Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * An I2C driver for the Intersil ISL 12022
  4 *
  5 * Author: Roman Fietze <roman.fietze@telemotive.de>
  6 *
  7 * Based on the Philips PCF8563 RTC
  8 * by Alessandro Zummo <a.zummo@towertech.it>.
 
 
 
 
  9 */
 10
 11#include <linux/bcd.h>
 12#include <linux/bitfield.h>
 13#include <linux/clk-provider.h>
 14#include <linux/err.h>
 15#include <linux/hwmon.h>
 16#include <linux/i2c.h>
 17#include <linux/module.h>
 18#include <linux/regmap.h>
 19#include <linux/rtc.h>
 20#include <linux/slab.h>
 21
 22#include <asm/byteorder.h>
 23
 24/* RTC - Real time clock registers */
 25#define ISL12022_REG_SC		0x00
 26#define ISL12022_REG_MN		0x01
 27#define ISL12022_REG_HR		0x02
 28#define ISL12022_REG_DT		0x03
 29#define ISL12022_REG_MO		0x04
 30#define ISL12022_REG_YR		0x05
 31#define ISL12022_REG_DW		0x06
 32
 33/* CSR - Control and status registers */
 34#define ISL12022_REG_SR		0x07
 35#define ISL12022_REG_INT	0x08
 36#define ISL12022_REG_PWR_VBAT	0x0a
 37#define ISL12022_REG_BETA	0x0d
 38
 39/* ALARM - Alarm registers */
 40#define ISL12022_REG_SCA0	0x10
 41#define ISL12022_REG_MNA0	0x11
 42#define ISL12022_REG_HRA0	0x12
 43#define ISL12022_REG_DTA0	0x13
 44#define ISL12022_REG_MOA0	0x14
 45#define ISL12022_REG_DWA0	0x15
 46#define ISL12022_ALARM		ISL12022_REG_SCA0
 47#define ISL12022_ALARM_LEN	(ISL12022_REG_DWA0 - ISL12022_REG_SCA0 + 1)
 48
 49/* TEMP - Temperature sensor registers */
 50#define ISL12022_REG_TEMP_L	0x28
 51
 52/* ISL register bits */
 53#define ISL12022_HR_MIL		(1 << 7)	/* military or 24 hour time */
 54
 55#define ISL12022_SR_ALM		(1 << 4)
 56#define ISL12022_SR_LBAT85	(1 << 2)
 57#define ISL12022_SR_LBAT75	(1 << 1)
 58
 59#define ISL12022_INT_ARST	(1 << 7)
 60#define ISL12022_INT_WRTC	(1 << 6)
 61#define ISL12022_INT_IM		(1 << 5)
 62#define ISL12022_INT_FOBATB	(1 << 4)
 63#define ISL12022_INT_FO_MASK	GENMASK(3, 0)
 64#define ISL12022_INT_FO_OFF	0x0
 65#define ISL12022_INT_FO_32K	0x1
 66
 67#define ISL12022_REG_VB85_MASK	GENMASK(5, 3)
 68#define ISL12022_REG_VB75_MASK	GENMASK(2, 0)
 69
 70#define ISL12022_ALARM_ENABLE	(1 << 7)	/* for all ALARM registers  */
 71
 72#define ISL12022_BETA_TSE	(1 << 7)
 73
 74static struct i2c_driver isl12022_driver;
 75
 76struct isl12022 {
 77	struct rtc_device *rtc;
 78	struct regmap *regmap;
 79	int irq;
 80	bool irq_enabled;
 81};
 82
 83static umode_t isl12022_hwmon_is_visible(const void *data,
 84					 enum hwmon_sensor_types type,
 85					 u32 attr, int channel)
 86{
 87	if (type == hwmon_temp && attr == hwmon_temp_input)
 88		return 0444;
 89
 90	return 0;
 91}
 92
 93/*
 94 * A user-initiated temperature conversion is not started by this function,
 95 * so the temperature is updated once every ~60 seconds.
 96 */
 97static int isl12022_hwmon_read_temp(struct device *dev, long *mC)
 98{
 99	struct regmap *regmap = dev_get_drvdata(dev);
100	int temp, ret;
101	__le16 buf;
 
 
 
 
 
 
 
 
 
 
 
102
103	ret = regmap_bulk_read(regmap, ISL12022_REG_TEMP_L, &buf, sizeof(buf));
104	if (ret)
105		return ret;
106	/*
107	 * Temperature is represented as a 10-bit number, unit half-Kelvins.
108	 */
109	temp = le16_to_cpu(buf);
110	temp *= 500;
111	temp -= 273000;
112
113	*mC = temp;
 
