Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * SPI_PPC4XX SPI controller driver.
  4 *
  5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  8 *
  9 * Based in part on drivers/spi/spi_s3c24xx.c
 10 *
 11 * Copyright (c) 2006 Ben Dooks
 12 * Copyright (c) 2006 Simtec Electronics
 13 *	Ben Dooks <ben@simtec.co.uk>
 
 
 
 
 14 */
 15
 16/*
 17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 18 * generate an interrupt to the CPU. This can cause high CPU utilization.
 19 * This driver allows platforms to reduce the interrupt load on the CPU
 20 * during SPI transfers by setting max_speed_hz via the device tree.
 21 */
 22
 23#include <linux/delay.h>
 24#include <linux/errno.h>
 25#include <linux/interrupt.h>
 26#include <linux/io.h>
 27#include <linux/module.h>
 28#include <linux/of_address.h>
 29#include <linux/of_platform.h>
 30#include <linux/platform_device.h>
 31#include <linux/sched.h>
 32#include <linux/slab.h>
 
 33#include <linux/wait.h>
 
 
 
 
 
 34
 
 35#include <linux/spi/spi.h>
 36#include <linux/spi/spi_bitbang.h>
 37
 
 38#include <asm/dcr.h>
 39#include <asm/dcr-regs.h>
 40
 41/* bits in mode register - bit 0 is MSb */
 42
 43/*
 44 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 45 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 46 * Note: This is the inverse of CPHA.
 47 */
 48#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 49
 50/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 51#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 52
 53/*
 54 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 55 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 56 * Note: This is identical to SPI_LSB_FIRST.
 57 */
 58#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 59
 60/*
 61 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 62 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 63 * Note: This is identical to CPOL.
 64 */
 65#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 66
 67/*
 68 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 69 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 70 */
 71#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 72
 73/* bits in control register */
 74/* starts a transfer when set */
 75#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 76
 77/* bits in status register */
 78/* port is busy with a transfer */
 79#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 80/* RxD ready */
 81#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 82
 83/* clock settings (SCP and CI) for various SPI modes */
 84#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 85#define SPI_CLK_MODE1	(0 | 0)
 86#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 87#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 88
 89#define DRIVER_NAME	"spi_ppc4xx_of"
 90
 91struct spi_ppc4xx_regs {
 92	u8 mode;
 93	u8 rxd;
 94	u8 txd;
 95	u8 cr;
 96	u8 sr;
 97	u8 dummy;
 98	/*
 99	 * Clock divisor modulus register
100	 * This uses the following formula:
101	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
102	 * or
103	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
104	 * bit 0 is the MSb!
105	 */
106	u8 cdm;
107};
108
109/* SPI Controller driver's private data. */
110struct ppc4xx_spi {
111	/* bitbang has to be first */
112	struct spi_bitbang bitbang;
113	struct completion done;
114
115	u64 mapbase;
116	u64 mapsize;
117	int irqnum;
118	/* need this to set the SPI clock */
119	unsigned int opb_freq;
120
121	/* for transfers */
122	int len;
123	int count;
124	/* data buffers */
125	const unsigned char *tx;
126	unsigned char *rx;
127
 
 
128	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
129	struct spi_controller *host;
130	struct device *dev;
131};
132
133/* need this so we can set the clock in the chipselect routine */
134struct spi_ppc4xx_cs {
135	u8 mode;
136};
137
138static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
139{
140	struct ppc4xx_spi *hw;
141	u8 data;
142
143	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
144		t->tx_buf, t->rx_buf, t->len);
145
146	hw = spi_controller_get_devdata(spi->controller);
147
148	hw->tx = t->tx_buf;
149	hw->rx = t->rx_buf;
150	hw->len = t->len;
151	hw->count = 0;
152
153	/* send the first byte */
154	data = hw->tx ? hw->tx[0] : 0;
155	out_8(&hw->regs->txd, data);
156	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
157	wait_for_completion(&hw->done);
158
159	return hw->count;
160}
161
162static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
163{
164	struct ppc4xx_spi *hw = spi_controller_get_devdata(spi->controller);
165	struct spi_ppc4xx_cs *cs = spi->controller_state;
166	int scr;
167	u8 cdm = 0;
168	u32 speed;
 
