Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/sched/mm.h>
10#include <linux/writeback.h>
11#include <linux/pagemap.h>
12#include <linux/blkdev.h>
13#include <linux/uuid.h>
14#include <linux/timekeeping.h>
15#include "misc.h"
16#include "ctree.h"
17#include "disk-io.h"
18#include "transaction.h"
19#include "locking.h"
20#include "tree-log.h"
21#include "volumes.h"
22#include "dev-replace.h"
23#include "qgroup.h"
24#include "block-group.h"
25#include "space-info.h"
26#include "fs.h"
27#include "accessors.h"
28#include "extent-tree.h"
29#include "root-tree.h"
30#include "dir-item.h"
31#include "uuid-tree.h"
32#include "ioctl.h"
33#include "relocation.h"
34#include "scrub.h"
35
36static struct kmem_cache *btrfs_trans_handle_cachep;
37
38/*
39 * Transaction states and transitions
40 *
41 * No running transaction (fs tree blocks are not modified)
42 * |
43 * | To next stage:
44 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
45 * V
46 * Transaction N [[TRANS_STATE_RUNNING]]
47 * |
48 * | New trans handles can be attached to transaction N by calling all
49 * | start_transaction() variants.
50 * |
51 * | To next stage:
52 * | Call btrfs_commit_transaction() on any trans handle attached to
53 * | transaction N
54 * V
55 * Transaction N [[TRANS_STATE_COMMIT_PREP]]
56 * |
57 * | If there are simultaneous calls to btrfs_commit_transaction() one will win
58 * | the race and the rest will wait for the winner to commit the transaction.
59 * |
60 * | The winner will wait for previous running transaction to completely finish
61 * | if there is one.
62 * |
63 * Transaction N [[TRANS_STATE_COMMIT_START]]
64 * |
65 * | Then one of the following happens:
66 * | - Wait for all other trans handle holders to release.
67 * | The btrfs_commit_transaction() caller will do the commit work.
68 * | - Wait for current transaction to be committed by others.
69 * | Other btrfs_commit_transaction() caller will do the commit work.
70 * |
71 * | At this stage, only btrfs_join_transaction*() variants can attach
72 * | to this running transaction.
73 * | All other variants will wait for current one to finish and attach to
74 * | transaction N+1.
75 * |
76 * | To next stage:
77 * | Caller is chosen to commit transaction N, and all other trans handle
78 * | haven been released.
79 * V
80 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
81 * |
82 * | The heavy lifting transaction work is started.
83 * | From running delayed refs (modifying extent tree) to creating pending
84 * | snapshots, running qgroups.
85 * | In short, modify supporting trees to reflect modifications of subvolume
86 * | trees.
87 * |
88 * | At this stage, all start_transaction() calls will wait for this
89 * | transaction to finish and attach to transaction N+1.
90 * |
91 * | To next stage:
92 * | Until all supporting trees are updated.
93 * V
94 * Transaction N [[TRANS_STATE_UNBLOCKED]]
95 * | Transaction N+1
96 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
97 * | need to write them back to disk and update |
98 * | super blocks. |
99 * | |
100 * | At this stage, new transaction is allowed to |
101 * | start. |
102 * | All new start_transaction() calls will be |
103 * | attached to transid N+1. |
104 * | |
105 * | To next stage: |
106 * | Until all tree blocks are super blocks are |
107 * | written to block devices |
108 * V |
109 * Transaction N [[TRANS_STATE_COMPLETED]] V
110 * All tree blocks and super blocks are written. Transaction N+1
111 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
112 * data structures will be cleaned up. | Life goes on
113 */
114static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
115 [TRANS_STATE_RUNNING] = 0U,
116 [TRANS_STATE_COMMIT_PREP] = 0U,
117 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
118 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
119 __TRANS_ATTACH |
120 __TRANS_JOIN |
121 __TRANS_JOIN_NOSTART),
122 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
123 __TRANS_ATTACH |
124 __TRANS_JOIN |
125 __TRANS_JOIN_NOLOCK |
126 __TRANS_JOIN_NOSTART),
127 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START |
128 __TRANS_ATTACH |
129 __TRANS_JOIN |
130 __TRANS_JOIN_NOLOCK |
131 __TRANS_JOIN_NOSTART),
132 [TRANS_STATE_COMPLETED] = (__TRANS_START |
133 __TRANS_ATTACH |
134 __TRANS_JOIN |
135 __TRANS_JOIN_NOLOCK |
136 __TRANS_JOIN_NOSTART),
137};
138
139void btrfs_put_transaction(struct btrfs_transaction *transaction)
140{
141 WARN_ON(refcount_read(&transaction->use_count) == 0);
142 if (refcount_dec_and_test(&transaction->use_count)) {
143 BUG_ON(!list_empty(&transaction->list));
144 WARN_ON(!xa_empty(&transaction->delayed_refs.head_refs));
145 WARN_ON(!xa_empty(&transaction->delayed_refs.dirty_extents));
146 if (transaction->delayed_refs.pending_csums)
147 btrfs_err(transaction->fs_info,
148 "pending csums is %llu",
149 transaction->delayed_refs.pending_csums);
150 /*
151 * If any block groups are found in ->deleted_bgs then it's
152 * because the transaction was aborted and a commit did not
153 * happen (things failed before writing the new superblock
154 * and calling btrfs_finish_extent_commit()), so we can not
155 * discard the physical locations of the block groups.
156 */
157 while (!list_empty(&transaction->deleted_bgs)) {
158 struct btrfs_block_group *cache;
159
160 cache = list_first_entry(&transaction->deleted_bgs,
161 struct btrfs_block_group,
162 bg_list);
163 list_del_init(&cache->bg_list);
164 btrfs_unfreeze_block_group(cache);
165 btrfs_put_block_group(cache);
166 }
167 WARN_ON(!list_empty(&transaction->dev_update_list));
168 kfree(transaction);
169 }
170}
171
172static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173{
174 struct btrfs_transaction *cur_trans = trans->transaction;
175 struct btrfs_fs_info *fs_info = trans->fs_info;
176 struct btrfs_root *root, *tmp;
177
178 /*
179 * At this point no one can be using this transaction to modify any tree
180 * and no one can start another transaction to modify any tree either.
181 */
182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183
184 down_write(&fs_info->commit_root_sem);
185
186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 fs_info->last_reloc_trans = trans->transid;
188
189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 dirty_list) {
191 list_del_init(&root->dirty_list);
192 free_extent_buffer(root->commit_root);
193 root->commit_root = btrfs_root_node(root);
194 extent_io_tree_release(&root->dirty_log_pages);
195 btrfs_qgroup_clean_swapped_blocks(root);
196 }
197
198 /* We can free old roots now. */
199 spin_lock(&cur_trans->dropped_roots_lock);
200 while (!list_empty(&cur_trans->dropped_roots)) {
201 root = list_first_entry(&cur_trans->dropped_roots,
202 struct btrfs_root, root_list);
203 list_del_init(&root->root_list);
204 spin_unlock(&cur_trans->dropped_roots_lock);
205 btrfs_free_log(trans, root);
206 btrfs_drop_and_free_fs_root(fs_info, root);
207 spin_lock(&cur_trans->dropped_roots_lock);
208 }
209 spin_unlock(&cur_trans->dropped_roots_lock);
210
211 up_write(&fs_info->commit_root_sem);
212}
213
214static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 unsigned int type)
216{
217 if (type & TRANS_EXTWRITERS)
218 atomic_inc(&trans->num_extwriters);
219}
220
221static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 unsigned int type)
223{
224 if (type & TRANS_EXTWRITERS)
225 atomic_dec(&trans->num_extwriters);
226}
227
228static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 unsigned int type)
230{
231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232}
233
234static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235{
236 return atomic_read(&trans->num_extwriters);
237}
238
239/*
240 * To be called after doing the chunk btree updates right after allocating a new
241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242 * chunk after all chunk btree updates and after finishing the second phase of
243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244 * group had its chunk item insertion delayed to the second phase.
245 */
246void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247{
248 struct btrfs_fs_info *fs_info = trans->fs_info;
249
250 if (!trans->chunk_bytes_reserved)
251 return;
252
253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 trans->chunk_bytes_reserved, NULL);
255 trans->chunk_bytes_reserved = 0;
256}
257
258/*
259 * either allocate a new transaction or hop into the existing one
260 */
261static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 unsigned int type)
263{
264 struct btrfs_transaction *cur_trans;
265
266 spin_lock(&fs_info->trans_lock);
267loop:
268 /* The file system has been taken offline. No new transactions. */
269 if (BTRFS_FS_ERROR(fs_info)) {
270 spin_unlock(&fs_info->trans_lock);
271 return -EROFS;
272 }
273
274 cur_trans = fs_info->running_transaction;
275 if (cur_trans) {
276 if (TRANS_ABORTED(cur_trans)) {
277 const int abort_error = cur_trans->aborted;
278
279 spin_unlock(&fs_info->trans_lock);
280 return abort_error;
281 }
282 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
283 spin_unlock(&fs_info->trans_lock);
284 return -EBUSY;
285 }
286 refcount_inc(&cur_trans->use_count);
287 atomic_inc(&cur_trans->num_writers);
288 extwriter_counter_inc(cur_trans, type);
289 spin_unlock(&fs_info->trans_lock);
290 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
291 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
292 return 0;
293 }
294 spin_unlock(&fs_info->trans_lock);
295
296 /*
297 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
298 * current transaction, and commit it. If there is no transaction, just
299 * return ENOENT.
300 */
301 if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
302 return -ENOENT;
303
304 /*
305 * JOIN_NOLOCK only happens during the transaction commit, so
306 * it is impossible that ->running_transaction is NULL
307 */
308 BUG_ON(type == TRANS_JOIN_NOLOCK);
309
310 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
311 if (!cur_trans)
312 return -ENOMEM;
313
314 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
315 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
316
317 spin_lock(&fs_info->trans_lock);
318 if (fs_info->running_transaction) {
319 /*
320 * someone started a transaction after we unlocked. Make sure
321 * to redo the checks above
322 */
323 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
324 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
325 kfree(cur_trans);
326 goto loop;
327 } else if (BTRFS_FS_ERROR(fs_info)) {
328 spin_unlock(&fs_info->trans_lock);
329 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
331 kfree(cur_trans);
332 return -EROFS;
333 }
334
335 cur_trans->fs_info = fs_info;
336 atomic_set(&cur_trans->pending_ordered, 0);
337 init_waitqueue_head(&cur_trans->pending_wait);
338 atomic_set(&cur_trans->num_writers, 1);
339 extwriter_counter_init(cur_trans, type);
340 init_waitqueue_head(&cur_trans->writer_wait);
341 init_waitqueue_head(&cur_trans->commit_wait);
342 cur_trans->state = TRANS_STATE_RUNNING;
343 /*
344 * One for this trans handle, one so it will live on until we
345 * commit the transaction.
346 */
347 refcount_set(&cur_trans->use_count, 2);
348 cur_trans->flags = 0;
349 cur_trans->start_time = ktime_get_seconds();
350
351 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
352
353 xa_init(&cur_trans->delayed_refs.head_refs);
354 xa_init(&cur_trans->delayed_refs.dirty_extents);
355
356 /*
357 * although the tree mod log is per file system and not per transaction,
358 * the log must never go across transaction boundaries.
359 */
360 smp_mb();
361 if (!list_empty(&fs_info->tree_mod_seq_list))
362 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
363 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
364 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
365 atomic64_set(&fs_info->tree_mod_seq, 0);
366
367 spin_lock_init(&cur_trans->delayed_refs.lock);
368
369 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
370 INIT_LIST_HEAD(&cur_trans->dev_update_list);
371 INIT_LIST_HEAD(&cur_trans->switch_commits);
372 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
373 INIT_LIST_HEAD(&cur_trans->io_bgs);
374 INIT_LIST_HEAD(&cur_trans->dropped_roots);
375 mutex_init(&cur_trans->cache_write_mutex);
376 spin_lock_init(&cur_trans->dirty_bgs_lock);
377 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
378 spin_lock_init(&cur_trans->dropped_roots_lock);
379 list_add_tail(&cur_trans->list, &fs_info->trans_list);
380 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
381 IO_TREE_TRANS_DIRTY_PAGES);
382 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
383 IO_TREE_FS_PINNED_EXTENTS);
384 btrfs_set_fs_generation(fs_info, fs_info->generation + 1);
385 cur_trans->transid = fs_info->generation;
386 fs_info->running_transaction = cur_trans;
387 cur_trans->aborted = 0;
388 spin_unlock(&fs_info->trans_lock);
389
390 return 0;
391}
392
393/*
394 * This does all the record keeping required to make sure that a shareable root
395 * is properly recorded in a given transaction. This is required to make sure
396 * the old root from before we joined the transaction is deleted when the
397 * transaction commits.
398 */
399static int record_root_in_trans(struct btrfs_trans_handle *trans,
400 struct btrfs_root *root,
401 int force)
402{
403 struct btrfs_fs_info *fs_info = root->fs_info;
404 int ret = 0;
405
406 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
407 btrfs_get_root_last_trans(root) < trans->transid) || force) {
408 WARN_ON(!force && root->commit_root != root->node);
409
410 /*
411 * see below for IN_TRANS_SETUP usage rules
412 * we have the reloc mutex held now, so there
413 * is only one writer in this function
414 */
415 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
416
417 /* make sure readers find IN_TRANS_SETUP before
418 * they find our root->last_trans update
419 */
420 smp_wmb();
421
422 spin_lock(&fs_info->fs_roots_radix_lock);
423 if (btrfs_get_root_last_trans(root) == trans->transid && !force) {
424 spin_unlock(&fs_info->fs_roots_radix_lock);
425 return 0;
426 }
427 radix_tree_tag_set(&fs_info->fs_roots_radix,
428 (unsigned long)btrfs_root_id(root),
429 BTRFS_ROOT_TRANS_TAG);
430 spin_unlock(&fs_info->fs_roots_radix_lock);
431 btrfs_set_root_last_trans(root, trans->transid);
432
433 /* this is pretty tricky. We don't want to
434 * take the relocation lock in btrfs_record_root_in_trans
435 * unless we're really doing the first setup for this root in
436 * this transaction.
437 *
438 * Normally we'd use root->last_trans as a flag to decide
439 * if we want to take the expensive mutex.
440 *
441 * But, we have to set root->last_trans before we
442 * init the relocation root, otherwise, we trip over warnings
443 * in ctree.c. The solution used here is to flag ourselves
444 * with root IN_TRANS_SETUP. When this is 1, we're still
445 * fixing up the reloc trees and everyone must wait.
446 *
447 * When this is zero, they can trust root->last_trans and fly
448 * through btrfs_record_root_in_trans without having to take the
449 * lock. smp_wmb() makes sure that all the writes above are
450 * done before we pop in the zero below
451 */
452 ret = btrfs_init_reloc_root(trans, root);
453 smp_mb__before_atomic();
454 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
455 }
456 return ret;
457}
458
459
460void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root)
462{
463 struct btrfs_fs_info *fs_info = root->fs_info;
464 struct btrfs_transaction *cur_trans = trans->transaction;
465
466 /* Add ourselves to the transaction dropped list */
467 spin_lock(&cur_trans->dropped_roots_lock);
468 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
469 spin_unlock(&cur_trans->dropped_roots_lock);
470
471 /* Make sure we don't try to update the root at commit time */
472 spin_lock(&fs_info->fs_roots_radix_lock);
473 radix_tree_tag_clear(&fs_info->fs_roots_radix,
474 (unsigned long)btrfs_root_id(root),
475 BTRFS_ROOT_TRANS_TAG);
476 spin_unlock(&fs_info->fs_roots_radix_lock);
477}
478
479int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
480 struct btrfs_root *root)
481{
482 struct btrfs_fs_info *fs_info = root->fs_info;
483 int ret;
484
485 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
486 return 0;
487
488 /*
489 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
490 * and barriers
491 */
492 smp_rmb();
493 if (btrfs_get_root_last_trans(root) == trans->transid &&
494 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
495 return 0;
496
497 mutex_lock(&fs_info->reloc_mutex);
498 ret = record_root_in_trans(trans, root, 0);
499 mutex_unlock(&fs_info->reloc_mutex);
500
501 return ret;
502}
503
504static inline int is_transaction_blocked(struct btrfs_transaction *trans)
505{
506 return (trans->state >= TRANS_STATE_COMMIT_START &&
507 trans->state < TRANS_STATE_UNBLOCKED &&
508 !TRANS_ABORTED(trans));
509}
510
511/* wait for commit against the current transaction to become unblocked
512 * when this is done, it is safe to start a new transaction, but the current
513 * transaction might not be fully on disk.