 
 
 
 
 
114
115	return 0;
116}
117
118static int isl12022_hwmon_read(struct device *dev,
119			       enum hwmon_sensor_types type,
120			       u32 attr, int channel, long *val)
121{
122	if (type == hwmon_temp && attr == hwmon_temp_input)
123		return isl12022_hwmon_read_temp(dev, val);
124
125	return -EOPNOTSUPP;
126}
127
128static const struct hwmon_channel_info * const isl12022_hwmon_info[] = {
129	HWMON_CHANNEL_INFO(temp, HWMON_T_INPUT),
130	NULL
131};
132
133static const struct hwmon_ops isl12022_hwmon_ops = {
134	.is_visible = isl12022_hwmon_is_visible,
135	.read = isl12022_hwmon_read,
136};
137
138static const struct hwmon_chip_info isl12022_hwmon_chip_info = {
139	.ops = &isl12022_hwmon_ops,
140	.info = isl12022_hwmon_info,
141};
142
143static void isl12022_hwmon_register(struct device *dev)
144{
145	struct isl12022 *isl12022 = dev_get_drvdata(dev);
146	struct regmap *regmap = isl12022->regmap;
147	struct device *hwmon;
148	int ret;
149
150	if (!IS_REACHABLE(CONFIG_HWMON))
151		return;
152
153	ret = regmap_update_bits(regmap, ISL12022_REG_BETA,
154				 ISL12022_BETA_TSE, ISL12022_BETA_TSE);
155	if (ret) {
156		dev_warn(dev, "unable to enable temperature sensor\n");
157		return;
158	}
159
160	hwmon = devm_hwmon_device_register_with_info(dev, "isl12022", regmap,
161						     &isl12022_hwmon_chip_info,
162						     NULL);
163	if (IS_ERR(hwmon))
164		dev_warn(dev, "unable to register hwmon device: %pe\n", hwmon);
165}
166
 
167/*
168 * In the routines that deal directly with the isl12022 hardware, we use
169 * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
170 */
171static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm)
172{
173	struct isl12022 *isl12022 = dev_get_drvdata(dev);
174	struct regmap *regmap = isl12022->regmap;
175	u8 buf[ISL12022_REG_INT + 1];
176	int ret;
177
178	ret = regmap_bulk_read(regmap, ISL12022_REG_SC, buf, sizeof(buf));
179	if (ret)
180		return ret;
181
182	dev_dbg(dev,
183		"raw data is sec=%02x, min=%02x, hr=%02x, mday=%02x, mon=%02x, year=%02x, wday=%02x, sr=%02x, int=%02x",
 
 
 
 
 
 
 
 
 
 
184		buf[ISL12022_REG_SC],
185		buf[ISL12022_REG_MN],
186		buf[ISL12022_REG_HR],
187		buf[ISL12022_REG_DT],
188		buf[ISL12022_REG_MO],
189		buf[ISL12022_REG_YR],
190		buf[ISL12022_REG_DW],
191		buf[ISL12022_REG_SR],
192		buf[ISL12022_REG_INT]);
193
194	tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F);
195	tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F);
196	tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F);
197	tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F);
198	tm->tm_wday = buf[ISL12022_REG_DW] & 0x07;
199	tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1;
200	tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100;
201
202	dev_dbg(dev, "%s: %ptR\n", __func__, tm);
 
 
 
 
 
 
 
 
 
203
204	return 0;
205}
206
207static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm)
208{
209	struct isl12022 *isl12022 = dev_get_drvdata(dev);
210	struct regmap *regmap = isl12022->regmap;
211	int ret;
212	u8 buf[ISL12022_REG_DW + 1];
213
214	dev_dbg(dev, "%s: %ptR\n", __func__, tm);
 
 
 