169
170	/* Start with the generic configuration for this device. */
 
171	speed = spi->max_speed_hz;
172
173	/*
174	 * Modify the configuration if the transfer overrides it.  Do not allow
175	 * the transfer to overwrite the generic configuration with zeros.
176	 */
177	if (t) {
 
 
 
178		if (t->speed_hz)
179			speed = min(t->speed_hz, spi->max_speed_hz);
180	}
181
 
 
 
 
 
 
182	if (!speed || (speed > spi->max_speed_hz)) {
183		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
184		return -EINVAL;
185	}
186
187	/* Write new configuration */
188	out_8(&hw->regs->mode, cs->mode);
189
190	/* Set the clock */
191	/* opb_freq was already divided by 4 */
192	scr = (hw->opb_freq / speed) - 1;
193	if (scr > 0)
194		cdm = min(scr, 0xff);
195
196	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
197
198	if (in_8(&hw->regs->cdm) != cdm)
199		out_8(&hw->regs->cdm, cdm);
200
201	mutex_lock(&hw->bitbang.lock);
202	if (!hw->bitbang.busy) {
203		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
204		/* Need to ndelay here? */
205	}
206	mutex_unlock(&hw->bitbang.lock);
207
208	return 0;
209}
210
211static int spi_ppc4xx_setup(struct spi_device *spi)
212{
213	struct spi_ppc4xx_cs *cs = spi->controller_state;
214
 
 
 
 
 
 
215	if (!spi->max_speed_hz) {
216		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
217		return -EINVAL;
218	}
219
220	if (cs == NULL) {
221		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
222		if (!cs)
223			return -ENOMEM;
224		spi->controller_state = cs;
225	}
226
227	/*
228	 * We set all bits of the SPI0_MODE register, so,
229	 * no need to read-modify-write
230	 */
231	cs->mode = SPI_PPC4XX_MODE_SPE;
232
233	switch (spi->mode & SPI_MODE_X_MASK) {
234	case SPI_MODE_0:
235		cs->mode |= SPI_CLK_MODE0;
236		break;
237	case SPI_MODE_1:
238		cs->mode |= SPI_CLK_MODE1;
239		break;
240	case SPI_MODE_2:
241		cs->mode |= SPI_CLK_MODE2;
242		break;
243	case SPI_MODE_3:
244		cs->mode |= SPI_CLK_MODE3;
245		break;
246	}
247
248	if (spi->mode & SPI_LSB_FIRST)
249		cs->mode |= SPI_PPC4XX_MODE_RD;
250
251	return 0;
252}
253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
254static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
255{
256	struct ppc4xx_spi *hw;
257	u8 status;
258	u8 data;
259	unsigned int count;
260
261	hw = (struct ppc4xx_spi *)dev_id;
262
263	status = in_8(&hw->regs->sr);
264	if (!status)
265		return IRQ_NONE;
266
267	/*
268	 * BSY de-asserts one cycle after the transfer is complete.  The
269	 * interrupt is asserted after the transfer is complete.  The exact
270	 * relationship is not documented, hence this code.
271	 */
272
273	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
274		u8 lstatus;
275		int cnt = 0;
276
277		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
278		do {
279			ndelay(10);
280			lstatus = in_8(&hw->regs->sr);
281		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
282
283		if (cnt >= 100) {
284			dev_err(hw->dev, "busywait: too many loops!\n");
285			complete(&hw->done);
286			return IRQ_HANDLED;
287		} else {
288			/* status is always 1 (RBR) here */
289			status = in_8(&hw->regs->sr);
290			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
291		}
292	}
293
294	count = hw->count;
295	hw->count++;
296
297	/* RBR triggered this interrupt.  Therefore, data must be ready. */
298	data = in_8(&hw->regs->rxd);
299	if (hw->rx)
300		hw->rx[count] = data;
301
302	count++;
303
304	if (count < hw->len) {
305		data = hw->tx ? hw->tx[count] : 0;
306		out_8(&hw->regs->txd, data);
307		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
308	} else {
309		complete(&hw->done);
310	}
311
312	return IRQ_HANDLED;
313}
314
315static void spi_ppc4xx_cleanup(struct spi_device *spi)
316{
317	kfree(spi->controller_state);
318}
319
320static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
321{
322	/*
323	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
324	 * the 2nd I2C bus. We need to enable the SPI bus before
325	 * using it.
326	 */
327
328	/* need to clear bit 14 to enable SPC */
329	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
330}
331
 
