Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2#undef TRACE_SYSTEM
3#define TRACE_SYSTEM sched
4
5#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
6#define _TRACE_SCHED_H
7
8#include <linux/kthread.h>
9#include <linux/sched/numa_balancing.h>
10#include <linux/tracepoint.h>
11#include <linux/binfmts.h>
12
13/*
14 * Tracepoint for calling kthread_stop, performed to end a kthread:
15 */
16TRACE_EVENT(sched_kthread_stop,
17
18 TP_PROTO(struct task_struct *t),
19
20 TP_ARGS(t),
21
22 TP_STRUCT__entry(
23 __array( char, comm, TASK_COMM_LEN )
24 __field( pid_t, pid )
25 ),
26
27 TP_fast_assign(
28 memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
29 __entry->pid = t->pid;
30 ),
31
32 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
33);
34
35/*
36 * Tracepoint for the return value of the kthread stopping:
37 */
38TRACE_EVENT(sched_kthread_stop_ret,
39
40 TP_PROTO(int ret),
41
42 TP_ARGS(ret),
43
44 TP_STRUCT__entry(
45 __field( int, ret )
46 ),
47
48 TP_fast_assign(
49 __entry->ret = ret;
50 ),
51
52 TP_printk("ret=%d", __entry->ret)
53);
54
55/**
56 * sched_kthread_work_queue_work - called when a work gets queued
57 * @worker: pointer to the kthread_worker
58 * @work: pointer to struct kthread_work
59 *
60 * This event occurs when a work is queued immediately or once a
61 * delayed work is actually queued (ie: once the delay has been
62 * reached).
63 */
64TRACE_EVENT(sched_kthread_work_queue_work,
65
66 TP_PROTO(struct kthread_worker *worker,
67 struct kthread_work *work),
68
69 TP_ARGS(worker, work),
70
71 TP_STRUCT__entry(
72 __field( void *, work )
73 __field( void *, function)
74 __field( void *, worker)
75 ),
76
77 TP_fast_assign(
78 __entry->work = work;
79 __entry->function = work->func;
80 __entry->worker = worker;
81 ),
82
83 TP_printk("work struct=%p function=%ps worker=%p",
84 __entry->work, __entry->function, __entry->worker)
85);
86
87/**
88 * sched_kthread_work_execute_start - called immediately before the work callback
89 * @work: pointer to struct kthread_work
90 *
91 * Allows to track kthread work execution.
92 */
93TRACE_EVENT(sched_kthread_work_execute_start,
94
95 TP_PROTO(struct kthread_work *work),
96
97 TP_ARGS(work),
98
99 TP_STRUCT__entry(
100 __field( void *, work )
101 __field( void *, function)
102 ),
103
104 TP_fast_assign(
105 __entry->work = work;
106 __entry->function = work->func;
107 ),
108
109 TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
110);
111
112/**
113 * sched_kthread_work_execute_end - called immediately after the work callback
114 * @work: pointer to struct work_struct
115 * @function: pointer to worker function
116 *
117 * Allows to track workqueue execution.
118 */
119TRACE_EVENT(sched_kthread_work_execute_end,
120
121 TP_PROTO(struct kthread_work *work, kthread_work_func_t function),
122
123 TP_ARGS(work, function),
124
125 TP_STRUCT__entry(
126 __field( void *, work )
127 __field( void *, function)
128 ),
129
130 TP_fast_assign(
131 __entry->work = work;
132 __entry->function = function;
133 ),
134
135 TP_printk("work struct %p: function %ps", __entry->work, __entry->function)
136);
137
138/*
139 * Tracepoint for waking up a task:
140 */
141DECLARE_EVENT_CLASS(sched_wakeup_template,
142
143 TP_PROTO(struct task_struct *p),
144
145 TP_ARGS(__perf_task(p)),
146
147 TP_STRUCT__entry(
148 __array( char, comm, TASK_COMM_LEN )
149 __field( pid_t, pid )
150 __field( int, prio )
151 __field( int, target_cpu )
152 ),
153
154 TP_fast_assign(
155 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
156 __entry->pid = p->pid;
157 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
158 __entry->target_cpu = task_cpu(p);
159 ),
160
161 TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
162 __entry->comm, __entry->pid, __entry->prio,
163 __entry->target_cpu)
164);
165
166/*
167 * Tracepoint called when waking a task; this tracepoint is guaranteed to be
168 * called from the waking context.
169 */
170DEFINE_EVENT(sched_wakeup_template, sched_waking,
171 TP_PROTO(struct task_struct *p),
172 TP_ARGS(p));
173
174/*
175 * Tracepoint called when the task is actually woken; p->state == TASK_RUNNING.
176 * It is not always called from the waking context.