514 */
515static void wait_current_trans(struct btrfs_fs_info *fs_info)
516{
517 struct btrfs_transaction *cur_trans;
518
519 spin_lock(&fs_info->trans_lock);
520 cur_trans = fs_info->running_transaction;
521 if (cur_trans && is_transaction_blocked(cur_trans)) {
522 refcount_inc(&cur_trans->use_count);
523 spin_unlock(&fs_info->trans_lock);
524
525 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
526 wait_event(fs_info->transaction_wait,
527 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 TRANS_ABORTED(cur_trans));
529 btrfs_put_transaction(cur_trans);
530 } else {
531 spin_unlock(&fs_info->trans_lock);
532 }
533}
534
535static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536{
537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 return 0;
539
540 if (type == TRANS_START)
541 return 1;
542
543 return 0;
544}
545
546static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547{
548 struct btrfs_fs_info *fs_info = root->fs_info;
549
550 if (!fs_info->reloc_ctl ||
551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID ||
553 root->reloc_root)
554 return false;
555
556 return true;
557}
558
559static int btrfs_reserve_trans_metadata(struct btrfs_fs_info *fs_info,
560 enum btrfs_reserve_flush_enum flush,
561 u64 num_bytes,
562 u64 *delayed_refs_bytes)
563{
564 struct btrfs_space_info *si = fs_info->trans_block_rsv.space_info;
565 u64 bytes = num_bytes + *delayed_refs_bytes;
566 int ret;
567
568 /*
569 * We want to reserve all the bytes we may need all at once, so we only
570 * do 1 enospc flushing cycle per transaction start.
571 */
572 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
573
574 /*
575 * If we are an emergency flush, which can steal from the global block
576 * reserve, then attempt to not reserve space for the delayed refs, as
577 * we will consume space for them from the global block reserve.
578 */
579 if (ret && flush == BTRFS_RESERVE_FLUSH_ALL_STEAL) {
580 bytes -= *delayed_refs_bytes;
581 *delayed_refs_bytes = 0;
582 ret = btrfs_reserve_metadata_bytes(fs_info, si, bytes, flush);
583 }
584
585 return ret;
586}
587
588static struct btrfs_trans_handle *
589start_transaction(struct btrfs_root *root, unsigned int num_items,
590 unsigned int type, enum btrfs_reserve_flush_enum flush,
591 bool enforce_qgroups)
592{
593 struct btrfs_fs_info *fs_info = root->fs_info;
594 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
595 struct btrfs_block_rsv *trans_rsv = &fs_info->trans_block_rsv;
596 struct btrfs_trans_handle *h;
597 struct btrfs_transaction *cur_trans;
598 u64 num_bytes = 0;
599 u64 qgroup_reserved = 0;
600 u64 delayed_refs_bytes = 0;
601 bool reloc_reserved = false;
602 bool do_chunk_alloc = false;
603 int ret;
604
605 if (BTRFS_FS_ERROR(fs_info))
606 return ERR_PTR(-EROFS);
607
608 if (current->journal_info) {
609 WARN_ON(type & TRANS_EXTWRITERS);
610 h = current->journal_info;
611 refcount_inc(&h->use_count);
612 WARN_ON(refcount_read(&h->use_count) > 2);
613 h->orig_rsv = h->block_rsv;
614 h->block_rsv = NULL;
615 goto got_it;
616 }
617
618 /*
619 * Do the reservation before we join the transaction so we can do all
620 * the appropriate flushing if need be.
621 */
622 if (num_items && root != fs_info->chunk_root) {
623 qgroup_reserved = num_items * fs_info->nodesize;
624 /*
625 * Use prealloc for now, as there might be a currently running
626 * transaction that could free this reserved space prematurely
627 * by committing.
628 */
629 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
630 enforce_qgroups, false);
631 if (ret)
632 return ERR_PTR(ret);
633
634 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
635 /*
636 * If we plan to insert/update/delete "num_items" from a btree,
637 * we will also generate delayed refs for extent buffers in the
638 * respective btree paths, so reserve space for the delayed refs
639 * that will be generated by the caller as it modifies btrees.
640 * Try to reserve them to avoid excessive use of the global
641 * block reserve.
642 */
643 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, num_items);
644
645 /*
646 * Do the reservation for the relocation root creation
647 */
648 if (need_reserve_reloc_root(root)) {
649 num_bytes += fs_info->nodesize;
650 reloc_reserved = true;
651 }
652
653 ret = btrfs_reserve_trans_metadata(fs_info, flush, num_bytes,
654 &delayed_refs_bytes);
655 if (ret)
656 goto reserve_fail;
657
658 btrfs_block_rsv_add_bytes(trans_rsv, num_bytes, true);
659
660 if (trans_rsv->space_info->force_alloc)
661 do_chunk_alloc = true;
662 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
663 !btrfs_block_rsv_full(delayed_refs_rsv)) {
664 /*
665 * Some people call with btrfs_start_transaction(root, 0)
666 * because they can be throttled, but have some other mechanism
667 * for reserving space. We still want these guys to refill the
668 * delayed block_rsv so just add 1 items worth of reservation
669 * here.
670 */
671 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
672 if (ret)
673 goto reserve_fail;
674 }
675again:
676 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
677 if (!h) {
678 ret = -ENOMEM;
679 goto alloc_fail;
680 }
681
682 /*
683 * If we are JOIN_NOLOCK we're already committing a transaction and
684 * waiting on this guy, so we don't need to do the sb_start_intwrite
685 * because we're already holding a ref. We need this because we could
686 * have raced in and did an fsync() on a file which can kick a commit
687 * and then we deadlock with somebody doing a freeze.
688 *
689 * If we are ATTACH, it means we just want to catch the current
690 * transaction and commit it, so we needn't do sb_start_intwrite().
691 */
692 if (type & __TRANS_FREEZABLE)
693 sb_start_intwrite(fs_info->sb);
694
695 if (may_wait_transaction(fs_info, type))
696 wait_current_trans(fs_info);
697
698 do {
699 ret = join_transaction(fs_info, type);
700 if (ret == -EBUSY) {
701 wait_current_trans(fs_info);
702 if (unlikely(type == TRANS_ATTACH ||
703 type == TRANS_JOIN_NOSTART))
704 ret = -ENOENT;
705 }
706 } while (ret == -EBUSY);
707
708 if (ret < 0)
709 goto join_fail;
710
711 cur_trans = fs_info->running_transaction;
712
713 h->transid = cur_trans->transid;
714 h->transaction = cur_trans;
715 refcount_set(&h->use_count, 1);
716 h->fs_info = root->fs_info;
717
718 h->type = type;
719 INIT_LIST_HEAD(&h->new_bgs);
720 btrfs_init_metadata_block_rsv(fs_info, &h->delayed_rsv, BTRFS_BLOCK_RSV_DELOPS);
721
722 smp_mb();
723 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
724 may_wait_transaction(fs_info, type)) {
725 current->journal_info = h;
726 btrfs_commit_transaction(h);
727 goto again;
728 }
729
730 if (num_bytes) {
731 trace_btrfs_space_reservation(fs_info, "transaction",
732 h->transid, num_bytes, 1);
733 h->block_rsv = trans_rsv;
734 h->bytes_reserved = num_bytes;
735 if (delayed_refs_bytes > 0) {
736 trace_btrfs_space_reservation(fs_info,
737 "local_delayed_refs_rsv",
738 h->transid,
739 delayed_refs_bytes, 1);
740 h->delayed_refs_bytes_reserved = delayed_refs_bytes;
741 btrfs_block_rsv_add_bytes(&h->delayed_rsv, delayed_refs_bytes, true);
742 delayed_refs_bytes = 0;
743 }
744 h->reloc_reserved = reloc_reserved;
745 }
746
747got_it:
748 if (!current->journal_info)
749 current->journal_info = h;
750
751 /*
752 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
753 * ALLOC_FORCE the first run through, and then we won't allocate for
754 * anybody else who races in later. We don't care about the return
755 * value here.
756 */
757 if (do_chunk_alloc && num_bytes) {
758 u64 flags = h->block_rsv->space_info->flags;
759
760 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
761 CHUNK_ALLOC_NO_FORCE);
762 }
763
764 /*
765 * btrfs_record_root_in_trans() needs to alloc new extents, and may
766 * call btrfs_join_transaction() while we're also starting a
767 * transaction.
768 *
769 * Thus it need to be called after current->journal_info initialized,
770 * or we can deadlock.
771 */
772 ret = btrfs_record_root_in_trans(h, root);
773 if (ret) {
774 /*
775 * The transaction handle is fully initialized and linked with
776 * other structures so it needs to be ended in case of errors,
777 * not just freed.
778 */
779 btrfs_end_transaction(h);
780 goto reserve_fail;
781 }
782 /*
783 * Now that we have found a transaction to be a part of, convert the
784 * qgroup reservation from prealloc to pertrans. A different transaction
785 * can't race in and free our pertrans out from under us.
786 */
787 if (qgroup_reserved)
788 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
789
790 return h;
791
792join_fail:
793 if (type & __TRANS_FREEZABLE)
794 sb_end_intwrite(fs_info->sb);
795 kmem_cache_free(btrfs_trans_handle_cachep, h);
796alloc_fail:
797 if (num_bytes)
798 btrfs_block_rsv_release(fs_info, trans_rsv, num_bytes, NULL);
799 if (delayed_refs_bytes)
800 btrfs_space_info_free_bytes_may_use(fs_info, trans_rsv->space_info,
801 delayed_refs_bytes);
802reserve_fail:
803 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
804 return ERR_PTR(ret);
805}
806
807struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
808 unsigned int num_items)
809{
810 return start_transaction(root, num_items, TRANS_START,
811 BTRFS_RESERVE_FLUSH_ALL, true);
812}
813
814struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
815 struct btrfs_root *root,
816 unsigned int num_items)
817{
818 return start_transaction(root, num_items, TRANS_START,
819 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
820}
821
822struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
823{
824 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
825 true);
826}
827
828struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
829{
830 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
831 BTRFS_RESERVE_NO_FLUSH, true);
832}
833
834/*
835 * Similar to regular join but it never starts a transaction when none is
836 * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
837 * This is similar to btrfs_attach_transaction() but it allows the join to
838 * happen if the transaction commit already started but it's not yet in the
839 * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
840 */
841struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
842{
843 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
844 BTRFS_RESERVE_NO_FLUSH, true);
845}
846
847/*
848 * Catch the running transaction.
849 *
850 * It is used when we want to commit the current the transaction, but
851 * don't want to start a new one.
852 *
853 * Note: If this function return -ENOENT, it just means there is no
854 * running transaction. But it is possible that the inactive transaction
855 * is still in the memory, not fully on disk. If you hope there is no
856 * inactive transaction in the fs when -ENOENT is returned, you should
857 * invoke
858 * btrfs_attach_transaction_barrier()
859 */
860struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
861{
862 return start_transaction(root, 0, TRANS_ATTACH,
863 BTRFS_RESERVE_NO_FLUSH, true);
864}
865
866/*
867 * Catch the running transaction.
868 *
869 * It is similar to the above function, the difference is this one
870 * will wait for all the inactive transactions until they fully
871 * complete.
872 */
873struct btrfs_trans_handle *
874btrfs_attach_transaction_barrier(struct btrfs_root *root)
875{
876 struct btrfs_trans_handle *trans;
877
878 trans = start_transaction(root, 0, TRANS_ATTACH,
879 BTRFS_RESERVE_NO_FLUSH, true);
880 if (trans == ERR_PTR(-ENOENT)) {
881 int ret;
882
883 ret = btrfs_wait_for_commit(root->fs_info, 0);
884 if (ret)
885 return ERR_PTR(ret);
886 }
887
888 return trans;
889}
890
891/* Wait for a transaction commit to reach at least the given state. */
892static noinline void wait_for_commit(struct btrfs_transaction *commit,
893 const enum btrfs_trans_state min_state)
894{
895 struct btrfs_fs_info *fs_info = commit->fs_info;
896 u64 transid = commit->transid;
897 bool put = false;
898
899 /*
900 * At the moment this function is called with min_state either being
901 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
902 */
903 if (min_state == TRANS_STATE_COMPLETED)
904 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
905 else
906 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
907
908 while (1) {
909 wait_event(commit->commit_wait, commit->state >= min_state);
910 if (put)
911 btrfs_put_transaction(commit);
912
913 if (min_state < TRANS_STATE_COMPLETED)
914 break;
915
916 /*
917 * A transaction isn't really completed until all of the
918 * previous transactions are completed, but with fsync we can
919 * end up with SUPER_COMMITTED transactions before a COMPLETED
920 * transaction. Wait for those.