 
 
 
 
 
 
 
 
 
 
 
 
332/*
333 * platform_device layer stuff...
334 */
335static int spi_ppc4xx_of_probe(struct platform_device *op)
336{
337	struct ppc4xx_spi *hw;
338	struct spi_controller *host;
339	struct spi_bitbang *bbp;
340	struct resource resource;
341	struct device_node *np = op->dev.of_node;
342	struct device *dev = &op->dev;
343	struct device_node *opbnp;
344	int ret;
 
345	const unsigned int *clk;
346
347	host = spi_alloc_host(dev, sizeof(*hw));
348	if (host == NULL)
349		return -ENOMEM;
350	host->dev.of_node = np;
351	platform_set_drvdata(op, host);
352	hw = spi_controller_get_devdata(host);
353	hw->host = host;
354	hw->dev = dev;
355
356	init_completion(&hw->done);
357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
358	/* Setup the state for the bitbang driver */
359	bbp = &hw->bitbang;
360	bbp->ctlr = hw->host;
361	bbp->setup_transfer = spi_ppc4xx_setupxfer;
 
362	bbp->txrx_bufs = spi_ppc4xx_txrx;
363	bbp->use_dma = 0;
364	bbp->ctlr->setup = spi_ppc4xx_setup;
365	bbp->ctlr->cleanup = spi_ppc4xx_cleanup;
366	bbp->ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
367	bbp->ctlr->use_gpio_descriptors = true;
368	/*
369	 * The SPI core will count the number of GPIO descriptors to figure
370	 * out the number of chip selects available on the platform.
371	 */
372	bbp->ctlr->num_chipselect = 0;
373
374	/* the spi->mode bits understood by this driver: */
375	bbp->ctlr->mode_bits =
376		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
377
 
 
 
378	/* Get the clock for the OPB */
379	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
380	if (opbnp == NULL) {
381		dev_err(dev, "OPB: cannot find node\n");
382		ret = -ENODEV;
383		goto free_host;
384	}
385	/* Get the clock (Hz) for the OPB */
386	clk = of_get_property(opbnp, "clock-frequency", NULL);
387	if (clk == NULL) {
388		dev_err(dev, "OPB: no clock-frequency property set\n");
389		of_node_put(opbnp);
390		ret = -ENODEV;
391		goto free_host;
392	}
393	hw->opb_freq = *clk;
394	hw->opb_freq >>= 2;
395	of_node_put(opbnp);
396
397	ret = of_address_to_resource(np, 0, &resource);
398	if (ret) {
399		dev_err(dev, "error while parsing device node resource\n");
400		goto free_host;
401	}
402	hw->mapbase = resource.start;
403	hw->mapsize = resource_size(&resource);
404
405	/* Sanity check */
406	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
407		dev_err(dev, "too small to map registers\n");
408		ret = -EINVAL;
409		goto free_host;
410	}
411
412	/* Request IRQ */
413	ret = platform_get_irq(op, 0);
414	if (ret < 0)
415		goto free_host;
416	hw->irqnum = ret;
417
418	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
419			  0, "spi_ppc4xx_of", (void *)hw);
420	if (ret) {
421		dev_err(dev, "unable to allocate interrupt\n");
422		goto free_host;
423	}
424
425	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
426		dev_err(dev, "resource unavailable\n");
427		ret = -EBUSY;
428		goto request_mem_error;
429	}
430
431	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
432
433	if (!hw->regs) {
434		dev_err(dev, "unable to memory map registers\n");
435		ret = -ENXIO;
436		goto map_io_error;
437	}
438
439	spi_ppc4xx_enable(hw);
440
441	/* Finally register our spi controller */
442	dev->dma_mask = 0;
443	ret = spi_bitbang_start(bbp);
444	if (ret) {
445		dev_err(dev, "failed to register SPI host\n");
446		goto unmap_regs;
447	}
448
449	dev_info(dev, "driver initialized\n");
450
451	return 0;
452
453unmap_regs:
454	iounmap(hw->regs);
455map_io_error:
456	release_mem_region(hw->mapbase, hw->mapsize);
457request_mem_error:
458	free_irq(hw->irqnum, hw);
459free_host:
460	spi_controller_put(host);
 
