Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/blkdev.h>
   6#include <linux/sched/mm.h>
   7#include <linux/atomic.h>
   8#include <linux/vmalloc.h>
   9#include "ctree.h"
  10#include "volumes.h"
  11#include "zoned.h"
  12#include "rcu-string.h"
  13#include "disk-io.h"
  14#include "block-group.h"
  15#include "dev-replace.h"
  16#include "space-info.h"
  17#include "fs.h"
  18#include "accessors.h"
  19#include "bio.h"
  20
  21/* Maximum number of zones to report per blkdev_report_zones() call */
  22#define BTRFS_REPORT_NR_ZONES   4096
  23/* Invalid allocation pointer value for missing devices */
  24#define WP_MISSING_DEV ((u64)-1)
  25/* Pseudo write pointer value for conventional zone */
  26#define WP_CONVENTIONAL ((u64)-2)
  27
  28/*
  29 * Location of the first zone of superblock logging zone pairs.
  30 *
  31 * - primary superblock:    0B (zone 0)
  32 * - first copy:          512G (zone starting at that offset)
  33 * - second copy:           4T (zone starting at that offset)
  34 */
  35#define BTRFS_SB_LOG_PRIMARY_OFFSET	(0ULL)
  36#define BTRFS_SB_LOG_FIRST_OFFSET	(512ULL * SZ_1G)
  37#define BTRFS_SB_LOG_SECOND_OFFSET	(4096ULL * SZ_1G)
  38
  39#define BTRFS_SB_LOG_FIRST_SHIFT	const_ilog2(BTRFS_SB_LOG_FIRST_OFFSET)
  40#define BTRFS_SB_LOG_SECOND_SHIFT	const_ilog2(BTRFS_SB_LOG_SECOND_OFFSET)
  41
  42/* Number of superblock log zones */
  43#define BTRFS_NR_SB_LOG_ZONES 2
  44
  45/*
  46 * Minimum of active zones we need:
  47 *
  48 * - BTRFS_SUPER_MIRROR_MAX zones for superblock mirrors
  49 * - 3 zones to ensure at least one zone per SYSTEM, META and DATA block group
  50 * - 1 zone for tree-log dedicated block group
  51 * - 1 zone for relocation
  52 */
  53#define BTRFS_MIN_ACTIVE_ZONES		(BTRFS_SUPER_MIRROR_MAX + 5)
  54
  55/*
  56 * Minimum / maximum supported zone size. Currently, SMR disks have a zone
  57 * size of 256MiB, and we are expecting ZNS drives to be in the 1-4GiB range.
  58 * We do not expect the zone size to become larger than 8GiB or smaller than
  59 * 4MiB in the near future.
  60 */
  61#define BTRFS_MAX_ZONE_SIZE		SZ_8G
  62#define BTRFS_MIN_ZONE_SIZE		SZ_4M
  63
  64#define SUPER_INFO_SECTORS	((u64)BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT)
  65
  66static void wait_eb_writebacks(struct btrfs_block_group *block_group);
  67static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written);
  68
  69static inline bool sb_zone_is_full(const struct blk_zone *zone)
  70{
  71	return (zone->cond == BLK_ZONE_COND_FULL) ||
  72		(zone->wp + SUPER_INFO_SECTORS > zone->start + zone->capacity);
  73}
  74
  75static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data)
  76{
  77	struct blk_zone *zones = data;
  78
  79	memcpy(&zones[idx], zone, sizeof(*zone));
  80
  81	return 0;
  82}
  83
  84static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones,
  85			    u64 *wp_ret)
  86{
  87	bool empty[BTRFS_NR_SB_LOG_ZONES];
  88	bool full[BTRFS_NR_SB_LOG_ZONES];
  89	sector_t sector;
  90
  91	for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
  92		ASSERT(zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL);
  93		empty[i] = (zones[i].cond == BLK_ZONE_COND_EMPTY);
  94		full[i] = sb_zone_is_full(&zones[i]);
  95	}
  96
  97	/*
  98	 * Possible states of log buffer zones
  99	 *
 100	 *           Empty[0]  In use[0]  Full[0]
 101	 * Empty[1]         *          0        1
 102	 * In use[1]        x          x        1
 103	 * Full[1]          0          0        C
 104	 *
 105	 * Log position:
 106	 *   *: Special case, no superblock is written
 107	 *   0: Use write pointer of zones[0]
 108	 *   1: Use write pointer of zones[1]
 109	 *   C: Compare super blocks from zones[0] and zones[1], use the latest
 110	 *      one determined by generation
 111	 *   x: Invalid state
 112	 */
 113
 114	if (empty[0] && empty[1]) {
 115		/* Special case to distinguish no superblock to read */
 116		*wp_ret = zones[0].start << SECTOR_SHIFT;
 117		return -ENOENT;
 118	} else if (full[0] && full[1]) {
 119		/* Compare two super blocks */
 120		struct address_space *mapping = bdev->bd_mapping;
 121		struct page *page[BTRFS_NR_SB_LOG_ZONES];
 122		struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES];
 123
 124		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 125			u64 zone_end = (zones[i].start + zones[i].capacity) << SECTOR_SHIFT;
 126			u64 bytenr = ALIGN_DOWN(zone_end, BTRFS_SUPER_INFO_SIZE) -
 127						BTRFS_SUPER_INFO_SIZE;
 128
 129			page[i] = read_cache_page_gfp(mapping,
 130					bytenr >> PAGE_SHIFT, GFP_NOFS);
 131			if (IS_ERR(page[i])) {
 132				if (i == 1)
 133					btrfs_release_disk_super(super[0]);
 134				return PTR_ERR(page[i]);
 135			}
 136			super[i] = page_address(page[i]);
 137		}
 138
 139		if (btrfs_super_generation(super[0]) >
 140		    btrfs_super_generation(super[1]))
 141			sector = zones[1].start;
 142		else
 143			sector = zones[0].start;
 144
 145		for (int i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++)
 146			btrfs_release_disk_super(super[i]);
 147	} else if (!full[0] && (empty[1] || full[1])) {
 148		sector = zones[0].wp;
 149	} else if (full[0]) {
 150		sector = zones[1].wp;
 151	} else {
 152		return -EUCLEAN;
 153	}
 154	*wp_ret = sector << SECTOR_SHIFT;
 155	return 0;
 156}
 157
 158/*
 159 * Get the first zone number of the superblock mirror
 160 */
 161static inline u32 sb_zone_number(int shift, int mirror)
 162{
 163	u64 zone = U64_MAX;
 164
 165	ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX);
 166	switch (mirror) {
 167	case 0: zone = 0; break;
 168	case 1: zone = 1ULL << (BTRFS_SB_LOG_FIRST_SHIFT - shift); break;
 169	case 2: zone = 1ULL << (BTRFS_SB_LOG_SECOND_SHIFT - shift); break;
 170	}
 171
 172	ASSERT(zone <= U32_MAX);
 173
 174	return (u32)zone;
 175}
 176
 177static inline sector_t zone_start_sector(u32 zone_number,
 178					 struct block_device *bdev)
 179{
 180	return (sector_t)zone_number << ilog2(bdev_zone_sectors(bdev));
 181}
 182
 183static inline u64 zone_start_physical(u32 zone_number,
 184				      struct btrfs_zoned_device_info *zone_info)
 185{
 186	return (u64)zone_number << zone_info->zone_size_shift;
 187}
 188
 189/*
 190 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block
 191 * device into static sized chunks and fake a conventional zone on each of
 192 * them.
 193 */
 194static int emulate_report_zones(struct btrfs_device *device, u64 pos,
 195				struct blk_zone *zones, unsigned int nr_zones)
 196{
 197	const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT;
 198	sector_t bdev_size = bdev_nr_sectors(device->bdev);
 199	unsigned int i;
 200
 201	pos >>= SECTOR_SHIFT;
 202	for (i = 0; i < nr_zones; i++) {
 203		zones[i].start = i * zone_sectors + pos;
 204		zones[i].len = zone_sectors;
 205		zones[i].capacity = zone_sectors;
 206		zones[i].wp = zones[i].start + zone_sectors;
 207		zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL;
 208		zones[i].cond = BLK_ZONE_COND_NOT_WP;
 209
 210		if (zones[i].wp >= bdev_size) {
 211			i++;
 212			break;
 213		}
 214	}
 215
 216	return i;
 217}
 218
 219static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos,
 220			       struct blk_zone *zones, unsigned int *nr_zones)
 221{
 222	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 223	int ret;
 224
 225	if (!*nr_zones)
 226		return 0;
 227
 228	if (!bdev_is_zoned(device->bdev)) {
 229		ret = emulate_report_zones(device, pos, zones, *nr_zones);
 230		*nr_zones = ret;
 231		return 0;
 232	}
 233
 234	/* Check cache */
 235	if (zinfo->zone_cache) {
 236		unsigned int i;
 237		u32 zno;
 238
 239		ASSERT(IS_ALIGNED(pos, zinfo->zone_size));
 240		zno = pos >> zinfo->zone_size_shift;
 241		/*
 242		 * We cannot report zones beyond the zone end. So, it is OK to
 243		 * cap *nr_zones to at the end.
 244		 */
 245		*nr_zones = min_t(u32, *nr_zones, zinfo->nr_zones - zno);
 246
 247		for (i = 0; i < *nr_zones; i++) {
 248			struct blk_zone *zone_info;
 249
 250			zone_info = &zinfo->zone_cache[zno + i];
 251			if (!zone_info->len)
 252				break;
 253		}
 254
 255		if (i == *nr_zones) {
 256			/* Cache hit on all the zones */
 257			memcpy(zones, zinfo->zone_cache + zno,
 258			       sizeof(*zinfo->zone_cache) * *nr_zones);
 259			return 0;
 260		}
 261	}
 262
 263	ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones,
 264				  copy_zone_info_cb, zones);
 265	if (ret < 0) {
 266		btrfs_err_in_rcu(device->fs_info,
 267				 "zoned: failed to read zone %llu on %s (devid %llu)",
 268				 pos, rcu_str_deref(device->name),
 269				 device->devid);
 270		return ret;
 271	}
 272	*nr_zones = ret;
 273	if (!ret)
 274		return -EIO;
 275
 276	/* Populate cache */
 277	if (zinfo->zone_cache) {
 278		u32 zno = pos >> zinfo->zone_size_shift;
 279
 280		memcpy(zinfo->zone_cache + zno, zones,
 281		       sizeof(*zinfo->zone_cache) * *nr_zones);
 282	}
 283
 284	return 0;
 285}
 286
 287/* The emulated zone size is determined from the size of device extent */
 288static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info)
 289{
 290	BTRFS_PATH_AUTO_FREE(path);
 291	struct btrfs_root *root = fs_info->dev_root;
 292	struct btrfs_key key;
 293	struct extent_buffer *leaf;
 294	struct btrfs_dev_extent *dext;
 295	int ret = 0;
 296
 297	key.objectid = 1;
 298	key.type = BTRFS_DEV_EXTENT_KEY;
 299	key.offset = 0;
 300
 301	path = btrfs_alloc_path();
 302	if (!path)
 303		return -ENOMEM;
 304
 305	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
 306	if (ret < 0)
 307		return ret;
 308
 309	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
 310		ret = btrfs_next_leaf(root, path);
 311		if (ret < 0)
 312			return ret;
 313		/* No dev extents at all? Not good */
 314		if (ret > 0)
 315			return -EUCLEAN;
 316	}
 317
 318	leaf = path->nodes[0];
 319	dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
 320	fs_info->zone_size = btrfs_dev_extent_length(leaf, dext);
 321	return 0;
 322}
 323
 324int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info)
 325{
 326	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 327	struct btrfs_device *device;
 328	int ret = 0;
 329
 330	/* fs_info->zone_size might not set yet. Use the incomapt flag here. */
 331	if (!btrfs_fs_incompat(fs_info, ZONED))
 332		return 0;
 333
 334	mutex_lock(&fs_devices->device_list_mutex);
 335	list_for_each_entry(device, &fs_devices->devices, dev_list) {
 336		/* We can skip reading of zone info for missing devices */
 337		if (!device->bdev)
 338			continue;
 339
 340		ret = btrfs_get_dev_zone_info(device, true);
 341		if (ret)
 342			break;
 343	}
 344	mutex_unlock(&fs_devices->device_list_mutex);
 345
 346	return ret;
 347}
 348
 349int btrfs_get_dev_zone_info(struct btrfs_device *device, bool populate_cache)
 350{
 351	struct btrfs_fs_info *fs_info = device->fs_info;
 352	struct btrfs_zoned_device_info *zone_info = NULL;
 353	struct block_device *bdev = device->bdev;
 354	unsigned int max_active_zones;
 355	unsigned int nactive;
 356	sector_t nr_sectors;
 357	sector_t sector = 0;
 358	struct blk_zone *zones = NULL;
 359	unsigned int i, nreported = 0, nr_zones;
 360	sector_t zone_sectors;
 361	char *model, *emulated;
 362	int ret;
 363
 364	/*
 365	 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not
 366	 * yet be set.
