Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/* auditsc.c -- System-call auditing support
   3 * Handles all system-call specific auditing features.
   4 *
   5 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   6 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   7 * Copyright (C) 2005, 2006 IBM Corporation
   8 * All Rights Reserved.
   9 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  11 *
  12 * Many of the ideas implemented here are from Stephen C. Tweedie,
  13 * especially the idea of avoiding a copy by using getname.
  14 *
  15 * The method for actual interception of syscall entry and exit (not in
  16 * this file -- see entry.S) is based on a GPL'd patch written by
  17 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  18 *
  19 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  20 * 2006.
  21 *
  22 * The support of additional filter rules compares (>, <, >=, <=) was
  23 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  24 *
  25 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  26 * filesystem information.
  27 *
  28 * Subject and object context labeling support added by <danjones@us.ibm.com>
  29 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/init.h>
  35#include <asm/types.h>
  36#include <linux/atomic.h>
  37#include <linux/fs.h>
  38#include <linux/namei.h>
  39#include <linux/mm.h>
  40#include <linux/export.h>
  41#include <linux/slab.h>
  42#include <linux/mount.h>
  43#include <linux/socket.h>
  44#include <linux/mqueue.h>
  45#include <linux/audit.h>
  46#include <linux/personality.h>
  47#include <linux/time.h>
  48#include <linux/netlink.h>
  49#include <linux/compiler.h>
  50#include <asm/unistd.h>
  51#include <linux/security.h>
  52#include <linux/list.h>
 
  53#include <linux/binfmts.h>
  54#include <linux/highmem.h>
  55#include <linux/syscalls.h>
  56#include <asm/syscall.h>
  57#include <linux/capability.h>
  58#include <linux/fs_struct.h>
  59#include <linux/compat.h>
  60#include <linux/ctype.h>
  61#include <linux/string.h>
  62#include <linux/uaccess.h>
  63#include <linux/fsnotify_backend.h>
  64#include <uapi/linux/limits.h>
  65#include <uapi/linux/netfilter/nf_tables.h>
  66#include <uapi/linux/openat2.h> // struct open_how
  67#include <uapi/linux/fanotify.h>
  68
  69#include "audit.h"
  70
  71/* flags stating the success for a syscall */
  72#define AUDITSC_INVALID 0
  73#define AUDITSC_SUCCESS 1
  74#define AUDITSC_FAILURE 2
  75
  76/* no execve audit message should be longer than this (userspace limits),
  77 * see the note near the top of audit_log_execve_info() about this value */
  78#define MAX_EXECVE_AUDIT_LEN 7500
  79
  80/* max length to print of cmdline/proctitle value during audit */
  81#define MAX_PROCTITLE_AUDIT_LEN 128
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  89struct audit_aux_data {
  90	struct audit_aux_data	*next;
  91	int			type;
  92};
  93
 
 
  94/* Number of target pids per aux struct. */
  95#define AUDIT_AUX_PIDS	16
  96
 
 
 
 
 
 
 
  97struct audit_aux_data_pids {
  98	struct audit_aux_data	d;
  99	pid_t			target_pid[AUDIT_AUX_PIDS];
 100	kuid_t			target_auid[AUDIT_AUX_PIDS];
 101	kuid_t			target_uid[AUDIT_AUX_PIDS];
 102	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 103	struct lsm_prop		target_ref[AUDIT_AUX_PIDS];
 104	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 105	int			pid_count;
 106};
 107
 108struct audit_aux_data_bprm_fcaps {
 109	struct audit_aux_data	d;
 110	struct audit_cap_data	fcap;
 111	unsigned int		fcap_ver;
 112	struct audit_cap_data	old_pcap;
 113	struct audit_cap_data	new_pcap;
 114};
 115
 
 
 
 
 
 
 116struct audit_tree_refs {
 117	struct audit_tree_refs *next;
 118	struct audit_chunk *c[31];
 119};
 120
 121struct audit_nfcfgop_tab {
 122	enum audit_nfcfgop	op;
 123	const char		*s;
 124};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126static const struct audit_nfcfgop_tab audit_nfcfgs[] = {
 127	{ AUDIT_XT_OP_REGISTER,			"xt_register"		   },
 128	{ AUDIT_XT_OP_REPLACE,			"xt_replace"		   },
 129	{ AUDIT_XT_OP_UNREGISTER,		"xt_unregister"		   },
 130	{ AUDIT_NFT_OP_TABLE_REGISTER,		"nft_register_table"	   },
 131	{ AUDIT_NFT_OP_TABLE_UNREGISTER,	"nft_unregister_table"	   },
 132	{ AUDIT_NFT_OP_CHAIN_REGISTER,		"nft_register_chain"	   },
 133	{ AUDIT_NFT_OP_CHAIN_UNREGISTER,	"nft_unregister_chain"	   },
 134	{ AUDIT_NFT_OP_RULE_REGISTER,		"nft_register_rule"	   },
 135	{ AUDIT_NFT_OP_RULE_UNREGISTER,		"nft_unregister_rule"	   },
 136	{ AUDIT_NFT_OP_SET_REGISTER,		"nft_register_set"	   },
 137	{ AUDIT_NFT_OP_SET_UNREGISTER,		"nft_unregister_set"	   },
 138	{ AUDIT_NFT_OP_SETELEM_REGISTER,	"nft_register_setelem"	   },
 139	{ AUDIT_NFT_OP_SETELEM_UNREGISTER,	"nft_unregister_setelem"   },
 140	{ AUDIT_NFT_OP_GEN_REGISTER,		"nft_register_gen"	   },
 141	{ AUDIT_NFT_OP_OBJ_REGISTER,		"nft_register_obj"	   },
 142	{ AUDIT_NFT_OP_OBJ_UNREGISTER,		"nft_unregister_obj"	   },
 143	{ AUDIT_NFT_OP_OBJ_RESET,		"nft_reset_obj"		   },
 144	{ AUDIT_NFT_OP_FLOWTABLE_REGISTER,	"nft_register_flowtable"   },
 145	{ AUDIT_NFT_OP_FLOWTABLE_UNREGISTER,	"nft_unregister_flowtable" },
 146	{ AUDIT_NFT_OP_SETELEM_RESET,		"nft_reset_setelem"        },
 147	{ AUDIT_NFT_OP_RULE_RESET,		"nft_reset_rule"           },
 148	{ AUDIT_NFT_OP_INVALID,			"nft_invalid"		   },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149};
 150
 
 
 
 
 
 
 
 
 151static int audit_match_perm(struct audit_context *ctx, int mask)
 152{
 153	unsigned n;
 154
 155	if (unlikely(!ctx))
 156		return 0;
 157	n = ctx->major;
 158
 159	switch (audit_classify_syscall(ctx->arch, n)) {
 160	case AUDITSC_NATIVE:
 161		if ((mask & AUDIT_PERM_WRITE) &&
 162		     audit_match_class(AUDIT_CLASS_WRITE, n))
 163			return 1;
 164		if ((mask & AUDIT_PERM_READ) &&
 165		     audit_match_class(AUDIT_CLASS_READ, n))
 166			return 1;
 167		if ((mask & AUDIT_PERM_ATTR) &&
 168		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 169			return 1;
 170		return 0;
 171	case AUDITSC_COMPAT: /* 32bit on biarch */
 172		if ((mask & AUDIT_PERM_WRITE) &&
 173		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 174			return 1;
 175		if ((mask & AUDIT_PERM_READ) &&
 176		     audit_match_class(AUDIT_CLASS_READ_32, n))
 177			return 1;
 178		if ((mask & AUDIT_PERM_ATTR) &&
 179		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 180			return 1;
 181		return 0;
 182	case AUDITSC_OPEN:
 183		return mask & ACC_MODE(ctx->argv[1]);
 184	case AUDITSC_OPENAT:
 185		return mask & ACC_MODE(ctx->argv[2]);
 186	case AUDITSC_SOCKETCALL:
 187		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 188	case AUDITSC_EXECVE:
 189		return mask & AUDIT_PERM_EXEC;
 190	case AUDITSC_OPENAT2:
 191		return mask & ACC_MODE((u32)ctx->openat2.flags);
 192	default:
 193		return 0;
 194	}
 195}
 196
 197static int audit_match_filetype(struct audit_context *ctx, int val)
 198{
 199	struct audit_names *n;
 200	umode_t mode = (umode_t)val;
 201
 202	if (unlikely(!ctx))
 203		return 0;
 204
 205	list_for_each_entry(n, &ctx->names_list, list) {
 206		if ((n->ino != AUDIT_INO_UNSET) &&
 207		    ((n->mode & S_IFMT) == mode))
 208			return 1;
 209	}
 210
 211	return 0;
 212}
 213
 214/*
 215 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 216 * ->first_trees points to its beginning, ->trees - to the current end of data.
 217 * ->tree_count is the number of free entries in array pointed to by ->trees.
 218 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 219 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 220 * it's going to remain 1-element for almost any setup) until we free context itself.
 221 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 222 */
 223
 
 224static void audit_set_auditable(struct audit_context *ctx)
 225{
 226	if (!ctx->prio) {
 227		ctx->prio = 1;
 228		ctx->current_state = AUDIT_STATE_RECORD;
 229	}
 230}
 231
 232static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	int left = ctx->tree_count;
 236
 237	if (likely(left)) {
 238		p->c[--left] = chunk;
 239		ctx->tree_count = left;
 240		return 1;
 241	}
 242	if (!p)
 243		return 0;
 244	p = p->next;
 245	if (p) {
 246		p->c[30] = chunk;
 247		ctx->trees = p;
 248		ctx->tree_count = 30;
 249		return 1;
 250	}
 251	return 0;
 252}
 253
 254static int grow_tree_refs(struct audit_context *ctx)
 255{
 256	struct audit_tree_refs *p = ctx->trees;
 257
 258	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 259	if (!ctx->trees) {
 260		ctx->trees = p;
 261		return 0;
 262	}
 263	if (p)
 264		p->next = ctx->trees;
 265	else
 266		ctx->first_trees = ctx->trees;
 267	ctx->tree_count = 31;
 268	return 1;
 269}
 
 270
 271static void unroll_tree_refs(struct audit_context *ctx,
 272		      struct audit_tree_refs *p, int count)
 273{
 
 274	struct audit_tree_refs *q;
 275	int n;
 276
 277	if (!p) {
 278		/* we started with empty chain */
 279		p = ctx->first_trees;
 280		count = 31;
 281		/* if the very first allocation has failed, nothing to do */
 282		if (!p)
 283			return;
 284	}
 285	n = count;
 286	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 287		while (n--) {
 288			audit_put_chunk(q->c[n]);
 289			q->c[n] = NULL;
 290		}
 291	}
 292	while (n-- > ctx->tree_count) {
 293		audit_put_chunk(q->c[n]);
 294		q->c[n] = NULL;
 295	}
 296	ctx->trees = p;
 297	ctx->tree_count = count;
 
 298}
 299
 300static void free_tree_refs(struct audit_context *ctx)
 301{
 302	struct audit_tree_refs *p, *q;
 303
 304	for (p = ctx->first_trees; p; p = q) {
 305		q = p->next;
 306		kfree(p);
 307	}
 308}
 309
 310static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 311{
 
 312	struct audit_tree_refs *p;
 313	int n;
 314
 315	if (!tree)
 316		return 0;
 317	/* full ones */
 318	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 319		for (n = 0; n < 31; n++)
 320			if (audit_tree_match(p->c[n], tree))
 321				return 1;
 322	}
 323	/* partial */
 324	if (p) {
 325		for (n = ctx->tree_count; n < 31; n++)
 326			if (audit_tree_match(p->c[n], tree))
 327				return 1;
 328	}
 329	return 0;
 330}
 331
 332static int audit_compare_uid(kuid_t uid,
 333			     struct audit_names *name,
 334			     struct audit_field *f,
 335			     struct audit_context *ctx)
 336{
 337	struct audit_names *n;
 338	int rc;
 339
 340	if (name) {
 341		rc = audit_uid_comparator(uid, f->op, name->uid);
 342		if (rc)
 343			return rc;
 344	}
 345
 346	if (ctx) {
 347		list_for_each_entry(n, &ctx->names_list, list) {
 348			rc = audit_uid_comparator(uid, f->op, n->uid);
 349			if (rc)
 350				return rc;
 351		}
 352	}
 353	return 0;
 354}
 355
 356static int audit_compare_gid(kgid_t gid,
 357			     struct audit_names *name,
 358			     struct audit_field *f,
 359			     struct audit_context *ctx)
 360{
 361	struct audit_names *n;
 362	int rc;
 363
 364	if (name) {
 365		rc = audit_gid_comparator(gid, f->op, name->gid);
 366		if (rc)
 367			return rc;
 368	}
 369
 370	if (ctx) {
 371		list_for_each_entry(n, &ctx->names_list, list) {
 372			rc = audit_gid_comparator(gid, f->op, n->gid);
 373			if (rc)
 374				return rc;
 375		}
 376	}
 377	return 0;
 378}
 379
 380static int audit_field_compare(struct task_struct *tsk,
 381			       const struct cred *cred,
 382			       struct audit_field *f,
 383			       struct audit_context *ctx,
 384			       struct audit_names *name)
 385{
 386	switch (f->val) {
 387	/* process to file object comparisons */
 388	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 389		return audit_compare_uid(cred->uid, name, f, ctx);
 390	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 391		return audit_compare_gid(cred->gid, name, f, ctx);
 392	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 393		return audit_compare_uid(cred->euid, name, f, ctx);
 394	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 395		return audit_compare_gid(cred->egid, name, f, ctx);
 396	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 397		return audit_compare_uid(audit_get_loginuid(tsk), name, f, ctx);
 398	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 399		return audit_compare_uid(cred->suid, name, f, ctx);
 400	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 401		return audit_compare_gid(cred->sgid, name, f, ctx);
 402	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 403		return audit_compare_uid(cred->fsuid, name, f, ctx);
 404	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 405		return audit_compare_gid(cred->fsgid, name, f, ctx);
 406	/* uid comparisons */
 407	case AUDIT_COMPARE_UID_TO_AUID:
 408		return audit_uid_comparator(cred->uid, f->op,
 409					    audit_get_loginuid(tsk));
 410	case AUDIT_COMPARE_UID_TO_EUID:
 411		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 412	case AUDIT_COMPARE_UID_TO_SUID:
 413		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 414	case AUDIT_COMPARE_UID_TO_FSUID:
 415		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 416	/* auid comparisons */
 417	case AUDIT_COMPARE_AUID_TO_EUID:
 418		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 419					    cred->euid);
 420	case AUDIT_COMPARE_AUID_TO_SUID:
 421		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 422					    cred->suid);
 423	case AUDIT_COMPARE_AUID_TO_FSUID:
 424		return audit_uid_comparator(audit_get_loginuid(tsk), f->op,
 425					    cred->fsuid);
 426	/* euid comparisons */
 427	case AUDIT_COMPARE_EUID_TO_SUID:
 428		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 429	case AUDIT_COMPARE_EUID_TO_FSUID:
 430		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 431	/* suid comparisons */
 432	case AUDIT_COMPARE_SUID_TO_FSUID:
 433		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 434	/* gid comparisons */
 435	case AUDIT_COMPARE_GID_TO_EGID:
 436		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 437	case AUDIT_COMPARE_GID_TO_SGID:
 438		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 439	case AUDIT_COMPARE_GID_TO_FSGID:
 440		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 441	/* egid comparisons */
 442	case AUDIT_COMPARE_EGID_TO_SGID:
 443		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 444	case AUDIT_COMPARE_EGID_TO_FSGID:
 445		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 446	/* sgid comparison */
 447	case AUDIT_COMPARE_SGID_TO_FSGID:
 448		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 449	default:
 450		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 451		return 0;
 452	}
 453	return 0;
 454}
 455
 456/* Determine if any context name data matches a rule's watch data */
 457/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 458 * otherwise.
 459 *
 460 * If task_creation is true, this is an explicit indication that we are
 461 * filtering a task rule at task creation time.  This and tsk == current are
 462 * the only situations where tsk->cred may be accessed without an rcu read lock.
 463 */
 464static int audit_filter_rules(struct task_struct *tsk,
 465			      struct audit_krule *rule,
 466			      struct audit_context *ctx,
 467			      struct audit_names *name,
 468			      enum audit_state *state,
 469			      bool task_creation)
 470{
 471	const struct cred *cred;
 472	int i, need_sid = 1;
 473	struct lsm_prop prop = { };
 474	unsigned int sessionid;
 475
 476	if (ctx && rule->prio <= ctx->prio)
 477		return 0;
 478
 479	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 480
 481	for (i = 0; i < rule->field_count; i++) {
 482		struct audit_field *f = &rule->fields[i];
 483		struct audit_names *n;
 484		int result = 0;
 485		pid_t pid;
 486
 487		switch (f->type) {
 488		case AUDIT_PID:
 489			pid = task_tgid_nr(tsk);
 490			result = audit_comparator(pid, f->op, f->val);
 491			break;
 492		case AUDIT_PPID:
 493			if (ctx) {
 494				if (!ctx->ppid)
 495					ctx->ppid = task_ppid_nr(tsk);
 496				result = audit_comparator(ctx->ppid, f->op, f->val);
 497			}
 498			break;
 499		case AUDIT_EXE:
 500			result = audit_exe_compare(tsk, rule->exe);
 501			if (f->op == Audit_not_equal)
 502				result = !result;
 503			break;
 504		case AUDIT_UID:
 505			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 506			break;
 507		case AUDIT_EUID:
 508			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 509			break;
 510		case AUDIT_SUID:
 511			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 512			break;
 513		case AUDIT_FSUID:
 514			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 515			break;
 516		case AUDIT_GID:
 517			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 518			if (f->op == Audit_equal) {
 519				if (!result)
 520					result = groups_search(cred->group_info, f->gid);
 521			} else if (f->op == Audit_not_equal) {
 522				if (result)
 523					result = !groups_search(cred->group_info, f->gid);
 524			}
 525			break;
 526		case AUDIT_EGID:
 527			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 528			if (f->op == Audit_equal) {
 529				if (!result)
 530					result = groups_search(cred->group_info, f->gid);
 531			} else if (f->op == Audit_not_equal) {
 532				if (result)
 533					result = !groups_search(cred->group_info, f->gid);
 534			}
 535			break;
 536		case AUDIT_SGID:
 537			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 538			break;
 539		case AUDIT_FSGID:
 540			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 541			break;
 542		case AUDIT_SESSIONID:
 543			sessionid = audit_get_sessionid(tsk);
 544			result = audit_comparator(sessionid, f->op, f->val);
 545			break;
 546		case AUDIT_PERS:
 547			result = audit_comparator(tsk->personality, f->op, f->val);
 548			break;
 549		case AUDIT_ARCH:
 550			if (ctx)
 551				result = audit_comparator(ctx->arch, f->op, f->val);
 552			break;
 553
 554		case AUDIT_EXIT:
 555			if (ctx && ctx->return_valid != AUDITSC_INVALID)
 556				result = audit_comparator(ctx->return_code, f->op, f->val);
 557			break;
 558		case AUDIT_SUCCESS:
 559			if (ctx && ctx->return_valid != AUDITSC_INVALID) {
 560				if (f->val)
 561					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 562				else
 563					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 564			}
 565			break;
 566		case AUDIT_DEVMAJOR:
 567			if (name) {
 568				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 569				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 570					++result;
 571			} else if (ctx) {
 572				list_for_each_entry(n, &ctx->names_list, list) {
 573					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 574					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 575						++result;
 576						break;
 577					}
 578				}
 579			}
 580			break;
 581		case AUDIT_DEVMINOR:
 582			if (name) {
 583				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 584				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 585					++result;
 586			} else if (ctx) {
 587				list_for_each_entry(n, &ctx->names_list, list) {
 588					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 589					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 590						++result;
 591						break;
 592					}
 593				}
 594			}
 595			break;
 596		case AUDIT_INODE:
 597			if (name)
 598				result = audit_comparator(name->ino, f->op, f->val);
 599			else if (ctx) {
 600				list_for_each_entry(n, &ctx->names_list, list) {
 601					if (audit_comparator(n->ino, f->op, f->val)) {
 602						++result;
 603						break;
 604					}
 605				}
 606			}
 607			break;
 608		case AUDIT_OBJ_UID:
 609			if (name) {
 610				result = audit_uid_comparator(name->uid, f->op, f->uid);
 611			} else if (ctx) {
 612				list_for_each_entry(n, &ctx->names_list, list) {
 613					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 614						++result;
 615						break;
 616					}
 617				}
 618			}
 619			break;
 620		case AUDIT_OBJ_GID:
 621			if (name) {
 622				result = audit_gid_comparator(name->gid, f->op, f->gid);
 623			} else if (ctx) {
 624				list_for_each_entry(n, &ctx->names_list, list) {
 625					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 626						++result;
 627						break;
 628					}
 629				}
 630			}
 631			break;
 632		case AUDIT_WATCH:
 633			if (name) {
 634				result = audit_watch_compare(rule->watch,
 635							     name->ino,
 636							     name->dev);
 637				if (f->op == Audit_not_equal)
 638					result = !result;
 639			}
 640			break;
 641		case AUDIT_DIR:
 642			if (ctx) {
 643				result = match_tree_refs(ctx, rule->tree);
 644				if (f->op == Audit_not_equal)
 645					result = !result;
 646			}
 647			break;
 648		case AUDIT_LOGINUID:
 649			result = audit_uid_comparator(audit_get_loginuid(tsk),
 650						      f->op, f->uid);
 651			break;
 652		case AUDIT_LOGINUID_SET:
 653			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 654			break;
 655		case AUDIT_SADDR_FAM:
 656			if (ctx && ctx->sockaddr)
 657				result = audit_comparator(ctx->sockaddr->ss_family,
 658							  f->op, f->val);
 659			break;
 660		case AUDIT_SUBJ_USER:
 661		case AUDIT_SUBJ_ROLE:
 662		case AUDIT_SUBJ_TYPE:
 663		case AUDIT_SUBJ_SEN:
 664		case AUDIT_SUBJ_CLR:
 665			/* NOTE: this may return negative values indicating
 666			   a temporary error.  We simply treat this as a
 667			   match for now to avoid losing information that
 668			   may be wanted.   An error message will also be
 669			   logged upon error */
 670			if (f->lsm_rule) {
 671				if (need_sid) {
 672					/* @tsk should always be equal to
 673					 * @current with the exception of
 674					 * fork()/copy_process() in which case
 675					 * the new @tsk creds are still a dup
 676					 * of @current's creds so we can still
 677					 * use
 678					 * security_current_getlsmprop_subj()
 679					 * here even though it always refs
 680					 * @current's creds
 681					 */
 682					security_current_getlsmprop_subj(&prop);
 683					need_sid = 0;
 684				}
 685				result = security_audit_rule_match(&prop,
 686								   f->type,
 687								   f->op,
 688								   f->lsm_rule);
 689			}
 690			break;
 691		case AUDIT_OBJ_USER:
 692		case AUDIT_OBJ_ROLE:
 693		case AUDIT_OBJ_TYPE:
 694		case AUDIT_OBJ_LEV_LOW:
 695		case AUDIT_OBJ_LEV_HIGH:
 696			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 697			   also applies here */
 698			if (f->lsm_rule) {
 699				/* Find files that match */
 700				if (name) {
 701					result = security_audit_rule_match(
 702								&name->oprop,
 703								f->type,
 704								f->op,
 705								f->lsm_rule);
 706				} else if (ctx) {
 707					list_for_each_entry(n, &ctx->names_list, list) {
 708						if (security_audit_rule_match(
 709								&n->oprop,
 710								f->type,
 711								f->op,
 712								f->lsm_rule)) {
 713							++result;
 714							break;
 715						}
 716					}
 717				}
 718				/* Find ipc objects that match */
 719				if (!ctx || ctx->type != AUDIT_IPC)
 720					break;
 721				if (security_audit_rule_match(&ctx->ipc.oprop,
 722							      f->type, f->op,
 723							      f->lsm_rule))
 724					++result;
 725			}
 726			break;
 727		case AUDIT_ARG0:
 728		case AUDIT_ARG1:
 729		case AUDIT_ARG2:
 730		case AUDIT_ARG3:
 731			if (ctx)
 732				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 733			break;
 734		case AUDIT_FILTERKEY:
 735			/* ignore this field for filtering */
 736			result = 1;
 737			break;
 738		case AUDIT_PERM:
 739			result = audit_match_perm(ctx, f->val);
 740			if (f->op == Audit_not_equal)
 741				result = !result;
 742			break;
 743		case AUDIT_FILETYPE:
 744			result = audit_match_filetype(ctx, f->val);
 745			if (f->op == Audit_not_equal)
 746				result = !result;
 747			break;
 748		case AUDIT_FIELD_COMPARE:
 749			result = audit_field_compare(tsk, cred, f, ctx, name);
 750			break;
 751		}
 