 
 
461
462	dev_err(dev, "initialization failed\n");
463	return ret;
464}
465
466static void spi_ppc4xx_of_remove(struct platform_device *op)
467{
468	struct spi_controller *host = platform_get_drvdata(op);
469	struct ppc4xx_spi *hw = spi_controller_get_devdata(host);
470
471	spi_bitbang_stop(&hw->bitbang);
 
472	release_mem_region(hw->mapbase, hw->mapsize);
473	free_irq(hw->irqnum, hw);
474	iounmap(hw->regs);
475	spi_controller_put(host);
 
476}
477
478static const struct of_device_id spi_ppc4xx_of_match[] = {
479	{ .compatible = "ibm,ppc4xx-spi", },
480	{},
481};
482
483MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
484
485static struct platform_driver spi_ppc4xx_of_driver = {
486	.probe = spi_ppc4xx_of_probe,
487	.remove = spi_ppc4xx_of_remove,
488	.driver = {
489		.name = DRIVER_NAME,
 
490		.of_match_table = spi_ppc4xx_of_match,
491	},
492};
493module_platform_driver(spi_ppc4xx_of_driver);
 
 
 
 
 
 
 
 
 
 
 
494
495MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
496MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
497MODULE_LICENSE("GPL");
v3.1
 
  1/*
  2 * SPI_PPC4XX SPI controller driver.
  3 *
  4 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
  5 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
  6 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
  7 *
  8 * Based in part on drivers/spi/spi_s3c24xx.c
  9 *
 10 * Copyright (c) 2006 Ben Dooks
 11 * Copyright (c) 2006 Simtec Electronics
 12 *	Ben Dooks <ben@simtec.co.uk>
 13 *
 14 * This program is free software; you can redistribute  it and/or modify it
 15 * under the terms of the GNU General Public License version 2 as published
 16 * by the Free Software Foundation.
 17 */
 18
 19/*
 20 * The PPC4xx SPI controller has no FIFO so each sent/received byte will
 21 * generate an interrupt to the CPU. This can cause high CPU utilization.
 22 * This driver allows platforms to reduce the interrupt load on the CPU
 23 * during SPI transfers by setting max_speed_hz via the device tree.
 24 */
 25
 
 
 