 
215
216	/* Ensure the write enable bit is set. */
217	ret = regmap_update_bits(regmap, ISL12022_REG_INT,
218				 ISL12022_INT_WRTC, ISL12022_INT_WRTC);
219	if (ret)
220		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221
222	/* hours, minutes and seconds */
223	buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec);
224	buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min);
225	buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL;
226
227	buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday);
228
229	/* month, 1 - 12 */
230	buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1);
231
232	/* year and century */
233	buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100);
234
235	buf[ISL12022_REG_DW] = tm->tm_wday & 0x07;
236
237	return regmap_bulk_write(regmap, ISL12022_REG_SC, buf, sizeof(buf));
238}
239
240static int isl12022_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
241{
242	struct rtc_time *tm = &alarm->time;
243	struct isl12022 *isl12022 = dev_get_drvdata(dev);
244	struct regmap *regmap = isl12022->regmap;
245	u8 buf[ISL12022_ALARM_LEN];
246	unsigned int i, yr;
247	int ret;
248
249	ret = regmap_bulk_read(regmap, ISL12022_ALARM, buf, sizeof(buf));
250	if (ret) {
251		dev_dbg(dev, "%s: reading ALARM registers failed\n",
252			__func__);
253		return ret;
254	}
255
256	/* The alarm doesn't store the year so get it from the rtc section */
257	ret = regmap_read(regmap, ISL12022_REG_YR, &yr);
258	if (ret) {
259		dev_dbg(dev, "%s: reading YR register failed\n", __func__);
260		return ret;
261	}
262
263	dev_dbg(dev,
264		"%s: sc=%02x, mn=%02x, hr=%02x, dt=%02x, mo=%02x, dw=%02x yr=%u\n",
265		__func__, buf[0], buf[1], buf[2], buf[3], buf[4], buf[5], yr);
266
267	tm->tm_sec  = bcd2bin(buf[ISL12022_REG_SCA0 - ISL12022_ALARM] & 0x7F);
268	tm->tm_min  = bcd2bin(buf[ISL12022_REG_MNA0 - ISL12022_ALARM] & 0x7F);
269	tm->tm_hour = bcd2bin(buf[ISL12022_REG_HRA0 - ISL12022_ALARM] & 0x3F);
270	tm->tm_mday = bcd2bin(buf[ISL12022_REG_DTA0 - ISL12022_ALARM] & 0x3F);
271	tm->tm_mon  = bcd2bin(buf[ISL12022_REG_MOA0 - ISL12022_ALARM] & 0x1F) - 1;
272	tm->tm_wday = buf[ISL12022_REG_DWA0 - ISL12022_ALARM]         & 0x07;
273	tm->tm_year = bcd2bin(yr) + 100;
274
275	for (i = 0; i < ISL12022_ALARM_LEN; i++) {
276		if (buf[i] & ISL12022_ALARM_ENABLE) {
277			alarm->enabled = 1;
278			break;
279		}
280	}
281
282	dev_dbg(dev, "%s: %ptR\n", __func__, tm);
283
284	return 0;
285}
286
287static int isl12022_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
288{
289	struct rtc_time *alarm_tm = &alarm->time;
290	struct isl12022 *isl12022 = dev_get_drvdata(dev);
291	struct regmap *regmap = isl12022->regmap;
292	u8 regs[ISL12022_ALARM_LEN] = { 0, };
293	struct rtc_time rtc_tm;
294	int ret, enable, dw;
295
296	ret = isl12022_rtc_read_time(dev, &rtc_tm);
297	if (ret)
298		return ret;
299
300	/* If the alarm time is before the current time disable the alarm */
301	if (!alarm->enabled || rtc_tm_sub(alarm_tm, &rtc_tm) <= 0)
302		enable = 0;
303	else
304		enable = ISL12022_ALARM_ENABLE;
305
306	/*
307	 * Set non-matching day of the week to safeguard against early false
308	 * matching while setting all the alarm registers (this rtc lacks a
309	 * general alarm/irq enable/disable bit).
310	 */
311	ret = regmap_read(regmap, ISL12022_REG_DW, &dw);
312	if (ret) {
313		dev_dbg(dev, "%s: reading DW failed\n", __func__);
314		return ret;
315	}
316	/* ~4 days into the future should be enough to avoid match */
317	dw = ((dw + 4) % 7) | ISL12022_ALARM_ENABLE;
318	ret = regmap_write(regmap, ISL12022_REG_DWA0, dw);
319	if (ret) {
320		dev_dbg(dev, "%s: writing DWA0 failed\n", __func__);
321		return ret;
322	}
323
324	/* Program the alarm and enable it for each setting */
325	regs[ISL12022_REG_SCA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_sec) | enable;
326	regs[ISL12022_REG_MNA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_min) | enable;
