Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*  de4x5.c: A DIGITAL DC21x4x DECchip and DE425/DE434/DE435/DE450/DE500
   2             ethernet driver for Linux.
   3
   4    Copyright 1994, 1995 Digital Equipment Corporation.
   5
   6    Testing resources for this driver have been made available
   7    in part by NASA Ames Research Center (mjacob@nas.nasa.gov).
   8
   9    The author may be reached at davies@maniac.ultranet.com.
  10
  11    This program is free software; you can redistribute  it and/or modify it
  12    under  the terms of  the GNU General  Public License as published by the
  13    Free Software Foundation;  either version 2 of the  License, or (at your
  14    option) any later version.
  15
  16    THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR   IMPLIED
  17    WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
  18    MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
  19    NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT,  INDIRECT,
  20    INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  21    NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
  22    USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
  23    ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
  24    (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
  25    THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  26
  27    You should have received a copy of the  GNU General Public License along
  28    with this program; if not, write  to the Free Software Foundation, Inc.,
  29    675 Mass Ave, Cambridge, MA 02139, USA.
  30
  31    Originally,   this  driver  was    written  for the  Digital   Equipment
  32    Corporation series of EtherWORKS ethernet cards:
  33
  34        DE425 TP/COAX EISA
  35	DE434 TP PCI
  36	DE435 TP/COAX/AUI PCI
  37	DE450 TP/COAX/AUI PCI
  38	DE500 10/100 PCI Fasternet
  39
  40    but it  will  now attempt  to  support all  cards which   conform to the
  41    Digital Semiconductor   SROM   Specification.    The  driver   currently
  42    recognises the following chips:
  43
  44        DC21040  (no SROM)
  45	DC21041[A]
  46	DC21140[A]
  47	DC21142
  48	DC21143
  49
  50    So far the driver is known to work with the following cards:
  51
  52        KINGSTON
  53	Linksys
  54	ZNYX342
  55	SMC8432
  56	SMC9332 (w/new SROM)
  57	ZNYX31[45]
  58	ZNYX346 10/100 4 port (can act as a 10/100 bridge!)
  59
  60    The driver has been tested on a relatively busy network using the DE425,
  61    DE434, DE435 and DE500 cards and benchmarked with 'ttcp': it transferred
  62    16M of data to a DECstation 5000/200 as follows:
  63
  64                TCP           UDP
  65             TX     RX     TX     RX
  66    DE425   1030k  997k   1170k  1128k
  67    DE434   1063k  995k   1170k  1125k
  68    DE435   1063k  995k   1170k  1125k
  69    DE500   1063k  998k   1170k  1125k  in 10Mb/s mode
  70
  71    All  values are typical (in   kBytes/sec) from a  sample  of 4 for  each
  72    measurement. Their error is +/-20k on a quiet (private) network and also
  73    depend on what load the CPU has.
  74
  75    =========================================================================
  76    This driver  has been written substantially  from  scratch, although its
  77    inheritance of style and stack interface from 'ewrk3.c' and in turn from
  78    Donald Becker's 'lance.c' should be obvious. With the module autoload of
  79    every  usable DECchip board,  I  pinched Donald's 'next_module' field to
  80    link my modules together.
  81
  82    Up to 15 EISA cards can be supported under this driver, limited primarily
  83    by the available IRQ lines.  I have  checked different configurations of
  84    multiple depca, EtherWORKS 3 cards and de4x5 cards and  have not found a
  85    problem yet (provided you have at least depca.c v0.38) ...
  86
  87    PCI support has been added  to allow the driver  to work with the DE434,
  88    DE435, DE450 and DE500 cards. The I/O accesses are a bit of a kludge due
  89    to the differences in the EISA and PCI CSR address offsets from the base
  90    address.
  91
  92    The ability to load this  driver as a loadable  module has been included
  93    and used extensively  during the driver development  (to save those long
  94    reboot sequences).  Loadable module support  under PCI and EISA has been
  95    achieved by letting the driver autoprobe as if it were compiled into the
  96    kernel. Do make sure  you're not sharing  interrupts with anything  that
  97    cannot accommodate  interrupt  sharing!
  98
  99    To utilise this ability, you have to do 8 things:
 100
 101    0) have a copy of the loadable modules code installed on your system.
 102    1) copy de4x5.c from the  /linux/drivers/net directory to your favourite
 103    temporary directory.
 104    2) for fixed  autoprobes (not  recommended),  edit the source code  near
 105    line 5594 to reflect the I/O address  you're using, or assign these when
 106    loading by:
 107
 108                   insmod de4x5 io=0xghh           where g = bus number
 109		                                        hh = device number
 110
 111       NB: autoprobing for modules is now supported by default. You may just
 112           use:
 113
 114                   insmod de4x5
 115
 116           to load all available boards. For a specific board, still use
 117	   the 'io=?' above.
 118    3) compile  de4x5.c, but include -DMODULE in  the command line to ensure
 119    that the correct bits are compiled (see end of source code).
 120    4) if you are wanting to add a new  card, goto 5. Otherwise, recompile a
 121    kernel with the de4x5 configuration turned off and reboot.
 122    5) insmod de4x5 [io=0xghh]
 123    6) run the net startup bits for your new eth?? interface(s) manually
 124    (usually /etc/rc.inet[12] at boot time).
 125    7) enjoy!
 126
 127    To unload a module, turn off the associated interface(s)
 128    'ifconfig eth?? down' then 'rmmod de4x5'.
 129
 130    Automedia detection is included so that in  principal you can disconnect
 131    from, e.g.  TP, reconnect  to BNC  and  things will still work  (after a
 132    pause whilst the   driver figures out   where its media went).  My tests
 133    using ping showed that it appears to work....
 134
 135    By  default,  the driver will  now   autodetect any  DECchip based card.
 136    Should you have a need to restrict the driver to DIGITAL only cards, you
 137    can compile with a  DEC_ONLY define, or if  loading as a module, use the
 138    'dec_only=1'  parameter.
 139
 140    I've changed the timing routines to  use the kernel timer and scheduling
 141    functions  so that the  hangs  and other assorted problems that occurred
 142    while autosensing the  media  should be gone.  A  bonus  for the DC21040
 143    auto  media sense algorithm is  that it can now  use one that is more in
 144    line with the  rest (the DC21040  chip doesn't  have a hardware  timer).
 145    The downside is the 1 'jiffies' (10ms) resolution.
 146
 147    IEEE 802.3u MII interface code has  been added in anticipation that some
 148    products may use it in the future.
 149
 150    The SMC9332 card  has a non-compliant SROM  which needs fixing -  I have
 151    patched this  driver to detect it  because the SROM format used complies
 152    to a previous DEC-STD format.
 153
 154    I have removed the buffer copies needed for receive on Intels.  I cannot
 155    remove them for   Alphas since  the  Tulip hardware   only does longword
 156    aligned  DMA transfers  and  the  Alphas get   alignment traps with  non
 157    longword aligned data copies (which makes them really slow). No comment.
 158
 159    I  have added SROM decoding  routines to make this  driver work with any
 160    card that  supports the Digital  Semiconductor SROM spec. This will help
 161    all  cards running the dc2114x  series chips in particular.  Cards using
 162    the dc2104x  chips should run correctly with  the basic  driver.  I'm in
 163    debt to <mjacob@feral.com> for the  testing and feedback that helped get
 164    this feature working.  So far we have  tested KINGSTON, SMC8432, SMC9332
 165    (with the latest SROM complying  with the SROM spec  V3: their first was
 166    broken), ZNYX342  and  LinkSys. ZYNX314 (dual  21041  MAC) and  ZNYX 315
 167    (quad 21041 MAC)  cards also  appear  to work despite their  incorrectly
 168    wired IRQs.
 169
 170    I have added a temporary fix for interrupt problems when some SCSI cards
 171    share the same interrupt as the DECchip based  cards. The problem occurs
 172    because  the SCSI card wants to  grab the interrupt  as a fast interrupt
 173    (runs the   service routine with interrupts turned   off) vs.  this card
 174    which really needs to run the service routine with interrupts turned on.
 175    This driver will  now   add the interrupt service   routine  as  a  fast
 176    interrupt if it   is bounced from the   slow interrupt.  THIS IS NOT   A
 177    RECOMMENDED WAY TO RUN THE DRIVER  and has been done  for a limited time
 178    until  people   sort  out their  compatibility    issues and the  kernel
 179    interrupt  service code  is  fixed.   YOU  SHOULD SEPARATE OUT  THE FAST
 180    INTERRUPT CARDS FROM THE SLOW INTERRUPT CARDS to ensure that they do not
 181    run on the same interrupt. PCMCIA/CardBus is another can of worms...
 182
 183    Finally, I think  I have really  fixed  the module  loading problem with
 184    more than one DECchip based  card.  As a  side effect, I don't mess with
 185    the  device structure any  more which means that  if more than 1 card in
 186    2.0.x is    installed (4  in   2.1.x),  the  user   will have   to  edit
 187    linux/drivers/net/Space.c  to make room for  them. Hence, module loading
 188    is  the preferred way to use   this driver, since  it  doesn't have this
 189    limitation.
 190
 191    Where SROM media  detection is used and  full duplex is specified in the
 192    SROM,  the feature is  ignored unless  lp->params.fdx  is set at compile
 193    time  OR during  a   module load  (insmod  de4x5   args='eth??:fdx' [see
 194    below]).  This is because there  is no way  to automatically detect full
 195    duplex   links  except through   autonegotiation.    When I  include the
 196    autonegotiation feature in  the SROM autoconf  code, this detection will
 197    occur automatically for that case.
 198
 199    Command  line arguments are  now  allowed, similar  to passing arguments
 200    through LILO. This will allow a per adapter board  set up of full duplex
 201    and media. The only lexical constraints  are: the board name (dev->name)
 202    appears in the list before its  parameters.  The list of parameters ends
 203    either at the end of the parameter list or with another board name.  The
 204    following parameters are allowed:
 205
 206            fdx        for full duplex
 207	    autosense  to set the media/speed; with the following
 208	               sub-parameters:
 209		       TP, TP_NW, BNC, AUI, BNC_AUI, 100Mb, 10Mb, AUTO
 210
 211    Case sensitivity is important  for  the sub-parameters. They *must*   be
 212    upper case. Examples:
 213
 214        insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
 215
 216    For a compiled in driver, at or above line 548, place e.g.
 217	#define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
 218
 219    Yes,  I know full duplex isn't  permissible on BNC  or AUI; they're just
 220    examples. By default, full duplex is turned off and  AUTO is the default
 221    autosense setting.  In reality, I expect only  the full duplex option to
 222    be used. Note the use of single quotes in the two examples above and the
 223    lack of commas to separate items. ALSO, you must get the requested media
 224    correct in relation to what the adapter SROM says it has. There's no way
 225    to  determine this in  advance other than by  trial and error and common
 226    sense, e.g. call a BNC connectored port 'BNC', not '10Mb'.
 227
 228    Changed the bus probing.  EISA used to be  done first,  followed by PCI.
 229    Most people probably don't even know  what a de425 is today and the EISA
 230    probe has messed  up some SCSI cards  in the past,  so now PCI is always
 231    probed  first  followed by  EISA if  a) the architecture allows EISA and
 232    either  b) there have been no PCI cards detected or  c) an EISA probe is
 233    forced by  the user.  To force  a probe  include  "force_eisa"  in  your
 234    insmod "args" line;  for built-in kernels either change the driver to do
 235    this  automatically  or include  #define DE4X5_FORCE_EISA  on or  before
 236    line 1040 in the driver.
