_register_obj" },
142 { AUDIT_NFT_OP_OBJ_UNREGISTER, "nft_unregister_obj" },
143 { AUDIT_NFT_OP_OBJ_RESET, "nft_reset_obj" },
144 { AUDIT_NFT_OP_FLOWTABLE_REGISTER, "nft_register_flowtable" },
145 { AUDIT_NFT_OP_FLOWTABLE_UNREGISTER, "nft_unregister_flowtable" },
146 { AUDIT_NFT_OP_SETELEM_RESET, "nft_reset_setelem" },
147 { AUDIT_NFT_OP_RULE_RESET, "nft_reset_rule" },
148 { AUDIT_NFT_OP_INVALID, "nft_invalid" },
149};
150
151static int audit_match_perm(struct audit_context *ctx, int mask)
152{
153 unsigned n;
154
155 if (unlikely(!ctx))
156 return 0;
157 n = ctx->major;
158
159 switch (audit_classify_syscall(ctx->arch, n)) {
160 case AUDITSC_NATIVE:
161 if ((mask & AUDIT_PERM_WRITE) &&
162 audit_match_class(AUDIT_CLASS_WRITE, n))
163 return 1;
164 if ((mask & AUDIT_PERM_READ) &&
165 audit_match_class(AUDIT_CLASS_READ, n))
166 return 1;
167 if ((mask & AUDIT_PERM_ATTR) &&
168 audit_match_class(AUDIT_CLASS_CHATTR, n))
169 return 1;
170 return 0;
171 case AUDITSC_COMPAT: /* 32bit on biarch */
172 if ((mask & AUDIT_PERM_WRITE) &&
173 audit_match_class(AUDIT_CLASS_WRITE_32, n))
174 return 1;
175 if ((mask & AUDIT_PERM_READ) &&
176 audit_match_class(AUDIT_CLASS_READ_32, n))
177 return 1;
178 if ((mask & AUDIT_PERM_ATTR) &&
179 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
180 return 1;
181 return 0;
182 case AUDITSC_OPEN:
183 return mask & ACC_MODE(ctx->argv[1]);
184 case AUDITSC_OPENAT:
185 return mask & ACC_MODE(ctx->argv[2]);
186 case AUDITSC_SOCKETCALL:
187 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
188 case AUDITSC_EXECVE:
189 return mask & AUDIT_PERM_EXEC;
190 case AUDITSC_OPENAT2:
191 return mask & ACC_MODE((u32)ctx->openat2.flags);
192 default:
193 return 0;
194 }
195}
196
197static int audit_match_filetype(struct audit_context *ctx, int val)
198{
199 struct audit_names *n;
200 umode_t mode = (umode_t)val;
201
202 if (unlikely(!ctx))
203 return 0;
204
205 list_for_each_entry(n, &ctx->names_list, list) {
206 if ((n->ino != AUDIT_INO_UNSET) &&
207 ((n->mode & S_IFMT) == mode))
208 return 1;
209 }
210
211 return 0;
212}
213
214/*
215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
216 * ->first_trees points to its beginning, ->trees - to the current end of data.
217 * ->tree_count is the number of free entries in array pointed to by ->trees.
218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
219 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
220 * it's going to remain 1-element for almost any setup) until we free context itself.
221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
222 */
223
224static void audit_set_auditable(struct audit_context *ctx)
225{
226 if (!ctx->prio) {
227 ctx->prio = 1;
228 ctx->current_state = AUDIT_STATE_RECORD;
229 }
230}
231
232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
233{
234 struct audit_tree_refs *p = ctx->trees;
235 int left = ctx->tree_count;
236
237 if (likely(left)) {
238 p->c[--left] = chunk;
239 ctx->tree_count = left;
240 return 1;
241 }
242 if (!p)
243 return 0;
244 p = p->next;
245 if (p) {
246 p->c[30] = chunk;
247 ctx->trees = p;
248 ctx->tree_count = 30;
249 return 1;
250 }
251 return 0;
252}
253
254static int grow_tree_refs(struct audit_context *ctx)
255{
256 struct audit_tree_refs *p = ctx->trees;
257
258 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
259 if (!ctx->trees) {
260 ctx->trees = p;
261 return 0;
262 }
263 if (p)
264 p->next = ctx->trees;
265 else
266 ctx->first_trees = ctx->trees;
267 ctx->tree_count = 31;
268 return 1;
269}
270
271static void unroll_tree_refs(struct audit_context *ctx,
272 struct audit_tree_refs *p, int count)
273{
274 struct audit_tree_refs *q;
275 int n;
276
277 if (!p) {
278 /* we started with empty chain */
279 p = ctx->first_trees;
280 count = 31;
281 /* if the very first allocation has failed, nothing to do */
282 if (!p)
283 return;
284 }
285 n = count;
286 for (q = p; q != ctx->trees; q = q->next, n = 31) {
287 while (n--) {
288 audit_put_chunk(q->c[n]);
289 q->c[n] = NULL;
290 }
291 }
292 while (n-- > ctx->tree_count) {
293 audit_put_chunk(q->c[n]);
294 q->c[n] = NULL;
295 }
296 ctx->trees = p;
297 ctx->tree_count = count;
298}
299
300static void free_tree_refs(struct audit_context *ctx)
301{
302 struct audit_tree_refs *p, *q;
303
304 for (p = ctx->first_trees; p; p = q) {
305 q = p->next;
306 kfree(p);
307 }
308}
309
310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
311{
312 struct audit_tree_refs *p;
313 int n;
314
315 if (!tree)
316 return 0;
317 /* full ones */
318 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
319 for (n = 0; n < 31; n++)
320 if (audit_tree_match(p->c[n], tree))
321 return 1;
322 }
323 /* partial */
324 if (p) {
325 for (n = ctx->tree_count; n < 31; n++)
326 if (audit_tree_match(p->c[n], tree))
327 return 1;
328 }
329 return 0;
330}
331
332static int audit_compare_uid(kuid_t uid,
333 struct audit_names *name,
334 struct audit_field *f,
335 struct audit_context *ctx)
336{
337 struct audit_names *n;
338 int rc;
339
340 if (name) {
341 rc = audit_uid_comparator(uid, f->op, name->uid);
342 if (rc)
343 return rc;
344 }
345
346 if (ctx) {
347 list_for_each_entry(n, &ctx->names_list, list) {
348 rc = audit_uid_comparator(uid, f->op, n->uid);
349 if (rc)
350 return rc;
351 }
352 }
353 return 0;
354}
355
356static int audit_compare_gid(kgid_t gid,
357 struct audit_names *name,
358 struct audit_field *f,
359 struct audit_context *ctx)
360{
361 struct audit_names *n;
362 int rc;
363
364 if (name) {
365 rc = audit_gid_comparator(gid, f->op, name->gid);
366 if (rc)
367 return rc;
368 }
369
370 if (ctx) {
371 list_for_each_entry(n, &ctx->names_list, list) {
372 rc = audit_gid_comparator(gid, f->op, n->gid);
373 if (rc)
374 return rc;
375 }
376 }
377 return 0;
378}
379
380static int audit_field_compare(struct task_struct *tsk,
381 const struct cred *cred,
382 struct audit_field *f,
383 struct audit_context *ctx,
384 struct audit_names *name)
385{
386 switch (f->val) {
387 /* process to file object comparisons */
388 case AUDIT_COMPARE_UID_TO_OBJ_UID:
389 return audit_compare_uid(cred->uid, name, f, ctx);
390 case AUDIT_COMPARE_GID_TO_OBJ_GID:
391 return audit_compare_gid(cred->gid, name, f, ctx);
392 case AUDIT_COMPARE_EUID_TO_OBJ_UID:
393 return audit_compare_uid(cred->euid, name, f, ctx);
394 case AUDIT_COMPARE_EGID_TO_OBJ_GID:
395 return audit_compare_gid(cred->egid, name, f, ctx);
396 case AUDIT_COMPARE_AUID_TO_OBJ_UID:
397 return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
398 case AUDIT_COMPARE_SUID_TO_OBJ_UID:
399 return audit_compare_uid(cred->suid, name, f, ctx);
400 case AUDIT_COMPARE_SGID_TO_OBJ_GID:
401 return audit_compare_gid(cred->sgid, name, f, ctx);
402 case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
403 return audit_compare_uid(cred->fsuid, name, f, ctx);
404 case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
405 return audit_compare_gid(cred->fsgid, name, f, ctx);
406 /* uid comparisons */
407 case AUDIT_COMPARE_UID_TO_AUID:
408 return audit_uid_comparator(cred->uid, f->op,
409 audit_get_loginuid(tsk));
410 case AUDIT_COMPARE_UID_TO_EUID:
411 return audit_uid_comparator(cred->uid, f->op, cred->euid);
412 case AUDIT_COMPARE_UID_TO_SUID:
413 return audit_uid_comparator(cred->uid, f->op, cred->suid);
414 case AUDIT_COMPARE_UID_TO_FSUID:
415 return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
416 /* auid comparisons */
417 case AUDIT_COMPARE_AUID_TO_EUID:
418 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
419 cred->euid);
420 case AUDIT_COMPARE_AUID_TO_SUID:
421 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
422 cred->suid);
423 case AUDIT_COMPARE_AUID_TO_FSUID:
424 return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
425 cred->fsuid);
426 /* euid comparisons */
427 case AUDIT_COMPARE_EUID_TO_SUID:
428 return audit_uid_comparator(cred->euid, f->op, cred->suid);
429 case AUDIT_COMPARE_EUID_TO_FSUID:
430 return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
431 /* suid comparisons */
432 case AUDIT_COMPARE_SUID_TO_FSUID:
433 return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
434 /* gid comparisons */
435 case AUDIT_COMPARE_GID_TO_EGID:
436 return audit_gid_comparator(cred->gid, f->op, cred->egid);
437 case AUDIT_COMPARE_GID_TO_SGID:
438 return audit_gid_comparator(cred->gid, f->op, cred->sgid);
439 case AUDIT_COMPARE_GID_TO_FSGID:
440 return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
441 /* egid comparisons */
442 case AUDIT_COMPARE_EGID_TO_SGID:
443 return audit_gid_comparator(cred->egid, f->op, cred->sgid);
444 case AUDIT_COMPARE_EGID_TO_FSGID:
445 return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
446 /* sgid comparison */
447 case AUDIT_COMPARE_SGID_TO_FSGID:
448 return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
449 default:
450 WARN(1, "Missing AUDIT_COMPARE define. Report as a bug\n");
451 return 0;
452 }
453 return 0;
454}
455
456/* Determine if any context name data matches a rule's watch data */
457/* Compare a task_struct with an audit_rule. Return 1 on match, 0
458 * otherwise.
459 *
460 * If task_creation is true, this is an explicit indication that we are
461 * filtering a task rule at task creation time. This and tsk == current are
462 * the only situations where tsk->cred may be accessed without an rcu read lock.
463 */
464static int audit_filter_rules(struct task_struct *tsk,
465 struct audit_krule *rule,
466 struct audit_context *ctx,
467 struct audit_names *name,
468 enum audit_state *state,
469 bool task_creation)
470{
471 const struct cred *cred;
472 int i, need_sid = 1;
473 struct lsm_prop prop = { };
474 unsigned int sessionid;
475
476 if (ctx && rule->prio <= ctx->prio)
477 return 0;
478
479 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
480
481 for (i = 0; i < rule->field_count; i++) {
482 struct audit_field *f = &rule->fields[i];
483 struct audit_names *n;
484 int result = 0;
485 pid_t pid;
486
487 switch (f->type) {
488 case AUDIT_PID:
489 pid = task_tgid_nr(tsk);
490 result = audit_comparator(pid, f->op, f->val);
491 break;
492 case AUDIT_PPID:
493 if (ctx) {
494 if (!ctx->ppid)
495 ctx->ppid = task_ppid_nr(tsk);
496 result = audit_comparator(ctx->ppid, f->op, f->val);
497 }
498 break;
499 case AUDIT_EXE:
500 result = audit_exe_compare(tsk, rule->exe);
501 if (f->op == Audit_not_equal)
502 result = !result;
503 break;
504 case AUDIT_UID:
505 result = audit_uid_comparator(cred->uid, f->op, f->uid);
506 break;
507 case AUDIT_EUID:
508 result = audit_uid_comparator(cred->euid, f->op, f->uid);
509 break;
510 case AUDIT_SUID:
511 result = audit_uid_comparator(cred->suid, f->op, f->uid);
512 break;
513 case AUDIT_FSUID:
514 result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
515 break;
516 case AUDIT_GID:
517 result = audit_gid_comparator(cred->gid, f->op, f->gid);
518 if (f->op == Audit_equal) {
519 if (!result)
520 result = groups_search(cred->group_info, f->gid);
521 } else if (f->op == Audit_not_equal) {
522 if (result)
523 result = !groups_search(cred->group_info, f->gid);
524 }
525 break;
526 case AUDIT_EGID:
527 result = audit_gid_comparator(cred->egid, f->op, f->gid);
528 if (f->op == Audit_equal) {
529 if (!result)
530 result = groups_search(cred->group_info, f->gid);
531 } else if (f->op == Audit_not_equal) {
532 if (result)
533 result = !groups_search(cred->group_info, f->gid);
534 }
535 break;
536 case AUDIT_SGID:
537 result = audit_gid_comparator(cred->sgid, f->op, f->gid);
538 break;
539 case AUDIT_FSGID:
540 result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
541 break;
542 case AUDIT_SESSIONID:
543 sessionid = audit_get_sessionid(tsk);
544 result = audit_comparator(sessionid, f->op, f->val);
545 break;
546 case AUDIT_PERS:
547 result = audit_comparator(tsk->personality, f->op, f->val);
548 break;
549 case AUDIT_ARCH:
550 if (ctx)
551 result = audit_comparator(ctx->arch, f->op, f->val);
552 break;
553
554 case AUDIT_EXIT:
555 if (ctx && ctx->return_valid != AUDITSC_INVALID)
556 result = audit_comparator(ctx->return_code, f->op, f->val);
557 break;
558 case AUDIT_SUCCESS:
559 if (ctx && ctx->return_valid != AUDITSC_INVALID) {
560 if (f->val)
561 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
562 else
563 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
564 }
565 break;
566 case AUDIT_DEVMAJOR:
567 if (name) {
568 if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
569 audit_comparator(MAJOR(name->rdev), f->op, f->val))
570 ++result;
571 } else if (ctx) {
572 list_for_each_entry(n, &ctx->names_list, list) {
573 if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
574 audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
575 ++result;
576 break;
577 }
578 }
579 }
580 break;
581 case AUDIT_DEVMINOR:
582 if (name) {
583 if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
584 audit_comparator(MINOR(name->rdev), f->op, f->val))
585 ++result;
586 } else if (ctx) {
587 list_for_each_entry(n, &ctx->names_list, list) {
588 if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
589 audit_comparator(MINOR(n->rdev), f->op, f->val)) {
590 ++result;
591 break;
592 }
593 }
594 }
595 break;
596 case AUDIT_INODE:
597 if (name)
598 result = audit_comparator(name->ino, f->op, f->val);
599 else if (ctx) {
600 list_for_each_entry(n, &ctx->names_list, list) {
601 if (audit_comparator(n->ino, f->op, f->val)) {
602 ++result;
603 break;
604 }
605 }
606 }
607 break;
608 case AUDIT_OBJ_UID:
609 if (name) {
610 result = audit_uid_comparator(name->uid, f->op, f->uid);
611 } else if (ctx) {
612 list_for_each_entry(n, &ctx->names_list, list) {
613 if (audit_uid_comparator(n->uid, f->op, f->uid)) {
614 ++result;
615 break;
616 }
617 }
618 }
619 break;
620 case AUDIT_OBJ_GID:
621 if (name) {
622 result = audit_gid_comparator(name->gid, f->op, f->gid);
623 } else if (ctx) {
624 list_for_each_entry(n, &ctx->names_list, list) {
625 if (audit_gid_comparator(n->gid, f->op, f->gid)) {
626 ++result;
627 break;
628 }
629 }
630 }
631 break;
632 case AUDIT_WATCH:
633 if (name) {
634 result = audit_watch_compare(rule->watch,
635 name->ino,
636 name->dev);
637 if (f->op == Audit_not_equal)
638 result = !result;
639 }
640 break;
641 case AUDIT_DIR:
642 if (ctx) {
643 result = match_tree_refs(ctx, rule->tree);
644 if (f->op == Audit_not_equal)
645 result = !result;
646 }
647 break;
648 case AUDIT_LOGINUID:
649 result = audit_uid_comparator(audit_get_loginuid(tsk),
650 f->op, f->uid);
651 break;
652 case AUDIT_LOGINUID_SET:
653 result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
654 break;
655 case AUDIT_SADDR_FAM:
656 if (ctx && ctx->sockaddr)
657 result = audit_comparator(ctx->sockaddr->ss_family,
658 f->op, f->val);
659 break;
660 case AUDIT_SUBJ_USER:
661 case AUDIT_SUBJ_ROLE:
662 case AUDIT_SUBJ_TYPE:
663 case AUDIT_SUBJ_SEN:
664 case AUDIT_SUBJ_CLR:
665 /* NOTE: this may return negative values indicating
666 a temporary error. We simply treat this as a
667 match for now to avoid losing information that
668 may be wanted. An error message will also be
669 logged upon error */
670 if (f->lsm_rule) {
671 if (need_sid) {
672 /* @tsk should always be equal to
673 * @current with the exception of
674 * fork()/copy_process() in which case
675 * the new @tsk creds are still a dup
676 * of @current's creds so we can still
677 * use
678 * security_current_getlsmprop_subj()
679 * here even though it always refs
680 * @current's creds
681 */
682 security_current_getlsmprop_subj(&prop);
683 need_sid = 0;
684 }
685 result = security_audit_rule_match(&prop,
686 f->type,
687 f->op,
688 f->lsm_rule);
689 }
690 break;
691 case AUDIT_OBJ_USER:
692 case AUDIT_OBJ_ROLE:
693 case AUDIT_OBJ_TYPE:
694 case AUDIT_OBJ_LEV_LOW:
695 case AUDIT_OBJ_LEV_HIGH:
696 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
697 also applies here */
698 if (f->lsm_rule) {
699 /* Find files that match */
700 if (name) {
701 result = security_audit_rule_match(
702 &name->oprop,
703 f->type,
704 f->op,
705 f->lsm_rule);
706 } else if (ctx) {
707 list_for_each_entry(n, &ctx->names_list, list) {
708 if (security_audit_rule_match(
709 &n->oprop,
710 f->type,
711 f->op,
712 f->lsm_rule)) {
713 ++result;
714 break;
715 }
716 }
717 }
718 /* Find ipc objects that match */
719 if (!ctx || ctx->type != AUDIT_IPC)
720 break;
721 if (security_audit_rule_match(&ctx->ipc.oprop,
722 f->type, f->op,
723 f->lsm_rule))
724 ++result;
725 }
726 break;
727 case AUDIT_ARG0:
728 case AUDIT_ARG1:
729 case AUDIT_ARG2:
730 case AUDIT_ARG3:
731 if (ctx)
732 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
733 break;
734 case AUDIT_FILTERKEY:
735 /* ignore this field for filtering */
736 result = 1;
737 break;
738 case AUDIT_PERM:
739 result = audit_match_perm(ctx, f->val);
740 if (f->op == Audit_not_equal)
741 result = !result;
742 break;
743 case AUDIT_FILETYPE:
744 result = audit_match_filetype(ctx, f->val);
745 if (f->op == Audit_not_equal)
746 result = !result;
747 break;
748 case AUDIT_FIELD_COMPARE:
749 result = audit_field_compare(tsk, cred, f, ctx, name);
750 break;
751 }
752 if (!result)
753 return 0;
754 }
755
756 if (ctx) {
757 if (rule->filterkey) {
758 kfree(ctx->filterkey);
759 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
760 }
761 ctx->prio = rule->prio;
762 }
763 switch (rule->action) {
764 case AUDIT_NEVER:
765 *state = AUDIT_STATE_DISABLED;
766 break;
767 case AUDIT_ALWAYS:
768 *state = AUDIT_STATE_RECORD;
769 break;
770 }
771 return 1;
772}
773
774/* At process creation time, we can determine if system-call auditing is
775 * completely disabled for this task. Since we only have the task
776 * structure at this point, we can only check uid and gid.