177 */
178DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
179 TP_PROTO(struct task_struct *p),
180 TP_ARGS(p));
181
182/*
183 * Tracepoint for waking up a new task:
184 */
185DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
186 TP_PROTO(struct task_struct *p),
187 TP_ARGS(p));
188
189#ifdef CREATE_TRACE_POINTS
190static inline long __trace_sched_switch_state(bool preempt,
191 unsigned int prev_state,
192 struct task_struct *p)
193{
194 unsigned int state;
195
196#ifdef CONFIG_SCHED_DEBUG
197 BUG_ON(p != current);
198#endif /* CONFIG_SCHED_DEBUG */
199
200 /*
201 * Preemption ignores task state, therefore preempted tasks are always
202 * RUNNING (we will not have dequeued if state != RUNNING).
203 */
204 if (preempt)
205 return TASK_REPORT_MAX;
206
207 /*
208 * task_state_index() uses fls() and returns a value from 0-8 range.
209 * Decrement it by 1 (except TASK_RUNNING state i.e 0) before using
210 * it for left shift operation to get the correct task->state
211 * mapping.
212 */
213 state = __task_state_index(prev_state, p->exit_state);
214
215 return state ? (1 << (state - 1)) : state;
216}
217#endif /* CREATE_TRACE_POINTS */
218
219/*
220 * Tracepoint for task switches, performed by the scheduler:
221 */
222TRACE_EVENT(sched_switch,
223
224 TP_PROTO(bool preempt,
225 struct task_struct *prev,
226 struct task_struct *next,
227 unsigned int prev_state),
228
229 TP_ARGS(preempt, prev, next, prev_state),
230
231 TP_STRUCT__entry(
232 __array( char, prev_comm, TASK_COMM_LEN )
233 __field( pid_t, prev_pid )
234 __field( int, prev_prio )
235 __field( long, prev_state )
236 __array( char, next_comm, TASK_COMM_LEN )
237 __field( pid_t, next_pid )
238 __field( int, next_prio )
239 ),
240
241 TP_fast_assign(
242 memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
243 __entry->prev_pid = prev->pid;
244 __entry->prev_prio = prev->prio;
245 __entry->prev_state = __trace_sched_switch_state(preempt, prev_state, prev);
246 memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
247 __entry->next_pid = next->pid;
248 __entry->next_prio = next->prio;
249 /* XXX SCHED_DEADLINE */
250 ),
251
252 TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s%s ==> next_comm=%s next_pid=%d next_prio=%d",
253 __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
254
255 (__entry->prev_state & (TASK_REPORT_MAX - 1)) ?
256 __print_flags(__entry->prev_state & (TASK_REPORT_MAX - 1), "|",
257 { TASK_INTERRUPTIBLE, "S" },
258 { TASK_UNINTERRUPTIBLE, "D" },
259 { __TASK_STOPPED, "T" },
260 { __TASK_TRACED, "t" },
261 { EXIT_DEAD, "X" },
262 { EXIT_ZOMBIE, "Z" },
263 { TASK_PARKED, "P" },
264 { TASK_DEAD, "I" }) :
265 "R",
266
267 __entry->prev_state & TASK_REPORT_MAX ? "+" : "",
268 __entry->next_comm, __entry->next_pid, __entry->next_prio)
269);
270
271/*
272 * Tracepoint for a task being migrated:
273 */
274TRACE_EVENT(sched_migrate_task,
275
276 TP_PROTO(struct task_struct *p, int dest_cpu),
277
278 TP_ARGS(p, dest_cpu),
279
280 TP_STRUCT__entry(
281 __array( char, comm, TASK_COMM_LEN )
282 __field( pid_t, pid )
283 __field( int, prio )
284 __field( int, orig_cpu )
285 __field( int, dest_cpu )
286 ),
287
288 TP_fast_assign(
289 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
290 __entry->pid = p->pid;
291 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
292 __entry->orig_cpu = task_cpu(p);
293 __entry->dest_cpu = dest_cpu;
294 ),
295
296 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
297 __entry->comm, __entry->pid, __entry->prio,
298 __entry->orig_cpu, __entry->dest_cpu)
299);
300
301DECLARE_EVENT_CLASS(sched_process_template,
302
303 TP_PROTO(struct task_struct *p),
304
305 TP_ARGS(p),
306
307 TP_STRUCT__entry(
308 __array( char, comm, TASK_COMM_LEN )
309 __field( pid_t, pid )
310 __field( int, prio )
311 ),
312
313 TP_fast_assign(
314 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
315 __entry->pid = p->pid;
316 __entry->prio = p->prio; /* XXX SCHED_DEADLINE */
317 ),
318
319 TP_printk("comm=%s pid=%d prio=%d",
320 __entry->comm, __entry->pid, __entry->prio)
321);
322
323/*
324 * Tracepoint for freeing a task:
325 */
326DEFINE_EVENT(sched_process_template, sched_process_free,
327 TP_PROTO(struct task_struct *p),
328 TP_ARGS(p));
329
330/*
331 * Tracepoint for a task exiting:
332 */
333DEFINE_EVENT(sched_process_template, sched_process_exit,
334 TP_PROTO(struct task_struct *p),
335 TP_ARGS(p));
336
337/*
338 * Tracepoint for waiting on task to unschedule:
339 */
340DEFINE_EVENT(sched_process_template, sched_wait_task,