 237
 238    TO DO:
 239    ------
 240
 241    Revision History
 242    ----------------
 243
 244    Version   Date        Description
 245
 246      0.1     17-Nov-94   Initial writing. ALPHA code release.
 247      0.2     13-Jan-95   Added PCI support for DE435's.
 248      0.21    19-Jan-95   Added auto media detection.
 249      0.22    10-Feb-95   Fix interrupt handler call <chris@cosy.sbg.ac.at>.
 250                          Fix recognition bug reported by <bkm@star.rl.ac.uk>.
 251			  Add request/release_region code.
 252			  Add loadable modules support for PCI.
 253			  Clean up loadable modules support.
 254      0.23    28-Feb-95   Added DC21041 and DC21140 support.
 255                          Fix missed frame counter value and initialisation.
 256			  Fixed EISA probe.
 257      0.24    11-Apr-95   Change delay routine to use <linux/udelay>.
 258                          Change TX_BUFFS_AVAIL macro.
 259			  Change media autodetection to allow manual setting.
 260			  Completed DE500 (DC21140) support.
 261      0.241   18-Apr-95   Interim release without DE500 Autosense Algorithm.
 262      0.242   10-May-95   Minor changes.
 263      0.30    12-Jun-95   Timer fix for DC21140.
 264                          Portability changes.
 265			  Add ALPHA changes from <jestabro@ant.tay1.dec.com>.
 266			  Add DE500 semi automatic autosense.
 267			  Add Link Fail interrupt TP failure detection.
 268			  Add timer based link change detection.
 269			  Plugged a memory leak in de4x5_queue_pkt().
 270      0.31    13-Jun-95   Fixed PCI stuff for 1.3.1.
 271      0.32    26-Jun-95   Added verify_area() calls in de4x5_ioctl() from a
 272                          suggestion by <heiko@colossus.escape.de>.
 273      0.33     8-Aug-95   Add shared interrupt support (not released yet).
 274      0.331   21-Aug-95   Fix de4x5_open() with fast CPUs.
 275                          Fix de4x5_interrupt().
 276                          Fix dc21140_autoconf() mess.
 277			  No shared interrupt support.
 278      0.332   11-Sep-95   Added MII management interface routines.
 279      0.40     5-Mar-96   Fix setup frame timeout <maartenb@hpkuipc.cern.ch>.
 280                          Add kernel timer code (h/w is too flaky).
 281			  Add MII based PHY autosense.
 282			  Add new multicasting code.
 283			  Add new autosense algorithms for media/mode
 284			  selection using kernel scheduling/timing.
 285			  Re-formatted.
 286			  Made changes suggested by <jeff@router.patch.net>:
 287			    Change driver to detect all DECchip based cards
 288			    with DEC_ONLY restriction a special case.
 289			    Changed driver to autoprobe as a module. No irq
 290			    checking is done now - assume BIOS is good!
 291			  Added SMC9332 detection <manabe@Roy.dsl.tutics.ac.jp>
 292      0.41    21-Mar-96   Don't check for get_hw_addr checksum unless DEC card
 293                          only <niles@axp745gsfc.nasa.gov>
 294			  Fix for multiple PCI cards reported by <jos@xos.nl>
 295			  Duh, put the IRQF_SHARED flag into request_interrupt().
 296			  Fix SMC ethernet address in enet_det[].
 297			  Print chip name instead of "UNKNOWN" during boot.
 298      0.42    26-Apr-96   Fix MII write TA bit error.
 299                          Fix bug in dc21040 and dc21041 autosense code.
 300			  Remove buffer copies on receive for Intels.
 301			  Change sk_buff handling during media disconnects to
 302			   eliminate DUP packets.
 303			  Add dynamic TX thresholding.
 304			  Change all chips to use perfect multicast filtering.
 305			  Fix alloc_device() bug <jari@markkus2.fimr.fi>
 306      0.43   21-Jun-96    Fix unconnected media TX retry bug.
 307                          Add Accton to the list of broken cards.
 308			  Fix TX under-run bug for non DC21140 chips.
 309			  Fix boot command probe bug in alloc_device() as
 310			   reported by <koen.gadeyne@barco.com> and
 311			   <orava@nether.tky.hut.fi>.
 312			  Add cache locks to prevent a race condition as
 313			   reported by <csd@microplex.com> and
 314			   <baba@beckman.uiuc.edu>.
 315			  Upgraded alloc_device() code.
 316      0.431  28-Jun-96    Fix potential bug in queue_pkt() from discussion
 317                          with <csd@microplex.com>
 318      0.44   13-Aug-96    Fix RX overflow bug in 2114[023] chips.
 319                          Fix EISA probe bugs reported by <os2@kpi.kharkov.ua>
 320			  and <michael@compurex.com>.
 321      0.441   9-Sep-96    Change dc21041_autoconf() to probe quiet BNC media
 322                           with a loopback packet.
 323      0.442   9-Sep-96    Include AUI in dc21041 media printout. Bug reported
 324                           by <bhat@mundook.cs.mu.OZ.AU>
 325      0.45    8-Dec-96    Include endian functions for PPC use, from work
 326                           by <cort@cs.nmt.edu> and <g.thomas@opengroup.org>.
 327      0.451  28-Dec-96    Added fix to allow autoprobe for modules after
 328                           suggestion from <mjacob@feral.com>.
 329      0.5    30-Jan-97    Added SROM decoding functions.
 330                          Updated debug flags.
 331			  Fix sleep/wakeup calls for PCI cards, bug reported
 332			   by <cross@gweep.lkg.dec.com>.
 333			  Added multi-MAC, one SROM feature from discussion
 334			   with <mjacob@feral.com>.
 335			  Added full module autoprobe capability.
 336			  Added attempt to use an SMC9332 with broken SROM.
 337			  Added fix for ZYNX multi-mac cards that didn't
 338			   get their IRQs wired correctly.
 339      0.51   13-Feb-97    Added endian fixes for the SROM accesses from
 340			   <paubert@iram.es>
 341			  Fix init_connection() to remove extra device reset.
 342			  Fix MAC/PHY reset ordering in dc21140m_autoconf().
 343			  Fix initialisation problem with lp->timeout in
 344			   typeX_infoblock() from <paubert@iram.es>.
 345			  Fix MII PHY reset problem from work done by
 346			   <paubert@iram.es>.
 347      0.52   26-Apr-97    Some changes may not credit the right people -
 348                           a disk crash meant I lost some mail.
 349			  Change RX interrupt routine to drop rather than
 350			   defer packets to avoid hang reported by
 351			   <g.thomas@opengroup.org>.
 352			  Fix srom_exec() to return for COMPACT and type 1
 353			   infoblocks.
 354			  Added DC21142 and DC21143 functions.
 355			  Added byte counters from <phil@tazenda.demon.co.uk>
 356			  Added IRQF_DISABLED temporary fix from
 357			   <mjacob@feral.com>.
 358      0.53   12-Nov-97    Fix the *_probe() to include 'eth??' name during
 359                           module load: bug reported by
 360			   <Piete.Brooks@cl.cam.ac.uk>
 361			  Fix multi-MAC, one SROM, to work with 2114x chips:
 362			   bug reported by <cmetz@inner.net>.
 363			  Make above search independent of BIOS device scan
 364			   direction.
 365			  Completed DC2114[23] autosense functions.
 366      0.531  21-Dec-97    Fix DE500-XA 100Mb/s bug reported by
 367                           <robin@intercore.com
 368			  Fix type1_infoblock() bug introduced in 0.53, from
 369			   problem reports by
 370			   <parmee@postecss.ncrfran.france.ncr.com> and
 371			   <jo@ice.dillingen.baynet.de>.
 372			  Added argument list to set up each board from either
 373			   a module's command line or a compiled in #define.
 374			  Added generic MII PHY functionality to deal with
 375			   newer PHY chips.
 376			  Fix the mess in 2.1.67.
 377      0.532   5-Jan-98    Fix bug in mii_get_phy() reported by
 378                           <redhat@cococo.net>.
 379                          Fix bug in pci_probe() for 64 bit systems reported
 380			   by <belliott@accessone.com>.
 381      0.533   9-Jan-98    Fix more 64 bit bugs reported by <jal@cs.brown.edu>.
 382      0.534  24-Jan-98    Fix last (?) endian bug from <geert@linux-m68k.org>
 383      0.535  21-Feb-98    Fix Ethernet Address PROM reset bug for DC21040.
 384      0.536  21-Mar-98    Change pci_probe() to use the pci_dev structure.
 385			  **Incompatible with 2.0.x from here.**
 386      0.540   5-Jul-98    Atomicize assertion of dev->interrupt for SMP
 387                           from <lma@varesearch.com>
 388			  Add TP, AUI and BNC cases to 21140m_autoconf() for
 389			   case where a 21140 under SROM control uses, e.g. AUI
 390			   from problem report by <delchini@lpnp09.in2p3.fr>
 391			  Add MII parallel detection to 2114x_autoconf() for
 392			   case where no autonegotiation partner exists from
 393			   problem report by <mlapsley@ndirect.co.uk>.
 394			  Add ability to force connection type directly even
 395			   when using SROM control from problem report by
 396			   <earl@exis.net>.
 397			  Updated the PCI interface to conform with the latest
 398			   version. I hope nothing is broken...
 399          		  Add TX done interrupt modification from suggestion
 400			   by <Austin.Donnelly@cl.cam.ac.uk>.
 401			  Fix is_anc_capable() bug reported by
 402			   <Austin.Donnelly@cl.cam.ac.uk>.
 403			  Fix type[13]_infoblock() bug: during MII search, PHY
 404			   lp->rst not run because lp->ibn not initialised -
 405			   from report & fix by <paubert@iram.es>.
 406			  Fix probe bug with EISA & PCI cards present from
 407                           report by <eirik@netcom.com>.
 408      0.541  24-Aug-98    Fix compiler problems associated with i386-string
 409                           ops from multiple bug reports and temporary fix
 410			   from <paubert@iram.es>.
 411			  Fix pci_probe() to correctly emulate the old
 412			   pcibios_find_class() function.
 413			  Add an_exception() for old ZYNX346 and fix compile
 414			   warning on PPC & SPARC, from <ecd@skynet.be>.
 415			  Fix lastPCI to correctly work with compiled in
 416			   kernels and modules from bug report by
 417			   <Zlatko.Calusic@CARNet.hr> et al.
 418      0.542  15-Sep-98    Fix dc2114x_autoconf() to stop multiple messages
 419                           when media is unconnected.
 420			  Change dev->interrupt to lp->interrupt to ensure
 421			   alignment for Alpha's and avoid their unaligned
 422			   access traps. This flag is merely for log messages:
 423			   should do something more definitive though...
 424      0.543  30-Dec-98    Add SMP spin locking.
 425      0.544   8-May-99    Fix for buggy SROM in Motorola embedded boards using
 426                           a 21143 by <mmporter@home.com>.
 427			  Change PCI/EISA bus probing order.
 428      0.545  28-Nov-99    Further Moto SROM bug fix from
 429                           <mporter@eng.mcd.mot.com>
 430                          Remove double checking for DEBUG_RX in de4x5_dbg_rx()
 431			   from report by <geert@linux-m68k.org>
 432      0.546  22-Feb-01    Fixes Alpha XP1000 oops.  The srom_search function
 433                           was causing a page fault when initializing the
 434                           variable 'pb', on a non de4x5 PCI device, in this
 435                           case a PCI bridge (DEC chip 21152). The value of
 436                           'pb' is now only initialized if a de4x5 chip is
 437                           present.