777 */
778static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
779{
780 struct audit_entry *e;
781 enum audit_state state;
782
783 rcu_read_lock();
784 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
785 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
786 &state, true)) {
787 if (state == AUDIT_STATE_RECORD)
788 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
789 rcu_read_unlock();
790 return state;
791 }
792 }
793 rcu_read_unlock();
794 return AUDIT_STATE_BUILD;
795}
796
797static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
798{
799 int word, bit;
800
801 if (val > 0xffffffff)
802 return false;
803
804 word = AUDIT_WORD(val);
805 if (word >= AUDIT_BITMASK_SIZE)
806 return false;
807
808 bit = AUDIT_BIT(val);
809
810 return rule->mask[word] & bit;
811}
812
813/**
814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
815 * @tsk: associated task
816 * @ctx: audit context
817 * @list: audit filter list
818 * @name: audit_name (can be NULL)
819 * @op: current syscall/uring_op
820 *
821 * Run the udit filters specified in @list against @tsk using @ctx,
822 * @name, and @op, as necessary; the caller is responsible for ensuring
823 * that the call is made while the RCU read lock is held. The @name
824 * parameter can be NULL, but all others must be specified.
825 * Returns 1/true if the filter finds a match, 0/false if none are found.
826 */
827static int __audit_filter_op(struct task_struct *tsk,
828 struct audit_context *ctx,
829 struct list_head *list,
830 struct audit_names *name,
831 unsigned long op)
832{
833 struct audit_entry *e;
834 enum audit_state state;
835
836 list_for_each_entry_rcu(e, list, list) {
837 if (audit_in_mask(&e->rule, op) &&
838 audit_filter_rules(tsk, &e->rule, ctx, name,
839 &state, false)) {
840 ctx->current_state = state;
841 return 1;
842 }
843 }
844 return 0;
845}
846
847/**
848 * audit_filter_uring - apply filters to an io_uring operation
849 * @tsk: associated task
850 * @ctx: audit context
851 */
852static void audit_filter_uring(struct task_struct *tsk,
853 struct audit_context *ctx)
854{
855 if (auditd_test_task(tsk))
856 return;
857
858 rcu_read_lock();
859 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
860 NULL, ctx->uring_op);
861 rcu_read_unlock();
862}
863
864/* At syscall exit time, this filter is called if the audit_state is
865 * not low enough that auditing cannot take place, but is also not
866 * high enough that we already know we have to write an audit record
867 * (i.e., the state is AUDIT_STATE_BUILD).
868 */
869static void audit_filter_syscall(struct task_struct *tsk,
870 struct audit_context *ctx)
871{
872 if (auditd_test_task(tsk))
873 return;
874
875 rcu_read_lock();
876 __audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
877 NULL, ctx->major);
878 rcu_read_unlock();
879}
880
881/*
882 * Given an audit_name check the inode hash table to see if they match.
883 * Called holding the rcu read lock to protect the use of audit_inode_hash
884 */
885static int audit_filter_inode_name(struct task_struct *tsk,
886 struct audit_names *n,
887 struct audit_context *ctx)
888{
889 int h = audit_hash_ino((u32)n->ino);
890 struct list_head *list = &audit_inode_hash[h];
891
892 return __audit_filter_op(tsk, ctx, list, n, ctx->major);
893}
894
895/* At syscall exit time, this filter is called if any audit_names have been
896 * collected during syscall processing. We only check rules in sublists at hash
897 * buckets applicable to the inode numbers in audit_names.
898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
899 */
900void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
901{
902 struct audit_names *n;
903
904 if (auditd_test_task(tsk))
905 return;
906
907 rcu_read_lock();
908
909 list_for_each_entry(n, &ctx->names_list, list) {
910 if (audit_filter_inode_name(tsk, n, ctx))
911 break;
912 }
913 rcu_read_unlock();
914}
915
916static inline void audit_proctitle_free(struct audit_context *context)
917{
918 kfree(context->proctitle.value);
919 context->proctitle.value = NULL;
920 context->proctitle.len = 0;
921}
922
923static inline void audit_free_module(struct audit_context *context)
924{
925 if (context->type == AUDIT_KERN_MODULE) {
926 kfree(context->module.name);
927 context->module.name = NULL;
928 }
929}
930static inline void audit_free_names(struct audit_context *context)
931{
932 struct audit_names *n, *next;
933
934 list_for_each_entry_safe(n, next, &context->names_list, list) {
935 list_del(&n->list);
936 if (n->name)
937 putname(n->name);
938 if (n->should_free)
939 kfree(n);
940 }
941 context->name_count = 0;
942 path_put(&context->pwd);
943 context->pwd.dentry = NULL;
944 context->pwd.mnt = NULL;
945}
946
947static inline void audit_free_aux(struct audit_context *context)
948{
949 struct audit_aux_data *aux;
950
951 while ((aux = context->aux)) {
952 context->aux = aux->next;
953 kfree(aux);
954 }
955 context->aux = NULL;
956 while ((aux = context->aux_pids)) {
957 context->aux_pids = aux->next;
958 kfree(aux);
959 }
960 context->aux_pids = NULL;
961}
962
963/**
964 * audit_reset_context - reset a audit_context structure
965 * @ctx: the audit_context to reset
966 *
967 * All fields in the audit_context will be reset to an initial state, all
968 * references held by fields will be dropped, and private memory will be
969 * released. When this function returns the audit_context will be suitable
970 * for reuse, so long as the passed context is not NULL or a dummy context.
971 */
972static void audit_reset_context(struct audit_context *ctx)
973{
974 if (!ctx)
975 return;
976
977 /* if ctx is non-null, reset the "ctx->context" regardless */
978 ctx->context = AUDIT_CTX_UNUSED;
979 if (ctx->dummy)
980 return;
981
982 /*
983 * NOTE: It shouldn't matter in what order we release the fields, so
984 * release them in the order in which they appear in the struct;
985 * this gives us some hope of quickly making sure we are
986 * resetting the audit_context properly.
987 *
988 * Other things worth mentioning:
989 * - we don't reset "dummy"
990 * - we don't reset "state", we do reset "current_state"
991 * - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
992 * - much of this is likely overkill, but play it safe for now
993 * - we really need to work on improving the audit_context struct
994 */
995
996 ctx->current_state = ctx->state;
997 ctx->serial = 0;
998 ctx->major = 0;
999 ctx->uring_op = 0;
1000 ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001 memset(ctx->argv, 0, sizeof(ctx->argv));
1002 ctx->return_code = 0;
1003 ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004 ctx->return_valid = AUDITSC_INVALID;
1005 audit_free_names(ctx);
1006 if (ctx->state != AUDIT_STATE_RECORD) {
1007 kfree(ctx->filterkey);
1008 ctx->filterkey = NULL;
1009 }
1010 audit_free_aux(ctx);
1011 kfree(ctx->sockaddr);
1012 ctx->sockaddr = NULL;
1013 ctx->sockaddr_len = 0;
1014 ctx->ppid = 0;
1015 ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016 ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017 ctx->personality = 0;
1018 ctx->arch = 0;
1019 ctx->target_pid = 0;
1020 ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021 ctx->target_sessionid = 0;
1022 lsmprop_init(&ctx->target_ref);
1023 ctx->target_comm[0] = '\0';
1024 unroll_tree_refs(ctx, NULL, 0);
1025 WARN_ON(!list_empty(&ctx->killed_trees));
1026 audit_free_module(ctx);
1027 ctx->fds[0] = -1;
1028 ctx->type = 0; /* reset last for audit_free_*() */
1029}
1030
1031static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032{
1033 struct audit_context *context;
1034
1035 context = kzalloc(sizeof(*context), GFP_KERNEL);
1036 if (!context)
1037 return NULL;
1038 context->context = AUDIT_CTX_UNUSED;
1039 context->state = state;
1040 context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041 INIT_LIST_HEAD(&context->killed_trees);
1042 INIT_LIST_HEAD(&context->names_list);
1043 context->fds[0] = -1;
1044 context->return_valid = AUDITSC_INVALID;
1045 return context;
1046}
1047
1048/**
1049 * audit_alloc - allocate an audit context block for a task
1050 * @tsk: task
1051 *
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary. Doing so turns on system call auditing for the
1054 * specified task. This is called from copy_process, so no lock is
1055 * needed.
1056 */
1057int audit_alloc(struct task_struct *tsk)
1058{
1059 struct audit_context *context;
1060 enum audit_state state;
1061 char *key = NULL;
1062
1063 if (likely(!audit_ever_enabled))
1064 return 0;
1065
1066 state = audit_filter_task(tsk, &key);
1067 if (state == AUDIT_STATE_DISABLED) {
1068 clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069 return 0;
1070 }
1071
1072 context = audit_alloc_context(state);
1073 if (!context) {
1074 kfree(key);
1075 audit_log_lost("out of memory in audit_alloc");
1076 return -ENOMEM;
1077 }
1078 context->filterkey = key;
1079
1080 audit_set_context(tsk, context);
1081 set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082 return 0;
1083}
1084
1085static inline void audit_free_context(struct audit_context *context)
1086{
1087 /* resetting is extra work, but it is likely just noise */
1088 audit_reset_context(context);
1089 audit_proctitle_free(context);
1090 free_tree_refs(context);
1091 kfree(context->filterkey);
1092 kfree(context);
1093}
1094
1095static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096 kuid_t auid, kuid_t uid,
1097 unsigned int sessionid, struct lsm_prop *prop,
1098 char *comm)
1099{
1100 struct audit_buffer *ab;
1101 char *ctx = NULL;
1102 u32 len;
1103 int rc = 0;
1104
1105 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1106 if (!ab)
1107 return rc;
1108
1109 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1110 from_kuid(&init_user_ns, auid),
1111 from_kuid(&init_user_ns, uid), sessionid);
1112 if (lsmprop_is_set(prop)) {
1113 if (security_lsmprop_to_secctx(prop, &ctx, &len)) {
1114 audit_log_format(ab, " obj=(none)");
1115 rc = 1;
1116 } else {
1117 audit_log_format(ab, " obj=%s", ctx);
1118 security_release_secctx(ctx, len);
1119 }
1120 }
1121 audit_log_format(ab, " ocomm=");
1122 audit_log_untrustedstring(ab, comm);
1123 audit_log_end(ab);
1124
1125 return rc;
1126}
1127
1128static void audit_log_execve_info(struct audit_context *context,
1129 struct audit_buffer **ab)
1130{
1131 long len_max;
1132 long len_rem;
1133 long len_full;
1134 long len_buf;
1135 long len_abuf = 0;
1136 long len_tmp;
1137 bool require_data;
1138 bool encode;
1139 unsigned int iter;
1140 unsigned int arg;
1141 char *buf_head;
1142 char *buf;
1143 const char __user *p = (const char __user *)current->mm->arg_start;
1144
1145 /* NOTE: this buffer needs to be large enough to hold all the non-arg
1146 * data we put in the audit record for this argument (see the
1147 * code below) ... at this point in time 96 is plenty */
1148 char abuf[96];
1149
1150 /* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1151 * current value of 7500 is not as important as the fact that it
1152 * is less than 8k, a setting of 7500 gives us plenty of wiggle
1153 * room if we go over a little bit in the logging below */
1154 WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1155 len_max = MAX_EXECVE_AUDIT_LEN;
1156
1157 /* scratch buffer to hold the userspace args */
1158 buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159 if (!buf_head) {
1160 audit_panic("out of memory for argv string");
1161 return;
1162 }
1163 buf = buf_head;
1164
1165 audit_log_format(*ab, "argc=%d", context->execve.argc);
1166
1167 len_rem = len_max;
1168 len_buf = 0;
1169 len_full = 0;
1170 require_data = true;
1171 encode = false;
1172 iter = 0;
1173 arg = 0;
1174 do {
1175 /* NOTE: we don't ever want to trust this value for anything
1176 * serious, but the audit record format insists we
1177 * provide an argument length for really long arguments,
1178 * e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1179 * to use strncpy_from_user() to obtain this value for
1180 * recording in the log, although we don't use it
1181 * anywhere here to avoid a double-fetch problem */
1182 if (len_full == 0)
1183 len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1184
1185 /* read more data from userspace */
1186 if (require_data) {
1187 /* can we make more room in the buffer? */
1188 if (buf != buf_head) {
1189 memmove(buf_head, buf, len_buf);
1190 buf = buf_head;
1191 }
1192
1193 /* fetch as much as we can of the argument */
1194 len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1195 len_max - len_buf);
1196 if (len_tmp == -EFAULT) {
1197 /* unable to copy from userspace */
1198 send_sig(SIGKILL, current, 0);
1199 goto out;
1200 } else if (len_tmp == (len_max - len_buf)) {
1201 /* buffer is not large enough */
1202 require_data = true;
1203 /* NOTE: if we are going to span multiple
1204 * buffers force the encoding so we stand
1205 * a chance at a sane len_full value and
1206 * consistent record encoding */
1207 encode = true;
1208 len_full = len_full * 2;
1209 p += len_tmp;
1210 } else {
1211 require_data = false;
1212 if (!encode)
1213 encode = audit_string_contains_control(
1214 buf, len_tmp);
1215 /* try to use a trusted value for len_full */
1216 if (len_full < len_max)
1217 len_full = (encode ?