341 TP_PROTO(struct task_struct *p),
342 TP_ARGS(p));
343
344/*
345 * Tracepoint for a waiting task:
346 */
347TRACE_EVENT(sched_process_wait,
348
349 TP_PROTO(struct pid *pid),
350
351 TP_ARGS(pid),
352
353 TP_STRUCT__entry(
354 __array( char, comm, TASK_COMM_LEN )
355 __field( pid_t, pid )
356 __field( int, prio )
357 ),
358
359 TP_fast_assign(
360 memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
361 __entry->pid = pid_nr(pid);
362 __entry->prio = current->prio; /* XXX SCHED_DEADLINE */
363 ),
364
365 TP_printk("comm=%s pid=%d prio=%d",
366 __entry->comm, __entry->pid, __entry->prio)
367);
368
369/*
370 * Tracepoint for kernel_clone:
371 */
372TRACE_EVENT(sched_process_fork,
373
374 TP_PROTO(struct task_struct *parent, struct task_struct *child),
375
376 TP_ARGS(parent, child),
377
378 TP_STRUCT__entry(
379 __array( char, parent_comm, TASK_COMM_LEN )
380 __field( pid_t, parent_pid )
381 __array( char, child_comm, TASK_COMM_LEN )
382 __field( pid_t, child_pid )
383 ),
384
385 TP_fast_assign(
386 memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
387 __entry->parent_pid = parent->pid;
388 memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
389 __entry->child_pid = child->pid;
390 ),
391
392 TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
393 __entry->parent_comm, __entry->parent_pid,
394 __entry->child_comm, __entry->child_pid)
395);
396
397/*
398 * Tracepoint for exec:
399 */
400TRACE_EVENT(sched_process_exec,
401
402 TP_PROTO(struct task_struct *p, pid_t old_pid,
403 struct linux_binprm *bprm),
404
405 TP_ARGS(p, old_pid, bprm),
406
407 TP_STRUCT__entry(
408 __string( filename, bprm->filename )
409 __field( pid_t, pid )
410 __field( pid_t, old_pid )
411 ),
412
413 TP_fast_assign(
414 __assign_str(filename);
415 __entry->pid = p->pid;
416 __entry->old_pid = old_pid;
417 ),
418
419 TP_printk("filename=%s pid=%d old_pid=%d", __get_str(filename),
420 __entry->pid, __entry->old_pid)
421);
422
423/**
424 * sched_prepare_exec - called before setting up new exec
425 * @task: pointer to the current task
426 * @bprm: pointer to linux_binprm used for new exec
427 *
428 * Called before flushing the old exec, where @task is still unchanged, but at
429 * the point of no return during switching to the new exec. At the point it is
430 * called the exec will either succeed, or on failure terminate the task. Also
431 * see the "sched_process_exec" tracepoint, which is called right after @task
432 * has successfully switched to the new exec.
433 */
434TRACE_EVENT(sched_prepare_exec,
435
436 TP_PROTO(struct task_struct *task, struct linux_binprm *bprm),
437
438 TP_ARGS(task, bprm),
439
440 TP_STRUCT__entry(
441 __string( interp, bprm->interp )
442 __string( filename, bprm->filename )
443 __field( pid_t, pid )
444 __string( comm, task->comm )
445 ),
446
447 TP_fast_assign(
448 __assign_str(interp);
449 __assign_str(filename);
450 __entry->pid = task->pid;
451 __assign_str(comm);
452 ),
453
454 TP_printk("interp=%s filename=%s pid=%d comm=%s",
455 __get_str(interp), __get_str(filename),
456 __entry->pid, __get_str(comm))
457);
458
459#ifdef CONFIG_SCHEDSTATS
460#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT
461#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS
462#else
463#define DEFINE_EVENT_SCHEDSTAT DEFINE_EVENT_NOP
464#define DECLARE_EVENT_CLASS_SCHEDSTAT DECLARE_EVENT_CLASS_NOP
465#endif
466
467/*
468 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
469 * adding sched_stat support to SCHED_FIFO/RR would be welcome.
470 */
471DECLARE_EVENT_CLASS_SCHEDSTAT(sched_stat_template,
472
473 TP_PROTO(struct task_struct *tsk, u64 delay),
474
475 TP_ARGS(__perf_task(tsk), __perf_count(delay)),
476
477 TP_STRUCT__entry(
478 __array( char, comm, TASK_COMM_LEN )
479 __field( pid_t, pid )
480 __field( u64, delay )
481 ),
482
483 TP_fast_assign(
484 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
485 __entry->pid = tsk->pid;
486 __entry->delay = delay;
487 ),
488
489 TP_printk("comm=%s pid=%d delay=%Lu [ns]",
490 __entry->comm, __entry->pid,
491 (unsigned long long)__entry->delay)
492);
493
494/*
495 * Tracepoint for accounting wait time (time the task is runnable
496 * but not actually running due to scheduler contention).
497 */
498DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_wait,
499 TP_PROTO(struct task_struct *tsk, u64 delay),
500 TP_ARGS(tsk, delay));
501
502/*
503 * Tracepoint for accounting sleep time (time the task is not runnable,
504 * including iowait, see below).