 752		if (!result)
 753			return 0;
 754	}
 755
 756	if (ctx) {
 
 
 757		if (rule->filterkey) {
 758			kfree(ctx->filterkey);
 759			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 760		}
 761		ctx->prio = rule->prio;
 762	}
 763	switch (rule->action) {
 764	case AUDIT_NEVER:
 765		*state = AUDIT_STATE_DISABLED;
 766		break;
 767	case AUDIT_ALWAYS:
 768		*state = AUDIT_STATE_RECORD;
 769		break;
 770	}
 771	return 1;
 772}
 773
 774/* At process creation time, we can determine if system-call auditing is
 775 * completely disabled for this task.  Since we only have the task
 776 * structure at this point, we can only check uid and gid.
 777 */
 778static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 779{
 780	struct audit_entry *e;
 781	enum audit_state   state;
 782
 783	rcu_read_lock();
 784	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 785		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 786				       &state, true)) {
 787			if (state == AUDIT_STATE_RECORD)
 788				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 789			rcu_read_unlock();
 790			return state;
 791		}
 792	}
 793	rcu_read_unlock();
 794	return AUDIT_STATE_BUILD;
 795}
 796
 797static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 798{
 799	int word, bit;
 800
 801	if (val > 0xffffffff)
 802		return false;
 803
 804	word = AUDIT_WORD(val);
 805	if (word >= AUDIT_BITMASK_SIZE)
 806		return false;
 807
 808	bit = AUDIT_BIT(val);
 809
 810	return rule->mask[word] & bit;
 811}
 812
 813/**
 814 * __audit_filter_op - common filter helper for operations (syscall/uring/etc)
 815 * @tsk: associated task
 816 * @ctx: audit context
 817 * @list: audit filter list
 818 * @name: audit_name (can be NULL)
 819 * @op: current syscall/uring_op
 820 *
 821 * Run the udit filters specified in @list against @tsk using @ctx,
 822 * @name, and @op, as necessary; the caller is responsible for ensuring
 823 * that the call is made while the RCU read lock is held. The @name
 824 * parameter can be NULL, but all others must be specified.
 825 * Returns 1/true if the filter finds a match, 0/false if none are found.
 826 */
 827static int __audit_filter_op(struct task_struct *tsk,
 828			   struct audit_context *ctx,
 829			   struct list_head *list,
 830			   struct audit_names *name,
 831			   unsigned long op)
 832{
 833	struct audit_entry *e;
 834	enum audit_state state;
 835
 836	list_for_each_entry_rcu(e, list, list) {
 837		if (audit_in_mask(&e->rule, op) &&
 838		    audit_filter_rules(tsk, &e->rule, ctx, name,
 839				       &state, false)) {
 840			ctx->current_state = state;
 841			return 1;
 842		}
 843	}
 844	return 0;
 845}
 846
 847/**
 848 * audit_filter_uring - apply filters to an io_uring operation
 849 * @tsk: associated task
 850 * @ctx: audit context
 851 */
 852static void audit_filter_uring(struct task_struct *tsk,
 853			       struct audit_context *ctx)
 854{
 855	if (auditd_test_task(tsk))
 856		return;
 857
 858	rcu_read_lock();
 859	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_URING_EXIT],
 860			NULL, ctx->uring_op);
 861	rcu_read_unlock();
 862}
 863
 864/* At syscall exit time, this filter is called if the audit_state is
 865 * not low enough that auditing cannot take place, but is also not
 866 * high enough that we already know we have to write an audit record
 867 * (i.e., the state is AUDIT_STATE_BUILD).
 868 */
 869static void audit_filter_syscall(struct task_struct *tsk,
 870				 struct audit_context *ctx)
 871{
 872	if (auditd_test_task(tsk))
 873		return;
 874
 875	rcu_read_lock();
 876	__audit_filter_op(tsk, ctx, &audit_filter_list[AUDIT_FILTER_EXIT],
 877			NULL, ctx->major);
 
 
 
 
 
 
 
 
 
 
 
 
 878	rcu_read_unlock();
 
 879}
 880
 881/*
 882 * Given an audit_name check the inode hash table to see if they match.
 883 * Called holding the rcu read lock to protect the use of audit_inode_hash
 884 */
 885static int audit_filter_inode_name(struct task_struct *tsk,
 886				   struct audit_names *n,
 887				   struct audit_context *ctx)
 888{
 889	int h = audit_hash_ino((u32)n->ino);
 890	struct list_head *list = &audit_inode_hash[h];
 891
 892	return __audit_filter_op(tsk, ctx, list, n, ctx->major);
 893}
 894
 895/* At syscall exit time, this filter is called if any audit_names have been
 896 * collected during syscall processing.  We only check rules in sublists at hash
 897 * buckets applicable to the inode numbers in audit_names.
 898 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 899 */
 900void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 901{
 902	struct audit_names *n;
 
 
 903
 904	if (auditd_test_task(tsk))
 905		return;
 906
 907	rcu_read_lock();
 
 
 
 
 
 
 908
 909	list_for_each_entry(n, &ctx->names_list, list) {
 910		if (audit_filter_inode_name(tsk, n, ctx))
 911			break;
 
 
 
 
 
 
 
 
 
 912	}
 913	rcu_read_unlock();
 914}
 915
 916static inline void audit_proctitle_free(struct audit_context *context)
 
 
 917{
 918	kfree(context->proctitle.value);
 919	context->proctitle.value = NULL;
 920	context->proctitle.len = 0;
 921}
 922
 923static inline void audit_free_module(struct audit_context *context)
 924{
 925	if (context->type == AUDIT_KERN_MODULE) {
 926		kfree(context->module.name);
 927		context->module.name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	}
 
 
 
 929}
 
 930static inline void audit_free_names(struct audit_context *context)
 931{
 932	struct audit_names *n, *next;
 933
 934	list_for_each_entry_safe(n, next, &context->names_list, list) {
 935		list_del(&n->list);
 936		if (n->name)
 937			putname(n->name);
 938		if (n->should_free)
 939			kfree(n);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940	}
 941	context->name_count = 0;
 942	path_put(&context->pwd);
 943	context->pwd.dentry = NULL;
 944	context->pwd.mnt = NULL;
 945}
 946
 947static inline void audit_free_aux(struct audit_context *context)
 948{
 949	struct audit_aux_data *aux;
 950
 951	while ((aux = context->aux)) {
 952		context->aux = aux->next;
 953		kfree(aux);
 954	}
 955	context->aux = NULL;
 956	while ((aux = context->aux_pids)) {
 957		context->aux_pids = aux->next;
 958		kfree(aux);
 959	}
 960	context->aux_pids = NULL;
 961}
 962
 963/**
 964 * audit_reset_context - reset a audit_context structure
 965 * @ctx: the audit_context to reset
 966 *
 967 * All fields in the audit_context will be reset to an initial state, all
 968 * references held by fields will be dropped, and private memory will be
 969 * released.  When this function returns the audit_context will be suitable
 970 * for reuse, so long as the passed context is not NULL or a dummy context.
 971 */
 972static void audit_reset_context(struct audit_context *ctx)
 973{
 974	if (!ctx)
 975		return;
 976
 977	/* if ctx is non-null, reset the "ctx->context" regardless */
 978	ctx->context = AUDIT_CTX_UNUSED;
 979	if (ctx->dummy)
 980		return;
 981
 982	/*
 983	 * NOTE: It shouldn't matter in what order we release the fields, so
 984	 *       release them in the order in which they appear in the struct;
 985	 *       this gives us some hope of quickly making sure we are
 986	 *       resetting the audit_context properly.
 987	 *
 988	 *       Other things worth mentioning:
 989	 *       - we don't reset "dummy"
 990	 *       - we don't reset "state", we do reset "current_state"
 991	 *       - we preserve "filterkey" if "state" is AUDIT_STATE_RECORD
 992	 *       - much of this is likely overkill, but play it safe for now
 993	 *       - we really need to work on improving the audit_context struct
 994	 */
 995
 996	ctx->current_state = ctx->state;
 997	ctx->serial = 0;
 998	ctx->major = 0;
 999	ctx->uring_op = 0;
1000	ctx->ctime = (struct timespec64){ .tv_sec = 0, .tv_nsec = 0 };
1001	memset(ctx->argv, 0, sizeof(ctx->argv));
1002	ctx->return_code = 0;
1003	ctx->prio = (ctx->state == AUDIT_STATE_RECORD ? ~0ULL : 0);
1004	ctx->return_valid = AUDITSC_INVALID;
1005	audit_free_names(ctx);
1006	if (ctx->state != AUDIT_STATE_RECORD) {
1007		kfree(ctx->filterkey);
1008		ctx->filterkey = NULL;
1009	}
1010	audit_free_aux(ctx);
1011	kfree(ctx->sockaddr);
1012	ctx->sockaddr = NULL;
1013	ctx->sockaddr_len = 0;
1014	ctx->ppid = 0;
1015	ctx->uid = ctx->euid = ctx->suid = ctx->fsuid = KUIDT_INIT(0);
1016	ctx->gid = ctx->egid = ctx->sgid = ctx->fsgid = KGIDT_INIT(0);
1017	ctx->personality = 0;
1018	ctx->arch = 0;
1019	ctx->target_pid = 0;
1020	ctx->target_auid = ctx->target_uid = KUIDT_INIT(0);
1021	ctx->target_sessionid = 0;
1022	lsmprop_init(&ctx->target_ref);
1023	ctx->target_comm[0] = '\0';
1024	unroll_tree_refs(ctx, NULL, 0);
1025	WARN_ON(!list_empty(&ctx->killed_trees));
1026	audit_free_module(ctx);
1027	ctx->fds[0] = -1;
1028	ctx->type = 0; /* reset last for audit_free_*() */
1029}
1030
1031static inline struct audit_context *audit_alloc_context(enum audit_state state)
1032{
1033	struct audit_context *context;
1034
1035	context = kzalloc(sizeof(*context), GFP_KERNEL);
1036	if (!context)
1037		return NULL;
1038	context->context = AUDIT_CTX_UNUSED;
1039	context->state = state;
1040	context->prio = state == AUDIT_STATE_RECORD ? ~0ULL : 0;
1041	INIT_LIST_HEAD(&context->killed_trees);
1042	INIT_LIST_HEAD(&context->names_list);
1043	context->fds[0] = -1;
1044	context->return_valid = AUDITSC_INVALID;
1045	return context;
1046}
1047
1048/**
1049 * audit_alloc - allocate an audit context block for a task
1050 * @tsk: task
1051 *
1052 * Filter on the task information and allocate a per-task audit context
1053 * if necessary.  Doing so turns on system call auditing for the
1054 * specified task.  This is called from copy_process, so no lock is
1055 * needed.
1056 */
1057int audit_alloc(struct task_struct *tsk)
1058{
1059	struct audit_context *context;
1060	enum audit_state     state;
1061	char *key = NULL;
1062
1063	if (likely(!audit_ever_enabled))
1064		return 0;
1065
1066	state = audit_filter_task(tsk, &key);
1067	if (state == AUDIT_STATE_DISABLED) {
1068		clear_task_syscall_work(tsk, SYSCALL_AUDIT);
1069		return 0;
1070	}
1071
1072	context = audit_alloc_context(state);
1073	if (!context) {
1074		kfree(key);
1075		audit_log_lost("out of memory in audit_alloc");
1076		return -ENOMEM;
1077	}
1078	context->filterkey = key;
1079
1080	audit_set_context(tsk, context);
1081	set_task_syscall_work(tsk, SYSCALL_AUDIT);
1082	return 0;
1083}
1084
1085static inline void audit_free_context(struct audit_context *context)
1086{
1087	/* resetting is extra work, but it is likely just noise */
1088	audit_reset_context(context);
1089	audit_proctitle_free(context);
1090	free_tree_refs(context);
1091	kfree(context->filterkey);
1092	kfree(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093}
1094
1095static int audit_log_pid_context(struct audit_context *context, pid_t pid,
1096				 kuid_t auid, kuid_t uid,
1097				 unsigned int sessionid, struct lsm_prop *prop,
1098				 char *comm)
1099{
1100	struct audit_buffer *ab;
1101	char *ctx = NULL;
1102	u32 len;
1103	int rc = 0;
1104
1105	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
1106	if (!ab)
1107		return rc;
1108
1109	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
1110			 from_kuid(&init_user_ns, auid),
1111			 from_kuid(&init_user_ns, uid), sessionid);
1112	if (lsmprop_is_set(prop)) {
1113		if (security_lsmprop_to_secctx(prop, &ctx, &len)) {
1114			audit_log_format(ab, " obj=(none)");
1115			rc = 1;
1116		} else {
1117			audit_log_format(ab, " obj=%s", ctx);
1118			security_release_secctx(ctx, len);
1119		}
1120	}
1121	audit_log_format(ab, " ocomm=");
1122	audit_log_untrustedstring(ab, comm);
1123	audit_log_end(ab);
1124
1125	return rc;
1126}
1127
1128static void audit_log_execve_info(struct audit_context *context,
1129				  struct audit_buffer **ab)
1130{
1131	long len_max;
1132	long len_rem;
1133	long len_full;
1134	long len_buf;
1135	long len_abuf = 0;
1136	long len_tmp;
1137	bool require_data;
1138	bool encode;
1139	unsigned int iter;
1140	unsigned int arg;
1141	char *buf_head;
1142	char *buf;
1143	const char __user *p = (const char __user *)current->mm->arg_start;
 
 
 
 
 
 
 
 
 
 
1144
1145	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1146	 *       data we put in the audit record for this argument (see the
1147	 *       code below) ... at this point in time 96 is plenty */
1148	char abuf[96];
1149
1150	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1151	 *       current value of 7500 is not as important as the fact that it
1152	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1153	 *       room if we go over a little bit in the logging below */
1154	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1155	len_max = MAX_EXECVE_AUDIT_LEN;
1156
1157	/* scratch buffer to hold the userspace args */
1158	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1159	if (!buf_head) {
1160		audit_panic("out of memory for argv string");
1161		return;
1162	}
1163	buf = buf_head;
1164
1165	audit_log_format(*ab, "argc=%d", context->execve.argc);
1166
1167	len_rem = len_max;
1168	len_buf = 0;
1169	len_full = 0;
1170	require_data = true;
1171	encode = false;
1172	iter = 0;
1173	arg = 0;
1174	do {
1175		/* NOTE: we don't ever want to trust this value for anything
1176		 *       serious, but the audit record format insists we
1177		 *       provide an argument length for really long arguments,
1178		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1179		 *       to use strncpy_from_user() to obtain this value for
1180		 *       recording in the log, although we don't use it
1181		 *       anywhere here to avoid a double-fetch problem */
1182		if (len_full == 0)
1183			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1184
1185		/* read more data from userspace */
1186		if (require_data) {
1187			/* can we make more room in the buffer? */
1188			if (buf != buf_head) {
1189				memmove(buf_head, buf, len_buf);
1190				buf = buf_head;
1191			}
1192
1193			/* fetch as much as we can of the argument */
1194			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1195						    len_max - len_buf);
1196			if (len_tmp == -EFAULT) {
1197				/* unable to copy from userspace */
1198				send_sig(SIGKILL, current, 0);
1199				goto out;
1200			} else if (len_tmp == (len_max - len_buf)) {
1201				/* buffer is not large enough */
1202				require_data = true;
1203				/* NOTE: if we are going to span multiple
1204				 *       buffers force the encoding so we stand
1205				 *       a chance at a sane len_full value and
1206				 *       consistent record encoding */
1207				encode = true;
1208				len_full = len_full * 2;
1209				p += len_tmp;
1210			} else {
1211				require_data = false;
1212				if (!encode)
1213					encode = audit_string_contains_control(
1214								buf, len_tmp);
1215				/* try to use a trusted value for len_full */
1216				if (len_full < len_max)
1217					len_full = (encode ?
1218						    len_tmp * 2 : len_tmp);
1219				p += len_tmp + 1;
1220			}
1221			len_buf += len_tmp;
1222			buf_head[len_buf] = '\0';
1223
1224			/* length of the buffer in the audit record? */
1225			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226		}
1227
1228		/* write as much as we can to the audit log */
1229		if (len_buf >= 0) {
1230			/* NOTE: some magic numbers here - basically if we
1231			 *       can't fit a reasonable amount of data into the
1232			 *       existing audit buffer, flush it and start with
1233			 *       a new buffer */
1234			if ((sizeof(abuf) + 8) > len_rem) {
1235				len_rem = len_max;
1236				audit_log_end(*ab);
1237				*ab = audit_log_start(context,
1238						      GFP_KERNEL, AUDIT_EXECVE);
1239				if (!*ab)
1240					goto out;
1241			}
1242
1243			/* create the non-arg portion of the arg record */
1244			len_tmp = 0;
1245			if (require_data || (iter > 0) ||
1246			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1247				if (iter == 0) {
1248					len_tmp += snprintf(&abuf[len_tmp],
1249							sizeof(abuf) - len_tmp,
1250							" a%d_len=%lu",
1251							arg, len_full);
1252				}
1253				len_tmp += snprintf(&abuf[len_tmp],
1254						    sizeof(abuf) - len_tmp,
1255						    " a%d[%d]=", arg, iter++);
1256			} else
1257				len_tmp += snprintf(&abuf[len_tmp],
1258						    sizeof(abuf) - len_tmp,
1259						    " a%d=", arg);
1260			WARN_ON(len_tmp >= sizeof(abuf));
1261			abuf[sizeof(abuf) - 1] = '\0';
1262
1263			/* log the arg in the audit record */
1264			audit_log_format(*ab, "%s", abuf);
1265			len_rem -= len_tmp;
1266			len_tmp = len_buf;
1267			if (encode) {
1268				if (len_abuf > len_rem)
1269					len_tmp = len_rem / 2; /* encoding */
1270				audit_log_n_hex(*ab, buf, len_tmp);
1271				len_rem -= len_tmp * 2;
1272				len_abuf -= len_tmp * 2;
1273			} else {
1274				if (len_abuf > len_rem)
1275					len_tmp = len_rem - 2; /* quotes */
1276				audit_log_n_string(*ab, buf, len_tmp);
1277				len_rem -= len_tmp + 2;
1278				/* don't subtract the "2" because we still need
1279				 * to add quotes to the remaining string */
1280				len_abuf -= len_tmp;
1281			}
1282			len_buf -= len_tmp;
1283			buf += len_tmp;
1284		}
1285
1286		/* ready to move to the next argument? */
1287		if ((len_buf == 0) && !require_data) {
1288			arg++;
1289			iter = 0;
1290			len_full = 0;
1291			require_data = true;
1292			encode = false;
1293		}
1294	} while (arg < context->execve.argc);
 