 438                           <france@handhelds.org>
 439      0.547  08-Nov-01    Use library crc32 functions by <Matt_Domsch@dell.com>
 440      0.548  30-Aug-03    Big 2.6 cleanup. Ported to PCI/EISA probing and
 441                           generic DMA APIs. Fixed DE425 support on Alpha.
 442			   <maz@wild-wind.fr.eu.org>
 443    =========================================================================
 444*/
 445
 446#include <linux/module.h>
 447#include <linux/kernel.h>
 448#include <linux/string.h>
 449#include <linux/interrupt.h>
 450#include <linux/ptrace.h>
 451#include <linux/errno.h>
 452#include <linux/ioport.h>
 453#include <linux/pci.h>
 454#include <linux/eisa.h>
 455#include <linux/delay.h>
 456#include <linux/init.h>
 457#include <linux/spinlock.h>
 458#include <linux/crc32.h>
 459#include <linux/netdevice.h>
 460#include <linux/etherdevice.h>
 461#include <linux/skbuff.h>
 462#include <linux/time.h>
 463#include <linux/types.h>
 464#include <linux/unistd.h>
 465#include <linux/ctype.h>
 466#include <linux/dma-mapping.h>
 467#include <linux/moduleparam.h>
 468#include <linux/bitops.h>
 469#include <linux/gfp.h>
 470
 471#include <asm/io.h>
 472#include <asm/dma.h>
 473#include <asm/byteorder.h>
 474#include <asm/unaligned.h>
 475#include <asm/uaccess.h>
 476#ifdef CONFIG_PPC_PMAC
 477#include <asm/machdep.h>
 478#endif /* CONFIG_PPC_PMAC */
 479
 480#include "de4x5.h"
 481
 482static const char version[] __devinitconst =
 483	KERN_INFO "de4x5.c:V0.546 2001/02/22 davies@maniac.ultranet.com\n";
 484
 485#define c_char const char
 486
 487/*
 488** MII Information
 489*/
 490struct phy_table {
 491    int reset;              /* Hard reset required?                         */
 492    int id;                 /* IEEE OUI                                     */
 493    int ta;                 /* One cycle TA time - 802.3u is confusing here */
 494    struct {                /* Non autonegotiation (parallel) speed det.    */
 495	int reg;
 496	int mask;
 497	int value;
 498    } spd;
 499};
 500
 501struct mii_phy {
 502    int reset;              /* Hard reset required?                      */
 503    int id;                 /* IEEE OUI                                  */
 504    int ta;                 /* One cycle TA time                         */
 505    struct {                /* Non autonegotiation (parallel) speed det. */
 506	int reg;
 507	int mask;
 508	int value;
 509    } spd;
 510    int addr;               /* MII address for the PHY                   */
 511    u_char  *gep;           /* Start of GEP sequence block in SROM       */
 512    u_char  *rst;           /* Start of reset sequence in SROM           */
 513    u_int mc;               /* Media Capabilities                        */
 514    u_int ana;              /* NWay Advertisement                        */
 515    u_int fdx;              /* Full DupleX capabilities for each media   */
 516    u_int ttm;              /* Transmit Threshold Mode for each media    */
 517    u_int mci;              /* 21142 MII Connector Interrupt info        */
 518};
 519
 520#define DE4X5_MAX_PHY 8     /* Allow up to 8 attached PHY devices per board */
 521
 522struct sia_phy {
 523    u_char mc;              /* Media Code                                */
 524    u_char ext;             /* csr13-15 valid when set                   */
 525    int csr13;              /* SIA Connectivity Register                 */
 526    int csr14;              /* SIA TX/RX Register                        */
 527    int csr15;              /* SIA General Register                      */
 528    int gepc;               /* SIA GEP Control Information               */
 529    int gep;                /* SIA GEP Data                              */
 530};
 531
 532/*
 533** Define the know universe of PHY devices that can be
 534** recognised by this driver.
 535*/
 536static struct phy_table phy_info[] = {
 537    {0, NATIONAL_TX, 1, {0x19, 0x40, 0x00}},       /* National TX      */
 538    {1, BROADCOM_T4, 1, {0x10, 0x02, 0x02}},       /* Broadcom T4      */
 539    {0, SEEQ_T4    , 1, {0x12, 0x10, 0x10}},       /* SEEQ T4          */
 540    {0, CYPRESS_T4 , 1, {0x05, 0x20, 0x20}},       /* Cypress T4       */
 541    {0, 0x7810     , 1, {0x14, 0x0800, 0x0800}}    /* Level One LTX970 */
 542};
 543
 544/*
 545** These GENERIC values assumes that the PHY devices follow 802.3u and
 546** allow parallel detection to set the link partner ability register.
 547** Detection of 100Base-TX [H/F Duplex] and 100Base-T4 is supported.
 548*/
 549#define GENERIC_REG   0x05      /* Autoneg. Link Partner Advertisement Reg. */
 550#define GENERIC_MASK  MII_ANLPA_100M /* All 100Mb/s Technologies            */
 551#define GENERIC_VALUE MII_ANLPA_100M /* 100B-TX, 100B-TX FDX, 100B-T4       */
 552
 553/*
 554** Define special SROM detection cases
 555*/
 556static c_char enet_det[][ETH_ALEN] = {
 557    {0x00, 0x00, 0xc0, 0x00, 0x00, 0x00},
 558    {0x00, 0x00, 0xe8, 0x00, 0x00, 0x00}
 559};
 560
 561#define SMC    1
 562#define ACCTON 2
 563
 564/*
 565** SROM Repair definitions. If a broken SROM is detected a card may
 566** use this information to help figure out what to do. This is a
 567** "stab in the dark" and so far for SMC9332's only.
 568*/
 569static c_char srom_repair_info[][100] = {
 570    {0x00,0x1e,0x00,0x00,0x00,0x08,             /* SMC9332 */
 571     0x1f,0x01,0x8f,0x01,0x00,0x01,0x00,0x02,
 572     0x01,0x00,0x00,0x78,0xe0,0x01,0x00,0x50,
 573     0x00,0x18,}
 574};
 575
 576
 577#ifdef DE4X5_DEBUG
 578static int de4x5_debug = DE4X5_DEBUG;
 579#else
 580/*static int de4x5_debug = (DEBUG_MII | DEBUG_SROM | DEBUG_PCICFG | DEBUG_MEDIA | DEBUG_VERSION);*/
 581static int de4x5_debug = (DEBUG_MEDIA | DEBUG_VERSION);
 582#endif
 583
 584/*
 585** Allow per adapter set up. For modules this is simply a command line
 586** parameter, e.g.:
 587** insmod de4x5 args='eth1:fdx autosense=BNC eth0:autosense=100Mb'.
 588**
 589** For a compiled in driver, place e.g.
 590**     #define DE4X5_PARM "eth0:fdx autosense=AUI eth2:autosense=TP"
 591** here
 592*/
 593#ifdef DE4X5_PARM
 594static char *args = DE4X5_PARM;
 595#else
 596static char *args;
 597#endif
 598
 599struct parameters {
 600    bool fdx;
 601    int autosense;
 602};
 603
 604#define DE4X5_AUTOSENSE_MS 250      /* msec autosense tick (DE500) */
 605
 606#define DE4X5_NDA 0xffe0            /* No Device (I/O) Address */
 607
 608/*
 609** Ethernet PROM defines
 610*/
 611#define PROBE_LENGTH    32
 612#define ETH_PROM_SIG    0xAA5500FFUL
 613
 614/*
 615** Ethernet Info
 616*/
 617#define PKT_BUF_SZ	1536            /* Buffer size for each Tx/Rx buffer */
 618#define IEEE802_3_SZ    1518            /* Packet + CRC */
 619#define MAX_PKT_SZ   	1514            /* Maximum ethernet packet length */
 620#define MAX_DAT_SZ   	1500            /* Maximum ethernet data length */
 621#define MIN_DAT_SZ   	1               /* Minimum ethernet data length */
 622#define PKT_HDR_LEN     14              /* Addresses and data length info */
 623#define FAKE_FRAME_LEN  (MAX_PKT_SZ + 1)
 624#define QUEUE_PKT_TIMEOUT (3*HZ)        /* 3 second timeout */
 625
 626
 627/*
 628** EISA bus defines
 629*/
 630#define DE4X5_EISA_IO_PORTS   0x0c00    /* I/O port base address, slot 0 */
 631#define DE4X5_EISA_TOTAL_SIZE 0x100     /* I/O address extent */
 632
 633#define EISA_ALLOWED_IRQ_LIST  {5, 9, 10, 11}
 634
 635#define DE4X5_SIGNATURE {"DE425","DE434","DE435","DE450","DE500"}
 636#define DE4X5_NAME_LENGTH 8
 637
 638static c_char *de4x5_signatures[] = DE4X5_SIGNATURE;
 639
 640/*
 641** Ethernet PROM defines for DC21040
 642*/
 643#define PROBE_LENGTH    32
 644#define ETH_PROM_SIG    0xAA5500FFUL
 645
 646/*
 647** PCI Bus defines
 648*/
 649#define PCI_MAX_BUS_NUM      8
 650#define DE4X5_PCI_TOTAL_SIZE 0x80       /* I/O address extent */
 651#define DE4X5_CLASS_CODE     0x00020000 /* Network controller, Ethernet */
 652
 653/*
 654** Memory Alignment. Each descriptor is 4 longwords long. To force a
 655** particular alignment on the TX descriptor, adjust DESC_SKIP_LEN and
 656** DESC_ALIGN. ALIGN aligns the start address of the private memory area
 657** and hence the RX descriptor ring's first entry.
 658*/
 659#define DE4X5_ALIGN4      ((u_long)4 - 1)     /* 1 longword align */
 660#define DE4X5_ALIGN8      ((u_long)8 - 1)     /* 2 longword align */
 661#define DE4X5_ALIGN16     ((u_long)16 - 1)    /* 4 longword align */
 662#define DE4X5_ALIGN32     ((u_long)32 - 1)    /* 8 longword align */
 663#define DE4X5_ALIGN64     ((u_long)64 - 1)    /* 16 longword align */
 664#define DE4X5_ALIGN128    ((u_long)128 - 1)   /* 32 longword align */
 665
 666#define DE4X5_ALIGN         DE4X5_ALIGN32           /* Keep the DC21040 happy... */
 667#define DE4X5_CACHE_ALIGN   CAL_16LONG
 668#define DESC_SKIP_LEN DSL_0             /* Must agree with DESC_ALIGN */
 669/*#define DESC_ALIGN    u32 dummy[4];  / * Must agree with DESC_SKIP_LEN */
 670#define DESC_ALIGN
 671
 672#ifndef DEC_ONLY                        /* See README.de4x5 for using this */
 673static int dec_only;
 674#else
 675static int dec_only = 1;
 676#endif
 677
 678/*
 679** DE4X5 IRQ ENABLE/DISABLE
 680*/
 681#define ENABLE_IRQs { \
 682    imr |= lp->irq_en;\
 683    outl(imr, DE4X5_IMR);               /* Enable the IRQs */\
 684}
 685
 686#define DISABLE_IRQs {\
 687    imr = inl(DE4X5_IMR);\
 688    imr &= ~lp->irq_en;\
 689    outl(imr, DE4X5_IMR);               /* Disable the IRQs */\
 690}
 691
 692#define UNMASK_IRQs {\
 693    imr |= lp->irq_mask;\
 694    outl(imr, DE4X5_IMR);               /* Unmask the IRQs */\
 695}
 696
 697#define MASK_IRQs {\
 698    imr = inl(DE4X5_IMR);\
 699    imr &= ~lp->irq_mask;\
 700    outl(imr, DE4X5_IMR);               /* Mask the IRQs */\
 701}
 702
 703/*
 704** DE4X5 START/STOP
 705*/
 706#define START_DE4X5 {\
 707    omr = inl(DE4X5_OMR);\
 708    omr |= OMR_ST | OMR_SR;\
 709    outl(omr, DE4X5_OMR);               /* Enable the TX and/or RX */\
 710}
 711
 712#define STOP_DE4X5 {\
 713    omr = inl(DE4X5_OMR);\
 714    omr &= ~(OMR_ST|OMR_SR);\
 715    outl(omr, DE4X5_OMR);               /* Disable the TX and/or RX */ \
 716}
 717
 718/*
 719** DE4X5 SIA RESET
 720*/
 721#define RESET_SIA outl(0, DE4X5_SICR);  /* Reset SIA connectivity regs */
 722
 723/*
 724** DE500 AUTOSENSE TIMER INTERVAL (MILLISECS)
 725*/
 726#define DE4X5_AUTOSENSE_MS  250
 727
 728/*
 729** SROM Structure
 730*/
 731struct de4x5_srom {
 732    char sub_vendor_id[2];
 733    char sub_system_id[2];
 734    char reserved[12];
 735    char id_block_crc;
 736    char reserved2;
 737    char version;
 738    char num_controllers;
 739    char ieee_addr[6];
 740    char info[100];
 741    short chksum;
 742};
 743#define SUB_VENDOR_ID 0x500a
 744
 745/*
 746** DE4X5 Descriptors. Make sure that all the RX buffers are contiguous
 747** and have sizes of both a power of 2 and a multiple of 4.
