Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* auditfilter.c -- filtering of audit events
3 *
4 * Copyright 2003-2004 Red Hat, Inc.
5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
6 * Copyright 2005 IBM Corporation
7 */
8
9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11#include <linux/kernel.h>
12#include <linux/audit.h>
13#include <linux/kthread.h>
14#include <linux/mutex.h>
15#include <linux/fs.h>
16#include <linux/namei.h>
17#include <linux/netlink.h>
18#include <linux/sched.h>
19#include <linux/slab.h>
20#include <linux/security.h>
21#include <net/net_namespace.h>
22#include <net/sock.h>
23#include "audit.h"
24
25/*
26 * Locking model:
27 *
28 * audit_filter_mutex:
29 * Synchronizes writes and blocking reads of audit's filterlist
30 * data. Rcu is used to traverse the filterlist and access
31 * contents of structs audit_entry, audit_watch and opaque
32 * LSM rules during filtering. If modified, these structures
33 * must be copied and replace their counterparts in the filterlist.
34 * An audit_parent struct is not accessed during filtering, so may
35 * be written directly provided audit_filter_mutex is held.
36 */
37
38/* Audit filter lists, defined in <linux/audit.h> */
39struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
40 LIST_HEAD_INIT(audit_filter_list[0]),
41 LIST_HEAD_INIT(audit_filter_list[1]),
42 LIST_HEAD_INIT(audit_filter_list[2]),
43 LIST_HEAD_INIT(audit_filter_list[3]),
44 LIST_HEAD_INIT(audit_filter_list[4]),
45 LIST_HEAD_INIT(audit_filter_list[5]),
46 LIST_HEAD_INIT(audit_filter_list[6]),
47 LIST_HEAD_INIT(audit_filter_list[7]),
48#if AUDIT_NR_FILTERS != 8
49#error Fix audit_filter_list initialiser
50#endif
51};
52static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
53 LIST_HEAD_INIT(audit_rules_list[0]),
54 LIST_HEAD_INIT(audit_rules_list[1]),
55 LIST_HEAD_INIT(audit_rules_list[2]),
56 LIST_HEAD_INIT(audit_rules_list[3]),
57 LIST_HEAD_INIT(audit_rules_list[4]),
58 LIST_HEAD_INIT(audit_rules_list[5]),
59 LIST_HEAD_INIT(audit_rules_list[6]),
60 LIST_HEAD_INIT(audit_rules_list[7]),
61};
62
63DEFINE_MUTEX(audit_filter_mutex);
64
65static void audit_free_lsm_field(struct audit_field *f)
66{
67 switch (f->type) {
68 case AUDIT_SUBJ_USER:
69 case AUDIT_SUBJ_ROLE:
70 case AUDIT_SUBJ_TYPE:
71 case AUDIT_SUBJ_SEN:
72 case AUDIT_SUBJ_CLR:
73 case AUDIT_OBJ_USER:
74 case AUDIT_OBJ_ROLE:
75 case AUDIT_OBJ_TYPE:
76 case AUDIT_OBJ_LEV_LOW:
77 case AUDIT_OBJ_LEV_HIGH:
78 kfree(f->lsm_str);
79 security_audit_rule_free(f->lsm_rule);
80 }
81}
82
83static inline void audit_free_rule(struct audit_entry *e)
84{
85 int i;
86 struct audit_krule *erule = &e->rule;
87
88 /* some rules don't have associated watches */
89 if (erule->watch)
90 audit_put_watch(erule->watch);
91 if (erule->fields)
92 for (i = 0; i < erule->field_count; i++)
93 audit_free_lsm_field(&erule->fields[i]);
94 kfree(erule->fields);
95 kfree(erule->filterkey);
96 kfree(e);
97}
98
99void audit_free_rule_rcu(struct rcu_head *head)
100{
101 struct audit_entry *e = container_of(head, struct audit_entry, rcu);
102 audit_free_rule(e);
103}
104
105/* Initialize an audit filterlist entry. */
106static inline struct audit_entry *audit_init_entry(u32 field_count)
107{
108 struct audit_entry *entry;
109 struct audit_field *fields;
110
111 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
112 if (unlikely(!entry))
113 return NULL;
114
115 fields = kcalloc(field_count, sizeof(*fields), GFP_KERNEL);
116 if (unlikely(!fields)) {
117 kfree(entry);
118 return NULL;
119 }
120 entry->rule.fields = fields;
121
122 return entry;
123}
124
125/* Unpack a filter field's string representation from user-space
126 * buffer. */
127char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
128{
129 char *str;
130
131 if (!*bufp || (len == 0) || (len > *remain))
132 return ERR_PTR(-EINVAL);
133
134 /* Of the currently implemented string fields, PATH_MAX
135 * defines the longest valid length.
136 */
137 if (len > PATH_MAX)
138 return ERR_PTR(-ENAMETOOLONG);
139
140 str = kmalloc(len + 1, GFP_KERNEL);
141 if (unlikely(!str))
142 return ERR_PTR(-ENOMEM);
143
144 memcpy(str, *bufp, len);
145 str[len] = 0;
146 *bufp += len;
147 *remain -= len;
148
149 return str;
150}
151
152/* Translate an inode field to kernel representation. */
153static inline int audit_to_inode(struct audit_krule *krule,
154 struct audit_field *f)
155{
156 if ((krule->listnr != AUDIT_FILTER_EXIT &&
157 krule->listnr != AUDIT_FILTER_URING_EXIT) ||
158 krule->inode_f || krule->watch || krule->tree ||
159 (f->op != Audit_equal && f->op != Audit_not_equal))
160 return -EINVAL;
161
162 krule->inode_f = f;
163 return 0;
164}
165
166static __u32 *classes[AUDIT_SYSCALL_CLASSES];
167
168int __init audit_register_class(int class, unsigned *list)
169{
170 __u32 *p = kcalloc(AUDIT_BITMASK_SIZE, sizeof(__u32), GFP_KERNEL);
171 if (!p)
172 return -ENOMEM;
173 while (*list != ~0U) {
174 unsigned n = *list++;
175 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
176 kfree(p);
177 return -EINVAL;
178 }
179 p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
180 }
181 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
182 kfree(p);
183 return -EINVAL;
184 }
185 classes[class] = p;
186 return 0;
187}
188
189int audit_match_class(int class, unsigned syscall)
190{
191 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
192 return 0;
193 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
194 return 0;
195 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
196}
197
198#ifdef CONFIG_AUDITSYSCALL
199static inline int audit_match_class_bits(int class, u32 *mask)
200{
201 int i;
202
203 if (classes[class]) {
204 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
205 if (mask[i] & classes[class][i])
206 return 0;
207 }
208 return 1;
209}
210
211static int audit_match_signal(struct audit_entry *entry)
212{
213 struct audit_field *arch = entry->rule.arch_f;
214
215 if (!arch) {
216 /* When arch is unspecified, we must check both masks on biarch
217 * as syscall number alone is ambiguous. */
218 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
219 entry->rule.mask) &&
220 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
221 entry->rule.mask));
222 }
223
224 switch (audit_classify_arch(arch->val)) {
225 case 0: /* native */
226 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
227 entry->rule.mask));
228 case 1: /* 32bit on biarch */
229 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
230 entry->rule.mask));
231 default:
232 return 1;
233 }
234}
235#endif
236
237/* Common user-space to kernel rule translation. */
238static inline struct audit_entry *audit_to_entry_common(struct audit_rule_data *rule)
239{
240 unsigned listnr;
241 struct audit_entry *entry;
242 int i, err;
243
244 err = -EINVAL;
245 listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
246 switch (listnr) {
247 default:
248 goto exit_err;
249#ifdef CONFIG_AUDITSYSCALL
250 case AUDIT_FILTER_ENTRY:
251 pr_err("AUDIT_FILTER_ENTRY is deprecated\n");
252 goto exit_err;
253 case AUDIT_FILTER_EXIT:
254 case AUDIT_FILTER_URING_EXIT:
255 case AUDIT_FILTER_TASK:
256#endif
257 case AUDIT_FILTER_USER:
258 case AUDIT_FILTER_EXCLUDE:
259 case AUDIT_FILTER_FS:
260 ;
261 }
262 if (unlikely(rule->action == AUDIT_POSSIBLE)) {
263 pr_err("AUDIT_POSSIBLE is deprecated\n");
264 goto exit_err;
265 }
266 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
267 goto exit_err;
268 if (rule->field_count > AUDIT_MAX_FIELDS)
269 goto exit_err;
270
271 err = -ENOMEM;
272 entry = audit_init_entry(rule->field_count);
273 if (!entry)
274 goto exit_err;
275
276 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
277 entry->rule.listnr = listnr;
278 entry->rule.action = rule->action;
279 entry->rule.field_count = rule->field_count;
280
281 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
282 entry->rule.mask[i] = rule->mask[i];
283
284 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
285 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
286 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
287 __u32 *class;
288
289 if (!(*p & AUDIT_BIT(bit)))
290 continue;
291 *p &= ~AUDIT_BIT(bit);
292 class = classes[i];
293 if (class) {
294 int j;
295 for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
296 entry->rule.mask[j] |= class[j];
297 }
298 }
299
300 return entry;
301
302exit_err:
303 return ERR_PTR(err);
304}
305
306static u32 audit_ops[] =
307{
308 [Audit_equal] = AUDIT_EQUAL,
309 [Audit_not_equal] = AUDIT_NOT_EQUAL,
310 [Audit_bitmask] = AUDIT_BIT_MASK,
311 [Audit_bittest] = AUDIT_BIT_TEST,
312 [Audit_lt] = AUDIT_LESS_THAN,
313 [Audit_gt] = AUDIT_GREATER_THAN,
314 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
315 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
316};
317
318static u32 audit_to_op(u32 op)
319{
320 u32 n;
321 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
322 ;
323 return n;
324}
325
326/* check if an audit field is valid */
327static int audit_field_valid(struct audit_entry *entry, struct audit_field *f)
328{
329 switch (f->type) {
330 case AUDIT_MSGTYPE:
331 if (entry->rule.listnr != AUDIT_FILTER_EXCLUDE &&
332 entry->rule.listnr != AUDIT_FILTER_USER)
333 return -EINVAL;
334 break;
335 case AUDIT_FSTYPE:
336 if (entry->rule.listnr != AUDIT_FILTER_FS)
337 return -EINVAL;
338 break;
339 case AUDIT_PERM:
340 if (entry->rule.listnr == AUDIT_FILTER_URING_EXIT)
341 return -EINVAL;
342 break;
343 }
344
345 switch (entry->rule.listnr) {
346 case AUDIT_FILTER_FS:
347 switch (f->type) {
348 case AUDIT_FSTYPE:
349 case AUDIT_FILTERKEY:
350 break;
351 default:
352 return -EINVAL;
353 }
354 }
355
356 /* Check for valid field type and op */
357 switch (f->type) {
358 case AUDIT_ARG0:
359 case AUDIT_ARG1:
360 case AUDIT_ARG2:
361 case AUDIT_ARG3:
362 case AUDIT_PERS: /* <uapi/linux/personality.h> */
363 case AUDIT_DEVMINOR:
364 /* all ops are valid */
365 break;
366 case AUDIT_UID:
367 case AUDIT_EUID:
368 case AUDIT_SUID:
369 case AUDIT_FSUID:
370 case AUDIT_LOGINUID:
371 case AUDIT_OBJ_UID:
372 case AUDIT_GID:
373 case AUDIT_EGID:
374 case AUDIT_SGID:
375 case AUDIT_FSGID:
376 case AUDIT_OBJ_GID:
377 case AUDIT_PID:
378 case AUDIT_MSGTYPE:
379 case AUDIT_PPID:
380 case AUDIT_DEVMAJOR:
381 case AUDIT_EXIT:
382 case AUDIT_SUCCESS:
383 case AUDIT_INODE:
384 case AUDIT_SESSIONID:
385 case AUDIT_SUBJ_SEN:
386 case AUDIT_SUBJ_CLR:
387 case AUDIT_OBJ_LEV_LOW:
388 case AUDIT_OBJ_LEV_HIGH:
389 case AUDIT_SADDR_FAM:
390 /* bit ops are only useful on syscall args */
391 if (f->op == Audit_bitmask || f->op == Audit_bittest)
392 return -EINVAL;
393 break;
394 case AUDIT_SUBJ_USER:
395 case AUDIT_SUBJ_ROLE:
396 case AUDIT_SUBJ_TYPE:
397 case AUDIT_OBJ_USER:
398 case AUDIT_OBJ_ROLE:
399 case AUDIT_OBJ_TYPE:
400 case AUDIT_WATCH:
401 case AUDIT_DIR:
402 case AUDIT_FILTERKEY:
403 case AUDIT_LOGINUID_SET:
404 case AUDIT_ARCH:
405 case AUDIT_FSTYPE:
406 case AUDIT_PERM:
407 case AUDIT_FILETYPE:
408 case AUDIT_FIELD_COMPARE:
409 case AUDIT_EXE:
410 /* only equal and not equal valid ops */
411 if (f->op != Audit_not_equal && f->op != Audit_equal)
412 return -EINVAL;
413 break;
414 default:
415 /* field not recognized */
416 return -EINVAL;
417 }
418
419 /* Check for select valid field values */
420 switch (f->type) {
421 case AUDIT_LOGINUID_SET:
422 if ((f->val != 0) && (f->val != 1))
423 return -EINVAL;
424 break;
425 case AUDIT_PERM:
426 if (f->val & ~15)
427 return -EINVAL;
428 break;
429 case AUDIT_FILETYPE:
430 if (f->val & ~S_IFMT)
431 return -EINVAL;
432 break;
433 case AUDIT_FIELD_COMPARE:
434 if (f->val > AUDIT_MAX_FIELD_COMPARE)
435 return -EINVAL;
436 break;
437 case AUDIT_SADDR_FAM:
438 if (f->val >= AF_MAX)
439 return -EINVAL;
440 break;
441 default:
442 break;
443 }
444
445 return 0;
446}
447
448/* Translate struct audit_rule_data to kernel's rule representation. */
449static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
450 size_t datasz)
451{
452 int err = 0;
453 struct audit_entry *entry;
454 void *bufp;
455 size_t remain = datasz - sizeof(struct audit_rule_data);
456 int i;
457 char *str;
458 struct audit_fsnotify_mark *audit_mark;
459
460 entry = audit_to_entry_common(data);
461 if (IS_ERR(entry))
462 goto exit_nofree;
463
464 bufp = data->buf;
465 for (i = 0; i < data->field_count; i++) {
466 struct audit_field *f = &entry->rule.fields[i];
467 u32 f_val;
468
469 err = -EINVAL;
470
471 f->op = audit_to_op(data->fieldflags[i]);
472 if (f->op == Audit_bad)
473 goto exit_free;
474
475 f->type = data->fields[i];
476 f_val = data->values[i];
477
478 /* Support legacy tests for a valid loginuid */
479 if ((f->type == AUDIT_LOGINUID) && (f_val == AUDIT_UID_UNSET)) {
480 f->type = AUDIT_LOGINUID_SET;
481 f_val = 0;
482 entry->rule.pflags |= AUDIT_LOGINUID_LEGACY;
483 }
484
485 err = audit_field_valid(entry, f);
486 if (err)
487 goto exit_free;
488
489 err = -EINVAL;
490 switch (f->type) {
491 case AUDIT_LOGINUID:
492 case AUDIT_UID:
493 case AUDIT_EUID:
494 case AUDIT_SUID:
495 case AUDIT_FSUID:
496 case AUDIT_OBJ_UID:
497 f->uid = make_kuid(current_user_ns(), f_val);
498 if (!uid_valid(f->uid))
499 goto exit_free;
500 break;
501 case AUDIT_GID:
502 case AUDIT_EGID:
503 case AUDIT_SGID:
504 case AUDIT_FSGID:
505 case AUDIT_OBJ_GID:
506 f->gid = make_kgid(current_user_ns(), f_val);
507 if (!gid_valid(f->gid))
508 goto exit_free;
509 break;
510 case AUDIT_ARCH:
511 f->val = f_val;
512 entry->rule.arch_f = f;
513 break;
514 case AUDIT_SUBJ_USER:
515 case AUDIT_SUBJ_ROLE:
516 case AUDIT_SUBJ_TYPE:
517 case AUDIT_SUBJ_SEN:
518 case AUDIT_SUBJ_CLR:
519 case AUDIT_OBJ_USER:
520 case AUDIT_OBJ_ROLE:
521 case AUDIT_OBJ_TYPE:
522 case AUDIT_OBJ_LEV_LOW:
523 case AUDIT_OBJ_LEV_HIGH:
524 str = audit_unpack_string(&bufp, &remain, f_val);
525 if (IS_ERR(str)) {
526 err = PTR_ERR(str);
527 goto exit_free;
528 }
529 entry->rule.buflen += f_val;
530 f->lsm_str = str;
531 err = security_audit_rule_init(f->type, f->op, str,
532 (void **)&f->lsm_rule,
533 GFP_KERNEL);
534 /* Keep currently invalid fields around in case they
535 * become valid after a policy reload. */
536 if (err == -EINVAL) {
537 pr_warn("audit rule for LSM \'%s\' is invalid\n",
538 str);
539 err = 0;
540 } else if (err)
541 goto exit_free;
542 break;
543 case AUDIT_WATCH:
544 str = audit_unpack_string(&bufp, &remain, f_val);
545 if (IS_ERR(str)) {
546 err = PTR_ERR(str);
547 goto exit_free;
548 }
549 err = audit_to_watch(&entry->rule, str, f_val, f->op);
550 if (err) {
551 kfree(str);
552 goto exit_free;
553 }
554 entry->rule.buflen += f_val;
555 break;
556 case AUDIT_DIR:
557 str = audit_unpack_string(&bufp, &remain, f_val);
558 if (IS_ERR(str)) {
559 err = PTR_ERR(str);
560 goto exit_free;
561 }
562 err = audit_make_tree(&entry->rule, str, f->op);
563 kfree(str);
564 if (err)
565 goto exit_free;
566 entry->rule.buflen += f_val;
567 break;
568 case AUDIT_INODE:
569 f->val = f_val;
570 err = audit_to_inode(&entry->rule, f);
571 if (err)
572 goto exit_free;
573 break;
574 case AUDIT_FILTERKEY:
575 if (entry->rule.filterkey || f_val > AUDIT_MAX_KEY_LEN)
576 goto exit_free;
577 str = audit_unpack_string(&bufp, &remain, f_val);
578 if (IS_ERR(str)) {
579 err = PTR_ERR(str);
580 goto exit_free;
581 }
582 entry->rule.buflen += f_val;
583 entry->rule.filterkey = str;
584 break;
585 case AUDIT_EXE:
586 if (entry->rule.exe || f_val > PATH_MAX)
587 goto exit_free;
588 str = audit_unpack_string(&bufp, &remain, f_val);
589 if (IS_ERR(str)) {
590 err = PTR_ERR(str);
591 goto exit_free;
592 }
593 audit_mark = audit_alloc_mark(&entry->rule, str, f_val);
594 if (IS_ERR(audit_mark)) {
595 kfree(str);
596 err = PTR_ERR(audit_mark);
597 goto exit_free;
598 }
599 entry->rule.buflen += f_val;
600 entry->rule.exe = audit_mark;
601 break;
602 default:
603 f->val = f_val;
604 break;
605 }
606 }
607
608 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
609 entry->rule.inode_f = NULL;
610
611exit_nofree:
612 return entry;
613
614exit_free:
615 if (entry->rule.tree)
616 audit_put_tree(entry->rule.tree); /* that's the temporary one */
617 if (entry->rule.exe)
618 audit_remove_mark(entry->rule.exe); /* that's the template one */
619 audit_free_rule(entry);
620 return ERR_PTR(err);
621}
622
623/* Pack a filter field's string representation into data block. */
624static inline size_t audit_pack_string(void **bufp, const char *str)
625{
626 size_t len = strlen(str);
627
628 memcpy(*bufp, str, len);
629 *bufp += len;
630
631 return len;
632}
633
634/* Translate kernel rule representation to struct audit_rule_data. */
635static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
636{
637 struct audit_rule_data *data;
638 void *bufp;
639 int i;
640
641 data = kmalloc(struct_size(data, buf, krule->buflen), GFP_KERNEL);
642 if (unlikely(!data))
643 return NULL;
644 memset(data, 0, sizeof(*data));
645
646 data->flags = krule->flags | krule->listnr;
647 data->action = krule->action;
648 data->field_count = krule->field_count;
649 bufp = data->buf;
650 for (i = 0; i < data->field_count; i++) {
651 struct audit_field *f = &krule->fields[i];
652
653 data->fields[i] = f->type;
654 data->fieldflags[i] = audit_ops[f->op];
655 switch (f->type) {
656 case AUDIT_SUBJ_USER:
657 case AUDIT_SUBJ_ROLE:
658 case AUDIT_SUBJ_TYPE:
659 case AUDIT_SUBJ_SEN:
660 case AUDIT_SUBJ_CLR:
661 case AUDIT_OBJ_USER:
662 case AUDIT_OBJ_ROLE:
663 case AUDIT_OBJ_TYPE:
664 case AUDIT_OBJ_LEV_LOW:
665 case AUDIT_OBJ_LEV_HIGH:
666 data->buflen += data->values[i] =
667 audit_pack_string(&bufp, f->lsm_str);
668 break;
669 case AUDIT_WATCH:
670 data->buflen += data->values[i] =
671 audit_pack_string(&bufp,
672 audit_watch_path(krule->watch));
673 break;
674 case AUDIT_DIR:
675 data->buflen += data->values[i] =
676 audit_pack_string(&bufp,
677 audit_tree_path(krule->tree));
678 break;
679 case AUDIT_FILTERKEY:
680 data->buflen += data->values[i] =
681 audit_pack_string(&bufp, krule->filterkey);
682 break;
683 case AUDIT_EXE:
684 data->buflen += data->values[i] =
685 audit_pack_string(&bufp, audit_mark_path(krule->exe));
686 break;
687 case AUDIT_LOGINUID_SET:
688 if (krule->pflags & AUDIT_LOGINUID_LEGACY && !f->val) {
689 data->fields[i] = AUDIT_LOGINUID;
690 data->values[i] = AUDIT_UID_UNSET;
691 break;
692 }
693 fallthrough; /* if set */
694 default:
695 data->values[i] = f->val;
696 }
697 }
698 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
699 data->mask[i] = krule->mask[i];
700
701 return data;
702}
703
704/* Compare two rules in kernel format. Considered success if rules
705 * don't match. */
706static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
707{
708 int i;
709
710 if (a->flags != b->flags ||
711 a->pflags != b->pflags ||
712 a->listnr != b->listnr ||
713 a->action != b->action ||
714 a->field_count != b->field_count)
715 return 1;
716
717 for (i = 0; i < a->field_count; i++) {
718 if (a->fields[i].type != b->fields[i].type ||
719 a->fields[i].op != b->fields[i].op)
720 return 1;
721
722 switch (a->fields[i].type) {
723 case AUDIT_SUBJ_USER:
724 case AUDIT_SUBJ_ROLE:
725 case AUDIT_SUBJ_TYPE:
726 case AUDIT_SUBJ_SEN:
727 case AUDIT_SUBJ_CLR:
728 case AUDIT_OBJ_USER:
729 case AUDIT_OBJ_ROLE:
730 case AUDIT_OBJ_TYPE:
731 case AUDIT_OBJ_LEV_LOW:
732 case AUDIT_OBJ_LEV_HIGH:
733 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
734 return 1;
735 break;
736 case AUDIT_WATCH:
737 if (strcmp(audit_watch_path(a->watch),
738 audit_watch_path(b->watch)))
739 return 1;
740 break;
741 case AUDIT_DIR:
742 if (strcmp(audit_tree_path(a->tree),
743 audit_tree_path(b->tree)))
744 return 1;
745 break;
746 case AUDIT_FILTERKEY:
747 /* both filterkeys exist based on above type compare */
748 if (strcmp(a->filterkey, b->filterkey))
749 return 1;
750 break;
751 case AUDIT_EXE:
752 /* both paths exist based on above type compare */
753 if (strcmp(audit_mark_path(a->exe),
754 audit_mark_path(b->exe)))
755 return 1;
756 break;
757 case AUDIT_UID:
758 case AUDIT_EUID:
759 case AUDIT_SUID:
760 case AUDIT_FSUID:
761 case AUDIT_LOGINUID:
762 case AUDIT_OBJ_UID:
763 if (!uid_eq(a->fields[i].uid, b->fields[i].uid))
764 return 1;
765 break;
766 case AUDIT_GID:
767 case AUDIT_EGID:
768 case AUDIT_SGID:
769 case AUDIT_FSGID:
770 case AUDIT_OBJ_GID:
771 if (!gid_eq(a->fields[i].gid, b->fields[i].gid))
772 return 1;
773 break;
774 default:
775 if (a->fields[i].val != b->fields[i].val)
776 return 1;
777 }
778 }
779
780 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
781 if (a->mask[i] != b->mask[i])
782 return 1;
783
784 return 0;
785}
786
787/* Duplicate LSM field information. The lsm_rule is opaque, so must be
788 * re-initialized. */
789static inline int audit_dupe_lsm_field(struct audit_field *df,
790 struct audit_field *sf)
791{
792 int ret;
793 char *lsm_str;
794
795 /* our own copy of lsm_str */
796 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
797 if (unlikely(!lsm_str))
798 return -ENOMEM;
799 df->lsm_str = lsm_str;
800
801 /* our own (refreshed) copy of lsm_rule */
802 ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
803 (void **)&df->lsm_rule, GFP_KERNEL);
804 /* Keep currently invalid fields around in case they
805 * become valid after a policy reload. */
806 if (ret == -EINVAL) {
807 pr_warn("audit rule for LSM \'%s\' is invalid\n",
808 df->lsm_str);
809 ret = 0;
810 }
811
812 return ret;
813}
814
815/* Duplicate an audit rule. This will be a deep copy with the exception
816 * of the watch - that pointer is carried over. The LSM specific fields
817 * will be updated in the copy. The point is to be able to replace the old
818 * rule with the new rule in the filterlist, then free the old rule.