 
 
 
1295
1296	/* NOTE: the caller handles the final audit_log_end() call */
 
 
 
 
 
 
 
 
 
 
 
 
1297
1298out:
1299	kfree(buf_head);
 
 
 
 
 
 
1300}
1301
1302static void audit_log_cap(struct audit_buffer *ab, char *prefix,
1303			  kernel_cap_t *cap)
1304{
1305	if (cap_isclear(*cap)) {
1306		audit_log_format(ab, " %s=0", prefix);
1307		return;
 
 
1308	}
1309	audit_log_format(ab, " %s=%016llx", prefix, cap->val);
1310}
1311
1312static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1313{
1314	if (name->fcap_ver == -1) {
1315		audit_log_format(ab, " cap_fe=? cap_fver=? cap_fp=? cap_fi=?");
1316		return;
1317	}
1318	audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
1319	audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
1320	audit_log_format(ab, " cap_fe=%d cap_fver=%x cap_frootid=%d",
1321			 name->fcap.fE, name->fcap_ver,
1322			 from_kuid(&init_user_ns, name->fcap.rootid));
1323}
1324
1325static void audit_log_time(struct audit_context *context, struct audit_buffer **ab)
1326{
1327	const struct audit_ntp_data *ntp = &context->time.ntp_data;
1328	const struct timespec64 *tk = &context->time.tk_injoffset;
1329	static const char * const ntp_name[] = {
1330		"offset",
1331		"freq",
1332		"status",
1333		"tai",
1334		"tick",
1335		"adjust",
1336	};
1337	int type;
1338
1339	if (context->type == AUDIT_TIME_ADJNTPVAL) {
1340		for (type = 0; type < AUDIT_NTP_NVALS; type++) {
1341			if (ntp->vals[type].newval != ntp->vals[type].oldval) {
1342				if (!*ab) {
1343					*ab = audit_log_start(context,
1344							GFP_KERNEL,
1345							AUDIT_TIME_ADJNTPVAL);
1346					if (!*ab)
1347						return;
1348				}
1349				audit_log_format(*ab, "op=%s old=%lli new=%lli",
1350						 ntp_name[type],
1351						 ntp->vals[type].oldval,
1352						 ntp->vals[type].newval);
1353				audit_log_end(*ab);
1354				*ab = NULL;
1355			}
1356		}
1357	}
1358	if (tk->tv_sec != 0 || tk->tv_nsec != 0) {
1359		if (!*ab) {
1360			*ab = audit_log_start(context, GFP_KERNEL,
1361					      AUDIT_TIME_INJOFFSET);
1362			if (!*ab)
1363				return;
1364		}
1365		audit_log_format(*ab, "sec=%lli nsec=%li",
1366				 (long long)tk->tv_sec, tk->tv_nsec);
1367		audit_log_end(*ab);
1368		*ab = NULL;
1369	}
 
 
 
1370}
1371
1372static void show_special(struct audit_context *context, int *call_panic)
1373{
1374	struct audit_buffer *ab;
1375	int i;
1376
1377	ab = audit_log_start(context, GFP_KERNEL, context->type);
1378	if (!ab)
1379		return;
1380
1381	switch (context->type) {
1382	case AUDIT_SOCKETCALL: {
1383		int nargs = context->socketcall.nargs;
1384
1385		audit_log_format(ab, "nargs=%d", nargs);
1386		for (i = 0; i < nargs; i++)
1387			audit_log_format(ab, " a%d=%lx", i,
1388				context->socketcall.args[i]);
1389		break; }
1390	case AUDIT_IPC:
1391		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1392				 from_kuid(&init_user_ns, context->ipc.uid),
1393				 from_kgid(&init_user_ns, context->ipc.gid),
1394				 context->ipc.mode);
1395		if (lsmprop_is_set(&context->ipc.oprop)) {
1396			char *ctx = NULL;
1397			u32 len;
1398
1399			if (security_lsmprop_to_secctx(&context->ipc.oprop,
1400						       &ctx, &len)) {
1401				*call_panic = 1;
1402			} else {
1403				audit_log_format(ab, " obj=%s", ctx);
1404				security_release_secctx(ctx, len);
1405			}
1406		}
1407		if (context->ipc.has_perm) {
1408			audit_log_end(ab);
1409			ab = audit_log_start(context, GFP_KERNEL,
1410					     AUDIT_IPC_SET_PERM);
1411			if (unlikely(!ab))
1412				return;
1413			audit_log_format(ab,
1414				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1415				context->ipc.qbytes,
1416				context->ipc.perm_uid,
1417				context->ipc.perm_gid,
1418				context->ipc.perm_mode);
 
 
1419		}
1420		break;
1421	case AUDIT_MQ_OPEN:
1422		audit_log_format(ab,
1423			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1424			"mq_msgsize=%ld mq_curmsgs=%ld",
1425			context->mq_open.oflag, context->mq_open.mode,
1426			context->mq_open.attr.mq_flags,
1427			context->mq_open.attr.mq_maxmsg,
1428			context->mq_open.attr.mq_msgsize,
1429			context->mq_open.attr.mq_curmsgs);
1430		break;
1431	case AUDIT_MQ_SENDRECV:
1432		audit_log_format(ab,
1433			"mqdes=%d msg_len=%zd msg_prio=%u "
1434			"abs_timeout_sec=%lld abs_timeout_nsec=%ld",
1435			context->mq_sendrecv.mqdes,
1436			context->mq_sendrecv.msg_len,
1437			context->mq_sendrecv.msg_prio,
1438			(long long) context->mq_sendrecv.abs_timeout.tv_sec,
1439			context->mq_sendrecv.abs_timeout.tv_nsec);
1440		break;
1441	case AUDIT_MQ_NOTIFY:
1442		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1443				context->mq_notify.mqdes,
1444				context->mq_notify.sigev_signo);
1445		break;
1446	case AUDIT_MQ_GETSETATTR: {
1447		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1448
1449		audit_log_format(ab,
1450			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1451			"mq_curmsgs=%ld ",
1452			context->mq_getsetattr.mqdes,
1453			attr->mq_flags, attr->mq_maxmsg,
1454			attr->mq_msgsize, attr->mq_curmsgs);
1455		break; }
1456	case AUDIT_CAPSET:
1457		audit_log_format(ab, "pid=%d", context->capset.pid);
1458		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1459		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1460		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1461		audit_log_cap(ab, "cap_pa", &context->capset.cap.ambient);
1462		break;
1463	case AUDIT_MMAP:
1464		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1465				 context->mmap.flags);
1466		break;
1467	case AUDIT_OPENAT2:
1468		audit_log_format(ab, "oflag=0%llo mode=0%llo resolve=0x%llx",
1469				 context->openat2.flags,
1470				 context->openat2.mode,
1471				 context->openat2.resolve);
1472		break;
1473	case AUDIT_EXECVE:
1474		audit_log_execve_info(context, &ab);
1475		break;
1476	case AUDIT_KERN_MODULE:
1477		audit_log_format(ab, "name=");
1478		if (context->module.name) {
1479			audit_log_untrustedstring(ab, context->module.name);
1480		} else
1481			audit_log_format(ab, "(null)");
1482
1483		break;
1484	case AUDIT_TIME_ADJNTPVAL:
1485	case AUDIT_TIME_INJOFFSET:
1486		/* this call deviates from the rest, eating the buffer */
1487		audit_log_time(context, &ab);
1488		break;
1489	}
1490	audit_log_end(ab);
1491}
1492
1493static inline int audit_proctitle_rtrim(char *proctitle, int len)
1494{
1495	char *end = proctitle + len - 1;
1496
1497	while (end > proctitle && !isprint(*end))
1498		end--;
1499
1500	/* catch the case where proctitle is only 1 non-print character */
1501	len = end - proctitle + 1;
1502	len -= isprint(proctitle[len-1]) == 0;
1503	return len;
1504}
1505
1506/*
1507 * audit_log_name - produce AUDIT_PATH record from struct audit_names
1508 * @context: audit_context for the task
1509 * @n: audit_names structure with reportable details
1510 * @path: optional path to report instead of audit_names->name
1511 * @record_num: record number to report when handling a list of names
1512 * @call_panic: optional pointer to int that will be updated if secid fails
1513 */
1514static void audit_log_name(struct audit_context *context, struct audit_names *n,
1515		    const struct path *path, int record_num, int *call_panic)
1516{
 
 
1517	struct audit_buffer *ab;
 
 
1518
1519	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1520	if (!ab)
1521		return;
1522
1523	audit_log_format(ab, "item=%d", record_num);
1524
1525	if (path)
1526		audit_log_d_path(ab, " name=", path);
1527	else if (n->name) {
1528		switch (n->name_len) {
1529		case AUDIT_NAME_FULL:
1530			/* log the full path */
1531			audit_log_format(ab, " name=");
1532			audit_log_untrustedstring(ab, n->name->name);
1533			break;
1534		case 0:
1535			/* name was specified as a relative path and the
1536			 * directory component is the cwd
1537			 */
1538			if (context->pwd.dentry && context->pwd.mnt)
1539				audit_log_d_path(ab, " name=", &context->pwd);
1540			else
1541				audit_log_format(ab, " name=(null)");
1542			break;
1543		default:
1544			/* log the name's directory component */
1545			audit_log_format(ab, " name=");
1546			audit_log_n_untrustedstring(ab, n->name->name,
1547						    n->name_len);
1548		}
1549	} else
1550		audit_log_format(ab, " name=(null)");
1551
1552	if (n->ino != AUDIT_INO_UNSET)
1553		audit_log_format(ab, " inode=%lu dev=%02x:%02x mode=%#ho ouid=%u ogid=%u rdev=%02x:%02x",
1554				 n->ino,
1555				 MAJOR(n->dev),
1556				 MINOR(n->dev),
1557				 n->mode,
1558				 from_kuid(&init_user_ns, n->uid),
1559				 from_kgid(&init_user_ns, n->gid),
1560				 MAJOR(n->rdev),
1561				 MINOR(n->rdev));
1562	if (lsmprop_is_set(&n->oprop)) {
1563		char *ctx = NULL;
1564		u32 len;
1565
1566		if (security_lsmprop_to_secctx(&n->oprop, &ctx, &len)) {
1567			if (call_panic)
1568				*call_panic = 2;
1569		} else {
1570			audit_log_format(ab, " obj=%s", ctx);
1571			security_release_secctx(ctx, len);
1572		}
1573	}
1574
1575	/* log the audit_names record type */
1576	switch (n->type) {
1577	case AUDIT_TYPE_NORMAL:
1578		audit_log_format(ab, " nametype=NORMAL");
1579		break;
1580	case AUDIT_TYPE_PARENT:
1581		audit_log_format(ab, " nametype=PARENT");
1582		break;
1583	case AUDIT_TYPE_CHILD_DELETE:
1584		audit_log_format(ab, " nametype=DELETE");
1585		break;
1586	case AUDIT_TYPE_CHILD_CREATE:
1587		audit_log_format(ab, " nametype=CREATE");
1588		break;
1589	default:
1590		audit_log_format(ab, " nametype=UNKNOWN");
1591		break;
1592	}
1593
1594	audit_log_fcaps(ab, n);
1595	audit_log_end(ab);
1596}
1597
1598static void audit_log_proctitle(void)
1599{
1600	int res;
1601	char *buf;
1602	char *msg = "(null)";
1603	int len = strlen(msg);
1604	struct audit_context *context = audit_context();
1605	struct audit_buffer *ab;
1606
1607	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1608	if (!ab)
1609		return;	/* audit_panic or being filtered */
1610
1611	audit_log_format(ab, "proctitle=");
1612
1613	/* Not  cached */
1614	if (!context->proctitle.value) {
1615		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1616		if (!buf)
1617			goto out;
1618		/* Historically called this from procfs naming */
1619		res = get_cmdline(current, buf, MAX_PROCTITLE_AUDIT_LEN);
1620		if (res == 0) {
1621			kfree(buf);
1622			goto out;
1623		}
1624		res = audit_proctitle_rtrim(buf, res);
1625		if (res == 0) {
1626			kfree(buf);
1627			goto out;
1628		}
1629		context->proctitle.value = buf;
1630		context->proctitle.len = res;
1631	}
1632	msg = context->proctitle.value;
1633	len = context->proctitle.len;
1634out:
1635	audit_log_n_untrustedstring(ab, msg, len);
1636	audit_log_end(ab);
1637}
1638
1639/**
1640 * audit_log_uring - generate a AUDIT_URINGOP record
1641 * @ctx: the audit context
1642 */
1643static void audit_log_uring(struct audit_context *ctx)
1644{
1645	struct audit_buffer *ab;
1646	const struct cred *cred;
1647
1648	ab = audit_log_start(ctx, GFP_ATOMIC, AUDIT_URINGOP);
1649	if (!ab)
1650		return;
1651	cred = current_cred();
1652	audit_log_format(ab, "uring_op=%d", ctx->uring_op);
1653	if (ctx->return_valid != AUDITSC_INVALID)
1654		audit_log_format(ab, " success=%s exit=%ld",
1655				 str_yes_no(ctx->return_valid ==
1656					    AUDITSC_SUCCESS),
1657				 ctx->return_code);
1658	audit_log_format(ab,
1659			 " items=%d"
1660			 " ppid=%d pid=%d uid=%u gid=%u euid=%u suid=%u"
1661			 " fsuid=%u egid=%u sgid=%u fsgid=%u",
1662			 ctx->name_count,
1663			 task_ppid_nr(current), task_tgid_nr(current),
1664			 from_kuid(&init_user_ns, cred->uid),
1665			 from_kgid(&init_user_ns, cred->gid),
1666			 from_kuid(&init_user_ns, cred->euid),
1667			 from_kuid(&init_user_ns, cred->suid),
1668			 from_kuid(&init_user_ns, cred->fsuid),
1669			 from_kgid(&init_user_ns, cred->egid),
1670			 from_kgid(&init_user_ns, cred->sgid),
1671			 from_kgid(&init_user_ns, cred->fsgid));
1672	audit_log_task_context(ab);
1673	audit_log_key(ab, ctx->filterkey);
1674	audit_log_end(ab);
1675}
1676
1677static void audit_log_exit(void)
1678{
1679	int i, call_panic = 0;
1680	struct audit_context *context = audit_context();
1681	struct audit_buffer *ab;
1682	struct audit_aux_data *aux;
1683	struct audit_names *n;
1684
1685	context->personality = current->personality;
1686
1687	switch (context->context) {
1688	case AUDIT_CTX_SYSCALL:
1689		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1690		if (!ab)
1691			return;
1692		audit_log_format(ab, "arch=%x syscall=%d",
1693				 context->arch, context->major);
1694		if (context->personality != PER_LINUX)
1695			audit_log_format(ab, " per=%lx", context->personality);
1696		if (context->return_valid != AUDITSC_INVALID)
1697			audit_log_format(ab, " success=%s exit=%ld",
1698					 str_yes_no(context->return_valid ==
1699						    AUDITSC_SUCCESS),
1700					 context->return_code);
1701		audit_log_format(ab,
1702				 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1703				 context->argv[0],
1704				 context->argv[1],
1705				 context->argv[2],
1706				 context->argv[3],
1707				 context->name_count);
1708		audit_log_task_info(ab);
1709		audit_log_key(ab, context->filterkey);
1710		audit_log_end(ab);
1711		break;
1712	case AUDIT_CTX_URING:
1713		audit_log_uring(context);
1714		break;
1715	default:
1716		BUG();
1717		break;
1718	}
1719
1720	for (aux = context->aux; aux; aux = aux->next) {
1721
1722		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1723		if (!ab)
1724			continue; /* audit_panic has been called */
1725
1726		switch (aux->type) {
1727
 
 
 
 
 
1728		case AUDIT_BPRM_FCAPS: {
1729			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1730
1731			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1732			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1733			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1734			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1735			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1736			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1737			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1738			audit_log_cap(ab, "old_pa", &axs->old_pcap.ambient);
1739			audit_log_cap(ab, "pp", &axs->new_pcap.permitted);
1740			audit_log_cap(ab, "pi", &axs->new_pcap.inheritable);
1741			audit_log_cap(ab, "pe", &axs->new_pcap.effective);
1742			audit_log_cap(ab, "pa", &axs->new_pcap.ambient);
1743			audit_log_format(ab, " frootid=%d",
1744					 from_kuid(&init_user_ns,
1745						   axs->fcap.rootid));
1746			break; }
1747
1748		}
1749		audit_log_end(ab);
1750	}
1751
1752	if (context->type)
1753		show_special(context, &call_panic);
1754
1755	if (context->fds[0] >= 0) {
1756		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1757		if (ab) {
1758			audit_log_format(ab, "fd0=%d fd1=%d",
1759					context->fds[0], context->fds[1]);
1760			audit_log_end(ab);
1761		}
1762	}
1763
1764	if (context->sockaddr_len) {
1765		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1766		if (ab) {
1767			audit_log_format(ab, "saddr=");
1768			audit_log_n_hex(ab, (void *)context->sockaddr,
1769					context->sockaddr_len);
1770			audit_log_end(ab);
1771		}
1772	}
1773
1774	for (aux = context->aux_pids; aux; aux = aux->next) {
1775		struct audit_aux_data_pids *axs = (void *)aux;
1776
1777		for (i = 0; i < axs->pid_count; i++)
1778			if (audit_log_pid_context(context, axs->target_pid[i],
1779						  axs->target_auid[i],
1780						  axs->target_uid[i],
1781						  axs->target_sessionid[i],
1782						  &axs->target_ref[i],
1783						  axs->target_comm[i]))
1784				call_panic = 1;
1785	}
1786
1787	if (context->target_pid &&
1788	    audit_log_pid_context(context, context->target_pid,
1789				  context->target_auid, context->target_uid,
1790				  context->target_sessionid,
1791				  &context->target_ref, context->target_comm))
1792			call_panic = 1;
1793
1794	if (context->pwd.dentry && context->pwd.mnt) {
1795		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1796		if (ab) {
1797			audit_log_d_path(ab, "cwd=", &context->pwd);
1798			audit_log_end(ab);
1799		}
1800	}
 
 
1801
1802	i = 0;
1803	list_for_each_entry(n, &context->names_list, list) {
1804		if (n->hidden)
1805			continue;
1806		audit_log_name(context, n, NULL, i++, &call_panic);
1807	}
1808
1809	if (context->context == AUDIT_CTX_SYSCALL)
1810		audit_log_proctitle();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811
1812	/* Send end of event record to help user space know we are finished */
1813	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1814	if (ab)
1815		audit_log_end(ab);
1816	if (call_panic)
1817		audit_panic("error in audit_log_exit()");
1818}
1819
1820/**
1821 * __audit_free - free a per-task audit context
1822 * @tsk: task whose audit context block to free
1823 *
1824 * Called from copy_process, do_exit, and the io_uring code
1825 */
1826void __audit_free(struct task_struct *tsk)
1827{
1828	struct audit_context *context = tsk->audit_context;
1829
1830	if (!context)
 
1831		return;
1832
1833	/* this may generate CONFIG_CHANGE records */
 
 
 
 
 