921 */
922
923 spin_lock(&fs_info->trans_lock);
924 commit = list_first_entry_or_null(&fs_info->trans_list,
925 struct btrfs_transaction,
926 list);
927 if (!commit || commit->transid > transid) {
928 spin_unlock(&fs_info->trans_lock);
929 break;
930 }
931 refcount_inc(&commit->use_count);
932 put = true;
933 spin_unlock(&fs_info->trans_lock);
934 }
935}
936
937int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
938{
939 struct btrfs_transaction *cur_trans = NULL, *t;
940 int ret = 0;
941
942 if (transid) {
943 if (transid <= btrfs_get_last_trans_committed(fs_info))
944 goto out;
945
946 /* find specified transaction */
947 spin_lock(&fs_info->trans_lock);
948 list_for_each_entry(t, &fs_info->trans_list, list) {
949 if (t->transid == transid) {
950 cur_trans = t;
951 refcount_inc(&cur_trans->use_count);
952 ret = 0;
953 break;
954 }
955 if (t->transid > transid) {
956 ret = 0;
957 break;
958 }
959 }
960 spin_unlock(&fs_info->trans_lock);
961
962 /*
963 * The specified transaction doesn't exist, or we
964 * raced with btrfs_commit_transaction
965 */
966 if (!cur_trans) {
967 if (transid > btrfs_get_last_trans_committed(fs_info))
968 ret = -EINVAL;
969 goto out;
970 }
971 } else {
972 /* find newest transaction that is committing | committed */
973 spin_lock(&fs_info->trans_lock);
974 list_for_each_entry_reverse(t, &fs_info->trans_list,
975 list) {
976 if (t->state >= TRANS_STATE_COMMIT_START) {
977 if (t->state == TRANS_STATE_COMPLETED)
978 break;
979 cur_trans = t;
980 refcount_inc(&cur_trans->use_count);
981 break;
982 }
983 }
984 spin_unlock(&fs_info->trans_lock);
985 if (!cur_trans)
986 goto out; /* nothing committing|committed */
987 }
988
989 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
990 ret = cur_trans->aborted;
991 btrfs_put_transaction(cur_trans);
992out:
993 return ret;
994}
995
996void btrfs_throttle(struct btrfs_fs_info *fs_info)
997{
998 wait_current_trans(fs_info);
999}
1000
1001bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
1002{
1003 struct btrfs_transaction *cur_trans = trans->transaction;
1004
1005 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
1006 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
1007 return true;
1008
1009 if (btrfs_check_space_for_delayed_refs(trans->fs_info))
1010 return true;
1011
1012 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
1013}
1014
1015static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
1016
1017{
1018 struct btrfs_fs_info *fs_info = trans->fs_info;
1019
1020 if (!trans->block_rsv) {
1021 ASSERT(!trans->bytes_reserved);
1022 ASSERT(!trans->delayed_refs_bytes_reserved);
1023 return;
1024 }
1025
1026 if (!trans->bytes_reserved) {
1027 ASSERT(!trans->delayed_refs_bytes_reserved);
1028 return;
1029 }
1030
1031 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
1032 trace_btrfs_space_reservation(fs_info, "transaction",
1033 trans->transid, trans->bytes_reserved, 0);
1034 btrfs_block_rsv_release(fs_info, trans->block_rsv,
1035 trans->bytes_reserved, NULL);
1036 trans->bytes_reserved = 0;
1037
1038 if (!trans->delayed_refs_bytes_reserved)
1039 return;
1040
1041 trace_btrfs_space_reservation(fs_info, "local_delayed_refs_rsv",
1042 trans->transid,
1043 trans->delayed_refs_bytes_reserved, 0);
1044 btrfs_block_rsv_release(fs_info, &trans->delayed_rsv,
1045 trans->delayed_refs_bytes_reserved, NULL);
1046 trans->delayed_refs_bytes_reserved = 0;
1047}
1048
1049static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1050 int throttle)
1051{
1052 struct btrfs_fs_info *info = trans->fs_info;
1053 struct btrfs_transaction *cur_trans = trans->transaction;
1054 int ret = 0;
1055
1056 if (refcount_read(&trans->use_count) > 1) {
1057 refcount_dec(&trans->use_count);
1058 trans->block_rsv = trans->orig_rsv;
1059 return 0;
1060 }
1061
1062 btrfs_trans_release_metadata(trans);
1063 trans->block_rsv = NULL;
1064
1065 btrfs_create_pending_block_groups(trans);
1066
1067 btrfs_trans_release_chunk_metadata(trans);
1068
1069 if (trans->type & __TRANS_FREEZABLE)
1070 sb_end_intwrite(info->sb);
1071
1072 WARN_ON(cur_trans != info->running_transaction);
1073 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1074 atomic_dec(&cur_trans->num_writers);
1075 extwriter_counter_dec(cur_trans, trans->type);
1076
1077 cond_wake_up(&cur_trans->writer_wait);
1078
1079 btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1080 btrfs_lockdep_release(info, btrfs_trans_num_writers);
1081
1082 btrfs_put_transaction(cur_trans);
1083
1084 if (current->journal_info == trans)
1085 current->journal_info = NULL;
1086
1087 if (throttle)
1088 btrfs_run_delayed_iputs(info);
1089
1090 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1091 wake_up_process(info->transaction_kthread);
1092 if (TRANS_ABORTED(trans))
1093 ret = trans->aborted;
1094 else
1095 ret = -EROFS;
1096 }
1097
1098 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1099 return ret;
1100}
1101
1102int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1103{
1104 return __btrfs_end_transaction(trans, 0);
1105}
1106
1107int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1108{
1109 return __btrfs_end_transaction(trans, 1);
1110}
1111
1112/*
1113 * when btree blocks are allocated, they have some corresponding bits set for
1114 * them in one of two extent_io trees. This is used to make sure all of
1115 * those extents are sent to disk but does not wait on them
1116 */
1117int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1118 struct extent_io_tree *dirty_pages, int mark)
1119{
1120 int ret = 0;
1121 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1122 struct extent_state *cached_state = NULL;
1123 u64 start = 0;
1124 u64 end;
1125
1126 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1127 mark, &cached_state)) {
1128 bool wait_writeback = false;
1129
1130 ret = convert_extent_bit(dirty_pages, start, end,
1131 EXTENT_NEED_WAIT,
1132 mark, &cached_state);
1133 /*
1134 * convert_extent_bit can return -ENOMEM, which is most of the
1135 * time a temporary error. So when it happens, ignore the error
1136 * and wait for writeback of this range to finish - because we
1137 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1138 * to __btrfs_wait_marked_extents() would not know that
1139 * writeback for this range started and therefore wouldn't
1140 * wait for it to finish - we don't want to commit a
1141 * superblock that points to btree nodes/leafs for which
1142 * writeback hasn't finished yet (and without errors).
1143 * We cleanup any entries left in the io tree when committing
1144 * the transaction (through extent_io_tree_release()).
1145 */
1146 if (ret == -ENOMEM) {
1147 ret = 0;
1148 wait_writeback = true;
1149 }
1150 if (!ret)
1151 ret = filemap_fdatawrite_range(mapping, start, end);
1152 if (!ret && wait_writeback)
1153 ret = filemap_fdatawait_range(mapping, start, end);
1154 free_extent_state(cached_state);
1155 if (ret)
1156 break;
1157 cached_state = NULL;
1158 cond_resched();
1159 start = end + 1;
1160 }
1161 return ret;
1162}
1163
1164/*
1165 * when btree blocks are allocated, they have some corresponding bits set for
1166 * them in one of two extent_io trees. This is used to make sure all of
1167 * those extents are on disk for transaction or log commit. We wait
1168 * on all the pages and clear them from the dirty pages state tree
1169 */
1170static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1171 struct extent_io_tree *dirty_pages)
1172{
1173 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1174 struct extent_state *cached_state = NULL;
1175 u64 start = 0;
1176 u64 end;
1177 int ret = 0;
1178
1179 while (find_first_extent_bit(dirty_pages, start, &start, &end,
1180 EXTENT_NEED_WAIT, &cached_state)) {
1181 /*
1182 * Ignore -ENOMEM errors returned by clear_extent_bit().
1183 * When committing the transaction, we'll remove any entries
1184 * left in the io tree. For a log commit, we don't remove them
1185 * after committing the log because the tree can be accessed
1186 * concurrently - we do it only at transaction commit time when
1187 * it's safe to do it (through extent_io_tree_release()).
1188 */
1189 ret = clear_extent_bit(dirty_pages, start, end,
1190 EXTENT_NEED_WAIT, &cached_state);
1191 if (ret == -ENOMEM)
1192 ret = 0;
1193 if (!ret)
1194 ret = filemap_fdatawait_range(mapping, start, end);
1195 free_extent_state(cached_state);
1196 if (ret)
1197 break;
1198 cached_state = NULL;
1199 cond_resched();
1200 start = end + 1;
1201 }
1202 return ret;
1203}
1204
1205static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1206 struct extent_io_tree *dirty_pages)
1207{
1208 bool errors = false;
1209 int err;
1210
1211 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1212 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1213 errors = true;
1214
1215 if (errors && !err)
1216 err = -EIO;
1217 return err;
1218}
1219
1220int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1221{
1222 struct btrfs_fs_info *fs_info = log_root->fs_info;
1223 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1224 bool errors = false;
1225 int err;
1226
1227 ASSERT(btrfs_root_id(log_root) == BTRFS_TREE_LOG_OBJECTID);
1228
1229 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1230 if ((mark & EXTENT_DIRTY) &&
1231 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1232 errors = true;
1233
1234 if ((mark & EXTENT_NEW) &&
1235 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1236 errors = true;
1237
1238 if (errors && !err)
1239 err = -EIO;
1240 return err;
1241}
1242
1243/*
1244 * When btree blocks are allocated the corresponding extents are marked dirty.
1245 * This function ensures such extents are persisted on disk for transaction or
1246 * log commit.
1247 *
1248 * @trans: transaction whose dirty pages we'd like to write
1249 */
1250static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1251{
1252 int ret;
1253 int ret2;
1254 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1255 struct btrfs_fs_info *fs_info = trans->fs_info;
1256 struct blk_plug plug;
1257
1258 blk_start_plug(&plug);
1259 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1260 blk_finish_plug(&plug);
1261 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1262
1263 extent_io_tree_release(&trans->transaction->dirty_pages);
1264
1265 if (ret)
1266 return ret;
1267 else if (ret2)
1268 return ret2;
1269 else
1270 return 0;
1271}
1272
1273/*
1274 * this is used to update the root pointer in the tree of tree roots.
1275 *
1276 * But, in the case of the extent allocation tree, updating the root
1277 * pointer may allocate blocks which may change the root of the extent
1278 * allocation tree.
1279 *
1280 * So, this loops and repeats and makes sure the cowonly root didn't
1281 * change while the root pointer was being updated in the metadata.
1282 */
1283static int update_cowonly_root(struct btrfs_trans_handle *trans,
1284 struct btrfs_root *root)
1285{
1286 int ret;
1287 u64 old_root_bytenr;
1288 u64 old_root_used;
1289 struct btrfs_fs_info *fs_info = root->fs_info;
1290 struct btrfs_root *tree_root = fs_info->tree_root;
1291
1292 old_root_used = btrfs_root_used(&root->root_item);
1293
1294 while (1) {
1295 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1296 if (old_root_bytenr == root->node->start &&
1297 old_root_used == btrfs_root_used(&root->root_item))
1298 break;
1299
1300 btrfs_set_root_node(&root->root_item, root->node);
1301 ret = btrfs_update_root(trans, tree_root,
1302 &root->root_key,
1303 &root->root_item);
1304 if (ret)
1305 return ret;
1306
1307 old_root_used = btrfs_root_used(&root->root_item);
1308 }
1309
1310 return 0;
1311}
1312
1313/*
1314 * update all the cowonly tree roots on disk
1315 *
1316 * The error handling in this function may not be obvious. Any of the
1317 * failures will cause the file system to go offline. We still need
1318 * to clean up the delayed refs.
1319 */
1320static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1321{
1322 struct btrfs_fs_info *fs_info = trans->fs_info;
1323 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1324 struct list_head *io_bgs = &trans->transaction->io_bgs;
1325 struct list_head *next;
1326 struct extent_buffer *eb;
1327 int ret;
1328
1329 /*
1330 * At this point no one can be using this transaction to modify any tree
1331 * and no one can start another transaction to modify any tree either.
1332 */
1333 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1334
1335 eb = btrfs_lock_root_node(fs_info->tree_root);
1336 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1337 0, &eb, BTRFS_NESTING_COW);
1338 btrfs_tree_unlock(eb);
1339 free_extent_buffer(eb);
1340
1341 if (ret)
1342 return ret;
1343
1344 ret = btrfs_run_dev_stats(trans);
1345 if (ret)
1346 return ret;
1347 ret = btrfs_run_dev_replace(trans);
1348 if (ret)
1349 return ret;
1350 ret = btrfs_run_qgroups(trans);
1351 if (ret)
1352 return ret;
1353
1354 ret = btrfs_setup_space_cache(trans);
1355 if (ret)
1356 return ret;
1357
1358again:
1359 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1360 struct btrfs_root *root;
1361 next = fs_info->dirty_cowonly_roots.next;
1362 list_del_init(next);
1363 root = list_entry(next, struct btrfs_root, dirty_list);
1364 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1365
1366 list_add_tail(&root->dirty_list,
1367 &trans->transaction->switch_commits);
1368 ret = update_cowonly_root(trans, root);
1369 if (ret)
1370 return ret;
1371 }
1372
1373 /* Now flush any delayed refs generated by updating all of the roots */
1374 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1375 if (ret)
1376 return ret;
1377
1378 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1379 ret = btrfs_write_dirty_block_groups(trans);
1380 if (ret)
1381 return ret;
1382
1383 /*
1384 * We're writing the dirty block groups, which could generate
1385 * delayed refs, which could generate more dirty block groups,
1386 * so we want to keep this flushing in this loop to make sure
1387 * everything gets run.
1388 */
1389 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1390 if (ret)
1391 return ret;
1392 }
1393
1394 if (!list_empty(&fs_info->dirty_cowonly_roots))
1395 goto again;
1396
1397 /* Update dev-replace pointer once everything is committed */
1398 fs_info->dev_replace.committed_cursor_left =
1399 fs_info->dev_replace.cursor_left_last_write_of_item;
1400
1401 return 0;
1402}
1403
1404/*
1405 * If we had a pending drop we need to see if there are any others left in our
1406 * dead roots list, and if not clear our bit and wake any waiters.
1407 */
1408void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1409{
1410 /*
1411 * We put the drop in progress roots at the front of the list, so if the
1412 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1413 * up.
1414 */
1415 spin_lock(&fs_info->trans_lock);
1416 if (!list_empty(&fs_info->dead_roots)) {
1417 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1418 struct btrfs_root,
1419 root_list);
1420 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1421 spin_unlock(&fs_info->trans_lock);
1422 return;
1423 }
1424 }
1425 spin_unlock(&fs_info->trans_lock);
1426
1427 btrfs_wake_unfinished_drop(fs_info);
1428}
1429
1430/*
1431 * dead roots are old snapshots that need to be deleted. This allocates
1432 * a dirty root struct and adds it into the list of dead roots that need to
1433 * be deleted
1434 */
1435void btrfs_add_dead_root(struct btrfs_root *root)
1436{
1437 struct btrfs_fs_info *fs_info = root->fs_info;
1438
1439 spin_lock(&fs_info->trans_lock);
1440 if (list_empty(&root->root_list)) {
1441 btrfs_grab_root(root);
1442
1443 /* We want to process the partially complete drops first. */
1444 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1445 list_add(&root->root_list, &fs_info->dead_roots);
1446 else
1447 list_add_tail(&root->root_list, &fs_info->dead_roots);
1448 }
1449 spin_unlock(&fs_info->trans_lock);
1450}
1451
1452/*
1453 * Update each subvolume root and its relocation root, if it exists, in the tree
1454 * of tree roots. Also free log roots if they exist.
1455 */
1456static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1457{
1458 struct btrfs_fs_info *fs_info = trans->fs_info;
1459 struct btrfs_root *gang[8];
1460 int i;
1461 int ret;
1462
1463 /*
1464 * At this point no one can be using this transaction to modify any tree
1465 * and no one can start another transaction to modify any tree either.
1466 */
1467 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1468
1469 spin_lock(&fs_info->fs_roots_radix_lock);
1470 while (1) {
1471 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1472 (void **)gang, 0,
1473 ARRAY_SIZE(gang),
1474 BTRFS_ROOT_TRANS_TAG);
1475 if (ret == 0)
1476 break;
1477 for (i = 0; i < ret; i++) {
1478 struct btrfs_root *root = gang[i];
1479 int ret2;
1480
1481 /*
1482 * At this point we can neither have tasks logging inodes
1483 * from a root nor trying to commit a log tree.
1484 */
1485 ASSERT(atomic_read(&root->log_writers) == 0);
1486 ASSERT(atomic_read(&root->log_commit[0]) == 0);
1487 ASSERT(atomic_read(&root->log_commit[1]) == 0);
1488
1489 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1490 (unsigned long)btrfs_root_id(root),
1491 BTRFS_ROOT_TRANS_TAG);
1492 btrfs_qgroup_free_meta_all_pertrans(root);
1493 spin_unlock(&fs_info->fs_roots_radix_lock);
1494
1495 btrfs_free_log(trans, root);
1496 ret2 = btrfs_update_reloc_root(trans, root);
1497 if (ret2)
1498 return ret2;
1499
1500 /* see comments in should_cow_block() */
1501 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1502 smp_mb__after_atomic();
1503
1504 if (root->commit_root != root->node) {
1505 list_add_tail(&root->dirty_list,
1506 &trans->transaction->switch_commits);
1507 btrfs_set_root_node(&root->root_item,
1508 root->node);
1509 }
1510
1511 ret2 = btrfs_update_root(trans, fs_info->tree_root,
1512 &root->root_key,
1513 &root->root_item);
1514 if (ret2)
1515 return ret2;
1516 spin_lock(&fs_info->fs_roots_radix_lock);
1517 }
1518 }
1519 spin_unlock(&fs_info->fs_roots_radix_lock);
1520 return 0;
1521}
1522
1523/*
1524 * Do all special snapshot related qgroup dirty hack.
1525 *
1526 * Will do all needed qgroup inherit and dirty hack like switch commit
1527 * roots inside one transaction and write all btree into disk, to make
1528 * qgroup works.
1529 */
1530static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1531 struct btrfs_root *src,
1532 struct btrfs_root *parent,
1533 struct btrfs_qgroup_inherit *inherit,
1534 u64 dst_objectid)
1535{
1536 struct btrfs_fs_info *fs_info = src->fs_info;
1537 int ret;
1538
1539 /*
1540 * Save some performance in the case that qgroups are not enabled. If
1541 * this check races with the ioctl, rescan will kick in anyway.