1218 len_tmp * 2 : len_tmp);
1219 p += len_tmp + 1;
1220 }
1221 len_buf += len_tmp;
1222 buf_head[len_buf] = '\0';
1223
1224 /* length of the buffer in the audit record? */
1225 len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1226 }
1227
1228 /* write as much as we can to the audit log */
1229 if (len_buf >= 0) {
1230 /* NOTE: some magic numbers here - basically if we
1231 * can't fit a reasonable amount of data into the
1232 * existing audit buffer, flush it and start with
1233 * a new buffer */
1234 if ((sizeof(abuf) + 8) > len_rem) {
1235 len_rem = len_max;
1236 audit_log_end(*ab);
1237 *ab = audit_log_start(context,
1238 GFP_KERNEL, AUDIT_EXECVE);
1239 if (!*ab)
1240 goto out;
1241 }
1242
1243 /* create the non-arg portion of the arg record */
1244 len_tmp = 0;
1245 if (require_data || (iter > 0) ||
1246 ((len_abuf + sizeof(abuf)) > len_rem)) {
1247 if (iter == 0) {
1248 len_tmp += snprintf(&abuf[len_tmp],
1249 sizeof(abuf) - len_tmp,
1250 " a%d_len=%lu",
1251 arg, len_full);
1252 }
1253 len_tmp += snprintf(&abuf[len_tmp],
1254 sizeof(abuf) - len_tmp,
1255 " a%d[%d]=", arg, iter++);
1256 } else
1257 len_tmp += snprintf(&abuf[len_tmp],
1258 sizeof(abuf) - len_tmp,
1259 " a%d=", arg);
1260 WARN_ON(len_tmp >= sizeof(abuf));
1261 abuf[sizeof(abuf) - 1] = '\0';
1262
1263 /* log the arg in the audit record */
1264 audit_log_format(*ab, "%s", abuf);
1265 len_rem -= len_tmp;
1266 len_tmp = len_buf;
1267 if (encode) {
1268 if (len_abuf > len_rem)
1269 len_tmp = len_rem / 2; /* encoding */
1270 audit_log_n_hex(*ab, buf, len_tmp);
1271 len_rem -= len_tmp * 2;
1272 len_abuf -= len_tmp * 2;
1273 } else {
1274 if (len_abuf > len_rem)
1275 len_tmp = len_rem - 2; /* quotes */
1276 audit_log_n_string(*ab, buf, len_tmp);
1277 len_rem -= len_tmp + 2;
1278 /* don't subtract the "2" because we still need
1279 * to add quotes to the remaining string */
1280 len_abuf -= len_tmp;
1281 }
1282 len_buf -= len_tmp;
1283 buf += len_tmp;
1284 }
1285
1286 /* ready to move to the next argument? */
1287 if ((len_buf == 0) && !require_data) {
1288 arg++;
1289 iter = 0;
1290 len_full = 0;
1291 require_data = true;
1292 encode = false;
1293 }
1294 } while (arg < context->execve.argc);
1295
1296 /* NOTE: the caller handles the final audit_log_end() call */
1297
1298out:
1299 kfree(buf_head);
1300}
1301
1302static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1303 kernel_cap_t *cap)
1304{
1305 if (cap_isclear(*cap)) {
1306 audit_log_format(ab, " %s=0", prefix);
1307 return;
1308 }
1309 audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1310}
1311
1312static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1313{
1314 if (name->fcap_ver == -1) {
1315 audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1316 return;
1317 }
1318 audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1319 audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1320 audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1321 name->fcap.fE, name->fcap_ver,
1322 from_kuid(&init_user_ns, name->fcap.rootid));
1323}
1324
1325static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1326{
1327 const struct audit_ntp_data *ntp = &context->time.ntp_data;
1328 const struct timespec64 *tk = &context->time.tk_injoffset;
1329 static const char * const ntp_name[] = {
1330 "offset",
1331 "freq",
1332 "status",
1333 "tai",
1334 "tick",
1335 "adjust",
1336 };
1337 int type;
1338
1339 if (context->type == AUDIT_TIME_ADJNTPVAL) {
1340 for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1341 if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1342 if (!*ab) {
1343 *ab = audit_log_start(context,
1344 GFP_KERNEL,
1345 AUDIT_TIME_ADJNTPVAL);
1346 if (!*ab)
1347 return;
1348 }
1349 audit_log_format(*ab, "op=%s old=%lli new=%lli",
1350 ntp_name[type],
1351 ntp->vals[type].oldval,
1352 ntp->vals[type].newval);
1353 audit_log_end(*ab);
1354 *ab = NULL;
1355 }
1356 }
1357 }
1358 if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1359 if (!*ab) {
1360 *ab = audit_log_start(context, GFP_KERNEL,
1361 AUDIT_TIME_INJOFFSET);
1362 if (!*ab)
1363 return;
1364 }
1365 audit_log_format(*ab, "sec=%lli nsec=%li",
1366 (long long)tk->tv_sec, tk->tv_nsec);
1367 audit_log_end(*ab);
1368 *ab = NULL;
1369 }
1370}
1371
1372static void show_special(struct audit_context *context, int *call_panic)
1373{
1374 struct audit_buffer *ab;
1375 int i;
1376
1377 ab = audit_log_start(context, GFP_KERNEL, context->type);
1378 if (!ab)
1379 return;
1380
1381 switch (context->type) {
1382 case AUDIT_SOCKETCALL: {
1383 int nargs = context->socketcall.nargs;
1384
1385 audit_log_format(ab, "nargs=%d", nargs);
1386 for (i = 0; i < nargs; i++)
1387 audit_log_format(ab, " a%d=%lx", i,
1388 context->socketcall.args[i]);
1389 break; }
1390 case AUDIT_IPC:
1391 audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1392 from_kuid(&init_user_ns, context->ipc.uid),
1393 from_kgid(&init_user_ns, context->ipc.gid),
1394 context->ipc.mode);
1395 if (lsmprop_is_set(&context->ipc.oprop)) {
1396 char *ctx = NULL;
1397 u32 len;
1398
1399 if (security_lsmprop_to_secctx(&context->ipc.oprop,
1400 &ctx, &len)) {
1401 *call_panic = 1;
1402 } else {
1403 audit_log_format(ab, " obj=%s", ctx);
1404 security_release_secctx(ctx, len);
1405 }
1406 }
1407 if (context->ipc.has_perm) {
1408 audit_log_end(ab);
1409 ab = audit_log_start(context, GFP_KERNEL,
1410 AUDIT_IPC_SET_PERM);
1411 if (unlikely(!ab))
1412 return;
1413 audit_log_format(ab,
1414 "qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1415 context->ipc.qbytes,
1416 context->ipc.perm_uid,
1417 context->ipc.perm_gid,
1418 context->ipc.perm_mode);
1419 }
1420 break;
1421 case AUDIT_MQ_OPEN:
1422 audit_log_format(ab,
1423 "oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1424 "mq_msgsize=%ld mq_curmsgs=%ld",
1425 context->mq_open.oflag, context->mq_open.mode,
1426 context->mq_open.attr.mq_flags,
1427 context->mq_open.attr.mq_maxmsg,
1428 context->mq_open.attr.mq_msgsize,
1429 context->mq_open.attr.mq_curmsgs);
1430 break;
1431 case AUDIT_MQ_SENDRECV:
1432 audit_log_format(ab,
1433 "mqdes=%d msg_len=%zd msg_prio=%u "
1434 "abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1435 context->mq_sendrecv.mqdes,
1436 context->mq_sendrecv.msg_len,
1437 context->mq_sendrecv.msg_prio,
1438 (long long) context->mq_sendrecv.abs_timeout.tv_sec,
1439 context->mq_sendrecv.abs_timeout.tv_nsec);
1440 break;
1441 case AUDIT_MQ_NOTIFY:
1442 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1443 context->mq_notify.mqdes,
1444 context->mq_notify.sigev_signo);
1445 break;
1446 case AUDIT_MQ_GETSETATTR: {
1447 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1448
1449 audit_log_format(ab,
1450 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1451 "mq_curmsgs=%ld ",
1452 context->mq_getsetattr.mqdes,
1453 attr->mq_flags, attr->mq_maxmsg,
1454 attr->mq_msgsize, attr->mq_curmsgs);
1455 break; }
1456 case AUDIT_CAPSET:
1457 audit_log_format(ab, "pid=%d", context->capset.pid);
1458 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1459 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1460 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1461 audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1462 break;
1463 case AUDIT_MMAP:
1464 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1465 context->mmap.flags);
1466 break;
1467 case AUDIT_OPENAT2:
1468 audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1469 context->openat2.flags,
1470 context->openat2.mode,
1471 context->openat2.resolve);
1472 break;
1473 case AUDIT_EXECVE:
1474 audit_log_execve_info(context, &ab);
1475 break;
1476 case AUDIT_KERN_MODULE:
1477 audit_log_format(ab, "name=");
1478 if (context->module.name) {
1479 audit_log_untrustedstring(ab, context->module.name);
1480 } else
1481 audit_log_format(ab, "(null)");
1482
1483 break;
1484 case AUDIT_TIME_ADJNTPVAL:
1485 case AUDIT_TIME_INJOFFSET:
1486 /* this call deviates from the rest, eating the buffer */
1487 audit_log_time(context, &ab);
1488 break;
1489 }
1490 audit_log_end(ab);
1491}
1492
1493static inline int audit_proctitle_rtrim(char *proctitle, int len)
1494{
1495 char *end = proctitle + len - 1;
1496
1497 while (end > proctitle && !isprint(*end))
1498 end--;
1499
1500 /* catch the case where proctitle is only 1 non-print character */
1501 len = end - proctitle + 1;
1502 len -= isprint(proctitle[len-1]) == 0;
1503 return len;
1504}
1505
1506/*
1507 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1508 * @context: audit_context for the task
1509 * @n: audit_names structure with reportable details
1510 * @path: optional path to report instead of audit_names->name
1511 * @record_num: record number to report when handling a list of names
1512 * @call_panic: optional pointer to int that will be updated if secid fails
1513 */
1514static void audit_log_name(struct audit_context *context, struct audit_names *n,
1515 const struct path *path, int record_num, int *call_panic)
1516{
1517 struct audit_buffer *ab;
1518
1519 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1520 if (!ab)
1521 return;
1522
1523 audit_log_format(ab, "item=%d", record_num);
1524
1525 if (path)
1526 audit_log_d_path(ab, " name=", path);
1527 else if (n->name) {
1528 switch (n->name_len) {
1529 case AUDIT_NAME_FULL:
1530 /* log the full path */
1531 audit_log_format(ab, " name=");
1532 audit_log_untrustedstring(ab, n->name->name);
1533 break;
1534 case 0:
1535 /* name was specified as a relative path and the
1536 * directory component is the cwd
1537 */
1538 if (context->pwd.dentry && context->pwd.mnt)
1539 audit_log_d_path(ab, " name=", &context->pwd);
1540 else
1541 audit_log_format(ab, " name=(null)");
1542 break;
1543 default:
1544 /* log the name's directory component */
1545 audit_log_format(ab, " name=");
1546 audit_log_n_untrustedstring(ab, n->name->name,
1547 n->name_len);
1548 }
1549 } else
1550 audit_log_format(ab, " name=(null)");
1551
1552 if (n->ino != AUDIT_INO_UNSET)
1553 audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1554 n->ino,
1555 MAJOR(n->dev),
1556 MINOR(n->dev),
1557 n->mode,
1558 from_kuid(&init_user_ns, n->uid),
1559 from_kgid(&init_user_ns, n->gid),
1560 MAJOR(n->rdev),
1561 MINOR(n->rdev));
1562 if (lsmprop_is_set(&n->oprop)) {
1563 char *ctx = NULL;
1564 u32 len;
1565
1566 if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) {
1567 if (call_panic)
1568 *call_panic = 2;
1569 } else {
1570 audit_log_format(ab, " obj=%s", ctx);
1571 security_release_secctx(ctx, len);
1572 }
1573 }
1574
1575 /* log the audit_names record type */
1576 switch (n->type) {
1577 case AUDIT_TYPE_NORMAL:
1578 audit_log_format(ab, " nametype=NORMAL");
1579 break;
1580 case AUDIT_TYPE_PARENT:
1581 audit_log_format(ab, " nametype=PARENT");
1582 break;
1583 case AUDIT_TYPE_CHILD_DELETE:
1584 audit_log_format(ab, " nametype=DELETE");
1585 break;
1586 case AUDIT_TYPE_CHILD_CREATE:
1587 audit_log_format(ab, " nametype=CREATE");
1588 break;
1589 default:
1590 audit_log_format(ab, " nametype=UNKNOWN");
1591 break;
1592 }
1593
1594 audit_log_fcaps(ab, n);
1595 audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600 int res;
1601 char *buf;
1602 char *msg = "(null)";
1603 int len = strlen(msg);
1604 struct audit_context *context = audit_context();
1605 struct audit_buffer *ab;
1606
1607 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608 if (!ab)
1609 return; /* audit_panic or being filtered */
1610
1611 audit_log_format(ab, "proctitle=");
1612
1613 /* Not cached */
1614 if (!context->proctitle.value) {
1615 buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616 if (!buf)
1617 goto out;
1618 /* Historically called this from procfs naming */
1619 res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620 if (res == 0) {
1621 kfree(buf);
1622 goto out;
1623 }
1624 res = audit_proctitle_rtrim(buf, res);
1625 if (res == 0) {
1626 kfree(buf);
1627 goto out;
1628 }
1629 context->proctitle.value = buf;
1630 context->proctitle.len = res;
1631 }
1632 msg = context->proctitle.value;
1633 len = context->proctitle.len;
1634out:
1635 audit_log_n_untrustedstring(ab, msg, len);
1636 audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645 struct audit_buffer *ab;
1646 const struct cred *cred;
1647
1648 ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649 if (!ab)
1650 return;
1651 cred = current_cred();
1652 audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653 if (ctx->return_valid != AUDITSC_INVALID)
1654 audit_log_format(ab, " success=%s exit=%ld",
1655 str_yes_no(ctx->return_valid ==
1656 AUDITSC_SUCCESS),
1657 ctx->return_code);
1658 audit_log_format(ab,
1659 " items=%d"
1660 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662 ctx->name_count,
1663 task_ppid_nr(current), task_tgid_nr(current),
1664 from_kuid(&init_user_ns, cred->uid),
1665 from_kgid(&init_user_ns, cred->gid),
1666 from_kuid(&init_user_ns, cred->euid),
1667 from_kuid(&init_user_ns, cred->suid),
1668 from_kuid(&init_user_ns, cred->fsuid),
1669 from_kgid(&init_user_ns, cred->egid),
1670 from_kgid(&init_user_ns, cred->sgid),
1671 from_kgid(&init_user_ns, cred->fsgid));
1672 audit_log_task_context(ab);
1673 audit_log_key(ab, ctx->filterkey);
1674 audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679 int i, call_panic = 0;
1680 struct audit_context *context = audit_context();
1681 struct audit_buffer *ab;
1682 struct audit_aux_data *aux;
1683 struct audit_names *n;
1684
1685 context->personality = current->personality;
1686
1687 switch (context->context) {
1688 case AUDIT_CTX_SYSCALL:
1689 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690 if (!ab)
1691 return;
1692 audit_log_format(ab, "arch=%x syscall=%d",
1693 context->arch, context->major);
1694 if (context->personality != PER_LINUX)
1695 audit_log_format(ab, " per=%lx", context->personality);
1696 if (context->return_valid != AUDITSC_INVALID)
1697 audit_log_format(ab, " success=%s exit=%ld",
1698 str_yes_no(context->return_valid ==
1699 AUDITSC_SUCCESS),
1700 context->return_code);
1701 audit_log_format(ab,
1702 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703 context->argv[0],
1704 context->argv[1],
1705 context->argv[2],
1706 context->argv[3],
1707 context->name_count);
1708 audit_log_task_info(ab);
1709 audit_log_key(ab, context->filterkey);
1710 audit_log_end(ab);
1711 break;
1712 case AUDIT_CTX_URING:
1713 audit_log_uring(context);
1714 break;
1715 default:
1716 BUG();
1717 break;
1718 }
1719
1720 for (aux = context->aux; aux; aux = aux->next) {
1721
1722 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723 if (!ab)
1724 continue; /* audit_panic has been called */
1725
1726 switch (aux->type) {
1727
1728 case AUDIT_BPRM_FCAPS: {
1729 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738 audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739 audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740 audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741 audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742 audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743 audit_log_format(ab, " frootid=%d",
1744 from_kuid(&init_user_ns,
1745 axs->fcap.rootid));
1746 break; }
1747
1748 }
1749 audit_log_end(ab);
1750 }
1751
1752 if (context->type)
1753 show_special(context, &call_panic);
1754
1755 if (context->fds[0] >= 0) {
1756 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757 if (ab) {
1758 audit_log_format(ab, "fd0=%d fd1=%d",
1759 context->fds[0], context->fds[1]);
1760 audit_log_end(ab);
1761 }
1762 }
1763
1764 if (context->sockaddr_len) {
1765 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766 if (ab) {
1767 audit_log_format(ab, "saddr=");
1768 audit_log_n_hex(ab, (void *)context->sockaddr,
1769 context->sockaddr_len);
1770 audit_log_end(ab);
1771 }
1772 }
1773
1774 for (aux = context->aux_pids; aux; aux = aux->next) {
1775 struct audit_aux_data_pids *axs = (void *)aux;
1776
1777 for (i = 0; i < axs->pid_count; i++)
1778 if (audit_log_pid_context(context, axs->target_pid[i],
1779 axs->target_auid[i],
1780 axs->target_uid[i],
1781 axs->target_sessionid[i],
1782 &axs->target_ref[i],
1783 axs->target_comm[i]))
1784 call_panic = 1;
1785 }
1786
1787 if (context->target_pid &&
1788 audit_log_pid_context(context, context->target_pid,
1789 context->target_auid, context->target_uid,
1790 context->target_sessionid,
1791 &context->target_ref, context->target_comm))
1792 call_panic = 1;
1793
1794 if (context->pwd.dentry && context->pwd.mnt) {
1795 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796 if (ab) {
1797 audit_log_d_path(ab, "cwd=", &context->pwd);
1798 audit_log_end(ab);
1799 }
1800 }
1801
1802 i = 0;
1803 list_for_each_entry(n, &context->names_list, list) {
1804 if (n->hidden)
1805 continue;
1806 audit_log_name(context, n, NULL, i++, &call_panic);
1807 }
1808
1809 if (context->context == AUDIT_CTX_SYSCALL)
1810 audit_log_proctitle();
1811
1812 /* Send end of event record to help user space know we are finished */
1813 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814 if (ab)
1815 audit_log_end(ab);
1816 if (call_panic)
1817 audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828 struct audit_context *context = tsk->audit_context;
1829
1830 if (!context)
1831 return;
1832
1833 /* this may generate CONFIG_CHANGE records */
1834 if (!list_empty(&context->killed_trees))
1835 audit_kill_trees(context);
1836
1837 /* We are called either by do_exit() or the fork() error handling code;
1838 * in the former case tsk == current and in the latter tsk is a
1839 * random task_struct that doesn't have any meaningful data we
1840 * need to log via audit_log_exit().