 
1834	if (!list_empty(&context->killed_trees))
1835		audit_kill_trees(context);
1836
1837	/* We are called either by do_exit() or the fork() error handling code;
1838	 * in the former case tsk == current and in the latter tsk is a
1839	 * random task_struct that doesn't have any meaningful data we
1840	 * need to log via audit_log_exit().
1841	 */
1842	if (tsk == current && !context->dummy) {
1843		context->return_valid = AUDITSC_INVALID;
1844		context->return_code = 0;
1845		if (context->context == AUDIT_CTX_SYSCALL) {
1846			audit_filter_syscall(tsk, context);
1847			audit_filter_inodes(tsk, context);
1848			if (context->current_state == AUDIT_STATE_RECORD)
1849				audit_log_exit();
1850		} else if (context->context == AUDIT_CTX_URING) {
1851			/* TODO: verify this case is real and valid */
1852			audit_filter_uring(tsk, context);
1853			audit_filter_inodes(tsk, context);
1854			if (context->current_state == AUDIT_STATE_RECORD)
1855				audit_log_uring(context);
1856		}
1857	}
1858
1859	audit_set_context(tsk, NULL);
1860	audit_free_context(context);
1861}
1862
1863/**
1864 * audit_return_fixup - fixup the return codes in the audit_context
1865 * @ctx: the audit_context
1866 * @success: true/false value to indicate if the operation succeeded or not
1867 * @code: operation return code
1868 *
1869 * We need to fixup the return code in the audit logs if the actual return
1870 * codes are later going to be fixed by the arch specific signal handlers.
1871 */
1872static void audit_return_fixup(struct audit_context *ctx,
1873			       int success, long code)
1874{
1875	/*
1876	 * This is actually a test for:
1877	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
1878	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
1879	 *
1880	 * but is faster than a bunch of ||
1881	 */
1882	if (unlikely(code <= -ERESTARTSYS) &&
1883	    (code >= -ERESTART_RESTARTBLOCK) &&
1884	    (code != -ENOIOCTLCMD))
1885		ctx->return_code = -EINTR;
1886	else
1887		ctx->return_code  = code;
1888	ctx->return_valid = (success ? AUDITSC_SUCCESS : AUDITSC_FAILURE);
1889}
1890
1891/**
1892 * __audit_uring_entry - prepare the kernel task's audit context for io_uring
1893 * @op: the io_uring opcode
1894 *
1895 * This is similar to audit_syscall_entry() but is intended for use by io_uring
1896 * operations.  This function should only ever be called from
1897 * audit_uring_entry() as we rely on the audit context checking present in that
1898 * function.
1899 */
1900void __audit_uring_entry(u8 op)
1901{
1902	struct audit_context *ctx = audit_context();
1903
1904	if (ctx->state == AUDIT_STATE_DISABLED)
1905		return;
1906
1907	/*
1908	 * NOTE: It's possible that we can be called from the process' context
1909	 *       before it returns to userspace, and before audit_syscall_exit()
1910	 *       is called.  In this case there is not much to do, just record
1911	 *       the io_uring details and return.
1912	 */
1913	ctx->uring_op = op;
1914	if (ctx->context == AUDIT_CTX_SYSCALL)
1915		return;
1916
1917	ctx->dummy = !audit_n_rules;
1918	if (!ctx->dummy && ctx->state == AUDIT_STATE_BUILD)
1919		ctx->prio = 0;
1920
1921	ctx->context = AUDIT_CTX_URING;
1922	ctx->current_state = ctx->state;
1923	ktime_get_coarse_real_ts64(&ctx->ctime);
1924}
1925
1926/**
1927 * __audit_uring_exit - wrap up the kernel task's audit context after io_uring
1928 * @success: true/false value to indicate if the operation succeeded or not
1929 * @code: operation return code
1930 *
1931 * This is similar to audit_syscall_exit() but is intended for use by io_uring
1932 * operations.  This function should only ever be called from
1933 * audit_uring_exit() as we rely on the audit context checking present in that
1934 * function.
1935 */
1936void __audit_uring_exit(int success, long code)
1937{
1938	struct audit_context *ctx = audit_context();
1939
1940	if (ctx->dummy) {
1941		if (ctx->context != AUDIT_CTX_URING)
1942			return;
1943		goto out;
1944	}
1945
1946	audit_return_fixup(ctx, success, code);
1947	if (ctx->context == AUDIT_CTX_SYSCALL) {
1948		/*
1949		 * NOTE: See the note in __audit_uring_entry() about the case
1950		 *       where we may be called from process context before we
1951		 *       return to userspace via audit_syscall_exit().  In this
1952		 *       case we simply emit a URINGOP record and bail, the
1953		 *       normal syscall exit handling will take care of
1954		 *       everything else.
1955		 *       It is also worth mentioning that when we are called,
1956		 *       the current process creds may differ from the creds
1957		 *       used during the normal syscall processing; keep that
1958		 *       in mind if/when we move the record generation code.
1959		 */
1960
1961		/*
1962		 * We need to filter on the syscall info here to decide if we
1963		 * should emit a URINGOP record.  I know it seems odd but this
1964		 * solves the problem where users have a filter to block *all*
1965		 * syscall records in the "exit" filter; we want to preserve
1966		 * the behavior here.
1967		 */
1968		audit_filter_syscall(current, ctx);
1969		if (ctx->current_state != AUDIT_STATE_RECORD)
1970			audit_filter_uring(current, ctx);
1971		audit_filter_inodes(current, ctx);
1972		if (ctx->current_state != AUDIT_STATE_RECORD)
1973			return;
1974
1975		audit_log_uring(ctx);
1976		return;
1977	}
1978
1979	/* this may generate CONFIG_CHANGE records */
1980	if (!list_empty(&ctx->killed_trees))
1981		audit_kill_trees(ctx);
1982
1983	/* run through both filters to ensure we set the filterkey properly */
1984	audit_filter_uring(current, ctx);
1985	audit_filter_inodes(current, ctx);
1986	if (ctx->current_state != AUDIT_STATE_RECORD)
1987		goto out;
1988	audit_log_exit();
1989
1990out:
1991	audit_reset_context(ctx);
1992}
1993
1994/**
1995 * __audit_syscall_entry - fill in an audit record at syscall entry
1996 * @major: major syscall type (function)
1997 * @a1: additional syscall register 1
1998 * @a2: additional syscall register 2
1999 * @a3: additional syscall register 3
2000 * @a4: additional syscall register 4
2001 *
2002 * Fill in audit context at syscall entry.  This only happens if the
2003 * audit context was created when the task was created and the state or
2004 * filters demand the audit context be built.  If the state from the
2005 * per-task filter or from the per-syscall filter is AUDIT_STATE_RECORD,
2006 * then the record will be written at syscall exit time (otherwise, it
2007 * will only be written if another part of the kernel requests that it
2008 * be written).
2009 */
2010void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
2011			   unsigned long a3, unsigned long a4)
 
2012{
2013	struct audit_context *context = audit_context();
 
2014	enum audit_state     state;
2015
2016	if (!audit_enabled || !context)
2017		return;
2018
2019	WARN_ON(context->context != AUDIT_CTX_UNUSED);
2020	WARN_ON(context->name_count);
2021	if (context->context != AUDIT_CTX_UNUSED || context->name_count) {
2022		audit_panic("unrecoverable error in audit_syscall_entry()");
2023		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024	}
 
2025
2026	state = context->state;
2027	if (state == AUDIT_STATE_DISABLED)
2028		return;
2029
2030	context->dummy = !audit_n_rules;
2031	if (!context->dummy && state == AUDIT_STATE_BUILD) {
2032		context->prio = 0;
2033		if (auditd_test_task(current))
2034			return;
2035	}
2036
2037	context->arch	    = syscall_get_arch(current);
2038	context->major      = major;
2039	context->argv[0]    = a1;
2040	context->argv[1]    = a2;
2041	context->argv[2]    = a3;
2042	context->argv[3]    = a4;
2043	context->context = AUDIT_CTX_SYSCALL;
 
 
 
 
 
 
 
 
 
 
 
 
2044	context->current_state  = state;
2045	ktime_get_coarse_real_ts64(&context->ctime);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2046}
2047
2048/**
2049 * __audit_syscall_exit - deallocate audit context after a system call
2050 * @success: success value of the syscall
2051 * @return_code: return value of the syscall
2052 *
2053 * Tear down after system call.  If the audit context has been marked as
2054 * auditable (either because of the AUDIT_STATE_RECORD state from
2055 * filtering, or because some other part of the kernel wrote an audit
2056 * message), then write out the syscall information.  In call cases,
2057 * free the names stored from getname().
2058 */
2059void __audit_syscall_exit(int success, long return_code)
2060{
2061	struct audit_context *context = audit_context();
 
2062
2063	if (!context || context->dummy ||
2064	    context->context != AUDIT_CTX_SYSCALL)
2065		goto out;
2066
2067	/* this may generate CONFIG_CHANGE records */
2068	if (!list_empty(&context->killed_trees))
2069		audit_kill_trees(context);
2070
2071	audit_return_fixup(context, success, return_code);
2072	/* run through both filters to ensure we set the filterkey properly */
2073	audit_filter_syscall(current, context);
2074	audit_filter_inodes(current, context);
2075	if (context->current_state != AUDIT_STATE_RECORD)
2076		goto out;
2077
2078	audit_log_exit();
 
 
 
 
2079
2080out:
2081	audit_reset_context(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2082}
2083
2084static inline void handle_one(const struct inode *inode)
2085{
 
2086	struct audit_context *context;
2087	struct audit_tree_refs *p;
2088	struct audit_chunk *chunk;
2089	int count;
2090
2091	if (likely(!inode->i_fsnotify_marks))
2092		return;
2093	context = audit_context();
2094	p = context->trees;
2095	count = context->tree_count;
2096	rcu_read_lock();
2097	chunk = audit_tree_lookup(inode);
2098	rcu_read_unlock();
2099	if (!chunk)
2100		return;
2101	if (likely(put_tree_ref(context, chunk)))
2102		return;
2103	if (unlikely(!grow_tree_refs(context))) {
2104		pr_warn("out of memory, audit has lost a tree reference\n");
2105		audit_set_auditable(context);
2106		audit_put_chunk(chunk);
2107		unroll_tree_refs(context, p, count);
2108		return;
2109	}
2110	put_tree_ref(context, chunk);
 
2111}
2112
2113static void handle_path(const struct dentry *dentry)
2114{
 
2115	struct audit_context *context;
2116	struct audit_tree_refs *p;
2117	const struct dentry *d, *parent;
2118	struct audit_chunk *drop;
2119	unsigned long seq;
2120	int count;
2121
2122	context = audit_context();
2123	p = context->trees;
2124	count = context->tree_count;
2125retry:
2126	drop = NULL;
2127	d = dentry;
2128	rcu_read_lock();
2129	seq = read_seqbegin(&rename_lock);
2130	for (;;) {
2131		struct inode *inode = d_backing_inode(d);
2132
2133		if (inode && unlikely(inode->i_fsnotify_marks)) {
2134			struct audit_chunk *chunk;
2135
2136			chunk = audit_tree_lookup(inode);
2137			if (chunk) {
2138				if (unlikely(!put_tree_ref(context, chunk))) {
2139					drop = chunk;
2140					break;
2141				}
2142			}
2143		}
2144		parent = d->d_parent;
2145		if (parent == d)
2146			break;
2147		d = parent;
2148	}
2149	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
2150		rcu_read_unlock();
2151		if (!drop) {
2152			/* just a race with rename */
2153			unroll_tree_refs(context, p, count);
2154			goto retry;
2155		}
2156		audit_put_chunk(drop);
2157		if (grow_tree_refs(context)) {
2158			/* OK, got more space */
2159			unroll_tree_refs(context, p, count);
2160			goto retry;
2161		}
2162		/* too bad */
2163		pr_warn("out of memory, audit has lost a tree reference\n");
 
2164		unroll_tree_refs(context, p, count);
2165		audit_set_auditable(context);
2166		return;
2167	}
2168	rcu_read_unlock();
2169}
2170
2171static struct audit_names *audit_alloc_name(struct audit_context *context,
2172						unsigned char type)
2173{
2174	struct audit_names *aname;
2175
2176	if (context->name_count < AUDIT_NAMES) {
2177		aname = &context->preallocated_names[context->name_count];
2178		memset(aname, 0, sizeof(*aname));
2179	} else {
2180		aname = kzalloc(sizeof(*aname), GFP_NOFS);
2181		if (!aname)
2182			return NULL;
2183		aname->should_free = true;
2184	}
2185
2186	aname->ino = AUDIT_INO_UNSET;
2187	aname->type = type;
2188	list_add_tail(&aname->list, &context->names_list);
2189
2190	context->name_count++;
2191	if (!context->pwd.dentry)
2192		get_fs_pwd(current->fs, &context->pwd);
2193	return aname;
2194}
2195
2196/**
2197 * __audit_reusename - fill out filename with info from existing entry
2198 * @uptr: userland ptr to pathname
2199 *
2200 * Search the audit_names list for the current audit context. If there is an
2201 * existing entry with a matching "uptr" then return the filename
2202 * associated with that audit_name. If not, return NULL.
2203 */
2204struct filename *
2205__audit_reusename(const __user char *uptr)
2206{
2207	struct audit_context *context = audit_context();
2208	struct audit_names *n;
2209
2210	list_for_each_entry(n, &context->names_list, list) {
2211		if (!n->name)
2212			continue;
2213		if (n->name->uptr == uptr) {
2214			atomic_inc(&n->name->refcnt);
2215			return n->name;
2216		}
2217	}
2218	return NULL;
2219}
2220
2221/**
2222 * __audit_getname - add a name to the list
2223 * @name: name to add
2224 *
2225 * Add a name to the list of audit names for this context.
2226 * Called from fs/namei.c:getname().
2227 */
2228void __audit_getname(struct filename *name)
2229{
2230	struct audit_context *context = audit_context();
2231	struct audit_names *n;
2232
2233	if (context->context == AUDIT_CTX_UNUSED)
2234		return;
2235
2236	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2237	if (!n)
 
 
 
 
2238		return;
 
 
 
 
 
 
 
 
 
 
 
2239
2240	n->name = name;
2241	n->name_len = AUDIT_NAME_FULL;
2242	name->aname = n;
2243	atomic_inc(&name->refcnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2244}
2245
2246static inline int audit_copy_fcaps(struct audit_names *name,
2247				   const struct dentry *dentry)
2248{
2249	struct cpu_vfs_cap_data caps;
2250	int rc;
2251
 
 
 
 
 
2252	if (!dentry)
2253		return 0;
2254
2255	rc = get_vfs_caps_from_disk(&nop_mnt_idmap, dentry, &caps);
2256	if (rc)
2257		return rc;
2258
2259	name->fcap.permitted = caps.permitted;
2260	name->fcap.inheritable = caps.inheritable;
2261	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2262	name->fcap.rootid = caps.rootid;
2263	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2264				VFS_CAP_REVISION_SHIFT;
2265
2266	return 0;
2267}
2268
 
2269/* Copy inode data into an audit_names. */
2270static void audit_copy_inode(struct audit_names *name,
2271			     const struct dentry *dentry,
2272			     struct inode *inode, unsigned int flags)
2273{
2274	name->ino   = inode->i_ino;
2275	name->dev   = inode->i_sb->s_dev;
2276	name->mode  = inode->i_mode;
2277	name->uid   = inode->i_uid;
2278	name->gid   = inode->i_gid;
2279	name->rdev  = inode->i_rdev;
2280	security_inode_getlsmprop(inode, &name->oprop);
2281	if (flags & AUDIT_INODE_NOEVAL) {
2282		name->fcap_ver = -1;
2283		return;
2284	}
2285	audit_copy_fcaps(name, dentry);
2286}
2287
2288/**
2289 * __audit_inode - store the inode and device from a lookup
2290 * @name: name being audited
2291 * @dentry: dentry being audited
2292 * @flags: attributes for this particular entry
 
2293 */
2294void __audit_inode(struct filename *name, const struct dentry *dentry,
2295		   unsigned int flags)
2296{
2297	struct audit_context *context = audit_context();
2298	struct inode *inode = d_backing_inode(dentry);
2299	struct audit_names *n;
2300	bool parent = flags & AUDIT_INODE_PARENT;
2301	struct audit_entry *e;
2302	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2303	int i;
2304
2305	if (context->context == AUDIT_CTX_UNUSED)
2306		return;
2307
2308	rcu_read_lock();
2309	list_for_each_entry_rcu(e, list, list) {
2310		for (i = 0; i < e->rule.field_count; i++) {
2311			struct audit_field *f = &e->rule.fields[i];
2312
2313			if (f->type == AUDIT_FSTYPE
2314			    && audit_comparator(inode->i_sb->s_magic,
2315						f->op, f->val)
2316			    && e->rule.action == AUDIT_NEVER) {
2317				rcu_read_unlock();
2318				return;
2319			}
2320		}
2321	}
2322	rcu_read_unlock();
2323
2324	if (!name)
2325		goto out_alloc;
2326
2327	/*
2328	 * If we have a pointer to an audit_names entry already, then we can
2329	 * just use it directly if the type is correct.
2330	 */
2331	n = name->aname;
2332	if (n) {
2333		if (parent) {
2334			if (n->type == AUDIT_TYPE_PARENT ||
2335			    n->type == AUDIT_TYPE_UNKNOWN)
2336				goto out;
2337		} else {
2338			if (n->type != AUDIT_TYPE_PARENT)
2339				goto out;
2340		}
2341	}
2342
2343	list_for_each_entry_reverse(n, &context->names_list, list) {
2344		if (n->ino) {
2345			/* valid inode number, use that for the comparison */
2346			if (n->ino != inode->i_ino ||
2347			    n->dev != inode->i_sb->s_dev)
2348				continue;
2349		} else if (n->name) {
2350			/* inode number has not been set, check the name */
2351			if (strcmp(n->name->name, name->name))
2352				continue;
2353		} else
2354			/* no inode and no name (?!) ... this is odd ... */
2355			continue;
2356
2357		/* match the correct record type */
2358		if (parent) {
2359			if (n->type == AUDIT_TYPE_PARENT ||
2360			    n->type == AUDIT_TYPE_UNKNOWN)
2361				goto out;
2362		} else {
2363			if (n->type != AUDIT_TYPE_PARENT)
2364				goto out;
2365		}
2366	}
2367
2368out_alloc:
2369	/* unable to find an entry with both a matching name and type */
2370	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
2371	if (!n)
2372		return;
2373	if (name) {
2374		n->name = name;
2375		atomic_inc(&name->refcnt);
2376	}
2377
2378out:
2379	if (parent) {
2380		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
2381		n->type = AUDIT_TYPE_PARENT;
2382		if (flags & AUDIT_INODE_HIDDEN)
2383			n->hidden = true;
2384	} else {
2385		n->name_len = AUDIT_NAME_FULL;
2386		n->type = AUDIT_TYPE_NORMAL;
2387	}
2388	handle_path(dentry);
2389	audit_copy_inode(n, dentry, inode, flags & AUDIT_INODE_NOEVAL);
2390}
2391
2392void __audit_file(const struct file *file)
2393{
2394	__audit_inode(NULL, file->f_path.dentry, 0);
2395}
2396
2397/**
2398 * __audit_inode_child - collect inode info for created/removed objects
2399 * @parent: inode of dentry parent
2400 * @dentry: dentry being audited
2401 * @type:   AUDIT_TYPE_* value that we're looking for
2402 *
2403 * For syscalls that create or remove filesystem objects, audit_inode
2404 * can only collect information for the filesystem object's parent.
2405 * This call updates the audit context with the child's information.
2406 * Syscalls that create a new filesystem object must be hooked after
2407 * the object is created.  Syscalls that remove a filesystem object
2408 * must be hooked prior, in order to capture the target inode during
2409 * unsuccessful attempts.
2410 */
2411void __audit_inode_child(struct inode *parent,
2412			 const struct dentry *dentry,
2413			 const unsigned char type)
2414{
2415	struct audit_context *context = audit_context();
2416	struct inode *inode = d_backing_inode(dentry);
2417	const struct qstr *dname = &dentry->d_name;
2418	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
2419	struct audit_entry *e;
2420	struct list_head *list = &audit_filter_list[AUDIT_FILTER_FS];
2421	int i;
2422
2423	if (context->context == AUDIT_CTX_UNUSED)
2424		return;
2425
2426	rcu_read_lock();
2427	list_for_each_entry_rcu(e, list, list) {
2428		for (i = 0; i < e->rule.field_count; i++) {
2429			struct audit_field *f = &e->rule.fields[i];
2430
2431			if (f->type == AUDIT_FSTYPE
2432			    && audit_comparator(parent->i_sb->s_magic,
2433						f->op, f->val)
2434			    && e->rule.action == AUDIT_NEVER) {
2435				rcu_read_unlock();
2436				return;
2437			}
2438		}
2439	}
2440	rcu_read_unlock();
2441
2442	if (inode)
2443		handle_one(inode);
2444
2445	/* look for a parent entry first */
2446	list_for_each_entry(n, &context->names_list, list) {
2447		if (!n->name ||
2448		    (n->type != AUDIT_TYPE_PARENT &&
2449		     n->type != AUDIT_TYPE_UNKNOWN))
2450			continue;
2451
2452		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
2453		    !audit_compare_dname_path(dname,
2454					      n->name->name, n->name_len)) {
2455			if (n->type == AUDIT_TYPE_UNKNOWN)
2456				n->type = AUDIT_TYPE_PARENT;
2457			found_parent = n;
2458			break;
2459		}
2460	}
2461
2462	cond_resched();
 
 
2463
2464	/* is there a matching child entry? */
2465	list_for_each_entry(n, &context->names_list, list) {
2466		/* can only match entries that have a name */
2467		if (!n->name ||
2468		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
2469			continue;
2470
2471		if (!strcmp(dname->name, n->name->name) ||
2472		    !audit_compare_dname_path(dname, n->name->name,
2473						found_parent ?
2474						found_parent->name_len :
2475						AUDIT_NAME_FULL)) {
2476			if (n->type == AUDIT_TYPE_UNKNOWN)
2477				n->type = type;
2478			found_child = n;
2479			break;
2480		}
2481	}
2482
 