1542 */
1543 if (!btrfs_qgroup_full_accounting(fs_info))
1544 return 0;
1545
1546 /*
1547 * Ensure dirty @src will be committed. Or, after coming
1548 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1549 * recorded root will never be updated again, causing an outdated root
1550 * item.
1551 */
1552 ret = record_root_in_trans(trans, src, 1);
1553 if (ret)
1554 return ret;
1555
1556 /*
1557 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1558 * src root, so we must run the delayed refs here.
1559 *
1560 * However this isn't particularly fool proof, because there's no
1561 * synchronization keeping us from changing the tree after this point
1562 * before we do the qgroup_inherit, or even from making changes while
1563 * we're doing the qgroup_inherit. But that's a problem for the future,
1564 * for now flush the delayed refs to narrow the race window where the
1565 * qgroup counters could end up wrong.
1566 */
1567 ret = btrfs_run_delayed_refs(trans, U64_MAX);
1568 if (ret) {
1569 btrfs_abort_transaction(trans, ret);
1570 return ret;
1571 }
1572
1573 ret = commit_fs_roots(trans);
1574 if (ret)
1575 goto out;
1576 ret = btrfs_qgroup_account_extents(trans);
1577 if (ret < 0)
1578 goto out;
1579
1580 /* Now qgroup are all updated, we can inherit it to new qgroups */
1581 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(src), dst_objectid,
1582 btrfs_root_id(parent), inherit);
1583 if (ret < 0)
1584 goto out;
1585
1586 /*
1587 * Now we do a simplified commit transaction, which will:
1588 * 1) commit all subvolume and extent tree
1589 * To ensure all subvolume and extent tree have a valid
1590 * commit_root to accounting later insert_dir_item()
1591 * 2) write all btree blocks onto disk
1592 * This is to make sure later btree modification will be cowed
1593 * Or commit_root can be populated and cause wrong qgroup numbers
1594 * In this simplified commit, we don't really care about other trees
1595 * like chunk and root tree, as they won't affect qgroup.
1596 * And we don't write super to avoid half committed status.
1597 */
1598 ret = commit_cowonly_roots(trans);
1599 if (ret)
1600 goto out;
1601 switch_commit_roots(trans);
1602 ret = btrfs_write_and_wait_transaction(trans);
1603 if (ret)
1604 btrfs_handle_fs_error(fs_info, ret,
1605 "Error while writing out transaction for qgroup");
1606
1607out:
1608 /*
1609 * Force parent root to be updated, as we recorded it before so its
1610 * last_trans == cur_transid.
1611 * Or it won't be committed again onto disk after later
1612 * insert_dir_item()
1613 */
1614 if (!ret)
1615 ret = record_root_in_trans(trans, parent, 1);
1616 return ret;
1617}
1618
1619/*
1620 * new snapshots need to be created at a very specific time in the
1621 * transaction commit. This does the actual creation.
1622 *
1623 * Note:
1624 * If the error which may affect the commitment of the current transaction
1625 * happens, we should return the error number. If the error which just affect
1626 * the creation of the pending snapshots, just return 0.
1627 */
1628static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1629 struct btrfs_pending_snapshot *pending)
1630{
1631
1632 struct btrfs_fs_info *fs_info = trans->fs_info;
1633 struct btrfs_key key;
1634 struct btrfs_root_item *new_root_item;
1635 struct btrfs_root *tree_root = fs_info->tree_root;
1636 struct btrfs_root *root = pending->root;
1637 struct btrfs_root *parent_root;
1638 struct btrfs_block_rsv *rsv;
1639 struct inode *parent_inode = &pending->dir->vfs_inode;
1640 struct btrfs_path *path;
1641 struct btrfs_dir_item *dir_item;
1642 struct extent_buffer *tmp;
1643 struct extent_buffer *old;
1644 struct timespec64 cur_time;
1645 int ret = 0;
1646 u64 to_reserve = 0;
1647 u64 index = 0;
1648 u64 objectid;
1649 u64 root_flags;
1650 unsigned int nofs_flags;
1651 struct fscrypt_name fname;
1652
1653 ASSERT(pending->path);
1654 path = pending->path;
1655
1656 ASSERT(pending->root_item);
1657 new_root_item = pending->root_item;
1658
1659 /*
1660 * We're inside a transaction and must make sure that any potential
1661 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1662 * filesystem.
1663 */
1664 nofs_flags = memalloc_nofs_save();
1665 pending->error = fscrypt_setup_filename(parent_inode,
1666 &pending->dentry->d_name, 0,
1667 &fname);
1668 memalloc_nofs_restore(nofs_flags);
1669 if (pending->error)
1670 goto free_pending;
1671
1672 pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1673 if (pending->error)
1674 goto free_fname;
1675
1676 /*
1677 * Make qgroup to skip current new snapshot's qgroupid, as it is
1678 * accounted by later btrfs_qgroup_inherit().
1679 */
1680 btrfs_set_skip_qgroup(trans, objectid);
1681
1682 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1683
1684 if (to_reserve > 0) {
1685 pending->error = btrfs_block_rsv_add(fs_info,
1686 &pending->block_rsv,
1687 to_reserve,
1688 BTRFS_RESERVE_NO_FLUSH);
1689 if (pending->error)
1690 goto clear_skip_qgroup;
1691 }
1692
1693 key.objectid = objectid;
1694 key.offset = (u64)-1;
1695 key.type = BTRFS_ROOT_ITEM_KEY;
1696
1697 rsv = trans->block_rsv;
1698 trans->block_rsv = &pending->block_rsv;
1699 trans->bytes_reserved = trans->block_rsv->reserved;
1700 trace_btrfs_space_reservation(fs_info, "transaction",
1701 trans->transid,
1702 trans->bytes_reserved, 1);
1703 parent_root = BTRFS_I(parent_inode)->root;
1704 ret = record_root_in_trans(trans, parent_root, 0);
1705 if (ret)
1706 goto fail;
1707 cur_time = current_time(parent_inode);
1708
1709 /*
1710 * insert the directory item
1711 */
1712 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1713 if (ret) {
1714 btrfs_abort_transaction(trans, ret);
1715 goto fail;
1716 }
1717
1718 /* check if there is a file/dir which has the same name. */
1719 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1720 btrfs_ino(BTRFS_I(parent_inode)),
1721 &fname.disk_name, 0);
1722 if (dir_item != NULL && !IS_ERR(dir_item)) {
1723 pending->error = -EEXIST;
1724 goto dir_item_existed;
1725 } else if (IS_ERR(dir_item)) {
1726 ret = PTR_ERR(dir_item);
1727 btrfs_abort_transaction(trans, ret);
1728 goto fail;
1729 }
1730 btrfs_release_path(path);
1731
1732 ret = btrfs_create_qgroup(trans, objectid);
1733 if (ret && ret != -EEXIST) {
1734 btrfs_abort_transaction(trans, ret);
1735 goto fail;
1736 }
1737
1738 /*
1739 * pull in the delayed directory update
1740 * and the delayed inode item
1741 * otherwise we corrupt the FS during
1742 * snapshot
1743 */
1744 ret = btrfs_run_delayed_items(trans);
1745 if (ret) { /* Transaction aborted */
1746 btrfs_abort_transaction(trans, ret);
1747 goto fail;
1748 }
1749
1750 ret = record_root_in_trans(trans, root, 0);
1751 if (ret) {
1752 btrfs_abort_transaction(trans, ret);
1753 goto fail;
1754 }
1755 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1756 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1757 btrfs_check_and_init_root_item(new_root_item);
1758
1759 root_flags = btrfs_root_flags(new_root_item);
1760 if (pending->readonly)
1761 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1762 else
1763 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1764 btrfs_set_root_flags(new_root_item, root_flags);
1765
1766 btrfs_set_root_generation_v2(new_root_item,
1767 trans->transid);
1768 generate_random_guid(new_root_item->uuid);
1769 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1770 BTRFS_UUID_SIZE);
1771 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1772 memset(new_root_item->received_uuid, 0,
1773 sizeof(new_root_item->received_uuid));
1774 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1775 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1776 btrfs_set_root_stransid(new_root_item, 0);
1777 btrfs_set_root_rtransid(new_root_item, 0);
1778 }
1779 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1780 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1781 btrfs_set_root_otransid(new_root_item, trans->transid);
1782
1783 old = btrfs_lock_root_node(root);
1784 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1785 BTRFS_NESTING_COW);
1786 if (ret) {
1787 btrfs_tree_unlock(old);
1788 free_extent_buffer(old);
1789 btrfs_abort_transaction(trans, ret);
1790 goto fail;
1791 }
1792
1793 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1794 /* clean up in any case */
1795 btrfs_tree_unlock(old);
1796 free_extent_buffer(old);
1797 if (ret) {
1798 btrfs_abort_transaction(trans, ret);
1799 goto fail;
1800 }
1801 /* see comments in should_cow_block() */
1802 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1803 smp_wmb();
1804
1805 btrfs_set_root_node(new_root_item, tmp);
1806 /* record when the snapshot was created in key.offset */
1807 key.offset = trans->transid;
1808 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1809 btrfs_tree_unlock(tmp);
1810 free_extent_buffer(tmp);
1811 if (ret) {
1812 btrfs_abort_transaction(trans, ret);
1813 goto fail;
1814 }
1815
1816 /*
1817 * insert root back/forward references
1818 */
1819 ret = btrfs_add_root_ref(trans, objectid,
1820 btrfs_root_id(parent_root),
1821 btrfs_ino(BTRFS_I(parent_inode)), index,
1822 &fname.disk_name);
1823 if (ret) {
1824 btrfs_abort_transaction(trans, ret);
1825 goto fail;
1826 }
1827
1828 key.offset = (u64)-1;
1829 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, &pending->anon_dev);
1830 if (IS_ERR(pending->snap)) {
1831 ret = PTR_ERR(pending->snap);
1832 pending->snap = NULL;
1833 btrfs_abort_transaction(trans, ret);
1834 goto fail;
1835 }
1836
1837 ret = btrfs_reloc_post_snapshot(trans, pending);
1838 if (ret) {
1839 btrfs_abort_transaction(trans, ret);
1840 goto fail;
1841 }
1842
1843 /*
1844 * Do special qgroup accounting for snapshot, as we do some qgroup
1845 * snapshot hack to do fast snapshot.
1846 * To co-operate with that hack, we do hack again.
1847 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1848 */
1849 if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_FULL)
1850 ret = qgroup_account_snapshot(trans, root, parent_root,
1851 pending->inherit, objectid);
1852 else if (btrfs_qgroup_mode(fs_info) == BTRFS_QGROUP_MODE_SIMPLE)
1853 ret = btrfs_qgroup_inherit(trans, btrfs_root_id(root), objectid,
1854 btrfs_root_id(parent_root), pending->inherit);
1855 if (ret < 0)
1856 goto fail;
1857
1858 ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1859 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1860 index);
1861 if (ret) {
1862 btrfs_abort_transaction(trans, ret);
1863 goto fail;
1864 }
1865
1866 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1867 fname.disk_name.len * 2);
1868 inode_set_mtime_to_ts(parent_inode,
1869 inode_set_ctime_current(parent_inode));
1870 ret = btrfs_update_inode_fallback(trans, BTRFS_I(parent_inode));
1871 if (ret) {
1872 btrfs_abort_transaction(trans, ret);
1873 goto fail;
1874 }
1875 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1876 BTRFS_UUID_KEY_SUBVOL,
1877 objectid);
1878 if (ret) {
1879 btrfs_abort_transaction(trans, ret);
1880 goto fail;
1881 }
1882 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1883 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1884 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1885 objectid);
1886 if (ret && ret != -EEXIST) {
1887 btrfs_abort_transaction(trans, ret);
1888 goto fail;
1889 }
1890 }
1891
1892fail:
1893 pending->error = ret;
1894dir_item_existed:
1895 trans->block_rsv = rsv;
1896 trans->bytes_reserved = 0;
1897clear_skip_qgroup:
1898 btrfs_clear_skip_qgroup(trans);
1899free_fname:
1900 fscrypt_free_filename(&fname);
1901free_pending:
1902 kfree(new_root_item);
1903 pending->root_item = NULL;
1904 btrfs_free_path(path);
1905 pending->path = NULL;
1906
1907 return ret;
1908}
1909
1910/*
1911 * create all the snapshots we've scheduled for creation
1912 */
1913static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1914{
1915 struct btrfs_pending_snapshot *pending, *next;
1916 struct list_head *head = &trans->transaction->pending_snapshots;
1917 int ret = 0;
1918
1919 list_for_each_entry_safe(pending, next, head, list) {
1920 list_del(&pending->list);
1921 ret = create_pending_snapshot(trans, pending);
1922 if (ret)
1923 break;
1924 }
1925 return ret;
1926}
1927
1928static void update_super_roots(struct btrfs_fs_info *fs_info)
1929{
1930 struct btrfs_root_item *root_item;
1931 struct btrfs_super_block *super;
1932
1933 super = fs_info->super_copy;
1934
1935 root_item = &fs_info->chunk_root->root_item;
1936 super->chunk_root = root_item->bytenr;
1937 super->chunk_root_generation = root_item->generation;
1938 super->chunk_root_level = root_item->level;
1939
1940 root_item = &fs_info->tree_root->root_item;
1941 super->root = root_item->bytenr;
1942 super->generation = root_item->generation;
1943 super->root_level = root_item->level;
1944 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1945 super->cache_generation = root_item->generation;
1946 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1947 super->cache_generation = 0;
1948 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1949 super->uuid_tree_generation = root_item->generation;
1950}
1951
1952int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1953{
1954 struct btrfs_transaction *trans;
1955 int ret = 0;
1956
1957 spin_lock(&info->trans_lock);
1958 trans = info->running_transaction;
1959 if (trans)
1960 ret = is_transaction_blocked(trans);
1961 spin_unlock(&info->trans_lock);
1962 return ret;
1963}
1964
1965void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1966{
1967 struct btrfs_fs_info *fs_info = trans->fs_info;
1968 struct btrfs_transaction *cur_trans;
1969
1970 /* Kick the transaction kthread. */
1971 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1972 wake_up_process(fs_info->transaction_kthread);
1973
1974 /* take transaction reference */
1975 cur_trans = trans->transaction;
1976 refcount_inc(&cur_trans->use_count);
1977
1978 btrfs_end_transaction(trans);
1979
1980 /*
1981 * Wait for the current transaction commit to start and block
1982 * subsequent transaction joins
1983 */
1984 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
1985 wait_event(fs_info->transaction_blocked_wait,
1986 cur_trans->state >= TRANS_STATE_COMMIT_START ||
1987 TRANS_ABORTED(cur_trans));
1988 btrfs_put_transaction(cur_trans);
1989}
1990
1991/*
1992 * If there is a running transaction commit it or if it's already committing,
1993 * wait for its commit to complete. Does not start and commit a new transaction
1994 * if there isn't any running.
1995 */
1996int btrfs_commit_current_transaction(struct btrfs_root *root)
1997{
1998 struct btrfs_trans_handle *trans;
1999
2000 trans = btrfs_attach_transaction_barrier(root);
2001 if (IS_ERR(trans)) {
2002 int ret = PTR_ERR(trans);
2003
2004 return (ret == -ENOENT) ? 0 : ret;
2005 }
2006
2007 return btrfs_commit_transaction(trans);
2008}
2009
2010static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
2011{
2012 struct btrfs_fs_info *fs_info = trans->fs_info;
2013 struct btrfs_transaction *cur_trans = trans->transaction;
2014
2015 WARN_ON(refcount_read(&trans->use_count) > 1);
2016
2017 btrfs_abort_transaction(trans, err);
2018
2019 spin_lock(&fs_info->trans_lock);
2020
2021 /*
2022 * If the transaction is removed from the list, it means this
2023 * transaction has been committed successfully, so it is impossible
2024 * to call the cleanup function.
2025 */
2026 BUG_ON(list_empty(&cur_trans->list));
2027
2028 if (cur_trans == fs_info->running_transaction) {
2029 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2030 spin_unlock(&fs_info->trans_lock);
2031
2032 /*
2033 * The thread has already released the lockdep map as reader
2034 * already in btrfs_commit_transaction().