819 * The rlist element is undefined; list manipulations are handled apart from
820 * the initial copy. */
821struct audit_entry *audit_dupe_rule(struct audit_krule *old)
822{
823 u32 fcount = old->field_count;
824 struct audit_entry *entry;
825 struct audit_krule *new;
826 char *fk;
827 int i, err = 0;
828
829 entry = audit_init_entry(fcount);
830 if (unlikely(!entry))
831 return ERR_PTR(-ENOMEM);
832
833 new = &entry->rule;
834 new->flags = old->flags;
835 new->pflags = old->pflags;
836 new->listnr = old->listnr;
837 new->action = old->action;
838 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
839 new->mask[i] = old->mask[i];
840 new->prio = old->prio;
841 new->buflen = old->buflen;
842 new->inode_f = old->inode_f;
843 new->field_count = old->field_count;
844
845 /*
846 * note that we are OK with not refcounting here; audit_match_tree()
847 * never dereferences tree and we can't get false positives there
848 * since we'd have to have rule gone from the list *and* removed
849 * before the chunks found by lookup had been allocated, i.e. before
850 * the beginning of list scan.
851 */
852 new->tree = old->tree;
853 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
854
855 /* deep copy this information, updating the lsm_rule fields, because
856 * the originals will all be freed when the old rule is freed. */
857 for (i = 0; i < fcount; i++) {
858 switch (new->fields[i].type) {
859 case AUDIT_SUBJ_USER:
860 case AUDIT_SUBJ_ROLE:
861 case AUDIT_SUBJ_TYPE:
862 case AUDIT_SUBJ_SEN:
863 case AUDIT_SUBJ_CLR:
864 case AUDIT_OBJ_USER:
865 case AUDIT_OBJ_ROLE:
866 case AUDIT_OBJ_TYPE:
867 case AUDIT_OBJ_LEV_LOW:
868 case AUDIT_OBJ_LEV_HIGH:
869 err = audit_dupe_lsm_field(&new->fields[i],
870 &old->fields[i]);
871 break;
872 case AUDIT_FILTERKEY:
873 fk = kstrdup(old->filterkey, GFP_KERNEL);
874 if (unlikely(!fk))
875 err = -ENOMEM;
876 else
877 new->filterkey = fk;
878 break;
879 case AUDIT_EXE:
880 err = audit_dupe_exe(new, old);
881 break;
882 }
883 if (err) {
884 if (new->exe)
885 audit_remove_mark(new->exe);
886 audit_free_rule(entry);
887 return ERR_PTR(err);
888 }
889 }
890
891 if (old->watch) {
892 audit_get_watch(old->watch);
893 new->watch = old->watch;
894 }
895
896 return entry;
897}
898
899/* Find an existing audit rule.
900 * Caller must hold audit_filter_mutex to prevent stale rule data. */
901static struct audit_entry *audit_find_rule(struct audit_entry *entry,
902 struct list_head **p)
903{
904 struct audit_entry *e, *found = NULL;
905 struct list_head *list;
906 int h;
907
908 if (entry->rule.inode_f) {
909 h = audit_hash_ino(entry->rule.inode_f->val);
910 *p = list = &audit_inode_hash[h];
911 } else if (entry->rule.watch) {
912 /* we don't know the inode number, so must walk entire hash */
913 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
914 list = &audit_inode_hash[h];
915 list_for_each_entry(e, list, list)
916 if (!audit_compare_rule(&entry->rule, &e->rule)) {
917 found = e;
918 goto out;
919 }
920 }
921 goto out;
922 } else {
923 *p = list = &audit_filter_list[entry->rule.listnr];
924 }
925
926 list_for_each_entry(e, list, list)
927 if (!audit_compare_rule(&entry->rule, &e->rule)) {
928 found = e;
929 goto out;
930 }
931
932out:
933 return found;
934}
935
936static u64 prio_low = ~0ULL/2;
937static u64 prio_high = ~0ULL/2 - 1;
938
939/* Add rule to given filterlist if not a duplicate. */
940static inline int audit_add_rule(struct audit_entry *entry)
941{
942 struct audit_entry *e;
943 struct audit_watch *watch = entry->rule.watch;
944 struct audit_tree *tree = entry->rule.tree;
945 struct list_head *list;
946 int err = 0;
947#ifdef CONFIG_AUDITSYSCALL
948 int dont_count = 0;
949
950 /* If any of these, don't count towards total */
951 switch (entry->rule.listnr) {
952 case AUDIT_FILTER_USER:
953 case AUDIT_FILTER_EXCLUDE:
954 case AUDIT_FILTER_FS:
955 dont_count = 1;
956 }
957#endif
958
959 mutex_lock(&audit_filter_mutex);
960 e = audit_find_rule(entry, &list);
961 if (e) {
962 mutex_unlock(&audit_filter_mutex);
963 err = -EEXIST;
964 /* normally audit_add_tree_rule() will free it on failure */
965 if (tree)
966 audit_put_tree(tree);
967 return err;
968 }
969
970 if (watch) {
971 /* audit_filter_mutex is dropped and re-taken during this call */
972 err = audit_add_watch(&entry->rule, &list);
973 if (err) {
974 mutex_unlock(&audit_filter_mutex);
975 /*
976 * normally audit_add_tree_rule() will free it
977 * on failure
978 */
979 if (tree)
980 audit_put_tree(tree);
981 return err;
982 }
983 }
984 if (tree) {
985 err = audit_add_tree_rule(&entry->rule);
986 if (err) {
987 mutex_unlock(&audit_filter_mutex);
988 return err;
989 }
990 }
991
992 entry->rule.prio = ~0ULL;
993 if (entry->rule.listnr == AUDIT_FILTER_EXIT ||
994 entry->rule.listnr == AUDIT_FILTER_URING_EXIT) {
995 if (entry->rule.flags & AUDIT_FILTER_PREPEND)
996 entry->rule.prio = ++prio_high;
997 else
998 entry->rule.prio = --prio_low;
999 }
1000
1001 if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
1002 list_add(&entry->rule.list,
1003 &audit_rules_list[entry->rule.listnr]);
1004 list_add_rcu(&entry->list, list);
1005 entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
1006 } else {
1007 list_add_tail(&entry->rule.list,
1008 &audit_rules_list[entry->rule.listnr]);
1009 list_add_tail_rcu(&entry->list, list);
1010 }
1011#ifdef CONFIG_AUDITSYSCALL
1012 if (!dont_count)
1013 audit_n_rules++;
1014
1015 if (!audit_match_signal(entry))
1016 audit_signals++;
1017#endif
1018 mutex_unlock(&audit_filter_mutex);
1019
1020 return err;
1021}
1022
1023/* Remove an existing rule from filterlist. */
1024int audit_del_rule(struct audit_entry *entry)
1025{
1026 struct audit_entry *e;
1027 struct audit_tree *tree = entry->rule.tree;
1028 struct list_head *list;
1029 int ret = 0;
1030#ifdef CONFIG_AUDITSYSCALL
1031 int dont_count = 0;
1032
1033 /* If any of these, don't count towards total */
1034 switch (entry->rule.listnr) {
1035 case AUDIT_FILTER_USER:
1036 case AUDIT_FILTER_EXCLUDE:
1037 case AUDIT_FILTER_FS:
1038 dont_count = 1;
1039 }
1040#endif
1041
1042 mutex_lock(&audit_filter_mutex);
1043 e = audit_find_rule(entry, &list);
1044 if (!e) {
1045 ret = -ENOENT;
1046 goto out;
1047 }
1048
1049 if (e->rule.watch)
1050 audit_remove_watch_rule(&e->rule);
1051
1052 if (e->rule.tree)
1053 audit_remove_tree_rule(&e->rule);
1054
1055 if (e->rule.exe)
1056 audit_remove_mark_rule(&e->rule);
1057
1058#ifdef CONFIG_AUDITSYSCALL
1059 if (!dont_count)
1060 audit_n_rules--;
1061
1062 if (!audit_match_signal(entry))
1063 audit_signals--;
1064#endif
1065
1066 list_del_rcu(&e->list);
1067 list_del(&e->rule.list);
1068 call_rcu(&e->rcu, audit_free_rule_rcu);
1069
1070out:
1071 mutex_unlock(&audit_filter_mutex);
1072
1073 if (tree)
1074 audit_put_tree(tree); /* that's the temporary one */
1075
1076 return ret;
1077}
1078
1079/* List rules using struct audit_rule_data. */
1080static void audit_list_rules(int seq, struct sk_buff_head *q)
1081{
1082 struct sk_buff *skb;
1083 struct audit_krule *r;
1084 int i;
1085
1086 /* This is a blocking read, so use audit_filter_mutex instead of rcu
1087 * iterator to sync with list writers. */
1088 for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1089 list_for_each_entry(r, &audit_rules_list[i], list) {
1090 struct audit_rule_data *data;
1091
1092 data = audit_krule_to_data(r);
1093 if (unlikely(!data))
1094 break;
1095 skb = audit_make_reply(seq, AUDIT_LIST_RULES, 0, 1,
1096 data,
1097 struct_size(data, buf, data->buflen));
1098 if (skb)
1099 skb_queue_tail(q, skb);
1100 kfree(data);
1101 }
1102 }
1103 skb = audit_make_reply(seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1104 if (skb)
1105 skb_queue_tail(q, skb);
1106}
1107
1108/* Log rule additions and removals */
1109static void audit_log_rule_change(char *action, struct audit_krule *rule, int res)
1110{
1111 struct audit_buffer *ab;
1112
1113 if (!audit_enabled)
1114 return;
1115
1116 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1117 if (!ab)
1118 return;
1119 audit_log_session_info(ab);
1120 audit_log_task_context(ab);
1121 audit_log_format(ab, " op=%s", action);
1122 audit_log_key(ab, rule->filterkey);
1123 audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1124 audit_log_end(ab);
1125}
1126
1127/**
1128 * audit_rule_change - apply all rules to the specified message type