2483	if (!found_parent) {
2484		/* create a new, "anonymous" parent record */
2485		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
2486		if (!n)
2487			return;
2488		audit_copy_inode(n, NULL, parent, 0);
 
 
2489	}
2490
2491	if (!found_child) {
2492		found_child = audit_alloc_name(context, type);
2493		if (!found_child)
2494			return;
 
2495
2496		/* Re-use the name belonging to the slot for a matching parent
2497		 * directory. All names for this context are relinquished in
2498		 * audit_free_names() */
2499		if (found_parent) {
2500			found_child->name = found_parent->name;
2501			found_child->name_len = AUDIT_NAME_FULL;
2502			atomic_inc(&found_child->name->refcnt);
 
 
 
2503		}
2504	}
2505
2506	if (inode)
2507		audit_copy_inode(found_child, dentry, inode, 0);
2508	else
2509		found_child->ino = AUDIT_INO_UNSET;
 
2510}
2511EXPORT_SYMBOL_GPL(__audit_inode_child);
2512
2513/**
2514 * auditsc_get_stamp - get local copies of audit_context values
2515 * @ctx: audit_context for the task
2516 * @t: timespec64 to store time recorded in the audit_context
2517 * @serial: serial value that is recorded in the audit_context
2518 *
2519 * Also sets the context as auditable.
2520 */
2521int auditsc_get_stamp(struct audit_context *ctx,
2522		       struct timespec64 *t, unsigned int *serial)
2523{
2524	if (ctx->context == AUDIT_CTX_UNUSED)
2525		return 0;
2526	if (!ctx->serial)
2527		ctx->serial = audit_serial();
2528	t->tv_sec  = ctx->ctime.tv_sec;
2529	t->tv_nsec = ctx->ctime.tv_nsec;
2530	*serial    = ctx->serial;
2531	if (!ctx->prio) {
2532		ctx->prio = 1;
2533		ctx->current_state = AUDIT_STATE_RECORD;
2534	}
2535	return 1;
2536}
2537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2538/**
2539 * __audit_mq_open - record audit data for a POSIX MQ open
2540 * @oflag: open flag
2541 * @mode: mode bits
2542 * @attr: queue attributes
2543 *
2544 */
2545void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2546{
2547	struct audit_context *context = audit_context();
2548
2549	if (attr)
2550		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2551	else
2552		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2553
2554	context->mq_open.oflag = oflag;
2555	context->mq_open.mode = mode;
2556
2557	context->type = AUDIT_MQ_OPEN;
2558}
2559
2560/**
2561 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2562 * @mqdes: MQ descriptor
2563 * @msg_len: Message length
2564 * @msg_prio: Message priority
2565 * @abs_timeout: Message timeout in absolute time
2566 *
2567 */
2568void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2569			const struct timespec64 *abs_timeout)
2570{
2571	struct audit_context *context = audit_context();
2572	struct timespec64 *p = &context->mq_sendrecv.abs_timeout;
2573
2574	if (abs_timeout)
2575		memcpy(p, abs_timeout, sizeof(*p));
2576	else
2577		memset(p, 0, sizeof(*p));
2578
2579	context->mq_sendrecv.mqdes = mqdes;
2580	context->mq_sendrecv.msg_len = msg_len;
2581	context->mq_sendrecv.msg_prio = msg_prio;
2582
2583	context->type = AUDIT_MQ_SENDRECV;
2584}
2585
2586/**
2587 * __audit_mq_notify - record audit data for a POSIX MQ notify
2588 * @mqdes: MQ descriptor
2589 * @notification: Notification event
2590 *
2591 */
2592
2593void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2594{
2595	struct audit_context *context = audit_context();
2596
2597	if (notification)
2598		context->mq_notify.sigev_signo = notification->sigev_signo;
2599	else
2600		context->mq_notify.sigev_signo = 0;
2601
2602	context->mq_notify.mqdes = mqdes;
2603	context->type = AUDIT_MQ_NOTIFY;
2604}
2605
2606/**
2607 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2608 * @mqdes: MQ descriptor
2609 * @mqstat: MQ flags
2610 *
2611 */
2612void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2613{
2614	struct audit_context *context = audit_context();
2615
2616	context->mq_getsetattr.mqdes = mqdes;
2617	context->mq_getsetattr.mqstat = *mqstat;
2618	context->type = AUDIT_MQ_GETSETATTR;
2619}
2620
2621/**
2622 * __audit_ipc_obj - record audit data for ipc object
2623 * @ipcp: ipc permissions
2624 *
2625 */
2626void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2627{
2628	struct audit_context *context = audit_context();
2629
2630	context->ipc.uid = ipcp->uid;
2631	context->ipc.gid = ipcp->gid;
2632	context->ipc.mode = ipcp->mode;
2633	context->ipc.has_perm = 0;
2634	security_ipc_getlsmprop(ipcp, &context->ipc.oprop);
2635	context->type = AUDIT_IPC;
2636}
2637
2638/**
2639 * __audit_ipc_set_perm - record audit data for new ipc permissions
2640 * @qbytes: msgq bytes
2641 * @uid: msgq user id
2642 * @gid: msgq group id
2643 * @mode: msgq mode (permissions)
2644 *
2645 * Called only after audit_ipc_obj().
2646 */
2647void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2648{
2649	struct audit_context *context = audit_context();
2650
2651	context->ipc.qbytes = qbytes;
2652	context->ipc.perm_uid = uid;
2653	context->ipc.perm_gid = gid;
2654	context->ipc.perm_mode = mode;
2655	context->ipc.has_perm = 1;
2656}
2657
2658void __audit_bprm(struct linux_binprm *bprm)
2659{
2660	struct audit_context *context = audit_context();
 
2661
2662	context->type = AUDIT_EXECVE;
2663	context->execve.argc = bprm->argc;
 
 
 
 
 
 
 
 
 
 
 
 
2664}
2665
2666
2667/**
2668 * __audit_socketcall - record audit data for sys_socketcall
2669 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2670 * @args: args array
2671 *
2672 */
2673int __audit_socketcall(int nargs, unsigned long *args)
2674{
2675	struct audit_context *context = audit_context();
 
 
 
2676
2677	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2678		return -EINVAL;
2679	context->type = AUDIT_SOCKETCALL;
2680	context->socketcall.nargs = nargs;
2681	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2682	return 0;
2683}
2684
2685/**
2686 * __audit_fd_pair - record audit data for pipe and socketpair
2687 * @fd1: the first file descriptor
2688 * @fd2: the second file descriptor
2689 *
2690 */
2691void __audit_fd_pair(int fd1, int fd2)
2692{
2693	struct audit_context *context = audit_context();
2694
2695	context->fds[0] = fd1;
2696	context->fds[1] = fd2;
2697}
2698
2699/**
2700 * __audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2701 * @len: data length in user space
2702 * @a: data address in kernel space
2703 *
2704 * Returns 0 for success or NULL context or < 0 on error.
2705 */
2706int __audit_sockaddr(int len, void *a)
2707{
2708	struct audit_context *context = audit_context();
 
 
 
2709
2710	if (!context->sockaddr) {
2711		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2712
2713		if (!p)
2714			return -ENOMEM;
2715		context->sockaddr = p;
2716	}
2717
2718	context->sockaddr_len = len;
2719	memcpy(context->sockaddr, a, len);
2720	return 0;
2721}
2722
2723void __audit_ptrace(struct task_struct *t)
2724{
2725	struct audit_context *context = audit_context();
2726
2727	context->target_pid = task_tgid_nr(t);
2728	context->target_auid = audit_get_loginuid(t);
2729	context->target_uid = task_uid(t);
2730	context->target_sessionid = audit_get_sessionid(t);
2731	strscpy(context->target_comm, t->comm);
2732	security_task_getlsmprop_obj(t, &context->target_ref);
2733}
2734
2735/**
2736 * audit_signal_info_syscall - record signal info for syscalls
 
2737 * @t: task being signaled
2738 *
2739 * If the audit subsystem is being terminated, record the task (pid)
2740 * and uid that is doing that.
2741 */
2742int audit_signal_info_syscall(struct task_struct *t)
2743{
2744	struct audit_aux_data_pids *axp;
2745	struct audit_context *ctx = audit_context();
2746	kuid_t t_uid = task_uid(t);
2747
2748	if (!audit_signals || audit_dummy_context())
2749		return 0;
 
 
 
 
 
 
 
 
 
 
 
2750
2751	/* optimize the common case by putting first signal recipient directly
2752	 * in audit_context */
2753	if (!ctx->target_pid) {
2754		ctx->target_pid = task_tgid_nr(t);
2755		ctx->target_auid = audit_get_loginuid(t);
2756		ctx->target_uid = t_uid;
2757		ctx->target_sessionid = audit_get_sessionid(t);
2758		strscpy(ctx->target_comm, t->comm);
2759		security_task_getlsmprop_obj(t, &ctx->target_ref);
2760		return 0;
2761	}
2762
2763	axp = (void *)ctx->aux_pids;
2764	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2765		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2766		if (!axp)
2767			return -ENOMEM;
2768
2769		axp->d.type = AUDIT_OBJ_PID;
2770		axp->d.next = ctx->aux_pids;
2771		ctx->aux_pids = (void *)axp;
2772	}
2773	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2774
2775	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2776	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2777	axp->target_uid[axp->pid_count] = t_uid;
2778	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2779	security_task_getlsmprop_obj(t, &axp->target_ref[axp->pid_count]);
2780	strscpy(axp->target_comm[axp->pid_count], t->comm);
2781	axp->pid_count++;
2782
2783	return 0;
2784}
2785
2786/**
2787 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2788 * @bprm: pointer to the bprm being processed
2789 * @new: the proposed new credentials
2790 * @old: the old credentials
2791 *
2792 * Simply check if the proc already has the caps given by the file and if not
2793 * store the priv escalation info for later auditing at the end of the syscall
2794 *
2795 * -Eric
2796 */
2797int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2798			   const struct cred *new, const struct cred *old)
2799{
2800	struct audit_aux_data_bprm_fcaps *ax;
2801	struct audit_context *context = audit_context();
2802	struct cpu_vfs_cap_data vcaps;
 
2803
2804	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2805	if (!ax)
2806		return -ENOMEM;
2807
2808	ax->d.type = AUDIT_BPRM_FCAPS;
2809	ax->d.next = context->aux;
2810	context->aux = (void *)ax;
2811
2812	get_vfs_caps_from_disk(&nop_mnt_idmap,
2813			       bprm->file->f_path.dentry, &vcaps);
 
2814
2815	ax->fcap.permitted = vcaps.permitted;
2816	ax->fcap.inheritable = vcaps.inheritable;
2817	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2818	ax->fcap.rootid = vcaps.rootid;
2819	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2820
2821	ax->old_pcap.permitted   = old->cap_permitted;
2822	ax->old_pcap.inheritable = old->cap_inheritable;
2823	ax->old_pcap.effective   = old->cap_effective;
2824	ax->old_pcap.ambient     = old->cap_ambient;
2825
2826	ax->new_pcap.permitted   = new->cap_permitted;
2827	ax->new_pcap.inheritable = new->cap_inheritable;
2828	ax->new_pcap.effective   = new->cap_effective;
2829	ax->new_pcap.ambient     = new->cap_ambient;
2830	return 0;
2831}
2832
2833/**
2834 * __audit_log_capset - store information about the arguments to the capset syscall
 
2835 * @new: the new credentials
2836 * @old: the old (current) credentials
2837 *
2838 * Record the arguments userspace sent to sys_capset for later printing by the
2839 * audit system if applicable
2840 */
2841void __audit_log_capset(const struct cred *new, const struct cred *old)
 
2842{
2843	struct audit_context *context = audit_context();
2844
2845	context->capset.pid = task_tgid_nr(current);
2846	context->capset.cap.effective   = new->cap_effective;
2847	context->capset.cap.inheritable = new->cap_effective;
2848	context->capset.cap.permitted   = new->cap_permitted;
2849	context->capset.cap.ambient     = new->cap_ambient;
2850	context->type = AUDIT_CAPSET;
2851}
2852
2853void __audit_mmap_fd(int fd, int flags)
2854{
2855	struct audit_context *context = audit_context();
2856
2857	context->mmap.fd = fd;
2858	context->mmap.flags = flags;
2859	context->type = AUDIT_MMAP;
2860}
2861
2862void __audit_openat2_how(struct open_how *how)
2863{
2864	struct audit_context *context = audit_context();
2865
2866	context->openat2.flags = how->flags;
2867	context->openat2.mode = how->mode;
2868	context->openat2.resolve = how->resolve;
2869	context->type = AUDIT_OPENAT2;
2870}
2871
2872void __audit_log_kern_module(char *name)
2873{
2874	struct audit_context *context = audit_context();
2875
2876	context->module.name = kstrdup(name, GFP_KERNEL);
2877	if (!context->module.name)
2878		audit_log_lost("out of memory in __audit_log_kern_module");
2879	context->type = AUDIT_KERN_MODULE;
2880}
2881
2882void __audit_fanotify(u32 response, struct fanotify_response_info_audit_rule *friar)
2883{
2884	/* {subj,obj}_trust values are {0,1,2}: no,yes,unknown */
2885	switch (friar->hdr.type) {
2886	case FAN_RESPONSE_INFO_NONE:
2887		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2888			  "resp=%u fan_type=%u fan_info=0 subj_trust=2 obj_trust=2",
2889			  response, FAN_RESPONSE_INFO_NONE);
2890		break;
2891	case FAN_RESPONSE_INFO_AUDIT_RULE:
2892		audit_log(audit_context(), GFP_KERNEL, AUDIT_FANOTIFY,
2893			  "resp=%u fan_type=%u fan_info=%X subj_trust=%u obj_trust=%u",
2894			  response, friar->hdr.type, friar->rule_number,
2895			  friar->subj_trust, friar->obj_trust);
2896	}
2897}
2898
2899void __audit_tk_injoffset(struct timespec64 offset)
2900{
2901	struct audit_context *context = audit_context();
2902
2903	/* only set type if not already set by NTP */
2904	if (!context->type)
2905		context->type = AUDIT_TIME_INJOFFSET;
2906	memcpy(&context->time.tk_injoffset, &offset, sizeof(offset));
2907}
2908
2909void __audit_ntp_log(const struct audit_ntp_data *ad)
2910{
2911	struct audit_context *context = audit_context();
2912	int type;
2913
2914	for (type = 0; type < AUDIT_NTP_NVALS; type++)
2915		if (ad->vals[type].newval != ad->vals[type].oldval) {
2916			/* unconditionally set type, overwriting TK */
2917			context->type = AUDIT_TIME_ADJNTPVAL;
2918			memcpy(&context->time.ntp_data, ad, sizeof(*ad));
2919			break;
2920		}
2921}
2922
2923void __audit_log_nfcfg(const char *name, u8 af, unsigned int nentries,
2924		       enum audit_nfcfgop op, gfp_t gfp)
2925{
2926	struct audit_buffer *ab;
2927	char comm[sizeof(current->comm)];
2928
2929	ab = audit_log_start(audit_context(), gfp, AUDIT_NETFILTER_CFG);
2930	if (!ab)
2931		return;
2932	audit_log_format(ab, "table=%s family=%u entries=%u op=%s",
2933			 name, af, nentries, audit_nfcfgs[op].s);
2934
2935	audit_log_format(ab, " pid=%u", task_tgid_nr(current));
2936	audit_log_task_context(ab); /* subj= */
2937	audit_log_format(ab, " comm=");
2938	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2939	audit_log_end(ab);
2940}
2941EXPORT_SYMBOL_GPL(__audit_log_nfcfg);
2942
2943static void audit_log_task(struct audit_buffer *ab)
2944{
2945	kuid_t auid, uid;
2946	kgid_t gid;
2947	unsigned int sessionid;
2948	char comm[sizeof(current->comm)];
2949
2950	auid = audit_get_loginuid(current);
2951	sessionid = audit_get_sessionid(current);
2952	current_uid_gid(&uid, &gid);
2953
2954	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2955			 from_kuid(&init_user_ns, auid),
2956			 from_kuid(&init_user_ns, uid),
2957			 from_kgid(&init_user_ns, gid),
2958			 sessionid);
2959	audit_log_task_context(ab);
2960	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2961	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2962	audit_log_d_path_exe(ab, current->mm);
2963}
2964
2965/**
2966 * audit_core_dumps - record information about processes that end abnormally
2967 * @signr: signal value
2968 *
2969 * If a process ends with a core dump, something fishy is going on and we
2970 * should record the event for investigation.
2971 */
2972void audit_core_dumps(long signr)
2973{
2974	struct audit_buffer *ab;
 
 
 
 
2975
2976	if (!audit_enabled)
2977		return;
2978
2979	if (signr == SIGQUIT)	/* don't care for those */
2980		return;
2981
2982	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_ABEND);
2983	if (unlikely(!ab))
2984		return;
2985	audit_log_task(ab);
2986	audit_log_format(ab, " sig=%ld res=1", signr);
2987	audit_log_end(ab);
2988}
2989
2990/**
2991 * audit_seccomp - record information about a seccomp action
2992 * @syscall: syscall number
2993 * @signr: signal value
2994 * @code: the seccomp action
2995 *
2996 * Record the information associated with a seccomp action. Event filtering for
2997 * seccomp actions that are not to be logged is done in seccomp_log().
2998 * Therefore, this function forces auditing independent of the audit_enabled
2999 * and dummy context state because seccomp actions should be logged even when
3000 * audit is not in use.
3001 */
3002void audit_seccomp(unsigned long syscall, long signr, int code)
3003{
3004	struct audit_buffer *ab;
3005
3006	ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_SECCOMP);
3007	if (unlikely(!ab))
3008		return;
3009	audit_log_task(ab);
3010	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
3011			 signr, syscall_get_arch(current), syscall,
3012			 in_compat_syscall(), KSTK_EIP(current), code);
3013	audit_log_end(ab);
3014}
3015
3016void audit_seccomp_actions_logged(const char *names, const char *old_names,
3017				  int res)
3018{
3019	struct audit_buffer *ab;
3020
3021	if (!audit_enabled)
3022		return;
3023
3024	ab = audit_log_start(audit_context(), GFP_KERNEL,
3025			     AUDIT_CONFIG_CHANGE);
3026	if (unlikely(!ab))
3027		return;
3028
3029	audit_log_format(ab,
3030			 "op=seccomp-logging actions=%s old-actions=%s res=%d",
3031			 names, old_names, res);
 
 
 
 
 
 
 
3032	audit_log_end(ab);
3033}
3034
3035struct list_head *audit_killed_trees(void)
3036{
3037	struct audit_context *ctx = audit_context();
3038	if (likely(!ctx || ctx->context == AUDIT_CTX_UNUSED))
3039		return NULL;
3040	return &ctx->killed_trees;
3041}
v3.1
 
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
 
 
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
 
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
 
 
 
 
 
 
 
 
 
  70
  71#include "audit.h"
  72
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
 