 748** A size of 256 bytes for each buffer could be chosen because over 90% of
 749** all packets in our network are <256 bytes long and 64 longword alignment
 750** is possible. 1536 showed better 'ttcp' performance. Take your pick. 32 TX
 751** descriptors are needed for machines with an ALPHA CPU.
 752*/
 753#define NUM_RX_DESC 8                   /* Number of RX descriptors   */
 754#define NUM_TX_DESC 32                  /* Number of TX descriptors   */
 755#define RX_BUFF_SZ  1536                /* Power of 2 for kmalloc and */
 756                                        /* Multiple of 4 for DC21040  */
 757                                        /* Allows 512 byte alignment  */
 758struct de4x5_desc {
 759    volatile __le32 status;
 760    __le32 des1;
 761    __le32 buf;
 762    __le32 next;
 763    DESC_ALIGN
 764};
 765
 766/*
 767** The DE4X5 private structure
 768*/
 769#define DE4X5_PKT_STAT_SZ 16
 770#define DE4X5_PKT_BIN_SZ  128            /* Should be >=100 unless you
 771                                            increase DE4X5_PKT_STAT_SZ */
 772
 773struct pkt_stats {
 774	u_int bins[DE4X5_PKT_STAT_SZ];      /* Private stats counters       */
 775	u_int unicast;
 776	u_int multicast;
 777	u_int broadcast;
 778	u_int excessive_collisions;
 779	u_int tx_underruns;
 780	u_int excessive_underruns;
 781	u_int rx_runt_frames;
 782	u_int rx_collision;
 783	u_int rx_dribble;
 784	u_int rx_overflow;
 785};
 786
 787struct de4x5_private {
 788    char adapter_name[80];                  /* Adapter name                 */
 789    u_long interrupt;                       /* Aligned ISR flag             */
 790    struct de4x5_desc *rx_ring;		    /* RX descriptor ring           */
 791    struct de4x5_desc *tx_ring;		    /* TX descriptor ring           */
 792    struct sk_buff *tx_skb[NUM_TX_DESC];    /* TX skb for freeing when sent */
 793    struct sk_buff *rx_skb[NUM_RX_DESC];    /* RX skb's                     */
 794    int rx_new, rx_old;                     /* RX descriptor ring pointers  */
 795    int tx_new, tx_old;                     /* TX descriptor ring pointers  */
 796    char setup_frame[SETUP_FRAME_LEN];      /* Holds MCA and PA info.       */
 797    char frame[64];                         /* Min sized packet for loopback*/
 798    spinlock_t lock;                        /* Adapter specific spinlock    */
 799    struct net_device_stats stats;          /* Public stats                 */
 800    struct pkt_stats pktStats;	            /* Private stats counters	    */
 801    char rxRingSize;
 802    char txRingSize;
 803    int  bus;                               /* EISA or PCI                  */
 804    int  bus_num;                           /* PCI Bus number               */
 805    int  device;                            /* Device number on PCI bus     */
 806    int  state;                             /* Adapter OPENED or CLOSED     */
 807    int  chipset;                           /* DC21040, DC21041 or DC21140  */
 808    s32  irq_mask;                          /* Interrupt Mask (Enable) bits */
 809    s32  irq_en;                            /* Summary interrupt bits       */
 810    int  media;                             /* Media (eg TP), mode (eg 100B)*/
 811    int  c_media;                           /* Remember the last media conn */
 812    bool fdx;                               /* media full duplex flag       */
 813    int  linkOK;                            /* Link is OK                   */
 814    int  autosense;                         /* Allow/disallow autosensing   */
 815    bool tx_enable;                         /* Enable descriptor polling    */
 816    int  setup_f;                           /* Setup frame filtering type   */
 817    int  local_state;                       /* State within a 'media' state */
 818    struct mii_phy phy[DE4X5_MAX_PHY];      /* List of attached PHY devices */
 819    struct sia_phy sia;                     /* SIA PHY Information          */
 820    int  active;                            /* Index to active PHY device   */
 821    int  mii_cnt;                           /* Number of attached PHY's     */
 822    int  timeout;                           /* Scheduling counter           */
 823    struct timer_list timer;                /* Timer info for kernel        */
 824    int tmp;                                /* Temporary global per card    */
 825    struct {
 826	u_long lock;                        /* Lock the cache accesses      */
 827	s32 csr0;                           /* Saved Bus Mode Register      */
 828	s32 csr6;                           /* Saved Operating Mode Reg.    */
 829	s32 csr7;                           /* Saved IRQ Mask Register      */
 830	s32 gep;                            /* Saved General Purpose Reg.   */
 831	s32 gepc;                           /* Control info for GEP         */
 832	s32 csr13;                          /* Saved SIA Connectivity Reg.  */
 833	s32 csr14;                          /* Saved SIA TX/RX Register     */
 834	s32 csr15;                          /* Saved SIA General Register   */
 835	int save_cnt;                       /* Flag if state already saved  */
 836	struct sk_buff_head queue;          /* Save the (re-ordered) skb's  */
 837    } cache;
 838    struct de4x5_srom srom;                 /* A copy of the SROM           */
 839    int cfrv;				    /* Card CFRV copy */
 840    int rx_ovf;                             /* Check for 'RX overflow' tag  */
 841    bool useSROM;                           /* For non-DEC card use SROM    */
 842    bool useMII;                            /* Infoblock using the MII      */
 843    int asBitValid;                         /* Autosense bits in GEP?       */
 844    int asPolarity;                         /* 0 => asserted high           */
 845    int asBit;                              /* Autosense bit number in GEP  */
 846    int defMedium;                          /* SROM default medium          */
 847    int tcount;                             /* Last infoblock number        */
 848    int infoblock_init;                     /* Initialised this infoblock?  */
 849    int infoleaf_offset;                    /* SROM infoleaf for controller */
 850    s32 infoblock_csr6;                     /* csr6 value in SROM infoblock */
 851    int infoblock_media;                    /* infoblock media              */
 852    int (*infoleaf_fn)(struct net_device *);    /* Pointer to infoleaf function */
 853    u_char *rst;                            /* Pointer to Type 5 reset info */
 854    u_char  ibn;                            /* Infoblock number             */
 855    struct parameters params;               /* Command line/ #defined params */
 856    struct device *gendev;	            /* Generic device */
 857    dma_addr_t dma_rings;		    /* DMA handle for rings	    */
 858    int dma_size;			    /* Size of the DMA area	    */
 859    char *rx_bufs;			    /* rx bufs on alpha, sparc, ... */
 860};
 861
 862/*
 863** To get around certain poxy cards that don't provide an SROM
 864** for the second and more DECchip, I have to key off the first
 865** chip's address. I'll assume there's not a bad SROM iff:
 866**
 867**      o the chipset is the same
 868**      o the bus number is the same and > 0
 869**      o the sum of all the returned hw address bytes is 0 or 0x5fa
 870**
 871** Also have to save the irq for those cards whose hardware designers
 872** can't follow the PCI to PCI Bridge Architecture spec.