1129 * @type: audit message type
1130 * @seq: netlink audit message sequence (serial) number
1131 * @data: payload data
1132 * @datasz: size of payload data
1133 */
1134int audit_rule_change(int type, int seq, void *data, size_t datasz)
1135{
1136 int err = 0;
1137 struct audit_entry *entry;
1138
1139 switch (type) {
1140 case AUDIT_ADD_RULE:
1141 entry = audit_data_to_entry(data, datasz);
1142 if (IS_ERR(entry))
1143 return PTR_ERR(entry);
1144 err = audit_add_rule(entry);
1145 audit_log_rule_change("add_rule", &entry->rule, !err);
1146 break;
1147 case AUDIT_DEL_RULE:
1148 entry = audit_data_to_entry(data, datasz);
1149 if (IS_ERR(entry))
1150 return PTR_ERR(entry);
1151 err = audit_del_rule(entry);
1152 audit_log_rule_change("remove_rule", &entry->rule, !err);
1153 break;
1154 default:
1155 WARN_ON(1);
1156 return -EINVAL;
1157 }
1158
1159 if (err || type == AUDIT_DEL_RULE) {
1160 if (entry->rule.exe)
1161 audit_remove_mark(entry->rule.exe);
1162 audit_free_rule(entry);
1163 }
1164
1165 return err;
1166}
1167
1168/**
1169 * audit_list_rules_send - list the audit rules
1170 * @request_skb: skb of request we are replying to (used to target the reply)
1171 * @seq: netlink audit message sequence (serial) number
1172 */
1173int audit_list_rules_send(struct sk_buff *request_skb, int seq)
1174{
1175 struct task_struct *tsk;
1176 struct audit_netlink_list *dest;
1177
1178 /* We can't just spew out the rules here because we might fill
1179 * the available socket buffer space and deadlock waiting for
1180 * auditctl to read from it... which isn't ever going to
1181 * happen if we're actually running in the context of auditctl
1182 * trying to _send_ the stuff */
1183
1184 dest = kmalloc(sizeof(*dest), GFP_KERNEL);
1185 if (!dest)
1186 return -ENOMEM;
1187 dest->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
1188 dest->portid = NETLINK_CB(request_skb).portid;
1189 skb_queue_head_init(&dest->q);
1190
1191 mutex_lock(&audit_filter_mutex);
1192 audit_list_rules(seq, &dest->q);
1193 mutex_unlock(&audit_filter_mutex);
1194
1195 tsk = kthread_run(audit_send_list_thread, dest, "audit_send_list");
1196 if (IS_ERR(tsk)) {
1197 skb_queue_purge(&dest->q);
1198 put_net(dest->net);
1199 kfree(dest);
1200 return PTR_ERR(tsk);
1201 }
1202
1203 return 0;
1204}
1205
1206int audit_comparator(u32 left, u32 op, u32 right)
1207{
1208 switch (op) {
1209 case Audit_equal:
1210 return (left == right);
1211 case Audit_not_equal:
1212 return (left != right);
1213 case Audit_lt:
1214 return (left < right);
1215 case Audit_le:
1216 return (left <= right);
1217 case Audit_gt:
1218 return (left > right);
1219 case Audit_ge:
1220 return (left >= right);
1221 case Audit_bitmask:
1222 return (left & right);
1223 case Audit_bittest:
1224 return ((left & right) == right);
1225 default:
1226 return 0;
1227 }
1228}
1229
1230int audit_uid_comparator(kuid_t left, u32 op, kuid_t right)
1231{
1232 switch (op) {
1233 case Audit_equal:
1234 return uid_eq(left, right);
1235 case Audit_not_equal:
1236 return !uid_eq(left, right);
1237 case Audit_lt:
1238 return uid_lt(left, right);
1239 case Audit_le:
1240 return uid_lte(left, right);
1241 case Audit_gt:
1242 return uid_gt(left, right);
1243 case Audit_ge:
1244 return uid_gte(left, right);
1245 case Audit_bitmask:
1246 case Audit_bittest:
1247 default:
1248 return 0;
1249 }
1250}
1251
1252int audit_gid_comparator(kgid_t left, u32 op, kgid_t right)
1253{
1254 switch (op) {
1255 case Audit_equal:
1256 return gid_eq(left, right);
1257 case Audit_not_equal:
1258 return !gid_eq(left, right);
1259 case Audit_lt:
1260 return gid_lt(left, right);
1261 case Audit_le:
1262 return gid_lte(left, right);
1263 case Audit_gt:
1264 return gid_gt(left, right);
1265 case Audit_ge:
1266 return gid_gte(left, right);
1267 case Audit_bitmask:
1268 case Audit_bittest:
1269 default:
1270 return 0;
1271 }
1272}
1273
1274/**
1275 * parent_len - find the length of the parent portion of a pathname
1276 * @path: pathname of which to determine length
1277 */
1278int parent_len(const char *path)
1279{
1280 int plen;
1281 const char *p;
1282
1283 plen = strlen(path);
1284
1285 if (plen == 0)
1286 return plen;
1287
1288 /* disregard trailing slashes */
1289 p = path + plen - 1;
1290 while ((*p == '/') && (p > path))
1291 p--;
1292
1293 /* walk backward until we find the next slash or hit beginning */
1294 while ((*p != '/') && (p > path))
1295 p--;
1296
1297 /* did we find a slash? Then increment to include it in path */
1298 if (*p == '/')
1299 p++;
1300
1301 return p - path;
1302}
1303
1304/**
1305 * audit_compare_dname_path - compare given dentry name with last component in
1306 * given path. Return of 0 indicates a match.
1307 * @dname: dentry name that we're comparing
1308 * @path: full pathname that we're comparing
1309 * @parentlen: length of the parent if known. Passing in AUDIT_NAME_FULL
1310 * here indicates that we must compute this value.
1311 */
1312int audit_compare_dname_path(const struct qstr *dname, const char *path, int parentlen)
1313{
1314 int dlen, pathlen;
1315 const char *p;
1316
1317 dlen = dname->len;
1318 pathlen = strlen(path);
1319 if (pathlen < dlen)
1320 return 1;
1321
1322 parentlen = parentlen == AUDIT_NAME_FULL ? parent_len(path) : parentlen;
1323 if (pathlen - parentlen != dlen)
1324 return 1;
1325
1326 p = path + parentlen;
1327
1328 return strncmp(p, dname->name, dlen);
1329}
1330
1331int audit_filter(int msgtype, unsigned int listtype)
1332{
1333 struct audit_entry *e;
1334 int ret = 1; /* Audit by default */
1335
1336 rcu_read_lock();
1337 list_for_each_entry_rcu(e, &audit_filter_list[listtype], list) {
1338 int i, result = 0;
1339
1340 for (i = 0; i < e->rule.field_count; i++) {
1341 struct audit_field *f = &e->rule.fields[i];
1342 struct lsm_prop prop = { };
1343 pid_t pid;
1344
1345 switch (f->type) {
1346 case AUDIT_PID:
1347 pid = task_tgid_nr(current);
1348 result = audit_comparator(pid, f->op, f->val);
1349 break;
1350 case AUDIT_UID:
1351 result = audit_uid_comparator(current_uid(), f->op, f->uid);
1352 break;
1353 case AUDIT_GID:
1354 result = audit_gid_comparator(current_gid(), f->op, f->gid);
1355 break;
1356 case AUDIT_LOGINUID:
1357 result = audit_uid_comparator(audit_get_loginuid(current),
1358 f->op, f->uid);
1359 break;
1360 case AUDIT_LOGINUID_SET:
1361 result = audit_comparator(audit_loginuid_set(current),
1362 f->op, f->val);
1363 break;
1364 case AUDIT_MSGTYPE:
1365 result = audit_comparator(msgtype, f->op, f->val);
1366 break;
1367 case AUDIT_SUBJ_USER:
1368 case AUDIT_SUBJ_ROLE:
1369 case AUDIT_SUBJ_TYPE:
1370 case AUDIT_SUBJ_SEN:
1371 case AUDIT_SUBJ_CLR:
1372 if (f->lsm_rule) {
1373 security_current_getlsmprop_subj(&prop);
1374 result = security_audit_rule_match(
1375 &prop, f->type, f->op,
1376 f->lsm_rule);
1377 }
1378 break;
1379 case AUDIT_EXE:
1380 result = audit_exe_compare(current, e->rule.exe);
1381 if (f->op == Audit_not_equal)
1382 result = !result;
1383 break;
1384 default:
1385 goto unlock_and_return;
1386 }
1387 if (result < 0) /* error */
1388 goto unlock_and_return;
1389 if (!result)
1390 break;
1391 }
1392 if (result > 0) {
1393 if (e->rule.action == AUDIT_NEVER || listtype == AUDIT_FILTER_EXCLUDE)
1394 ret = 0;
1395 break;
1396 }
1397 }
1398unlock_and_return:
1399 rcu_read_unlock();
1400 return ret;
1401}
1402
1403static int update_lsm_rule(struct audit_krule *r)
1404{
1405 struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1406 struct audit_entry *nentry;
1407 int err = 0;
1408
1409 if (!security_audit_rule_known(r))
1410 return 0;
1411
1412 nentry = audit_dupe_rule(r);
1413 if (entry->rule.exe)
1414 audit_remove_mark(entry->rule.exe);
1415 if (IS_ERR(nentry)) {
1416 /* save the first error encountered for the
1417 * return value */
1418 err = PTR_ERR(nentry);
1419 audit_panic("error updating LSM filters");
1420 if (r->watch)
1421 list_del(&r->rlist);
1422 list_del_rcu(&entry->list);
1423 list_del(&r->list);
1424 } else {
1425 if (r->watch || r->tree)
1426 list_replace_init(&r->rlist, &nentry->rule.rlist);
1427 list_replace_rcu(&entry->list, &nentry->list);
1428 list_replace(&r->list, &nentry->rule.list);
1429 }
1430 call_rcu(&entry->rcu, audit_free_rule_rcu);
1431
1432 return err;
1433}
1434
1435/* This function will re-initialize the lsm_rule field of all applicable rules.