2035 */
2036 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2037 wait_event(cur_trans->writer_wait,
2038 atomic_read(&cur_trans->num_writers) == 1);
2039
2040 spin_lock(&fs_info->trans_lock);
2041 }
2042
2043 /*
2044 * Now that we know no one else is still using the transaction we can
2045 * remove the transaction from the list of transactions. This avoids
2046 * the transaction kthread from cleaning up the transaction while some
2047 * other task is still using it, which could result in a use-after-free
2048 * on things like log trees, as it forces the transaction kthread to
2049 * wait for this transaction to be cleaned up by us.
2050 */
2051 list_del_init(&cur_trans->list);
2052
2053 spin_unlock(&fs_info->trans_lock);
2054
2055 btrfs_cleanup_one_transaction(trans->transaction);
2056
2057 spin_lock(&fs_info->trans_lock);
2058 if (cur_trans == fs_info->running_transaction)
2059 fs_info->running_transaction = NULL;
2060 spin_unlock(&fs_info->trans_lock);
2061
2062 if (trans->type & __TRANS_FREEZABLE)
2063 sb_end_intwrite(fs_info->sb);
2064 btrfs_put_transaction(cur_trans);
2065 btrfs_put_transaction(cur_trans);
2066
2067 trace_btrfs_transaction_commit(fs_info);
2068
2069 if (current->journal_info == trans)
2070 current->journal_info = NULL;
2071
2072 /*
2073 * If relocation is running, we can't cancel scrub because that will
2074 * result in a deadlock. Before relocating a block group, relocation
2075 * pauses scrub, then starts and commits a transaction before unpausing
2076 * scrub. If the transaction commit is being done by the relocation
2077 * task or triggered by another task and the relocation task is waiting
2078 * for the commit, and we end up here due to an error in the commit
2079 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2080 * asking for scrub to stop while having it asked to be paused higher
2081 * above in relocation code.
2082 */
2083 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2084 btrfs_scrub_cancel(fs_info);
2085
2086 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2087}
2088
2089/*
2090 * Release reserved delayed ref space of all pending block groups of the
2091 * transaction and remove them from the list
2092 */
2093static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2094{
2095 struct btrfs_fs_info *fs_info = trans->fs_info;
2096 struct btrfs_block_group *block_group, *tmp;
2097
2098 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2099 btrfs_dec_delayed_refs_rsv_bg_inserts(fs_info);
2100 list_del_init(&block_group->bg_list);
2101 }
2102}
2103
2104static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2105{
2106 /*
2107 * We use try_to_writeback_inodes_sb() here because if we used
2108 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2109 * Currently are holding the fs freeze lock, if we do an async flush
2110 * we'll do btrfs_join_transaction() and deadlock because we need to
2111 * wait for the fs freeze lock. Using the direct flushing we benefit
2112 * from already being in a transaction and our join_transaction doesn't
2113 * have to re-take the fs freeze lock.
2114 *
2115 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2116 * if it can read lock sb->s_umount. It will always be able to lock it,
2117 * except when the filesystem is being unmounted or being frozen, but in
2118 * those cases sync_filesystem() is called, which results in calling
2119 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2120 * Note that we don't call writeback_inodes_sb() directly, because it
2121 * will emit a warning if sb->s_umount is not locked.
2122 */
2123 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2124 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2125 return 0;
2126}
2127
2128static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2129{
2130 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2131 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
2132}
2133
2134/*
2135 * Add a pending snapshot associated with the given transaction handle to the
2136 * respective handle. This must be called after the transaction commit started
2137 * and while holding fs_info->trans_lock.
2138 * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2139 * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2140 * returns an error.
2141 */
2142static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2143{
2144 struct btrfs_transaction *cur_trans = trans->transaction;
2145
2146 if (!trans->pending_snapshot)
2147 return;
2148
2149 lockdep_assert_held(&trans->fs_info->trans_lock);
2150 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_PREP);
2151
2152 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2153}
2154
2155static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2156{
2157 fs_info->commit_stats.commit_count++;
2158 fs_info->commit_stats.last_commit_dur = interval;
2159 fs_info->commit_stats.max_commit_dur =
2160 max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2161 fs_info->commit_stats.total_commit_dur += interval;
2162}
2163
2164int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2165{
2166 struct btrfs_fs_info *fs_info = trans->fs_info;
2167 struct btrfs_transaction *cur_trans = trans->transaction;
2168 struct btrfs_transaction *prev_trans = NULL;
2169 int ret;
2170 ktime_t start_time;
2171 ktime_t interval;
2172
2173 ASSERT(refcount_read(&trans->use_count) == 1);
2174 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2175
2176 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2177
2178 /* Stop the commit early if ->aborted is set */
2179 if (TRANS_ABORTED(cur_trans)) {
2180 ret = cur_trans->aborted;
2181 goto lockdep_trans_commit_start_release;
2182 }
2183
2184 btrfs_trans_release_metadata(trans);
2185 trans->block_rsv = NULL;
2186
2187 /*
2188 * We only want one transaction commit doing the flushing so we do not
2189 * waste a bunch of time on lock contention on the extent root node.
2190 */
2191 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2192 &cur_trans->delayed_refs.flags)) {
2193 /*
2194 * Make a pass through all the delayed refs we have so far.
2195 * Any running threads may add more while we are here.
2196 */
2197 ret = btrfs_run_delayed_refs(trans, 0);
2198 if (ret)
2199 goto lockdep_trans_commit_start_release;
2200 }
2201
2202 btrfs_create_pending_block_groups(trans);
2203
2204 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2205 int run_it = 0;
2206
2207 /* this mutex is also taken before trying to set
2208 * block groups readonly. We need to make sure
2209 * that nobody has set a block group readonly
2210 * after a extents from that block group have been
2211 * allocated for cache files. btrfs_set_block_group_ro
2212 * will wait for the transaction to commit if it
2213 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2214 *
2215 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2216 * only one process starts all the block group IO. It wouldn't
2217 * hurt to have more than one go through, but there's no
2218 * real advantage to it either.
2219 */
2220 mutex_lock(&fs_info->ro_block_group_mutex);
2221 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2222 &cur_trans->flags))
2223 run_it = 1;
2224 mutex_unlock(&fs_info->ro_block_group_mutex);
2225
2226 if (run_it) {
2227 ret = btrfs_start_dirty_block_groups(trans);
2228 if (ret)
2229 goto lockdep_trans_commit_start_release;
2230 }
2231 }
2232
2233 spin_lock(&fs_info->trans_lock);
2234 if (cur_trans->state >= TRANS_STATE_COMMIT_PREP) {
2235 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2236
2237 add_pending_snapshot(trans);
2238
2239 spin_unlock(&fs_info->trans_lock);
2240 refcount_inc(&cur_trans->use_count);
2241
2242 if (trans->in_fsync)
2243 want_state = TRANS_STATE_SUPER_COMMITTED;
2244
2245 btrfs_trans_state_lockdep_release(fs_info,
2246 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2247 ret = btrfs_end_transaction(trans);
2248 wait_for_commit(cur_trans, want_state);
2249
2250 if (TRANS_ABORTED(cur_trans))
2251 ret = cur_trans->aborted;
2252
2253 btrfs_put_transaction(cur_trans);
2254
2255 return ret;
2256 }
2257
2258 cur_trans->state = TRANS_STATE_COMMIT_PREP;
2259 wake_up(&fs_info->transaction_blocked_wait);
2260 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2261
2262 if (cur_trans->list.prev != &fs_info->trans_list) {
2263 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2264
2265 if (trans->in_fsync)
2266 want_state = TRANS_STATE_SUPER_COMMITTED;
2267
2268 prev_trans = list_entry(cur_trans->list.prev,
2269 struct btrfs_transaction, list);
2270 if (prev_trans->state < want_state) {
2271 refcount_inc(&prev_trans->use_count);
2272 spin_unlock(&fs_info->trans_lock);
2273
2274 wait_for_commit(prev_trans, want_state);
2275
2276 ret = READ_ONCE(prev_trans->aborted);
2277
2278 btrfs_put_transaction(prev_trans);
2279 if (ret)
2280 goto lockdep_release;
2281 spin_lock(&fs_info->trans_lock);
2282 }
2283 } else {
2284 /*
2285 * The previous transaction was aborted and was already removed
2286 * from the list of transactions at fs_info->trans_list. So we
2287 * abort to prevent writing a new superblock that reflects a
2288 * corrupt state (pointing to trees with unwritten nodes/leafs).
2289 */
2290 if (BTRFS_FS_ERROR(fs_info)) {
2291 spin_unlock(&fs_info->trans_lock);
2292 ret = -EROFS;
2293 goto lockdep_release;
2294 }
2295 }
2296
2297 cur_trans->state = TRANS_STATE_COMMIT_START;
2298 wake_up(&fs_info->transaction_blocked_wait);
2299 spin_unlock(&fs_info->trans_lock);
2300
2301 /*
2302 * Get the time spent on the work done by the commit thread and not
2303 * the time spent waiting on a previous commit
2304 */
2305 start_time = ktime_get_ns();
2306
2307 extwriter_counter_dec(cur_trans, trans->type);
2308
2309 ret = btrfs_start_delalloc_flush(fs_info);
2310 if (ret)
2311 goto lockdep_release;
2312
2313 ret = btrfs_run_delayed_items(trans);
2314 if (ret)
2315 goto lockdep_release;
2316
2317 /*
2318 * The thread has started/joined the transaction thus it holds the
2319 * lockdep map as a reader. It has to release it before acquiring the
2320 * lockdep map as a writer.
2321 */
2322 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2323 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2324 wait_event(cur_trans->writer_wait,
2325 extwriter_counter_read(cur_trans) == 0);
2326
2327 /* some pending stuffs might be added after the previous flush. */
2328 ret = btrfs_run_delayed_items(trans);
2329 if (ret) {
2330 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2331 goto cleanup_transaction;
2332 }
2333
2334 btrfs_wait_delalloc_flush(fs_info);
2335
2336 /*
2337 * Wait for all ordered extents started by a fast fsync that joined this
2338 * transaction. Otherwise if this transaction commits before the ordered
2339 * extents complete we lose logged data after a power failure.
2340 */
2341 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2342 wait_event(cur_trans->pending_wait,
2343 atomic_read(&cur_trans->pending_ordered) == 0);
2344
2345 btrfs_scrub_pause(fs_info);
2346 /*
2347 * Ok now we need to make sure to block out any other joins while we
2348 * commit the transaction. We could have started a join before setting
2349 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2350 */
2351 spin_lock(&fs_info->trans_lock);
2352 add_pending_snapshot(trans);
2353 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2354 spin_unlock(&fs_info->trans_lock);
2355
2356 /*
2357 * The thread has started/joined the transaction thus it holds the
2358 * lockdep map as a reader. It has to release it before acquiring the
2359 * lockdep map as a writer.
2360 */
2361 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2362 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2363 wait_event(cur_trans->writer_wait,
2364 atomic_read(&cur_trans->num_writers) == 1);
2365
2366 /*
2367 * Make lockdep happy by acquiring the state locks after
2368 * btrfs_trans_num_writers is released. If we acquired the state locks
2369 * before releasing the btrfs_trans_num_writers lock then lockdep would
2370 * complain because we did not follow the reverse order unlocking rule.
2371 */
2372 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2373 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2374 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2375
2376 /*
2377 * We've started the commit, clear the flag in case we were triggered to
2378 * do an async commit but somebody else started before the transaction
2379 * kthread could do the work.
2380 */
2381 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2382
2383 if (TRANS_ABORTED(cur_trans)) {
2384 ret = cur_trans->aborted;
2385 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2386 goto scrub_continue;
2387 }
2388 /*
2389 * the reloc mutex makes sure that we stop
2390 * the balancing code from coming in and moving
2391 * extents around in the middle of the commit
2392 */
2393 mutex_lock(&fs_info->reloc_mutex);
2394
2395 /*
2396 * We needn't worry about the delayed items because we will
2397 * deal with them in create_pending_snapshot(), which is the
2398 * core function of the snapshot creation.
2399 */
2400 ret = create_pending_snapshots(trans);
2401 if (ret)
2402 goto unlock_reloc;
2403
2404 /*
2405 * We insert the dir indexes of the snapshots and update the inode
2406 * of the snapshots' parents after the snapshot creation, so there
2407 * are some delayed items which are not dealt with. Now deal with
2408 * them.
2409 *
2410 * We needn't worry that this operation will corrupt the snapshots,
2411 * because all the tree which are snapshoted will be forced to COW
2412 * the nodes and leaves.
2413 */
2414 ret = btrfs_run_delayed_items(trans);
2415 if (ret)
2416 goto unlock_reloc;
2417
2418 ret = btrfs_run_delayed_refs(trans, U64_MAX);
2419 if (ret)
2420 goto unlock_reloc;
2421
2422 /*
2423 * make sure none of the code above managed to slip in a
2424 * delayed item
2425 */
2426 btrfs_assert_delayed_root_empty(fs_info);
2427
2428 WARN_ON(cur_trans != trans->transaction);
2429
2430 ret = commit_fs_roots(trans);
2431 if (ret)
2432 goto unlock_reloc;
2433
2434 /* commit_fs_roots gets rid of all the tree log roots, it is now
2435 * safe to free the root of tree log roots
2436 */
2437 btrfs_free_log_root_tree(trans, fs_info);
2438
2439 /*
2440 * Since fs roots are all committed, we can get a quite accurate
2441 * new_roots. So let's do quota accounting.
2442 */
2443 ret = btrfs_qgroup_account_extents(trans);
2444 if (ret < 0)
2445 goto unlock_reloc;
2446
2447 ret = commit_cowonly_roots(trans);
2448 if (ret)
2449 goto unlock_reloc;
2450
2451 /*
2452 * The tasks which save the space cache and inode cache may also
2453 * update ->aborted, check it.
2454 */
2455 if (TRANS_ABORTED(cur_trans)) {
2456 ret = cur_trans->aborted;
2457 goto unlock_reloc;
2458 }
2459
2460 cur_trans = fs_info->running_transaction;
2461
2462 btrfs_set_root_node(&fs_info->tree_root->root_item,
2463 fs_info->tree_root->node);
2464 list_add_tail(&fs_info->tree_root->dirty_list,
2465 &cur_trans->switch_commits);
2466
2467 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2468 fs_info->chunk_root->node);
2469 list_add_tail(&fs_info->chunk_root->dirty_list,
2470 &cur_trans->switch_commits);
2471
2472 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2473 btrfs_set_root_node(&fs_info->block_group_root->root_item,
2474 fs_info->block_group_root->node);
2475 list_add_tail(&fs_info->block_group_root->dirty_list,
2476 &cur_trans->switch_commits);
2477 }
2478
2479 switch_commit_roots(trans);
2480
2481 ASSERT(list_empty(&cur_trans->dirty_bgs));
2482 ASSERT(list_empty(&cur_trans->io_bgs));
2483 update_super_roots(fs_info);
2484
2485 btrfs_set_super_log_root(fs_info->super_copy, 0);
2486 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2487 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2488 sizeof(*fs_info->super_copy));
2489
2490 btrfs_commit_device_sizes(cur_trans);
2491
2492 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2493 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2494
2495 btrfs_trans_release_chunk_metadata(trans);
2496
2497 /*
2498 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2499 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2500 * make sure that before we commit our superblock, no other task can
2501 * start a new transaction and commit a log tree before we commit our
2502 * superblock. Anyone trying to commit a log tree locks this mutex before
2503 * writing its superblock.