 873*/
 874static struct {
 875    int chipset;
 876    int bus;
 877    int irq;
 878    u_char addr[ETH_ALEN];
 879} last = {0,};
 880
 881/*
 882** The transmit ring full condition is described by the tx_old and tx_new
 883** pointers by:
 884**    tx_old            = tx_new    Empty ring
 885**    tx_old            = tx_new+1  Full ring
 886**    tx_old+txRingSize = tx_new+1  Full ring  (wrapped condition)
 887*/
 888#define TX_BUFFS_AVAIL ((lp->tx_old<=lp->tx_new)?\
 889			lp->tx_old+lp->txRingSize-lp->tx_new-1:\
 890			lp->tx_old               -lp->tx_new-1)
 891
 892#define TX_PKT_PENDING (lp->tx_old != lp->tx_new)
 893
 894/*
 895** Public Functions
 896*/
 897static int     de4x5_open(struct net_device *dev);
 898static netdev_tx_t de4x5_queue_pkt(struct sk_buff *skb,
 899					 struct net_device *dev);
 900static irqreturn_t de4x5_interrupt(int irq, void *dev_id);
 901static int     de4x5_close(struct net_device *dev);
 902static struct  net_device_stats *de4x5_get_stats(struct net_device *dev);
 903static void    de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len);
 904static void    set_multicast_list(struct net_device *dev);
 905static int     de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 906
 907/*
 908** Private functions
 909*/
 910static int     de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev);
 911static int     de4x5_init(struct net_device *dev);
 912static int     de4x5_sw_reset(struct net_device *dev);
 913static int     de4x5_rx(struct net_device *dev);
 914static int     de4x5_tx(struct net_device *dev);
 915static void    de4x5_ast(struct net_device *dev);
 916static int     de4x5_txur(struct net_device *dev);
 917static int     de4x5_rx_ovfc(struct net_device *dev);
 918
 919static int     autoconf_media(struct net_device *dev);
 920static void    create_packet(struct net_device *dev, char *frame, int len);
 921static void    load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb);
 922static int     dc21040_autoconf(struct net_device *dev);
 923static int     dc21041_autoconf(struct net_device *dev);
 924static int     dc21140m_autoconf(struct net_device *dev);
 925static int     dc2114x_autoconf(struct net_device *dev);
 926static int     srom_autoconf(struct net_device *dev);
 927static int     de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state, int (*fn)(struct net_device *, int), int (*asfn)(struct net_device *));
 928static int     dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout, int next_state, int suspect_state, int (*fn)(struct net_device *, int));
 929static int     test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec);
 930static int     test_for_100Mb(struct net_device *dev, int msec);
 931static int     wait_for_link(struct net_device *dev);
 932static int     test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec);
 933static int     is_spd_100(struct net_device *dev);
 934static int     is_100_up(struct net_device *dev);
 935static int     is_10_up(struct net_device *dev);
 936static int     is_anc_capable(struct net_device *dev);
 937static int     ping_media(struct net_device *dev, int msec);
 938static struct sk_buff *de4x5_alloc_rx_buff(struct net_device *dev, int index, int len);
 939static void    de4x5_free_rx_buffs(struct net_device *dev);
 940static void    de4x5_free_tx_buffs(struct net_device *dev);
 941static void    de4x5_save_skbs(struct net_device *dev);
 942static void    de4x5_rst_desc_ring(struct net_device *dev);
 943static void    de4x5_cache_state(struct net_device *dev, int flag);
 944static void    de4x5_put_cache(struct net_device *dev, struct sk_buff *skb);
 945static void    de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb);
 946static struct  sk_buff *de4x5_get_cache(struct net_device *dev);
 947static void    de4x5_setup_intr(struct net_device *dev);
 948static void    de4x5_init_connection(struct net_device *dev);
 949static int     de4x5_reset_phy(struct net_device *dev);
 950static void    reset_init_sia(struct net_device *dev, s32 sicr, s32 strr, s32 sigr);
 951static int     test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec);
 952static int     test_tp(struct net_device *dev, s32 msec);
 953static int     EISA_signature(char *name, struct device *device);
 954static int     PCI_signature(char *name, struct de4x5_private *lp);
 955static void    DevicePresent(struct net_device *dev, u_long iobase);
 956static void    enet_addr_rst(u_long aprom_addr);
 957static int     de4x5_bad_srom(struct de4x5_private *lp);
 958static short   srom_rd(u_long address, u_char offset);
 959static void    srom_latch(u_int command, u_long address);
 960static void    srom_command(u_int command, u_long address);
 961static void    srom_address(u_int command, u_long address, u_char offset);
 962static short   srom_data(u_int command, u_long address);
 963/*static void    srom_busy(u_int command, u_long address);*/
 964static void    sendto_srom(u_int command, u_long addr);
 965static int     getfrom_srom(u_long addr);
 966static int     srom_map_media(struct net_device *dev);
 967static int     srom_infoleaf_info(struct net_device *dev);
 968static void    srom_init(struct net_device *dev);
 969static void    srom_exec(struct net_device *dev, u_char *p);
 970static int     mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr);
 971static void    mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr);
 972static int     mii_rdata(u_long ioaddr);
 973static void    mii_wdata(int data, int len, u_long ioaddr);
 974static void    mii_ta(u_long rw, u_long ioaddr);
 975static int     mii_swap(int data, int len);
 976static void    mii_address(u_char addr, u_long ioaddr);
 977static void    sendto_mii(u32 command, int data, u_long ioaddr);
 978static int     getfrom_mii(u32 command, u_long ioaddr);
 979static int     mii_get_oui(u_char phyaddr, u_long ioaddr);
 980static int     mii_get_phy(struct net_device *dev);
 981static void    SetMulticastFilter(struct net_device *dev);
 982static int     get_hw_addr(struct net_device *dev);
 983static void    srom_repair(struct net_device *dev, int card);
 984static int     test_bad_enet(struct net_device *dev, int status);
 985static int     an_exception(struct de4x5_private *lp);
 986static char    *build_setup_frame(struct net_device *dev, int mode);
 987static void    disable_ast(struct net_device *dev);
 988static long    de4x5_switch_mac_port(struct net_device *dev);
 989static int     gep_rd(struct net_device *dev);
 990static void    gep_wr(s32 data, struct net_device *dev);
 991static void    yawn(struct net_device *dev, int state);
 992static void    de4x5_parse_params(struct net_device *dev);
 993static void    de4x5_dbg_open(struct net_device *dev);
 994static void    de4x5_dbg_mii(struct net_device *dev, int k);
 995static void    de4x5_dbg_media(struct net_device *dev);
 996static void    de4x5_dbg_srom(struct de4x5_srom *p);
 997static void    de4x5_dbg_rx(struct sk_buff *skb, int len);
 998static int     de4x5_strncmp(char *a, char *b, int n);
 999static int     dc21041_infoleaf(struct net_device *dev);
1000static int     dc21140_infoleaf(struct net_device *dev);
1001static int     dc21142_infoleaf(struct net_device *dev);
1002static int     dc21143_infoleaf(struct net_device *dev);
1003static int     type0_infoblock(struct net_device *dev, u_char count, u_char *p);
1004static int     type1_infoblock(struct net_device *dev, u_char count, u_char *p);
1005static int     type2_infoblock(struct net_device *dev, u_char count, u_char *p);
1006static int     type3_infoblock(struct net_device *dev, u_char count, u_char *p);
1007static int     type4_infoblock(struct net_device *dev, u_char count, u_char *p);
1008static int     type5_infoblock(struct net_device *dev, u_char count, u_char *p);
1009static int     compact_infoblock(struct net_device *dev, u_char count, u_char *p);
1010
1011/*
1012** Note now that module autoprobing is allowed under EISA and PCI. The
1013** IRQ lines will not be auto-detected; instead I'll rely on the BIOSes
1014** to "do the right thing".
1015*/
1016
1017static int io=0x0;/* EDIT THIS LINE FOR YOUR CONFIGURATION IF NEEDED        */
1018
1019module_param(io, int, 0);
1020module_param(de4x5_debug, int, 0);
1021module_param(dec_only, int, 0);
1022module_param(args, charp, 0);
1023
1024MODULE_PARM_DESC(io, "de4x5 I/O base address");
1025MODULE_PARM_DESC(de4x5_debug, "de4x5 debug mask");
1026MODULE_PARM_DESC(dec_only, "de4x5 probe only for Digital boards (0-1)");
1027MODULE_PARM_DESC(args, "de4x5 full duplex and media type settings; see de4x5.c for details");
1028MODULE_LICENSE("GPL");
1029
1030/*
1031** List the SROM infoleaf functions and chipsets
1032*/
1033struct InfoLeaf {
1034    int chipset;
1035    int (*fn)(struct net_device *);
1036};
1037static struct InfoLeaf infoleaf_array[] = {
1038    {DC21041, dc21041_infoleaf},
1039    {DC21140, dc21140_infoleaf},
1040    {DC21142, dc21142_infoleaf},
1041    {DC21143, dc21143_infoleaf}
1042};
1043#define INFOLEAF_SIZE ARRAY_SIZE(infoleaf_array)
1044
1045/*
1046** List the SROM info block functions
1047*/
1048static int (*dc_infoblock[])(struct net_device *dev, u_char, u_char *) = {
1049    type0_infoblock,
1050    type1_infoblock,
1051    type2_infoblock,
1052    type3_infoblock,
1053    type4_infoblock,
1054    type5_infoblock,
1055    compact_infoblock
1056};
1057
1058#define COMPACT (ARRAY_SIZE(dc_infoblock) - 1)
1059
1060/*
1061** Miscellaneous defines...
1062*/
1063#define RESET_DE4X5 {\
1064    int i;\
1065    i=inl(DE4X5_BMR);\
1066    mdelay(1);\
1067    outl(i | BMR_SWR, DE4X5_BMR);\
1068    mdelay(1);\
1069    outl(i, DE4X5_BMR);\
1070    mdelay(1);\
1071    for (i=0;i<5;i++) {inl(DE4X5_BMR); mdelay(1);}\
1072    mdelay(1);\
1073}
1074
1075#define PHY_HARD_RESET {\
1076    outl(GEP_HRST, DE4X5_GEP);           /* Hard RESET the PHY dev. */\
1077    mdelay(1);                           /* Assert for 1ms */\
1078    outl(0x00, DE4X5_GEP);\
1079    mdelay(2);                           /* Wait for 2ms */\
1080}
1081
1082static const struct net_device_ops de4x5_netdev_ops = {
1083    .ndo_open		= de4x5_open,
1084    .ndo_stop		= de4x5_close,
1085    .ndo_start_xmit	= de4x5_queue_pkt,
1086    .ndo_get_stats	= de4x5_get_stats,
1087    .ndo_set_multicast_list = set_multicast_list,
1088    .ndo_do_ioctl	= de4x5_ioctl,
1089    .ndo_change_mtu	= eth_change_mtu,
1090    .ndo_set_mac_address= eth_mac_addr,
1091    .ndo_validate_addr	= eth_validate_addr,
1092};
1093
1094
1095static int __devinit
1096de4x5_hw_init(struct net_device *dev, u_long iobase, struct device *gendev)
1097{
1098    char name[DE4X5_NAME_LENGTH + 1];
1099    struct de4x5_private *lp = netdev_priv(dev);
1100    struct pci_dev *pdev = NULL;
1101    int i, status=0;
1102
1103    dev_set_drvdata(gendev, dev);
1104
1105    /* Ensure we're not sleeping */
1106    if (lp->bus == EISA) {
1107	outb(WAKEUP, PCI_CFPM);
1108    } else {
1109	pdev = to_pci_dev (gendev);
1110	pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
1111    }
1112    mdelay(10);
1113
1114    RESET_DE4X5;
1115
1116    if ((inl(DE4X5_STS) & (STS_TS | STS_RS)) != 0) {
1117	return -ENXIO;                       /* Hardware could not reset */
1118    }
1119
1120    /*
1121    ** Now find out what kind of DC21040/DC21041/DC21140 board we have.