327	regs[ISL12022_REG_HRA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_hour) | enable;
328	regs[ISL12022_REG_DTA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mday) | enable;
329	regs[ISL12022_REG_MOA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_mon + 1) | enable;
330	regs[ISL12022_REG_DWA0 - ISL12022_ALARM] = bin2bcd(alarm_tm->tm_wday & 7) | enable;
331
332	/* write ALARM registers */
333	ret = regmap_bulk_write(regmap, ISL12022_ALARM, &regs, sizeof(regs));
334	if (ret) {
335		dev_dbg(dev, "%s: writing ALARM registers failed\n", __func__);
336		return ret;
337	}
338
339	return 0;
340}
341
342static irqreturn_t isl12022_rtc_interrupt(int irq, void *data)
343{
344	struct isl12022 *isl12022 = data;
345	struct rtc_device *rtc = isl12022->rtc;
346	struct device *dev = &rtc->dev;
347	struct regmap *regmap = isl12022->regmap;
348	u32 val = 0;
349	unsigned long events = 0;
350	int ret;
351
352	ret = regmap_read(regmap, ISL12022_REG_SR, &val);
353	if (ret) {
354		dev_dbg(dev, "%s: reading SR failed\n", __func__);
355		return IRQ_HANDLED;
356	}
357
358	if (val & ISL12022_SR_ALM)
359		events |= RTC_IRQF | RTC_AF;
360
361	if (events & RTC_AF)
362		dev_dbg(dev, "alarm!\n");
363
364	if (!events)
365		return IRQ_NONE;
366
367	rtc_update_irq(rtc, 1, events);
368	return IRQ_HANDLED;
369}
370
371static int isl12022_rtc_alarm_irq_enable(struct device *dev,
372					 unsigned int enabled)
373{
374	struct isl12022 *isl12022 = dev_get_drvdata(dev);
375
376	/* Make sure enabled is 0 or 1 */
377	enabled = !!enabled;
378
379	if (isl12022->irq_enabled == enabled)
380		return 0;
381
382	if (enabled)
383		enable_irq(isl12022->irq);
384	else
385		disable_irq(isl12022->irq);
386
387	isl12022->irq_enabled = enabled;
388
389	return 0;
390}
391
392static int isl12022_setup_irq(struct device *dev, int irq)
393{
394	struct isl12022 *isl12022 = dev_get_drvdata(dev);
395	struct regmap *regmap = isl12022->regmap;
396	unsigned int reg_mask, reg_val;
397	u8 buf[ISL12022_ALARM_LEN] = { 0, };
398	int ret;
399
400	/* Clear and disable all alarm registers */
401	ret = regmap_bulk_write(regmap, ISL12022_ALARM, buf, sizeof(buf));
402	if (ret)
403		return ret;
404
405	/*
406	 * Enable automatic reset of ALM bit and enable single event interrupt
407	 * mode.
408	 */
409	reg_mask = ISL12022_INT_ARST | ISL12022_INT_IM | ISL12022_INT_FO_MASK;
410	reg_val = ISL12022_INT_ARST | ISL12022_INT_FO_OFF;
411	ret = regmap_write_bits(regmap, ISL12022_REG_INT,
412				reg_mask, reg_val);
413	if (ret)
414		return ret;
415
416	ret = devm_request_threaded_irq(dev, irq, NULL,
417					isl12022_rtc_interrupt,
418					IRQF_SHARED | IRQF_ONESHOT,
419					isl12022_driver.driver.name,
420					isl12022);
421	if (ret)
422		return dev_err_probe(dev, ret, "Unable to request irq %d\n", irq);
423
424	isl12022->irq = irq;
425	return 0;
426}
427
428static int isl12022_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
429{
430	struct isl12022 *isl12022 = dev_get_drvdata(dev);
431	struct regmap *regmap = isl12022->regmap;
432	u32 user, val;
433	int ret;
434
435	switch (cmd) {
436	case RTC_VL_READ:
437		ret = regmap_read(regmap, ISL12022_REG_SR, &val);
438		if (ret)
439			return ret;
440
441		user = 0;
442		if (val & ISL12022_SR_LBAT85)
443			user |= RTC_VL_BACKUP_LOW;
444
445		if (val & ISL12022_SR_LBAT75)
446			user |= RTC_VL_BACKUP_EMPTY;
447
448		return put_user(user, (u32 __user *)arg);
449
450	default:
451		return -ENOIOCTLCMD;
452	}
453}
454
455static const struct rtc_class_ops isl12022_rtc_ops = {
456	.ioctl		= isl12022_rtc_ioctl,
457	.read_time	= isl12022_rtc_read_time,
458	.set_time	= isl12022_rtc_set_time,
459	.read_alarm	= isl12022_rtc_read_alarm,
460	.set_alarm	= isl12022_rtc_set_alarm,
461	.alarm_irq_enable = isl12022_rtc_alarm_irq_enable,
462};
463
464static const struct regmap_config regmap_config = {
465	.reg_bits = 8,
466	.val_bits = 8,
467	.use_single_write = true,
468};
469
470static int isl12022_register_clock(struct device *dev)
 