1841 */
1842 if (tsk == current && !context->dummy) {
1843 context->return_valid = AUDITSC_INVALID;
1844 context->return_code = 0;
1845 if (context->context == AUDIT_CTX_SYSCALL) {
1846 audit_filter_syscall(tsk, context);
1847 audit_filter_inodes(tsk, context);
1848 if (context->current_state == AUDIT_STATE_RECORD)
1849 audit_log_exit();
1850 } else if (context->context == AUDIT_CTX_URING) {
1851 /* TODO: verify this case is real and valid */
1852 audit_filter_uring(tsk, context);
1853 audit_filter_inodes(tsk, context);
1854 if (context->current_state == AUDIT_STATE_RECORD)
1855 audit_log_uring(context);
1856 }
1857 }
1858
1859 audit_set_context(tsk, NULL);
1860 audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873 int success, long code)
1874{
1875 /*
1876 * This is actually a test for:
1877 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879 *
1880 * but is faster than a bunch of ||
1881 */
1882 if (unlikely(code <= -ERESTARTSYS) &&
1883 (code >= -ERESTART_RESTARTBLOCK) &&
1884 (code != -ENOIOCTLCMD))
1885 ctx->return_code = -EINTR;
1886 else
1887 ctx->return_code = code;
1888 ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations. This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902 struct audit_context *ctx = audit_context();
1903
1904 if (ctx->state == AUDIT_STATE_DISABLED)
1905 return;
1906
1907 /*
1908 * NOTE: It's possible that we can be called from the process' context
1909 * before it returns to userspace, and before audit_syscall_exit()
1910 * is called. In this case there is not much to do, just record
1911 * the io_uring details and return.
1912 */
1913 ctx->uring_op = op;
1914 if (ctx->context == AUDIT_CTX_SYSCALL)
1915 return;
1916
1917 ctx->dummy = !audit_n_rules;
1918 if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919 ctx->prio = 0;
1920
1921 ctx->context = AUDIT_CTX_URING;
1922 ctx->current_state = ctx->state;
1923 ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations. This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938 struct audit_context *ctx = audit_context();
1939
1940 if (ctx->dummy) {
1941 if (ctx->context != AUDIT_CTX_URING)
1942 return;
1943 goto out;
1944 }
1945
1946 audit_return_fixup(ctx, success, code);
1947 if (ctx->context == AUDIT_CTX_SYSCALL) {
1948 /*
1949 * NOTE: See the note in __audit_uring_entry() about the case
1950 * where we may be called from process context before we
1951 * return to userspace via audit_syscall_exit(). In this
1952 * case we simply emit a URINGOP record and bail, the
1953 * normal syscall exit handling will take care of
1954 * everything else.
1955 * It is also worth mentioning that when we are called,
1956 * the current process creds may differ from the creds
1957 * used during the normal syscall processing; keep that
1958 * in mind if/when we move the record generation code.
1959 */
1960
1961 /*
1962 * We need to filter on the syscall info here to decide if we
1963 * should emit a URINGOP record. I know it seems odd but this
1964 * solves the problem where users have a filter to block *all*
1965 * syscall records in the "exit" filter; we want to preserve
1966 * the behavior here.
1967 */
1968 audit_filter_syscall(current, ctx);
1969 if (ctx->current_state != AUDIT_STATE_RECORD)
1970 audit_filter_uring(current, ctx);
1971 audit_filter_inodes(current, ctx);
1972 if (ctx->current_state != AUDIT_STATE_RECORD)
1973 return;
1974
1975 audit_log_uring(ctx);
1976 return;
1977 }
1978
1979 /* this may generate CONFIG_CHANGE records */
1980 if (!list_empty(&ctx->killed_trees))
1981 audit_kill_trees(ctx);
1982
1983 /* run through both filters to ensure we set the filterkey properly */
1984 audit_filter_uring(current, ctx);
1985 audit_filter_inodes(current, ctx);
1986 if (ctx->current_state != AUDIT_STATE_RECORD)
1987 goto out;
1988 audit_log_exit();
1989
1990out:
1991 audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry. This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built. If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011 unsigned long a3, unsigned long a4)
2012{
2013 struct audit_context *context = audit_context();
2014 enum audit_state state;
2015
2016 if (!audit_enabled || !context)
2017 return;
2018
2019 WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020 WARN_ON(context->name_count);
2021 if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022 audit_panic("unrecoverable error in audit_syscall_entry()");
2023 return;
2024 }
2025
2026 state = context->state;
2027 if (state == AUDIT_STATE_DISABLED)
2028 return;
2029
2030 context->dummy = !audit_n_rules;
2031 if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032 context->prio = 0;
2033 if (auditd_test_task(current))
2034 return;
2035 }
2036
2037 context->arch = syscall_get_arch(current);
2038 context->major = major;
2039 context->argv[0] = a1;
2040 context->argv[1] = a2;
2041 context->argv[2] = a3;
2042 context->argv[3] = a4;
2043 context->context = AUDIT_CTX_SYSCALL;
2044 context->current_state = state;
2045 ktime_get_coarse_real_ts64(&context->ctime);
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call. If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information. In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061 struct audit_context *context = audit_context();
2062
2063 if (!context || context->dummy ||
2064 context->context != AUDIT_CTX_SYSCALL)
2065 goto out;
2066
2067 /* this may generate CONFIG_CHANGE records */
2068 if (!list_empty(&context->killed_trees))
2069 audit_kill_trees(context);
2070
2071 audit_return_fixup(context, success, return_code);
2072 /* run through both filters to ensure we set the filterkey properly */
2073 audit_filter_syscall(current, context);
2074 audit_filter_inodes(current, context);
2075 if (context->current_state != AUDIT_STATE_RECORD)
2076 goto out;
2077
2078 audit_log_exit();
2079
2080out:
2081 audit_reset_context(context);
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
2086 struct audit_context *context;
2087 struct audit_tree_refs *p;
2088 struct audit_chunk *chunk;
2089 int count;
2090
2091 if (likely(!inode->i_fsnotify_marks))
2092 return;
2093 context = audit_context();
2094 p = context->trees;
2095 count = context->tree_count;
2096 rcu_read_lock();
2097 chunk = audit_tree_lookup(inode);
2098 rcu_read_unlock();
2099 if (!chunk)
2100 return;
2101 if (likely(put_tree_ref(context, chunk)))
2102 return;
2103 if (unlikely(!grow_tree_refs(context))) {
2104 pr_warn("out of memory, audit has lost a tree reference\n");
2105 audit_set_auditable(context);
2106 audit_put_chunk(chunk);
2107 unroll_tree_refs(context, p, count);
2108 return;
2109 }
2110 put_tree_ref(context, chunk);
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
2115 struct audit_context *context;
2116 struct audit_tree_refs *p;
2117 const struct dentry *d, *parent;
2118 struct audit_chunk *drop;
2119 unsigned long seq;
2120 int count;
2121
2122 context = audit_context();
2123 p = context->trees;
2124 count = context->tree_count;
2125retry:
2126 drop = NULL;
2127 d = dentry;
2128 rcu_read_lock();
2129 seq = read_seqbegin(&rename_lock);
2130 for (;;) {
2131 struct inode *inode = d_backing_inode(d);
2132
2133 if (inode && unlikely(inode->i_fsnotify_marks)) {
2134 struct audit_chunk *chunk;
2135
2136 chunk = audit_tree_lookup(inode);
2137 if (chunk) {
2138 if (unlikely(!put_tree_ref(context, chunk))) {
2139 drop = chunk;
2140 break;
2141 }
2142 }
2143 }
2144 parent = d->d_parent;
2145 if (parent == d)
2146 break;
2147 d = parent;
2148 }
2149 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
2150 rcu_read_unlock();
2151 if (!drop) {
2152 /* just a race with rename */
2153 unroll_tree_refs(context, p, count);
2154 goto retry;
2155 }
2156 audit_put_chunk(drop);
2157 if (grow_tree_refs(context)) {
2158 /* OK, got more space */
2159 unroll_tree_refs(context, p, count);
2160 goto retry;
2161 }
2162 /* too bad */
2163 pr_warn("out of memory, audit has lost a tree reference\n");
2164 unroll_tree_refs(context, p, count);
2165 audit_set_auditable(context);
2166 return;
2167 }
2168 rcu_read_unlock();
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172 unsigned char type)
2173{
2174 struct audit_names *aname;
2175
2176 if (context->name_count < AUDIT_NAMES) {
2177 aname = &context->preallocated_names[context->name_count];
2178 memset(aname, 0, sizeof(*aname));
2179 } else {
2180 aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181 if (!aname)
2182 return NULL;
2183 aname->should_free = true;
2184 }
2185
2186 aname->ino = AUDIT_INO_UNSET;
2187 aname->type = type;
2188 list_add_tail(&aname->list, &context->names_list);
2189
2190 context->name_count++;
2191 if (!context->pwd.dentry)
2192 get_fs_pwd(current->fs, &context->pwd);
2193 return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207 struct audit_context *context = audit_context();
2208 struct audit_names *n;
2209
2210 list_for_each_entry(n, &context->names_list, list) {
2211 if (!n->name)
2212 continue;
2213 if (n->name->uptr == uptr) {
2214 atomic_inc(&n->name->refcnt);
2215 return n->name;
2216 }
2217 }
2218 return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230 struct audit_context *context = audit_context();
2231 struct audit_names *n;
2232
2233 if (context->context == AUDIT_CTX_UNUSED)
2234 return;
2235
2236 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237 if (!n)
2238 return;
2239
2240 n->name = name;
2241 n->name_len = AUDIT_NAME_FULL;
2242 name->aname = n;
2243 atomic_inc(&name->refcnt);
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247 const struct dentry *dentry)
2248{
2249 struct cpu_vfs_cap_data caps;
2250 int rc;
2251
2252 if (!dentry)
2253 return 0;
2254
2255 rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2256 if (rc)
2257 return rc;
2258
2259 name->fcap.permitted = caps.permitted;
2260 name->fcap.inheritable = caps.inheritable;
2261 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262 name->fcap.rootid = caps.rootid;
2263 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264 VFS_CAP_REVISION_SHIFT;
2265
2266 return 0;
2267}
2268
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271 const struct dentry *dentry,
2272 struct inode *inode, unsigned int flags)
2273{
2274 name->ino = inode->i_ino;
2275 name->dev = inode->i_sb->s_dev;
2276 name->mode = inode->i_mode;
2277 name->uid = inode->i_uid;
2278 name->gid = inode->i_gid;
2279 name->rdev = inode->i_rdev;
2280 security_inode_getlsmprop(inode, &name->oprop);
2281 if (flags & AUDIT_INODE_NOEVAL) {
2282 name->fcap_ver = -1;
2283 return;
2284 }
2285 audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295 unsigned int flags)
2296{
2297 struct audit_context *context = audit_context();
2298 struct inode *inode = d_backing_inode(dentry);
2299 struct audit_names *n;
2300 bool parent = flags & AUDIT_INODE_PARENT;
2301 struct audit_entry *e;
2302 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303 int i;
2304
2305 if (context->context == AUDIT_CTX_UNUSED)
2306 return;
2307
2308 rcu_read_lock();
2309 list_for_each_entry_rcu(e, list, list) {
2310 for (i = 0; i < e->rule.field_count; i++) {
2311 struct audit_field *f = &e->rule.fields[i];
2312
2313 if (f->type == AUDIT_FSTYPE
2314 && audit_comparator(inode->i_sb->s_magic,
2315 f->op, f->val)
2316 && e->rule.action == AUDIT_NEVER) {
2317 rcu_read_unlock();
2318 return;
2319 }
2320 }
2321 }
2322 rcu_read_unlock();
2323
2324 if (!name)
2325 goto out_alloc;
2326
2327 /*
2328 * If we have a pointer to an audit_names entry already, then we can
2329 * just use it directly if the type is correct.
2330 */
2331 n = name->aname;
2332 if (n) {
2333 if (parent) {
2334 if (n->type == AUDIT_TYPE_PARENT ||
2335 n->type == AUDIT_TYPE_UNKNOWN)
2336 goto out;
2337 } else {
2338 if (n->type != AUDIT_TYPE_PARENT)
2339 goto out;
2340 }
2341 }
2342
2343 list_for_each_entry_reverse(n, &context->names_list, list) {
2344 if (n->ino) {
2345 /* valid inode number, use that for the comparison */
2346 if (n->ino != inode->i_ino ||
2347 n->dev != inode->i_sb->s_dev)
2348 continue;
2349 } else if (n->name) {
2350 /* inode number has not been set, check the name */
2351 if (strcmp(n->name->name, name->name))
2352 continue;
2353 } else
2354 /* no inode and no name (?!) ... this is odd ... */
2355 continue;
2356
2357 /* match the correct record type */
2358 if (parent) {
2359 if (n->type == AUDIT_TYPE_PARENT ||
2360 n->type == AUDIT_TYPE_UNKNOWN)
2361 goto out;
2362 } else {
2363 if (n->type != AUDIT_TYPE_PARENT)
2364 goto out;
2365 }
2366 }
2367
2368out_alloc:
2369 /* unable to find an entry with both a matching name and type */
2370 n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371 if (!n)
2372 return;
2373 if (name) {
2374 n->name = name;
2375 atomic_inc(&name->refcnt);
2376 }
2377
2378out:
2379 if (parent) {
2380 n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381 n->type = AUDIT_TYPE_PARENT;
2382 if (flags & AUDIT_INODE_HIDDEN)
2383 n->hidden = true;
2384 } else {
2385 n->name_len = AUDIT_NAME_FULL;
2386 n->type = AUDIT_TYPE_NORMAL;
2387 }
2388 handle_path(dentry);
2389 audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394 __audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type: AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created. Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412 const struct dentry *dentry,
2413 const unsigned char type)
2414{
2415 struct audit_context *context = audit_context();
2416 struct inode *inode = d_backing_inode(dentry);
2417 const struct qstr *dname = &dentry->d_name;
2418 struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419 struct audit_entry *e;
2420 struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421 int i;
2422
2423 if (context->context == AUDIT_CTX_UNUSED)
2424 return;
2425
2426 rcu_read_lock();
2427 list_for_each_entry_rcu(e, list, list) {
2428 for (i = 0; i < e->rule.field_count; i++) {
2429 struct audit_field *f = &e->rule.fields[i];
2430
2431 if (f->type == AUDIT_FSTYPE
2432 && audit_comparator(parent->i_sb->s_magic,
2433 f->op, f->val)
2434 && e->rule.action == AUDIT_NEVER) {
2435 rcu_read_unlock();
2436 return;
2437 }
2438 }
2439 }
2440 rcu_read_unlock();
2441
2442 if (inode)
2443 handle_one(inode);
2444
2445 /* look for a parent entry first */
2446 list_for_each_entry(n, &context->names_list, list) {
2447 if (!n->name ||
2448 (n->type != AUDIT_TYPE_PARENT &&
2449 n->type != AUDIT_TYPE_UNKNOWN))
2450 continue;
2451
2452 if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453 !audit_compare_dname_path(dname,
2454 n->name->name, n->name_len)) {
2455 if (n->type == AUDIT_TYPE_UNKNOWN)
2456 n->type = AUDIT_TYPE_PARENT;
2457 found_parent = n;
2458 break;
2459 }
2460 }
2461
2462 cond_resched();
2463
2464 /* is there a matching child entry? */
2465 list_for_each_entry(n, &context->names_list, list) {
2466 /* can only match entries that have a name */
2467 if (!n->name ||
2468 (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2469 continue;
2470
2471 if (!strcmp(dname->name, n->name->name) ||
2472 !audit_compare_dname_path(dname, n->name->name,
2473 found_parent ?
2474 found_parent->name_len :
2475 AUDIT_NAME_FULL)) {
2476 if (n->type == AUDIT_TYPE_UNKNOWN)
2477 n->type = type;
2478 found_child = n;
2479 break;
2480 }
2481 }
2482
2483 if (!found_parent) {
2484 /* create a new, "anonymous" parent record */
2485 n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2486 if (!n)
2487 return;
2488 audit_copy_inode(n, NULL, parent, 0);
2489 }
2490
2491 if (!found_child) {
2492 found_child = audit_alloc_name(context, type);
2493 if (!found_child)
2494 return;
2495
2496 /* Re-use the name belonging to the slot for a matching parent
2497 * directory. All names for this context are relinquished in
2498 * audit_free_names() */
2499 if (found_parent) {
2500 found_child->name = found_parent->name;
2501 found_child->name_len = AUDIT_NAME_FULL;
2502 atomic_inc(&found_child->name->refcnt);
2503 }
2504 }
2505
2506 if (inode)
2507 audit_copy_inode(found_child, dentry, inode, 0);
2508 else
2509 found_child->ino = AUDIT_INO_UNSET;
2510}
2511EXPORT_SYMBOL_GPL(__audit_inode_child);
2512
2513/**
2514 * auditsc_get_stamp - get local copies of audit_context values
2515 * @ctx: audit_context for the task
2516 * @t: timespec64 to store time recorded in the audit_context
2517 * @serial: serial value that is recorded in the audit_context
2518 *
2519 * Also sets the context as auditable.