505 */
506DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_sleep,
507 TP_PROTO(struct task_struct *tsk, u64 delay),
508 TP_ARGS(tsk, delay));
509
510/*
511 * Tracepoint for accounting iowait time (time the task is not runnable
512 * due to waiting on IO to complete).
513 */
514DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_iowait,
515 TP_PROTO(struct task_struct *tsk, u64 delay),
516 TP_ARGS(tsk, delay));
517
518/*
519 * Tracepoint for accounting blocked time (time the task is in uninterruptible).
520 */
521DEFINE_EVENT_SCHEDSTAT(sched_stat_template, sched_stat_blocked,
522 TP_PROTO(struct task_struct *tsk, u64 delay),
523 TP_ARGS(tsk, delay));
524
525/*
526 * Tracepoint for accounting runtime (time the task is executing
527 * on a CPU).
528 */
529DECLARE_EVENT_CLASS(sched_stat_runtime,
530
531 TP_PROTO(struct task_struct *tsk, u64 runtime),
532
533 TP_ARGS(tsk, __perf_count(runtime)),
534
535 TP_STRUCT__entry(
536 __array( char, comm, TASK_COMM_LEN )
537 __field( pid_t, pid )
538 __field( u64, runtime )
539 ),
540
541 TP_fast_assign(
542 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
543 __entry->pid = tsk->pid;
544 __entry->runtime = runtime;
545 ),
546
547 TP_printk("comm=%s pid=%d runtime=%Lu [ns]",
548 __entry->comm, __entry->pid,
549 (unsigned long long)__entry->runtime)
550);
551
552DEFINE_EVENT(sched_stat_runtime, sched_stat_runtime,
553 TP_PROTO(struct task_struct *tsk, u64 runtime),
554 TP_ARGS(tsk, runtime));
555
556/*
557 * Tracepoint for showing priority inheritance modifying a tasks
558 * priority.
559 */
560TRACE_EVENT(sched_pi_setprio,
561
562 TP_PROTO(struct task_struct *tsk, struct task_struct *pi_task),
563
564 TP_ARGS(tsk, pi_task),
565
566 TP_STRUCT__entry(
567 __array( char, comm, TASK_COMM_LEN )
568 __field( pid_t, pid )
569 __field( int, oldprio )
570 __field( int, newprio )
571 ),
572
573 TP_fast_assign(
574 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
575 __entry->pid = tsk->pid;
576 __entry->oldprio = tsk->prio;
577 __entry->newprio = pi_task ?
578 min(tsk->normal_prio, pi_task->prio) :
579 tsk->normal_prio;
580 /* XXX SCHED_DEADLINE bits missing */
581 ),
582
583 TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
584 __entry->comm, __entry->pid,
585 __entry->oldprio, __entry->newprio)
586);
587
588#ifdef CONFIG_DETECT_HUNG_TASK
589TRACE_EVENT(sched_process_hang,
590 TP_PROTO(struct task_struct *tsk),
591 TP_ARGS(tsk),
592
593 TP_STRUCT__entry(
594 __array( char, comm, TASK_COMM_LEN )
595 __field( pid_t, pid )
596 ),
597
598 TP_fast_assign(
599 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
600 __entry->pid = tsk->pid;
601 ),
602
603 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
604);
605#endif /* CONFIG_DETECT_HUNG_TASK */
606
607/*
608 * Tracks migration of tasks from one runqueue to another. Can be used to
609 * detect if automatic NUMA balancing is bouncing between nodes.
610 */
611TRACE_EVENT(sched_move_numa,
612
613 TP_PROTO(struct task_struct *tsk, int src_cpu, int dst_cpu),
614
615 TP_ARGS(tsk, src_cpu, dst_cpu),
616
617 TP_STRUCT__entry(
618 __field( pid_t, pid )
619 __field( pid_t, tgid )
620 __field( pid_t, ngid )
621 __field( int, src_cpu )
622 __field( int, src_nid )
623 __field( int, dst_cpu )
624 __field( int, dst_nid )
625 ),
626
627 TP_fast_assign(
628 __entry->pid = task_pid_nr(tsk);
629 __entry->tgid = task_tgid_nr(tsk);
630 __entry->ngid = task_numa_group_id(tsk);
631 __entry->src_cpu = src_cpu;
632 __entry->src_nid = cpu_to_node(src_cpu);
633 __entry->dst_cpu = dst_cpu;
634 __entry->dst_nid = cpu_to_node(dst_cpu);
635 ),
636
637 TP_printk("pid=%d tgid=%d ngid=%d src_cpu=%d src_nid=%d dst_cpu=%d dst_nid=%d",
638 __entry->pid, __entry->tgid, __entry->ngid,
639 __entry->src_cpu, __entry->src_nid,
640 __entry->dst_cpu, __entry->dst_nid)
641);
642
643DECLARE_EVENT_CLASS(sched_numa_pair_template,
644