471{
472	struct isl12022 *isl12022 = dev_get_drvdata(dev);
473	struct regmap *regmap = isl12022->regmap;
474	struct clk_hw *hw;
475	int ret;
476
477	if (!device_property_present(dev, "#clock-cells")) {
478		/*
479		 * Disabling the F_OUT pin reduces the power
480		 * consumption in battery mode by ~25%.
481		 */
482		regmap_update_bits(regmap, ISL12022_REG_INT, ISL12022_INT_FO_MASK,
483				   ISL12022_INT_FO_OFF);
484
485		return 0;
486	}
487
488	if (!IS_ENABLED(CONFIG_COMMON_CLK))
489		return 0;
490
491	/*
492	 * For now, only support a fixed clock of 32768Hz (the reset default).
493	 */
494	ret = regmap_update_bits(regmap, ISL12022_REG_INT,
495				 ISL12022_INT_FO_MASK, ISL12022_INT_FO_32K);
496	if (ret)
497		return ret;
498
499	hw = devm_clk_hw_register_fixed_rate(dev, "isl12022", NULL, 0, 32768);
500	if (IS_ERR(hw))
501		return PTR_ERR(hw);
502
503	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get, hw);
504}
505
506static const u32 trip_levels[2][7] = {
507	{ 2125000, 2295000, 2550000, 2805000, 3060000, 4250000, 4675000 },
508	{ 1875000, 2025000, 2250000, 2475000, 2700000, 3750000, 4125000 },
509};
510
511static void isl12022_set_trip_levels(struct device *dev)
512{
513	struct isl12022 *isl12022 = dev_get_drvdata(dev);
514	struct regmap *regmap = isl12022->regmap;
515	u32 levels[2] = {0, 0};
516	int ret, i, j, x[2];
517	u8 val, mask;
518
519	device_property_read_u32_array(dev, "isil,battery-trip-levels-microvolt",
520				       levels, 2);
521
522	for (i = 0; i < 2; i++) {
523		for (j = 0; j < ARRAY_SIZE(trip_levels[i]) - 1; j++) {
524			if (levels[i] <= trip_levels[i][j])
525				break;
526		}
527		x[i] = j;
528	}
529
530	val = FIELD_PREP(ISL12022_REG_VB85_MASK, x[0]) |
531		FIELD_PREP(ISL12022_REG_VB75_MASK, x[1]);
532	mask = ISL12022_REG_VB85_MASK | ISL12022_REG_VB75_MASK;
533
534	ret = regmap_update_bits(regmap, ISL12022_REG_PWR_VBAT, mask, val);
535	if (ret)
536		dev_warn(dev, "unable to set battery alarm levels: %d\n", ret);
537
538	/*
539	 * Force a write of the TSE bit in the BETA register, in order
540	 * to trigger an update of the LBAT75 and LBAT85 bits in the
541	 * status register. In battery backup mode, those bits have
542	 * another meaning, so without this, they may contain stale
543	 * values for up to a minute after power-on.
544	 */
545	regmap_write_bits(regmap, ISL12022_REG_BETA,
546			  ISL12022_BETA_TSE, ISL12022_BETA_TSE);
547}
548
549static int isl12022_probe(struct i2c_client *client)
550{
551	struct isl12022 *isl12022;
552	struct rtc_device *rtc;
553	struct regmap *regmap;
554	int ret;
555
556	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
557		return -ENODEV;
558
559	/* Allocate driver state */
560	isl12022 = devm_kzalloc(&client->dev, sizeof(*isl12022), GFP_KERNEL);
561	if (!isl12022)
562		return -ENOMEM;
563
564	regmap = devm_regmap_init_i2c(client, &regmap_config);
565	if (IS_ERR(regmap))
566		return dev_err_probe(&client->dev, PTR_ERR(regmap), "regmap allocation failed\n");
567	isl12022->regmap = regmap;
568
569	dev_set_drvdata(&client->dev, isl12022);
570
571	ret = isl12022_register_clock(&client->dev);
572	if (ret)
573		return ret;
574
575	isl12022_set_trip_levels(&client->dev);
576	isl12022_hwmon_register(&client->dev);
577
578	rtc = devm_rtc_allocate_device(&client->dev);
579	if (IS_ERR(rtc))
580		return PTR_ERR(rtc);
581	isl12022->rtc = rtc;
582
583	rtc->ops = &isl12022_rtc_ops;
584	rtc->range_min = RTC_TIMESTAMP_BEGIN_2000;
585	rtc->range_max = RTC_TIMESTAMP_END_2099;
586
587	if (client->irq > 0) {
588		ret = isl12022_setup_irq(&client->dev, client->irq);
589		if (ret)
590			return ret;
591	} else {
592		clear_bit(RTC_FEATURE_ALARM, rtc->features);
593	}
594
595	return devm_rtc_register_device(rtc);
596}
597
598static const struct of_device_id isl12022_dt_match[] = {
599	{ .compatible = "isl,isl12022" }, /* for backward compat., don't use */
600	{ .compatible = "isil,isl12022" },
601	{ },
602};
603MODULE_DEVICE_TABLE(of, isl12022_dt_match);
604
605static const struct i2c_device_id isl12022_id[] = {
606	{ "isl12022" },
 