2504 */
2505 mutex_lock(&fs_info->tree_log_mutex);
2506
2507 spin_lock(&fs_info->trans_lock);
2508 cur_trans->state = TRANS_STATE_UNBLOCKED;
2509 fs_info->running_transaction = NULL;
2510 spin_unlock(&fs_info->trans_lock);
2511 mutex_unlock(&fs_info->reloc_mutex);
2512
2513 wake_up(&fs_info->transaction_wait);
2514 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2515
2516 /* If we have features changed, wake up the cleaner to update sysfs. */
2517 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2518 fs_info->cleaner_kthread)
2519 wake_up_process(fs_info->cleaner_kthread);
2520
2521 ret = btrfs_write_and_wait_transaction(trans);
2522 if (ret) {
2523 btrfs_handle_fs_error(fs_info, ret,
2524 "Error while writing out transaction");
2525 mutex_unlock(&fs_info->tree_log_mutex);
2526 goto scrub_continue;
2527 }
2528
2529 ret = write_all_supers(fs_info, 0);
2530 /*
2531 * the super is written, we can safely allow the tree-loggers
2532 * to go about their business
2533 */
2534 mutex_unlock(&fs_info->tree_log_mutex);
2535 if (ret)
2536 goto scrub_continue;
2537
2538 /*
2539 * We needn't acquire the lock here because there is no other task
2540 * which can change it.
2541 */
2542 cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2543 wake_up(&cur_trans->commit_wait);
2544 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2545
2546 btrfs_finish_extent_commit(trans);
2547
2548 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2549 btrfs_clear_space_info_full(fs_info);
2550
2551 btrfs_set_last_trans_committed(fs_info, cur_trans->transid);
2552 /*
2553 * We needn't acquire the lock here because there is no other task
2554 * which can change it.
2555 */
2556 cur_trans->state = TRANS_STATE_COMPLETED;
2557 wake_up(&cur_trans->commit_wait);
2558 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2559
2560 spin_lock(&fs_info->trans_lock);
2561 list_del_init(&cur_trans->list);
2562 spin_unlock(&fs_info->trans_lock);
2563
2564 btrfs_put_transaction(cur_trans);
2565 btrfs_put_transaction(cur_trans);
2566
2567 if (trans->type & __TRANS_FREEZABLE)
2568 sb_end_intwrite(fs_info->sb);
2569
2570 trace_btrfs_transaction_commit(fs_info);
2571
2572 interval = ktime_get_ns() - start_time;
2573
2574 btrfs_scrub_continue(fs_info);
2575
2576 if (current->journal_info == trans)
2577 current->journal_info = NULL;
2578
2579 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2580
2581 update_commit_stats(fs_info, interval);
2582
2583 return ret;
2584
2585unlock_reloc:
2586 mutex_unlock(&fs_info->reloc_mutex);
2587 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2588scrub_continue:
2589 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2590 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2591 btrfs_scrub_continue(fs_info);
2592cleanup_transaction:
2593 btrfs_trans_release_metadata(trans);
2594 btrfs_cleanup_pending_block_groups(trans);
2595 btrfs_trans_release_chunk_metadata(trans);
2596 trans->block_rsv = NULL;
2597 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2598 if (current->journal_info == trans)
2599 current->journal_info = NULL;
2600 cleanup_transaction(trans, ret);
2601
2602 return ret;
2603
2604lockdep_release:
2605 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2606 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2607 goto cleanup_transaction;
2608
2609lockdep_trans_commit_start_release:
2610 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
2611 btrfs_end_transaction(trans);
2612 return ret;
2613}
2614
2615/*
2616 * return < 0 if error
2617 * 0 if there are no more dead_roots at the time of call
2618 * 1 there are more to be processed, call me again
2619 *
2620 * The return value indicates there are certainly more snapshots to delete, but
2621 * if there comes a new one during processing, it may return 0. We don't mind,
2622 * because btrfs_commit_super will poke cleaner thread and it will process it a
2623 * few seconds later.
2624 */
2625int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2626{
2627 struct btrfs_root *root;
2628 int ret;
2629
2630 spin_lock(&fs_info->trans_lock);
2631 if (list_empty(&fs_info->dead_roots)) {
2632 spin_unlock(&fs_info->trans_lock);
2633 return 0;
2634 }
2635 root = list_first_entry(&fs_info->dead_roots,
2636 struct btrfs_root, root_list);
2637 list_del_init(&root->root_list);
2638 spin_unlock(&fs_info->trans_lock);
2639
2640 btrfs_debug(fs_info, "cleaner removing %llu", btrfs_root_id(root));
2641
2642 btrfs_kill_all_delayed_nodes(root);
2643
2644 if (btrfs_header_backref_rev(root->node) <
2645 BTRFS_MIXED_BACKREF_REV)
2646 ret = btrfs_drop_snapshot(root, 0, 0);
2647 else
2648 ret = btrfs_drop_snapshot(root, 1, 0);
2649
2650 btrfs_put_root(root);
2651 return (ret < 0) ? 0 : 1;
2652}
2653
2654/*
2655 * We only mark the transaction aborted and then set the file system read-only.
2656 * This will prevent new transactions from starting or trying to join this
2657 * one.
2658 *
2659 * This means that error recovery at the call site is limited to freeing
2660 * any local memory allocations and passing the error code up without
2661 * further cleanup. The transaction should complete as it normally would
2662 * in the call path but will return -EIO.
2663 *
2664 * We'll complete the cleanup in btrfs_end_transaction and
2665 * btrfs_commit_transaction.
2666 */
2667void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2668 const char *function,
2669 unsigned int line, int error, bool first_hit)
2670{
2671 struct btrfs_fs_info *fs_info = trans->fs_info;
2672
2673 WRITE_ONCE(trans->aborted, error);
2674 WRITE_ONCE(trans->transaction->aborted, error);
2675 if (first_hit && error == -ENOSPC)
2676 btrfs_dump_space_info_for_trans_abort(fs_info);
2677 /* Wake up anybody who may be waiting on this transaction */
2678 wake_up(&fs_info->transaction_wait);
2679 wake_up(&fs_info->transaction_blocked_wait);
2680 __btrfs_handle_fs_error(fs_info, function, line, error, NULL);
2681}
2682
2683int __init btrfs_transaction_init(void)
2684{
2685 btrfs_trans_handle_cachep = KMEM_CACHE(btrfs_trans_handle, SLAB_TEMPORARY);
2686 if (!btrfs_trans_handle_cachep)
2687 return -ENOMEM;
2688 return 0;
2689}
2690
2691void __cold btrfs_transaction_exit(void)
2692{
2693 kmem_cache_destroy(btrfs_trans_handle_cachep);
2694}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include "ctree.h"
26#include "disk-io.h"
27#include "transaction.h"
28#include "locking.h"
29#include "tree-log.h"
30#include "inode-map.h"
31
32#define BTRFS_ROOT_TRANS_TAG 0
33
34static noinline void put_transaction(struct btrfs_transaction *transaction)
35{
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 memset(transaction, 0, sizeof(*transaction));
40 kmem_cache_free(btrfs_transaction_cachep, transaction);
41 }
42}
43
44static noinline void switch_commit_root(struct btrfs_root *root)
45{
46 free_extent_buffer(root->commit_root);
47 root->commit_root = btrfs_root_node(root);
48}
49
50/*
51 * either allocate a new transaction or hop into the existing one
52 */
53static noinline int join_transaction(struct btrfs_root *root, int nofail)
54{
55 struct btrfs_transaction *cur_trans;
56
57 spin_lock(&root->fs_info->trans_lock);
58 if (root->fs_info->trans_no_join) {
59 if (!nofail) {
60 spin_unlock(&root->fs_info->trans_lock);
61 return -EBUSY;
62 }
63 }
64
65 cur_trans = root->fs_info->running_transaction;
66 if (cur_trans) {
67 atomic_inc(&cur_trans->use_count);
68 atomic_inc(&cur_trans->num_writers);
69 cur_trans->num_joined++;
70 spin_unlock(&root->fs_info->trans_lock);
71 return 0;
72 }
73 spin_unlock(&root->fs_info->trans_lock);
74
75 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
76 if (!cur_trans)
77 return -ENOMEM;
78 spin_lock(&root->fs_info->trans_lock);
79 if (root->fs_info->running_transaction) {
80 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
81 cur_trans = root->fs_info->running_transaction;
82 atomic_inc(&cur_trans->use_count);
83 atomic_inc(&cur_trans->num_writers);
84 cur_trans->num_joined++;
85 spin_unlock(&root->fs_info->trans_lock);
86 return 0;
87 }
88 atomic_set(&cur_trans->num_writers, 1);
89 cur_trans->num_joined = 0;
90 init_waitqueue_head(&cur_trans->writer_wait);
91 init_waitqueue_head(&cur_trans->commit_wait);
92 cur_trans->in_commit = 0;
93 cur_trans->blocked = 0;
94 /*
95 * One for this trans handle, one so it will live on until we
96 * commit the transaction.
97 */
98 atomic_set(&cur_trans->use_count, 2);
99 cur_trans->commit_done = 0;
100 cur_trans->start_time = get_seconds();
101
102 cur_trans->delayed_refs.root = RB_ROOT;
103 cur_trans->delayed_refs.num_entries = 0;
104 cur_trans->delayed_refs.num_heads_ready = 0;
105 cur_trans->delayed_refs.num_heads = 0;
106 cur_trans->delayed_refs.flushing = 0;
107 cur_trans->delayed_refs.run_delayed_start = 0;
108 spin_lock_init(&cur_trans->commit_lock);
109 spin_lock_init(&cur_trans->delayed_refs.lock);
110
111 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
112 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
113 extent_io_tree_init(&cur_trans->dirty_pages,
114 root->fs_info->btree_inode->i_mapping);
115 root->fs_info->generation++;
116 cur_trans->transid = root->fs_info->generation;
117 root->fs_info->running_transaction = cur_trans;
118 spin_unlock(&root->fs_info->trans_lock);
119
120 return 0;
121}
122
123/*
124 * this does all the record keeping required to make sure that a reference
125 * counted root is properly recorded in a given transaction. This is required
126 * to make sure the old root from before we joined the transaction is deleted
127 * when the transaction commits
128 */
129static int record_root_in_trans(struct btrfs_trans_handle *trans,
130 struct btrfs_root *root)
131{
132 if (root->ref_cows && root->last_trans < trans->transid) {
133 WARN_ON(root == root->fs_info->extent_root);
134 WARN_ON(root->commit_root != root->node);
135
136 /*
137 * see below for in_trans_setup usage rules
138 * we have the reloc mutex held now, so there
139 * is only one writer in this function
140 */
141 root->in_trans_setup = 1;
142
143 /* make sure readers find in_trans_setup before
144 * they find our root->last_trans update
145 */
146 smp_wmb();
147
148 spin_lock(&root->fs_info->fs_roots_radix_lock);
149 if (root->last_trans == trans->transid) {
150 spin_unlock(&root->fs_info->fs_roots_radix_lock);
151 return 0;
152 }
153 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
154 (unsigned long)root->root_key.objectid,
155 BTRFS_ROOT_TRANS_TAG);
156 spin_unlock(&root->fs_info->fs_roots_radix_lock);
157 root->last_trans = trans->transid;
158
159 /* this is pretty tricky. We don't want to
160 * take the relocation lock in btrfs_record_root_in_trans
161 * unless we're really doing the first setup for this root in
162 * this transaction.
163 *
164 * Normally we'd use root->last_trans as a flag to decide
165 * if we want to take the expensive mutex.
166 *
167 * But, we have to set root->last_trans before we
168 * init the relocation root, otherwise, we trip over warnings
169 * in ctree.c. The solution used here is to flag ourselves
170 * with root->in_trans_setup. When this is 1, we're still
171 * fixing up the reloc trees and everyone must wait.
172 *
173 * When this is zero, they can trust root->last_trans and fly
174 * through btrfs_record_root_in_trans without having to take the
175 * lock. smp_wmb() makes sure that all the writes above are
176 * done before we pop in the zero below
177 */
178 btrfs_init_reloc_root(trans, root);
179 smp_wmb();
180 root->in_trans_setup = 0;
181 }
182 return 0;
183}
184
185
186int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
187 struct btrfs_root *root)
188{
189 if (!root->ref_cows)
190 return 0;
191
192 /*
193 * see record_root_in_trans for comments about in_trans_setup usage
194 * and barriers
195 */
196 smp_rmb();
197 if (root->last_trans == trans->transid &&
198 !root->in_trans_setup)
199 return 0;
200
201 mutex_lock(&root->fs_info->reloc_mutex);
202 record_root_in_trans(trans, root);
203 mutex_unlock(&root->fs_info->reloc_mutex);
204
205 return 0;
206}
207
208/* wait for commit against the current transaction to become unblocked
209 * when this is done, it is safe to start a new transaction, but the current
210 * transaction might not be fully on disk.
211 */
212static void wait_current_trans(struct btrfs_root *root)
213{
214 struct btrfs_transaction *cur_trans;
215
216 spin_lock(&root->fs_info->trans_lock);
217 cur_trans = root->fs_info->running_transaction;
218 if (cur_trans && cur_trans->blocked) {
219 atomic_inc(&cur_trans->use_count);
220 spin_unlock(&root->fs_info->trans_lock);
221
222 wait_event(root->fs_info->transaction_wait,
223 !cur_trans->blocked);
224 put_transaction(cur_trans);
225 } else {
226 spin_unlock(&root->fs_info->trans_lock);
227 }
228}
229
230enum btrfs_trans_type {
231 TRANS_START,
232 TRANS_JOIN,
233 TRANS_USERSPACE,
234 TRANS_JOIN_NOLOCK,
235};
236
237static int may_wait_transaction(struct btrfs_root *root, int type)
238{
239 if (root->fs_info->log_root_recovering)
240 return 0;
241
242 if (type == TRANS_USERSPACE)
243 return 1;
244
245 if (type == TRANS_START &&
246 !atomic_read(&root->fs_info->open_ioctl_trans))
247 return 1;
248
249 return 0;
250}
251
252static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
253 u64 num_items, int type)
254{
255 struct btrfs_trans_handle *h;
256 struct btrfs_transaction *cur_trans;
257 u64 num_bytes = 0;
258 int ret;
259
260 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
261 return ERR_PTR(-EROFS);
262
263 if (current->journal_info) {
264 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
265 h = current->journal_info;
266 h->use_count++;
267 h->orig_rsv = h->block_rsv;
268 h->block_rsv = NULL;
269 goto got_it;
270 }
271
272 /*
273 * Do the reservation before we join the transaction so we can do all
274 * the appropriate flushing if need be.