 367	 */
 368	if (!btrfs_fs_incompat(fs_info, ZONED))
 369		return 0;
 370
 371	if (device->zone_info)
 372		return 0;
 373
 374	zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL);
 375	if (!zone_info)
 376		return -ENOMEM;
 377
 378	device->zone_info = zone_info;
 379
 380	if (!bdev_is_zoned(bdev)) {
 381		if (!fs_info->zone_size) {
 382			ret = calculate_emulated_zone_size(fs_info);
 383			if (ret)
 384				goto out;
 385		}
 386
 387		ASSERT(fs_info->zone_size);
 388		zone_sectors = fs_info->zone_size >> SECTOR_SHIFT;
 389	} else {
 390		zone_sectors = bdev_zone_sectors(bdev);
 391	}
 392
 393	ASSERT(is_power_of_two_u64(zone_sectors));
 394	zone_info->zone_size = zone_sectors << SECTOR_SHIFT;
 395
 396	/* We reject devices with a zone size larger than 8GB */
 397	if (zone_info->zone_size > BTRFS_MAX_ZONE_SIZE) {
 398		btrfs_err_in_rcu(fs_info,
 399		"zoned: %s: zone size %llu larger than supported maximum %llu",
 400				 rcu_str_deref(device->name),
 401				 zone_info->zone_size, BTRFS_MAX_ZONE_SIZE);
 402		ret = -EINVAL;
 403		goto out;
 404	} else if (zone_info->zone_size < BTRFS_MIN_ZONE_SIZE) {
 405		btrfs_err_in_rcu(fs_info,
 406		"zoned: %s: zone size %llu smaller than supported minimum %u",
 407				 rcu_str_deref(device->name),
 408				 zone_info->zone_size, BTRFS_MIN_ZONE_SIZE);
 409		ret = -EINVAL;
 410		goto out;
 411	}
 412
 413	nr_sectors = bdev_nr_sectors(bdev);
 414	zone_info->zone_size_shift = ilog2(zone_info->zone_size);
 415	zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors);
 416	if (!IS_ALIGNED(nr_sectors, zone_sectors))
 417		zone_info->nr_zones++;
 418
 419	max_active_zones = bdev_max_active_zones(bdev);
 420	if (max_active_zones && max_active_zones < BTRFS_MIN_ACTIVE_ZONES) {
 421		btrfs_err_in_rcu(fs_info,
 422"zoned: %s: max active zones %u is too small, need at least %u active zones",
 423				 rcu_str_deref(device->name), max_active_zones,
 424				 BTRFS_MIN_ACTIVE_ZONES);
 425		ret = -EINVAL;
 426		goto out;
 427	}
 428	zone_info->max_active_zones = max_active_zones;
 429
 430	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 431	if (!zone_info->seq_zones) {
 432		ret = -ENOMEM;
 433		goto out;
 434	}
 435
 436	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 437	if (!zone_info->empty_zones) {
 438		ret = -ENOMEM;
 439		goto out;
 440	}
 441
 442	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 443	if (!zone_info->active_zones) {
 444		ret = -ENOMEM;
 445		goto out;
 446	}
 447
 448	zones = kvcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL);
 449	if (!zones) {
 450		ret = -ENOMEM;
 451		goto out;
 452	}
 453
 454	/*
 455	 * Enable zone cache only for a zoned device. On a non-zoned device, we
 456	 * fill the zone info with emulated CONVENTIONAL zones, so no need to
 457	 * use the cache.
 458	 */
 459	if (populate_cache && bdev_is_zoned(device->bdev)) {
 460		zone_info->zone_cache = vcalloc(zone_info->nr_zones,
 461						sizeof(struct blk_zone));
 462		if (!zone_info->zone_cache) {
 463			btrfs_err_in_rcu(device->fs_info,
 464				"zoned: failed to allocate zone cache for %s",
 465				rcu_str_deref(device->name));
 466			ret = -ENOMEM;
 467			goto out;
 468		}
 469	}
 470
 471	/* Get zones type */
 472	nactive = 0;
 473	while (sector < nr_sectors) {
 474		nr_zones = BTRFS_REPORT_NR_ZONES;
 475		ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones,
 476					  &nr_zones);
 477		if (ret)
 478			goto out;
 479
 480		for (i = 0; i < nr_zones; i++) {
 481			if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ)
 482				__set_bit(nreported, zone_info->seq_zones);
 483			switch (zones[i].cond) {
 484			case BLK_ZONE_COND_EMPTY:
 485				__set_bit(nreported, zone_info->empty_zones);
 486				break;
 487			case BLK_ZONE_COND_IMP_OPEN:
 488			case BLK_ZONE_COND_EXP_OPEN:
 489			case BLK_ZONE_COND_CLOSED:
 490				__set_bit(nreported, zone_info->active_zones);
 491				nactive++;
 492				break;
 493			}
 494			nreported++;
 495		}
 496		sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len;
 497	}
 498
 499	if (nreported != zone_info->nr_zones) {
 500		btrfs_err_in_rcu(device->fs_info,
 501				 "inconsistent number of zones on %s (%u/%u)",
 502				 rcu_str_deref(device->name), nreported,
 503				 zone_info->nr_zones);
 504		ret = -EIO;
 505		goto out;
 506	}
 507
 508	if (max_active_zones) {
 509		if (nactive > max_active_zones) {
 510			btrfs_err_in_rcu(device->fs_info,
 511			"zoned: %u active zones on %s exceeds max_active_zones %u",
 512					 nactive, rcu_str_deref(device->name),
 513					 max_active_zones);
 514			ret = -EIO;
 515			goto out;
 516		}
 517		atomic_set(&zone_info->active_zones_left,
 518			   max_active_zones - nactive);
 519		set_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags);
 520	}
 521
 522	/* Validate superblock log */
 523	nr_zones = BTRFS_NR_SB_LOG_ZONES;
 524	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
 525		u32 sb_zone;
 526		u64 sb_wp;
 527		int sb_pos = BTRFS_NR_SB_LOG_ZONES * i;
 528
 529		sb_zone = sb_zone_number(zone_info->zone_size_shift, i);
 530		if (sb_zone + 1 >= zone_info->nr_zones)
 531			continue;
 532
 533		ret = btrfs_get_dev_zones(device,
 534					  zone_start_physical(sb_zone, zone_info),
 535					  &zone_info->sb_zones[sb_pos],
 536					  &nr_zones);
 537		if (ret)
 538			goto out;
 539
 540		if (nr_zones != BTRFS_NR_SB_LOG_ZONES) {
 541			btrfs_err_in_rcu(device->fs_info,
 542	"zoned: failed to read super block log zone info at devid %llu zone %u",
 543					 device->devid, sb_zone);
 544			ret = -EUCLEAN;
 545			goto out;
 546		}
 547
 548		/*
 549		 * If zones[0] is conventional, always use the beginning of the
 550		 * zone to record superblock. No need to validate in that case.
 551		 */
 552		if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type ==
 553		    BLK_ZONE_TYPE_CONVENTIONAL)
 554			continue;
 555
 556		ret = sb_write_pointer(device->bdev,
 557				       &zone_info->sb_zones[sb_pos], &sb_wp);
 558		if (ret != -ENOENT && ret) {
 559			btrfs_err_in_rcu(device->fs_info,
 560			"zoned: super block log zone corrupted devid %llu zone %u",
 561					 device->devid, sb_zone);
 562			ret = -EUCLEAN;
 563			goto out;
 564		}
 565	}
 566
 567
 568	kvfree(zones);
 569
 570	if (bdev_is_zoned(bdev)) {
 571		model = "host-managed zoned";
 572		emulated = "";
 573	} else {
 574		model = "regular";
 575		emulated = "emulated ";
 576	}
 577
 578	btrfs_info_in_rcu(fs_info,
 579		"%s block device %s, %u %szones of %llu bytes",
 580		model, rcu_str_deref(device->name), zone_info->nr_zones,
 581		emulated, zone_info->zone_size);
 582
 583	return 0;
 584
 585out:
 586	kvfree(zones);
 587	btrfs_destroy_dev_zone_info(device);
 588	return ret;
 589}
 590
 591void btrfs_destroy_dev_zone_info(struct btrfs_device *device)
 592{
 593	struct btrfs_zoned_device_info *zone_info = device->zone_info;
 594
 595	if (!zone_info)
 596		return;
 597
 598	bitmap_free(zone_info->active_zones);
 599	bitmap_free(zone_info->seq_zones);
 600	bitmap_free(zone_info->empty_zones);
 601	vfree(zone_info->zone_cache);
 602	kfree(zone_info);
 603	device->zone_info = NULL;
 604}
 605
 606struct btrfs_zoned_device_info *btrfs_clone_dev_zone_info(struct btrfs_device *orig_dev)
 607{
 608	struct btrfs_zoned_device_info *zone_info;
 609
 610	zone_info = kmemdup(orig_dev->zone_info, sizeof(*zone_info), GFP_KERNEL);
 611	if (!zone_info)
 612		return NULL;
 613
 614	zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 615	if (!zone_info->seq_zones)
 616		goto out;
 617
 618	bitmap_copy(zone_info->seq_zones, orig_dev->zone_info->seq_zones,
 619		    zone_info->nr_zones);
 620
 621	zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 622	if (!zone_info->empty_zones)
 623		goto out;
 624
 625	bitmap_copy(zone_info->empty_zones, orig_dev->zone_info->empty_zones,
 626		    zone_info->nr_zones);
 627
 628	zone_info->active_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL);
 629	if (!zone_info->active_zones)
 630		goto out;
 631
 632	bitmap_copy(zone_info->active_zones, orig_dev->zone_info->active_zones,
 633		    zone_info->nr_zones);
 634	zone_info->zone_cache = NULL;
 635
 636	return zone_info;
 637
 638out:
 639	bitmap_free(zone_info->seq_zones);
 640	bitmap_free(zone_info->empty_zones);
 641	bitmap_free(zone_info->active_zones);
 642	kfree(zone_info);
 643	return NULL;
 644}
 645
 646static int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, struct blk_zone *zone)
 647{
 648	unsigned int nr_zones = 1;
 649	int ret;
 650
 651	ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones);
 652	if (ret != 0 || !nr_zones)
 653		return ret ? ret : -EIO;
 654
 655	return 0;
 656}
 657
 658static int btrfs_check_for_zoned_device(struct btrfs_fs_info *fs_info)
 659{
 660	struct btrfs_device *device;
 661
 662	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 663		if (device->bdev && bdev_is_zoned(device->bdev)) {
 664			btrfs_err(fs_info,
 665				"zoned: mode not enabled but zoned device found: %pg",
 666				device->bdev);
 667			return -EINVAL;
 668		}
 669	}
 670
 671	return 0;
 672}
 673
 674int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info)
 675{
 676	struct queue_limits *lim = &fs_info->limits;
 677	struct btrfs_device *device;
 678	u64 zone_size = 0;
 679	int ret;
 680
 681	/*
 682	 * Host-Managed devices can't be used without the ZONED flag.  With the
 683	 * ZONED all devices can be used, using zone emulation if required.