1436 * It will traverse the filter lists serarching for rules that contain LSM
1437 * specific filter fields. When such a rule is found, it is copied, the
1438 * LSM field is re-initialized, and the old rule is replaced with the
1439 * updated rule. */
1440int audit_update_lsm_rules(void)
1441{
1442 struct audit_krule *r, *n;
1443 int i, err = 0;
1444
1445 /* audit_filter_mutex synchronizes the writers */
1446 mutex_lock(&audit_filter_mutex);
1447
1448 for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1449 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1450 int res = update_lsm_rule(r);
1451 if (!err)
1452 err = res;
1453 }
1454 }
1455 mutex_unlock(&audit_filter_mutex);
1456
1457 return err;
1458}
1/* auditfilter.c -- filtering of audit events
2 *
3 * Copyright 2003-2004 Red Hat, Inc.
4 * Copyright 2005 Hewlett-Packard Development Company, L.P.
5 * Copyright 2005 IBM Corporation
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21
22#include <linux/kernel.h>
23#include <linux/audit.h>
24#include <linux/kthread.h>
25#include <linux/mutex.h>
26#include <linux/fs.h>
27#include <linux/namei.h>
28#include <linux/netlink.h>
29#include <linux/sched.h>
30#include <linux/slab.h>
31#include <linux/security.h>
32#include "audit.h"
33
34/*
35 * Locking model:
36 *
37 * audit_filter_mutex:
38 * Synchronizes writes and blocking reads of audit's filterlist
39 * data. Rcu is used to traverse the filterlist and access
40 * contents of structs audit_entry, audit_watch and opaque
41 * LSM rules during filtering. If modified, these structures
42 * must be copied and replace their counterparts in the filterlist.
43 * An audit_parent struct is not accessed during filtering, so may
44 * be written directly provided audit_filter_mutex is held.
45 */
46
47/* Audit filter lists, defined in <linux/audit.h> */
48struct list_head audit_filter_list[AUDIT_NR_FILTERS] = {
49 LIST_HEAD_INIT(audit_filter_list[0]),
50 LIST_HEAD_INIT(audit_filter_list[1]),
51 LIST_HEAD_INIT(audit_filter_list[2]),
52 LIST_HEAD_INIT(audit_filter_list[3]),
53 LIST_HEAD_INIT(audit_filter_list[4]),
54 LIST_HEAD_INIT(audit_filter_list[5]),
55#if AUDIT_NR_FILTERS != 6
56#error Fix audit_filter_list initialiser
57#endif
58};
59static struct list_head audit_rules_list[AUDIT_NR_FILTERS] = {
60 LIST_HEAD_INIT(audit_rules_list[0]),
61 LIST_HEAD_INIT(audit_rules_list[1]),
62 LIST_HEAD_INIT(audit_rules_list[2]),
63 LIST_HEAD_INIT(audit_rules_list[3]),
64 LIST_HEAD_INIT(audit_rules_list[4]),
65 LIST_HEAD_INIT(audit_rules_list[5]),
66};
67
68DEFINE_MUTEX(audit_filter_mutex);
69
70static inline void audit_free_rule(struct audit_entry *e)
71{
72 int i;
73 struct audit_krule *erule = &e->rule;
74
75 /* some rules don't have associated watches */
76 if (erule->watch)
77 audit_put_watch(erule->watch);
78 if (erule->fields)
79 for (i = 0; i < erule->field_count; i++) {
80 struct audit_field *f = &erule->fields[i];
81 kfree(f->lsm_str);
82 security_audit_rule_free(f->lsm_rule);
83 }
84 kfree(erule->fields);
85 kfree(erule->filterkey);
86 kfree(e);
87}
88
89void audit_free_rule_rcu(struct rcu_head *head)
90{
91 struct audit_entry *e = container_of(head, struct audit_entry, rcu);
92 audit_free_rule(e);
93}
94
95/* Initialize an audit filterlist entry. */
96static inline struct audit_entry *audit_init_entry(u32 field_count)
97{
98 struct audit_entry *entry;
99 struct audit_field *fields;
100
101 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
102 if (unlikely(!entry))
103 return NULL;
104
105 fields = kzalloc(sizeof(*fields) * field_count, GFP_KERNEL);
106 if (unlikely(!fields)) {
107 kfree(entry);
108 return NULL;
109 }
110 entry->rule.fields = fields;
111
112 return entry;
113}
114
115/* Unpack a filter field's string representation from user-space
116 * buffer. */
117char *audit_unpack_string(void **bufp, size_t *remain, size_t len)
118{
119 char *str;
120
121 if (!*bufp || (len == 0) || (len > *remain))
122 return ERR_PTR(-EINVAL);
123
124 /* Of the currently implemented string fields, PATH_MAX
125 * defines the longest valid length.
126 */
127 if (len > PATH_MAX)
128 return ERR_PTR(-ENAMETOOLONG);
129
130 str = kmalloc(len + 1, GFP_KERNEL);
131 if (unlikely(!str))
132 return ERR_PTR(-ENOMEM);
133
134 memcpy(str, *bufp, len);
135 str[len] = 0;
136 *bufp += len;
137 *remain -= len;
138
139 return str;
140}
141
142/* Translate an inode field to kernel respresentation. */
143static inline int audit_to_inode(struct audit_krule *krule,
144 struct audit_field *f)
145{
146 if (krule->listnr != AUDIT_FILTER_EXIT ||
147 krule->watch || krule->inode_f || krule->tree ||
148 (f->op != Audit_equal && f->op != Audit_not_equal))
149 return -EINVAL;
150
151 krule->inode_f = f;
152 return 0;
153}
154
155static __u32 *classes[AUDIT_SYSCALL_CLASSES];
156
157int __init audit_register_class(int class, unsigned *list)
158{
159 __u32 *p = kzalloc(AUDIT_BITMASK_SIZE * sizeof(__u32), GFP_KERNEL);
160 if (!p)
161 return -ENOMEM;
162 while (*list != ~0U) {
163 unsigned n = *list++;
164 if (n >= AUDIT_BITMASK_SIZE * 32 - AUDIT_SYSCALL_CLASSES) {
165 kfree(p);
166 return -EINVAL;
167 }
168 p[AUDIT_WORD(n)] |= AUDIT_BIT(n);
169 }
170 if (class >= AUDIT_SYSCALL_CLASSES || classes[class]) {
171 kfree(p);
172 return -EINVAL;
173 }
174 classes[class] = p;
175 return 0;
176}
177
178int audit_match_class(int class, unsigned syscall)
179{
180 if (unlikely(syscall >= AUDIT_BITMASK_SIZE * 32))
181 return 0;
182 if (unlikely(class >= AUDIT_SYSCALL_CLASSES || !classes[class]))
183 return 0;
184 return classes[class][AUDIT_WORD(syscall)] & AUDIT_BIT(syscall);
185}
186
187#ifdef CONFIG_AUDITSYSCALL
188static inline int audit_match_class_bits(int class, u32 *mask)
189{
190 int i;
191
192 if (classes[class]) {
193 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
194 if (mask[i] & classes[class][i])
195 return 0;
196 }
197 return 1;
198}
199
200static int audit_match_signal(struct audit_entry *entry)
201{
202 struct audit_field *arch = entry->rule.arch_f;
203
204 if (!arch) {
205 /* When arch is unspecified, we must check both masks on biarch
206 * as syscall number alone is ambiguous. */
207 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
208 entry->rule.mask) &&
209 audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
210 entry->rule.mask));
211 }
212
213 switch(audit_classify_arch(arch->val)) {
214 case 0: /* native */
215 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL,
216 entry->rule.mask));
217 case 1: /* 32bit on biarch */
218 return (audit_match_class_bits(AUDIT_CLASS_SIGNAL_32,
219 entry->rule.mask));
220 default:
221 return 1;
222 }
223}
224#endif
225
226/* Common user-space to kernel rule translation. */
227static inline struct audit_entry *audit_to_entry_common(struct audit_rule *rule)
228{
229 unsigned listnr;
230 struct audit_entry *entry;
231 int i, err;
232
233 err = -EINVAL;
234 listnr = rule->flags & ~AUDIT_FILTER_PREPEND;
235 switch(listnr) {
236 default:
237 goto exit_err;
238 case AUDIT_FILTER_USER:
239 case AUDIT_FILTER_TYPE:
240#ifdef CONFIG_AUDITSYSCALL
241 case AUDIT_FILTER_ENTRY:
242 case AUDIT_FILTER_EXIT:
243 case AUDIT_FILTER_TASK:
244#endif
245 ;
246 }
247 if (unlikely(rule->action == AUDIT_POSSIBLE)) {
248 printk(KERN_ERR "AUDIT_POSSIBLE is deprecated\n");
249 goto exit_err;
250 }
251 if (rule->action != AUDIT_NEVER && rule->action != AUDIT_ALWAYS)
252 goto exit_err;
253 if (rule->field_count > AUDIT_MAX_FIELDS)
254 goto exit_err;
255
256 err = -ENOMEM;
257 entry = audit_init_entry(rule->field_count);
258 if (!entry)
259 goto exit_err;
260
261 entry->rule.flags = rule->flags & AUDIT_FILTER_PREPEND;
262 entry->rule.listnr = listnr;
263 entry->rule.action = rule->action;
264 entry->rule.field_count = rule->field_count;
265
266 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
267 entry->rule.mask[i] = rule->mask[i];
268
269 for (i = 0; i < AUDIT_SYSCALL_CLASSES; i++) {
270 int bit = AUDIT_BITMASK_SIZE * 32 - i - 1;
271 __u32 *p = &entry->rule.mask[AUDIT_WORD(bit)];
272 __u32 *class;
273
274 if (!(*p & AUDIT_BIT(bit)))
275 continue;
276 *p &= ~AUDIT_BIT(bit);
277 class = classes[i];
278 if (class) {
279 int j;
280 for (j = 0; j < AUDIT_BITMASK_SIZE; j++)
281 entry->rule.mask[j] |= class[j];
282 }
283 }
284
285 return entry;
286
287exit_err:
288 return ERR_PTR(err);
289}
290
291static u32 audit_ops[] =
292{
293 [Audit_equal] = AUDIT_EQUAL,
294 [Audit_not_equal] = AUDIT_NOT_EQUAL,
295 [Audit_bitmask] = AUDIT_BIT_MASK,
296 [Audit_bittest] = AUDIT_BIT_TEST,
297 [Audit_lt] = AUDIT_LESS_THAN,
298 [Audit_gt] = AUDIT_GREATER_THAN,
299 [Audit_le] = AUDIT_LESS_THAN_OR_EQUAL,
300 [Audit_ge] = AUDIT_GREATER_THAN_OR_EQUAL,
301};
302
303static u32 audit_to_op(u32 op)
304{
305 u32 n;
306 for (n = Audit_equal; n < Audit_bad && audit_ops[n] != op; n++)
307 ;
308 return n;
309}
310
311
312/* Translate struct audit_rule to kernel's rule respresentation.