607	{ }
608};
609MODULE_DEVICE_TABLE(i2c, isl12022_id);
610
611static struct i2c_driver isl12022_driver = {
612	.driver		= {
613		.name	= "rtc-isl12022",
614		.of_match_table = isl12022_dt_match,
615	},
616	.probe		= isl12022_probe,
 
617	.id_table	= isl12022_id,
618};
619
620module_i2c_driver(isl12022_driver);
 
 
 
 
 
 
 
 
 
 
 
621
622MODULE_AUTHOR("roman.fietze@telemotive.de");
623MODULE_DESCRIPTION("ISL 12022 RTC driver");
624MODULE_LICENSE("GPL");
v3.1
 
  1/*
  2 * An I2C driver for the Intersil ISL 12022
  3 *
  4 * Author: Roman Fietze <roman.fietze@telemotive.de>
  5 *
  6 * Based on the Philips PCF8563 RTC
  7 * by Alessandro Zummo <a.zummo@towertech.it>.
  8 *
  9 * This program is free software; you can redistribute it and/or
 10 * modify it under the terms of the GNU General Public License version
 11 * 2 as published by the Free Software Foundation.
 12 */
 13
 
 
 
 
 
 14#include <linux/i2c.h>
 15#include <linux/bcd.h>
 
 16#include <linux/rtc.h>
 17#include <linux/slab.h>
 18
 19#define DRV_VERSION "0.1"
 20
 21/* ISL register offsets */
 22#define ISL12022_REG_SC		0x00
 23#define ISL12022_REG_MN		0x01
 24#define ISL12022_REG_HR		0x02
 25#define ISL12022_REG_DT		0x03
 26#define ISL12022_REG_MO		0x04
 27#define ISL12022_REG_YR		0x05
 28#define ISL12022_REG_DW		0x06
 29
 
 30#define ISL12022_REG_SR		0x07
 31#define ISL12022_REG_INT	0x08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 32
 33/* ISL register bits */
 34#define ISL12022_HR_MIL		(1 << 7)	/* military or 24 hour time */
 35
 
 36#define ISL12022_SR_LBAT85	(1 << 2)
 37#define ISL12022_SR_LBAT75	(1 << 1)
 38
 
 39#define ISL12022_INT_WRTC	(1 << 6)
 
 
 
 
 
 
 
 
 40
 
 
 
 41
 42static struct i2c_driver isl12022_driver;
 43
 44struct isl12022 {
 45	struct rtc_device *rtc;
 46
 47	bool write_enabled;	/* true if write enable is set */
 
 48};
 49
 
 
 
 
 
 
 50
 51static int isl12022_read_regs(struct i2c_client *client, uint8_t reg,
 52			      uint8_t *data, size_t n)
 
 
 
 
 
 
 53{
 54	struct i2c_msg msgs[] = {
 55		{
 56			.addr	= client->addr,
 57			.flags	= 0,
 58			.len	= 1,
 59			.buf	= data
 60		},		/* setup read ptr */
 61		{
 62			.addr	= client->addr,
 63			.flags	= I2C_M_RD,
 64			.len	= n,
 65			.buf	= data
 66		}
 67	};
 68
 69	int ret;
 
 
 
 
 
 
 
 
 70
 71	data[0] = reg;
 72	ret = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs));
 73	if (ret != ARRAY_SIZE(msgs)) {
 74		dev_err(&client->dev, "%s: read error, ret=%d\n",
 75			__func__, ret);
 76		return -EIO;
 77	}
 78
 79	return 0;
 80}
 81
 
 
 
 
 
 
 82
 83static int isl12022_write_reg(struct i2c_client *client,
 84			      uint8_t reg, uint8_t val)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 85{
 86	uint8_t data[2] = { reg, val };
 87	int err;
 