645 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
646 struct task_struct *dst_tsk, int dst_cpu),
647
648 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu),
649
650 TP_STRUCT__entry(
651 __field( pid_t, src_pid )
652 __field( pid_t, src_tgid )
653 __field( pid_t, src_ngid )
654 __field( int, src_cpu )
655 __field( int, src_nid )
656 __field( pid_t, dst_pid )
657 __field( pid_t, dst_tgid )
658 __field( pid_t, dst_ngid )
659 __field( int, dst_cpu )
660 __field( int, dst_nid )
661 ),
662
663 TP_fast_assign(
664 __entry->src_pid = task_pid_nr(src_tsk);
665 __entry->src_tgid = task_tgid_nr(src_tsk);
666 __entry->src_ngid = task_numa_group_id(src_tsk);
667 __entry->src_cpu = src_cpu;
668 __entry->src_nid = cpu_to_node(src_cpu);
669 __entry->dst_pid = dst_tsk ? task_pid_nr(dst_tsk) : 0;
670 __entry->dst_tgid = dst_tsk ? task_tgid_nr(dst_tsk) : 0;
671 __entry->dst_ngid = dst_tsk ? task_numa_group_id(dst_tsk) : 0;
672 __entry->dst_cpu = dst_cpu;
673 __entry->dst_nid = dst_cpu >= 0 ? cpu_to_node(dst_cpu) : -1;
674 ),
675
676 TP_printk("src_pid=%d src_tgid=%d src_ngid=%d src_cpu=%d src_nid=%d dst_pid=%d dst_tgid=%d dst_ngid=%d dst_cpu=%d dst_nid=%d",
677 __entry->src_pid, __entry->src_tgid, __entry->src_ngid,
678 __entry->src_cpu, __entry->src_nid,
679 __entry->dst_pid, __entry->dst_tgid, __entry->dst_ngid,
680 __entry->dst_cpu, __entry->dst_nid)
681);
682
683DEFINE_EVENT(sched_numa_pair_template, sched_stick_numa,
684
685 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
686 struct task_struct *dst_tsk, int dst_cpu),
687
688 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
689);
690
691DEFINE_EVENT(sched_numa_pair_template, sched_swap_numa,
692
693 TP_PROTO(struct task_struct *src_tsk, int src_cpu,
694 struct task_struct *dst_tsk, int dst_cpu),
695
696 TP_ARGS(src_tsk, src_cpu, dst_tsk, dst_cpu)
697);
698
699#ifdef CONFIG_NUMA_BALANCING
700#define NUMAB_SKIP_REASON \
701 EM( NUMAB_SKIP_UNSUITABLE, "unsuitable" ) \
702 EM( NUMAB_SKIP_SHARED_RO, "shared_ro" ) \
703 EM( NUMAB_SKIP_INACCESSIBLE, "inaccessible" ) \
704 EM( NUMAB_SKIP_SCAN_DELAY, "scan_delay" ) \
705 EM( NUMAB_SKIP_PID_INACTIVE, "pid_inactive" ) \
706 EM( NUMAB_SKIP_IGNORE_PID, "ignore_pid_inactive" ) \
707 EMe(NUMAB_SKIP_SEQ_COMPLETED, "seq_completed" )
708
709/* Redefine for export. */
710#undef EM
711#undef EMe
712#define EM(a, b) TRACE_DEFINE_ENUM(a);
713#define EMe(a, b) TRACE_DEFINE_ENUM(a);
714
715NUMAB_SKIP_REASON
716
717/* Redefine for symbolic printing. */
718#undef EM
719#undef EMe
720#define EM(a, b) { a, b },
721#define EMe(a, b) { a, b }
722
723TRACE_EVENT(sched_skip_vma_numa,
724
725 TP_PROTO(struct mm_struct *mm, struct vm_area_struct *vma,
726 enum numa_vmaskip_reason reason),
727
728 TP_ARGS(mm, vma, reason),
729
730 TP_STRUCT__entry(
731 __field(unsigned long, numa_scan_offset)
732 __field(unsigned long, vm_start)
733 __field(unsigned long, vm_end)
734 __field(enum numa_vmaskip_reason, reason)
735 ),
736
737 TP_fast_assign(
738 __entry->numa_scan_offset = mm->numa_scan_offset;
739 __entry->vm_start = vma->vm_start;
740 __entry->vm_end = vma->vm_end;
741 __entry->reason = reason;
742 ),
743
744 TP_printk("numa_scan_offset=%lX vm_start=%lX vm_end=%lX reason=%s",
745 __entry->numa_scan_offset,
746 __entry->vm_start,
747 __entry->vm_end,
748 __print_symbolic(__entry->reason, NUMAB_SKIP_REASON))
749);
750#endif /* CONFIG_NUMA_BALANCING */
751
752/*
753 * Tracepoint for waking a polling cpu without an IPI.
754 */
755TRACE_EVENT(sched_wake_idle_without_ipi,
756
757 TP_PROTO(int cpu),
758
759 TP_ARGS(cpu),
760
761 TP_STRUCT__entry(
762 __field( int, cpu )
763 ),
764
765 TP_fast_assign(
766 __entry->cpu = cpu;
767 ),
768
769 TP_printk("cpu=%d", __entry->cpu)
770);
771
772/*
773 * Following tracepoints are not exported in tracefs and provide hooking
774 * mechanisms only for testing and debugging purposes.