2520 */
2521int auditsc_get_stamp(struct audit_context *ctx,
2522 struct timespec64 *t, unsigned int *serial)
2523{
2524 if (ctx->context == AUDIT_CTX_UNUSED)
2525 return 0;
2526 if (!ctx->serial)
2527 ctx->serial = audit_serial();
2528 t->tv_sec = ctx->ctime.tv_sec;
2529 t->tv_nsec = ctx->ctime.tv_nsec;
2530 *serial = ctx->serial;
2531 if (!ctx->prio) {
2532 ctx->prio = 1;
2533 ctx->current_state = AUDIT_STATE_RECORD;
2534 }
2535 return 1;
2536}
2537
2538/**
2539 * __audit_mq_open - record audit data for a POSIX MQ open
2540 * @oflag: open flag
2541 * @mode: mode bits
2542 * @attr: queue attributes
2543 *
2544 */
2545void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2546{
2547 struct audit_context *context = audit_context();
2548
2549 if (attr)
2550 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2551 else
2552 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2553
2554 context->mq_open.oflag = oflag;
2555 context->mq_open.mode = mode;
2556
2557 context->type = AUDIT_MQ_OPEN;
2558}
2559
2560/**
2561 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2562 * @mqdes: MQ descriptor
2563 * @msg_len: Message length
2564 * @msg_prio: Message priority
2565 * @abs_timeout: Message timeout in absolute time
2566 *
2567 */
2568void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2569 const struct timespec64 *abs_timeout)
2570{
2571 struct audit_context *context = audit_context();
2572 struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2573
2574 if (abs_timeout)
2575 memcpy(p, abs_timeout, sizeof(*p));
2576 else
2577 memset(p, 0, sizeof(*p));
2578
2579 context->mq_sendrecv.mqdes = mqdes;
2580 context->mq_sendrecv.msg_len = msg_len;
2581 context->mq_sendrecv.msg_prio = msg_prio;
2582
2583 context->type = AUDIT_MQ_SENDRECV;
2584}
2585
2586/**
2587 * __audit_mq_notify - record audit data for a POSIX MQ notify
2588 * @mqdes: MQ descriptor
2589 * @notification: Notification event
2590 *
2591 */
2592
2593void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2594{
2595 struct audit_context *context = audit_context();
2596
2597 if (notification)
2598 context->mq_notify.sigev_signo = notification->sigev_signo;
2599 else
2600 context->mq_notify.sigev_signo = 0;
2601
2602 context->mq_notify.mqdes = mqdes;
2603 context->type = AUDIT_MQ_NOTIFY;
2604}
2605
2606/**
2607 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2608 * @mqdes: MQ descriptor
2609 * @mqstat: MQ flags
2610 *
2611 */
2612void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2613{
2614 struct audit_context *context = audit_context();
2615
2616 context->mq_getsetattr.mqdes = mqdes;
2617 context->mq_getsetattr.mqstat = *mqstat;
2618 context->type = AUDIT_MQ_GETSETATTR;
2619}
2620
2621/**
2622 * __audit_ipc_obj - record audit data for ipc object
2623 * @ipcp: ipc permissions
2624 *
2625 */
2626void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2627{
2628 struct audit_context *context = audit_context();
2629
2630 context->ipc.uid = ipcp->uid;
2631 context->ipc.gid = ipcp->gid;
2632 context->ipc.mode = ipcp->mode;
2633 context->ipc.has_perm = 0;
2634 security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2635 context->type = AUDIT_IPC;
2636}
2637
2638/**
2639 * __audit_ipc_set_perm - record audit data for new ipc permissions
2640 * @qbytes: msgq bytes
2641 * @uid: msgq user id
2642 * @gid: msgq group id
2643 * @mode: msgq mode (permissions)
2644 *
2645 * Called only after audit_ipc_obj().
2646 */
2647void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2648{
2649 struct audit_context *context = audit_context();
2650
2651 context->ipc.qbytes = qbytes;
2652 context->ipc.perm_uid = uid;
2653 context->ipc.perm_gid = gid;
2654 context->ipc.perm_mode = mode;
2655 context->ipc.has_perm = 1;
2656}
2657
2658void __audit_bprm(struct linux_binprm *bprm)
2659{
2660 struct audit_context *context = audit_context();
2661
2662 context->type = AUDIT_EXECVE;
2663 context->execve.argc = bprm->argc;
2664}
2665
2666
2667/**
2668 * __audit_socketcall - record audit data for sys_socketcall
2669 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2670 * @args: args array
2671 *
2672 */
2673int __audit_socketcall(int nargs, unsigned long *args)
2674{
2675 struct audit_context *context = audit_context();
2676
2677 if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2678 return -EINVAL;
2679 context->type = AUDIT_SOCKETCALL;
2680 context->socketcall.nargs = nargs;
2681 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2682 return 0;
2683}
2684
2685/**
2686 * __audit_fd_pair - record audit data for pipe and socketpair
2687 * @fd1: the first file descriptor
2688 * @fd2: the second file descriptor
2689 *
2690 */
2691void __audit_fd_pair(int fd1, int fd2)
2692{
2693 struct audit_context *context = audit_context();
2694
2695 context->fds[0] = fd1;
2696 context->fds[1] = fd2;
2697}
2698
2699/**
2700 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2701 * @len: data length in user space
2702 * @a: data address in kernel space
2703 *
2704 * Returns 0 for success or NULL context or < 0 on error.
2705 */
2706int __audit_sockaddr(int len, void *a)
2707{
2708 struct audit_context *context = audit_context();
2709
2710 if (!context->sockaddr) {
2711 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2712
2713 if (!p)
2714 return -ENOMEM;
2715 context->sockaddr = p;
2716 }
2717
2718 context->sockaddr_len = len;
2719 memcpy(context->sockaddr, a, len);
2720 return 0;
2721}
2722
2723void __audit_ptrace(struct task_struct *t)
2724{
2725 struct audit_context *context = audit_context();
2726
2727 context->target_pid = task_tgid_nr(t);
2728 context->target_auid = audit_get_loginuid(t);
2729 context->target_uid = task_uid(t);
2730 context->target_sessionid = audit_get_sessionid(t);
2731 strscpy(context->target_comm, t->comm);
2732 security_task_getlsmprop_obj(t, &context->target_ref);
2733}
2734
2735/**
2736 * audit_signal_info_syscall - record signal info for syscalls
2737 * @t: task being signaled
2738 *
2739 * If the audit subsystem is being terminated, record the task (pid)
2740 * and uid that is doing that.
2741 */
2742int audit_signal_info_syscall(struct task_struct *t)
2743{
2744 struct audit_aux_data_pids *axp;
2745 struct audit_context *ctx = audit_context();
2746 kuid_t t_uid = task_uid(t);
2747
2748 if (!audit_signals || audit_dummy_context())
2749 return 0;
2750
2751 /* optimize the common case by putting first signal recipient directly
2752 * in audit_context */
2753 if (!ctx->target_pid) {
2754 ctx->target_pid = task_tgid_nr(t);
2755 ctx->target_auid = audit_get_loginuid(t);
2756 ctx->target_uid = t_uid;
2757 ctx->target_sessionid = audit_get_sessionid(t);
2758 strscpy(ctx->target_comm, t->comm);
2759 security_task_getlsmprop_obj(t, &ctx->target_ref);
2760 return 0;
2761 }
2762
2763 axp = (void *)ctx->aux_pids;
2764 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2765 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2766 if (!axp)
2767 return -ENOMEM;
2768
2769 axp->d.type = AUDIT_OBJ_PID;
2770 axp->d.next = ctx->aux_pids;
2771 ctx->aux_pids = (void *)axp;
2772 }
2773 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2774
2775 axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2776 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2777 axp->target_uid[axp->pid_count] = t_uid;
2778 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2779 security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2780 strscpy(axp->target_comm[axp->pid_count], t->comm);
2781 axp->pid_count++;
2782
2783 return 0;
2784}
2785
2786/**
2787 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2788 * @bprm: pointer to the bprm being processed
2789 * @new: the proposed new credentials
2790 * @old: the old credentials
2791 *
2792 * Simply check if the proc already has the caps given by the file and if not
2793 * store the priv escalation info for later auditing at the end of the syscall
2794 *
2795 * -Eric
2796 */
2797int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2798 const struct cred *new, const struct cred *old)
2799{
2800 struct audit_aux_data_bprm_fcaps *ax;
2801 struct audit_context *context = audit_context();
2802 struct cpu_vfs_cap_data vcaps;
2803
2804 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2805 if (!ax)
2806 return -ENOMEM;
2807
2808 ax->d.type = AUDIT_BPRM_FCAPS;
2809 ax->d.next = context->aux;
2810 context->aux = (void *)ax;
2811
2812 get_vfs_caps_from_disk(&nop_mnt_idmap,
2813 bprm->file->f_path.dentry, &vcaps);
2814
2815 ax->fcap.permitted = vcaps.permitted;
2816 ax->fcap.inheritable = vcaps.inheritable;
2817 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2818 ax->fcap.rootid = vcaps.rootid;
2819 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2820
2821 ax->old_pcap.permitted = old->cap_permitted;
2822 ax->old_pcap.inheritable = old->cap_inheritable;
2823 ax->old_pcap.effective = old->cap_effective;
2824 ax->old_pcap.ambient = old->cap_ambient;
2825
2826 ax->new_pcap.permitted = new->cap_permitted;
2827 ax->new_pcap.inheritable = new->cap_inheritable;
2828 ax->new_pcap.effective = new->cap_effective;
2829 ax->new_pcap.ambient = new->cap_ambient;
2830 return 0;
2831}
2832
2833/**
2834 * __audit_log_capset - store information about the arguments to the capset syscall
2835 * @new: the new credentials
2836 * @old: the old (current) credentials
2837 *
2838 * Record the arguments userspace sent to sys_capset for later printing by the
2839 * audit system if applicable
2840 */
2841void __audit_log_capset(const struct cred *new, const struct cred *old)
2842{
2843 struct audit_context *context = audit_context();
2844
2845 context->capset.pid = task_tgid_nr(current);
2846 context->capset.cap.effective = new->cap_effective;
2847 context->capset.cap.inheritable = new->cap_effective;
2848 context->capset.cap.permitted = new->cap_permitted;
2849 context->capset.cap.ambient = new->cap_ambient;
2850 context->type = AUDIT_CAPSET;
2851}
2852
2853void __audit_mmap_fd(int fd, int flags)
2854{
2855 struct audit_context *context = audit_context();
2856
2857 context->mmap.fd = fd;
2858 context->mmap.flags = flags;
2859 context->type = AUDIT_MMAP;
2860}
2861
2862void __audit_openat2_how(struct open_how *how)
2863{
2864 struct audit_context *context = audit_context();
2865
2866 context->openat2.flags = how->flags;
2867 context->openat2.mode = how->mode;
2868 context->openat2.resolve = how->resolve;
2869 context->type = AUDIT_OPENAT2;
2870}
2871
2872void __audit_log_kern_module(char *name)
2873{
2874 struct audit_context *context = audit_context();
2875
2876 context->module.name = kstrdup(name, GFP_KERNEL);
2877 if (!context->module.name)
2878 audit_log_lost("out of memory in __audit_log_kern_module");
2879 context->type = AUDIT_KERN_MODULE;
2880}
2881
2882void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2883{
2884 /* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2885 switch (friar->hdr.type) {
2886 case FAN_RESPONSE_INFO_NONE:
2887 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888 "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2889 response, FAN_RESPONSE_INFO_NONE);
2890 break;
2891 case FAN_RESPONSE_INFO_AUDIT_RULE:
2892 audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2893 "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2894 response, friar->hdr.type, friar->rule_number,
2895 friar->subj_trust, friar->obj_trust);
2896 }
2897}
2898
2899void __audit_tk_injoffset(struct timespec64 offset)
2900{
2901 struct audit_context *context = audit_context();
2902
2903 /* only set type if not already set by NTP */
2904 if (!context->type)
2905 context->type = AUDIT_TIME_INJOFFSET;
2906 memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2907}
2908
2909void __audit_ntp_log(const struct audit_ntp_data *ad)
2910{
2911 struct audit_context *context = audit_context();
2912 int type;
2913
2914 for (type = 0; type < AUDIT_NTP_NVALS; type++)
2915 if (ad->vals[type].newval != ad->vals[type].oldval) {
2916 /* unconditionally set type, overwriting TK */
2917 context->type = AUDIT_TIME_ADJNTPVAL;
2918 memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2919 break;
2920 }
2921}
2922
2923void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2924 enum audit_nfcfgop op, gfp_t gfp)
2925{
2926 struct audit_buffer *ab;
2927 char comm[sizeof(current->comm)];
2928
2929 ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2930 if (!ab)
2931 return;
2932 audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2933 name, af, nentries, audit_nfcfgs[op].s);
2934
2935 audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2936 audit_log_task_context(ab); /* subj= */
2937 audit_log_format(ab, " comm=");
2938 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2939 audit_log_end(ab);
2940}
2941EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2942
2943static void audit_log_task(struct audit_buffer *ab)
2944{
2945 kuid_t auid, uid;
2946 kgid_t gid;
2947 unsigned int sessionid;
2948 char comm[sizeof(current->comm)];
2949
2950 auid = audit_get_loginuid(current);
2951 sessionid = audit_get_sessionid(current);
2952 current_uid_gid(&uid, &gid);
2953
2954 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2955 from_kuid(&init_user_ns, auid),
2956 from_kuid(&init_user_ns, uid),
2957 from_kgid(&init_user_ns, gid),
2958 sessionid);
2959 audit_log_task_context(ab);
2960 audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2961 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2962 audit_log_d_path_exe(ab, current->mm);
2963}
2964
2965/**
2966 * audit_core_dumps - record information about processes that end abnormally
2967 * @signr: signal value
2968 *
2969 * If a process ends with a core dump, something fishy is going on and we
2970 * should record the event for investigation.
2971 */
2972void audit_core_dumps(long signr)
2973{
2974 struct audit_buffer *ab;
2975
2976 if (!audit_enabled)
2977 return;
2978
2979 if (signr == SIGQUIT) /* don't care for those */
2980 return;
2981
2982 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2983 if (unlikely(!ab))
2984 return;
2985 audit_log_task(ab);
2986 audit_log_format(ab, " sig=%ld res=1", signr);
2987 audit_log_end(ab);
2988}
2989
2990/**
2991 * audit_seccomp - record information about a seccomp action
2992 * @syscall: syscall number
2993 * @signr: signal value
2994 * @code: the seccomp action
2995 *
2996 * Record the information associated with a seccomp action. Event filtering for
2997 * seccomp actions that are not to be logged is done in seccomp_log().
2998 * Therefore, this function forces auditing independent of the audit_enabled
2999 * and dummy context state because seccomp actions should be logged even when
3000 * audit is not in use.
3001 */
3002void audit_seccomp(unsigned long syscall, long signr, int code)
3003{
3004 struct audit_buffer *ab;
3005
3006 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3007 if (unlikely(!ab))
3008 return;
3009 audit_log_task(ab);
3010 audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3011 signr, syscall_get_arch(current), syscall,
3012 in_compat_syscall(), KSTK_EIP(current), code);
3013 audit_log_end(ab);
3014}
3015
3016void audit_seccomp_actions_logged(const char *names, const char *old_names,
3017 int res)
3018{
3019 struct audit_buffer *ab;
3020
3021 if (!audit_enabled)
3022 return;
3023
3024 ab = audit_log_start(audit_context(), GFP_KERNEL,
3025 AUDIT_CONFIG_CHANGE);
3026 if (unlikely(!ab))
3027 return;
3028
3029 audit_log_format(ab,
3030 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3031 names, old_names, res);
3032 audit_log_end(ab);
3033}
3034
3035struct list_head *audit_killed_trees(void)
3036{
3037 struct audit_context *ctx = audit_context();
3038 if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3039 return NULL;
3040 return &ctx->killed_trees;
3041}
1/* auditsc.c -- System-call auditing support
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright (C) 2005, 2006 IBM Corporation
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
43 */
44
45#include <linux/init.h>
46#include <asm/types.h>
47#include <linux/atomic.h>
48#include <linux/fs.h>
49#include <linux/namei.h>
50#include <linux/mm.h>
51#include <linux/module.h>
52#include <linux/slab.h>
53#include <linux/mount.h>
54#include <linux/socket.h>
55#include <linux/mqueue.h>
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
59#include <linux/netlink.h>
60#include <linux/compiler.h>
61#include <asm/unistd.h>
62#include <linux/security.h>
63#include <linux/list.h>
64#include <linux/tty.h>
65#include <linux/binfmts.h>
66#include <linux/highmem.h>
67#include <linux/syscalls.h>
68#include <linux/capability.h>
69#include <linux/fs_struct.h>
70
71#include "audit.h"
72
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
83/* number of audit rules */
84int audit_n_rules;
85
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
113 u32 osid;
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
132 struct mm_struct *mm;
133};
134
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
141 u32 target_sid[AUDIT_AUX_PIDS];
142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
143 int pid_count;
144};
145
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
165/* The per-task audit context. */
166struct audit_context {
167 int dummy; /* must be the first element */
168 int in_syscall; /* 1 if task is in a syscall */
169 enum audit_state state, current_state;
170 unsigned int serial; /* serial number for record */
171 int major; /* syscall number */
172 struct timespec ctime; /* time of syscall entry */
173 unsigned long argv[4]; /* syscall arguments */
174 long return_code;/* syscall return code */
175 u64 prio;
176 int return_valid; /* return code is valid */
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
179 char * filterkey; /* key for rule that triggered record */
180 struct path pwd;
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
183 struct audit_aux_data *aux_pids;
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
186 /* Save things to print about task_struct */
187 pid_t pid, ppid;
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
191 int arch;
192
193 pid_t target_pid;
194 uid_t target_auid;
195 uid_t target_uid;
196 unsigned int target_sessionid;
197 u32 target_sid;
198 char target_comm[TASK_COMM_LEN];
199
200 struct audit_tree_refs *trees, *first_trees;
201 struct list_head killed_trees;
202 int tree_count;
203
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
220 } ipc;
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
244 struct {
245 int fd;
246 int flags;
247 } mmap;
248 };
249 int fds[2];
250
251#if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254#endif
255};
256
257static inline int open_arg(int flags, int mask)
258{
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
267 unsigned n;
268 if (unlikely(!ctx))
269 return 0;
270 n = ctx->major;
271
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306}
307
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
312
313 if (unlikely(!ctx))
314 return 0;
315
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323}
324
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
336static void audit_set_auditable(struct audit_context *ctx)
337{
338 if (!ctx->prio) {
339 ctx->prio = 1;
340 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 }
342}
343
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346 struct audit_tree_refs *p = ctx->trees;
347 int left = ctx->tree_count;
348 if (likely(left)) {
349 p->c[--left] = chunk;
350 ctx->tree_count = left;
351 return 1;
352 }
353 if (!p)
354 return 0;
355 p = p->next;
356 if (p) {
357 p->c[30] = chunk;
358 ctx->trees = p;
359 ctx->tree_count = 30;
360 return 1;
361 }
362 return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367 struct audit_tree_refs *p = ctx->trees;
368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 if (!ctx->trees) {
370 ctx->trees = p;
371 return 0;
372 }
373 if (p)
374 p->next = ctx->trees;
375 else
376 ctx->first_trees = ctx->trees;
377 ctx->tree_count = 31;
378 return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383 struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs *q;
387 int n;
388 if (!p) {
389 /* we started with empty chain */
390 p = ctx->first_trees;
391 count = 31;
392 /* if the very first allocation has failed, nothing to do */
393 if (!p)
394 return;
395 }
396 n = count;
397 for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 while (n--) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
401 }
402 }
403 while (n-- > ctx->tree_count) {
404 audit_put_chunk(q->c[n]);
405 q->c[n] = NULL;
406 }
407 ctx->trees = p;
408 ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414 struct audit_tree_refs *p, *q;
415 for (p = ctx->first_trees; p; p = q) {
416 q = p->next;
417 kfree(p);
418 }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs *p;
425 int n;
426 if (!tree)
427 return 0;
428 /* full ones */
429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 for (n = 0; n < 31; n++)
431 if (audit_tree_match(p->c[n], tree))
432 return 1;
433 }
434 /* partial */
435 if (p) {
436 for (n = ctx->tree_count; n < 31; n++)
437 if (audit_tree_match(p->c[n], tree))
438 return 1;
439 }
440#endif
441 return 0;
442}
443
444/* Determine if any context name data matches a rule's watch data */
445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
446 * otherwise.