313 * Exists for backward compatibility with userspace. */
314static struct audit_entry *audit_rule_to_entry(struct audit_rule *rule)
315{
316 struct audit_entry *entry;
317 int err = 0;
318 int i;
319
320 entry = audit_to_entry_common(rule);
321 if (IS_ERR(entry))
322 goto exit_nofree;
323
324 for (i = 0; i < rule->field_count; i++) {
325 struct audit_field *f = &entry->rule.fields[i];
326 u32 n;
327
328 n = rule->fields[i] & (AUDIT_NEGATE|AUDIT_OPERATORS);
329
330 /* Support for legacy operators where
331 * AUDIT_NEGATE bit signifies != and otherwise assumes == */
332 if (n & AUDIT_NEGATE)
333 f->op = Audit_not_equal;
334 else if (!n)
335 f->op = Audit_equal;
336 else
337 f->op = audit_to_op(n);
338
339 entry->rule.vers_ops = (n & AUDIT_OPERATORS) ? 2 : 1;
340
341 f->type = rule->fields[i] & ~(AUDIT_NEGATE|AUDIT_OPERATORS);
342 f->val = rule->values[i];
343
344 err = -EINVAL;
345 if (f->op == Audit_bad)
346 goto exit_free;
347
348 switch(f->type) {
349 default:
350 goto exit_free;
351 case AUDIT_PID:
352 case AUDIT_UID:
353 case AUDIT_EUID:
354 case AUDIT_SUID:
355 case AUDIT_FSUID:
356 case AUDIT_GID:
357 case AUDIT_EGID:
358 case AUDIT_SGID:
359 case AUDIT_FSGID:
360 case AUDIT_LOGINUID:
361 case AUDIT_PERS:
362 case AUDIT_MSGTYPE:
363 case AUDIT_PPID:
364 case AUDIT_DEVMAJOR:
365 case AUDIT_DEVMINOR:
366 case AUDIT_EXIT:
367 case AUDIT_SUCCESS:
368 /* bit ops are only useful on syscall args */
369 if (f->op == Audit_bitmask || f->op == Audit_bittest)
370 goto exit_free;
371 break;
372 case AUDIT_ARG0:
373 case AUDIT_ARG1:
374 case AUDIT_ARG2:
375 case AUDIT_ARG3:
376 break;
377 /* arch is only allowed to be = or != */
378 case AUDIT_ARCH:
379 if (f->op != Audit_not_equal && f->op != Audit_equal)
380 goto exit_free;
381 entry->rule.arch_f = f;
382 break;
383 case AUDIT_PERM:
384 if (f->val & ~15)
385 goto exit_free;
386 break;
387 case AUDIT_FILETYPE:
388 if ((f->val & ~S_IFMT) > S_IFMT)
389 goto exit_free;
390 break;
391 case AUDIT_INODE:
392 err = audit_to_inode(&entry->rule, f);
393 if (err)
394 goto exit_free;
395 break;
396 }
397 }
398
399 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
400 entry->rule.inode_f = NULL;
401
402exit_nofree:
403 return entry;
404
405exit_free:
406 audit_free_rule(entry);
407 return ERR_PTR(err);
408}
409
410/* Translate struct audit_rule_data to kernel's rule respresentation. */
411static struct audit_entry *audit_data_to_entry(struct audit_rule_data *data,
412 size_t datasz)
413{
414 int err = 0;
415 struct audit_entry *entry;
416 void *bufp;
417 size_t remain = datasz - sizeof(struct audit_rule_data);
418 int i;
419 char *str;
420
421 entry = audit_to_entry_common((struct audit_rule *)data);
422 if (IS_ERR(entry))
423 goto exit_nofree;
424
425 bufp = data->buf;
426 entry->rule.vers_ops = 2;
427 for (i = 0; i < data->field_count; i++) {
428 struct audit_field *f = &entry->rule.fields[i];
429
430 err = -EINVAL;
431
432 f->op = audit_to_op(data->fieldflags[i]);
433 if (f->op == Audit_bad)
434 goto exit_free;
435
436 f->type = data->fields[i];
437 f->val = data->values[i];
438 f->lsm_str = NULL;
439 f->lsm_rule = NULL;
440 switch(f->type) {
441 case AUDIT_PID:
442 case AUDIT_UID:
443 case AUDIT_EUID:
444 case AUDIT_SUID:
445 case AUDIT_FSUID:
446 case AUDIT_GID:
447 case AUDIT_EGID:
448 case AUDIT_SGID:
449 case AUDIT_FSGID:
450 case AUDIT_LOGINUID:
451 case AUDIT_PERS:
452 case AUDIT_MSGTYPE:
453 case AUDIT_PPID:
454 case AUDIT_DEVMAJOR:
455 case AUDIT_DEVMINOR:
456 case AUDIT_EXIT:
457 case AUDIT_SUCCESS:
458 case AUDIT_ARG0:
459 case AUDIT_ARG1:
460 case AUDIT_ARG2:
461 case AUDIT_ARG3:
462 break;
463 case AUDIT_ARCH:
464 entry->rule.arch_f = f;
465 break;
466 case AUDIT_SUBJ_USER:
467 case AUDIT_SUBJ_ROLE:
468 case AUDIT_SUBJ_TYPE:
469 case AUDIT_SUBJ_SEN:
470 case AUDIT_SUBJ_CLR:
471 case AUDIT_OBJ_USER:
472 case AUDIT_OBJ_ROLE:
473 case AUDIT_OBJ_TYPE:
474 case AUDIT_OBJ_LEV_LOW:
475 case AUDIT_OBJ_LEV_HIGH:
476 str = audit_unpack_string(&bufp, &remain, f->val);
477 if (IS_ERR(str))
478 goto exit_free;
479 entry->rule.buflen += f->val;
480
481 err = security_audit_rule_init(f->type, f->op, str,
482 (void **)&f->lsm_rule);
483 /* Keep currently invalid fields around in case they
484 * become valid after a policy reload. */
485 if (err == -EINVAL) {
486 printk(KERN_WARNING "audit rule for LSM "
487 "\'%s\' is invalid\n", str);
488 err = 0;
489 }
490 if (err) {
491 kfree(str);
492 goto exit_free;
493 } else
494 f->lsm_str = str;
495 break;
496 case AUDIT_WATCH:
497 str = audit_unpack_string(&bufp, &remain, f->val);
498 if (IS_ERR(str))
499 goto exit_free;
500 entry->rule.buflen += f->val;
501
502 err = audit_to_watch(&entry->rule, str, f->val, f->op);
503 if (err) {
504 kfree(str);
505 goto exit_free;
506 }
507 break;
508 case AUDIT_DIR:
509 str = audit_unpack_string(&bufp, &remain, f->val);
510 if (IS_ERR(str))
511 goto exit_free;
512 entry->rule.buflen += f->val;
513
514 err = audit_make_tree(&entry->rule, str, f->op);
515 kfree(str);
516 if (err)
517 goto exit_free;
518 break;
519 case AUDIT_INODE:
520 err = audit_to_inode(&entry->rule, f);
521 if (err)
522 goto exit_free;
523 break;
524 case AUDIT_FILTERKEY:
525 err = -EINVAL;
526 if (entry->rule.filterkey || f->val > AUDIT_MAX_KEY_LEN)
527 goto exit_free;
528 str = audit_unpack_string(&bufp, &remain, f->val);
529 if (IS_ERR(str))
530 goto exit_free;
531 entry->rule.buflen += f->val;
532 entry->rule.filterkey = str;
533 break;
534 case AUDIT_PERM:
535 if (f->val & ~15)
536 goto exit_free;
537 break;
538 case AUDIT_FILETYPE:
539 if ((f->val & ~S_IFMT) > S_IFMT)
540 goto exit_free;
541 break;
542 default:
543 goto exit_free;
544 }
545 }
546
547 if (entry->rule.inode_f && entry->rule.inode_f->op == Audit_not_equal)
548 entry->rule.inode_f = NULL;
549
550exit_nofree:
551 return entry;
552
553exit_free:
554 audit_free_rule(entry);
555 return ERR_PTR(err);
556}
557
558/* Pack a filter field's string representation into data block. */
559static inline size_t audit_pack_string(void **bufp, const char *str)
560{
561 size_t len = strlen(str);
562
563 memcpy(*bufp, str, len);
564 *bufp += len;
565
566 return len;
567}
568
569/* Translate kernel rule respresentation to struct audit_rule.
570 * Exists for backward compatibility with userspace. */
571static struct audit_rule *audit_krule_to_rule(struct audit_krule *krule)
572{
573 struct audit_rule *rule;
574 int i;
575
576 rule = kzalloc(sizeof(*rule), GFP_KERNEL);
577 if (unlikely(!rule))
578 return NULL;
579
580 rule->flags = krule->flags | krule->listnr;
581 rule->action = krule->action;
582 rule->field_count = krule->field_count;
583 for (i = 0; i < rule->field_count; i++) {
584 rule->values[i] = krule->fields[i].val;
585 rule->fields[i] = krule->fields[i].type;
586
587 if (krule->vers_ops == 1) {
588 if (krule->fields[i].op == Audit_not_equal)
589 rule->fields[i] |= AUDIT_NEGATE;
590 } else {
591 rule->fields[i] |= audit_ops[krule->fields[i].op];
592 }
593 }
594 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) rule->mask[i] = krule->mask[i];
595
596 return rule;
597}
598
599/* Translate kernel rule respresentation to struct audit_rule_data. */
600static struct audit_rule_data *audit_krule_to_data(struct audit_krule *krule)
601{
602 struct audit_rule_data *data;
603 void *bufp;
604 int i;
605
606 data = kmalloc(sizeof(*data) + krule->buflen, GFP_KERNEL);
607 if (unlikely(!data))
608 return NULL;
609 memset(data, 0, sizeof(*data));
610
611 data->flags = krule->flags | krule->listnr;
612 data->action = krule->action;
613 data->field_count = krule->field_count;
614 bufp = data->buf;
615 for (i = 0; i < data->field_count; i++) {
616 struct audit_field *f = &krule->fields[i];
617
618 data->fields[i] = f->type;
619 data->fieldflags[i] = audit_ops[f->op];
620 switch(f->type) {
621 case AUDIT_SUBJ_USER:
622 case AUDIT_SUBJ_ROLE:
623 case AUDIT_SUBJ_TYPE:
624 case AUDIT_SUBJ_SEN:
625 case AUDIT_SUBJ_CLR:
626 case AUDIT_OBJ_USER:
627 case AUDIT_OBJ_ROLE:
628 case AUDIT_OBJ_TYPE:
629 case AUDIT_OBJ_LEV_LOW:
630 case AUDIT_OBJ_LEV_HIGH:
631 data->buflen += data->values[i] =
632 audit_pack_string(&bufp, f->lsm_str);
633 break;
634 case AUDIT_WATCH:
635 data->buflen += data->values[i] =
636 audit_pack_string(&bufp,
637 audit_watch_path(krule->watch));
638 break;
639 case AUDIT_DIR:
640 data->buflen += data->values[i] =
641 audit_pack_string(&bufp,
642 audit_tree_path(krule->tree));
643 break;
644 case AUDIT_FILTERKEY:
645 data->buflen += data->values[i] =
646 audit_pack_string(&bufp, krule->filterkey);
647 break;
648 default:
649 data->values[i] = f->val;
650 }
651 }
652 for (i = 0; i < AUDIT_BITMASK_SIZE; i++) data->mask[i] = krule->mask[i];
653
654 return data;
655}
656
657/* Compare two rules in kernel format. Considered success if rules
658 * don't match. */
659static int audit_compare_rule(struct audit_krule *a, struct audit_krule *b)
660{
661 int i;
662
663 if (a->flags != b->flags ||
664 a->listnr != b->listnr ||
665 a->action != b->action ||
666 a->field_count != b->field_count)
667 return 1;
668
669 for (i = 0; i < a->field_count; i++) {
670 if (a->fields[i].type != b->fields[i].type ||
671 a->fields[i].op != b->fields[i].op)
672 return 1;
673
674 switch(a->fields[i].type) {
675 case AUDIT_SUBJ_USER:
676 case AUDIT_SUBJ_ROLE:
677 case AUDIT_SUBJ_TYPE:
678 case AUDIT_SUBJ_SEN:
679 case AUDIT_SUBJ_CLR:
680 case AUDIT_OBJ_USER:
681 case AUDIT_OBJ_ROLE:
682 case AUDIT_OBJ_TYPE:
683 case AUDIT_OBJ_LEV_LOW:
684 case AUDIT_OBJ_LEV_HIGH:
685 if (strcmp(a->fields[i].lsm_str, b->fields[i].lsm_str))
686 return 1;
687 break;
688 case AUDIT_WATCH:
689 if (strcmp(audit_watch_path(a->watch),
690 audit_watch_path(b->watch)))
691 return 1;
692 break;
693 case AUDIT_DIR:
694 if (strcmp(audit_tree_path(a->tree),
695 audit_tree_path(b->tree)))
696 return 1;
697 break;
698 case AUDIT_FILTERKEY:
699 /* both filterkeys exist based on above type compare */
700 if (strcmp(a->filterkey, b->filterkey))
701 return 1;
702 break;
703 default:
704 if (a->fields[i].val != b->fields[i].val)
705 return 1;
706 }
707 }
708
709 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
710 if (a->mask[i] != b->mask[i])
711 return 1;
712
713 return 0;
714}
715
716/* Duplicate LSM field information. The lsm_rule is opaque, so must be
717 * re-initialized. */
718static inline int audit_dupe_lsm_field(struct audit_field *df,
719 struct audit_field *sf)
720{
721 int ret = 0;
722 char *lsm_str;
723
724 /* our own copy of lsm_str */
725 lsm_str = kstrdup(sf->lsm_str, GFP_KERNEL);
726 if (unlikely(!lsm_str))
727 return -ENOMEM;
728 df->lsm_str = lsm_str;
729
730 /* our own (refreshed) copy of lsm_rule */
731 ret = security_audit_rule_init(df->type, df->op, df->lsm_str,
732 (void **)&df->lsm_rule);
733 /* Keep currently invalid fields around in case they
734 * become valid after a policy reload. */
735 if (ret == -EINVAL) {
736 printk(KERN_WARNING "audit rule for LSM \'%s\' is "
737 "invalid\n", df->lsm_str);
738 ret = 0;
739 }
740
741 return ret;
742}
743
744/* Duplicate an audit rule. This will be a deep copy with the exception
745 * of the watch - that pointer is carried over. The LSM specific fields
746 * will be updated in the copy. The point is to be able to replace the old
747 * rule with the new rule in the filterlist, then free the old rule.