 684	 */
 685	if (!btrfs_fs_incompat(fs_info, ZONED))
 686		return btrfs_check_for_zoned_device(fs_info);
 687
 688	blk_set_stacking_limits(lim);
 689
 690	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
 691		struct btrfs_zoned_device_info *zone_info = device->zone_info;
 692
 693		if (!device->bdev)
 694			continue;
 695
 696		if (!zone_size) {
 697			zone_size = zone_info->zone_size;
 698		} else if (zone_info->zone_size != zone_size) {
 699			btrfs_err(fs_info,
 700		"zoned: unequal block device zone sizes: have %llu found %llu",
 701				  zone_info->zone_size, zone_size);
 702			return -EINVAL;
 703		}
 704
 705		/*
 706		 * With the zoned emulation, we can have non-zoned device on the
 707		 * zoned mode. In this case, we don't have a valid max zone
 708		 * append size.
 709		 */
 710		if (bdev_is_zoned(device->bdev))
 711			blk_stack_limits(lim, bdev_limits(device->bdev), 0);
 712	}
 713
 714	ret = blk_validate_limits(lim);
 715	if (ret) {
 716		btrfs_err(fs_info, "zoned: failed to validate queue limits");
 717		return ret;
 718	}
 719
 720	/*
 721	 * stripe_size is always aligned to BTRFS_STRIPE_LEN in
 722	 * btrfs_create_chunk(). Since we want stripe_len == zone_size,
 723	 * check the alignment here.
 724	 */
 725	if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) {
 726		btrfs_err(fs_info,
 727			  "zoned: zone size %llu not aligned to stripe %u",
 728			  zone_size, BTRFS_STRIPE_LEN);
 729		return -EINVAL;
 730	}
 731
 732	if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
 733		btrfs_err(fs_info, "zoned: mixed block groups not supported");
 734		return -EINVAL;
 735	}
 736
 737	fs_info->zone_size = zone_size;
 738	/*
 739	 * Also limit max_zone_append_size by max_segments * PAGE_SIZE.
 740	 * Technically, we can have multiple pages per segment. But, since
 741	 * we add the pages one by one to a bio, and cannot increase the
 742	 * metadata reservation even if it increases the number of extents, it
 743	 * is safe to stick with the limit.
 744	 */
 745	fs_info->max_zone_append_size = ALIGN_DOWN(
 746		min3((u64)lim->max_zone_append_sectors << SECTOR_SHIFT,
 747		     (u64)lim->max_sectors << SECTOR_SHIFT,
 748		     (u64)lim->max_segments << PAGE_SHIFT),
 749		fs_info->sectorsize);
 750	fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED;
 751
 752	fs_info->max_extent_size = min_not_zero(fs_info->max_extent_size,
 753						fs_info->max_zone_append_size);
 754
 755	/*
 756	 * Check mount options here, because we might change fs_info->zoned
 757	 * from fs_info->zone_size.
 758	 */
 759	ret = btrfs_check_mountopts_zoned(fs_info, &fs_info->mount_opt);
 760	if (ret)
 761		return ret;
 762
 763	btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size);
 764	return 0;
 765}
 766
 767int btrfs_check_mountopts_zoned(const struct btrfs_fs_info *info,
 768				unsigned long long *mount_opt)
 769{
 770	if (!btrfs_is_zoned(info))
 771		return 0;
 772
 773	/*
 774	 * Space cache writing is not COWed. Disable that to avoid write errors
 775	 * in sequential zones.
 776	 */
 777	if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
 778		btrfs_err(info, "zoned: space cache v1 is not supported");
 779		return -EINVAL;
 780	}
 781
 782	if (btrfs_raw_test_opt(*mount_opt, NODATACOW)) {
 783		btrfs_err(info, "zoned: NODATACOW not supported");
 784		return -EINVAL;
 785	}
 786
 787	if (btrfs_raw_test_opt(*mount_opt, DISCARD_ASYNC)) {
 788		btrfs_info(info,
 789			   "zoned: async discard ignored and disabled for zoned mode");
 790		btrfs_clear_opt(*mount_opt, DISCARD_ASYNC);
 791	}
 792
 793	return 0;
 794}
 795
 796static int sb_log_location(struct block_device *bdev, struct blk_zone *zones,
 797			   int rw, u64 *bytenr_ret)
 798{
 799	u64 wp;
 800	int ret;
 801
 802	if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) {
 803		*bytenr_ret = zones[0].start << SECTOR_SHIFT;
 804		return 0;
 805	}
 806
 807	ret = sb_write_pointer(bdev, zones, &wp);
 808	if (ret != -ENOENT && ret < 0)
 809		return ret;
 810
 811	if (rw == WRITE) {
 812		struct blk_zone *reset = NULL;
 813
 814		if (wp == zones[0].start << SECTOR_SHIFT)
 815			reset = &zones[0];
 816		else if (wp == zones[1].start << SECTOR_SHIFT)
 817			reset = &zones[1];
 818
 819		if (reset && reset->cond != BLK_ZONE_COND_EMPTY) {
 820			unsigned int nofs_flags;
 821
 822			ASSERT(sb_zone_is_full(reset));
 823
 824			nofs_flags = memalloc_nofs_save();
 825			ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
 826					       reset->start, reset->len);
 827			memalloc_nofs_restore(nofs_flags);
 828			if (ret)
 829				return ret;
 830
 831			reset->cond = BLK_ZONE_COND_EMPTY;
 832			reset->wp = reset->start;
 833		}
 834	} else if (ret != -ENOENT) {
 835		/*
 836		 * For READ, we want the previous one. Move write pointer to
 837		 * the end of a zone, if it is at the head of a zone.
 838		 */
 839		u64 zone_end = 0;
 840
 841		if (wp == zones[0].start << SECTOR_SHIFT)
 842			zone_end = zones[1].start + zones[1].capacity;
 843		else if (wp == zones[1].start << SECTOR_SHIFT)
 844			zone_end = zones[0].start + zones[0].capacity;
 845		if (zone_end)
 846			wp = ALIGN_DOWN(zone_end << SECTOR_SHIFT,
 847					BTRFS_SUPER_INFO_SIZE);
 848
 849		wp -= BTRFS_SUPER_INFO_SIZE;
 850	}
 851
 852	*bytenr_ret = wp;
 853	return 0;
 854
 855}
 856
 857int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw,
 858			       u64 *bytenr_ret)
 859{
 860	struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES];
 861	sector_t zone_sectors;
 862	u32 sb_zone;
 863	int ret;
 864	u8 zone_sectors_shift;
 865	sector_t nr_sectors;
 866	u32 nr_zones;
 867
 868	if (!bdev_is_zoned(bdev)) {
 869		*bytenr_ret = btrfs_sb_offset(mirror);
 870		return 0;
 871	}
 872
 873	ASSERT(rw == READ || rw == WRITE);
 874
 875	zone_sectors = bdev_zone_sectors(bdev);
 876	if (!is_power_of_2(zone_sectors))
 877		return -EINVAL;
 878	zone_sectors_shift = ilog2(zone_sectors);
 879	nr_sectors = bdev_nr_sectors(bdev);
 880	nr_zones = nr_sectors >> zone_sectors_shift;
 881
 882	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
 883	if (sb_zone + 1 >= nr_zones)
 884		return -ENOENT;
 885
 886	ret = blkdev_report_zones(bdev, zone_start_sector(sb_zone, bdev),
 887				  BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb,
 888				  zones);
 889	if (ret < 0)
 890		return ret;
 891	if (ret != BTRFS_NR_SB_LOG_ZONES)
 892		return -EIO;
 893
 894	return sb_log_location(bdev, zones, rw, bytenr_ret);
 895}
 896
 897int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw,
 898			  u64 *bytenr_ret)
 899{
 900	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 901	u32 zone_num;
 902
 903	/*
 904	 * For a zoned filesystem on a non-zoned block device, use the same
 905	 * super block locations as regular filesystem. Doing so, the super
 906	 * block can always be retrieved and the zoned flag of the volume
 907	 * detected from the super block information.
 908	 */
 909	if (!bdev_is_zoned(device->bdev)) {
 910		*bytenr_ret = btrfs_sb_offset(mirror);
 911		return 0;
 912	}
 913
 914	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 915	if (zone_num + 1 >= zinfo->nr_zones)
 916		return -ENOENT;
 917
 918	return sb_log_location(device->bdev,
 919			       &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror],
 920			       rw, bytenr_ret);
 921}
 922
 923static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo,
 924				  int mirror)
 925{
 926	u32 zone_num;
 927
 928	if (!zinfo)
 929		return false;
 930
 931	zone_num = sb_zone_number(zinfo->zone_size_shift, mirror);
 932	if (zone_num + 1 >= zinfo->nr_zones)
 933		return false;
 934
 935	if (!test_bit(zone_num, zinfo->seq_zones))
 936		return false;
 937
 938	return true;
 939}
 940
 941int btrfs_advance_sb_log(struct btrfs_device *device, int mirror)
 942{
 943	struct btrfs_zoned_device_info *zinfo = device->zone_info;
 944	struct blk_zone *zone;
 945	int i;
 946
 947	if (!is_sb_log_zone(zinfo, mirror))
 948		return 0;
 949
 950	zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror];
 951	for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) {
 952		/* Advance the next zone */
 953		if (zone->cond == BLK_ZONE_COND_FULL) {
 954			zone++;
 955			continue;
 956		}
 957
 958		if (zone->cond == BLK_ZONE_COND_EMPTY)
 959			zone->cond = BLK_ZONE_COND_IMP_OPEN;
 960
 961		zone->wp += SUPER_INFO_SECTORS;
 962
 963		if (sb_zone_is_full(zone)) {
 964			/*
 965			 * No room left to write new superblock. Since
 966			 * superblock is written with REQ_SYNC, it is safe to
 967			 * finish the zone now.
 968			 *
 969			 * If the write pointer is exactly at the capacity,
 970			 * explicit ZONE_FINISH is not necessary.
 971			 */
 972			if (zone->wp != zone->start + zone->capacity) {
 973				unsigned int nofs_flags;
 974				int ret;
 975
 976				nofs_flags = memalloc_nofs_save();
 977				ret = blkdev_zone_mgmt(device->bdev,
 978						REQ_OP_ZONE_FINISH, zone->start,
 979						zone->len);
 980				memalloc_nofs_restore(nofs_flags);
 981				if (ret)
 982					return ret;
 983			}
 984
 985			zone->wp = zone->start + zone->len;
 986			zone->cond = BLK_ZONE_COND_FULL;
 987		}
 988		return 0;
 989	}
 990
 991	/* All the zones are FULL. Should not reach here. */
 992	ASSERT(0);
 993	return -EIO;
 994}
 995
 996int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror)
 997{
 998	unsigned int nofs_flags;
 999	sector_t zone_sectors;
1000	sector_t nr_sectors;
1001	u8 zone_sectors_shift;
1002	u32 sb_zone;
1003	u32 nr_zones;
1004	int ret;
1005
1006	zone_sectors = bdev_zone_sectors(bdev);
1007	zone_sectors_shift = ilog2(zone_sectors);
1008	nr_sectors = bdev_nr_sectors(bdev);
1009	nr_zones = nr_sectors >> zone_sectors_shift;
1010
1011	sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror);
1012	if (sb_zone + 1 >= nr_zones)
1013		return -ENOENT;
1014
1015	nofs_flags = memalloc_nofs_save();
1016	ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1017			       zone_start_sector(sb_zone, bdev),
1018			       zone_sectors * BTRFS_NR_SB_LOG_ZONES);
1019	memalloc_nofs_restore(nofs_flags);
1020	return ret;
1021}
1022
1023/*
1024 * Find allocatable zones within a given region.