775 *
776 * Postfixed with _tp to make them easily identifiable in the code.
777 */
778DECLARE_TRACE(pelt_cfs_tp,
779 TP_PROTO(struct cfs_rq *cfs_rq),
780 TP_ARGS(cfs_rq));
781
782DECLARE_TRACE(pelt_rt_tp,
783 TP_PROTO(struct rq *rq),
784 TP_ARGS(rq));
785
786DECLARE_TRACE(pelt_dl_tp,
787 TP_PROTO(struct rq *rq),
788 TP_ARGS(rq));
789
790DECLARE_TRACE(pelt_hw_tp,
791 TP_PROTO(struct rq *rq),
792 TP_ARGS(rq));
793
794DECLARE_TRACE(pelt_irq_tp,
795 TP_PROTO(struct rq *rq),
796 TP_ARGS(rq));
797
798DECLARE_TRACE(pelt_se_tp,
799 TP_PROTO(struct sched_entity *se),
800 TP_ARGS(se));
801
802DECLARE_TRACE(sched_cpu_capacity_tp,
803 TP_PROTO(struct rq *rq),
804 TP_ARGS(rq));
805
806DECLARE_TRACE(sched_overutilized_tp,
807 TP_PROTO(struct root_domain *rd, bool overutilized),
808 TP_ARGS(rd, overutilized));
809
810DECLARE_TRACE(sched_util_est_cfs_tp,
811 TP_PROTO(struct cfs_rq *cfs_rq),
812 TP_ARGS(cfs_rq));
813
814DECLARE_TRACE(sched_util_est_se_tp,
815 TP_PROTO(struct sched_entity *se),
816 TP_ARGS(se));
817
818DECLARE_TRACE(sched_update_nr_running_tp,
819 TP_PROTO(struct rq *rq, int change),
820 TP_ARGS(rq, change));
821
822DECLARE_TRACE(sched_compute_energy_tp,
823 TP_PROTO(struct task_struct *p, int dst_cpu, unsigned long energy,
824 unsigned long max_util, unsigned long busy_time),
825 TP_ARGS(p, dst_cpu, energy, max_util, busy_time));
826
827#endif /* _TRACE_SCHED_H */
828
829/* This part must be outside protection */
830#include <trace/define_trace.h>
1#undef TRACE_SYSTEM
2#define TRACE_SYSTEM sched
3
4#if !defined(_TRACE_SCHED_H) || defined(TRACE_HEADER_MULTI_READ)
5#define _TRACE_SCHED_H
6
7#include <linux/sched.h>
8#include <linux/tracepoint.h>
9
10/*
11 * Tracepoint for calling kthread_stop, performed to end a kthread:
12 */
13TRACE_EVENT(sched_kthread_stop,
14
15 TP_PROTO(struct task_struct *t),
16
17 TP_ARGS(t),
18
19 TP_STRUCT__entry(
20 __array( char, comm, TASK_COMM_LEN )
21 __field( pid_t, pid )
22 ),
23
24 TP_fast_assign(
25 memcpy(__entry->comm, t->comm, TASK_COMM_LEN);
26 __entry->pid = t->pid;
27 ),
28
29 TP_printk("comm=%s pid=%d", __entry->comm, __entry->pid)
30);
31
32/*
33 * Tracepoint for the return value of the kthread stopping:
34 */
35TRACE_EVENT(sched_kthread_stop_ret,
36
37 TP_PROTO(int ret),
38
39 TP_ARGS(ret),
40
41 TP_STRUCT__entry(
42 __field( int, ret )
43 ),
44
45 TP_fast_assign(
46 __entry->ret = ret;
47 ),
48
49 TP_printk("ret=%d", __entry->ret)
50);
51
52/*
53 * Tracepoint for waking up a task:
54 */
55DECLARE_EVENT_CLASS(sched_wakeup_template,
56
57 TP_PROTO(struct task_struct *p, int success),
58
59 TP_ARGS(p, success),
60
61 TP_STRUCT__entry(
62 __array( char, comm, TASK_COMM_LEN )
63 __field( pid_t, pid )
64 __field( int, prio )
65 __field( int, success )
66 __field( int, target_cpu )
67 ),
68
69 TP_fast_assign(
70 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
71 __entry->pid = p->pid;
72 __entry->prio = p->prio;
73 __entry->success = success;
74 __entry->target_cpu = task_cpu(p);
75 ),
76
77 TP_printk("comm=%s pid=%d prio=%d success=%d target_cpu=%03d",
78 __entry->comm, __entry->pid, __entry->prio,
79 __entry->success, __entry->target_cpu)
80);
81
82DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
83 TP_PROTO(struct task_struct *p, int success),
84 TP_ARGS(p, success));
85
86/*
87 * Tracepoint for waking up a new task:
88 */
89DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
90 TP_PROTO(struct task_struct *p, int success),
91 TP_ARGS(p, success));
92
93#ifdef CREATE_TRACE_POINTS
94static inline long __trace_sched_switch_state(struct task_struct *p)
95{
96 long state = p->state;
97
98#ifdef CONFIG_PREEMPT
99 /*
100 * For all intents and purposes a preempted task is a running task.