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
 
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90	kernel_cap_t		permitted;
  91	kernel_cap_t		inheritable;
  92	union {
  93		unsigned int	fE;		/* effective bit of a file capability */
  94		kernel_cap_t	effective;	/* effective set of a process */
  95	};
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 104	const char	*name;
 105	int		name_len;	/* number of name's characters to log */
 106	unsigned	name_put;	/* call __putname() for this name */
 107	unsigned long	ino;
 108	dev_t		dev;
 109	umode_t		mode;
 110	uid_t		uid;
 111	gid_t		gid;
 112	dev_t		rdev;
 113	u32		osid;
 114	struct audit_cap_data fcap;
 115	unsigned int	fcap_ver;
 116};
 117
 118struct audit_aux_data {
 119	struct audit_aux_data	*next;
 120	int			type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM	0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS	16
 127
 128struct audit_aux_data_execve {
 129	struct audit_aux_data	d;
 130	int argc;
 131	int envc;
 132	struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136	struct audit_aux_data	d;
 137	pid_t			target_pid[AUDIT_AUX_PIDS];
 138	uid_t			target_auid[AUDIT_AUX_PIDS];
 139	uid_t			target_uid[AUDIT_AUX_PIDS];
 140	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 141	u32			target_sid[AUDIT_AUX_PIDS];
 142	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143	int			pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147	struct audit_aux_data	d;
 148	struct audit_cap_data	fcap;
 149	unsigned int		fcap_ver;
 150	struct audit_cap_data	old_pcap;
 151	struct audit_cap_data	new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155	struct audit_aux_data	d;
 156	pid_t			pid;
 157	struct audit_cap_data	cap;
 158};
 159
 160struct audit_tree_refs {
 161	struct audit_tree_refs *next;
 162	struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167	int		    dummy;	/* must be the first element */
 168	int		    in_syscall;	/* 1 if task is in a syscall */
 169	enum audit_state    state, current_state;
 170	unsigned int	    serial;     /* serial number for record */
 171	int		    major;      /* syscall number */
 172	struct timespec	    ctime;      /* time of syscall entry */
 173	unsigned long	    argv[4];    /* syscall arguments */
 174	long		    return_code;/* syscall return code */
 175	u64		    prio;
 176	int		    return_valid; /* return code is valid */
 177	int		    name_count;
 178	struct audit_names  names[AUDIT_NAMES];
 179	char *		    filterkey;	/* key for rule that triggered record */
 180	struct path	    pwd;
 181	struct audit_context *previous; /* For nested syscalls */
 182	struct audit_aux_data *aux;
 183	struct audit_aux_data *aux_pids;
 184	struct sockaddr_storage *sockaddr;
 185	size_t sockaddr_len;
 186				/* Save things to print about task_struct */
 187	pid_t		    pid, ppid;
 188	uid_t		    uid, euid, suid, fsuid;
 189	gid_t		    gid, egid, sgid, fsgid;
 190	unsigned long	    personality;
 191	int		    arch;
 192
 193	pid_t		    target_pid;
 194	uid_t		    target_auid;
 195	uid_t		    target_uid;
 196	unsigned int	    target_sessionid;
 197	u32		    target_sid;
 198	char		    target_comm[TASK_COMM_LEN];
 199
 200	struct audit_tree_refs *trees, *first_trees;
 201	struct list_head killed_trees;
 202	int tree_count;
 203
 204	int type;
 205	union {
 206		struct {
 207			int nargs;
 208			long args[6];
 209		} socketcall;
 210		struct {
 211			uid_t			uid;
 212			gid_t			gid;
 213			mode_t			mode;
 214			u32			osid;
 215			int			has_perm;
 216			uid_t			perm_uid;
 217			gid_t			perm_gid;
 218			mode_t			perm_mode;
 219			unsigned long		qbytes;
 220		} ipc;
 221		struct {
 222			mqd_t			mqdes;
 223			struct mq_attr 		mqstat;
 224		} mq_getsetattr;
 225		struct {
 226			mqd_t			mqdes;
 227			int			sigev_signo;
 228		} mq_notify;
 229		struct {
 230			mqd_t			mqdes;
 231			size_t			msg_len;
 232			unsigned int		msg_prio;
 233			struct timespec		abs_timeout;
 234		} mq_sendrecv;
 235		struct {
 236			int			oflag;
 237			mode_t			mode;
 238			struct mq_attr		attr;
 239		} mq_open;
 240		struct {
 241			pid_t			pid;
 242			struct audit_cap_data	cap;
 243		} capset;
 244		struct {
 245			int			fd;
 246			int			flags;
 247		} mmap;
 248	};
 249	int fds[2];
 250
 251#if AUDIT_DEBUG
 252	int		    put_count;
 253	int		    ino_count;
 254#endif
 255};
 256
 257static inline int open_arg(int flags, int mask)
 258{
 259	int n = ACC_MODE(flags);
 260	if (flags & (O_TRUNC | O_CREAT))
 261		n |= AUDIT_PERM_WRITE;
 262	return n & mask;
 263}
 264
 265static int audit_match_perm(struct audit_context *ctx, int mask)
 266{
 267	unsigned n;
 
 268	if (unlikely(!ctx))
 269		return 0;
 270	n = ctx->major;
 271
 272	switch (audit_classify_syscall(ctx->arch, n)) {
 273	case 0:	/* native */
 274		if ((mask & AUDIT_PERM_WRITE) &&
 275		     audit_match_class(AUDIT_CLASS_WRITE, n))
 276			return 1;
 277		if ((mask & AUDIT_PERM_READ) &&
 278		     audit_match_class(AUDIT_CLASS_READ, n))
 279			return 1;
 280		if ((mask & AUDIT_PERM_ATTR) &&
 281		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 282			return 1;
 283		return 0;
 284	case 1: /* 32bit on biarch */
 285		if ((mask & AUDIT_PERM_WRITE) &&
 286		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 287			return 1;
 288		if ((mask & AUDIT_PERM_READ) &&
 289		     audit_match_class(AUDIT_CLASS_READ_32, n))
 290			return 1;
 291		if ((mask & AUDIT_PERM_ATTR) &&
 292		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 293			return 1;
 294		return 0;
 295	case 2: /* open */
 296		return mask & ACC_MODE(ctx->argv[1]);
 297	case 3: /* openat */
 298		return mask & ACC_MODE(ctx->argv[2]);
 299	case 4: /* socketcall */
 300		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 301	case 5: /* execve */
 302		return mask & AUDIT_PERM_EXEC;
 
 
 303	default:
 304		return 0;
 305	}
 306}
 307
 308static int audit_match_filetype(struct audit_context *ctx, int which)
 309{
 310	unsigned index = which & ~S_IFMT;
 311	mode_t mode = which & S_IFMT;
 312
 313	if (unlikely(!ctx))
 314		return 0;
 315
 316	if (index >= ctx->name_count)
 317		return 0;
 318	if (ctx->names[index].ino == -1)
 319		return 0;
 320	if ((ctx->names[index].mode ^ mode) & S_IFMT)
 321		return 0;
 322	return 1;
 323}
 324
 325/*
 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 327 * ->first_trees points to its beginning, ->trees - to the current end of data.
 328 * ->tree_count is the number of free entries in array pointed to by ->trees.
 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 330 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 331 * it's going to remain 1-element for almost any setup) until we free context itself.
 332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 333 */
 334
 335#ifdef CONFIG_AUDIT_TREE
 336static void audit_set_auditable(struct audit_context *ctx)
 337{
 338	if (!ctx->prio) {
 339		ctx->prio = 1;
 340		ctx->current_state = AUDIT_RECORD_CONTEXT;
 341	}
 342}
 343
 344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 345{
 346	struct audit_tree_refs *p = ctx->trees;
 347	int left = ctx->tree_count;
 
 348	if (likely(left)) {
 349		p->c[--left] = chunk;
 350		ctx->tree_count = left;
 351		return 1;
 352	}
 353	if (!p)
 354		return 0;
 355	p = p->next;
 356	if (p) {
 357		p->c[30] = chunk;
 358		ctx->trees = p;
 359		ctx->tree_count = 30;
 360		return 1;
 361	}
 362	return 0;
 363}
 364
 365static int grow_tree_refs(struct audit_context *ctx)
 366{
 367	struct audit_tree_refs *p = ctx->trees;
 
 368	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 369	if (!ctx->trees) {
 370		ctx->trees = p;
 371		return 0;
 372	}
 373	if (p)
 374		p->next = ctx->trees;
 375	else
 376		ctx->first_trees = ctx->trees;
 377	ctx->tree_count = 31;
 378	return 1;
 379}
 380#endif
 381
 382static void unroll_tree_refs(struct audit_context *ctx,
 383		      struct audit_tree_refs *p, int count)
 384{
 385#ifdef CONFIG_AUDIT_TREE
 386	struct audit_tree_refs *q;
 387	int n;
 
 388	if (!p) {
 389		/* we started with empty chain */
 390		p = ctx->first_trees;
 391		count = 31;
 392		/* if the very first allocation has failed, nothing to do */
 393		if (!p)
 394			return;
 395	}
 396	n = count;
 397	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 398		while (n--) {
 399			audit_put_chunk(q->c[n]);
 400			q->c[n] = NULL;
 401		}
 402	}
 403	while (n-- > ctx->tree_count) {
 404		audit_put_chunk(q->c[n]);
 405		q->c[n] = NULL;
 406	}
 407	ctx->trees = p;
 408	ctx->tree_count = count;
 409#endif
 410}
 411
 412static void free_tree_refs(struct audit_context *ctx)
 413{
 414	struct audit_tree_refs *p, *q;
 
 415	for (p = ctx->first_trees; p; p = q) {
 416		q = p->next;
 417		kfree(p);
 418	}
 419}
 420
 421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 422{
 423#ifdef CONFIG_AUDIT_TREE
 424	struct audit_tree_refs *p;
 425	int n;
 
 426	if (!tree)
 427		return 0;
 428	/* full ones */
 429	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 430		for (n = 0; n < 31; n++)
 431			if (audit_tree_match(p->c[n], tree))
 432				return 1;
 433	}
 434	/* partial */
 435	if (p) {
 436		for (n = ctx->tree_count; n < 31; n++)
 437			if (audit_tree_match(p->c[n], tree))
 438				return 1;
 439	}
 440#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 441	return 0;
 442}
 443
 444/* Determine if any context name data matches a rule's watch data */
 445/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 446 * otherwise.
 447 *
 448 * If task_creation is true, this is an explicit indication that we are
 449 * filtering a task rule at task creation time.  This and tsk == current are
 450 * the only situations where tsk->cred may be accessed without an rcu read lock.
 451 */
 452static int audit_filter_rules(struct task_struct *tsk,
 453			      struct audit_krule *rule,
 454			      struct audit_context *ctx,
 455			      struct audit_names *name,
 456			      enum audit_state *state,
 457			      bool task_creation)
 458{
 459	const struct cred *cred;
 460	int i, j, need_sid = 1;
 461	u32 sid;
 
 
 
 
 462
 463	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 464
 465	for (i = 0; i < rule->field_count; i++) {
 466		struct audit_field *f = &rule->fields[i];
 
 467		int result = 0;
 
 468
 469		switch (f->type) {
 470		case AUDIT_PID:
 471			result = audit_comparator(tsk->pid, f->op, f->val);
 
 472			break;
 473		case AUDIT_PPID:
 474			if (ctx) {
 475				if (!ctx->ppid)
 476					ctx->ppid = sys_getppid();
 477				result = audit_comparator(ctx->ppid, f->op, f->val);
 478			}
 479			break;
 
 
 
 
 
 480		case AUDIT_UID:
 481			result = audit_comparator(cred->uid, f->op, f->val);
 482			break;
 483		case AUDIT_EUID:
 484			result = audit_comparator(cred->euid, f->op, f->val);
 485			break;
 486		case AUDIT_SUID:
 487			result = audit_comparator(cred->suid, f->op, f->val);
 488			break;
 489		case AUDIT_FSUID:
 490			result = audit_comparator(cred->fsuid, f->op, f->val);
 491			break;
 492		case AUDIT_GID:
 493			result = audit_comparator(cred->gid, f->op, f->val);
 
 
 
 
 
 
 
 494			break;
 495		case AUDIT_EGID:
 496			result = audit_comparator(cred->egid, f->op, f->val);
 
 
 
 
 
 
 
 497			break;
 498		case AUDIT_SGID:
 499			result = audit_comparator(cred->sgid, f->op, f->val);
 500			break;
 501		case AUDIT_FSGID:
 502			result = audit_comparator(cred->fsgid, f->op, f->val);
 
 
 
 
 503			break;
 504		case AUDIT_PERS:
 505			result = audit_comparator(tsk->personality, f->op, f->val);
 506			break;
 507		case AUDIT_ARCH:
 508			if (ctx)
 509				result = audit_comparator(ctx->arch, f->op, f->val);
 510			break;
 511
 512		case AUDIT_EXIT:
 513			if (ctx && ctx->return_valid)
 514				result = audit_comparator(ctx->return_code, f->op, f->val);
 515			break;
 516		case AUDIT_SUCCESS:
 517			if (ctx && ctx->return_valid) {
 518				if (f->val)
 519					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 520				else
 521					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 522			}
 523			break;
 524		case AUDIT_DEVMAJOR:
 525			if (name)
 526				result = audit_comparator(MAJOR(name->dev),
 527							  f->op, f->val);
 528			else if (ctx) {
 529				for (j = 0; j < ctx->name_count; j++) {
 530					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
 
 
 531						++result;
 532						break;
 533					}
 534				}
 535			}
 536			break;
 537		case AUDIT_DEVMINOR:
 538			if (name)
 539				result = audit_comparator(MINOR(name->dev),
 540							  f->op, f->val);
 541			else if (ctx) {
 542				for (j = 0; j < ctx->name_count; j++) {
 543					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 
 
 544						++result;
 545						break;
 546					}
 547				}
 548			}
 549			break;
 550		case AUDIT_INODE:
 551			if (name)
 552				result = (name->ino == f->val);
 553			else if (ctx) {
 554				for (j = 0; j < ctx->name_count; j++) {
 555					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556						++result;
 557						break;
 558					}
 559				}
 560			}
 561			break;
 562		case AUDIT_WATCH:
 563			if (name)
 564				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 
 
 
 
 
 565			break;
 566		case AUDIT_DIR:
 567			if (ctx)
 568				result = match_tree_refs(ctx, rule->tree);
 
 
 
 569			break;
 570		case AUDIT_LOGINUID:
 571			result = 0;
 572			if (ctx)
 573				result = audit_comparator(tsk->loginuid, f->op, f->val);
 
 
 
 
 
 
 
 574			break;
 575		case AUDIT_SUBJ_USER:
 576		case AUDIT_SUBJ_ROLE:
 577		case AUDIT_SUBJ_TYPE:
 578		case AUDIT_SUBJ_SEN:
 579		case AUDIT_SUBJ_CLR:
 580			/* NOTE: this may return negative values indicating
 581			   a temporary error.  We simply treat this as a
 582			   match for now to avoid losing information that
 583			   may be wanted.   An error message will also be
 584			   logged upon error */
 585			if (f->lsm_rule) {
 586				if (need_sid) {
 587					security_task_getsecid(tsk, &sid);
 
 
 
 
 
 
 
 
 
 
 588					need_sid = 0;
 589				}
 590				result = security_audit_rule_match(sid, f->type,
 591				                                  f->op,
 592				                                  f->lsm_rule,
 593				                                  ctx);
 594			}
 595			break;
 596		case AUDIT_OBJ_USER:
 597		case AUDIT_OBJ_ROLE:
 598		case AUDIT_OBJ_TYPE:
 599		case AUDIT_OBJ_LEV_LOW:
 600		case AUDIT_OBJ_LEV_HIGH:
 601			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 602			   also applies here */
 603			if (f->lsm_rule) {
 604				/* Find files that match */
 605				if (name) {
 606					result = security_audit_rule_match(
 607					           name->osid, f->type, f->op,
 608					           f->lsm_rule, ctx);
 
 
 609				} else if (ctx) {
 610					for (j = 0; j < ctx->name_count; j++) {
 611						if (security_audit_rule_match(
 612						      ctx->names[j].osid,
 613						      f->type, f->op,
 614						      f->lsm_rule, ctx)) {
 
 615							++result;
 616							break;
 617						}
 618					}
 619				}
 620				/* Find ipc objects that match */
 621				if (!ctx || ctx->type != AUDIT_IPC)
 622					break;
 623				if (security_audit_rule_match(ctx->ipc.osid,
 624							      f->type, f->op,
 625							      f->lsm_rule, ctx))
 626					++result;
 627			}
 628			break;
 629		case AUDIT_ARG0:
 630		case AUDIT_ARG1:
 631		case AUDIT_ARG2:
 632		case AUDIT_ARG3:
 633			if (ctx)
 634				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 635			break;
 636		case AUDIT_FILTERKEY:
 637			/* ignore this field for filtering */
 638			result = 1;
 639			break;
 640		case AUDIT_PERM:
 641			result = audit_match_perm(ctx, f->val);
 
 
 642			break;
 643		case AUDIT_FILETYPE:
 644			result = audit_match_filetype(ctx, f->val);
 
 
 
 
 
 645			break;
 646		}
 647
 648		if (!result)
 649			return 0;
 650	}
 651
 652	if (ctx) {
 653		if (rule->prio <= ctx->prio)
 654			return 0;
 655		if (rule->filterkey) {
 656			kfree(ctx->filterkey);
 657			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 658		}
 659		ctx->prio = rule->prio;
 660	}
 661	switch (rule->action) {
 662	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 663	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 
 
 
 
 664	}
 665	return 1;
 666}
 667
 668/* At process creation time, we can determine if system-call auditing is
 669 * completely disabled for this task.  Since we only have the task
 670 * structure at this point, we can only check uid and gid.
 671 */
 672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 673{
 674	struct audit_entry *e;
 675	enum audit_state   state;
 676
 677	rcu_read_lock();
 678	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 679		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 680				       &state, true)) {
 681			if (state == AUDIT_RECORD_CONTEXT)
 682				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 683			rcu_read_unlock();
 684			return state;
 685		}
 686	}
 687	rcu_read_unlock();
 688	return AUDIT_BUILD_CONTEXT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 689}
 690
 691/* At syscall entry and exit time, this filter is called if the
 692 * audit_state is not low enough that auditing cannot take place, but is
 693 * also not high enough that we already know we have to write an audit
 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 
 
 
 
 
 
 
 
 
 695 */
 696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 697					     struct audit_context *ctx,
 698					     struct list_head *list)
 
 
 699{
 700	struct audit_entry *e;
 701	enum audit_state state;
 702
 703	if (audit_pid && tsk->tgid == audit_pid)
 704		return AUDIT_DISABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 705
 706	rcu_read_lock();
 707	if (!list_empty(list)) {
 708		int word = AUDIT_WORD(ctx->major);
 709		int bit  = AUDIT_BIT(ctx->major);
 710
 711		list_for_each_entry_rcu(e, list, list) {
 712			if ((e->rule.mask[word] & bit) == bit &&
 713			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 714					       &state, false)) {
 715				rcu_read_unlock();
 716				ctx->current_state = state;
 717				return state;
 718			}
 719		}
 720	}
 721	rcu_read_unlock();
 722	return AUDIT_BUILD_CONTEXT;
 723}
 724
 725/* At syscall exit time, this filter is called if any audit_names[] have been
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * collected during syscall processing.  We only check rules in sublists at hash
 727 * buckets applicable to the inode numbers in audit_names[].
 728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 729 */
 730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 731{
 732	int i;
 733	struct audit_entry *e;
 734	enum audit_state state;
 735
 736	if (audit_pid && tsk->tgid == audit_pid)
 737		return;
 738
 739	rcu_read_lock();
 740	for (i = 0; i < ctx->name_count; i++) {
 741		int word = AUDIT_WORD(ctx->major);
 742		int bit  = AUDIT_BIT(ctx->major);
 743		struct audit_names *n = &ctx->names[i];
 744		int h = audit_hash_ino((u32)n->ino);
 745		struct list_head *list = &audit_inode_hash[h];
 746
 747		if (list_empty(list))
 748			continue;
 749
 750		list_for_each_entry_rcu(e, list, list) {
 751			if ((e->rule.mask[word] & bit) == bit &&
 752			    audit_filter_rules(tsk, &e->rule, ctx, n,
 753				    	       &state, false)) {
 754				rcu_read_unlock();
 755				ctx->current_state = state;
 756				return;
 757			}
 758		}
 759	}
 760	rcu_read_unlock();
 761}
 762
 763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 764						      int return_valid,
 765						      long return_code)
 766{
 767	struct audit_context *context = tsk->audit_context;
 
 
 
 768
 769	if (likely(!context))
 770		return NULL;
 771	context->return_valid = return_valid;
 772
 773	/*
 774	 * we need to fix up the return code in the audit logs if the actual
 775	 * return codes are later going to be fixed up by the arch specific
 776	 * signal handlers
 777	 *
 778	 * This is actually a test for:
 779	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 780	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 781	 *
 782	 * but is faster than a bunch of ||
 783	 */
 784	if (unlikely(return_code <= -ERESTARTSYS) &&
 785	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 786	    (return_code != -ENOIOCTLCMD))
 787		context->return_code = -EINTR;
 788	else
 789		context->return_code  = return_code;
 790
 791	if (context->in_syscall && !context->dummy) {
 792		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 793		audit_filter_inodes(tsk, context);
 794	}
 795
 796	tsk->audit_context = NULL;
 797	return context;
 798}
 799
 800static inline void audit_free_names(struct audit_context *context)
 801{
 802	int i;
 803
 804#if AUDIT_DEBUG == 2
 805	if (context->put_count + context->ino_count != context->name_count) {
 806		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 807		       " name_count=%d put_count=%d"
 808		       " ino_count=%d [NOT freeing]\n",
 809		       __FILE__, __LINE__,
 810		       context->serial, context->major, context->in_syscall,
 811		       context->name_count, context->put_count,
 812		       context->ino_count);
 813		for (i = 0; i < context->name_count; i++) {
 814			printk(KERN_ERR "names[%d] = %p = %s\n", i,
 815			       context->names[i].name,
 816			       context->names[i].name ?: "(null)");
 817		}
 818		dump_stack();
 819		return;
 820	}
 821#endif
 822#if AUDIT_DEBUG
 823	context->put_count  = 0;
 824	context->ino_count  = 0;
 825#endif
 826
 827	for (i = 0; i < context->name_count; i++) {
 828		if (context->names[i].name && context->names[i].name_put)
 829			__putname(context->names[i].name);
 830	}
 831	context->name_count = 0;
 832	path_put(&context->pwd);
 833	context->pwd.dentry = NULL;
 834	context->pwd.mnt = NULL;
 835}
 836
 837static inline void audit_free_aux(struct audit_context *context)
 838{
 839	struct audit_aux_data *aux;
 840
 841	while ((aux = context->aux)) {
 842		context->aux = aux->next;
 843		kfree(aux);
 844	}
 
 845	while ((aux = context->aux_pids)) {
 846		context->aux_pids = aux->next;
 847		kfree(aux);
 848	}
 
 849}
 850
 851static inline void audit_zero_context(struct audit_context *context,
 852				      enum audit_state state)
 
 
 
 
 
 
 
 
 853{
 854	memset(context, 0, sizeof(*context));
 855	context->state      = state;
 856	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 857}
 858
 859static inline struct audit_context *audit_alloc_context(enum audit_state state)
 860{
 861	struct audit_context *context;
 862
 863	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 
 864		return NULL;
 865	audit_zero_context(context, state);
 