1025 *
1026 * @device:	the device to allocate a region on
1027 * @hole_start: the position of the hole to allocate the region
1028 * @num_bytes:	size of wanted region
1029 * @hole_end:	the end of the hole
1030 * @return:	position of allocatable zones
1031 *
1032 * Allocatable region should not contain any superblock locations.
1033 */
1034u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start,
1035				 u64 hole_end, u64 num_bytes)
1036{
1037	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1038	const u8 shift = zinfo->zone_size_shift;
1039	u64 nzones = num_bytes >> shift;
1040	u64 pos = hole_start;
1041	u64 begin, end;
1042	bool have_sb;
1043	int i;
1044
1045	ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size));
1046	ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size));
1047
1048	while (pos < hole_end) {
1049		begin = pos >> shift;
1050		end = begin + nzones;
1051
1052		if (end > zinfo->nr_zones)
1053			return hole_end;
1054
1055		/* Check if zones in the region are all empty */
1056		if (btrfs_dev_is_sequential(device, pos) &&
1057		    !bitmap_test_range_all_set(zinfo->empty_zones, begin, nzones)) {
1058			pos += zinfo->zone_size;
1059			continue;
1060		}
1061
1062		have_sb = false;
1063		for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1064			u32 sb_zone;
1065			u64 sb_pos;
1066
1067			sb_zone = sb_zone_number(shift, i);
1068			if (!(end <= sb_zone ||
1069			      sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) {
1070				have_sb = true;
1071				pos = zone_start_physical(
1072					sb_zone + BTRFS_NR_SB_LOG_ZONES, zinfo);
1073				break;
1074			}
1075
1076			/* We also need to exclude regular superblock positions */
1077			sb_pos = btrfs_sb_offset(i);
1078			if (!(pos + num_bytes <= sb_pos ||
1079			      sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) {
1080				have_sb = true;
1081				pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE,
1082					    zinfo->zone_size);
1083				break;
1084			}
1085		}
1086		if (!have_sb)
1087			break;
1088	}
1089
1090	return pos;
1091}
1092
1093static bool btrfs_dev_set_active_zone(struct btrfs_device *device, u64 pos)
1094{
1095	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1096	unsigned int zno = (pos >> zone_info->zone_size_shift);
1097
1098	/* We can use any number of zones */
1099	if (zone_info->max_active_zones == 0)
1100		return true;
1101
1102	if (!test_bit(zno, zone_info->active_zones)) {
1103		/* Active zone left? */
1104		if (atomic_dec_if_positive(&zone_info->active_zones_left) < 0)
1105			return false;
1106		if (test_and_set_bit(zno, zone_info->active_zones)) {
1107			/* Someone already set the bit */
1108			atomic_inc(&zone_info->active_zones_left);
1109		}
1110	}
1111
1112	return true;
1113}
1114
1115static void btrfs_dev_clear_active_zone(struct btrfs_device *device, u64 pos)
1116{
1117	struct btrfs_zoned_device_info *zone_info = device->zone_info;
1118	unsigned int zno = (pos >> zone_info->zone_size_shift);
1119
1120	/* We can use any number of zones */
1121	if (zone_info->max_active_zones == 0)
1122		return;
1123
1124	if (test_and_clear_bit(zno, zone_info->active_zones))
1125		atomic_inc(&zone_info->active_zones_left);
1126}
1127
1128int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical,
1129			    u64 length, u64 *bytes)
1130{
1131	unsigned int nofs_flags;
1132	int ret;
1133
1134	*bytes = 0;
1135	nofs_flags = memalloc_nofs_save();
1136	ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET,
1137			       physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT);
1138	memalloc_nofs_restore(nofs_flags);
1139	if (ret)
1140		return ret;
1141
1142	*bytes = length;
1143	while (length) {
1144		btrfs_dev_set_zone_empty(device, physical);
1145		btrfs_dev_clear_active_zone(device, physical);
1146		physical += device->zone_info->zone_size;
1147		length -= device->zone_info->zone_size;
1148	}
1149
1150	return 0;
1151}
1152
1153int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size)
1154{
1155	struct btrfs_zoned_device_info *zinfo = device->zone_info;
1156	const u8 shift = zinfo->zone_size_shift;
1157	unsigned long begin = start >> shift;
1158	unsigned long nbits = size >> shift;
1159	u64 pos;
1160	int ret;
1161
1162	ASSERT(IS_ALIGNED(start, zinfo->zone_size));
1163	ASSERT(IS_ALIGNED(size, zinfo->zone_size));
1164
1165	if (begin + nbits > zinfo->nr_zones)
1166		return -ERANGE;
1167
1168	/* All the zones are conventional */
1169	if (bitmap_test_range_all_zero(zinfo->seq_zones, begin, nbits))
1170		return 0;
1171
1172	/* All the zones are sequential and empty */
1173	if (bitmap_test_range_all_set(zinfo->seq_zones, begin, nbits) &&
1174	    bitmap_test_range_all_set(zinfo->empty_zones, begin, nbits))
1175		return 0;
1176
1177	for (pos = start; pos < start + size; pos += zinfo->zone_size) {
1178		u64 reset_bytes;
1179
1180		if (!btrfs_dev_is_sequential(device, pos) ||
1181		    btrfs_dev_is_empty_zone(device, pos))
1182			continue;
1183
1184		/* Free regions should be empty */
1185		btrfs_warn_in_rcu(
1186			device->fs_info,
1187		"zoned: resetting device %s (devid %llu) zone %llu for allocation",
1188			rcu_str_deref(device->name), device->devid, pos >> shift);
1189		WARN_ON_ONCE(1);
1190
1191		ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size,
1192					      &reset_bytes);
1193		if (ret)
1194			return ret;
1195	}
1196
1197	return 0;
1198}
1199
1200/*
1201 * Calculate an allocation pointer from the extent allocation information
1202 * for a block group consist of conventional zones. It is pointed to the
1203 * end of the highest addressed extent in the block group as an allocation
1204 * offset.
1205 */
1206static int calculate_alloc_pointer(struct btrfs_block_group *cache,
1207				   u64 *offset_ret, bool new)
1208{
1209	struct btrfs_fs_info *fs_info = cache->fs_info;
1210	struct btrfs_root *root;
1211	BTRFS_PATH_AUTO_FREE(path);
1212	struct btrfs_key key;
1213	struct btrfs_key found_key;
1214	int ret;
1215	u64 length;
1216
1217	/*
1218	 * Avoid  tree lookups for a new block group, there's no use for it.
1219	 * It must always be 0.
1220	 *
1221	 * Also, we have a lock chain of extent buffer lock -> chunk mutex.
1222	 * For new a block group, this function is called from
1223	 * btrfs_make_block_group() which is already taking the chunk mutex.
1224	 * Thus, we cannot call calculate_alloc_pointer() which takes extent
1225	 * buffer locks to avoid deadlock.
1226	 */
1227	if (new) {
1228		*offset_ret = 0;
1229		return 0;
1230	}
1231
1232	path = btrfs_alloc_path();
1233	if (!path)
1234		return -ENOMEM;
1235
1236	key.objectid = cache->start + cache->length;
1237	key.type = 0;
1238	key.offset = 0;
1239
1240	root = btrfs_extent_root(fs_info, key.objectid);
1241	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1242	/* We should not find the exact match */
1243	if (!ret)
1244		ret = -EUCLEAN;
1245	if (ret < 0)
1246		return ret;
1247
1248	ret = btrfs_previous_extent_item(root, path, cache->start);
1249	if (ret) {
1250		if (ret == 1) {
1251			ret = 0;
1252			*offset_ret = 0;
1253		}
1254		return ret;
1255	}
1256
1257	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
1258
1259	if (found_key.type == BTRFS_EXTENT_ITEM_KEY)
1260		length = found_key.offset;
1261	else
1262		length = fs_info->nodesize;
1263
1264	if (!(found_key.objectid >= cache->start &&
1265	       found_key.objectid + length <= cache->start + cache->length)) {
1266		return -EUCLEAN;
1267	}
1268	*offset_ret = found_key.objectid + length - cache->start;
1269	return 0;
1270}
1271
1272struct zone_info {
1273	u64 physical;
1274	u64 capacity;
1275	u64 alloc_offset;
1276};
1277
1278static int btrfs_load_zone_info(struct btrfs_fs_info *fs_info, int zone_idx,
1279				struct zone_info *info, unsigned long *active,
1280				struct btrfs_chunk_map *map)
1281{
1282	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
1283	struct btrfs_device *device;
1284	int dev_replace_is_ongoing = 0;
1285	unsigned int nofs_flag;
1286	struct blk_zone zone;
1287	int ret;
1288
1289	info->physical = map->stripes[zone_idx].physical;
1290
1291	down_read(&dev_replace->rwsem);
1292	device = map->stripes[zone_idx].dev;
1293
1294	if (!device->bdev) {
1295		up_read(&dev_replace->rwsem);
1296		info->alloc_offset = WP_MISSING_DEV;
1297		return 0;
1298	}
1299
1300	/* Consider a zone as active if we can allow any number of active zones. */
1301	if (!device->zone_info->max_active_zones)
1302		__set_bit(zone_idx, active);
1303
1304	if (!btrfs_dev_is_sequential(device, info->physical)) {
1305		up_read(&dev_replace->rwsem);
1306		info->alloc_offset = WP_CONVENTIONAL;
1307		return 0;
1308	}
1309
1310	/* This zone will be used for allocation, so mark this zone non-empty. */
1311	btrfs_dev_clear_zone_empty(device, info->physical);
1312
1313	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
1314	if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL)
1315		btrfs_dev_clear_zone_empty(dev_replace->tgtdev, info->physical);
1316
1317	/*
1318	 * The group is mapped to a sequential zone. Get the zone write pointer
1319	 * to determine the allocation offset within the zone.