101 */
102 if (task_thread_info(p)->preempt_count & PREEMPT_ACTIVE)
103 state = TASK_RUNNING;
104#endif
105
106 return state;
107}
108#endif
109
110/*
111 * Tracepoint for task switches, performed by the scheduler:
112 */
113TRACE_EVENT(sched_switch,
114
115 TP_PROTO(struct task_struct *prev,
116 struct task_struct *next),
117
118 TP_ARGS(prev, next),
119
120 TP_STRUCT__entry(
121 __array( char, prev_comm, TASK_COMM_LEN )
122 __field( pid_t, prev_pid )
123 __field( int, prev_prio )
124 __field( long, prev_state )
125 __array( char, next_comm, TASK_COMM_LEN )
126 __field( pid_t, next_pid )
127 __field( int, next_prio )
128 ),
129
130 TP_fast_assign(
131 memcpy(__entry->next_comm, next->comm, TASK_COMM_LEN);
132 __entry->prev_pid = prev->pid;
133 __entry->prev_prio = prev->prio;
134 __entry->prev_state = __trace_sched_switch_state(prev);
135 memcpy(__entry->prev_comm, prev->comm, TASK_COMM_LEN);
136 __entry->next_pid = next->pid;
137 __entry->next_prio = next->prio;
138 ),
139
140 TP_printk("prev_comm=%s prev_pid=%d prev_prio=%d prev_state=%s ==> next_comm=%s next_pid=%d next_prio=%d",
141 __entry->prev_comm, __entry->prev_pid, __entry->prev_prio,
142 __entry->prev_state ?
143 __print_flags(__entry->prev_state, "|",
144 { 1, "S"} , { 2, "D" }, { 4, "T" }, { 8, "t" },
145 { 16, "Z" }, { 32, "X" }, { 64, "x" },
146 { 128, "W" }) : "R",
147 __entry->next_comm, __entry->next_pid, __entry->next_prio)
148);
149
150/*
151 * Tracepoint for a task being migrated:
152 */
153TRACE_EVENT(sched_migrate_task,
154
155 TP_PROTO(struct task_struct *p, int dest_cpu),
156
157 TP_ARGS(p, dest_cpu),
158
159 TP_STRUCT__entry(
160 __array( char, comm, TASK_COMM_LEN )
161 __field( pid_t, pid )
162 __field( int, prio )
163 __field( int, orig_cpu )
164 __field( int, dest_cpu )
165 ),
166
167 TP_fast_assign(
168 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
169 __entry->pid = p->pid;
170 __entry->prio = p->prio;
171 __entry->orig_cpu = task_cpu(p);
172 __entry->dest_cpu = dest_cpu;
173 ),
174
175 TP_printk("comm=%s pid=%d prio=%d orig_cpu=%d dest_cpu=%d",
176 __entry->comm, __entry->pid, __entry->prio,
177 __entry->orig_cpu, __entry->dest_cpu)
178);
179
180DECLARE_EVENT_CLASS(sched_process_template,
181
182 TP_PROTO(struct task_struct *p),
183
184 TP_ARGS(p),
185
186 TP_STRUCT__entry(
187 __array( char, comm, TASK_COMM_LEN )
188 __field( pid_t, pid )
189 __field( int, prio )
190 ),
191
192 TP_fast_assign(
193 memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
194 __entry->pid = p->pid;
195 __entry->prio = p->prio;
196 ),
197
198 TP_printk("comm=%s pid=%d prio=%d",
199 __entry->comm, __entry->pid, __entry->prio)
200);
201
202/*
203 * Tracepoint for freeing a task:
204 */
205DEFINE_EVENT(sched_process_template, sched_process_free,
206 TP_PROTO(struct task_struct *p),
207 TP_ARGS(p));
208
209
210/*
211 * Tracepoint for a task exiting:
212 */
213DEFINE_EVENT(sched_process_template, sched_process_exit,
214 TP_PROTO(struct task_struct *p),
215 TP_ARGS(p));
216
217/*
218 * Tracepoint for waiting on task to unschedule:
219 */
220DEFINE_EVENT(sched_process_template, sched_wait_task,
221 TP_PROTO(struct task_struct *p),
222 TP_ARGS(p));
223
224/*
225 * Tracepoint for a waiting task:
226 */
227TRACE_EVENT(sched_process_wait,
228
229 TP_PROTO(struct pid *pid),
230
231 TP_ARGS(pid),
232
233 TP_STRUCT__entry(
234 __array( char, comm, TASK_COMM_LEN )
235 __field( pid_t, pid )
236 __field( int, prio )
237 ),
238
239 TP_fast_assign(
240 memcpy(__entry->comm, current->comm, TASK_COMM_LEN);
241 __entry->pid = pid_nr(pid);
242 __entry->prio = current->prio;
243 ),
244
245 TP_printk("comm=%s pid=%d prio=%d",
246 __entry->comm, __entry->pid, __entry->prio)
247);
248
249/*
250 * Tracepoint for do_fork:
251 */
252TRACE_EVENT(sched_process_fork,
253
254 TP_PROTO(struct task_struct *parent, struct task_struct *child),
255
256 TP_ARGS(parent, child),
257
258 TP_STRUCT__entry(
259 __array( char, parent_comm, TASK_COMM_LEN )
260 __field( pid_t, parent_pid )
261 __array( char, child_comm, TASK_COMM_LEN )
262 __field( pid_t, child_pid )
263 ),
264
265 TP_fast_assign(
266 memcpy(__entry->parent_comm, parent->comm, TASK_COMM_LEN);
267 __entry->parent_pid = parent->pid;
268 memcpy(__entry->child_comm, child->comm, TASK_COMM_LEN);
269 __entry->child_pid = child->pid;
270 ),
271
272 TP_printk("comm=%s pid=%d child_comm=%s child_pid=%d",
273 __entry->parent_comm, __entry->parent_pid,
274 __entry->child_comm, __entry->child_pid)
275);
276
277/*
278 * XXX the below sched_stat tracepoints only apply to SCHED_OTHER/BATCH/IDLE
279 * adding sched_stat support to SCHED_FIFO/RR would be welcome.