 
 866	INIT_LIST_HEAD(&context->killed_trees);
 
 
 
 867	return context;
 868}
 869
 870/**
 871 * audit_alloc - allocate an audit context block for a task
 872 * @tsk: task
 873 *
 874 * Filter on the task information and allocate a per-task audit context
 875 * if necessary.  Doing so turns on system call auditing for the
 876 * specified task.  This is called from copy_process, so no lock is
 877 * needed.
 878 */
 879int audit_alloc(struct task_struct *tsk)
 880{
 881	struct audit_context *context;
 882	enum audit_state     state;
 883	char *key = NULL;
 884
 885	if (likely(!audit_ever_enabled))
 886		return 0; /* Return if not auditing. */
 887
 888	state = audit_filter_task(tsk, &key);
 889	if (likely(state == AUDIT_DISABLED))
 
 890		return 0;
 
 891
 892	if (!(context = audit_alloc_context(state))) {
 
 893		kfree(key);
 894		audit_log_lost("out of memory in audit_alloc");
 895		return -ENOMEM;
 896	}
 897	context->filterkey = key;
 898
 899	tsk->audit_context  = context;
 900	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 901	return 0;
 902}
 903
 904static inline void audit_free_context(struct audit_context *context)
 905{
 906	struct audit_context *previous;
 907	int		     count = 0;
 908
 909	do {
 910		previous = context->previous;
 911		if (previous || (count &&  count < 10)) {
 912			++count;
 913			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 914			       " freeing multiple contexts (%d)\n",
 915			       context->serial, context->major,
 916			       context->name_count, count);
 917		}
 918		audit_free_names(context);
 919		unroll_tree_refs(context, NULL, 0);
 920		free_tree_refs(context);
 921		audit_free_aux(context);
 922		kfree(context->filterkey);
 923		kfree(context->sockaddr);
 924		kfree(context);
 925		context  = previous;
 926	} while (context);
 927	if (count >= 10)
 928		printk(KERN_ERR "audit: freed %d contexts\n", count);
 929}
 930
 931void audit_log_task_context(struct audit_buffer *ab)
 932{
 933	char *ctx = NULL;
 934	unsigned len;
 935	int error;
 936	u32 sid;
 937
 938	security_task_getsecid(current, &sid);
 939	if (!sid)
 940		return;
 941
 942	error = security_secid_to_secctx(sid, &ctx, &len);
 943	if (error) {
 944		if (error != -EINVAL)
 945			goto error_path;
 946		return;
 947	}
 948
 949	audit_log_format(ab, " subj=%s", ctx);
 950	security_release_secctx(ctx, len);
 951	return;
 952
 953error_path:
 954	audit_panic("error in audit_log_task_context");
 955	return;
 956}
 957
 958EXPORT_SYMBOL(audit_log_task_context);
 959
 960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 961{
 962	char name[sizeof(tsk->comm)];
 963	struct mm_struct *mm = tsk->mm;
 964	struct vm_area_struct *vma;
 965
 966	/* tsk == current */
 967
 968	get_task_comm(name, tsk);
 969	audit_log_format(ab, " comm=");
 970	audit_log_untrustedstring(ab, name);
 971
 972	if (mm) {
 973		down_read(&mm->mmap_sem);
 974		vma = mm->mmap;
 975		while (vma) {
 976			if ((vma->vm_flags & VM_EXECUTABLE) &&
 977			    vma->vm_file) {
 978				audit_log_d_path(ab, "exe=",
 979						 &vma->vm_file->f_path);
 980				break;
 981			}
 982			vma = vma->vm_next;
 983		}
 984		up_read(&mm->mmap_sem);
 985	}
 986	audit_log_task_context(ab);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990				 uid_t auid, uid_t uid, unsigned int sessionid,
 991				 u32 sid, char *comm)
 
 992{
 993	struct audit_buffer *ab;
 994	char *ctx = NULL;
 995	u32 len;
 996	int rc = 0;
 997
 998	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999	if (!ab)
1000		return rc;
1001
1002	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003			 uid, sessionid);
1004	if (security_secid_to_secctx(sid, &ctx, &len)) {
1005		audit_log_format(ab, " obj=(none)");
1006		rc = 1;
1007	} else {
1008		audit_log_format(ab, " obj=%s", ctx);
1009		security_release_secctx(ctx, len);
 
 
 
1010	}
1011	audit_log_format(ab, " ocomm=");
1012	audit_log_untrustedstring(ab, comm);
1013	audit_log_end(ab);
1014
1015	return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates.  We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message.  In one 7500 byte message we can log up to
1026 * about 1000 min size arguments.  That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030					struct audit_buffer **ab,
1031					int arg_num,
1032					size_t *len_sent,
1033					const char __user *p,
1034					char *buf)
1035{
1036	char arg_num_len_buf[12];
1037	const char __user *tmp_p = p;
1038	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040	size_t len, len_left, to_send;
1041	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042	unsigned int i, has_cntl = 0, too_long = 0;
1043	int ret;
1044
1045	/* strnlen_user includes the null we don't want to send */
1046	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1047
1048	/*
1049	 * We just created this mm, if we can't find the strings
1050	 * we just copied into it something is _very_ wrong. Similar
1051	 * for strings that are too long, we should not have created
1052	 * any.
1053	 */
1054	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055		WARN_ON(1);
1056		send_sig(SIGKILL, current, 0);
1057		return -1;
1058	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	/* walk the whole argument looking for non-ascii chars */
1061	do {
1062		if (len_left > MAX_EXECVE_AUDIT_LEN)
1063			to_send = MAX_EXECVE_AUDIT_LEN;
1064		else
1065			to_send = len_left;
1066		ret = copy_from_user(buf, tmp_p, to_send);
1067		/*
1068		 * There is no reason for this copy to be short. We just
1069		 * copied them here, and the mm hasn't been exposed to user-
1070		 * space yet.
1071		 */
1072		if (ret) {
1073			WARN_ON(1);
1074			send_sig(SIGKILL, current, 0);
1075			return -1;
1076		}
1077		buf[to_send] = '\0';
1078		has_cntl = audit_string_contains_control(buf, to_send);
1079		if (has_cntl) {
1080			/*
1081			 * hex messages get logged as 2 bytes, so we can only
1082			 * send half as much in each message
1083			 */
1084			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085			break;
1086		}
1087		len_left -= to_send;
1088		tmp_p += to_send;
1089	} while (len_left > 0);
1090
1091	len_left = len;
1092
1093	if (len > max_execve_audit_len)
1094		too_long = 1;
1095
1096	/* rewalk the argument actually logging the message */
1097	for (i = 0; len_left > 0; i++) {
1098		int room_left;
1099
1100		if (len_left > max_execve_audit_len)
1101			to_send = max_execve_audit_len;
1102		else
1103			to_send = len_left;
1104
1105		/* do we have space left to send this argument in this ab? */
1106		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107		if (has_cntl)
1108			room_left -= (to_send * 2);
1109		else
1110			room_left -= to_send;
1111		if (room_left < 0) {
1112			*len_sent = 0;
1113			audit_log_end(*ab);
1114			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115			if (!*ab)
1116				return 0;
1117		}
1118
1119		/*
1120		 * first record needs to say how long the original string was
1121		 * so we can be sure nothing was lost.
1122		 */
1123		if ((i == 0) && (too_long))
1124			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125					 has_cntl ? 2*len : len);
 
 
 
 
 
 
 
1126
1127		/*
1128		 * normally arguments are small enough to fit and we already
1129		 * filled buf above when we checked for control characters
1130		 * so don't bother with another copy_from_user
1131		 */
1132		if (len >= max_execve_audit_len)
1133			ret = copy_from_user(buf, p, to_send);
1134		else
1135			ret = 0;
1136		if (ret) {
1137			WARN_ON(1);
1138			send_sig(SIGKILL, current, 0);
1139			return -1;
1140		}
1141		buf[to_send] = '\0';
1142
1143		/* actually log it */
1144		audit_log_format(*ab, " a%d", arg_num);
1145		if (too_long)
1146			audit_log_format(*ab, "[%d]", i);
1147		audit_log_format(*ab, "=");
1148		if (has_cntl)
1149			audit_log_n_hex(*ab, buf, to_send);
1150		else
1151			audit_log_string(*ab, buf);
1152
1153		p += to_send;
1154		len_left -= to_send;
1155		*len_sent += arg_num_len;
1156		if (has_cntl)
1157			*len_sent += to_send * 2;
1158		else
1159			*len_sent += to_send;
1160	}
1161	/* include the null we didn't log */
1162	return len + 1;
1163}
 
 
 
 
 
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166				  struct audit_buffer **ab,
1167				  struct audit_aux_data_execve *axi)
1168{
1169	int i;
1170	size_t len, len_sent = 0;
1171	const char __user *p;
1172	char *buf;
1173
1174	if (axi->mm != current->mm)
1175		return; /* execve failed, no additional info */
1176
1177	p = (const char __user *)axi->mm->arg_start;
1178
1179	audit_log_format(*ab, "argc=%d", axi->argc);
1180
1181	/*
1182	 * we need some kernel buffer to hold the userspace args.  Just
1183	 * allocate one big one rather than allocating one of the right size
1184	 * for every single argument inside audit_log_single_execve_arg()
1185	 * should be <8k allocation so should be pretty safe.
1186	 */
1187	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188	if (!buf) {
1189		audit_panic("out of memory for argv string\n");
1190		return;
1191	}
1192
1193	for (i = 0; i < axi->argc; i++) {
1194		len = audit_log_single_execve_arg(context, ab, i,
1195						  &len_sent, p, buf);
1196		if (len <= 0)
1197			break;
1198		p += len;
1199	}
1200	kfree(buf);
1201}
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
 
1204{
1205	int i;
1206
1207	audit_log_format(ab, " %s=", prefix);
1208	CAP_FOR_EACH_U32(i) {
1209		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210	}
 
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215	kernel_cap_t *perm = &name->fcap.permitted;
1216	kernel_cap_t *inh = &name->fcap.inheritable;
1217	int log = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219	if (!cap_isclear(*perm)) {
1220		audit_log_cap(ab, "cap_fp", perm);
1221		log = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1222	}
1223	if (!cap_isclear(*inh)) {
1224		audit_log_cap(ab, "cap_fi", inh);
1225		log = 1;
 
 
 
 
 
 
 
 
1226	}
1227
1228	if (log)
1229		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234	struct audit_buffer *ab;
1235	int i;
1236
1237	ab = audit_log_start(context, GFP_KERNEL, context->type);
1238	if (!ab)
1239		return;
1240
1241	switch (context->type) {
1242	case AUDIT_SOCKETCALL: {
1243		int nargs = context->socketcall.nargs;
 
1244		audit_log_format(ab, "nargs=%d", nargs);
1245		for (i = 0; i < nargs; i++)
1246			audit_log_format(ab, " a%d=%lx", i,
1247				context->socketcall.args[i]);
1248		break; }
1249	case AUDIT_IPC: {
1250		u32 osid = context->ipc.osid;
1251
1252		audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254		if (osid) {
1255			char *ctx = NULL;
1256			u32 len;
1257			if (security_secid_to_secctx(osid, &ctx, &len)) {
1258				audit_log_format(ab, " osid=%u", osid);
 
1259				*call_panic = 1;
1260			} else {
1261				audit_log_format(ab, " obj=%s", ctx);
1262				security_release_secctx(ctx, len);
1263			}
1264		}
1265		if (context->ipc.has_perm) {
1266			audit_log_end(ab);
1267			ab = audit_log_start(context, GFP_KERNEL,
1268					     AUDIT_IPC_SET_PERM);
 
 
1269			audit_log_format(ab,
1270				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271				context->ipc.qbytes,
1272				context->ipc.perm_uid,
1273				context->ipc.perm_gid,
1274				context->ipc.perm_mode);
1275			if (!ab)
1276				return;
1277		}
1278		break; }
1279	case AUDIT_MQ_OPEN: {
1280		audit_log_format(ab,
1281			"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282			"mq_msgsize=%ld mq_curmsgs=%ld",
1283			context->mq_open.oflag, context->mq_open.mode,
1284			context->mq_open.attr.mq_flags,
1285			context->mq_open.attr.mq_maxmsg,
1286			context->mq_open.attr.mq_msgsize,
1287			context->mq_open.attr.mq_curmsgs);
1288		break; }
1289	case AUDIT_MQ_SENDRECV: {
1290		audit_log_format(ab,
1291			"mqdes=%d msg_len=%zd msg_prio=%u "
1292			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293			context->mq_sendrecv.mqdes,
1294			context->mq_sendrecv.msg_len,
1295			context->mq_sendrecv.msg_prio,
1296			context->mq_sendrecv.abs_timeout.tv_sec,
1297			context->mq_sendrecv.abs_timeout.tv_nsec);
1298		break; }
1299	case AUDIT_MQ_NOTIFY: {
1300		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301				context->mq_notify.mqdes,
1302				context->mq_notify.sigev_signo);
1303		break; }
1304	case AUDIT_MQ_GETSETATTR: {
1305		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
 
1306		audit_log_format(ab,
1307			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308			"mq_curmsgs=%ld ",
1309			context->mq_getsetattr.mqdes,
1310			attr->mq_flags, attr->mq_maxmsg,
1311			attr->mq_msgsize, attr->mq_curmsgs);
1312		break; }
1313	case AUDIT_CAPSET: {
1314		audit_log_format(ab, "pid=%d", context->capset.pid);
1315		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318		break; }
1319	case AUDIT_MMAP: {
 
1320		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321				 context->mmap.flags);
1322		break; }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1323	}
1324	audit_log_end(ab);
1325}
1326
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1328{
1329	const struct cred *cred;
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	const char *tty;
1334
1335	/* tsk == current */
1336	context->pid = tsk->pid;
1337	if (!context->ppid)
1338		context->ppid = sys_getppid();
1339	cred = current_cred();
1340	context->uid   = cred->uid;
1341	context->gid   = cred->gid;
1342	context->euid  = cred->euid;
1343	context->suid  = cred->suid;
1344	context->fsuid = cred->fsuid;
1345	context->egid  = cred->egid;
1346	context->sgid  = cred->sgid;
1347	context->fsgid = cred->fsgid;
1348	context->personality = tsk->personality;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1349
1350	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351	if (!ab)
1352		return;		/* audit_panic has been called */
1353	audit_log_format(ab, "arch=%x syscall=%d",
1354			 context->arch, context->major);
1355	if (context->personality != PER_LINUX)
1356		audit_log_format(ab, " per=%lx", context->personality);
1357	if (context->return_valid)
1358		audit_log_format(ab, " success=%s exit=%ld",
1359				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360				 context->return_code);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1361
1362	spin_lock_irq(&tsk->sighand->siglock);
1363	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364		tty = tsk->signal->tty->name;
1365	else
1366		tty = "(none)";
1367	spin_unlock_irq(&tsk->sighand->siglock);
 
 
1368
 
 
 
 
 
 
 
 
 
 
1369	audit_log_format(ab,
1370		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372		  " euid=%u suid=%u fsuid=%u"
1373		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374		  context->argv[0],
1375		  context->argv[1],
1376		  context->argv[2],
1377		  context->argv[3],
1378		  context->name_count,
1379		  context->ppid,
1380		  context->pid,
1381		  tsk->loginuid,
1382		  context->uid,
1383		  context->gid,
1384		  context->euid, context->suid, context->fsuid,
1385		  context->egid, context->sgid, context->fsgid, tty,
1386		  tsk->sessionid);
 
 
 
 
 
 
 
 
1387
 
1388
1389	audit_log_task_info(ab, tsk);
1390	audit_log_key(ab, context->filterkey);
1391	audit_log_end(ab);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1392
1393	for (aux = context->aux; aux; aux = aux->next) {
1394
1395		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396		if (!ab)
1397			continue; /* audit_panic has been called */
1398
1399		switch (aux->type) {
1400
1401		case AUDIT_EXECVE: {
1402			struct audit_aux_data_execve *axi = (void *)aux;
1403			audit_log_execve_info(context, &ab, axi);
1404			break; }
1405
1406		case AUDIT_BPRM_FCAPS: {
1407			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
 
1408			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
 
 
 
 
 
1418			break; }
1419
1420		}
1421		audit_log_end(ab);
1422	}
1423
1424	if (context->type)
1425		show_special(context, &call_panic);
1426
1427	if (context->fds[0] >= 0) {
1428		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429		if (ab) {
1430			audit_log_format(ab, "fd0=%d fd1=%d",
1431					context->fds[0], context->fds[1]);
1432			audit_log_end(ab);
1433		}
1434	}
1435
1436	if (context->sockaddr_len) {
1437		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438		if (ab) {
1439			audit_log_format(ab, "saddr=");
1440			audit_log_n_hex(ab, (void *)context->sockaddr,
1441					context->sockaddr_len);
1442			audit_log_end(ab);
1443		}
1444	}
1445
1446	for (aux = context->aux_pids; aux; aux = aux->next) {
1447		struct audit_aux_data_pids *axs = (void *)aux;
1448
1449		for (i = 0; i < axs->pid_count; i++)
1450			if (audit_log_pid_context(context, axs->target_pid[i],
1451						  axs->target_auid[i],
1452						  axs->target_uid[i],
1453						  axs->target_sessionid[i],
1454						  axs->target_sid[i],
1455						  axs->target_comm[i]))
1456				call_panic = 1;
1457	}
1458
1459	if (context->target_pid &&
1460	    audit_log_pid_context(context, context->target_pid,
1461				  context->target_auid, context->target_uid,
1462				  context->target_sessionid,
1463				  context->target_sid, context->target_comm))
1464			call_panic = 1;
1465
1466	if (context->pwd.dentry && context->pwd.mnt) {
1467		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468		if (ab) {
1469			audit_log_d_path(ab, "cwd=", &context->pwd);
1470			audit_log_end(ab);
1471		}
1472	}
1473	for (i = 0; i < context->name_count; i++) {
1474		struct audit_names *n = &context->names[i];
1475
1476		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477		if (!ab)
1478			continue; /* audit_panic has been called */
 
 
 
1479
1480		audit_log_format(ab, "item=%d", i);
1481
1482		if (n->name) {
1483			switch(n->name_len) {
1484			case AUDIT_NAME_FULL:
1485				/* log the full path */
1486				audit_log_format(ab, " name=");
1487				audit_log_untrustedstring(ab, n->name);
1488				break;
1489			case 0:
1490				/* name was specified as a relative path and the
1491				 * directory component is the cwd */
1492				audit_log_d_path(ab, "name=", &context->pwd);
1493				break;
1494			default:
1495				/* log the name's directory component */
1496				audit_log_format(ab, " name=");
1497				audit_log_n_untrustedstring(ab, n->name,
1498							    n->name_len);
1499			}
1500		} else
1501			audit_log_format(ab, " name=(null)");
1502
1503		if (n->ino != (unsigned long)-1) {
1504			audit_log_format(ab, " inode=%lu"
1505					 " dev=%02x:%02x mode=%#o"
1506					 " ouid=%u ogid=%u rdev=%02x:%02x",
1507					 n->ino,
1508					 MAJOR(n->dev),
1509					 MINOR(n->dev),
1510					 n->mode,
1511					 n->uid,
1512					 n->gid,
1513					 MAJOR(n->rdev),
1514					 MINOR(n->rdev));
1515		}
1516		if (n->osid != 0) {
1517			char *ctx = NULL;
1518			u32 len;
1519			if (security_secid_to_secctx(
1520				n->osid, &ctx, &len)) {
1521				audit_log_format(ab, " osid=%u", n->osid);
1522				call_panic = 2;
1523			} else {
1524				audit_log_format(ab, " obj=%s", ctx);
1525				security_release_secctx(ctx, len);
1526			}
1527		}
1528
1529		audit_log_fcaps(ab, n);
1530
1531		audit_log_end(ab);
1532	}
1533
1534	/* Send end of event record to help user space know we are finished */
1535	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536	if (ab)
1537		audit_log_end(ab);
1538	if (call_panic)
1539		audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550	struct audit_context *context;
1551
1552	context = audit_get_context(tsk, 0, 0);
1553	if (likely(!context))
1554		return;
1555
1556	/* Check for system calls that do not go through the exit
1557	 * function (e.g., exit_group), then free context block.
1558	 * We use GFP_ATOMIC here because we might be doing this
1559	 * in the context of the idle thread */
1560	/* that can happen only if we are called from do_exit() */
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1565
 