1122    */
1123    lp->useSROM = false;
1124    if (lp->bus == PCI) {
1125	PCI_signature(name, lp);
1126    } else {
1127	EISA_signature(name, gendev);
1128    }
1129
1130    if (*name == '\0') {                     /* Not found a board signature */
1131	return -ENXIO;
1132    }
1133
1134    dev->base_addr = iobase;
1135    printk ("%s: %s at 0x%04lx", dev_name(gendev), name, iobase);
1136
1137    status = get_hw_addr(dev);
1138    printk(", h/w address %pM\n", dev->dev_addr);
1139
1140    if (status != 0) {
1141	printk("      which has an Ethernet PROM CRC error.\n");
1142	return -ENXIO;
1143    } else {
1144	skb_queue_head_init(&lp->cache.queue);
1145	lp->cache.gepc = GEP_INIT;
1146	lp->asBit = GEP_SLNK;
1147	lp->asPolarity = GEP_SLNK;
1148	lp->asBitValid = ~0;
1149	lp->timeout = -1;
1150	lp->gendev = gendev;
1151	spin_lock_init(&lp->lock);
1152	init_timer(&lp->timer);
1153	lp->timer.function = (void (*)(unsigned long))de4x5_ast;
1154	lp->timer.data = (unsigned long)dev;
1155	de4x5_parse_params(dev);
1156
1157	/*
1158	** Choose correct autosensing in case someone messed up
1159	*/
1160        lp->autosense = lp->params.autosense;
1161        if (lp->chipset != DC21140) {
1162            if ((lp->chipset==DC21040) && (lp->params.autosense&TP_NW)) {
1163                lp->params.autosense = TP;
1164            }
1165            if ((lp->chipset==DC21041) && (lp->params.autosense&BNC_AUI)) {
1166                lp->params.autosense = BNC;
1167            }
1168        }
1169	lp->fdx = lp->params.fdx;
1170	sprintf(lp->adapter_name,"%s (%s)", name, dev_name(gendev));
1171
1172	lp->dma_size = (NUM_RX_DESC + NUM_TX_DESC) * sizeof(struct de4x5_desc);
1173#if defined(__alpha__) || defined(__powerpc__) || defined(CONFIG_SPARC) || defined(DE4X5_DO_MEMCPY)
1174	lp->dma_size += RX_BUFF_SZ * NUM_RX_DESC + DE4X5_ALIGN;
1175#endif
1176	lp->rx_ring = dma_alloc_coherent(gendev, lp->dma_size,
1177					 &lp->dma_rings, GFP_ATOMIC);
1178	if (lp->rx_ring == NULL) {
1179	    return -ENOMEM;
1180	}
1181
1182	lp->tx_ring = lp->rx_ring + NUM_RX_DESC;
1183
1184	/*
1185	** Set up the RX descriptor ring (Intels)
1186	** Allocate contiguous receive buffers, long word aligned (Alphas)
1187	*/
1188#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
1189	for (i=0; i<NUM_RX_DESC; i++) {
1190	    lp->rx_ring[i].status = 0;
1191	    lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1192	    lp->rx_ring[i].buf = 0;
1193	    lp->rx_ring[i].next = 0;
1194	    lp->rx_skb[i] = (struct sk_buff *) 1;     /* Dummy entry */
1195	}
1196
1197#else
1198	{
1199		dma_addr_t dma_rx_bufs;
1200
1201		dma_rx_bufs = lp->dma_rings + (NUM_RX_DESC + NUM_TX_DESC)
1202		      	* sizeof(struct de4x5_desc);
1203		dma_rx_bufs = (dma_rx_bufs + DE4X5_ALIGN) & ~DE4X5_ALIGN;
1204		lp->rx_bufs = (char *)(((long)(lp->rx_ring + NUM_RX_DESC
1205		      	+ NUM_TX_DESC) + DE4X5_ALIGN) & ~DE4X5_ALIGN);
1206		for (i=0; i<NUM_RX_DESC; i++) {
1207	    		lp->rx_ring[i].status = 0;
1208	    		lp->rx_ring[i].des1 = cpu_to_le32(RX_BUFF_SZ);
1209	    		lp->rx_ring[i].buf =
1210				cpu_to_le32(dma_rx_bufs+i*RX_BUFF_SZ);
1211	    		lp->rx_ring[i].next = 0;
1212	    		lp->rx_skb[i] = (struct sk_buff *) 1; /* Dummy entry */
1213		}
1214
1215	}
1216#endif
1217
1218	barrier();
1219
1220	lp->rxRingSize = NUM_RX_DESC;
1221	lp->txRingSize = NUM_TX_DESC;
1222
1223	/* Write the end of list marker to the descriptor lists */
1224	lp->rx_ring[lp->rxRingSize - 1].des1 |= cpu_to_le32(RD_RER);
1225	lp->tx_ring[lp->txRingSize - 1].des1 |= cpu_to_le32(TD_TER);
1226
1227	/* Tell the adapter where the TX/RX rings are located. */
1228	outl(lp->dma_rings, DE4X5_RRBA);
1229	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1230	     DE4X5_TRBA);
1231
1232	/* Initialise the IRQ mask and Enable/Disable */
1233	lp->irq_mask = IMR_RIM | IMR_TIM | IMR_TUM | IMR_UNM;
1234	lp->irq_en   = IMR_NIM | IMR_AIM;
1235
1236	/* Create a loopback packet frame for later media probing */
1237	create_packet(dev, lp->frame, sizeof(lp->frame));
1238
1239	/* Check if the RX overflow bug needs testing for */
1240	i = lp->cfrv & 0x000000fe;
1241	if ((lp->chipset == DC21140) && (i == 0x20)) {
1242	    lp->rx_ovf = 1;
1243	}
1244
1245	/* Initialise the SROM pointers if possible */
1246	if (lp->useSROM) {
1247	    lp->state = INITIALISED;
1248	    if (srom_infoleaf_info(dev)) {
1249	        dma_free_coherent (gendev, lp->dma_size,
1250			       lp->rx_ring, lp->dma_rings);
1251		return -ENXIO;
1252	    }
1253	    srom_init(dev);
1254	}
1255
1256	lp->state = CLOSED;
1257
1258	/*
1259	** Check for an MII interface
1260	*/
1261	if ((lp->chipset != DC21040) && (lp->chipset != DC21041)) {
1262	    mii_get_phy(dev);
1263	}
1264
1265	printk("      and requires IRQ%d (provided by %s).\n", dev->irq,
1266	       ((lp->bus == PCI) ? "PCI BIOS" : "EISA CNFG"));
1267    }
1268
1269    if (de4x5_debug & DEBUG_VERSION) {
1270	printk(version);
1271    }
1272
1273    /* The DE4X5-specific entries in the device structure. */
1274    SET_NETDEV_DEV(dev, gendev);
1275    dev->netdev_ops = &de4x5_netdev_ops;
1276    dev->mem_start = 0;
1277
1278    /* Fill in the generic fields of the device structure. */
1279    if ((status = register_netdev (dev))) {
1280	    dma_free_coherent (gendev, lp->dma_size,
1281			       lp->rx_ring, lp->dma_rings);
1282	    return status;
1283    }
1284
1285    /* Let the adapter sleep to save power */
1286    yawn(dev, SLEEP);
1287
1288    return status;
1289}
1290
1291
1292static int
1293de4x5_open(struct net_device *dev)
1294{
1295    struct de4x5_private *lp = netdev_priv(dev);
1296    u_long iobase = dev->base_addr;
1297    int i, status = 0;
1298    s32 omr;
1299
1300    /* Allocate the RX buffers */
1301    for (i=0; i<lp->rxRingSize; i++) {
1302	if (de4x5_alloc_rx_buff(dev, i, 0) == NULL) {
1303	    de4x5_free_rx_buffs(dev);
1304	    return -EAGAIN;
1305	}
1306    }
1307
1308    /*
1309    ** Wake up the adapter
1310    */
1311    yawn(dev, WAKEUP);
1312
1313    /*
1314    ** Re-initialize the DE4X5...
1315    */
1316    status = de4x5_init(dev);
1317    spin_lock_init(&lp->lock);
1318    lp->state = OPEN;
1319    de4x5_dbg_open(dev);
1320
1321    if (request_irq(dev->irq, de4x5_interrupt, IRQF_SHARED,
1322		                                     lp->adapter_name, dev)) {
1323	printk("de4x5_open(): Requested IRQ%d is busy - attemping FAST/SHARE...", dev->irq);
1324	if (request_irq(dev->irq, de4x5_interrupt, IRQF_DISABLED | IRQF_SHARED,
1325			                             lp->adapter_name, dev)) {
1326	    printk("\n              Cannot get IRQ- reconfigure your hardware.\n");
1327	    disable_ast(dev);
1328	    de4x5_free_rx_buffs(dev);
1329	    de4x5_free_tx_buffs(dev);
1330	    yawn(dev, SLEEP);
1331	    lp->state = CLOSED;
1332	    return -EAGAIN;
1333	} else {
1334	    printk("\n              Succeeded, but you should reconfigure your hardware to avoid this.\n");
1335	    printk("WARNING: there may be IRQ related problems in heavily loaded systems.\n");
1336	}
1337    }
1338
1339    lp->interrupt = UNMASK_INTERRUPTS;
1340    dev->trans_start = jiffies; /* prevent tx timeout */
1341
1342    START_DE4X5;
1343
1344    de4x5_setup_intr(dev);
1345
1346    if (de4x5_debug & DEBUG_OPEN) {
1347	printk("\tsts:  0x%08x\n", inl(DE4X5_STS));
1348	printk("\tbmr:  0x%08x\n", inl(DE4X5_BMR));
1349	printk("\timr:  0x%08x\n", inl(DE4X5_IMR));
1350	printk("\tomr:  0x%08x\n", inl(DE4X5_OMR));
1351	printk("\tsisr: 0x%08x\n", inl(DE4X5_SISR));
1352	printk("\tsicr: 0x%08x\n", inl(DE4X5_SICR));
1353	printk("\tstrr: 0x%08x\n", inl(DE4X5_STRR));
1354	printk("\tsigr: 0x%08x\n", inl(DE4X5_SIGR));
1355    }
1356
1357    return status;
1358}
1359
1360/*
1361** Initialize the DE4X5 operating conditions. NB: a chip problem with the
1362** DC21140 requires using perfect filtering mode for that chip. Since I can't
1363** see why I'd want > 14 multicast addresses, I have changed all chips to use
1364** the perfect filtering mode. Keep the DMA burst length at 8: there seems
1365** to be data corruption problems if it is larger (UDP errors seen from a
1366** ttcp source).
1367*/
1368static int
1369de4x5_init(struct net_device *dev)
1370{
1371    /* Lock out other processes whilst setting up the hardware */
1372    netif_stop_queue(dev);
1373
1374    de4x5_sw_reset(dev);
1375
1376    /* Autoconfigure the connected port */
1377    autoconf_media(dev);
1378
1379    return 0;
1380}
1381
1382static int
1383de4x5_sw_reset(struct net_device *dev)
1384{
1385    struct de4x5_private *lp = netdev_priv(dev);
1386    u_long iobase = dev->base_addr;
1387    int i, j, status = 0;
1388    s32 bmr, omr;
1389
1390    /* Select the MII or SRL port now and RESET the MAC */
1391    if (!lp->useSROM) {
1392	if (lp->phy[lp->active].id != 0) {
1393	    lp->infoblock_csr6 = OMR_SDP | OMR_PS | OMR_HBD;
1394	} else {
1395	    lp->infoblock_csr6 = OMR_SDP | OMR_TTM;
1396	}
1397	de4x5_switch_mac_port(dev);
1398    }
1399
1400    /*
1401    ** Set the programmable burst length to 8 longwords for all the DC21140
1402    ** Fasternet chips and 4 longwords for all others: DMA errors result
1403    ** without these values. Cache align 16 long.
1404    */
1405    bmr = (lp->chipset==DC21140 ? PBL_8 : PBL_4) | DESC_SKIP_LEN | DE4X5_CACHE_ALIGN;
1406    bmr |= ((lp->chipset & ~0x00ff)==DC2114x ? BMR_RML : 0);
1407    outl(bmr, DE4X5_BMR);
1408
1409    omr = inl(DE4X5_OMR) & ~OMR_PR;             /* Turn off promiscuous mode */
1410    if (lp->chipset == DC21140) {
1411	omr |= (OMR_SDP | OMR_SB);
1412    }
1413    lp->setup_f = PERFECT;
1414    outl(lp->dma_rings, DE4X5_RRBA);
1415    outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
1416	 DE4X5_TRBA);
1417
1418    lp->rx_new = lp->rx_old = 0;
1419    lp->tx_new = lp->tx_old = 0;
1420
1421    for (i = 0; i < lp->rxRingSize; i++) {
1422	lp->rx_ring[i].status = cpu_to_le32(R_OWN);
1423    }
1424
1425    for (i = 0; i < lp->txRingSize; i++) {
1426	lp->tx_ring[i].status = cpu_to_le32(0);
1427    }
1428
1429    barrier();
1430
1431    /* Build the setup frame depending on filtering mode */
1432    SetMulticastFilter(dev);
1433
1434    load_packet(dev, lp->setup_frame, PERFECT_F|TD_SET|SETUP_FRAME_LEN, (struct sk_buff *)1);
1435    outl(omr|OMR_ST, DE4X5_OMR);
1436
1437    /* Poll for setup frame completion (adapter interrupts are disabled now) */
1438
1439    for (j=0, i=0;(i<500) && (j==0);i++) {       /* Up to 500ms delay */
1440	mdelay(1);
1441	if ((s32)le32_to_cpu(lp->tx_ring[lp->tx_new].status) >= 0) j=1;
1442    }
1443    outl(omr, DE4X5_OMR);                        /* Stop everything! */
1444
1445    if (j == 0) {
1446	printk("%s: Setup frame timed out, status %08x\n", dev->name,
1447	       inl(DE4X5_STS));
1448	status = -EIO;
1449    }
1450
1451    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1452    lp->tx_old = lp->tx_new;
1453
1454    return status;
1455}
1456
1457/*
1458** Writes a socket buffer address to the next available transmit descriptor.