1320	 */
1321	WARN_ON(!IS_ALIGNED(info->physical, fs_info->zone_size));
1322	nofs_flag = memalloc_nofs_save();
1323	ret = btrfs_get_dev_zone(device, info->physical, &zone);
1324	memalloc_nofs_restore(nofs_flag);
1325	if (ret) {
1326		up_read(&dev_replace->rwsem);
1327		if (ret != -EIO && ret != -EOPNOTSUPP)
1328			return ret;
1329		info->alloc_offset = WP_MISSING_DEV;
1330		return 0;
1331	}
1332
1333	if (zone.type == BLK_ZONE_TYPE_CONVENTIONAL) {
1334		btrfs_err_in_rcu(fs_info,
1335		"zoned: unexpected conventional zone %llu on device %s (devid %llu)",
1336			zone.start << SECTOR_SHIFT, rcu_str_deref(device->name),
1337			device->devid);
1338		up_read(&dev_replace->rwsem);
1339		return -EIO;
1340	}
1341
1342	info->capacity = (zone.capacity << SECTOR_SHIFT);
1343
1344	switch (zone.cond) {
1345	case BLK_ZONE_COND_OFFLINE:
1346	case BLK_ZONE_COND_READONLY:
1347		btrfs_err_in_rcu(fs_info,
1348		"zoned: offline/readonly zone %llu on device %s (devid %llu)",
1349			  (info->physical >> device->zone_info->zone_size_shift),
1350			  rcu_str_deref(device->name), device->devid);
1351		info->alloc_offset = WP_MISSING_DEV;
1352		break;
1353	case BLK_ZONE_COND_EMPTY:
1354		info->alloc_offset = 0;
1355		break;
1356	case BLK_ZONE_COND_FULL:
1357		info->alloc_offset = info->capacity;
1358		break;
1359	default:
1360		/* Partially used zone. */
1361		info->alloc_offset = ((zone.wp - zone.start) << SECTOR_SHIFT);
1362		__set_bit(zone_idx, active);
1363		break;
1364	}
1365
1366	up_read(&dev_replace->rwsem);
1367
1368	return 0;
1369}
1370
1371static int btrfs_load_block_group_single(struct btrfs_block_group *bg,
1372					 struct zone_info *info,
1373					 unsigned long *active)
1374{
1375	if (info->alloc_offset == WP_MISSING_DEV) {
1376		btrfs_err(bg->fs_info,
1377			"zoned: cannot recover write pointer for zone %llu",
1378			info->physical);
1379		return -EIO;
1380	}
1381
1382	bg->alloc_offset = info->alloc_offset;
1383	bg->zone_capacity = info->capacity;
1384	if (test_bit(0, active))
1385		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1386	return 0;
1387}
1388
1389static int btrfs_load_block_group_dup(struct btrfs_block_group *bg,
1390				      struct btrfs_chunk_map *map,
1391				      struct zone_info *zone_info,
1392				      unsigned long *active)
1393{
1394	struct btrfs_fs_info *fs_info = bg->fs_info;
1395
1396	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1397		btrfs_err(fs_info, "zoned: data DUP profile needs raid-stripe-tree");
1398		return -EINVAL;
1399	}
1400
1401	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1402
1403	if (zone_info[0].alloc_offset == WP_MISSING_DEV) {
1404		btrfs_err(bg->fs_info,
1405			  "zoned: cannot recover write pointer for zone %llu",
1406			  zone_info[0].physical);
1407		return -EIO;
1408	}
1409	if (zone_info[1].alloc_offset == WP_MISSING_DEV) {
1410		btrfs_err(bg->fs_info,
1411			  "zoned: cannot recover write pointer for zone %llu",
1412			  zone_info[1].physical);
1413		return -EIO;
1414	}
1415	if (zone_info[0].alloc_offset != zone_info[1].alloc_offset) {
1416		btrfs_err(bg->fs_info,
1417			  "zoned: write pointer offset mismatch of zones in DUP profile");
1418		return -EIO;
1419	}
1420
1421	if (test_bit(0, active) != test_bit(1, active)) {
1422		if (!btrfs_zone_activate(bg))
1423			return -EIO;
1424	} else if (test_bit(0, active)) {
1425		set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1426	}
1427
1428	bg->alloc_offset = zone_info[0].alloc_offset;
1429	return 0;
1430}
1431
1432static int btrfs_load_block_group_raid1(struct btrfs_block_group *bg,
1433					struct btrfs_chunk_map *map,
1434					struct zone_info *zone_info,
1435					unsigned long *active)
1436{
1437	struct btrfs_fs_info *fs_info = bg->fs_info;
1438	int i;
1439
1440	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1441		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1442			  btrfs_bg_type_to_raid_name(map->type));
1443		return -EINVAL;
1444	}
1445
1446	/* In case a device is missing we have a cap of 0, so don't use it. */
1447	bg->zone_capacity = min_not_zero(zone_info[0].capacity, zone_info[1].capacity);
1448
1449	for (i = 0; i < map->num_stripes; i++) {
1450		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1451		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1452			continue;
1453
1454		if ((zone_info[0].alloc_offset != zone_info[i].alloc_offset) &&
1455		    !btrfs_test_opt(fs_info, DEGRADED)) {
1456			btrfs_err(fs_info,
1457			"zoned: write pointer offset mismatch of zones in %s profile",
1458				  btrfs_bg_type_to_raid_name(map->type));
1459			return -EIO;
1460		}
1461		if (test_bit(0, active) != test_bit(i, active)) {
1462			if (!btrfs_test_opt(fs_info, DEGRADED) &&
1463			    !btrfs_zone_activate(bg)) {
1464				return -EIO;
1465			}
1466		} else {
1467			if (test_bit(0, active))
1468				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1469		}
1470	}
1471
1472	if (zone_info[0].alloc_offset != WP_MISSING_DEV)
1473		bg->alloc_offset = zone_info[0].alloc_offset;
1474	else
1475		bg->alloc_offset = zone_info[i - 1].alloc_offset;
1476
1477	return 0;
1478}
1479
1480static int btrfs_load_block_group_raid0(struct btrfs_block_group *bg,
1481					struct btrfs_chunk_map *map,
1482					struct zone_info *zone_info,
1483					unsigned long *active)
1484{
1485	struct btrfs_fs_info *fs_info = bg->fs_info;
1486
1487	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1488		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1489			  btrfs_bg_type_to_raid_name(map->type));
1490		return -EINVAL;
1491	}
1492
1493	for (int i = 0; i < map->num_stripes; i++) {
1494		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1495		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1496			continue;
1497
1498		if (test_bit(0, active) != test_bit(i, active)) {
1499			if (!btrfs_zone_activate(bg))
1500				return -EIO;
1501		} else {
1502			if (test_bit(0, active))
1503				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1504		}
1505		bg->zone_capacity += zone_info[i].capacity;
1506		bg->alloc_offset += zone_info[i].alloc_offset;
1507	}
1508
1509	return 0;
1510}
1511
1512static int btrfs_load_block_group_raid10(struct btrfs_block_group *bg,
1513					 struct btrfs_chunk_map *map,
1514					 struct zone_info *zone_info,
1515					 unsigned long *active)
1516{
1517	struct btrfs_fs_info *fs_info = bg->fs_info;
1518
1519	if ((map->type & BTRFS_BLOCK_GROUP_DATA) && !fs_info->stripe_root) {
1520		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1521			  btrfs_bg_type_to_raid_name(map->type));
1522		return -EINVAL;
1523	}
1524
1525	for (int i = 0; i < map->num_stripes; i++) {
1526		if (zone_info[i].alloc_offset == WP_MISSING_DEV ||
1527		    zone_info[i].alloc_offset == WP_CONVENTIONAL)
1528			continue;
1529
1530		if (test_bit(0, active) != test_bit(i, active)) {
1531			if (!btrfs_zone_activate(bg))
1532				return -EIO;
1533		} else {
1534			if (test_bit(0, active))
1535				set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &bg->runtime_flags);
1536		}
1537
1538		if ((i % map->sub_stripes) == 0) {
1539			bg->zone_capacity += zone_info[i].capacity;
1540			bg->alloc_offset += zone_info[i].alloc_offset;
1541		}
1542	}
1543
1544	return 0;
1545}
1546
1547int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new)
1548{
1549	struct btrfs_fs_info *fs_info = cache->fs_info;
1550	struct btrfs_chunk_map *map;
1551	u64 logical = cache->start;
1552	u64 length = cache->length;
1553	struct zone_info *zone_info = NULL;
1554	int ret;
1555	int i;
1556	unsigned long *active = NULL;
1557	u64 last_alloc = 0;
1558	u32 num_sequential = 0, num_conventional = 0;
1559	u64 profile;
1560
1561	if (!btrfs_is_zoned(fs_info))
1562		return 0;
1563
1564	/* Sanity check */
1565	if (!IS_ALIGNED(length, fs_info->zone_size)) {
1566		btrfs_err(fs_info,
1567		"zoned: block group %llu len %llu unaligned to zone size %llu",
1568			  logical, length, fs_info->zone_size);
1569		return -EIO;
1570	}
1571
1572	map = btrfs_find_chunk_map(fs_info, logical, length);
1573	if (!map)
1574		return -EINVAL;
1575
1576	cache->physical_map = map;
1577
1578	zone_info = kcalloc(map->num_stripes, sizeof(*zone_info), GFP_NOFS);
1579	if (!zone_info) {
1580		ret = -ENOMEM;
1581		goto out;
1582	}
1583
1584	active = bitmap_zalloc(map->num_stripes, GFP_NOFS);
1585	if (!active) {
1586		ret = -ENOMEM;
1587		goto out;
1588	}
1589
1590	for (i = 0; i < map->num_stripes; i++) {
1591		ret = btrfs_load_zone_info(fs_info, i, &zone_info[i], active, map);
1592		if (ret)
1593			goto out;
1594
1595		if (zone_info[i].alloc_offset == WP_CONVENTIONAL)
1596			num_conventional++;
1597		else
1598			num_sequential++;
1599	}
1600
1601	if (num_sequential > 0)
1602		set_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1603
1604	if (num_conventional > 0) {
1605		/* Zone capacity is always zone size in emulation */
1606		cache->zone_capacity = cache->length;
1607		ret = calculate_alloc_pointer(cache, &last_alloc, new);
1608		if (ret) {
1609			btrfs_err(fs_info,
1610			"zoned: failed to determine allocation offset of bg %llu",
1611				  cache->start);
1612			goto out;
1613		} else if (map->num_stripes == num_conventional) {
1614			cache->alloc_offset = last_alloc;
1615			set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags);
1616			goto out;
1617		}
1618	}
1619
1620	profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
1621	switch (profile) {
1622	case 0: /* single */
1623		ret = btrfs_load_block_group_single(cache, &zone_info[0], active);
1624		break;
1625	case BTRFS_BLOCK_GROUP_DUP:
1626		ret = btrfs_load_block_group_dup(cache, map, zone_info, active);
1627		break;
1628	case BTRFS_BLOCK_GROUP_RAID1:
1629	case BTRFS_BLOCK_GROUP_RAID1C3:
1630	case BTRFS_BLOCK_GROUP_RAID1C4:
1631		ret = btrfs_load_block_group_raid1(cache, map, zone_info, active);
1632		break;
1633	case BTRFS_BLOCK_GROUP_RAID0:
1634		ret = btrfs_load_block_group_raid0(cache, map, zone_info, active);
1635		break;
1636	case BTRFS_BLOCK_GROUP_RAID10:
1637		ret = btrfs_load_block_group_raid10(cache, map, zone_info, active);
1638		break;
1639	case BTRFS_BLOCK_GROUP_RAID5:
1640	case BTRFS_BLOCK_GROUP_RAID6:
1641	default:
1642		btrfs_err(fs_info, "zoned: profile %s not yet supported",
1643			  btrfs_bg_type_to_raid_name(map->type));
1644		ret = -EINVAL;
1645		goto out;
1646	}
1647
1648	if (ret == -EIO && profile != 0 && profile != BTRFS_BLOCK_GROUP_RAID0 &&
1649	    profile != BTRFS_BLOCK_GROUP_RAID10) {
1650		/*
1651		 * Detected broken write pointer.  Make this block group
1652		 * unallocatable by setting the allocation pointer at the end of
1653		 * allocatable region. Relocating this block group will fix the
1654		 * mismatch.
1655		 *
1656		 * Currently, we cannot handle RAID0 or RAID10 case like this
1657		 * because we don't have a proper zone_capacity value. But,
1658		 * reading from this block group won't work anyway by a missing
1659		 * stripe.