 
 26#include <linux/module.h>
 27#include <linux/init.h>
 
 
 28#include <linux/sched.h>
 29#include <linux/slab.h>
 30#include <linux/errno.h>
 31#include <linux/wait.h>
 32#include <linux/of_platform.h>
 33#include <linux/of_spi.h>
 34#include <linux/of_gpio.h>
 35#include <linux/interrupt.h>
 36#include <linux/delay.h>
 37
 38#include <linux/gpio.h>
 39#include <linux/spi/spi.h>
 40#include <linux/spi/spi_bitbang.h>
 41
 42#include <asm/io.h>
 43#include <asm/dcr.h>
 44#include <asm/dcr-regs.h>
 45
 46/* bits in mode register - bit 0 is MSb */
 47
 48/*
 49 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
 50 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
 51 * Note: This is the inverse of CPHA.
 52 */
 53#define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
 54
 55/* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
 56#define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
 57
 58/*
 59 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
 60 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
 61 * Note: This is identical to SPI_LSB_FIRST.
 62 */
 63#define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
 64
 65/*
 66 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
 67 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
 68 * Note: This is identical to CPOL.
 69 */
 70#define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
 71
 72/*
 73 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
 74 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
 75 */
 76#define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
 77
 78/* bits in control register */
 79/* starts a transfer when set */
 80#define SPI_PPC4XX_CR_STR	(0x80 >> 7)
 81
 82/* bits in status register */
 83/* port is busy with a transfer */
 84#define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
 85/* RxD ready */
 86#define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
 87
 88/* clock settings (SCP and CI) for various SPI modes */
 89#define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
 90#define SPI_CLK_MODE1	(0 | 0)
 91#define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
 92#define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
 93
 94#define DRIVER_NAME	"spi_ppc4xx_of"
 95
 96struct spi_ppc4xx_regs {
 97	u8 mode;
 98	u8 rxd;
 99	u8 txd;
100	u8 cr;
101	u8 sr;
102	u8 dummy;
103	/*
104	 * Clock divisor modulus register
105	 * This uses the follwing formula:
106	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
107	 * or
108	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
109	 * bit 0 is the MSb!
110	 */
111	u8 cdm;
112};
113
114/* SPI Controller driver's private data. */
115struct ppc4xx_spi {
116	/* bitbang has to be first */
117	struct spi_bitbang bitbang;
118	struct completion done;
119
120	u64 mapbase;
121	u64 mapsize;
122	int irqnum;
123	/* need this to set the SPI clock */
124	unsigned int opb_freq;
125
126	/* for transfers */
127	int len;
128	int count;
129	/* data buffers */
130	const unsigned char *tx;
131	unsigned char *rx;
132
133	int *gpios;
134
135	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
136	struct spi_master *master;
137	struct device *dev;
138};
139
140/* need this so we can set the clock in the chipselect routine */
141struct spi_ppc4xx_cs {
142	u8 mode;
143};
144
145static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
146{
147	struct ppc4xx_spi *hw;
148	u8 data;
149
150	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
151		t->tx_buf, t->rx_buf, t->len);
152
153	hw = spi_master_get_devdata(spi->master);
154
155	hw->tx = t->tx_buf;
156	hw->rx = t->rx_buf;
157	hw->len = t->len;
158	hw->count = 0;
159
160	/* send the first byte */
161	data = hw->tx ? hw->tx[0] : 0;
162	out_8(&hw->regs->txd, data);
163	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
164	wait_for_completion(&hw->done);
165
166	return hw->count;
167}
168