748 * The rlist element is undefined; list manipulations are handled apart from
749 * the initial copy. */
750struct audit_entry *audit_dupe_rule(struct audit_krule *old)
751{
752 u32 fcount = old->field_count;
753 struct audit_entry *entry;
754 struct audit_krule *new;
755 char *fk;
756 int i, err = 0;
757
758 entry = audit_init_entry(fcount);
759 if (unlikely(!entry))
760 return ERR_PTR(-ENOMEM);
761
762 new = &entry->rule;
763 new->vers_ops = old->vers_ops;
764 new->flags = old->flags;
765 new->listnr = old->listnr;
766 new->action = old->action;
767 for (i = 0; i < AUDIT_BITMASK_SIZE; i++)
768 new->mask[i] = old->mask[i];
769 new->prio = old->prio;
770 new->buflen = old->buflen;
771 new->inode_f = old->inode_f;
772 new->field_count = old->field_count;
773
774 /*
775 * note that we are OK with not refcounting here; audit_match_tree()
776 * never dereferences tree and we can't get false positives there
777 * since we'd have to have rule gone from the list *and* removed
778 * before the chunks found by lookup had been allocated, i.e. before
779 * the beginning of list scan.
780 */
781 new->tree = old->tree;
782 memcpy(new->fields, old->fields, sizeof(struct audit_field) * fcount);
783
784 /* deep copy this information, updating the lsm_rule fields, because
785 * the originals will all be freed when the old rule is freed. */
786 for (i = 0; i < fcount; i++) {
787 switch (new->fields[i].type) {
788 case AUDIT_SUBJ_USER:
789 case AUDIT_SUBJ_ROLE:
790 case AUDIT_SUBJ_TYPE:
791 case AUDIT_SUBJ_SEN:
792 case AUDIT_SUBJ_CLR:
793 case AUDIT_OBJ_USER:
794 case AUDIT_OBJ_ROLE:
795 case AUDIT_OBJ_TYPE:
796 case AUDIT_OBJ_LEV_LOW:
797 case AUDIT_OBJ_LEV_HIGH:
798 err = audit_dupe_lsm_field(&new->fields[i],
799 &old->fields[i]);
800 break;
801 case AUDIT_FILTERKEY:
802 fk = kstrdup(old->filterkey, GFP_KERNEL);
803 if (unlikely(!fk))
804 err = -ENOMEM;
805 else
806 new->filterkey = fk;
807 }
808 if (err) {
809 audit_free_rule(entry);
810 return ERR_PTR(err);
811 }
812 }
813
814 if (old->watch) {
815 audit_get_watch(old->watch);
816 new->watch = old->watch;
817 }
818
819 return entry;
820}
821
822/* Find an existing audit rule.
823 * Caller must hold audit_filter_mutex to prevent stale rule data. */
824static struct audit_entry *audit_find_rule(struct audit_entry *entry,
825 struct list_head **p)
826{
827 struct audit_entry *e, *found = NULL;
828 struct list_head *list;
829 int h;
830
831 if (entry->rule.inode_f) {
832 h = audit_hash_ino(entry->rule.inode_f->val);
833 *p = list = &audit_inode_hash[h];
834 } else if (entry->rule.watch) {
835 /* we don't know the inode number, so must walk entire hash */
836 for (h = 0; h < AUDIT_INODE_BUCKETS; h++) {
837 list = &audit_inode_hash[h];
838 list_for_each_entry(e, list, list)
839 if (!audit_compare_rule(&entry->rule, &e->rule)) {
840 found = e;
841 goto out;
842 }
843 }
844 goto out;
845 } else {
846 *p = list = &audit_filter_list[entry->rule.listnr];
847 }
848
849 list_for_each_entry(e, list, list)
850 if (!audit_compare_rule(&entry->rule, &e->rule)) {
851 found = e;
852 goto out;
853 }
854
855out:
856 return found;
857}
858
859static u64 prio_low = ~0ULL/2;
860static u64 prio_high = ~0ULL/2 - 1;
861
862/* Add rule to given filterlist if not a duplicate. */
863static inline int audit_add_rule(struct audit_entry *entry)
864{
865 struct audit_entry *e;
866 struct audit_watch *watch = entry->rule.watch;
867 struct audit_tree *tree = entry->rule.tree;
868 struct list_head *list;
869 int err;
870#ifdef CONFIG_AUDITSYSCALL
871 int dont_count = 0;
872
873 /* If either of these, don't count towards total */
874 if (entry->rule.listnr == AUDIT_FILTER_USER ||
875 entry->rule.listnr == AUDIT_FILTER_TYPE)
876 dont_count = 1;
877#endif
878
879 mutex_lock(&audit_filter_mutex);
880 e = audit_find_rule(entry, &list);
881 if (e) {
882 mutex_unlock(&audit_filter_mutex);
883 err = -EEXIST;
884 /* normally audit_add_tree_rule() will free it on failure */
885 if (tree)
886 audit_put_tree(tree);
887 goto error;
888 }
889
890 if (watch) {
891 /* audit_filter_mutex is dropped and re-taken during this call */
892 err = audit_add_watch(&entry->rule, &list);
893 if (err) {
894 mutex_unlock(&audit_filter_mutex);
895 goto error;
896 }
897 }
898 if (tree) {
899 err = audit_add_tree_rule(&entry->rule);
900 if (err) {
901 mutex_unlock(&audit_filter_mutex);
902 goto error;
903 }
904 }
905
906 entry->rule.prio = ~0ULL;
907 if (entry->rule.listnr == AUDIT_FILTER_EXIT) {
908 if (entry->rule.flags & AUDIT_FILTER_PREPEND)
909 entry->rule.prio = ++prio_high;
910 else
911 entry->rule.prio = --prio_low;
912 }
913
914 if (entry->rule.flags & AUDIT_FILTER_PREPEND) {
915 list_add(&entry->rule.list,
916 &audit_rules_list[entry->rule.listnr]);
917 list_add_rcu(&entry->list, list);
918 entry->rule.flags &= ~AUDIT_FILTER_PREPEND;
919 } else {
920 list_add_tail(&entry->rule.list,
921 &audit_rules_list[entry->rule.listnr]);
922 list_add_tail_rcu(&entry->list, list);
923 }
924#ifdef CONFIG_AUDITSYSCALL
925 if (!dont_count)
926 audit_n_rules++;
927
928 if (!audit_match_signal(entry))
929 audit_signals++;
930#endif
931 mutex_unlock(&audit_filter_mutex);
932
933 return 0;
934
935error:
936 if (watch)
937 audit_put_watch(watch); /* tmp watch, matches initial get */
938 return err;
939}
940
941/* Remove an existing rule from filterlist. */
942static inline int audit_del_rule(struct audit_entry *entry)
943{
944 struct audit_entry *e;
945 struct audit_watch *watch = entry->rule.watch;
946 struct audit_tree *tree = entry->rule.tree;
947 struct list_head *list;
948 int ret = 0;
949#ifdef CONFIG_AUDITSYSCALL
950 int dont_count = 0;
951
952 /* If either of these, don't count towards total */
953 if (entry->rule.listnr == AUDIT_FILTER_USER ||
954 entry->rule.listnr == AUDIT_FILTER_TYPE)
955 dont_count = 1;
956#endif
957
958 mutex_lock(&audit_filter_mutex);
959 e = audit_find_rule(entry, &list);
960 if (!e) {
961 mutex_unlock(&audit_filter_mutex);
962 ret = -ENOENT;
963 goto out;
964 }
965
966 if (e->rule.watch)
967 audit_remove_watch_rule(&e->rule);
968
969 if (e->rule.tree)
970 audit_remove_tree_rule(&e->rule);
971
972 list_del_rcu(&e->list);
973 list_del(&e->rule.list);
974 call_rcu(&e->rcu, audit_free_rule_rcu);
975
976#ifdef CONFIG_AUDITSYSCALL
977 if (!dont_count)
978 audit_n_rules--;
979
980 if (!audit_match_signal(entry))
981 audit_signals--;
982#endif
983 mutex_unlock(&audit_filter_mutex);
984
985out:
986 if (watch)
987 audit_put_watch(watch); /* match initial get */
988 if (tree)
989 audit_put_tree(tree); /* that's the temporary one */
990
991 return ret;
992}
993
994/* List rules using struct audit_rule. Exists for backward
995 * compatibility with userspace. */
996static void audit_list(int pid, int seq, struct sk_buff_head *q)
997{
998 struct sk_buff *skb;
999 struct audit_krule *r;
1000 int i;
1001
1002 /* This is a blocking read, so use audit_filter_mutex instead of rcu
1003 * iterator to sync with list writers. */
1004 for (i=0; i<AUDIT_NR_FILTERS; i++) {
1005 list_for_each_entry(r, &audit_rules_list[i], list) {
1006 struct audit_rule *rule;
1007
1008 rule = audit_krule_to_rule(r);
1009 if (unlikely(!rule))
1010 break;
1011 skb = audit_make_reply(pid, seq, AUDIT_LIST, 0, 1,
1012 rule, sizeof(*rule));
1013 if (skb)
1014 skb_queue_tail(q, skb);
1015 kfree(rule);
1016 }
1017 }
1018 skb = audit_make_reply(pid, seq, AUDIT_LIST, 1, 1, NULL, 0);
1019 if (skb)
1020 skb_queue_tail(q, skb);
1021}
1022
1023/* List rules using struct audit_rule_data. */
1024static void audit_list_rules(int pid, int seq, struct sk_buff_head *q)
1025{
1026 struct sk_buff *skb;
1027 struct audit_krule *r;
1028 int i;
1029
1030 /* This is a blocking read, so use audit_filter_mutex instead of rcu
1031 * iterator to sync with list writers. */
1032 for (i=0; i<AUDIT_NR_FILTERS; i++) {
1033 list_for_each_entry(r, &audit_rules_list[i], list) {
1034 struct audit_rule_data *data;
1035
1036 data = audit_krule_to_data(r);
1037 if (unlikely(!data))
1038 break;
1039 skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 0, 1,
1040 data, sizeof(*data) + data->buflen);
1041 if (skb)
1042 skb_queue_tail(q, skb);
1043 kfree(data);
1044 }
1045 }
1046 skb = audit_make_reply(pid, seq, AUDIT_LIST_RULES, 1, 1, NULL, 0);
1047 if (skb)
1048 skb_queue_tail(q, skb);
1049}
1050
1051/* Log rule additions and removals */
1052static void audit_log_rule_change(uid_t loginuid, u32 sessionid, u32 sid,
1053 char *action, struct audit_krule *rule,
1054 int res)
1055{
1056 struct audit_buffer *ab;
1057
1058 if (!audit_enabled)
1059 return;
1060
1061 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