1660		 */
1661		cache->alloc_offset = cache->zone_capacity;
1662		ret = 0;
1663	}
1664
1665out:
1666	/* Reject non SINGLE data profiles without RST */
1667	if ((map->type & BTRFS_BLOCK_GROUP_DATA) &&
1668	    (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) &&
1669	    !fs_info->stripe_root) {
1670		btrfs_err(fs_info, "zoned: data %s needs raid-stripe-tree",
1671			  btrfs_bg_type_to_raid_name(map->type));
1672		return -EINVAL;
1673	}
1674
1675	if (cache->alloc_offset > cache->zone_capacity) {
1676		btrfs_err(fs_info,
1677"zoned: invalid write pointer %llu (larger than zone capacity %llu) in block group %llu",
1678			  cache->alloc_offset, cache->zone_capacity,
1679			  cache->start);
1680		ret = -EIO;
1681	}
1682
1683	/* An extent is allocated after the write pointer */
1684	if (!ret && num_conventional && last_alloc > cache->alloc_offset) {
1685		btrfs_err(fs_info,
1686			  "zoned: got wrong write pointer in BG %llu: %llu > %llu",
1687			  logical, last_alloc, cache->alloc_offset);
1688		ret = -EIO;
1689	}
1690
1691	if (!ret) {
1692		cache->meta_write_pointer = cache->alloc_offset + cache->start;
1693		if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &cache->runtime_flags)) {
1694			btrfs_get_block_group(cache);
1695			spin_lock(&fs_info->zone_active_bgs_lock);
1696			list_add_tail(&cache->active_bg_list,
1697				      &fs_info->zone_active_bgs);
1698			spin_unlock(&fs_info->zone_active_bgs_lock);
1699		}
1700	} else {
1701		btrfs_free_chunk_map(cache->physical_map);
1702		cache->physical_map = NULL;
1703	}
1704	bitmap_free(active);
1705	kfree(zone_info);
1706
1707	return ret;
1708}
1709
1710void btrfs_calc_zone_unusable(struct btrfs_block_group *cache)
1711{
1712	u64 unusable, free;
1713
1714	if (!btrfs_is_zoned(cache->fs_info))
1715		return;
1716
1717	WARN_ON(cache->bytes_super != 0);
1718	unusable = (cache->alloc_offset - cache->used) +
1719		   (cache->length - cache->zone_capacity);
1720	free = cache->zone_capacity - cache->alloc_offset;
1721
1722	/* We only need ->free_space in ALLOC_SEQ block groups */
1723	cache->cached = BTRFS_CACHE_FINISHED;
1724	cache->free_space_ctl->free_space = free;
1725	cache->zone_unusable = unusable;
1726}
1727
1728bool btrfs_use_zone_append(struct btrfs_bio *bbio)
1729{
1730	u64 start = (bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT);
1731	struct btrfs_inode *inode = bbio->inode;
1732	struct btrfs_fs_info *fs_info = bbio->fs_info;
1733	struct btrfs_block_group *cache;
1734	bool ret = false;
1735
1736	if (!btrfs_is_zoned(fs_info))
1737		return false;
1738
1739	if (!inode || !is_data_inode(inode))
1740		return false;
1741
1742	if (btrfs_op(&bbio->bio) != BTRFS_MAP_WRITE)
1743		return false;
1744
1745	/*
1746	 * Using REQ_OP_ZONE_APPEND for relocation can break assumptions on the
1747	 * extent layout the relocation code has.
1748	 * Furthermore we have set aside own block-group from which only the
1749	 * relocation "process" can allocate and make sure only one process at a
1750	 * time can add pages to an extent that gets relocated, so it's safe to
1751	 * use regular REQ_OP_WRITE for this special case.
1752	 */
1753	if (btrfs_is_data_reloc_root(inode->root))
1754		return false;
1755
1756	cache = btrfs_lookup_block_group(fs_info, start);
1757	ASSERT(cache);
1758	if (!cache)
1759		return false;
1760
1761	ret = !!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &cache->runtime_flags);
1762	btrfs_put_block_group(cache);
1763
1764	return ret;
1765}
1766
1767void btrfs_record_physical_zoned(struct btrfs_bio *bbio)
1768{
1769	const u64 physical = bbio->bio.bi_iter.bi_sector << SECTOR_SHIFT;
1770	struct btrfs_ordered_sum *sum = bbio->sums;
1771
1772	if (physical < bbio->orig_physical)
1773		sum->logical -= bbio->orig_physical - physical;
1774	else
1775		sum->logical += physical - bbio->orig_physical;
1776}
1777
1778static void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered,
1779					u64 logical)
1780{
1781	struct extent_map_tree *em_tree = &ordered->inode->extent_tree;
1782	struct extent_map *em;
1783
1784	ordered->disk_bytenr = logical;
1785
1786	write_lock(&em_tree->lock);
1787	em = search_extent_mapping(em_tree, ordered->file_offset,
1788				   ordered->num_bytes);
1789	/* The em should be a new COW extent, thus it should not have an offset. */
1790	ASSERT(em->offset == 0);
1791	em->disk_bytenr = logical;
1792	free_extent_map(em);
1793	write_unlock(&em_tree->lock);
1794}
1795
1796static bool btrfs_zoned_split_ordered(struct btrfs_ordered_extent *ordered,
1797				      u64 logical, u64 len)
1798{
1799	struct btrfs_ordered_extent *new;
1800
1801	if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
1802	    split_extent_map(ordered->inode, ordered->file_offset,
1803			     ordered->num_bytes, len, logical))
1804		return false;
1805
1806	new = btrfs_split_ordered_extent(ordered, len);
1807	if (IS_ERR(new))
1808		return false;
1809	new->disk_bytenr = logical;
1810	btrfs_finish_one_ordered(new);
1811	return true;
1812}
1813
1814void btrfs_finish_ordered_zoned(struct btrfs_ordered_extent *ordered)
1815{
1816	struct btrfs_inode *inode = ordered->inode;
1817	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1818	struct btrfs_ordered_sum *sum;
1819	u64 logical, len;
1820
1821	/*
1822	 * Write to pre-allocated region is for the data relocation, and so
1823	 * it should use WRITE operation. No split/rewrite are necessary.
1824	 */
1825	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
1826		return;
1827
1828	ASSERT(!list_empty(&ordered->list));
1829	/* The ordered->list can be empty in the above pre-alloc case. */
1830	sum = list_first_entry(&ordered->list, struct btrfs_ordered_sum, list);
1831	logical = sum->logical;
1832	len = sum->len;
1833
1834	while (len < ordered->disk_num_bytes) {
1835		sum = list_next_entry(sum, list);
1836		if (sum->logical == logical + len) {
1837			len += sum->len;
1838			continue;
1839		}
1840		if (!btrfs_zoned_split_ordered(ordered, logical, len)) {
1841			set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
1842			btrfs_err(fs_info, "failed to split ordered extent");
1843			goto out;
1844		}
1845		logical = sum->logical;
1846		len = sum->len;
1847	}
1848
1849	if (ordered->disk_bytenr != logical)
1850		btrfs_rewrite_logical_zoned(ordered, logical);
1851
1852out:
1853	/*
1854	 * If we end up here for nodatasum I/O, the btrfs_ordered_sum structures
1855	 * were allocated by btrfs_alloc_dummy_sum only to record the logical
1856	 * addresses and don't contain actual checksums.  We thus must free them
1857	 * here so that we don't attempt to log the csums later.
1858	 */
1859	if ((inode->flags & BTRFS_INODE_NODATASUM) ||
1860	    test_bit(BTRFS_FS_STATE_NO_DATA_CSUMS, &fs_info->fs_state)) {
1861		while ((sum = list_first_entry_or_null(&ordered->list,
1862						       typeof(*sum), list))) {
1863			list_del(&sum->list);
1864			kfree(sum);
1865		}
1866	}
1867}
1868
1869static bool check_bg_is_active(struct btrfs_eb_write_context *ctx,
1870			       struct btrfs_block_group **active_bg)
1871{
1872	const struct writeback_control *wbc = ctx->wbc;
1873	struct btrfs_block_group *block_group = ctx->zoned_bg;
1874	struct btrfs_fs_info *fs_info = block_group->fs_info;
1875
1876	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags))
1877		return true;
1878
1879	if (fs_info->treelog_bg == block_group->start) {
1880		if (!btrfs_zone_activate(block_group)) {
1881			int ret_fin = btrfs_zone_finish_one_bg(fs_info);
1882
1883			if (ret_fin != 1 || !btrfs_zone_activate(block_group))
1884				return false;
1885		}
1886	} else if (*active_bg != block_group) {
1887		struct btrfs_block_group *tgt = *active_bg;
1888
1889		/* zoned_meta_io_lock protects fs_info->active_{meta,system}_bg. */
1890		lockdep_assert_held(&fs_info->zoned_meta_io_lock);
1891
1892		if (tgt) {
1893			/*
1894			 * If there is an unsent IO left in the allocated area,
1895			 * we cannot wait for them as it may cause a deadlock.
1896			 */
1897			if (tgt->meta_write_pointer < tgt->start + tgt->alloc_offset) {
1898				if (wbc->sync_mode == WB_SYNC_NONE ||
1899				    (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync))
1900					return false;
1901			}
1902
1903			/* Pivot active metadata/system block group. */
1904			btrfs_zoned_meta_io_unlock(fs_info);
1905			wait_eb_writebacks(tgt);
1906			do_zone_finish(tgt, true);
1907			btrfs_zoned_meta_io_lock(fs_info);
1908			if (*active_bg == tgt) {
1909				btrfs_put_block_group(tgt);
1910				*active_bg = NULL;
1911			}
1912		}
1913		if (!btrfs_zone_activate(block_group))
1914			return false;
1915		if (*active_bg != block_group) {
1916			ASSERT(*active_bg == NULL);
1917			*active_bg = block_group;
1918			btrfs_get_block_group(block_group);
1919		}
1920	}
1921
1922	return true;
1923}
1924
1925/*
1926 * Check if @ctx->eb is aligned to the write pointer.
1927 *
1928 * Return:
1929 *   0:        @ctx->eb is at the write pointer. You can write it.
1930 *   -EAGAIN:  There is a hole. The caller should handle the case.
1931 *   -EBUSY:   There is a hole, but the caller can just bail out.
1932 */
1933int btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info,
1934				   struct btrfs_eb_write_context *ctx)
1935{
1936	const struct writeback_control *wbc = ctx->wbc;
1937	const struct extent_buffer *eb = ctx->eb;
1938	struct btrfs_block_group *block_group = ctx->zoned_bg;
1939
1940	if (!btrfs_is_zoned(fs_info))
1941		return 0;
1942
1943	if (block_group) {
1944		if (block_group->start > eb->start ||
1945		    block_group->start + block_group->length <= eb->start) {
1946			btrfs_put_block_group(block_group);
1947			block_group = NULL;
1948			ctx->zoned_bg = NULL;
1949		}
1950	}
1951
1952	if (!block_group) {
1953		block_group = btrfs_lookup_block_group(fs_info, eb->start);
1954		if (!block_group)
1955			return 0;
1956		ctx->zoned_bg = block_group;
1957	}
1958
1959	if (block_group->meta_write_pointer == eb->start) {
1960		struct btrfs_block_group **tgt;
1961
1962		if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
1963			return 0;
1964
1965		if (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM)
1966			tgt = &fs_info->active_system_bg;
1967		else
1968			tgt = &fs_info->active_meta_bg;
1969		if (check_bg_is_active(ctx, tgt))
1970			return 0;
1971	}
1972
1973	/*
1974	 * Since we may release fs_info->zoned_meta_io_lock, someone can already
1975	 * start writing this eb. In that case, we can just bail out.