169static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
170{
171	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
172	struct spi_ppc4xx_cs *cs = spi->controller_state;
173	int scr;
174	u8 cdm = 0;
175	u32 speed;
176	u8 bits_per_word;
177
178	/* Start with the generic configuration for this device. */
179	bits_per_word = spi->bits_per_word;
180	speed = spi->max_speed_hz;
181
182	/*
183	 * Modify the configuration if the transfer overrides it.  Do not allow
184	 * the transfer to overwrite the generic configuration with zeros.
185	 */
186	if (t) {
187		if (t->bits_per_word)
188			bits_per_word = t->bits_per_word;
189
190		if (t->speed_hz)
191			speed = min(t->speed_hz, spi->max_speed_hz);
192	}
193
194	if (bits_per_word != 8) {
195		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
196				bits_per_word);
197		return -EINVAL;
198	}
199
200	if (!speed || (speed > spi->max_speed_hz)) {
201		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
202		return -EINVAL;
203	}
204
205	/* Write new configration */
206	out_8(&hw->regs->mode, cs->mode);
207
208	/* Set the clock */
209	/* opb_freq was already divided by 4 */
210	scr = (hw->opb_freq / speed) - 1;
211	if (scr > 0)
212		cdm = min(scr, 0xff);
213
214	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
215
216	if (in_8(&hw->regs->cdm) != cdm)
217		out_8(&hw->regs->cdm, cdm);
218
219	spin_lock(&hw->bitbang.lock);
220	if (!hw->bitbang.busy) {
221		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
222		/* Need to ndelay here? */
223	}
224	spin_unlock(&hw->bitbang.lock);
225
226	return 0;
227}
228
229static int spi_ppc4xx_setup(struct spi_device *spi)
230{
231	struct spi_ppc4xx_cs *cs = spi->controller_state;
232
233	if (spi->bits_per_word != 8) {
234		dev_err(&spi->dev, "invalid bits-per-word (%d)\n",
235			spi->bits_per_word);
236		return -EINVAL;
237	}
238
239	if (!spi->max_speed_hz) {
240		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
241		return -EINVAL;
242	}
243
244	if (cs == NULL) {
245		cs = kzalloc(sizeof *cs, GFP_KERNEL);
246		if (!cs)
247			return -ENOMEM;
248		spi->controller_state = cs;
249	}
250
251	/*
252	 * We set all bits of the SPI0_MODE register, so,
253	 * no need to read-modify-write
254	 */
255	cs->mode = SPI_PPC4XX_MODE_SPE;
256
257	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
258	case SPI_MODE_0:
259		cs->mode |= SPI_CLK_MODE0;
260		break;
261	case SPI_MODE_1:
262		cs->mode |= SPI_CLK_MODE1;
263		break;
264	case SPI_MODE_2:
265		cs->mode |= SPI_CLK_MODE2;
266		break;
267	case SPI_MODE_3:
268		cs->mode |= SPI_CLK_MODE3;
269		break;
270	}
271
272	if (spi->mode & SPI_LSB_FIRST)
273		cs->mode |= SPI_PPC4XX_MODE_RD;
274
275	return 0;
276}
277
278static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
279{
280	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
281	unsigned int cs = spi->chip_select;
282	unsigned int cspol;
283
284	/*
285	 * If there are no chip selects at all, or if this is the special
286	 * case of a non-existent (dummy) chip select, do nothing.
287	 */
288
289	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
290		return;
291
292	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
293	if (value == BITBANG_CS_INACTIVE)
294		cspol = !cspol;
295
296	gpio_set_value(hw->gpios[cs], cspol);
297}
298
299static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
300{
301	struct ppc4xx_spi *hw;
302	u8 status;
303	u8 data;
304	unsigned int count;
305
306	hw = (struct ppc4xx_spi *)dev_id;
307
308	status = in_8(&hw->regs->sr);
309	if (!status)
310		return IRQ_NONE;
311
312	/*
313	 * BSY de-asserts one cycle after the transfer is complete.  The
314	 * interrupt is asserted after the transfer is complete.  The exact
315	 * relationship is not documented, hence this code.
316	 */
317
318	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
319		u8 lstatus;
320		int cnt = 0;
321
322		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