 
 88
 89	err = i2c_master_send(client, data, sizeof(data));
 90	if (err != sizeof(data)) {
 91		dev_err(&client->dev,
 92			"%s: err=%d addr=%02x, data=%02x\n",
 93			__func__, err, data[0], data[1]);
 94		return -EIO;
 
 
 95	}
 96
 97	return 0;
 
 
 
 
 98}
 99
100
101/*
102 * In the routines that deal directly with the isl12022 hardware, we use
103 * rtc_time -- month 0-11, hour 0-23, yr = calendar year-epoch.
104 */
105static int isl12022_get_datetime(struct i2c_client *client, struct rtc_time *tm)
106{
107	uint8_t buf[ISL12022_REG_INT + 1];
 
 
108	int ret;
109
110	ret = isl12022_read_regs(client, ISL12022_REG_SC, buf, sizeof(buf));
111	if (ret)
112		return ret;
113
114	if (buf[ISL12022_REG_SR] & (ISL12022_SR_LBAT85 | ISL12022_SR_LBAT75)) {
115		dev_warn(&client->dev,
116			 "voltage dropped below %u%%, "
117			 "date and time is not reliable.\n",
118			 buf[ISL12022_REG_SR] & ISL12022_SR_LBAT85 ? 85 : 75);
119	}
120
121	dev_dbg(&client->dev,
122		"%s: raw data is sec=%02x, min=%02x, hr=%02x, "
123		"mday=%02x, mon=%02x, year=%02x, wday=%02x, "
124		"sr=%02x, int=%02x",
125		__func__,
126		buf[ISL12022_REG_SC],
127		buf[ISL12022_REG_MN],
128		buf[ISL12022_REG_HR],
129		buf[ISL12022_REG_DT],
130		buf[ISL12022_REG_MO],
131		buf[ISL12022_REG_YR],
132		buf[ISL12022_REG_DW],
133		buf[ISL12022_REG_SR],
134		buf[ISL12022_REG_INT]);
135
136	tm->tm_sec = bcd2bin(buf[ISL12022_REG_SC] & 0x7F);
137	tm->tm_min = bcd2bin(buf[ISL12022_REG_MN] & 0x7F);
138	tm->tm_hour = bcd2bin(buf[ISL12022_REG_HR] & 0x3F);
139	tm->tm_mday = bcd2bin(buf[ISL12022_REG_DT] & 0x3F);
140	tm->tm_wday = buf[ISL12022_REG_DW] & 0x07;
141	tm->tm_mon = bcd2bin(buf[ISL12022_REG_MO] & 0x1F) - 1;
142	tm->tm_year = bcd2bin(buf[ISL12022_REG_YR]) + 100;
143
144	dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
145		"mday=%d, mon=%d, year=%d, wday=%d\n",
146		__func__,
147		tm->tm_sec, tm->tm_min, tm->tm_hour,
148		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
149
150	/* The clock can give out invalid datetime, but we cannot return
151	 * -EINVAL otherwise hwclock will refuse to set the time on bootup. */
152	if (rtc_valid_tm(tm) < 0)
153		dev_err(&client->dev, "retrieved date and time is invalid.\n");
154
155	return 0;
156}
157
158static int isl12022_set_datetime(struct i2c_client *client, struct rtc_time *tm)
159{
160	struct isl12022 *isl12022 = i2c_get_clientdata(client);
161	size_t i;
162	int ret;
163	uint8_t buf[ISL12022_REG_DW + 1];
164
165	dev_dbg(&client->dev, "%s: secs=%d, mins=%d, hours=%d, "
166		"mday=%d, mon=%d, year=%d, wday=%d\n",
167		__func__,
168		tm->tm_sec, tm->tm_min, tm->tm_hour,
169		tm->tm_mday, tm->tm_mon, tm->tm_year, tm->tm_wday);
170
171	if (!isl12022->write_enabled) {
172
173		ret = isl12022_read_regs(client, ISL12022_REG_INT, buf, 1);
174		if (ret)
175			return ret;
176
177		/* Check if WRTC (write rtc enable) is set factory default is
178		 * 0 (not set) */
179		if (!(buf[0] & ISL12022_INT_WRTC)) {
180			dev_info(&client->dev,
181				 "init write enable and 24 hour format\n");
182
183			/* Set the write enable bit. */
184			ret = isl12022_write_reg(client,
185						 ISL12022_REG_INT,
186						 buf[0] | ISL12022_INT_WRTC);
187			if (ret)
188				return ret;
189
190			/* Write to any RTC register to start RTC, we use the
191			 * HR register, setting the MIL bit to use the 24 hour
192			 * format. */
193			ret = isl12022_read_regs(client, ISL12022_REG_HR,
194						 buf, 1);
195			if (ret)
196				return ret;
197
198			ret = isl12022_write_reg(client,
199						 ISL12022_REG_HR,
200						 buf[0] | ISL12022_HR_MIL);
201			if (ret)
202				return ret;
203		}
204
205		isl12022->write_enabled = 1;
206	}
207
208	/* hours, minutes and seconds */
209	buf[ISL12022_REG_SC] = bin2bcd(tm->tm_sec);
210	buf[ISL12022_REG_MN] = bin2bcd(tm->tm_min);
211	buf[ISL12022_REG_HR] = bin2bcd(tm->tm_hour) | ISL12022_HR_MIL;
212
213	buf[ISL12022_REG_DT] = bin2bcd(tm->tm_mday);
214
215	/* month, 1 - 12 */
216	buf[ISL12022_REG_MO] = bin2bcd(tm->tm_mon + 1);
217
218	/* year and century */
219	buf[ISL12022_REG_YR] = bin2bcd(tm->tm_year % 100);
220
221	buf[ISL12022_REG_DW] = tm->tm_wday & 0x07;
222
223	/* write register's data */
224	for (i = 0; i < ARRAY_SIZE(buf); i++) {
225		ret = isl12022_write_reg(client, ISL12022_REG_SC + i,
226					 buf[ISL12022_REG_SC + i]);
227		if (ret)
228			return -EIO;
229	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
230
231	return 0;
232}
233
234static int isl12022_rtc_read_time(struct device *dev, struct rtc_time *tm)
235{
236	return isl12022_get_datetime(to_i2c_client(dev), tm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237}
238
239static int isl12022_rtc_set_time(struct device *dev, struct rtc_time *tm)
240{
241	return isl12022_set_datetime(to_i2c_client(dev), tm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242}
243
244static const struct rtc_class_ops isl12022_rtc_ops = {
 