1459*/
1460static netdev_tx_t
1461de4x5_queue_pkt(struct sk_buff *skb, struct net_device *dev)
1462{
1463    struct de4x5_private *lp = netdev_priv(dev);
1464    u_long iobase = dev->base_addr;
1465    u_long flags = 0;
1466
1467    netif_stop_queue(dev);
1468    if (!lp->tx_enable)                   /* Cannot send for now */
1469	return NETDEV_TX_LOCKED;
1470
1471    /*
1472    ** Clean out the TX ring asynchronously to interrupts - sometimes the
1473    ** interrupts are lost by delayed descriptor status updates relative to
1474    ** the irq assertion, especially with a busy PCI bus.
1475    */
1476    spin_lock_irqsave(&lp->lock, flags);
1477    de4x5_tx(dev);
1478    spin_unlock_irqrestore(&lp->lock, flags);
1479
1480    /* Test if cache is already locked - requeue skb if so */
1481    if (test_and_set_bit(0, (void *)&lp->cache.lock) && !lp->interrupt)
1482	return NETDEV_TX_LOCKED;
1483
1484    /* Transmit descriptor ring full or stale skb */
1485    if (netif_queue_stopped(dev) || (u_long) lp->tx_skb[lp->tx_new] > 1) {
1486	if (lp->interrupt) {
1487	    de4x5_putb_cache(dev, skb);          /* Requeue the buffer */
1488	} else {
1489	    de4x5_put_cache(dev, skb);
1490	}
1491	if (de4x5_debug & DEBUG_TX) {
1492	    printk("%s: transmit busy, lost media or stale skb found:\n  STS:%08x\n  tbusy:%d\n  IMR:%08x\n  OMR:%08x\n Stale skb: %s\n",dev->name, inl(DE4X5_STS), netif_queue_stopped(dev), inl(DE4X5_IMR), inl(DE4X5_OMR), ((u_long) lp->tx_skb[lp->tx_new] > 1) ? "YES" : "NO");
1493	}
1494    } else if (skb->len > 0) {
1495	/* If we already have stuff queued locally, use that first */
1496	if (!skb_queue_empty(&lp->cache.queue) && !lp->interrupt) {
1497	    de4x5_put_cache(dev, skb);
1498	    skb = de4x5_get_cache(dev);
1499	}
1500
1501	while (skb && !netif_queue_stopped(dev) &&
1502	       (u_long) lp->tx_skb[lp->tx_new] <= 1) {
1503	    spin_lock_irqsave(&lp->lock, flags);
1504	    netif_stop_queue(dev);
1505	    load_packet(dev, skb->data, TD_IC | TD_LS | TD_FS | skb->len, skb);
1506 	    lp->stats.tx_bytes += skb->len;
1507	    outl(POLL_DEMAND, DE4X5_TPD);/* Start the TX */
1508
1509	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1510
1511	    if (TX_BUFFS_AVAIL) {
1512		netif_start_queue(dev);         /* Another pkt may be queued */
1513	    }
1514	    skb = de4x5_get_cache(dev);
1515	    spin_unlock_irqrestore(&lp->lock, flags);
1516	}
1517	if (skb) de4x5_putb_cache(dev, skb);
1518    }
1519
1520    lp->cache.lock = 0;
1521
1522    return NETDEV_TX_OK;
1523}
1524
1525/*
1526** The DE4X5 interrupt handler.
1527**
1528** I/O Read/Writes through intermediate PCI bridges are never 'posted',
1529** so that the asserted interrupt always has some real data to work with -
1530** if these I/O accesses are ever changed to memory accesses, ensure the
1531** STS write is read immediately to complete the transaction if the adapter
1532** is not on bus 0. Lost interrupts can still occur when the PCI bus load
1533** is high and descriptor status bits cannot be set before the associated
1534** interrupt is asserted and this routine entered.
1535*/
1536static irqreturn_t
1537de4x5_interrupt(int irq, void *dev_id)
1538{
1539    struct net_device *dev = dev_id;
1540    struct de4x5_private *lp;
1541    s32 imr, omr, sts, limit;
1542    u_long iobase;
1543    unsigned int handled = 0;
1544
1545    lp = netdev_priv(dev);
1546    spin_lock(&lp->lock);
1547    iobase = dev->base_addr;
1548
1549    DISABLE_IRQs;                        /* Ensure non re-entrancy */
1550
1551    if (test_and_set_bit(MASK_INTERRUPTS, (void*) &lp->interrupt))
1552	printk("%s: Re-entering the interrupt handler.\n", dev->name);
1553
1554    synchronize_irq(dev->irq);
1555
1556    for (limit=0; limit<8; limit++) {
1557	sts = inl(DE4X5_STS);            /* Read IRQ status */
1558	outl(sts, DE4X5_STS);            /* Reset the board interrupts */
1559
1560	if (!(sts & lp->irq_mask)) break;/* All done */
1561	handled = 1;
1562
1563	if (sts & (STS_RI | STS_RU))     /* Rx interrupt (packet[s] arrived) */
1564	  de4x5_rx(dev);
1565
1566	if (sts & (STS_TI | STS_TU))     /* Tx interrupt (packet sent) */
1567	  de4x5_tx(dev);
1568
1569	if (sts & STS_LNF) {             /* TP Link has failed */
1570	    lp->irq_mask &= ~IMR_LFM;
1571	}
1572
1573	if (sts & STS_UNF) {             /* Transmit underrun */
1574	    de4x5_txur(dev);
1575	}
1576
1577	if (sts & STS_SE) {              /* Bus Error */
1578	    STOP_DE4X5;
1579	    printk("%s: Fatal bus error occurred, sts=%#8x, device stopped.\n",
1580		   dev->name, sts);
1581	    spin_unlock(&lp->lock);
1582	    return IRQ_HANDLED;
1583	}
1584    }
1585
1586    /* Load the TX ring with any locally stored packets */
1587    if (!test_and_set_bit(0, (void *)&lp->cache.lock)) {
1588	while (!skb_queue_empty(&lp->cache.queue) && !netif_queue_stopped(dev) && lp->tx_enable) {
1589	    de4x5_queue_pkt(de4x5_get_cache(dev), dev);
1590	}
1591	lp->cache.lock = 0;
1592    }
1593
1594    lp->interrupt = UNMASK_INTERRUPTS;
1595    ENABLE_IRQs;
1596    spin_unlock(&lp->lock);
1597
1598    return IRQ_RETVAL(handled);
1599}
1600
1601static int
1602de4x5_rx(struct net_device *dev)
1603{
1604    struct de4x5_private *lp = netdev_priv(dev);
1605    u_long iobase = dev->base_addr;
1606    int entry;
1607    s32 status;
1608
1609    for (entry=lp->rx_new; (s32)le32_to_cpu(lp->rx_ring[entry].status)>=0;
1610	                                                    entry=lp->rx_new) {
1611	status = (s32)le32_to_cpu(lp->rx_ring[entry].status);
1612
1613	if (lp->rx_ovf) {
1614	    if (inl(DE4X5_MFC) & MFC_FOCM) {
1615		de4x5_rx_ovfc(dev);
1616		break;
1617	    }
1618	}
1619
1620	if (status & RD_FS) {                 /* Remember the start of frame */
1621	    lp->rx_old = entry;
1622	}
1623
1624	if (status & RD_LS) {                 /* Valid frame status */
1625	    if (lp->tx_enable) lp->linkOK++;
1626	    if (status & RD_ES) {	      /* There was an error. */
1627		lp->stats.rx_errors++;        /* Update the error stats. */
1628		if (status & (RD_RF | RD_TL)) lp->stats.rx_frame_errors++;
1629		if (status & RD_CE)           lp->stats.rx_crc_errors++;
1630		if (status & RD_OF)           lp->stats.rx_fifo_errors++;
1631		if (status & RD_TL)           lp->stats.rx_length_errors++;
1632		if (status & RD_RF)           lp->pktStats.rx_runt_frames++;
1633		if (status & RD_CS)           lp->pktStats.rx_collision++;
1634		if (status & RD_DB)           lp->pktStats.rx_dribble++;
1635		if (status & RD_OF)           lp->pktStats.rx_overflow++;
1636	    } else {                          /* A valid frame received */
1637		struct sk_buff *skb;
1638		short pkt_len = (short)(le32_to_cpu(lp->rx_ring[entry].status)
1639					                            >> 16) - 4;
1640
1641		if ((skb = de4x5_alloc_rx_buff(dev, entry, pkt_len)) == NULL) {
1642		    printk("%s: Insufficient memory; nuking packet.\n",
1643			                                            dev->name);
1644		    lp->stats.rx_dropped++;
1645		} else {
1646		    de4x5_dbg_rx(skb, pkt_len);
1647
1648		    /* Push up the protocol stack */
1649		    skb->protocol=eth_type_trans(skb,dev);
1650		    de4x5_local_stats(dev, skb->data, pkt_len);
1651		    netif_rx(skb);
1652
1653		    /* Update stats */
1654		    lp->stats.rx_packets++;
1655 		    lp->stats.rx_bytes += pkt_len;
1656		}
1657	    }
1658
1659	    /* Change buffer ownership for this frame, back to the adapter */
1660	    for (;lp->rx_old!=entry;lp->rx_old=(lp->rx_old + 1)%lp->rxRingSize) {
1661		lp->rx_ring[lp->rx_old].status = cpu_to_le32(R_OWN);
1662		barrier();
1663	    }
1664	    lp->rx_ring[entry].status = cpu_to_le32(R_OWN);
1665	    barrier();
1666	}
1667
1668	/*
1669	** Update entry information
1670	*/
1671	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1672    }
1673
1674    return 0;
1675}
1676
1677static inline void
1678de4x5_free_tx_buff(struct de4x5_private *lp, int entry)
1679{
1680    dma_unmap_single(lp->gendev, le32_to_cpu(lp->tx_ring[entry].buf),
1681		     le32_to_cpu(lp->tx_ring[entry].des1) & TD_TBS1,
1682		     DMA_TO_DEVICE);
1683    if ((u_long) lp->tx_skb[entry] > 1)
1684	dev_kfree_skb_irq(lp->tx_skb[entry]);
1685    lp->tx_skb[entry] = NULL;
1686}
1687
1688/*
1689** Buffer sent - check for TX buffer errors.