1976	 */
1977	if (block_group->meta_write_pointer > eb->start)
1978		return -EBUSY;
1979
1980	/* If for_sync, this hole will be filled with transaction commit. */
1981	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
1982		return -EAGAIN;
1983	return -EBUSY;
1984}
1985
1986int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length)
1987{
1988	if (!btrfs_dev_is_sequential(device, physical))
1989		return -EOPNOTSUPP;
1990
1991	return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT,
1992				    length >> SECTOR_SHIFT, GFP_NOFS, 0);
1993}
1994
1995static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical,
1996			  struct blk_zone *zone)
1997{
1998	struct btrfs_io_context *bioc = NULL;
1999	u64 mapped_length = PAGE_SIZE;
2000	unsigned int nofs_flag;
2001	int nmirrors;
2002	int i, ret;
2003
2004	ret = btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2005			      &mapped_length, &bioc, NULL, NULL);
2006	if (ret || !bioc || mapped_length < PAGE_SIZE) {
2007		ret = -EIO;
2008		goto out_put_bioc;
2009	}
2010
2011	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
2012		ret = -EINVAL;
2013		goto out_put_bioc;
2014	}
2015
2016	nofs_flag = memalloc_nofs_save();
2017	nmirrors = (int)bioc->num_stripes;
2018	for (i = 0; i < nmirrors; i++) {
2019		u64 physical = bioc->stripes[i].physical;
2020		struct btrfs_device *dev = bioc->stripes[i].dev;
2021
2022		/* Missing device */
2023		if (!dev->bdev)
2024			continue;
2025
2026		ret = btrfs_get_dev_zone(dev, physical, zone);
2027		/* Failing device */
2028		if (ret == -EIO || ret == -EOPNOTSUPP)
2029			continue;
2030		break;
2031	}
2032	memalloc_nofs_restore(nofs_flag);
2033out_put_bioc:
2034	btrfs_put_bioc(bioc);
2035	return ret;
2036}
2037
2038/*
2039 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by
2040 * filling zeros between @physical_pos to a write pointer of dev-replace
2041 * source device.
2042 */
2043int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical,
2044				    u64 physical_start, u64 physical_pos)
2045{
2046	struct btrfs_fs_info *fs_info = tgt_dev->fs_info;
2047	struct blk_zone zone;
2048	u64 length;
2049	u64 wp;
2050	int ret;
2051
2052	if (!btrfs_dev_is_sequential(tgt_dev, physical_pos))
2053		return 0;
2054
2055	ret = read_zone_info(fs_info, logical, &zone);
2056	if (ret)
2057		return ret;
2058
2059	wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT);
2060
2061	if (physical_pos == wp)
2062		return 0;
2063
2064	if (physical_pos > wp)
2065		return -EUCLEAN;
2066
2067	length = wp - physical_pos;
2068	return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length);
2069}
2070
2071/*
2072 * Activate block group and underlying device zones
2073 *
2074 * @block_group: the block group to activate
2075 *
2076 * Return: true on success, false otherwise
2077 */
2078bool btrfs_zone_activate(struct btrfs_block_group *block_group)
2079{
2080	struct btrfs_fs_info *fs_info = block_group->fs_info;
2081	struct btrfs_chunk_map *map;
2082	struct btrfs_device *device;
2083	u64 physical;
2084	const bool is_data = (block_group->flags & BTRFS_BLOCK_GROUP_DATA);
2085	bool ret;
2086	int i;
2087
2088	if (!btrfs_is_zoned(block_group->fs_info))
2089		return true;
2090
2091	map = block_group->physical_map;
2092
2093	spin_lock(&fs_info->zone_active_bgs_lock);
2094	spin_lock(&block_group->lock);
2095	if (test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2096		ret = true;
2097		goto out_unlock;
2098	}
2099
2100	/* No space left */
2101	if (btrfs_zoned_bg_is_full(block_group)) {
2102		ret = false;
2103		goto out_unlock;
2104	}
2105
2106	for (i = 0; i < map->num_stripes; i++) {
2107		struct btrfs_zoned_device_info *zinfo;
2108		int reserved = 0;
2109
2110		device = map->stripes[i].dev;
2111		physical = map->stripes[i].physical;
2112		zinfo = device->zone_info;
2113
2114		if (zinfo->max_active_zones == 0)
2115			continue;
2116
2117		if (is_data)
2118			reserved = zinfo->reserved_active_zones;
2119		/*
2120		 * For the data block group, leave active zones for one
2121		 * metadata block group and one system block group.
2122		 */
2123		if (atomic_read(&zinfo->active_zones_left) <= reserved) {
2124			ret = false;
2125			goto out_unlock;
2126		}
2127
2128		if (!btrfs_dev_set_active_zone(device, physical)) {
2129			/* Cannot activate the zone */
2130			ret = false;
2131			goto out_unlock;
2132		}
2133		if (!is_data)
2134			zinfo->reserved_active_zones--;
2135	}
2136
2137	/* Successfully activated all the zones */
2138	set_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2139	spin_unlock(&block_group->lock);
2140
2141	/* For the active block group list */
2142	btrfs_get_block_group(block_group);
2143	list_add_tail(&block_group->active_bg_list, &fs_info->zone_active_bgs);
2144	spin_unlock(&fs_info->zone_active_bgs_lock);
2145
2146	return true;
2147
2148out_unlock:
2149	spin_unlock(&block_group->lock);
2150	spin_unlock(&fs_info->zone_active_bgs_lock);
2151	return ret;
2152}
2153
2154static void wait_eb_writebacks(struct btrfs_block_group *block_group)
2155{
2156	struct btrfs_fs_info *fs_info = block_group->fs_info;
2157	const u64 end = block_group->start + block_group->length;
2158	struct radix_tree_iter iter;
2159	struct extent_buffer *eb;
2160	void __rcu **slot;
2161
2162	rcu_read_lock();
2163	radix_tree_for_each_slot(slot, &fs_info->buffer_radix, &iter,
2164				 block_group->start >> fs_info->sectorsize_bits) {
2165		eb = radix_tree_deref_slot(slot);
2166		if (!eb)
2167			continue;
2168		if (radix_tree_deref_retry(eb)) {
2169			slot = radix_tree_iter_retry(&iter);
2170			continue;
2171		}
2172
2173		if (eb->start < block_group->start)
2174			continue;
2175		if (eb->start >= end)
2176			break;
2177
2178		slot = radix_tree_iter_resume(slot, &iter);
2179		rcu_read_unlock();
2180		wait_on_extent_buffer_writeback(eb);
2181		rcu_read_lock();
2182	}
2183	rcu_read_unlock();
2184}
2185
2186static int do_zone_finish(struct btrfs_block_group *block_group, bool fully_written)
2187{
2188	struct btrfs_fs_info *fs_info = block_group->fs_info;
2189	struct btrfs_chunk_map *map;
2190	const bool is_metadata = (block_group->flags &
2191			(BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM));
2192	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2193	int ret = 0;
2194	int i;
2195
2196	spin_lock(&block_group->lock);
2197	if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags)) {
2198		spin_unlock(&block_group->lock);
2199		return 0;
2200	}
2201
2202	/* Check if we have unwritten allocated space */
2203	if (is_metadata &&
2204	    block_group->start + block_group->alloc_offset > block_group->meta_write_pointer) {
2205		spin_unlock(&block_group->lock);
2206		return -EAGAIN;
2207	}
2208
2209	/*
2210	 * If we are sure that the block group is full (= no more room left for
2211	 * new allocation) and the IO for the last usable block is completed, we
2212	 * don't need to wait for the other IOs. This holds because we ensure
2213	 * the sequential IO submissions using the ZONE_APPEND command for data
2214	 * and block_group->meta_write_pointer for metadata.
2215	 */
2216	if (!fully_written) {
2217		if (test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2218			spin_unlock(&block_group->lock);
2219			return -EAGAIN;
2220		}
2221		spin_unlock(&block_group->lock);
2222
2223		ret = btrfs_inc_block_group_ro(block_group, false);
2224		if (ret)
2225			return ret;
2226
2227		/* Ensure all writes in this block group finish */
2228		btrfs_wait_block_group_reservations(block_group);
2229		/* No need to wait for NOCOW writers. Zoned mode does not allow that */
2230		btrfs_wait_ordered_roots(fs_info, U64_MAX, block_group);
2231		/* Wait for extent buffers to be written. */
2232		if (is_metadata)
2233			wait_eb_writebacks(block_group);
2234
2235		spin_lock(&block_group->lock);
2236
2237		/*
2238		 * Bail out if someone already deactivated the block group, or
2239		 * allocated space is left in the block group.