447 *
448 * If task_creation is true, this is an explicit indication that we are
449 * filtering a task rule at task creation time. This and tsk == current are
450 * the only situations where tsk->cred may be accessed without an rcu read lock.
451 */
452static int audit_filter_rules(struct task_struct *tsk,
453 struct audit_krule *rule,
454 struct audit_context *ctx,
455 struct audit_names *name,
456 enum audit_state *state,
457 bool task_creation)
458{
459 const struct cred *cred;
460 int i, j, need_sid = 1;
461 u32 sid;
462
463 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464
465 for (i = 0; i < rule->field_count; i++) {
466 struct audit_field *f = &rule->fields[i];
467 int result = 0;
468
469 switch (f->type) {
470 case AUDIT_PID:
471 result = audit_comparator(tsk->pid, f->op, f->val);
472 break;
473 case AUDIT_PPID:
474 if (ctx) {
475 if (!ctx->ppid)
476 ctx->ppid = sys_getppid();
477 result = audit_comparator(ctx->ppid, f->op, f->val);
478 }
479 break;
480 case AUDIT_UID:
481 result = audit_comparator(cred->uid, f->op, f->val);
482 break;
483 case AUDIT_EUID:
484 result = audit_comparator(cred->euid, f->op, f->val);
485 break;
486 case AUDIT_SUID:
487 result = audit_comparator(cred->suid, f->op, f->val);
488 break;
489 case AUDIT_FSUID:
490 result = audit_comparator(cred->fsuid, f->op, f->val);
491 break;
492 case AUDIT_GID:
493 result = audit_comparator(cred->gid, f->op, f->val);
494 break;
495 case AUDIT_EGID:
496 result = audit_comparator(cred->egid, f->op, f->val);
497 break;
498 case AUDIT_SGID:
499 result = audit_comparator(cred->sgid, f->op, f->val);
500 break;
501 case AUDIT_FSGID:
502 result = audit_comparator(cred->fsgid, f->op, f->val);
503 break;
504 case AUDIT_PERS:
505 result = audit_comparator(tsk->personality, f->op, f->val);
506 break;
507 case AUDIT_ARCH:
508 if (ctx)
509 result = audit_comparator(ctx->arch, f->op, f->val);
510 break;
511
512 case AUDIT_EXIT:
513 if (ctx && ctx->return_valid)
514 result = audit_comparator(ctx->return_code, f->op, f->val);
515 break;
516 case AUDIT_SUCCESS:
517 if (ctx && ctx->return_valid) {
518 if (f->val)
519 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
520 else
521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
522 }
523 break;
524 case AUDIT_DEVMAJOR:
525 if (name)
526 result = audit_comparator(MAJOR(name->dev),
527 f->op, f->val);
528 else if (ctx) {
529 for (j = 0; j < ctx->name_count; j++) {
530 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
531 ++result;
532 break;
533 }
534 }
535 }
536 break;
537 case AUDIT_DEVMINOR:
538 if (name)
539 result = audit_comparator(MINOR(name->dev),
540 f->op, f->val);
541 else if (ctx) {
542 for (j = 0; j < ctx->name_count; j++) {
543 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
550 case AUDIT_INODE:
551 if (name)
552 result = (name->ino == f->val);
553 else if (ctx) {
554 for (j = 0; j < ctx->name_count; j++) {
555 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
562 case AUDIT_WATCH:
563 if (name)
564 result = audit_watch_compare(rule->watch, name->ino, name->dev);
565 break;
566 case AUDIT_DIR:
567 if (ctx)
568 result = match_tree_refs(ctx, rule->tree);
569 break;
570 case AUDIT_LOGINUID:
571 result = 0;
572 if (ctx)
573 result = audit_comparator(tsk->loginuid, f->op, f->val);
574 break;
575 case AUDIT_SUBJ_USER:
576 case AUDIT_SUBJ_ROLE:
577 case AUDIT_SUBJ_TYPE:
578 case AUDIT_SUBJ_SEN:
579 case AUDIT_SUBJ_CLR:
580 /* NOTE: this may return negative values indicating
581 a temporary error. We simply treat this as a
582 match for now to avoid losing information that
583 may be wanted. An error message will also be
584 logged upon error */
585 if (f->lsm_rule) {
586 if (need_sid) {
587 security_task_getsecid(tsk, &sid);
588 need_sid = 0;
589 }
590 result = security_audit_rule_match(sid, f->type,
591 f->op,
592 f->lsm_rule,
593 ctx);
594 }
595 break;
596 case AUDIT_OBJ_USER:
597 case AUDIT_OBJ_ROLE:
598 case AUDIT_OBJ_TYPE:
599 case AUDIT_OBJ_LEV_LOW:
600 case AUDIT_OBJ_LEV_HIGH:
601 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602 also applies here */
603 if (f->lsm_rule) {
604 /* Find files that match */
605 if (name) {
606 result = security_audit_rule_match(
607 name->osid, f->type, f->op,
608 f->lsm_rule, ctx);
609 } else if (ctx) {
610 for (j = 0; j < ctx->name_count; j++) {
611 if (security_audit_rule_match(
612 ctx->names[j].osid,
613 f->type, f->op,
614 f->lsm_rule, ctx)) {
615 ++result;
616 break;
617 }
618 }
619 }
620 /* Find ipc objects that match */
621 if (!ctx || ctx->type != AUDIT_IPC)
622 break;
623 if (security_audit_rule_match(ctx->ipc.osid,
624 f->type, f->op,
625 f->lsm_rule, ctx))
626 ++result;
627 }
628 break;
629 case AUDIT_ARG0:
630 case AUDIT_ARG1:
631 case AUDIT_ARG2:
632 case AUDIT_ARG3:
633 if (ctx)
634 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
635 break;
636 case AUDIT_FILTERKEY:
637 /* ignore this field for filtering */
638 result = 1;
639 break;
640 case AUDIT_PERM:
641 result = audit_match_perm(ctx, f->val);
642 break;
643 case AUDIT_FILETYPE:
644 result = audit_match_filetype(ctx, f->val);
645 break;
646 }
647
648 if (!result)
649 return 0;
650 }
651
652 if (ctx) {
653 if (rule->prio <= ctx->prio)
654 return 0;
655 if (rule->filterkey) {
656 kfree(ctx->filterkey);
657 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658 }
659 ctx->prio = rule->prio;
660 }
661 switch (rule->action) {
662 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
663 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
664 }
665 return 1;
666}
667
668/* At process creation time, we can determine if system-call auditing is
669 * completely disabled for this task. Since we only have the task
670 * structure at this point, we can only check uid and gid.
671 */
672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
673{
674 struct audit_entry *e;
675 enum audit_state state;
676
677 rcu_read_lock();
678 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
679 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680 &state, true)) {
681 if (state == AUDIT_RECORD_CONTEXT)
682 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
683 rcu_read_unlock();
684 return state;
685 }
686 }
687 rcu_read_unlock();
688 return AUDIT_BUILD_CONTEXT;
689}
690
691/* At syscall entry and exit time, this filter is called if the
692 * audit_state is not low enough that auditing cannot take place, but is
693 * also not high enough that we already know we have to write an audit
694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
695 */
696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697 struct audit_context *ctx,
698 struct list_head *list)
699{
700 struct audit_entry *e;
701 enum audit_state state;
702
703 if (audit_pid && tsk->tgid == audit_pid)
704 return AUDIT_DISABLED;
705
706 rcu_read_lock();
707 if (!list_empty(list)) {
708 int word = AUDIT_WORD(ctx->major);
709 int bit = AUDIT_BIT(ctx->major);
710
711 list_for_each_entry_rcu(e, list, list) {
712 if ((e->rule.mask[word] & bit) == bit &&
713 audit_filter_rules(tsk, &e->rule, ctx, NULL,
714 &state, false)) {
715 rcu_read_unlock();
716 ctx->current_state = state;
717 return state;
718 }
719 }
720 }
721 rcu_read_unlock();
722 return AUDIT_BUILD_CONTEXT;
723}
724
725/* At syscall exit time, this filter is called if any audit_names[] have been
726 * collected during syscall processing. We only check rules in sublists at hash
727 * buckets applicable to the inode numbers in audit_names[].
728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
729 */
730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
731{
732 int i;
733 struct audit_entry *e;
734 enum audit_state state;
735
736 if (audit_pid && tsk->tgid == audit_pid)
737 return;
738
739 rcu_read_lock();
740 for (i = 0; i < ctx->name_count; i++) {
741 int word = AUDIT_WORD(ctx->major);
742 int bit = AUDIT_BIT(ctx->major);
743 struct audit_names *n = &ctx->names[i];
744 int h = audit_hash_ino((u32)n->ino);
745 struct list_head *list = &audit_inode_hash[h];
746
747 if (list_empty(list))
748 continue;
749
750 list_for_each_entry_rcu(e, list, list) {
751 if ((e->rule.mask[word] & bit) == bit &&
752 audit_filter_rules(tsk, &e->rule, ctx, n,
753 &state, false)) {
754 rcu_read_unlock();
755 ctx->current_state = state;
756 return;
757 }
758 }
759 }
760 rcu_read_unlock();
761}
762
763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764 int return_valid,
765 long return_code)
766{
767 struct audit_context *context = tsk->audit_context;
768
769 if (likely(!context))
770 return NULL;
771 context->return_valid = return_valid;
772
773 /*
774 * we need to fix up the return code in the audit logs if the actual
775 * return codes are later going to be fixed up by the arch specific
776 * signal handlers
777 *
778 * This is actually a test for:
779 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781 *
782 * but is faster than a bunch of ||
783 */
784 if (unlikely(return_code <= -ERESTARTSYS) &&
785 (return_code >= -ERESTART_RESTARTBLOCK) &&
786 (return_code != -ENOIOCTLCMD))
787 context->return_code = -EINTR;
788 else
789 context->return_code = return_code;
790
791 if (context->in_syscall && !context->dummy) {
792 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793 audit_filter_inodes(tsk, context);
794 }
795
796 tsk->audit_context = NULL;
797 return context;
798}
799
800static inline void audit_free_names(struct audit_context *context)
801{
802 int i;
803
804#if AUDIT_DEBUG == 2
805 if (context->put_count + context->ino_count != context->name_count) {
806 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
807 " name_count=%d put_count=%d"
808 " ino_count=%d [NOT freeing]\n",
809 __FILE__, __LINE__,
810 context->serial, context->major, context->in_syscall,
811 context->name_count, context->put_count,
812 context->ino_count);
813 for (i = 0; i < context->name_count; i++) {
814 printk(KERN_ERR "names[%d] = %p = %s\n", i,
815 context->names[i].name,
816 context->names[i].name ?: "(null)");
817 }
818 dump_stack();
819 return;
820 }
821#endif
822#if AUDIT_DEBUG
823 context->put_count = 0;
824 context->ino_count = 0;
825#endif
826
827 for (i = 0; i < context->name_count; i++) {
828 if (context->names[i].name && context->names[i].name_put)
829 __putname(context->names[i].name);
830 }
831 context->name_count = 0;
832 path_put(&context->pwd);
833 context->pwd.dentry = NULL;
834 context->pwd.mnt = NULL;
835}
836
837static inline void audit_free_aux(struct audit_context *context)
838{
839 struct audit_aux_data *aux;
840
841 while ((aux = context->aux)) {
842 context->aux = aux->next;
843 kfree(aux);
844 }
845 while ((aux = context->aux_pids)) {
846 context->aux_pids = aux->next;
847 kfree(aux);
848 }
849}
850
851static inline void audit_zero_context(struct audit_context *context,
852 enum audit_state state)
853{
854 memset(context, 0, sizeof(*context));
855 context->state = state;
856 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
857}
858
859static inline struct audit_context *audit_alloc_context(enum audit_state state)
860{
861 struct audit_context *context;
862
863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 return NULL;
865 audit_zero_context(context, state);
866 INIT_LIST_HEAD(&context->killed_trees);
867 return context;
868}
869
870/**
871 * audit_alloc - allocate an audit context block for a task
872 * @tsk: task
873 *
874 * Filter on the task information and allocate a per-task audit context
875 * if necessary. Doing so turns on system call auditing for the
876 * specified task. This is called from copy_process, so no lock is
877 * needed.
878 */
879int audit_alloc(struct task_struct *tsk)
880{
881 struct audit_context *context;
882 enum audit_state state;
883 char *key = NULL;
884
885 if (likely(!audit_ever_enabled))
886 return 0; /* Return if not auditing. */
887
888 state = audit_filter_task(tsk, &key);
889 if (likely(state == AUDIT_DISABLED))
890 return 0;
891
892 if (!(context = audit_alloc_context(state))) {
893 kfree(key);
894 audit_log_lost("out of memory in audit_alloc");
895 return -ENOMEM;
896 }
897 context->filterkey = key;
898
899 tsk->audit_context = context;
900 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901 return 0;
902}
903
904static inline void audit_free_context(struct audit_context *context)
905{
906 struct audit_context *previous;
907 int count = 0;
908
909 do {
910 previous = context->previous;
911 if (previous || (count && count < 10)) {
912 ++count;
913 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914 " freeing multiple contexts (%d)\n",
915 context->serial, context->major,
916 context->name_count, count);
917 }
918 audit_free_names(context);
919 unroll_tree_refs(context, NULL, 0);
920 free_tree_refs(context);
921 audit_free_aux(context);
922 kfree(context->filterkey);
923 kfree(context->sockaddr);
924 kfree(context);
925 context = previous;
926 } while (context);
927 if (count >= 10)
928 printk(KERN_ERR "audit: freed %d contexts\n", count);
929}
930
931void audit_log_task_context(struct audit_buffer *ab)
932{
933 char *ctx = NULL;
934 unsigned len;
935 int error;
936 u32 sid;
937
938 security_task_getsecid(current, &sid);
939 if (!sid)
940 return;
941
942 error = security_secid_to_secctx(sid, &ctx, &len);
943 if (error) {
944 if (error != -EINVAL)
945 goto error_path;
946 return;
947 }
948
949 audit_log_format(ab, " subj=%s", ctx);
950 security_release_secctx(ctx, len);
951 return;
952
953error_path:
954 audit_panic("error in audit_log_task_context");
955 return;
956}
957
958EXPORT_SYMBOL(audit_log_task_context);
959
960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
961{
962 char name[sizeof(tsk->comm)];
963 struct mm_struct *mm = tsk->mm;
964 struct vm_area_struct *vma;
965
966 /* tsk == current */
967
968 get_task_comm(name, tsk);
969 audit_log_format(ab, " comm=");
970 audit_log_untrustedstring(ab, name);
971
972 if (mm) {
973 down_read(&mm->mmap_sem);
974 vma = mm->mmap;
975 while (vma) {
976 if ((vma->vm_flags & VM_EXECUTABLE) &&
977 vma->vm_file) {
978 audit_log_d_path(ab, "exe=",
979 &vma->vm_file->f_path);
980 break;
981 }
982 vma = vma->vm_next;
983 }
984 up_read(&mm->mmap_sem);
985 }
986 audit_log_task_context(ab);
987}
988
989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
990 uid_t auid, uid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
992{
993 struct audit_buffer *ab;
994 char *ctx = NULL;
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
1000 return rc;
1001
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 uid, sessionid);
1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
1005 audit_log_format(ab, " obj=(none)");
1006 rc = 1;
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
1011 audit_log_format(ab, " ocomm=");
1012 audit_log_untrustedstring(ab, comm);
1013 audit_log_end(ab);
1014
1015 return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030 struct audit_buffer **ab,
1031 int arg_num,
1032 size_t *len_sent,
1033 const char __user *p,
1034 char *buf)
1035{
1036 char arg_num_len_buf[12];
1037 const char __user *tmp_p = p;
1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040 size_t len, len_left, to_send;
1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 unsigned int i, has_cntl = 0, too_long = 0;
1043 int ret;
1044
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048 /*
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1052 * any.