280 */
281DECLARE_EVENT_CLASS(sched_stat_template,
282
283 TP_PROTO(struct task_struct *tsk, u64 delay),
284
285 TP_ARGS(tsk, delay),
286
287 TP_STRUCT__entry(
288 __array( char, comm, TASK_COMM_LEN )
289 __field( pid_t, pid )
290 __field( u64, delay )
291 ),
292
293 TP_fast_assign(
294 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
295 __entry->pid = tsk->pid;
296 __entry->delay = delay;
297 )
298 TP_perf_assign(
299 __perf_count(delay);
300 ),
301
302 TP_printk("comm=%s pid=%d delay=%Lu [ns]",
303 __entry->comm, __entry->pid,
304 (unsigned long long)__entry->delay)
305);
306
307
308/*
309 * Tracepoint for accounting wait time (time the task is runnable
310 * but not actually running due to scheduler contention).
311 */
312DEFINE_EVENT(sched_stat_template, sched_stat_wait,
313 TP_PROTO(struct task_struct *tsk, u64 delay),
314 TP_ARGS(tsk, delay));
315
316/*
317 * Tracepoint for accounting sleep time (time the task is not runnable,
318 * including iowait, see below).
319 */
320DEFINE_EVENT(sched_stat_template, sched_stat_sleep,
321 TP_PROTO(struct task_struct *tsk, u64 delay),
322 TP_ARGS(tsk, delay));
323
324/*
325 * Tracepoint for accounting iowait time (time the task is not runnable
326 * due to waiting on IO to complete).
327 */
328DEFINE_EVENT(sched_stat_template, sched_stat_iowait,
329 TP_PROTO(struct task_struct *tsk, u64 delay),
330 TP_ARGS(tsk, delay));
331
332/*
333 * Tracepoint for accounting runtime (time the task is executing
334 * on a CPU).
335 */
336TRACE_EVENT(sched_stat_runtime,
337
338 TP_PROTO(struct task_struct *tsk, u64 runtime, u64 vruntime),
339
340 TP_ARGS(tsk, runtime, vruntime),
341
342 TP_STRUCT__entry(
343 __array( char, comm, TASK_COMM_LEN )
344 __field( pid_t, pid )
345 __field( u64, runtime )
346 __field( u64, vruntime )
347 ),
348
349 TP_fast_assign(
350 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
351 __entry->pid = tsk->pid;
352 __entry->runtime = runtime;
353 __entry->vruntime = vruntime;
354 )
355 TP_perf_assign(
356 __perf_count(runtime);
357 ),
358
359 TP_printk("comm=%s pid=%d runtime=%Lu [ns] vruntime=%Lu [ns]",
360 __entry->comm, __entry->pid,
361 (unsigned long long)__entry->runtime,
362 (unsigned long long)__entry->vruntime)
363);
364
365/*
366 * Tracepoint for showing priority inheritance modifying a tasks
367 * priority.
368 */
369TRACE_EVENT(sched_pi_setprio,
370
371 TP_PROTO(struct task_struct *tsk, int newprio),
372
373 TP_ARGS(tsk, newprio),
374
375 TP_STRUCT__entry(
376 __array( char, comm, TASK_COMM_LEN )
377 __field( pid_t, pid )
378 __field( int, oldprio )
379 __field( int, newprio )
380 ),
381
382 TP_fast_assign(
383 memcpy(__entry->comm, tsk->comm, TASK_COMM_LEN);
384 __entry->pid = tsk->pid;
385 __entry->oldprio = tsk->prio;
386 __entry->newprio = newprio;
387 ),
388
389 TP_printk("comm=%s pid=%d oldprio=%d newprio=%d",
390 __entry->comm, __entry->pid,
391 __entry->oldprio, __entry->newprio)
392);
393
394#endif /* _TRACE_SCHED_H */
395
396/* This part must be outside protection */
397#include <trace/define_trace.h>