1566	audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry.  This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built.  If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587			 unsigned long a1, unsigned long a2,
1588			 unsigned long a3, unsigned long a4)
1589{
1590	struct task_struct *tsk = current;
1591	struct audit_context *context = tsk->audit_context;
1592	enum audit_state     state;
1593
1594	if (unlikely(!context))
1595		return;
1596
1597	/*
1598	 * This happens only on certain architectures that make system
1599	 * calls in kernel_thread via the entry.S interface, instead of
1600	 * with direct calls.  (If you are porting to a new
1601	 * architecture, hitting this condition can indicate that you
1602	 * got the _exit/_leave calls backward in entry.S.)
1603	 *
1604	 * i386     no
1605	 * x86_64   no
1606	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1607	 *
1608	 * This also happens with vm86 emulation in a non-nested manner
1609	 * (entries without exits), so this case must be caught.
1610	 */
1611	if (context->in_syscall) {
1612		struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615		printk(KERN_ERR
1616		       "audit(:%d) pid=%d in syscall=%d;"
1617		       " entering syscall=%d\n",
1618		       context->serial, tsk->pid, context->major, major);
1619#endif
1620		newctx = audit_alloc_context(context->state);
1621		if (newctx) {
1622			newctx->previous   = context;
1623			context		   = newctx;
1624			tsk->audit_context = newctx;
1625		} else	{
1626			/* If we can't alloc a new context, the best we
1627			 * can do is to leak memory (any pending putname
1628			 * will be lost).  The only other alternative is
1629			 * to abandon auditing. */
1630			audit_zero_context(context, context->state);
1631		}
1632	}
1633	BUG_ON(context->in_syscall || context->name_count);
1634
1635	if (!audit_enabled)
 
1636		return;
1637
1638	context->arch	    = arch;
 
 
 
 
 
 
 
1639	context->major      = major;
1640	context->argv[0]    = a1;
1641	context->argv[1]    = a2;
1642	context->argv[2]    = a3;
1643	context->argv[3]    = a4;
1644
1645	state = context->state;
1646	context->dummy = !audit_n_rules;
1647	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648		context->prio = 0;
1649		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650	}
1651	if (likely(state == AUDIT_DISABLED))
1652		return;
1653
1654	context->serial     = 0;
1655	context->ctime      = CURRENT_TIME;
1656	context->in_syscall = 1;
1657	context->current_state  = state;
1658	context->ppid       = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663	struct audit_context *ctx = current->audit_context;
1664	struct audit_context *p = child->audit_context;
1665	if (!p || !ctx)
1666		return;
1667	if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668		return;
1669	p->arch = ctx->arch;
1670	p->major = ctx->major;
1671	memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672	p->ctime = ctx->ctime;
1673	p->dummy = ctx->dummy;
1674	p->in_syscall = ctx->in_syscall;
1675	p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676	p->ppid = current->pid;
1677	p->prio = ctx->prio;
1678	p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call.  If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information.  In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694	struct task_struct *tsk = current;
1695	struct audit_context *context;
1696
1697	context = audit_get_context(tsk, valid, return_code);
 
 
1698
1699	if (likely(!context))
1700		return;
 
1701
1702	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703		audit_log_exit(context, tsk);
 
 
 
 
1704
1705	context->in_syscall = 0;
1706	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708	if (!list_empty(&context->killed_trees))
1709		audit_kill_trees(&context->killed_trees);
1710
1711	if (context->previous) {
1712		struct audit_context *new_context = context->previous;
1713		context->previous  = NULL;
1714		audit_free_context(context);
1715		tsk->audit_context = new_context;
1716	} else {
1717		audit_free_names(context);
1718		unroll_tree_refs(context, NULL, 0);
1719		audit_free_aux(context);
1720		context->aux = NULL;
1721		context->aux_pids = NULL;
1722		context->target_pid = 0;
1723		context->target_sid = 0;
1724		context->sockaddr_len = 0;
1725		context->type = 0;
1726		context->fds[0] = -1;
1727		if (context->state != AUDIT_RECORD_CONTEXT) {
1728			kfree(context->filterkey);
1729			context->filterkey = NULL;
1730		}
1731		tsk->audit_context = context;
1732	}
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738	struct audit_context *context;
1739	struct audit_tree_refs *p;
1740	struct audit_chunk *chunk;
1741	int count;
1742	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
 
1743		return;
1744	context = current->audit_context;
1745	p = context->trees;
1746	count = context->tree_count;
1747	rcu_read_lock();
1748	chunk = audit_tree_lookup(inode);
1749	rcu_read_unlock();
1750	if (!chunk)
1751		return;
1752	if (likely(put_tree_ref(context, chunk)))
1753		return;
1754	if (unlikely(!grow_tree_refs(context))) {
1755		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756		audit_set_auditable(context);
1757		audit_put_chunk(chunk);
1758		unroll_tree_refs(context, p, count);
1759		return;
1760	}
1761	put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768	struct audit_context *context;
1769	struct audit_tree_refs *p;
1770	const struct dentry *d, *parent;
1771	struct audit_chunk *drop;
1772	unsigned long seq;
1773	int count;
1774
1775	context = current->audit_context;
1776	p = context->trees;
1777	count = context->tree_count;
1778retry:
1779	drop = NULL;
1780	d = dentry;
1781	rcu_read_lock();
1782	seq = read_seqbegin(&rename_lock);
1783	for(;;) {
1784		struct inode *inode = d->d_inode;
1785		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
 
1786			struct audit_chunk *chunk;
 
1787			chunk = audit_tree_lookup(inode);
1788			if (chunk) {
1789				if (unlikely(!put_tree_ref(context, chunk))) {
1790					drop = chunk;
1791					break;
1792				}
1793			}
1794		}
1795		parent = d->d_parent;
1796		if (parent == d)
1797			break;
1798		d = parent;
1799	}
1800	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1801		rcu_read_unlock();
1802		if (!drop) {
1803			/* just a race with rename */
1804			unroll_tree_refs(context, p, count);
1805			goto retry;
1806		}
1807		audit_put_chunk(drop);
1808		if (grow_tree_refs(context)) {
1809			/* OK, got more space */
1810			unroll_tree_refs(context, p, count);
1811			goto retry;
1812		}
1813		/* too bad */
1814		printk(KERN_WARNING
1815			"out of memory, audit has lost a tree reference\n");
1816		unroll_tree_refs(context, p, count);
1817		audit_set_auditable(context);
1818		return;
1819	}
1820	rcu_read_unlock();
1821#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833	struct audit_context *context = current->audit_context;
 
1834
1835	if (IS_ERR(name) || !name)
1836		return;
1837
1838	if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841		       __FILE__, __LINE__, context->serial, name);
1842		dump_stack();
1843#endif
1844		return;
1845	}
1846	BUG_ON(context->name_count >= AUDIT_NAMES);
1847	context->names[context->name_count].name = name;
1848	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849	context->names[context->name_count].name_put = 1;
1850	context->names[context->name_count].ino  = (unsigned long)-1;
1851	context->names[context->name_count].osid = 0;
1852	++context->name_count;
1853	if (!context->pwd.dentry)
1854		get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
1865{
1866	struct audit_context *context = current->audit_context;
1867
1868	BUG_ON(!context);
1869	if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872		       __FILE__, __LINE__, context->serial, name);
1873		if (context->name_count) {
1874			int i;
1875			for (i = 0; i < context->name_count; i++)
1876				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877				       context->names[i].name,
1878				       context->names[i].name ?: "(null)");
1879		}
1880#endif
1881		__putname(name);
1882	}
1883#if AUDIT_DEBUG
1884	else {
1885		++context->put_count;
1886		if (context->put_count > context->name_count) {
1887			printk(KERN_ERR "%s:%d(:%d): major=%d"
1888			       " in_syscall=%d putname(%p) name_count=%d"
1889			       " put_count=%d\n",
1890			       __FILE__, __LINE__,
1891			       context->serial, context->major,
1892			       context->in_syscall, name, context->name_count,
1893			       context->put_count);
1894			dump_stack();
1895		}
1896	}
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901				const struct inode *inode)
1902{
1903	if (context->name_count >= AUDIT_NAMES) {
1904		if (inode)
1905			printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906			       "dev=%02x:%02x, inode=%lu\n",
1907			       MAJOR(inode->i_sb->s_dev),
1908			       MINOR(inode->i_sb->s_dev),
1909			       inode->i_ino);
1910
1911		else
1912			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913		return 1;
1914	}
1915	context->name_count++;
1916#if AUDIT_DEBUG
1917	context->ino_count++;
1918#endif
1919	return 0;
1920}
1921
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925	struct cpu_vfs_cap_data caps;
1926	int rc;
1927
1928	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930	name->fcap.fE = 0;
1931	name->fcap_ver = 0;
1932
1933	if (!dentry)
1934		return 0;
1935
1936	rc = get_vfs_caps_from_disk(dentry, &caps);
1937	if (rc)
1938		return rc;
1939
1940	name->fcap.permitted = caps.permitted;
1941	name->fcap.inheritable = caps.inheritable;
1942	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
 
 
1944
1945	return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951			     const struct inode *inode)
 
1952{
1953	name->ino   = inode->i_ino;
1954	name->dev   = inode->i_sb->s_dev;
1955	name->mode  = inode->i_mode;
1956	name->uid   = inode->i_uid;
1957	name->gid   = inode->i_gid;
1958	name->rdev  = inode->i_rdev;
1959	security_inode_getsecid(inode, &name->osid);
 
 
 
 
1960	audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
 
1971{
1972	int idx;
1973	struct audit_context *context = current->audit_context;
1974	const struct inode *inode = dentry->d_inode;
1975
1976	if (!context->in_syscall)
1977		return;
1978	if (context->name_count
1979	    && context->names[context->name_count-1].name
1980	    && context->names[context->name_count-1].name == name)
1981		idx = context->name_count - 1;
1982	else if (context->name_count > 1
1983		 && context->names[context->name_count-2].name
1984		 && context->names[context->name_count-2].name == name)
1985		idx = context->name_count - 2;
1986	else {
1987		/* FIXME: how much do we care about inodes that have no
1988		 * associated name? */
1989		if (audit_inc_name_count(context, inode))
1990			return;
1991		idx = context->name_count - 1;
1992		context->names[idx].name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993	}
1994	handle_path(dentry);
1995	audit_copy_inode(&context->names[idx], dentry, inode);
 
 
 
 
 
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
 
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created.  Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012			 const struct inode *parent)
2013{
2014	int idx;
2015	struct audit_context *context = current->audit_context;
2016	const char *found_parent = NULL, *found_child = NULL;
2017	const struct inode *inode = dentry->d_inode;
2018	const char *dname = dentry->d_name.name;
2019	int dirlen = 0;
 
 
2020
2021	if (!context->in_syscall)
2022		return;
2023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024	if (inode)
2025		handle_one(inode);
2026
2027	/* parent is more likely, look for it first */
2028	for (idx = 0; idx < context->name_count; idx++) {
2029		struct audit_names *n = &context->names[idx];
2030
2031		if (!n->name)
2032			continue;
2033
2034		if (n->ino == parent->i_ino &&
2035		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036			n->name_len = dirlen; /* update parent data in place */
2037			found_parent = n->name;
2038			goto add_names;
 
 
2039		}
2040	}
2041
2042	/* no matching parent, look for matching child */
2043	for (idx = 0; idx < context->name_count; idx++) {
2044		struct audit_names *n = &context->names[idx];
2045
2046		if (!n->name)
 
 
 
 
2047			continue;
2048
2049		/* strcmp() is the more likely scenario */
2050		if (!strcmp(dname, n->name) ||
2051		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052			if (inode)
2053				audit_copy_inode(n, NULL, inode);
2054			else
2055				n->ino = (unsigned long)-1;
2056			found_child = n->name;
2057			goto add_names;
2058		}
2059	}
2060
2061add_names:
2062	if (!found_parent) {
2063		if (audit_inc_name_count(context, parent))
 
 
2064			return;
2065		idx = context->name_count - 1;
2066		context->names[idx].name = NULL;
2067		audit_copy_inode(&context->names[idx], NULL, parent);
2068	}
2069
2070	if (!found_child) {
2071		if (audit_inc_name_count(context, inode))
 
2072			return;
2073		idx = context->name_count - 1;
2074
2075		/* Re-use the name belonging to the slot for a matching parent
2076		 * directory. All names for this context are relinquished in
2077		 * audit_free_names() */
2078		if (found_parent) {
2079			context->names[idx].name = found_parent;
2080			context->names[idx].name_len = AUDIT_NAME_FULL;
2081			/* don't call __putname() */
2082			context->names[idx].name_put = 0;
2083		} else {
2084			context->names[idx].name = NULL;
2085		}
 
2086
2087		if (inode)
2088			audit_copy_inode(&context->names[idx], NULL, inode);
2089		else
2090			context->names[idx].ino = (unsigned long)-1;
2091	}
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104		       struct timespec *t, unsigned int *serial)
2105{
2106	if (!ctx->in_syscall)
2107		return 0;
2108	if (!ctx->serial)
2109		ctx->serial = audit_serial();
2110	t->tv_sec  = ctx->ctime.tv_sec;
2111	t->tv_nsec = ctx->ctime.tv_nsec;
2112	*serial    = ctx->serial;
2113	if (!ctx->prio) {
2114		ctx->prio = 1;
2115		ctx->current_state = AUDIT_RECORD_CONTEXT;
2116	}
2117	return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134	unsigned int sessionid = atomic_inc_return(&session_id);
2135	struct audit_context *context = task->audit_context;
2136
2137	if (context && context->in_syscall) {
2138		struct audit_buffer *ab;
2139
2140		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141		if (ab) {
2142			audit_log_format(ab, "login pid=%d uid=%u "
2143				"old auid=%u new auid=%u"
2144				" old ses=%u new ses=%u",
2145				task->pid, task_uid(task),
2146				task->loginuid, loginuid,
2147				task->sessionid, sessionid);
2148			audit_log_end(ab);
2149		}
2150	}
2151	task->sessionid = sessionid;
2152	task->loginuid = loginuid;
2153	return 0;
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165	struct audit_context *context = current->audit_context;
2166
2167	if (attr)
2168		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169	else
2170		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172	context->mq_open.oflag = oflag;
2173	context->mq_open.mode = mode;
2174
2175	context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187			const struct timespec *abs_timeout)
2188{
2189	struct audit_context *context = current->audit_context;
2190	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192	if (abs_timeout)
2193		memcpy(p, abs_timeout, sizeof(struct timespec));
2194	else
2195		memset(p, 0, sizeof(struct timespec));
2196
2197	context->mq_sendrecv.mqdes = mqdes;
2198	context->mq_sendrecv.msg_len = msg_len;
2199	context->mq_sendrecv.msg_prio = msg_prio;
2200
2201	context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (notification)
2216		context->mq_notify.sigev_signo = notification->sigev_signo;
2217	else
2218		context->mq_notify.sigev_signo = 0;
2219
2220	context->mq_notify.mqdes = mqdes;
2221	context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232	struct audit_context *context = current->audit_context;
 
2233	context->mq_getsetattr.mqdes = mqdes;
2234	context->mq_getsetattr.mqstat = *mqstat;
2235	context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245	struct audit_context *context = current->audit_context;
 
2246	context->ipc.uid = ipcp->uid;
2247	context->ipc.gid = ipcp->gid;
2248	context->ipc.mode = ipcp->mode;
2249	context->ipc.has_perm = 0;
2250	security_ipc_getsecid(ipcp, &context->ipc.osid);
2251	context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265	struct audit_context *context = current->audit_context;
2266
2267	context->ipc.qbytes = qbytes;
2268	context->ipc.perm_uid = uid;
2269	context->ipc.perm_gid = gid;
2270	context->ipc.perm_mode = mode;
2271	context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276	struct audit_aux_data_execve *ax;
2277	struct audit_context *context = current->audit_context;
2278
2279	if (likely(!audit_enabled || !context || context->dummy))
2280		return 0;
2281
2282	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283	if (!ax)
2284		return -ENOMEM;
2285
2286	ax->argc = bprm->argc;
2287	ax->envc = bprm->envc;
2288	ax->mm = bprm->mm;
2289	ax->d.type = AUDIT_EXECVE;
2290	ax->d.next = context->aux;
2291	context->aux = (void *)ax;
2292	return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304	struct audit_context *context = current->audit_context;
2305
2306	if (likely(!context || context->dummy))
2307		return;
2308
 
 
2309	context->type = AUDIT_SOCKETCALL;
2310	context->socketcall.nargs = nargs;
2311	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322	struct audit_context *context = current->audit_context;
 
2323	context->fds[0] = fd1;
2324	context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336	struct audit_context *context = current->audit_context;
2337
2338	if (likely(!context || context->dummy))
2339		return 0;
2340
2341	if (!context->sockaddr) {
2342		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
 
2343		if (!p)
2344			return -ENOMEM;
2345		context->sockaddr = p;
2346	}
2347
2348	context->sockaddr_len = len;
2349	memcpy(context->sockaddr, a, len);
2350	return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355	struct audit_context *context = current->audit_context;
2356
2357	context->target_pid = t->pid;
2358	context->target_auid = audit_get_loginuid(t);
2359	context->target_uid = task_uid(t);
2360	context->target_sessionid = audit_get_sessionid(t);
2361	security_task_getsecid(t, &context->target_sid);
2362	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375	struct audit_aux_data_pids *axp;
2376	struct task_struct *tsk = current;
2377	struct audit_context *ctx = tsk->audit_context;
2378	uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380	if (audit_pid && t->tgid == audit_pid) {
2381		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382			audit_sig_pid = tsk->pid;
2383			if (tsk->loginuid != -1)
2384				audit_sig_uid = tsk->loginuid;
2385			else
2386				audit_sig_uid = uid;
2387			security_task_getsecid(tsk, &audit_sig_sid);
2388		}
2389		if (!audit_signals || audit_dummy_context())
2390			return 0;
2391	}
2392
2393	/* optimize the common case by putting first signal recipient directly
2394	 * in audit_context */
2395	if (!ctx->target_pid) {
2396		ctx->target_pid = t->tgid;
2397		ctx->target_auid = audit_get_loginuid(t);
2398		ctx->target_uid = t_uid;
2399		ctx->target_sessionid = audit_get_sessionid(t);
2400		security_task_getsecid(t, &ctx->target_sid);
2401		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402		return 0;
2403	}
2404
2405	axp = (void *)ctx->aux_pids;
2406	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408		if (!axp)
2409			return -ENOMEM;
2410
2411		axp->d.type = AUDIT_OBJ_PID;
2412		axp->d.next = ctx->aux_pids;
2413		ctx->aux_pids = (void *)axp;
2414	}
2415	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417	axp->target_pid[axp->pid_count] = t->tgid;
2418	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419	axp->target_uid[axp->pid_count] = t_uid;
2420	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423	axp->pid_count++;
2424
2425	return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440			   const struct cred *new, const struct cred *old)
2441{
2442	struct audit_aux_data_bprm_fcaps *ax;
2443	struct audit_context *context = current->audit_context;
2444	struct cpu_vfs_cap_data vcaps;
2445	struct dentry *dentry;
2446
2447	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448	if (!ax)
2449		return -ENOMEM;
2450
2451	ax->d.type = AUDIT_BPRM_FCAPS;
2452	ax->d.next = context->aux;
2453	context->aux = (void *)ax;
2454
2455	dentry = dget(bprm->file->f_dentry);
2456	get_vfs_caps_from_disk(dentry, &vcaps);
2457	dput(dentry);
2458
2459	ax->fcap.permitted = vcaps.permitted;
2460	ax->fcap.inheritable = vcaps.inheritable;
2461	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
 
2462	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464	ax->old_pcap.permitted   = old->cap_permitted;
2465	ax->old_pcap.inheritable = old->cap_inheritable;
2466	ax->old_pcap.effective   = old->cap_effective;
 
2467
2468	ax->new_pcap.permitted   = new->cap_permitted;
2469	ax->new_pcap.inheritable = new->cap_inheritable;
2470	ax->new_pcap.effective   = new->cap_effective;
 
2471	return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484		       const struct cred *new, const struct cred *old)
2485{
2486	struct audit_context *context = current->audit_context;
2487	context->capset.pid = pid;
 
2488	context->capset.cap.effective   = new->cap_effective;
2489	context->capset.cap.inheritable = new->cap_effective;
2490	context->capset.cap.permitted   = new->cap_permitted;
 
2491	context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496	struct audit_context *context = current->audit_context;
 
2497	context->mmap.fd = fd;
2498	context->mmap.flags = flags;
2499	context->type = AUDIT_MMAP;
2500}
2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511	struct audit_buffer *ab;
2512	u32 sid;
2513	uid_t auid = audit_get_loginuid(current), uid;
2514	gid_t gid;
2515	unsigned int sessionid = audit_get_sessionid(current);
2516
2517	if (!audit_enabled)
2518		return;
2519
2520	if (signr == SIGQUIT)	/* don't care for those */
2521		return;
2522
2523	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524	current_uid_gid(&uid, &gid);
2525	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526			 auid, uid, gid, sessionid);
2527	security_task_getsecid(current, &sid);
2528	if (sid) {
2529		char *ctx = NULL;
2530		u32 len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2531
2532		if (security_secid_to_secctx(sid, &ctx, &len))
2533			audit_log_format(ab, " ssid=%u", sid);
2534		else {
2535			audit_log_format(ab, " subj=%s", ctx);
2536			security_release_secctx(ctx, len);
2537		}
2538	}
2539	audit_log_format(ab, " pid=%d comm=", current->pid);
2540	audit_log_untrustedstring(ab, current->comm);
2541	audit_log_format(ab, " sig=%ld", signr);
2542	audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547	struct audit_context *ctx = current->audit_context;
2548	if (likely(!ctx || !ctx->in_syscall))
2549		return NULL;
2550	return &ctx->killed_trees;
2551}