1053 */
1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
1057 return -1;
1058 }
1059
1060 /* walk the whole argument looking for non-ascii chars */
1061 do {
1062 if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 to_send = MAX_EXECVE_AUDIT_LEN;
1064 else
1065 to_send = len_left;
1066 ret = copy_from_user(buf, tmp_p, to_send);
1067 /*
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1070 * space yet.
1071 */
1072 if (ret) {
1073 WARN_ON(1);
1074 send_sig(SIGKILL, current, 0);
1075 return -1;
1076 }
1077 buf[to_send] = '\0';
1078 has_cntl = audit_string_contains_control(buf, to_send);
1079 if (has_cntl) {
1080 /*
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1083 */
1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085 break;
1086 }
1087 len_left -= to_send;
1088 tmp_p += to_send;
1089 } while (len_left > 0);
1090
1091 len_left = len;
1092
1093 if (len > max_execve_audit_len)
1094 too_long = 1;
1095
1096 /* rewalk the argument actually logging the message */
1097 for (i = 0; len_left > 0; i++) {
1098 int room_left;
1099
1100 if (len_left > max_execve_audit_len)
1101 to_send = max_execve_audit_len;
1102 else
1103 to_send = len_left;
1104
1105 /* do we have space left to send this argument in this ab? */
1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 if (has_cntl)
1108 room_left -= (to_send * 2);
1109 else
1110 room_left -= to_send;
1111 if (room_left < 0) {
1112 *len_sent = 0;
1113 audit_log_end(*ab);
1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 return 0;
1117 }
1118
1119 /*
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1122 */
1123 if ((i == 0) && (too_long))
1124 audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125 has_cntl ? 2*len : len);
1126
1127 /*
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
1131 */
1132 if (len >= max_execve_audit_len)
1133 ret = copy_from_user(buf, p, to_send);
1134 else
1135 ret = 0;
1136 if (ret) {
1137 WARN_ON(1);
1138 send_sig(SIGKILL, current, 0);
1139 return -1;
1140 }
1141 buf[to_send] = '\0';
1142
1143 /* actually log it */
1144 audit_log_format(*ab, " a%d", arg_num);
1145 if (too_long)
1146 audit_log_format(*ab, "[%d]", i);
1147 audit_log_format(*ab, "=");
1148 if (has_cntl)
1149 audit_log_n_hex(*ab, buf, to_send);
1150 else
1151 audit_log_string(*ab, buf);
1152
1153 p += to_send;
1154 len_left -= to_send;
1155 *len_sent += arg_num_len;
1156 if (has_cntl)
1157 *len_sent += to_send * 2;
1158 else
1159 *len_sent += to_send;
1160 }
1161 /* include the null we didn't log */
1162 return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166 struct audit_buffer **ab,
1167 struct audit_aux_data_execve *axi)
1168{
1169 int i;
1170 size_t len, len_sent = 0;
1171 const char __user *p;
1172 char *buf;
1173
1174 if (axi->mm != current->mm)
1175 return; /* execve failed, no additional info */
1176
1177 p = (const char __user *)axi->mm->arg_start;
1178
1179 audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181 /*
1182 * we need some kernel buffer to hold the userspace args. Just
1183 * allocate one big one rather than allocating one of the right size
1184 * for every single argument inside audit_log_single_execve_arg()
1185 * should be <8k allocation so should be pretty safe.
1186 */
1187 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188 if (!buf) {
1189 audit_panic("out of memory for argv string\n");
1190 return;
1191 }
1192
1193 for (i = 0; i < axi->argc; i++) {
1194 len = audit_log_single_execve_arg(context, ab, i,
1195 &len_sent, p, buf);
1196 if (len <= 0)
1197 break;
1198 p += len;
1199 }
1200 kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205 int i;
1206
1207 audit_log_format(ab, " %s=", prefix);
1208 CAP_FOR_EACH_U32(i) {
1209 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210 }
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215 kernel_cap_t *perm = &name->fcap.permitted;
1216 kernel_cap_t *inh = &name->fcap.inheritable;
1217 int log = 0;
1218
1219 if (!cap_isclear(*perm)) {
1220 audit_log_cap(ab, "cap_fp", perm);
1221 log = 1;
1222 }
1223 if (!cap_isclear(*inh)) {
1224 audit_log_cap(ab, "cap_fi", inh);
1225 log = 1;
1226 }
1227
1228 if (log)
1229 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234 struct audit_buffer *ab;
1235 int i;
1236
1237 ab = audit_log_start(context, GFP_KERNEL, context->type);
1238 if (!ab)
1239 return;
1240
1241 switch (context->type) {
1242 case AUDIT_SOCKETCALL: {
1243 int nargs = context->socketcall.nargs;
1244 audit_log_format(ab, "nargs=%d", nargs);
1245 for (i = 0; i < nargs; i++)
1246 audit_log_format(ab, " a%d=%lx", i,
1247 context->socketcall.args[i]);
1248 break; }
1249 case AUDIT_IPC: {
1250 u32 osid = context->ipc.osid;
1251
1252 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254 if (osid) {
1255 char *ctx = NULL;
1256 u32 len;
1257 if (security_secid_to_secctx(osid, &ctx, &len)) {
1258 audit_log_format(ab, " osid=%u", osid);
1259 *call_panic = 1;
1260 } else {
1261 audit_log_format(ab, " obj=%s", ctx);
1262 security_release_secctx(ctx, len);
1263 }
1264 }
1265 if (context->ipc.has_perm) {
1266 audit_log_end(ab);
1267 ab = audit_log_start(context, GFP_KERNEL,
1268 AUDIT_IPC_SET_PERM);
1269 audit_log_format(ab,
1270 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271 context->ipc.qbytes,
1272 context->ipc.perm_uid,
1273 context->ipc.perm_gid,
1274 context->ipc.perm_mode);
1275 if (!ab)
1276 return;
1277 }
1278 break; }
1279 case AUDIT_MQ_OPEN: {
1280 audit_log_format(ab,
1281 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282 "mq_msgsize=%ld mq_curmsgs=%ld",
1283 context->mq_open.oflag, context->mq_open.mode,
1284 context->mq_open.attr.mq_flags,
1285 context->mq_open.attr.mq_maxmsg,
1286 context->mq_open.attr.mq_msgsize,
1287 context->mq_open.attr.mq_curmsgs);
1288 break; }
1289 case AUDIT_MQ_SENDRECV: {
1290 audit_log_format(ab,
1291 "mqdes=%d msg_len=%zd msg_prio=%u "
1292 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293 context->mq_sendrecv.mqdes,
1294 context->mq_sendrecv.msg_len,
1295 context->mq_sendrecv.msg_prio,
1296 context->mq_sendrecv.abs_timeout.tv_sec,
1297 context->mq_sendrecv.abs_timeout.tv_nsec);
1298 break; }
1299 case AUDIT_MQ_NOTIFY: {
1300 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301 context->mq_notify.mqdes,
1302 context->mq_notify.sigev_signo);
1303 break; }
1304 case AUDIT_MQ_GETSETATTR: {
1305 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306 audit_log_format(ab,
1307 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308 "mq_curmsgs=%ld ",
1309 context->mq_getsetattr.mqdes,
1310 attr->mq_flags, attr->mq_maxmsg,
1311 attr->mq_msgsize, attr->mq_curmsgs);
1312 break; }
1313 case AUDIT_CAPSET: {
1314 audit_log_format(ab, "pid=%d", context->capset.pid);
1315 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318 break; }
1319 case AUDIT_MMAP: {
1320 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321 context->mmap.flags);
1322 break; }
1323 }
1324 audit_log_end(ab);
1325}
1326
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329 const struct cred *cred;
1330 int i, call_panic = 0;
1331 struct audit_buffer *ab;
1332 struct audit_aux_data *aux;
1333 const char *tty;
1334
1335 /* tsk == current */
1336 context->pid = tsk->pid;
1337 if (!context->ppid)
1338 context->ppid = sys_getppid();
1339 cred = current_cred();
1340 context->uid = cred->uid;
1341 context->gid = cred->gid;
1342 context->euid = cred->euid;
1343 context->suid = cred->suid;
1344 context->fsuid = cred->fsuid;
1345 context->egid = cred->egid;
1346 context->sgid = cred->sgid;
1347 context->fsgid = cred->fsgid;
1348 context->personality = tsk->personality;
1349
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351 if (!ab)
1352 return; /* audit_panic has been called */
1353 audit_log_format(ab, "arch=%x syscall=%d",
1354 context->arch, context->major);
1355 if (context->personality != PER_LINUX)
1356 audit_log_format(ab, " per=%lx", context->personality);
1357 if (context->return_valid)
1358 audit_log_format(ab, " success=%s exit=%ld",
1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 context->return_code);
1361
1362 spin_lock_irq(&tsk->sighand->siglock);
1363 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364 tty = tsk->signal->tty->name;
1365 else
1366 tty = "(none)";
1367 spin_unlock_irq(&tsk->sighand->siglock);
1368
1369 audit_log_format(ab,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372 " euid=%u suid=%u fsuid=%u"
1373 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374 context->argv[0],
1375 context->argv[1],
1376 context->argv[2],
1377 context->argv[3],
1378 context->name_count,
1379 context->ppid,
1380 context->pid,
1381 tsk->loginuid,
1382 context->uid,
1383 context->gid,
1384 context->euid, context->suid, context->fsuid,
1385 context->egid, context->sgid, context->fsgid, tty,
1386 tsk->sessionid);
1387
1388
1389 audit_log_task_info(ab, tsk);
1390 audit_log_key(ab, context->filterkey);
1391 audit_log_end(ab);
1392
1393 for (aux = context->aux; aux; aux = aux->next) {
1394
1395 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396 if (!ab)
1397 continue; /* audit_panic has been called */
1398
1399 switch (aux->type) {
1400
1401 case AUDIT_EXECVE: {
1402 struct audit_aux_data_execve *axi = (void *)aux;
1403 audit_log_execve_info(context, &ab, axi);
1404 break; }
1405
1406 case AUDIT_BPRM_FCAPS: {
1407 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418 break; }
1419
1420 }
1421 audit_log_end(ab);
1422 }
1423
1424 if (context->type)
1425 show_special(context, &call_panic);
1426
1427 if (context->fds[0] >= 0) {
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429 if (ab) {
1430 audit_log_format(ab, "fd0=%d fd1=%d",
1431 context->fds[0], context->fds[1]);
1432 audit_log_end(ab);
1433 }
1434 }
1435
1436 if (context->sockaddr_len) {
1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438 if (ab) {
1439 audit_log_format(ab, "saddr=");
1440 audit_log_n_hex(ab, (void *)context->sockaddr,
1441 context->sockaddr_len);
1442 audit_log_end(ab);
1443 }
1444 }
1445
1446 for (aux = context->aux_pids; aux; aux = aux->next) {
1447 struct audit_aux_data_pids *axs = (void *)aux;
1448
1449 for (i = 0; i < axs->pid_count; i++)
1450 if (audit_log_pid_context(context, axs->target_pid[i],
1451 axs->target_auid[i],
1452 axs->target_uid[i],
1453 axs->target_sessionid[i],
1454 axs->target_sid[i],
1455 axs->target_comm[i]))
1456 call_panic = 1;
1457 }
1458
1459 if (context->target_pid &&
1460 audit_log_pid_context(context, context->target_pid,
1461 context->target_auid, context->target_uid,
1462 context->target_sessionid,
1463 context->target_sid, context->target_comm))
1464 call_panic = 1;
1465
1466 if (context->pwd.dentry && context->pwd.mnt) {
1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468 if (ab) {
1469 audit_log_d_path(ab, "cwd=", &context->pwd);
1470 audit_log_end(ab);
1471 }
1472 }
1473 for (i = 0; i < context->name_count; i++) {
1474 struct audit_names *n = &context->names[i];
1475
1476 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477 if (!ab)
1478 continue; /* audit_panic has been called */
1479
1480 audit_log_format(ab, "item=%d", i);
1481
1482 if (n->name) {
1483 switch(n->name_len) {
1484 case AUDIT_NAME_FULL:
1485 /* log the full path */
1486 audit_log_format(ab, " name=");
1487 audit_log_untrustedstring(ab, n->name);
1488 break;
1489 case 0:
1490 /* name was specified as a relative path and the
1491 * directory component is the cwd */
1492 audit_log_d_path(ab, "name=", &context->pwd);
1493 break;
1494 default:
1495 /* log the name's directory component */
1496 audit_log_format(ab, " name=");
1497 audit_log_n_untrustedstring(ab, n->name,
1498 n->name_len);
1499 }
1500 } else
1501 audit_log_format(ab, " name=(null)");
1502
1503 if (n->ino != (unsigned long)-1) {
1504 audit_log_format(ab, " inode=%lu"
1505 " dev=%02x:%02x mode=%#o"
1506 " ouid=%u ogid=%u rdev=%02x:%02x",
1507 n->ino,
1508 MAJOR(n->dev),
1509 MINOR(n->dev),
1510 n->mode,
1511 n->uid,
1512 n->gid,
1513 MAJOR(n->rdev),
1514 MINOR(n->rdev));
1515 }
1516 if (n->osid != 0) {
1517 char *ctx = NULL;
1518 u32 len;
1519 if (security_secid_to_secctx(
1520 n->osid, &ctx, &len)) {
1521 audit_log_format(ab, " osid=%u", n->osid);
1522 call_panic = 2;
1523 } else {
1524 audit_log_format(ab, " obj=%s", ctx);
1525 security_release_secctx(ctx, len);
1526 }
1527 }
1528
1529 audit_log_fcaps(ab, n);
1530
1531 audit_log_end(ab);
1532 }
1533
1534 /* Send end of event record to help user space know we are finished */
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536 if (ab)
1537 audit_log_end(ab);
1538 if (call_panic)
1539 audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550 struct audit_context *context;
1551
1552 context = audit_get_context(tsk, 0, 0);
1553 if (likely(!context))
1554 return;
1555
1556 /* Check for system calls that do not go through the exit
1557 * function (e.g., exit_group), then free context block.
1558 * We use GFP_ATOMIC here because we might be doing this
1559 * in the context of the idle thread */
1560 /* that can happen only if we are called from do_exit() */
1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562 audit_log_exit(context, tsk);
1563 if (!list_empty(&context->killed_trees))
1564 audit_kill_trees(&context->killed_trees);
1565
1566 audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry. This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built. If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587 unsigned long a1, unsigned long a2,
1588 unsigned long a3, unsigned long a4)
1589{
1590 struct task_struct *tsk = current;
1591 struct audit_context *context = tsk->audit_context;
1592 enum audit_state state;
1593
1594 if (unlikely(!context))
1595 return;
1596
1597 /*
1598 * This happens only on certain architectures that make system
1599 * calls in kernel_thread via the entry.S interface, instead of
1600 * with direct calls. (If you are porting to a new
1601 * architecture, hitting this condition can indicate that you
1602 * got the _exit/_leave calls backward in entry.S.)
1603 *
1604 * i386 no
1605 * x86_64 no
1606 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1607 *
1608 * This also happens with vm86 emulation in a non-nested manner
1609 * (entries without exits), so this case must be caught.