245	.read_time	= isl12022_rtc_read_time,
246	.set_time	= isl12022_rtc_set_time,
 
 
 
 
 
 
 
 
 
247};
248
249static int isl12022_probe(struct i2c_client *client,
250			  const struct i2c_device_id *id)
251{
252	struct isl12022 *isl12022;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
253
254	int ret = 0;
 
255
256	if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C))
257		return -ENODEV;
 
 
 
 
 
258
259	isl12022 = kzalloc(sizeof(struct isl12022), GFP_KERNEL);
260	if (!isl12022)
261		return -ENOMEM;
262
263	dev_dbg(&client->dev, "chip found, driver version " DRV_VERSION "\n");
 
264
265	i2c_set_clientdata(client, isl12022);
 
 
 
266
267	isl12022->rtc = rtc_device_register(isl12022_driver.driver.name,
268					    &client->dev,
269					    &isl12022_rtc_ops,
270					    THIS_MODULE);
271
272	if (IS_ERR(isl12022->rtc)) {
273		ret = PTR_ERR(isl12022->rtc);
274		goto exit_kfree;
 
 
 
 
 
 
 
 
 
275	}
276
277	return 0;
 
 
278
279exit_kfree:
280	kfree(isl12022);
 
281
282	return ret;
 
 
 
 
 
 
 
 
283}
284
285static int isl12022_remove(struct i2c_client *client)
286{
287	struct isl12022 *isl12022 = i2c_get_clientdata(client);
 
 
 
288
289	rtc_device_unregister(isl12022->rtc);
290	kfree(isl12022);
 
 
 
 
 
291
292	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293}
294
 
 
 
 
 
 
 
295static const struct i2c_device_id isl12022_id[] = {
296	{ "isl12022", 0 },
297	{ "rtc8564", 0 },
298	{ }
299};
300MODULE_DEVICE_TABLE(i2c, isl12022_id);
301
302static struct i2c_driver isl12022_driver = {
303	.driver		= {
304		.name	= "rtc-isl12022",
 
305	},
306	.probe		= isl12022_probe,
307	.remove		= isl12022_remove,
308	.id_table	= isl12022_id,
309};
310
311static int __init isl12022_init(void)
312{
313	return i2c_add_driver(&isl12022_driver);
314}
315
316static void __exit isl12022_exit(void)
317{
318	i2c_del_driver(&isl12022_driver);
319}
320
321module_init(isl12022_init);
322module_exit(isl12022_exit);
323
324MODULE_AUTHOR("roman.fietze@telemotive.de");
325MODULE_DESCRIPTION("ISL 12022 RTC driver");
326MODULE_LICENSE("GPL");
327MODULE_VERSION(DRV_VERSION);