323		do {
324			ndelay(10);
325			lstatus = in_8(&hw->regs->sr);
326		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
327
328		if (cnt >= 100) {
329			dev_err(hw->dev, "busywait: too many loops!\n");
330			complete(&hw->done);
331			return IRQ_HANDLED;
332		} else {
333			/* status is always 1 (RBR) here */
334			status = in_8(&hw->regs->sr);
335			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
336		}
337	}
338
339	count = hw->count;
340	hw->count++;
341
342	/* RBR triggered this interrupt.  Therefore, data must be ready. */
343	data = in_8(&hw->regs->rxd);
344	if (hw->rx)
345		hw->rx[count] = data;
346
347	count++;
348
349	if (count < hw->len) {
350		data = hw->tx ? hw->tx[count] : 0;
351		out_8(&hw->regs->txd, data);
352		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
353	} else {
354		complete(&hw->done);
355	}
356
357	return IRQ_HANDLED;
358}
359
360static void spi_ppc4xx_cleanup(struct spi_device *spi)
361{
362	kfree(spi->controller_state);
363}
364
365static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
366{
367	/*
368	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
369	 * the 2nd I2C bus. We need to enable the the SPI bus before
370	 * using it.
371	 */
372
373	/* need to clear bit 14 to enable SPC */
374	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
375}
376
377static void free_gpios(struct ppc4xx_spi *hw)
378{
379	if (hw->master->num_chipselect) {
380		int i;
381		for (i = 0; i < hw->master->num_chipselect; i++)
382			if (gpio_is_valid(hw->gpios[i]))
383				gpio_free(hw->gpios[i]);
384
385		kfree(hw->gpios);
386		hw->gpios = NULL;
387	}
388}
389
390/*
391 * platform_device layer stuff...
392 */
393static int __init spi_ppc4xx_of_probe(struct platform_device *op)
394{
395	struct ppc4xx_spi *hw;
396	struct spi_master *master;
397	struct spi_bitbang *bbp;
398	struct resource resource;
399	struct device_node *np = op->dev.of_node;
400	struct device *dev = &op->dev;
401	struct device_node *opbnp;
402	int ret;
403	int num_gpios;
404	const unsigned int *clk;
405
406	master = spi_alloc_master(dev, sizeof *hw);
407	if (master == NULL)
408		return -ENOMEM;
409	master->dev.of_node = np;
410	dev_set_drvdata(dev, master);
411	hw = spi_master_get_devdata(master);
412	hw->master = spi_master_get(master);
413	hw->dev = dev;
414
415	init_completion(&hw->done);
416
417	/*
418	 * A count of zero implies a single SPI device without any chip-select.
419	 * Note that of_gpio_count counts all gpios assigned to this spi master.
420	 * This includes both "null" gpio's and real ones.
421	 */
422	num_gpios = of_gpio_count(np);
423	if (num_gpios) {
424		int i;
425
426		hw->gpios = kzalloc(sizeof(int) * num_gpios, GFP_KERNEL);
427		if (!hw->gpios) {
428			ret = -ENOMEM;
429			goto free_master;
430		}
431
432		for (i = 0; i < num_gpios; i++) {
433			int gpio;
434			enum of_gpio_flags flags;
435
436			gpio = of_get_gpio_flags(np, i, &flags);
437			hw->gpios[i] = gpio;
438
439			if (gpio_is_valid(gpio)) {
440				/* Real CS - set the initial state. */
441				ret = gpio_request(gpio, np->name);
442				if (ret < 0) {
443					dev_err(dev, "can't request gpio "
444							"#%d: %d\n", i, ret);
445					goto free_gpios;
446				}
447
448				gpio_direction_output(gpio,
449						!!(flags & OF_GPIO_ACTIVE_LOW));
450			} else if (gpio == -EEXIST) {
451				; /* No CS, but that's OK. */
452			} else {
453				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
454				ret = -EINVAL;
455				goto free_gpios;
456			}
457		}
458	}
459
460	/* Setup the state for the bitbang driver */
461	bbp = &hw->bitbang;
462	bbp->master = hw->master;
463	bbp->setup_transfer = spi_ppc4xx_setupxfer;
464	bbp->chipselect = spi_ppc4xx_chipsel;
465	bbp->txrx_bufs = spi_ppc4xx_txrx;
466	bbp->use_dma = 0;
467	bbp->master->setup = spi_ppc4xx_setup;
468	bbp->master->cleanup = spi_ppc4xx_cleanup;
469
470	/* Allocate bus num dynamically. */
471	bbp->master->bus_num = -1;
 