1610 */
1611 if (context->in_syscall) {
1612 struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615 printk(KERN_ERR
1616 "audit(:%d) pid=%d in syscall=%d;"
1617 " entering syscall=%d\n",
1618 context->serial, tsk->pid, context->major, major);
1619#endif
1620 newctx = audit_alloc_context(context->state);
1621 if (newctx) {
1622 newctx->previous = context;
1623 context = newctx;
1624 tsk->audit_context = newctx;
1625 } else {
1626 /* If we can't alloc a new context, the best we
1627 * can do is to leak memory (any pending putname
1628 * will be lost). The only other alternative is
1629 * to abandon auditing. */
1630 audit_zero_context(context, context->state);
1631 }
1632 }
1633 BUG_ON(context->in_syscall || context->name_count);
1634
1635 if (!audit_enabled)
1636 return;
1637
1638 context->arch = arch;
1639 context->major = major;
1640 context->argv[0] = a1;
1641 context->argv[1] = a2;
1642 context->argv[2] = a3;
1643 context->argv[3] = a4;
1644
1645 state = context->state;
1646 context->dummy = !audit_n_rules;
1647 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648 context->prio = 0;
1649 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650 }
1651 if (likely(state == AUDIT_DISABLED))
1652 return;
1653
1654 context->serial = 0;
1655 context->ctime = CURRENT_TIME;
1656 context->in_syscall = 1;
1657 context->current_state = state;
1658 context->ppid = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663 struct audit_context *ctx = current->audit_context;
1664 struct audit_context *p = child->audit_context;
1665 if (!p || !ctx)
1666 return;
1667 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668 return;
1669 p->arch = ctx->arch;
1670 p->major = ctx->major;
1671 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672 p->ctime = ctx->ctime;
1673 p->dummy = ctx->dummy;
1674 p->in_syscall = ctx->in_syscall;
1675 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676 p->ppid = current->pid;
1677 p->prio = ctx->prio;
1678 p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call. If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information. In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694 struct task_struct *tsk = current;
1695 struct audit_context *context;
1696
1697 context = audit_get_context(tsk, valid, return_code);
1698
1699 if (likely(!context))
1700 return;
1701
1702 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703 audit_log_exit(context, tsk);
1704
1705 context->in_syscall = 0;
1706 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708 if (!list_empty(&context->killed_trees))
1709 audit_kill_trees(&context->killed_trees);
1710
1711 if (context->previous) {
1712 struct audit_context *new_context = context->previous;
1713 context->previous = NULL;
1714 audit_free_context(context);
1715 tsk->audit_context = new_context;
1716 } else {
1717 audit_free_names(context);
1718 unroll_tree_refs(context, NULL, 0);
1719 audit_free_aux(context);
1720 context->aux = NULL;
1721 context->aux_pids = NULL;
1722 context->target_pid = 0;
1723 context->target_sid = 0;
1724 context->sockaddr_len = 0;
1725 context->type = 0;
1726 context->fds[0] = -1;
1727 if (context->state != AUDIT_RECORD_CONTEXT) {
1728 kfree(context->filterkey);
1729 context->filterkey = NULL;
1730 }
1731 tsk->audit_context = context;
1732 }
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 struct audit_chunk *chunk;
1741 int count;
1742 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743 return;
1744 context = current->audit_context;
1745 p = context->trees;
1746 count = context->tree_count;
1747 rcu_read_lock();
1748 chunk = audit_tree_lookup(inode);
1749 rcu_read_unlock();
1750 if (!chunk)
1751 return;
1752 if (likely(put_tree_ref(context, chunk)))
1753 return;
1754 if (unlikely(!grow_tree_refs(context))) {
1755 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756 audit_set_auditable(context);
1757 audit_put_chunk(chunk);
1758 unroll_tree_refs(context, p, count);
1759 return;
1760 }
1761 put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768 struct audit_context *context;
1769 struct audit_tree_refs *p;
1770 const struct dentry *d, *parent;
1771 struct audit_chunk *drop;
1772 unsigned long seq;
1773 int count;
1774
1775 context = current->audit_context;
1776 p = context->trees;
1777 count = context->tree_count;
1778retry:
1779 drop = NULL;
1780 d = dentry;
1781 rcu_read_lock();
1782 seq = read_seqbegin(&rename_lock);
1783 for(;;) {
1784 struct inode *inode = d->d_inode;
1785 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786 struct audit_chunk *chunk;
1787 chunk = audit_tree_lookup(inode);
1788 if (chunk) {
1789 if (unlikely(!put_tree_ref(context, chunk))) {
1790 drop = chunk;
1791 break;
1792 }
1793 }
1794 }
1795 parent = d->d_parent;
1796 if (parent == d)
1797 break;
1798 d = parent;
1799 }
1800 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1801 rcu_read_unlock();
1802 if (!drop) {
1803 /* just a race with rename */
1804 unroll_tree_refs(context, p, count);
1805 goto retry;
1806 }
1807 audit_put_chunk(drop);
1808 if (grow_tree_refs(context)) {
1809 /* OK, got more space */
1810 unroll_tree_refs(context, p, count);
1811 goto retry;
1812 }
1813 /* too bad */
1814 printk(KERN_WARNING
1815 "out of memory, audit has lost a tree reference\n");
1816 unroll_tree_refs(context, p, count);
1817 audit_set_auditable(context);
1818 return;
1819 }
1820 rcu_read_unlock();
1821#endif
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833 struct audit_context *context = current->audit_context;
1834
1835 if (IS_ERR(name) || !name)
1836 return;
1837
1838 if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841 __FILE__, __LINE__, context->serial, name);
1842 dump_stack();
1843#endif
1844 return;
1845 }
1846 BUG_ON(context->name_count >= AUDIT_NAMES);
1847 context->names[context->name_count].name = name;
1848 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849 context->names[context->name_count].name_put = 1;
1850 context->names[context->name_count].ino = (unsigned long)-1;
1851 context->names[context->name_count].osid = 0;
1852 ++context->name_count;
1853 if (!context->pwd.dentry)
1854 get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866 struct audit_context *context = current->audit_context;
1867
1868 BUG_ON(!context);
1869 if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872 __FILE__, __LINE__, context->serial, name);
1873 if (context->name_count) {
1874 int i;
1875 for (i = 0; i < context->name_count; i++)
1876 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877 context->names[i].name,
1878 context->names[i].name ?: "(null)");
1879 }
1880#endif
1881 __putname(name);
1882 }
1883#if AUDIT_DEBUG
1884 else {
1885 ++context->put_count;
1886 if (context->put_count > context->name_count) {
1887 printk(KERN_ERR "%s:%d(:%d): major=%d"
1888 " in_syscall=%d putname(%p) name_count=%d"
1889 " put_count=%d\n",
1890 __FILE__, __LINE__,
1891 context->serial, context->major,
1892 context->in_syscall, name, context->name_count,
1893 context->put_count);
1894 dump_stack();
1895 }
1896 }
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901 const struct inode *inode)
1902{
1903 if (context->name_count >= AUDIT_NAMES) {
1904 if (inode)
1905 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906 "dev=%02x:%02x, inode=%lu\n",
1907 MAJOR(inode->i_sb->s_dev),
1908 MINOR(inode->i_sb->s_dev),
1909 inode->i_ino);
1910
1911 else
1912 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913 return 1;
1914 }
1915 context->name_count++;
1916#if AUDIT_DEBUG
1917 context->ino_count++;
1918#endif
1919 return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925 struct cpu_vfs_cap_data caps;
1926 int rc;
1927
1928 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930 name->fcap.fE = 0;
1931 name->fcap_ver = 0;
1932
1933 if (!dentry)
1934 return 0;
1935
1936 rc = get_vfs_caps_from_disk(dentry, &caps);
1937 if (rc)
1938 return rc;
1939
1940 name->fcap.permitted = caps.permitted;
1941 name->fcap.inheritable = caps.inheritable;
1942 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945 return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951 const struct inode *inode)
1952{
1953 name->ino = inode->i_ino;
1954 name->dev = inode->i_sb->s_dev;
1955 name->mode = inode->i_mode;
1956 name->uid = inode->i_uid;
1957 name->gid = inode->i_gid;
1958 name->rdev = inode->i_rdev;
1959 security_inode_getsecid(inode, &name->osid);
1960 audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
1971{
1972 int idx;
1973 struct audit_context *context = current->audit_context;
1974 const struct inode *inode = dentry->d_inode;
1975
1976 if (!context->in_syscall)
1977 return;
1978 if (context->name_count
1979 && context->names[context->name_count-1].name
1980 && context->names[context->name_count-1].name == name)
1981 idx = context->name_count - 1;
1982 else if (context->name_count > 1
1983 && context->names[context->name_count-2].name
1984 && context->names[context->name_count-2].name == name)
1985 idx = context->name_count - 2;
1986 else {
1987 /* FIXME: how much do we care about inodes that have no
1988 * associated name? */
1989 if (audit_inc_name_count(context, inode))
1990 return;
1991 idx = context->name_count - 1;
1992 context->names[idx].name = NULL;
1993 }
1994 handle_path(dentry);
1995 audit_copy_inode(&context->names[idx], dentry, inode);
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created. Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012 const struct inode *parent)
2013{
2014 int idx;
2015 struct audit_context *context = current->audit_context;
2016 const char *found_parent = NULL, *found_child = NULL;
2017 const struct inode *inode = dentry->d_inode;
2018 const char *dname = dentry->d_name.name;
2019 int dirlen = 0;
2020
2021 if (!context->in_syscall)
2022 return;
2023
2024 if (inode)
2025 handle_one(inode);
2026
2027 /* parent is more likely, look for it first */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
2030
2031 if (!n->name)
2032 continue;
2033
2034 if (n->ino == parent->i_ino &&
2035 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036 n->name_len = dirlen; /* update parent data in place */
2037 found_parent = n->name;
2038 goto add_names;
2039 }
2040 }
2041
2042 /* no matching parent, look for matching child */
2043 for (idx = 0; idx < context->name_count; idx++) {
2044 struct audit_names *n = &context->names[idx];
2045
2046 if (!n->name)
2047 continue;
2048
2049 /* strcmp() is the more likely scenario */
2050 if (!strcmp(dname, n->name) ||
2051 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052 if (inode)
2053 audit_copy_inode(n, NULL, inode);
2054 else
2055 n->ino = (unsigned long)-1;
2056 found_child = n->name;
2057 goto add_names;
2058 }
2059 }
2060
2061add_names:
2062 if (!found_parent) {
2063 if (audit_inc_name_count(context, parent))
2064 return;
2065 idx = context->name_count - 1;
2066 context->names[idx].name = NULL;
2067 audit_copy_inode(&context->names[idx], NULL, parent);
2068 }
2069
2070 if (!found_child) {
2071 if (audit_inc_name_count(context, inode))
2072 return;
2073 idx = context->name_count - 1;
2074
2075 /* Re-use the name belonging to the slot for a matching parent
2076 * directory. All names for this context are relinquished in
2077 * audit_free_names() */
2078 if (found_parent) {
2079 context->names[idx].name = found_parent;
2080 context->names[idx].name_len = AUDIT_NAME_FULL;
2081 /* don't call __putname() */
2082 context->names[idx].name_put = 0;
2083 } else {
2084 context->names[idx].name = NULL;
2085 }
2086
2087 if (inode)
2088 audit_copy_inode(&context->names[idx], NULL, inode);
2089 else
2090 context->names[idx].ino = (unsigned long)-1;
2091 }
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104 struct timespec *t, unsigned int *serial)
2105{
2106 if (!ctx->in_syscall)
2107 return 0;
2108 if (!ctx->serial)
2109 ctx->serial = audit_serial();
2110 t->tv_sec = ctx->ctime.tv_sec;
2111 t->tv_nsec = ctx->ctime.tv_nsec;
2112 *serial = ctx->serial;
2113 if (!ctx->prio) {
2114 ctx->prio = 1;
2115 ctx->current_state = AUDIT_RECORD_CONTEXT;
2116 }
2117 return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134 unsigned int sessionid = atomic_inc_return(&session_id);
2135 struct audit_context *context = task->audit_context;
2136
2137 if (context && context->in_syscall) {
2138 struct audit_buffer *ab;
2139
2140 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141 if (ab) {
2142 audit_log_format(ab, "login pid=%d uid=%u "
2143 "old auid=%u new auid=%u"
2144 " old ses=%u new ses=%u",
2145 task->pid, task_uid(task),
2146 task->loginuid, loginuid,
2147 task->sessionid, sessionid);
2148 audit_log_end(ab);
2149 }
2150 }
2151 task->sessionid = sessionid;
2152 task->loginuid = loginuid;
2153 return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165 struct audit_context *context = current->audit_context;
2166
2167 if (attr)
2168 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169 else
2170 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172 context->mq_open.oflag = oflag;
2173 context->mq_open.mode = mode;
2174
2175 context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187 const struct timespec *abs_timeout)
2188{
2189 struct audit_context *context = current->audit_context;
2190 struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192 if (abs_timeout)
2193 memcpy(p, abs_timeout, sizeof(struct timespec));
2194 else
2195 memset(p, 0, sizeof(struct timespec));
2196
2197 context->mq_sendrecv.mqdes = mqdes;
2198 context->mq_sendrecv.msg_len = msg_len;
2199 context->mq_sendrecv.msg_prio = msg_prio;
2200
2201 context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213 struct audit_context *context = current->audit_context;
2214
2215 if (notification)
2216 context->mq_notify.sigev_signo = notification->sigev_signo;
2217 else
2218 context->mq_notify.sigev_signo = 0;
2219
2220 context->mq_notify.mqdes = mqdes;
2221 context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232 struct audit_context *context = current->audit_context;
2233 context->mq_getsetattr.mqdes = mqdes;
2234 context->mq_getsetattr.mqstat = *mqstat;
2235 context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245 struct audit_context *context = current->audit_context;
2246 context->ipc.uid = ipcp->uid;
2247 context->ipc.gid = ipcp->gid;
2248 context->ipc.mode = ipcp->mode;
2249 context->ipc.has_perm = 0;
2250 security_ipc_getsecid(ipcp, &context->ipc.osid);
2251 context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265 struct audit_context *context = current->audit_context;
2266
2267 context->ipc.qbytes = qbytes;
2268 context->ipc.perm_uid = uid;
2269 context->ipc.perm_gid = gid;
2270 context->ipc.perm_mode = mode;
2271 context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276 struct audit_aux_data_execve *ax;
2277 struct audit_context *context = current->audit_context;
2278
2279 if (likely(!audit_enabled || !context || context->dummy))
2280 return 0;
2281
2282 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283 if (!ax)
2284 return -ENOMEM;
2285
2286 ax->argc = bprm->argc;
2287 ax->envc = bprm->envc;
2288 ax->mm = bprm->mm;
2289 ax->d.type = AUDIT_EXECVE;
2290 ax->d.next = context->aux;
2291 context->aux = (void *)ax;
2292 return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304 struct audit_context *context = current->audit_context;
2305
2306 if (likely(!context || context->dummy))
2307 return;
2308
2309 context->type = AUDIT_SOCKETCALL;
2310 context->socketcall.nargs = nargs;
2311 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322 struct audit_context *context = current->audit_context;
2323 context->fds[0] = fd1;
2324 context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336 struct audit_context *context = current->audit_context;
2337
2338 if (likely(!context || context->dummy))
2339 return 0;
2340
2341 if (!context->sockaddr) {
2342 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343 if (!p)
2344 return -ENOMEM;
2345 context->sockaddr = p;
2346 }
2347
2348 context->sockaddr_len = len;
2349 memcpy(context->sockaddr, a, len);
2350 return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355 struct audit_context *context = current->audit_context;
2356
2357 context->target_pid = t->pid;
2358 context->target_auid = audit_get_loginuid(t);
2359 context->target_uid = task_uid(t);
2360 context->target_sessionid = audit_get_sessionid(t);
2361 security_task_getsecid(t, &context->target_sid);
2362 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375 struct audit_aux_data_pids *axp;
2376 struct task_struct *tsk = current;
2377 struct audit_context *ctx = tsk->audit_context;
2378 uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380 if (audit_pid && t->tgid == audit_pid) {
2381 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382 audit_sig_pid = tsk->pid;
2383 if (tsk->loginuid != -1)
2384 audit_sig_uid = tsk->loginuid;
2385 else
2386 audit_sig_uid = uid;
2387 security_task_getsecid(tsk, &audit_sig_sid);
2388 }
2389 if (!audit_signals || audit_dummy_context())
2390 return 0;
2391 }
2392
2393 /* optimize the common case by putting first signal recipient directly
2394 * in audit_context */
2395 if (!ctx->target_pid) {
2396 ctx->target_pid = t->tgid;
2397 ctx->target_auid = audit_get_loginuid(t);
2398 ctx->target_uid = t_uid;
2399 ctx->target_sessionid = audit_get_sessionid(t);
2400 security_task_getsecid(t, &ctx->target_sid);
2401 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402 return 0;
2403 }
2404
2405 axp = (void *)ctx->aux_pids;
2406 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408 if (!axp)
2409 return -ENOMEM;
2410
2411 axp->d.type = AUDIT_OBJ_PID;
2412 axp->d.next = ctx->aux_pids;
2413 ctx->aux_pids = (void *)axp;
2414 }
2415 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417 axp->target_pid[axp->pid_count] = t->tgid;
2418 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419 axp->target_uid[axp->pid_count] = t_uid;
2420 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423 axp->pid_count++;
2424
2425 return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440 const struct cred *new, const struct cred *old)
2441{
2442 struct audit_aux_data_bprm_fcaps *ax;
2443 struct audit_context *context = current->audit_context;
2444 struct cpu_vfs_cap_data vcaps;
2445 struct dentry *dentry;
2446
2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448 if (!ax)
2449 return -ENOMEM;
2450
2451 ax->d.type = AUDIT_BPRM_FCAPS;
2452 ax->d.next = context->aux;
2453 context->aux = (void *)ax;
2454
2455 dentry = dget(bprm->file->f_dentry);
2456 get_vfs_caps_from_disk(dentry, &vcaps);
2457 dput(dentry);
2458
2459 ax->fcap.permitted = vcaps.permitted;
2460 ax->fcap.inheritable = vcaps.inheritable;
2461 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464 ax->old_pcap.permitted = old->cap_permitted;
2465 ax->old_pcap.inheritable = old->cap_inheritable;
2466 ax->old_pcap.effective = old->cap_effective;
2467
2468 ax->new_pcap.permitted = new->cap_permitted;
2469 ax->new_pcap.inheritable = new->cap_inheritable;
2470 ax->new_pcap.effective = new->cap_effective;
2471 return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484 const struct cred *new, const struct cred *old)
2485{
2486 struct audit_context *context = current->audit_context;
2487 context->capset.pid = pid;
2488 context->capset.cap.effective = new->cap_effective;
2489 context->capset.cap.inheritable = new->cap_effective;
2490 context->capset.cap.permitted = new->cap_permitted;
2491 context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496 struct audit_context *context = current->audit_context;
2497 context->mmap.fd = fd;
2498 context->mmap.flags = flags;
2499 context->type = AUDIT_MMAP;
2500}
2501
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511 struct audit_buffer *ab;
2512 u32 sid;
2513 uid_t auid = audit_get_loginuid(current), uid;
2514 gid_t gid;
2515 unsigned int sessionid = audit_get_sessionid(current);
2516
2517 if (!audit_enabled)
2518 return;
2519
2520 if (signr == SIGQUIT) /* don't care for those */
2521 return;
2522
2523 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524 current_uid_gid(&uid, &gid);
2525 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526 auid, uid, gid, sessionid);
2527 security_task_getsecid(current, &sid);
2528 if (sid) {
2529 char *ctx = NULL;
2530 u32 len;
2531
2532 if (security_secid_to_secctx(sid, &ctx, &len))
2533 audit_log_format(ab, " ssid=%u", sid);
2534 else {
2535 audit_log_format(ab, " subj=%s", ctx);
2536 security_release_secctx(ctx, len);
2537 }
2538 }
2539 audit_log_format(ab, " pid=%d comm=", current->pid);
2540 audit_log_untrustedstring(ab, current->comm);
2541 audit_log_format(ab, " sig=%ld", signr);
2542 audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547 struct audit_context *ctx = current->audit_context;
2548 if (likely(!ctx || !ctx->in_syscall))
2549 return NULL;
2550 return &ctx->killed_trees;
2551}