1062 if (!ab)
1063 return;
1064 audit_log_format(ab, "auid=%u ses=%u", loginuid, sessionid);
1065 if (sid) {
1066 char *ctx = NULL;
1067 u32 len;
1068 if (security_secid_to_secctx(sid, &ctx, &len))
1069 audit_log_format(ab, " ssid=%u", sid);
1070 else {
1071 audit_log_format(ab, " subj=%s", ctx);
1072 security_release_secctx(ctx, len);
1073 }
1074 }
1075 audit_log_format(ab, " op=");
1076 audit_log_string(ab, action);
1077 audit_log_key(ab, rule->filterkey);
1078 audit_log_format(ab, " list=%d res=%d", rule->listnr, res);
1079 audit_log_end(ab);
1080}
1081
1082/**
1083 * audit_receive_filter - apply all rules to the specified message type
1084 * @type: audit message type
1085 * @pid: target pid for netlink audit messages
1086 * @uid: target uid for netlink audit messages
1087 * @seq: netlink audit message sequence (serial) number
1088 * @data: payload data
1089 * @datasz: size of payload data
1090 * @loginuid: loginuid of sender
1091 * @sessionid: sessionid for netlink audit message
1092 * @sid: SE Linux Security ID of sender
1093 */
1094int audit_receive_filter(int type, int pid, int uid, int seq, void *data,
1095 size_t datasz, uid_t loginuid, u32 sessionid, u32 sid)
1096{
1097 struct task_struct *tsk;
1098 struct audit_netlink_list *dest;
1099 int err = 0;
1100 struct audit_entry *entry;
1101
1102 switch (type) {
1103 case AUDIT_LIST:
1104 case AUDIT_LIST_RULES:
1105 /* We can't just spew out the rules here because we might fill
1106 * the available socket buffer space and deadlock waiting for
1107 * auditctl to read from it... which isn't ever going to
1108 * happen if we're actually running in the context of auditctl
1109 * trying to _send_ the stuff */
1110
1111 dest = kmalloc(sizeof(struct audit_netlink_list), GFP_KERNEL);
1112 if (!dest)
1113 return -ENOMEM;
1114 dest->pid = pid;
1115 skb_queue_head_init(&dest->q);
1116
1117 mutex_lock(&audit_filter_mutex);
1118 if (type == AUDIT_LIST)
1119 audit_list(pid, seq, &dest->q);
1120 else
1121 audit_list_rules(pid, seq, &dest->q);
1122 mutex_unlock(&audit_filter_mutex);
1123
1124 tsk = kthread_run(audit_send_list, dest, "audit_send_list");
1125 if (IS_ERR(tsk)) {
1126 skb_queue_purge(&dest->q);
1127 kfree(dest);
1128 err = PTR_ERR(tsk);
1129 }
1130 break;
1131 case AUDIT_ADD:
1132 case AUDIT_ADD_RULE:
1133 if (type == AUDIT_ADD)
1134 entry = audit_rule_to_entry(data);
1135 else
1136 entry = audit_data_to_entry(data, datasz);
1137 if (IS_ERR(entry))
1138 return PTR_ERR(entry);
1139
1140 err = audit_add_rule(entry);
1141 audit_log_rule_change(loginuid, sessionid, sid, "add rule",
1142 &entry->rule, !err);
1143
1144 if (err)
1145 audit_free_rule(entry);
1146 break;
1147 case AUDIT_DEL:
1148 case AUDIT_DEL_RULE:
1149 if (type == AUDIT_DEL)
1150 entry = audit_rule_to_entry(data);
1151 else
1152 entry = audit_data_to_entry(data, datasz);
1153 if (IS_ERR(entry))
1154 return PTR_ERR(entry);
1155
1156 err = audit_del_rule(entry);
1157 audit_log_rule_change(loginuid, sessionid, sid, "remove rule",
1158 &entry->rule, !err);
1159
1160 audit_free_rule(entry);
1161 break;
1162 default:
1163 return -EINVAL;
1164 }
1165
1166 return err;
1167}
1168
1169int audit_comparator(u32 left, u32 op, u32 right)
1170{
1171 switch (op) {
1172 case Audit_equal:
1173 return (left == right);
1174 case Audit_not_equal:
1175 return (left != right);
1176 case Audit_lt:
1177 return (left < right);
1178 case Audit_le:
1179 return (left <= right);
1180 case Audit_gt:
1181 return (left > right);
1182 case Audit_ge:
1183 return (left >= right);
1184 case Audit_bitmask:
1185 return (left & right);
1186 case Audit_bittest:
1187 return ((left & right) == right);
1188 default:
1189 BUG();
1190 return 0;
1191 }
1192}
1193
1194/* Compare given dentry name with last component in given path,
1195 * return of 0 indicates a match. */
1196int audit_compare_dname_path(const char *dname, const char *path,
1197 int *dirlen)
1198{
1199 int dlen, plen;
1200 const char *p;
1201
1202 if (!dname || !path)
1203 return 1;
1204
1205 dlen = strlen(dname);
1206 plen = strlen(path);
1207 if (plen < dlen)
1208 return 1;
1209
1210 /* disregard trailing slashes */
1211 p = path + plen - 1;
1212 while ((*p == '/') && (p > path))
1213 p--;
1214
1215 /* find last path component */
1216 p = p - dlen + 1;
1217 if (p < path)
1218 return 1;
1219 else if (p > path) {
1220 if (*--p != '/')
1221 return 1;
1222 else
1223 p++;
1224 }
1225
1226 /* return length of path's directory component */
1227 if (dirlen)
1228 *dirlen = p - path;
1229 return strncmp(p, dname, dlen);
1230}
1231
1232static int audit_filter_user_rules(struct netlink_skb_parms *cb,
1233 struct audit_krule *rule,
1234 enum audit_state *state)
1235{
1236 int i;
1237
1238 for (i = 0; i < rule->field_count; i++) {
1239 struct audit_field *f = &rule->fields[i];
1240 int result = 0;
1241 u32 sid;
1242
1243 switch (f->type) {
1244 case AUDIT_PID:
1245 result = audit_comparator(cb->creds.pid, f->op, f->val);
1246 break;
1247 case AUDIT_UID:
1248 result = audit_comparator(cb->creds.uid, f->op, f->val);
1249 break;
1250 case AUDIT_GID:
1251 result = audit_comparator(cb->creds.gid, f->op, f->val);
1252 break;
1253 case AUDIT_LOGINUID:
1254 result = audit_comparator(audit_get_loginuid(current),
1255 f->op, f->val);
1256 break;
1257 case AUDIT_SUBJ_USER:
1258 case AUDIT_SUBJ_ROLE:
1259 case AUDIT_SUBJ_TYPE:
1260 case AUDIT_SUBJ_SEN:
1261 case AUDIT_SUBJ_CLR:
1262 if (f->lsm_rule) {
1263 security_task_getsecid(current, &sid);
1264 result = security_audit_rule_match(sid,
1265 f->type,
1266 f->op,
1267 f->lsm_rule,
1268 NULL);
1269 }
1270 break;
1271 }
1272
1273 if (!result)
1274 return 0;
1275 }
1276 switch (rule->action) {
1277 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1278 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
1279 }
1280 return 1;
1281}
1282
1283int audit_filter_user(struct netlink_skb_parms *cb)
1284{
1285 enum audit_state state = AUDIT_DISABLED;
1286 struct audit_entry *e;
1287 int ret = 1;
1288
1289 rcu_read_lock();
1290 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_USER], list) {
1291 if (audit_filter_user_rules(cb, &e->rule, &state)) {
1292 if (state == AUDIT_DISABLED)
1293 ret = 0;
1294 break;
1295 }
1296 }
1297 rcu_read_unlock();
1298
1299 return ret; /* Audit by default */
1300}
1301
1302int audit_filter_type(int type)
1303{
1304 struct audit_entry *e;
1305 int result = 0;
1306
1307 rcu_read_lock();
1308 if (list_empty(&audit_filter_list[AUDIT_FILTER_TYPE]))
1309 goto unlock_and_return;
1310
1311 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TYPE],
1312 list) {
1313 int i;
1314 for (i = 0; i < e->rule.field_count; i++) {
1315 struct audit_field *f = &e->rule.fields[i];
1316 if (f->type == AUDIT_MSGTYPE) {
1317 result = audit_comparator(type, f->op, f->val);
1318 if (!result)
1319 break;
1320 }
1321 }
1322 if (result)
1323 goto unlock_and_return;
1324 }
1325unlock_and_return:
1326 rcu_read_unlock();
1327 return result;
1328}
1329
1330static int update_lsm_rule(struct audit_krule *r)
1331{
1332 struct audit_entry *entry = container_of(r, struct audit_entry, rule);
1333 struct audit_entry *nentry;
1334 int err = 0;
1335
1336 if (!security_audit_rule_known(r))
1337 return 0;
1338
1339 nentry = audit_dupe_rule(r);
1340 if (IS_ERR(nentry)) {
1341 /* save the first error encountered for the
1342 * return value */
1343 err = PTR_ERR(nentry);
1344 audit_panic("error updating LSM filters");
1345 if (r->watch)
1346 list_del(&r->rlist);
1347 list_del_rcu(&entry->list);
1348 list_del(&r->list);
1349 } else {
1350 if (r->watch || r->tree)
1351 list_replace_init(&r->rlist, &nentry->rule.rlist);
1352 list_replace_rcu(&entry->list, &nentry->list);
1353 list_replace(&r->list, &nentry->rule.list);
1354 }
1355 call_rcu(&entry->rcu, audit_free_rule_rcu);
1356
1357 return err;
1358}
1359
1360/* This function will re-initialize the lsm_rule field of all applicable rules.
1361 * It will traverse the filter lists serarching for rules that contain LSM
1362 * specific filter fields. When such a rule is found, it is copied, the
1363 * LSM field is re-initialized, and the old rule is replaced with the
1364 * updated rule. */
1365int audit_update_lsm_rules(void)
1366{
1367 struct audit_krule *r, *n;
1368 int i, err = 0;
1369
1370 /* audit_filter_mutex synchronizes the writers */
1371 mutex_lock(&audit_filter_mutex);
1372
1373 for (i = 0; i < AUDIT_NR_FILTERS; i++) {
1374 list_for_each_entry_safe(r, n, &audit_rules_list[i], list) {
1375 int res = update_lsm_rule(r);
1376 if (!err)
1377 err = res;
1378 }
1379 }
1380 mutex_unlock(&audit_filter_mutex);
1381
1382 return err;
1383}