275 */
276 if (num_items > 0 && root != root->fs_info->chunk_root) {
277 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
278 ret = btrfs_block_rsv_add(NULL, root,
279 &root->fs_info->trans_block_rsv,
280 num_bytes);
281 if (ret)
282 return ERR_PTR(ret);
283 }
284again:
285 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
286 if (!h)
287 return ERR_PTR(-ENOMEM);
288
289 if (may_wait_transaction(root, type))
290 wait_current_trans(root);
291
292 do {
293 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
294 if (ret == -EBUSY)
295 wait_current_trans(root);
296 } while (ret == -EBUSY);
297
298 if (ret < 0) {
299 kmem_cache_free(btrfs_trans_handle_cachep, h);
300 return ERR_PTR(ret);
301 }
302
303 cur_trans = root->fs_info->running_transaction;
304
305 h->transid = cur_trans->transid;
306 h->transaction = cur_trans;
307 h->blocks_used = 0;
308 h->bytes_reserved = 0;
309 h->delayed_ref_updates = 0;
310 h->use_count = 1;
311 h->block_rsv = NULL;
312 h->orig_rsv = NULL;
313
314 smp_mb();
315 if (cur_trans->blocked && may_wait_transaction(root, type)) {
316 btrfs_commit_transaction(h, root);
317 goto again;
318 }
319
320 if (num_bytes) {
321 h->block_rsv = &root->fs_info->trans_block_rsv;
322 h->bytes_reserved = num_bytes;
323 }
324
325got_it:
326 btrfs_record_root_in_trans(h, root);
327
328 if (!current->journal_info && type != TRANS_USERSPACE)
329 current->journal_info = h;
330 return h;
331}
332
333struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
334 int num_items)
335{
336 return start_transaction(root, num_items, TRANS_START);
337}
338struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
339{
340 return start_transaction(root, 0, TRANS_JOIN);
341}
342
343struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
344{
345 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
346}
347
348struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
349{
350 return start_transaction(root, 0, TRANS_USERSPACE);
351}
352
353/* wait for a transaction commit to be fully complete */
354static noinline void wait_for_commit(struct btrfs_root *root,
355 struct btrfs_transaction *commit)
356{
357 wait_event(commit->commit_wait, commit->commit_done);
358}
359
360int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
361{
362 struct btrfs_transaction *cur_trans = NULL, *t;
363 int ret;
364
365 ret = 0;
366 if (transid) {
367 if (transid <= root->fs_info->last_trans_committed)
368 goto out;
369
370 /* find specified transaction */
371 spin_lock(&root->fs_info->trans_lock);
372 list_for_each_entry(t, &root->fs_info->trans_list, list) {
373 if (t->transid == transid) {
374 cur_trans = t;
375 atomic_inc(&cur_trans->use_count);
376 break;
377 }
378 if (t->transid > transid)
379 break;
380 }
381 spin_unlock(&root->fs_info->trans_lock);
382 ret = -EINVAL;
383 if (!cur_trans)
384 goto out; /* bad transid */
385 } else {
386 /* find newest transaction that is committing | committed */
387 spin_lock(&root->fs_info->trans_lock);
388 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
389 list) {
390 if (t->in_commit) {
391 if (t->commit_done)
392 break;
393 cur_trans = t;
394 atomic_inc(&cur_trans->use_count);
395 break;
396 }
397 }
398 spin_unlock(&root->fs_info->trans_lock);
399 if (!cur_trans)
400 goto out; /* nothing committing|committed */
401 }
402
403 wait_for_commit(root, cur_trans);
404
405 put_transaction(cur_trans);
406 ret = 0;
407out:
408 return ret;
409}
410
411void btrfs_throttle(struct btrfs_root *root)
412{
413 if (!atomic_read(&root->fs_info->open_ioctl_trans))
414 wait_current_trans(root);
415}
416
417static int should_end_transaction(struct btrfs_trans_handle *trans,
418 struct btrfs_root *root)
419{
420 int ret;
421 ret = btrfs_block_rsv_check(trans, root,
422 &root->fs_info->global_block_rsv, 0, 5);
423 return ret ? 1 : 0;
424}
425
426int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
427 struct btrfs_root *root)
428{
429 struct btrfs_transaction *cur_trans = trans->transaction;
430 int updates;
431
432 smp_mb();
433 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
434 return 1;
435
436 updates = trans->delayed_ref_updates;
437 trans->delayed_ref_updates = 0;
438 if (updates)
439 btrfs_run_delayed_refs(trans, root, updates);
440
441 return should_end_transaction(trans, root);
442}
443
444static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
445 struct btrfs_root *root, int throttle, int lock)
446{
447 struct btrfs_transaction *cur_trans = trans->transaction;
448 struct btrfs_fs_info *info = root->fs_info;
449 int count = 0;
450
451 if (--trans->use_count) {
452 trans->block_rsv = trans->orig_rsv;
453 return 0;
454 }
455
456 while (count < 4) {
457 unsigned long cur = trans->delayed_ref_updates;
458 trans->delayed_ref_updates = 0;
459 if (cur &&
460 trans->transaction->delayed_refs.num_heads_ready > 64) {
461 trans->delayed_ref_updates = 0;
462
463 /*
464 * do a full flush if the transaction is trying
465 * to close
466 */
467 if (trans->transaction->delayed_refs.flushing)
468 cur = 0;
469 btrfs_run_delayed_refs(trans, root, cur);
470 } else {
471 break;
472 }
473 count++;
474 }
475
476 btrfs_trans_release_metadata(trans, root);
477
478 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
479 should_end_transaction(trans, root)) {
480 trans->transaction->blocked = 1;
481 smp_wmb();
482 }
483
484 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
485 if (throttle) {
486 /*
487 * We may race with somebody else here so end up having
488 * to call end_transaction on ourselves again, so inc
489 * our use_count.
490 */
491 trans->use_count++;
492 return btrfs_commit_transaction(trans, root);
493 } else {
494 wake_up_process(info->transaction_kthread);
495 }
496 }
497
498 WARN_ON(cur_trans != info->running_transaction);
499 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
500 atomic_dec(&cur_trans->num_writers);
501
502 smp_mb();
503 if (waitqueue_active(&cur_trans->writer_wait))
504 wake_up(&cur_trans->writer_wait);
505 put_transaction(cur_trans);
506
507 if (current->journal_info == trans)
508 current->journal_info = NULL;
509 memset(trans, 0, sizeof(*trans));
510 kmem_cache_free(btrfs_trans_handle_cachep, trans);
511
512 if (throttle)
513 btrfs_run_delayed_iputs(root);
514
515 return 0;
516}
517
518int btrfs_end_transaction(struct btrfs_trans_handle *trans,
519 struct btrfs_root *root)
520{
521 int ret;
522
523 ret = __btrfs_end_transaction(trans, root, 0, 1);
524 if (ret)
525 return ret;
526 return 0;
527}
528
529int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
530 struct btrfs_root *root)
531{
532 int ret;
533
534 ret = __btrfs_end_transaction(trans, root, 1, 1);
535 if (ret)
536 return ret;
537 return 0;
538}
539
540int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
541 struct btrfs_root *root)
542{
543 int ret;
544
545 ret = __btrfs_end_transaction(trans, root, 0, 0);
546 if (ret)
547 return ret;
548 return 0;
549}
550
551int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
552 struct btrfs_root *root)
553{
554 return __btrfs_end_transaction(trans, root, 1, 1);
555}
556
557/*
558 * when btree blocks are allocated, they have some corresponding bits set for
559 * them in one of two extent_io trees. This is used to make sure all of
560 * those extents are sent to disk but does not wait on them
561 */
562int btrfs_write_marked_extents(struct btrfs_root *root,
563 struct extent_io_tree *dirty_pages, int mark)
564{
565 int ret;
566 int err = 0;
567 int werr = 0;
568 struct page *page;
569 struct inode *btree_inode = root->fs_info->btree_inode;
570 u64 start = 0;
571 u64 end;
572 unsigned long index;
573
574 while (1) {
575 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
576 mark);
577 if (ret)
578 break;
579 while (start <= end) {
580 cond_resched();
581
582 index = start >> PAGE_CACHE_SHIFT;
583 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
584 page = find_get_page(btree_inode->i_mapping, index);
585 if (!page)
586 continue;
587
588 btree_lock_page_hook(page);
589 if (!page->mapping) {
590 unlock_page(page);
591 page_cache_release(page);
592 continue;
593 }
594
595 if (PageWriteback(page)) {
596 if (PageDirty(page))
597 wait_on_page_writeback(page);
598 else {
599 unlock_page(page);
600 page_cache_release(page);
601 continue;
602 }
603 }
604 err = write_one_page(page, 0);
605 if (err)
606 werr = err;
607 page_cache_release(page);
608 }
609 }
610 if (err)
611 werr = err;
612 return werr;
613}
614
615/*
616 * when btree blocks are allocated, they have some corresponding bits set for
617 * them in one of two extent_io trees. This is used to make sure all of
618 * those extents are on disk for transaction or log commit. We wait
619 * on all the pages and clear them from the dirty pages state tree
620 */
621int btrfs_wait_marked_extents(struct btrfs_root *root,
622 struct extent_io_tree *dirty_pages, int mark)
623{
624 int ret;
625 int err = 0;
626 int werr = 0;
627 struct page *page;
628 struct inode *btree_inode = root->fs_info->btree_inode;
629 u64 start = 0;
630 u64 end;
631 unsigned long index;
632
633 while (1) {
634 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
635 mark);
636 if (ret)
637 break;
638
639 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
640 while (start <= end) {
641 index = start >> PAGE_CACHE_SHIFT;
642 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
643 page = find_get_page(btree_inode->i_mapping, index);
644 if (!page)
645 continue;
646 if (PageDirty(page)) {
647 btree_lock_page_hook(page);
648 wait_on_page_writeback(page);
649 err = write_one_page(page, 0);
650 if (err)
651 werr = err;
652 }
653 wait_on_page_writeback(page);
654 page_cache_release(page);
655 cond_resched();
656 }
657 }
658 if (err)
659 werr = err;
660 return werr;
661}
662
663/*
664 * when btree blocks are allocated, they have some corresponding bits set for
665 * them in one of two extent_io trees. This is used to make sure all of
666 * those extents are on disk for transaction or log commit
667 */
668int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
669 struct extent_io_tree *dirty_pages, int mark)
670{
671 int ret;
672 int ret2;
673
674 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
675 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
676 return ret || ret2;
677}
678
679int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
680 struct btrfs_root *root)
681{
682 if (!trans || !trans->transaction) {
683 struct inode *btree_inode;
684 btree_inode = root->fs_info->btree_inode;
685 return filemap_write_and_wait(btree_inode->i_mapping);
686 }
687 return btrfs_write_and_wait_marked_extents(root,
688 &trans->transaction->dirty_pages,
689 EXTENT_DIRTY);
690}
691
692/*
693 * this is used to update the root pointer in the tree of tree roots.
694 *
695 * But, in the case of the extent allocation tree, updating the root
696 * pointer may allocate blocks which may change the root of the extent
697 * allocation tree.
698 *
699 * So, this loops and repeats and makes sure the cowonly root didn't
700 * change while the root pointer was being updated in the metadata.
701 */
702static int update_cowonly_root(struct btrfs_trans_handle *trans,
703 struct btrfs_root *root)
704{
705 int ret;
706 u64 old_root_bytenr;
707 u64 old_root_used;
708 struct btrfs_root *tree_root = root->fs_info->tree_root;
709
710 old_root_used = btrfs_root_used(&root->root_item);
711 btrfs_write_dirty_block_groups(trans, root);
712
713 while (1) {
714 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
715 if (old_root_bytenr == root->node->start &&
716 old_root_used == btrfs_root_used(&root->root_item))
717 break;
718
719 btrfs_set_root_node(&root->root_item, root->node);
720 ret = btrfs_update_root(trans, tree_root,
721 &root->root_key,
722 &root->root_item);
723 BUG_ON(ret);
724
725 old_root_used = btrfs_root_used(&root->root_item);
726 ret = btrfs_write_dirty_block_groups(trans, root);
727 BUG_ON(ret);
728 }
729
730 if (root != root->fs_info->extent_root)
731 switch_commit_root(root);
732
733 return 0;
734}
735
736/*
737 * update all the cowonly tree roots on disk
738 */
739static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
740 struct btrfs_root *root)
741{
742 struct btrfs_fs_info *fs_info = root->fs_info;
743 struct list_head *next;
744 struct extent_buffer *eb;
745 int ret;
746
747 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
748 BUG_ON(ret);
749
750 eb = btrfs_lock_root_node(fs_info->tree_root);
751 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
752 btrfs_tree_unlock(eb);
753 free_extent_buffer(eb);
754
755 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
756 BUG_ON(ret);
757
758 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
759 next = fs_info->dirty_cowonly_roots.next;
760 list_del_init(next);
761 root = list_entry(next, struct btrfs_root, dirty_list);
762
763 update_cowonly_root(trans, root);
764 }
765
766 down_write(&fs_info->extent_commit_sem);
767 switch_commit_root(fs_info->extent_root);
768 up_write(&fs_info->extent_commit_sem);
769
770 return 0;
771}
772
773/*
774 * dead roots are old snapshots that need to be deleted. This allocates
775 * a dirty root struct and adds it into the list of dead roots that need to
776 * be deleted
777 */
778int btrfs_add_dead_root(struct btrfs_root *root)
779{
780 spin_lock(&root->fs_info->trans_lock);
781 list_add(&root->root_list, &root->fs_info->dead_roots);
782 spin_unlock(&root->fs_info->trans_lock);
783 return 0;
784}
785
786/*
787 * update all the cowonly tree roots on disk
788 */
789static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
790 struct btrfs_root *root)
791{
792 struct btrfs_root *gang[8];
793 struct btrfs_fs_info *fs_info = root->fs_info;
794 int i;
795 int ret;
796 int err = 0;
797
798 spin_lock(&fs_info->fs_roots_radix_lock);
799 while (1) {
800 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
801 (void **)gang, 0,
802 ARRAY_SIZE(gang),
803 BTRFS_ROOT_TRANS_TAG);
804 if (ret == 0)
805 break;
806 for (i = 0; i < ret; i++) {
807 root = gang[i];
808 radix_tree_tag_clear(&fs_info->fs_roots_radix,
809 (unsigned long)root->root_key.objectid,
810 BTRFS_ROOT_TRANS_TAG);
811 spin_unlock(&fs_info->fs_roots_radix_lock);
812
813 btrfs_free_log(trans, root);
814 btrfs_update_reloc_root(trans, root);
815 btrfs_orphan_commit_root(trans, root);
816
817 btrfs_save_ino_cache(root, trans);
818
819 if (root->commit_root != root->node) {
820 mutex_lock(&root->fs_commit_mutex);
821 switch_commit_root(root);
822 btrfs_unpin_free_ino(root);
823 mutex_unlock(&root->fs_commit_mutex);
824
825 btrfs_set_root_node(&root->root_item,
826 root->node);
827 }
828
829 err = btrfs_update_root(trans, fs_info->tree_root,
830 &root->root_key,
831 &root->root_item);
832 spin_lock(&fs_info->fs_roots_radix_lock);
833 if (err)
834 break;
835 }
836 }
837 spin_unlock(&fs_info->fs_roots_radix_lock);
838 return err;
839}
840
841/*
842 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
843 * otherwise every leaf in the btree is read and defragged.