 
 
 
472
473	/* the spi->mode bits understood by this driver: */
474	bbp->master->mode_bits =
475		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
476
477	/* this many pins in all GPIO controllers */
478	bbp->master->num_chipselect = num_gpios;
479
480	/* Get the clock for the OPB */
481	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
482	if (opbnp == NULL) {
483		dev_err(dev, "OPB: cannot find node\n");
484		ret = -ENODEV;
485		goto free_gpios;
486	}
487	/* Get the clock (Hz) for the OPB */
488	clk = of_get_property(opbnp, "clock-frequency", NULL);
489	if (clk == NULL) {
490		dev_err(dev, "OPB: no clock-frequency property set\n");
491		of_node_put(opbnp);
492		ret = -ENODEV;
493		goto free_gpios;
494	}
495	hw->opb_freq = *clk;
496	hw->opb_freq >>= 2;
497	of_node_put(opbnp);
498
499	ret = of_address_to_resource(np, 0, &resource);
500	if (ret) {
501		dev_err(dev, "error while parsing device node resource\n");
502		goto free_gpios;
503	}
504	hw->mapbase = resource.start;
505	hw->mapsize = resource_size(&resource);
506
507	/* Sanity check */
508	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
509		dev_err(dev, "too small to map registers\n");
510		ret = -EINVAL;
511		goto free_gpios;
512	}
513
514	/* Request IRQ */
515	hw->irqnum = irq_of_parse_and_map(np, 0);
 
 
 
 
516	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
517			  IRQF_DISABLED, "spi_ppc4xx_of", (void *)hw);
518	if (ret) {
519		dev_err(dev, "unable to allocate interrupt\n");
520		goto free_gpios;
521	}
522
523	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
524		dev_err(dev, "resource unavailable\n");
525		ret = -EBUSY;
526		goto request_mem_error;
527	}
528
529	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
530
531	if (!hw->regs) {
532		dev_err(dev, "unable to memory map registers\n");
533		ret = -ENXIO;
534		goto map_io_error;
535	}
536
537	spi_ppc4xx_enable(hw);
538
539	/* Finally register our spi controller */
540	dev->dma_mask = 0;
541	ret = spi_bitbang_start(bbp);
542	if (ret) {
543		dev_err(dev, "failed to register SPI master\n");
544		goto unmap_regs;
545	}
546
547	dev_info(dev, "driver initialized\n");
548
549	return 0;
550
551unmap_regs:
552	iounmap(hw->regs);
553map_io_error:
554	release_mem_region(hw->mapbase, hw->mapsize);
555request_mem_error:
556	free_irq(hw->irqnum, hw);
557free_gpios:
558	free_gpios(hw);
559free_master:
560	dev_set_drvdata(dev, NULL);
561	spi_master_put(master);
562
563	dev_err(dev, "initialization failed\n");
564	return ret;
565}
566
567static int __exit spi_ppc4xx_of_remove(struct platform_device *op)
568{
569	struct spi_master *master = dev_get_drvdata(&op->dev);
570	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
571
572	spi_bitbang_stop(&hw->bitbang);
573	dev_set_drvdata(&op->dev, NULL);
574	release_mem_region(hw->mapbase, hw->mapsize);
575	free_irq(hw->irqnum, hw);
576	iounmap(hw->regs);
577	free_gpios(hw);
578	return 0;
579}
580
581static const struct of_device_id spi_ppc4xx_of_match[] = {
582	{ .compatible = "ibm,ppc4xx-spi", },
583	{},
584};
585
586MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
587
588static struct platform_driver spi_ppc4xx_of_driver = {
589	.probe = spi_ppc4xx_of_probe,
590	.remove = __exit_p(spi_ppc4xx_of_remove),
591	.driver = {
592		.name = DRIVER_NAME,
593		.owner = THIS_MODULE,
594		.of_match_table = spi_ppc4xx_of_match,
595	},
596};
597
598static int __init spi_ppc4xx_init(void)
599{
600	return platform_driver_register(&spi_ppc4xx_of_driver);
601}
602module_init(spi_ppc4xx_init);
603
604static void __exit spi_ppc4xx_exit(void)
605{
606	platform_driver_unregister(&spi_ppc4xx_of_driver);
607}
608module_exit(spi_ppc4xx_exit);
609
610MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
611MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
612MODULE_LICENSE("GPL");