2240		 */
2241		if (!test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2242			      &block_group->runtime_flags)) {
2243			spin_unlock(&block_group->lock);
2244			btrfs_dec_block_group_ro(block_group);
2245			return 0;
2246		}
2247
2248		if (block_group->reserved ||
2249		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2250			     &block_group->runtime_flags)) {
2251			spin_unlock(&block_group->lock);
2252			btrfs_dec_block_group_ro(block_group);
2253			return -EAGAIN;
2254		}
2255	}
2256
2257	clear_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE, &block_group->runtime_flags);
2258	block_group->alloc_offset = block_group->zone_capacity;
2259	if (block_group->flags & (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM))
2260		block_group->meta_write_pointer = block_group->start +
2261						  block_group->zone_capacity;
2262	block_group->free_space_ctl->free_space = 0;
2263	btrfs_clear_treelog_bg(block_group);
2264	btrfs_clear_data_reloc_bg(block_group);
2265	spin_unlock(&block_group->lock);
2266
2267	down_read(&dev_replace->rwsem);
2268	map = block_group->physical_map;
2269	for (i = 0; i < map->num_stripes; i++) {
2270		struct btrfs_device *device = map->stripes[i].dev;
2271		const u64 physical = map->stripes[i].physical;
2272		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2273		unsigned int nofs_flags;
2274
2275		if (zinfo->max_active_zones == 0)
2276			continue;
2277
2278		nofs_flags = memalloc_nofs_save();
2279		ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_FINISH,
2280				       physical >> SECTOR_SHIFT,
2281				       zinfo->zone_size >> SECTOR_SHIFT);
2282		memalloc_nofs_restore(nofs_flags);
2283
2284		if (ret) {
2285			up_read(&dev_replace->rwsem);
2286			return ret;
2287		}
2288
2289		if (!(block_group->flags & BTRFS_BLOCK_GROUP_DATA))
2290			zinfo->reserved_active_zones++;
2291		btrfs_dev_clear_active_zone(device, physical);
2292	}
2293	up_read(&dev_replace->rwsem);
2294
2295	if (!fully_written)
2296		btrfs_dec_block_group_ro(block_group);
2297
2298	spin_lock(&fs_info->zone_active_bgs_lock);
2299	ASSERT(!list_empty(&block_group->active_bg_list));
2300	list_del_init(&block_group->active_bg_list);
2301	spin_unlock(&fs_info->zone_active_bgs_lock);
2302
2303	/* For active_bg_list */
2304	btrfs_put_block_group(block_group);
2305
2306	clear_and_wake_up_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2307
2308	return 0;
2309}
2310
2311int btrfs_zone_finish(struct btrfs_block_group *block_group)
2312{
2313	if (!btrfs_is_zoned(block_group->fs_info))
2314		return 0;
2315
2316	return do_zone_finish(block_group, false);
2317}
2318
2319bool btrfs_can_activate_zone(struct btrfs_fs_devices *fs_devices, u64 flags)
2320{
2321	struct btrfs_fs_info *fs_info = fs_devices->fs_info;
2322	struct btrfs_device *device;
2323	bool ret = false;
2324
2325	if (!btrfs_is_zoned(fs_info))
2326		return true;
2327
2328	/* Check if there is a device with active zones left */
2329	mutex_lock(&fs_info->chunk_mutex);
2330	spin_lock(&fs_info->zone_active_bgs_lock);
2331	list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
2332		struct btrfs_zoned_device_info *zinfo = device->zone_info;
2333		int reserved = 0;
2334
2335		if (!device->bdev)
2336			continue;
2337
2338		if (!zinfo->max_active_zones) {
2339			ret = true;
2340			break;
2341		}
2342
2343		if (flags & BTRFS_BLOCK_GROUP_DATA)
2344			reserved = zinfo->reserved_active_zones;
2345
2346		switch (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
2347		case 0: /* single */
2348			ret = (atomic_read(&zinfo->active_zones_left) >= (1 + reserved));
2349			break;
2350		case BTRFS_BLOCK_GROUP_DUP:
2351			ret = (atomic_read(&zinfo->active_zones_left) >= (2 + reserved));
2352			break;
2353		}
2354		if (ret)
2355			break;
2356	}
2357	spin_unlock(&fs_info->zone_active_bgs_lock);
2358	mutex_unlock(&fs_info->chunk_mutex);
2359
2360	if (!ret)
2361		set_bit(BTRFS_FS_NEED_ZONE_FINISH, &fs_info->flags);
2362
2363	return ret;
2364}
2365
2366void btrfs_zone_finish_endio(struct btrfs_fs_info *fs_info, u64 logical, u64 length)
2367{
2368	struct btrfs_block_group *block_group;
2369	u64 min_alloc_bytes;
2370
2371	if (!btrfs_is_zoned(fs_info))
2372		return;
2373
2374	block_group = btrfs_lookup_block_group(fs_info, logical);
2375	ASSERT(block_group);
2376
2377	/* No MIXED_BG on zoned btrfs. */
2378	if (block_group->flags & BTRFS_BLOCK_GROUP_DATA)
2379		min_alloc_bytes = fs_info->sectorsize;
2380	else
2381		min_alloc_bytes = fs_info->nodesize;
2382
2383	/* Bail out if we can allocate more data from this block group. */
2384	if (logical + length + min_alloc_bytes <=
2385	    block_group->start + block_group->zone_capacity)
2386		goto out;
2387
2388	do_zone_finish(block_group, true);
2389
2390out:
2391	btrfs_put_block_group(block_group);
2392}
2393
2394static void btrfs_zone_finish_endio_workfn(struct work_struct *work)
2395{
2396	struct btrfs_block_group *bg =
2397		container_of(work, struct btrfs_block_group, zone_finish_work);
2398
2399	wait_on_extent_buffer_writeback(bg->last_eb);
2400	free_extent_buffer(bg->last_eb);
2401	btrfs_zone_finish_endio(bg->fs_info, bg->start, bg->length);
2402	btrfs_put_block_group(bg);
2403}
2404
2405void btrfs_schedule_zone_finish_bg(struct btrfs_block_group *bg,
2406				   struct extent_buffer *eb)
2407{
2408	if (!test_bit(BLOCK_GROUP_FLAG_SEQUENTIAL_ZONE, &bg->runtime_flags) ||
2409	    eb->start + eb->len * 2 <= bg->start + bg->zone_capacity)
2410		return;
2411
2412	if (WARN_ON(bg->zone_finish_work.func == btrfs_zone_finish_endio_workfn)) {
2413		btrfs_err(bg->fs_info, "double scheduling of bg %llu zone finishing",
2414			  bg->start);
2415		return;
2416	}
2417
2418	/* For the work */
2419	btrfs_get_block_group(bg);
2420	atomic_inc(&eb->refs);
2421	bg->last_eb = eb;
2422	INIT_WORK(&bg->zone_finish_work, btrfs_zone_finish_endio_workfn);
2423	queue_work(system_unbound_wq, &bg->zone_finish_work);
2424}
2425
2426void btrfs_clear_data_reloc_bg(struct btrfs_block_group *bg)
2427{
2428	struct btrfs_fs_info *fs_info = bg->fs_info;
2429
2430	spin_lock(&fs_info->relocation_bg_lock);
2431	if (fs_info->data_reloc_bg == bg->start)
2432		fs_info->data_reloc_bg = 0;
2433	spin_unlock(&fs_info->relocation_bg_lock);
2434}
2435
2436void btrfs_free_zone_cache(struct btrfs_fs_info *fs_info)
2437{
2438	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2439	struct btrfs_device *device;
2440
2441	if (!btrfs_is_zoned(fs_info))
2442		return;
2443
2444	mutex_lock(&fs_devices->device_list_mutex);
2445	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2446		if (device->zone_info) {
2447			vfree(device->zone_info->zone_cache);
2448			device->zone_info->zone_cache = NULL;
2449		}
2450	}
2451	mutex_unlock(&fs_devices->device_list_mutex);
2452}
2453
2454bool btrfs_zoned_should_reclaim(const struct btrfs_fs_info *fs_info)
2455{
2456	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2457	struct btrfs_device *device;
2458	u64 used = 0;
2459	u64 total = 0;
2460	u64 factor;
2461
2462	ASSERT(btrfs_is_zoned(fs_info));
2463
2464	if (fs_info->bg_reclaim_threshold == 0)
2465		return false;
2466
2467	mutex_lock(&fs_devices->device_list_mutex);
2468	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2469		if (!device->bdev)
2470			continue;
2471
2472		total += device->disk_total_bytes;
2473		used += device->bytes_used;
2474	}
2475	mutex_unlock(&fs_devices->device_list_mutex);
2476
2477	factor = div64_u64(used * 100, total);
2478	return factor >= fs_info->bg_reclaim_threshold;
2479}
2480
2481void btrfs_zoned_release_data_reloc_bg(struct btrfs_fs_info *fs_info, u64 logical,
2482				       u64 length)
2483{
2484	struct btrfs_block_group *block_group;
2485
2486	if (!btrfs_is_zoned(fs_info))
2487		return;
2488
2489	block_group = btrfs_lookup_block_group(fs_info, logical);
2490	/* It should be called on a previous data relocation block group. */
2491	ASSERT(block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA));
2492
2493	spin_lock(&block_group->lock);
2494	if (!test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags))
2495		goto out;
2496
2497	/* All relocation extents are written. */
2498	if (block_group->start + block_group->alloc_offset == logical + length) {
2499		/*
2500		 * Now, release this block group for further allocations and
2501		 * zone finish.
2502		 */
2503		clear_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC,
2504			  &block_group->runtime_flags);
2505	}
2506
2507out:
2508	spin_unlock(&block_group->lock);
2509	btrfs_put_block_group(block_group);
2510}
2511
2512int btrfs_zone_finish_one_bg(struct btrfs_fs_info *fs_info)
2513{
2514	struct btrfs_block_group *block_group;
2515	struct btrfs_block_group *min_bg = NULL;
2516	u64 min_avail = U64_MAX;
2517	int ret;
2518
2519	spin_lock(&fs_info->zone_active_bgs_lock);
2520	list_for_each_entry(block_group, &fs_info->zone_active_bgs,
2521			    active_bg_list) {
2522		u64 avail;
2523
2524		spin_lock(&block_group->lock);
2525		if (block_group->reserved || block_group->alloc_offset == 0 ||
2526		    (block_group->flags & BTRFS_BLOCK_GROUP_SYSTEM) ||
2527		    test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
2528			spin_unlock(&block_group->lock);
2529			continue;
2530		}
2531
2532		avail = block_group->zone_capacity - block_group->alloc_offset;
2533		if (min_avail > avail) {
2534			if (min_bg)
2535				btrfs_put_block_group(min_bg);
2536			min_bg = block_group;
2537			min_avail = avail;
2538			btrfs_get_block_group(min_bg);
2539		}
2540		spin_unlock(&block_group->lock);
2541	}
2542	spin_unlock(&fs_info->zone_active_bgs_lock);
2543
2544	if (!min_bg)
2545		return 0;
2546
2547	ret = btrfs_zone_finish(min_bg);
2548	btrfs_put_block_group(min_bg);
2549
2550	return ret < 0 ? ret : 1;
2551}
2552
2553int btrfs_zoned_activate_one_bg(struct btrfs_fs_info *fs_info,
2554				struct btrfs_space_info *space_info,
2555				bool do_finish)
2556{
2557	struct btrfs_block_group *bg;
2558	int index;
2559
2560	if (!btrfs_is_zoned(fs_info) || (space_info->flags & BTRFS_BLOCK_GROUP_DATA))
2561		return 0;
2562
2563	for (;;) {
2564		int ret;
2565		bool need_finish = false;
2566
2567		down_read(&space_info->groups_sem);
2568		for (index = 0; index < BTRFS_NR_RAID_TYPES; index++) {
2569			list_for_each_entry(bg, &space_info->block_groups[index],
2570					    list) {
2571				if (!spin_trylock(&bg->lock))
2572					continue;
2573				if (btrfs_zoned_bg_is_full(bg) ||
2574				    test_bit(BLOCK_GROUP_FLAG_ZONE_IS_ACTIVE,
2575					     &bg->runtime_flags)) {
2576					spin_unlock(&bg->lock);
2577					continue;
2578				}
2579				spin_unlock(&bg->lock);
2580
2581				if (btrfs_zone_activate(bg)) {
2582					up_read(&space_info->groups_sem);
2583					return 1;
2584				}
2585
2586				need_finish = true;
2587			}
2588		}
2589		up_read(&space_info->groups_sem);
2590
2591		if (!do_finish || !need_finish)
2592			break;
2593
2594		ret = btrfs_zone_finish_one_bg(fs_info);
2595		if (ret == 0)
2596			break;
2597		if (ret < 0)
2598			return ret;
2599	}
2600
2601	return 0;
2602}
2603
2604/*
2605 * Reserve zones for one metadata block group, one tree-log block group, and one
2606 * system block group.
2607 */
2608void btrfs_check_active_zone_reservation(struct btrfs_fs_info *fs_info)
2609{
2610	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2611	struct btrfs_block_group *block_group;
2612	struct btrfs_device *device;
2613	/* Reserve zones for normal SINGLE metadata and tree-log block group. */
2614	unsigned int metadata_reserve = 2;
2615	/* Reserve a zone for SINGLE system block group. */
2616	unsigned int system_reserve = 1;
2617
2618	if (!test_bit(BTRFS_FS_ACTIVE_ZONE_TRACKING, &fs_info->flags))
2619		return;
2620
2621	/*
2622	 * This function is called from the mount context. So, there is no
2623	 * parallel process touching the bits. No need for read_seqretry().
2624	 */
2625	if (fs_info->avail_metadata_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2626		metadata_reserve = 4;
2627	if (fs_info->avail_system_alloc_bits & BTRFS_BLOCK_GROUP_DUP)
2628		system_reserve = 2;
2629
2630	/* Apply the reservation on all the devices. */
2631	mutex_lock(&fs_devices->device_list_mutex);
2632	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2633		if (!device->bdev)
2634			continue;
2635
2636		device->zone_info->reserved_active_zones =
2637			metadata_reserve + system_reserve;
2638	}
2639	mutex_unlock(&fs_devices->device_list_mutex);
2640
2641	/* Release reservation for currently active block groups. */
2642	spin_lock(&fs_info->zone_active_bgs_lock);
2643	list_for_each_entry(block_group, &fs_info->zone_active_bgs, active_bg_list) {
2644		struct btrfs_chunk_map *map = block_group->physical_map;
2645
2646		if (!(block_group->flags &
2647		      (BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_SYSTEM)))
2648			continue;
2649
2650		for (int i = 0; i < map->num_stripes; i++)
2651			map->stripes[i].dev->zone_info->reserved_active_zones--;
2652	}
2653	spin_unlock(&fs_info->zone_active_bgs_lock);
2654}