844 */
845int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
846{
847 struct btrfs_fs_info *info = root->fs_info;
848 struct btrfs_trans_handle *trans;
849 int ret;
850 unsigned long nr;
851
852 if (xchg(&root->defrag_running, 1))
853 return 0;
854
855 while (1) {
856 trans = btrfs_start_transaction(root, 0);
857 if (IS_ERR(trans))
858 return PTR_ERR(trans);
859
860 ret = btrfs_defrag_leaves(trans, root, cacheonly);
861
862 nr = trans->blocks_used;
863 btrfs_end_transaction(trans, root);
864 btrfs_btree_balance_dirty(info->tree_root, nr);
865 cond_resched();
866
867 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
868 break;
869 }
870 root->defrag_running = 0;
871 return ret;
872}
873
874/*
875 * new snapshots need to be created at a very specific time in the
876 * transaction commit. This does the actual creation
877 */
878static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
879 struct btrfs_fs_info *fs_info,
880 struct btrfs_pending_snapshot *pending)
881{
882 struct btrfs_key key;
883 struct btrfs_root_item *new_root_item;
884 struct btrfs_root *tree_root = fs_info->tree_root;
885 struct btrfs_root *root = pending->root;
886 struct btrfs_root *parent_root;
887 struct btrfs_block_rsv *rsv;
888 struct inode *parent_inode;
889 struct dentry *parent;
890 struct dentry *dentry;
891 struct extent_buffer *tmp;
892 struct extent_buffer *old;
893 int ret;
894 u64 to_reserve = 0;
895 u64 index = 0;
896 u64 objectid;
897 u64 root_flags;
898
899 rsv = trans->block_rsv;
900
901 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
902 if (!new_root_item) {
903 pending->error = -ENOMEM;
904 goto fail;
905 }
906
907 ret = btrfs_find_free_objectid(tree_root, &objectid);
908 if (ret) {
909 pending->error = ret;
910 goto fail;
911 }
912
913 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
914 btrfs_orphan_pre_snapshot(trans, pending, &to_reserve);
915
916 if (to_reserve > 0) {
917 ret = btrfs_block_rsv_add(trans, root, &pending->block_rsv,
918 to_reserve);
919 if (ret) {
920 pending->error = ret;
921 goto fail;
922 }
923 }
924
925 key.objectid = objectid;
926 key.offset = (u64)-1;
927 key.type = BTRFS_ROOT_ITEM_KEY;
928
929 trans->block_rsv = &pending->block_rsv;
930
931 dentry = pending->dentry;
932 parent = dget_parent(dentry);
933 parent_inode = parent->d_inode;
934 parent_root = BTRFS_I(parent_inode)->root;
935 record_root_in_trans(trans, parent_root);
936
937 /*
938 * insert the directory item
939 */
940 ret = btrfs_set_inode_index(parent_inode, &index);
941 BUG_ON(ret);
942 ret = btrfs_insert_dir_item(trans, parent_root,
943 dentry->d_name.name, dentry->d_name.len,
944 parent_inode, &key,
945 BTRFS_FT_DIR, index);
946 BUG_ON(ret);
947
948 btrfs_i_size_write(parent_inode, parent_inode->i_size +
949 dentry->d_name.len * 2);
950 ret = btrfs_update_inode(trans, parent_root, parent_inode);
951 BUG_ON(ret);
952
953 /*
954 * pull in the delayed directory update
955 * and the delayed inode item
956 * otherwise we corrupt the FS during
957 * snapshot
958 */
959 ret = btrfs_run_delayed_items(trans, root);
960 BUG_ON(ret);
961
962 record_root_in_trans(trans, root);
963 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
964 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
965 btrfs_check_and_init_root_item(new_root_item);
966
967 root_flags = btrfs_root_flags(new_root_item);
968 if (pending->readonly)
969 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
970 else
971 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
972 btrfs_set_root_flags(new_root_item, root_flags);
973
974 old = btrfs_lock_root_node(root);
975 btrfs_cow_block(trans, root, old, NULL, 0, &old);
976 btrfs_set_lock_blocking(old);
977
978 btrfs_copy_root(trans, root, old, &tmp, objectid);
979 btrfs_tree_unlock(old);
980 free_extent_buffer(old);
981
982 btrfs_set_root_node(new_root_item, tmp);
983 /* record when the snapshot was created in key.offset */
984 key.offset = trans->transid;
985 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
986 btrfs_tree_unlock(tmp);
987 free_extent_buffer(tmp);
988 BUG_ON(ret);
989
990 /*
991 * insert root back/forward references
992 */
993 ret = btrfs_add_root_ref(trans, tree_root, objectid,
994 parent_root->root_key.objectid,
995 btrfs_ino(parent_inode), index,
996 dentry->d_name.name, dentry->d_name.len);
997 BUG_ON(ret);
998 dput(parent);
999
1000 key.offset = (u64)-1;
1001 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1002 BUG_ON(IS_ERR(pending->snap));
1003
1004 btrfs_reloc_post_snapshot(trans, pending);
1005 btrfs_orphan_post_snapshot(trans, pending);
1006fail:
1007 kfree(new_root_item);
1008 trans->block_rsv = rsv;
1009 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1010 return 0;
1011}
1012
1013/*
1014 * create all the snapshots we've scheduled for creation
1015 */
1016static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1017 struct btrfs_fs_info *fs_info)
1018{
1019 struct btrfs_pending_snapshot *pending;
1020 struct list_head *head = &trans->transaction->pending_snapshots;
1021 int ret;
1022
1023 list_for_each_entry(pending, head, list) {
1024 ret = create_pending_snapshot(trans, fs_info, pending);
1025 BUG_ON(ret);
1026 }
1027 return 0;
1028}
1029
1030static void update_super_roots(struct btrfs_root *root)
1031{
1032 struct btrfs_root_item *root_item;
1033 struct btrfs_super_block *super;
1034
1035 super = &root->fs_info->super_copy;
1036
1037 root_item = &root->fs_info->chunk_root->root_item;
1038 super->chunk_root = root_item->bytenr;
1039 super->chunk_root_generation = root_item->generation;
1040 super->chunk_root_level = root_item->level;
1041
1042 root_item = &root->fs_info->tree_root->root_item;
1043 super->root = root_item->bytenr;
1044 super->generation = root_item->generation;
1045 super->root_level = root_item->level;
1046 if (super->cache_generation != 0 || btrfs_test_opt(root, SPACE_CACHE))
1047 super->cache_generation = root_item->generation;
1048}
1049
1050int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1051{
1052 int ret = 0;
1053 spin_lock(&info->trans_lock);
1054 if (info->running_transaction)
1055 ret = info->running_transaction->in_commit;
1056 spin_unlock(&info->trans_lock);
1057 return ret;
1058}
1059
1060int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1061{
1062 int ret = 0;
1063 spin_lock(&info->trans_lock);
1064 if (info->running_transaction)
1065 ret = info->running_transaction->blocked;
1066 spin_unlock(&info->trans_lock);
1067 return ret;
1068}
1069
1070/*
1071 * wait for the current transaction commit to start and block subsequent
1072 * transaction joins
1073 */
1074static void wait_current_trans_commit_start(struct btrfs_root *root,
1075 struct btrfs_transaction *trans)
1076{
1077 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1078}
1079
1080/*
1081 * wait for the current transaction to start and then become unblocked.
1082 * caller holds ref.
1083 */
1084static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1085 struct btrfs_transaction *trans)
1086{
1087 wait_event(root->fs_info->transaction_wait,
1088 trans->commit_done || (trans->in_commit && !trans->blocked));
1089}
1090
1091/*
1092 * commit transactions asynchronously. once btrfs_commit_transaction_async
1093 * returns, any subsequent transaction will not be allowed to join.
1094 */
1095struct btrfs_async_commit {
1096 struct btrfs_trans_handle *newtrans;
1097 struct btrfs_root *root;
1098 struct delayed_work work;
1099};
1100
1101static void do_async_commit(struct work_struct *work)
1102{
1103 struct btrfs_async_commit *ac =
1104 container_of(work, struct btrfs_async_commit, work.work);
1105
1106 btrfs_commit_transaction(ac->newtrans, ac->root);
1107 kfree(ac);
1108}
1109
1110int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1111 struct btrfs_root *root,
1112 int wait_for_unblock)
1113{
1114 struct btrfs_async_commit *ac;
1115 struct btrfs_transaction *cur_trans;
1116
1117 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1118 if (!ac)
1119 return -ENOMEM;
1120
1121 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1122 ac->root = root;
1123 ac->newtrans = btrfs_join_transaction(root);
1124 if (IS_ERR(ac->newtrans)) {
1125 int err = PTR_ERR(ac->newtrans);
1126 kfree(ac);
1127 return err;
1128 }
1129
1130 /* take transaction reference */
1131 cur_trans = trans->transaction;
1132 atomic_inc(&cur_trans->use_count);
1133
1134 btrfs_end_transaction(trans, root);
1135 schedule_delayed_work(&ac->work, 0);
1136
1137 /* wait for transaction to start and unblock */
1138 if (wait_for_unblock)
1139 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1140 else
1141 wait_current_trans_commit_start(root, cur_trans);
1142
1143 if (current->journal_info == trans)
1144 current->journal_info = NULL;
1145
1146 put_transaction(cur_trans);
1147 return 0;
1148}
1149
1150/*
1151 * btrfs_transaction state sequence:
1152 * in_commit = 0, blocked = 0 (initial)
1153 * in_commit = 1, blocked = 1
1154 * blocked = 0
1155 * commit_done = 1
1156 */
1157int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root)
1159{
1160 unsigned long joined = 0;
1161 struct btrfs_transaction *cur_trans;
1162 struct btrfs_transaction *prev_trans = NULL;
1163 DEFINE_WAIT(wait);
1164 int ret;
1165 int should_grow = 0;
1166 unsigned long now = get_seconds();
1167 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1168
1169 btrfs_run_ordered_operations(root, 0);
1170
1171 /* make a pass through all the delayed refs we have so far
1172 * any runnings procs may add more while we are here
1173 */
1174 ret = btrfs_run_delayed_refs(trans, root, 0);
1175 BUG_ON(ret);
1176
1177 btrfs_trans_release_metadata(trans, root);
1178
1179 cur_trans = trans->transaction;
1180 /*
1181 * set the flushing flag so procs in this transaction have to
1182 * start sending their work down.
1183 */
1184 cur_trans->delayed_refs.flushing = 1;
1185
1186 ret = btrfs_run_delayed_refs(trans, root, 0);
1187 BUG_ON(ret);
1188
1189 spin_lock(&cur_trans->commit_lock);
1190 if (cur_trans->in_commit) {
1191 spin_unlock(&cur_trans->commit_lock);
1192 atomic_inc(&cur_trans->use_count);
1193 btrfs_end_transaction(trans, root);
1194
1195 wait_for_commit(root, cur_trans);
1196
1197 put_transaction(cur_trans);
1198
1199 return 0;
1200 }
1201
1202 trans->transaction->in_commit = 1;
1203 trans->transaction->blocked = 1;
1204 spin_unlock(&cur_trans->commit_lock);
1205 wake_up(&root->fs_info->transaction_blocked_wait);
1206
1207 spin_lock(&root->fs_info->trans_lock);
1208 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1209 prev_trans = list_entry(cur_trans->list.prev,
1210 struct btrfs_transaction, list);
1211 if (!prev_trans->commit_done) {
1212 atomic_inc(&prev_trans->use_count);
1213 spin_unlock(&root->fs_info->trans_lock);
1214
1215 wait_for_commit(root, prev_trans);
1216
1217 put_transaction(prev_trans);
1218 } else {
1219 spin_unlock(&root->fs_info->trans_lock);
1220 }
1221 } else {
1222 spin_unlock(&root->fs_info->trans_lock);
1223 }
1224
1225 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1226 should_grow = 1;
1227
1228 do {
1229 int snap_pending = 0;
1230
1231 joined = cur_trans->num_joined;
1232 if (!list_empty(&trans->transaction->pending_snapshots))
1233 snap_pending = 1;
1234
1235 WARN_ON(cur_trans != trans->transaction);
1236
1237 if (flush_on_commit || snap_pending) {
1238 btrfs_start_delalloc_inodes(root, 1);
1239 ret = btrfs_wait_ordered_extents(root, 0, 1);
1240 BUG_ON(ret);
1241 }
1242
1243 ret = btrfs_run_delayed_items(trans, root);
1244 BUG_ON(ret);
1245
1246 /*
1247 * rename don't use btrfs_join_transaction, so, once we
1248 * set the transaction to blocked above, we aren't going
1249 * to get any new ordered operations. We can safely run
1250 * it here and no for sure that nothing new will be added
1251 * to the list
1252 */
1253 btrfs_run_ordered_operations(root, 1);
1254
1255 prepare_to_wait(&cur_trans->writer_wait, &wait,
1256 TASK_UNINTERRUPTIBLE);
1257
1258 if (atomic_read(&cur_trans->num_writers) > 1)
1259 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1260 else if (should_grow)
1261 schedule_timeout(1);
1262
1263 finish_wait(&cur_trans->writer_wait, &wait);
1264 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1265 (should_grow && cur_trans->num_joined != joined));
1266
1267 /*
1268 * Ok now we need to make sure to block out any other joins while we
1269 * commit the transaction. We could have started a join before setting
1270 * no_join so make sure to wait for num_writers to == 1 again.
1271 */
1272 spin_lock(&root->fs_info->trans_lock);
1273 root->fs_info->trans_no_join = 1;
1274 spin_unlock(&root->fs_info->trans_lock);
1275 wait_event(cur_trans->writer_wait,
1276 atomic_read(&cur_trans->num_writers) == 1);
1277
1278 /*
1279 * the reloc mutex makes sure that we stop
1280 * the balancing code from coming in and moving
1281 * extents around in the middle of the commit
1282 */
1283 mutex_lock(&root->fs_info->reloc_mutex);
1284
1285 ret = btrfs_run_delayed_items(trans, root);
1286 BUG_ON(ret);
1287
1288 ret = create_pending_snapshots(trans, root->fs_info);
1289 BUG_ON(ret);
1290
1291 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1292 BUG_ON(ret);
1293
1294 /*
1295 * make sure none of the code above managed to slip in a
1296 * delayed item
1297 */
1298 btrfs_assert_delayed_root_empty(root);
1299
1300 WARN_ON(cur_trans != trans->transaction);
1301
1302 btrfs_scrub_pause(root);
1303 /* btrfs_commit_tree_roots is responsible for getting the
1304 * various roots consistent with each other. Every pointer
1305 * in the tree of tree roots has to point to the most up to date
1306 * root for every subvolume and other tree. So, we have to keep
1307 * the tree logging code from jumping in and changing any
1308 * of the trees.
1309 *
1310 * At this point in the commit, there can't be any tree-log
1311 * writers, but a little lower down we drop the trans mutex
1312 * and let new people in. By holding the tree_log_mutex
1313 * from now until after the super is written, we avoid races
1314 * with the tree-log code.
1315 */
1316 mutex_lock(&root->fs_info->tree_log_mutex);
1317
1318 ret = commit_fs_roots(trans, root);
1319 BUG_ON(ret);
1320
1321 /* commit_fs_roots gets rid of all the tree log roots, it is now
1322 * safe to free the root of tree log roots
1323 */
1324 btrfs_free_log_root_tree(trans, root->fs_info);
1325
1326 ret = commit_cowonly_roots(trans, root);
1327 BUG_ON(ret);
1328
1329 btrfs_prepare_extent_commit(trans, root);
1330
1331 cur_trans = root->fs_info->running_transaction;
1332
1333 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1334 root->fs_info->tree_root->node);
1335 switch_commit_root(root->fs_info->tree_root);
1336
1337 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1338 root->fs_info->chunk_root->node);
1339 switch_commit_root(root->fs_info->chunk_root);
1340
1341 update_super_roots(root);
1342
1343 if (!root->fs_info->log_root_recovering) {
1344 btrfs_set_super_log_root(&root->fs_info->super_copy, 0);
1345 btrfs_set_super_log_root_level(&root->fs_info->super_copy, 0);
1346 }
1347
1348 memcpy(&root->fs_info->super_for_commit, &root->fs_info->super_copy,
1349 sizeof(root->fs_info->super_copy));
1350
1351 trans->transaction->blocked = 0;
1352 spin_lock(&root->fs_info->trans_lock);
1353 root->fs_info->running_transaction = NULL;
1354 root->fs_info->trans_no_join = 0;
1355 spin_unlock(&root->fs_info->trans_lock);
1356 mutex_unlock(&root->fs_info->reloc_mutex);
1357
1358 wake_up(&root->fs_info->transaction_wait);
1359
1360 ret = btrfs_write_and_wait_transaction(trans, root);
1361 BUG_ON(ret);
1362 write_ctree_super(trans, root, 0);
1363
1364 /*
1365 * the super is written, we can safely allow the tree-loggers
1366 * to go about their business
1367 */
1368 mutex_unlock(&root->fs_info->tree_log_mutex);
1369
1370 btrfs_finish_extent_commit(trans, root);
1371
1372 cur_trans->commit_done = 1;
1373
1374 root->fs_info->last_trans_committed = cur_trans->transid;
1375
1376 wake_up(&cur_trans->commit_wait);
1377
1378 spin_lock(&root->fs_info->trans_lock);
1379 list_del_init(&cur_trans->list);
1380 spin_unlock(&root->fs_info->trans_lock);
1381
1382 put_transaction(cur_trans);
1383 put_transaction(cur_trans);
1384
1385 trace_btrfs_transaction_commit(root);
1386
1387 btrfs_scrub_continue(root);
1388
1389 if (current->journal_info == trans)
1390 current->journal_info = NULL;
1391
1392 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1393
1394 if (current != root->fs_info->transaction_kthread)
1395 btrfs_run_delayed_iputs(root);
1396
1397 return ret;
1398}
1399
1400/*
1401 * interface function to delete all the snapshots we have scheduled for deletion
1402 */
1403int btrfs_clean_old_snapshots(struct btrfs_root *root)
1404{
1405 LIST_HEAD(list);
1406 struct btrfs_fs_info *fs_info = root->fs_info;
1407
1408 spin_lock(&fs_info->trans_lock);
1409 list_splice_init(&fs_info->dead_roots, &list);
1410 spin_unlock(&fs_info->trans_lock);
1411
1412 while (!list_empty(&list)) {
1413 root = list_entry(list.next, struct btrfs_root, root_list);
1414 list_del(&root->root_list);
1415
1416 btrfs_kill_all_delayed_nodes(root);
1417
1418 if (btrfs_header_backref_rev(root->node) <
1419 BTRFS_MIXED_BACKREF_REV)
1420 btrfs_drop_snapshot(root, NULL, 0);
1421 else
1422 btrfs_drop_snapshot(root, NULL, 1);
1423 }
1424 return 0;
1425}