1690*/
1691static int
1692de4x5_tx(struct net_device *dev)
1693{
1694    struct de4x5_private *lp = netdev_priv(dev);
1695    u_long iobase = dev->base_addr;
1696    int entry;
1697    s32 status;
1698
1699    for (entry = lp->tx_old; entry != lp->tx_new; entry = lp->tx_old) {
1700	status = (s32)le32_to_cpu(lp->tx_ring[entry].status);
1701	if (status < 0) {                     /* Buffer not sent yet */
1702	    break;
1703	} else if (status != 0x7fffffff) {    /* Not setup frame */
1704	    if (status & TD_ES) {             /* An error happened */
1705		lp->stats.tx_errors++;
1706		if (status & TD_NC) lp->stats.tx_carrier_errors++;
1707		if (status & TD_LC) lp->stats.tx_window_errors++;
1708		if (status & TD_UF) lp->stats.tx_fifo_errors++;
1709		if (status & TD_EC) lp->pktStats.excessive_collisions++;
1710		if (status & TD_DE) lp->stats.tx_aborted_errors++;
1711
1712		if (TX_PKT_PENDING) {
1713		    outl(POLL_DEMAND, DE4X5_TPD);/* Restart a stalled TX */
1714		}
1715	    } else {                      /* Packet sent */
1716		lp->stats.tx_packets++;
1717		if (lp->tx_enable) lp->linkOK++;
1718	    }
1719	    /* Update the collision counter */
1720	    lp->stats.collisions += ((status & TD_EC) ? 16 :
1721				                      ((status & TD_CC) >> 3));
1722
1723	    /* Free the buffer. */
1724	    if (lp->tx_skb[entry] != NULL)
1725	    	de4x5_free_tx_buff(lp, entry);
1726	}
1727
1728	/* Update all the pointers */
1729	lp->tx_old = (lp->tx_old + 1) % lp->txRingSize;
1730    }
1731
1732    /* Any resources available? */
1733    if (TX_BUFFS_AVAIL && netif_queue_stopped(dev)) {
1734	if (lp->interrupt)
1735	    netif_wake_queue(dev);
1736	else
1737	    netif_start_queue(dev);
1738    }
1739
1740    return 0;
1741}
1742
1743static void
1744de4x5_ast(struct net_device *dev)
1745{
1746	struct de4x5_private *lp = netdev_priv(dev);
1747	int next_tick = DE4X5_AUTOSENSE_MS;
1748	int dt;
1749
1750	if (lp->useSROM)
1751		next_tick = srom_autoconf(dev);
1752	else if (lp->chipset == DC21140)
1753		next_tick = dc21140m_autoconf(dev);
1754	else if (lp->chipset == DC21041)
1755		next_tick = dc21041_autoconf(dev);
1756	else if (lp->chipset == DC21040)
1757		next_tick = dc21040_autoconf(dev);
1758	lp->linkOK = 0;
1759
1760	dt = (next_tick * HZ) / 1000;
1761
1762	if (!dt)
1763		dt = 1;
1764
1765	mod_timer(&lp->timer, jiffies + dt);
1766}
1767
1768static int
1769de4x5_txur(struct net_device *dev)
1770{
1771    struct de4x5_private *lp = netdev_priv(dev);
1772    u_long iobase = dev->base_addr;
1773    int omr;
1774
1775    omr = inl(DE4X5_OMR);
1776    if (!(omr & OMR_SF) || (lp->chipset==DC21041) || (lp->chipset==DC21040)) {
1777	omr &= ~(OMR_ST|OMR_SR);
1778	outl(omr, DE4X5_OMR);
1779	while (inl(DE4X5_STS) & STS_TS);
1780	if ((omr & OMR_TR) < OMR_TR) {
1781	    omr += 0x4000;
1782	} else {
1783	    omr |= OMR_SF;
1784	}
1785	outl(omr | OMR_ST | OMR_SR, DE4X5_OMR);
1786    }
1787
1788    return 0;
1789}
1790
1791static int
1792de4x5_rx_ovfc(struct net_device *dev)
1793{
1794    struct de4x5_private *lp = netdev_priv(dev);
1795    u_long iobase = dev->base_addr;
1796    int omr;
1797
1798    omr = inl(DE4X5_OMR);
1799    outl(omr & ~OMR_SR, DE4X5_OMR);
1800    while (inl(DE4X5_STS) & STS_RS);
1801
1802    for (; (s32)le32_to_cpu(lp->rx_ring[lp->rx_new].status)>=0;) {
1803	lp->rx_ring[lp->rx_new].status = cpu_to_le32(R_OWN);
1804	lp->rx_new = (lp->rx_new + 1) % lp->rxRingSize;
1805    }
1806
1807    outl(omr, DE4X5_OMR);
1808
1809    return 0;
1810}
1811
1812static int
1813de4x5_close(struct net_device *dev)
1814{
1815    struct de4x5_private *lp = netdev_priv(dev);
1816    u_long iobase = dev->base_addr;
1817    s32 imr, omr;
1818
1819    disable_ast(dev);
1820
1821    netif_stop_queue(dev);
1822
1823    if (de4x5_debug & DEBUG_CLOSE) {
1824	printk("%s: Shutting down ethercard, status was %8.8x.\n",
1825	       dev->name, inl(DE4X5_STS));
1826    }
1827
1828    /*
1829    ** We stop the DE4X5 here... mask interrupts and stop TX & RX
1830    */
1831    DISABLE_IRQs;
1832    STOP_DE4X5;
1833
1834    /* Free the associated irq */
1835    free_irq(dev->irq, dev);
1836    lp->state = CLOSED;
1837
1838    /* Free any socket buffers */
1839    de4x5_free_rx_buffs(dev);
1840    de4x5_free_tx_buffs(dev);
1841
1842    /* Put the adapter to sleep to save power */
1843    yawn(dev, SLEEP);
1844
1845    return 0;
1846}
1847
1848static struct net_device_stats *
1849de4x5_get_stats(struct net_device *dev)
1850{
1851    struct de4x5_private *lp = netdev_priv(dev);
1852    u_long iobase = dev->base_addr;
1853
1854    lp->stats.rx_missed_errors = (int)(inl(DE4X5_MFC) & (MFC_OVFL | MFC_CNTR));
1855
1856    return &lp->stats;
1857}
1858
1859static void
1860de4x5_local_stats(struct net_device *dev, char *buf, int pkt_len)
1861{
1862    struct de4x5_private *lp = netdev_priv(dev);
1863    int i;
1864
1865    for (i=1; i<DE4X5_PKT_STAT_SZ-1; i++) {
1866        if (pkt_len < (i*DE4X5_PKT_BIN_SZ)) {
1867	    lp->pktStats.bins[i]++;
1868	    i = DE4X5_PKT_STAT_SZ;
1869	}
1870    }
1871    if (is_multicast_ether_addr(buf)) {
1872        if (is_broadcast_ether_addr(buf)) {
1873	    lp->pktStats.broadcast++;
1874	} else {
1875	    lp->pktStats.multicast++;
1876	}
1877    } else if (compare_ether_addr(buf, dev->dev_addr) == 0) {
1878        lp->pktStats.unicast++;
1879    }
1880
1881    lp->pktStats.bins[0]++;       /* Duplicates stats.rx_packets */
1882    if (lp->pktStats.bins[0] == 0) { /* Reset counters */
1883        memset((char *)&lp->pktStats, 0, sizeof(lp->pktStats));
1884    }
1885}
1886
1887/*
1888** Removes the TD_IC flag from previous descriptor to improve TX performance.
1889** If the flag is changed on a descriptor that is being read by the hardware,
1890** I assume PCI transaction ordering will mean you are either successful or
1891** just miss asserting the change to the hardware. Anyway you're messing with
1892** a descriptor you don't own, but this shouldn't kill the chip provided
1893** the descriptor register is read only to the hardware.
1894*/
1895static void
1896load_packet(struct net_device *dev, char *buf, u32 flags, struct sk_buff *skb)
1897{
1898    struct de4x5_private *lp = netdev_priv(dev);
1899    int entry = (lp->tx_new ? lp->tx_new-1 : lp->txRingSize-1);
1900    dma_addr_t buf_dma = dma_map_single(lp->gendev, buf, flags & TD_TBS1, DMA_TO_DEVICE);
1901
1902    lp->tx_ring[lp->tx_new].buf = cpu_to_le32(buf_dma);
1903    lp->tx_ring[lp->tx_new].des1 &= cpu_to_le32(TD_TER);
1904    lp->tx_ring[lp->tx_new].des1 |= cpu_to_le32(flags);
1905    lp->tx_skb[lp->tx_new] = skb;
1906    lp->tx_ring[entry].des1 &= cpu_to_le32(~TD_IC);
1907    barrier();
1908
1909    lp->tx_ring[lp->tx_new].status = cpu_to_le32(T_OWN);
1910    barrier();
1911}
1912
1913/*
1914** Set or clear the multicast filter for this adaptor.
1915*/
1916static void
1917set_multicast_list(struct net_device *dev)
1918{
1919    struct de4x5_private *lp = netdev_priv(dev);
1920    u_long iobase = dev->base_addr;
1921
1922    /* First, double check that the adapter is open */
1923    if (lp->state == OPEN) {
1924	if (dev->flags & IFF_PROMISC) {         /* set promiscuous mode */
1925	    u32 omr;
1926	    omr = inl(DE4X5_OMR);
1927	    omr |= OMR_PR;
1928	    outl(omr, DE4X5_OMR);
1929	} else {
1930	    SetMulticastFilter(dev);
1931	    load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
1932			                                SETUP_FRAME_LEN, (struct sk_buff *)1);
1933
1934	    lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
1935	    outl(POLL_DEMAND, DE4X5_TPD);       /* Start the TX */
1936	    dev->trans_start = jiffies; /* prevent tx timeout */
1937	}
1938    }
1939}
1940
1941/*
1942** Calculate the hash code and update the logical address filter
1943** from a list of ethernet multicast addresses.
1944** Little endian crc one liner from Matt Thomas, DEC.
1945*/
1946static void
1947SetMulticastFilter(struct net_device *dev)
1948{
1949    struct de4x5_private *lp = netdev_priv(dev);
1950    struct netdev_hw_addr *ha;
1951    u_long iobase = dev->base_addr;
1952    int i, bit, byte;
1953    u16 hashcode;
1954    u32 omr, crc;
1955    char *pa;
1956    unsigned char *addrs;
1957
1958    omr = inl(DE4X5_OMR);
1959    omr &= ~(OMR_PR | OMR_PM);
1960    pa = build_setup_frame(dev, ALL);        /* Build the basic frame */
1961
1962    if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 14)) {
1963	omr |= OMR_PM;                       /* Pass all multicasts */
1964    } else if (lp->setup_f == HASH_PERF) {   /* Hash Filtering */
1965	netdev_for_each_mc_addr(ha, dev) {
1966		crc = ether_crc_le(ETH_ALEN, ha->addr);
1967		hashcode = crc & HASH_BITS;  /* hashcode is 9 LSb of CRC */
1968
1969		byte = hashcode >> 3;        /* bit[3-8] -> byte in filter */
1970		bit = 1 << (hashcode & 0x07);/* bit[0-2] -> bit in byte */
1971
1972		byte <<= 1;                  /* calc offset into setup frame */
1973		if (byte & 0x02) {
1974		    byte -= 1;
1975		}
1976		lp->setup_frame[byte] |= bit;
1977	}
1978    } else {                                 /* Perfect filtering */
1979	netdev_for_each_mc_addr(ha, dev) {
1980	    addrs = ha->addr;
1981	    for (i=0; i<ETH_ALEN; i++) {
1982		*(pa + (i&1)) = *addrs++;
1983		if (i & 0x01) pa += 4;
1984	    }
1985	}
1986    }
1987    outl(omr, DE4X5_OMR);
1988}
1989
1990#ifdef CONFIG_EISA
1991
1992static u_char de4x5_irq[] = EISA_ALLOWED_IRQ_LIST;
1993
1994static int __init de4x5_eisa_probe (struct device *gendev)
1995{
1996	struct eisa_device *edev;
1997	u_long iobase;
1998	u_char irq, regval;
1999	u_short vendor;
2000	u32 cfid;
2001	int status, device;
2002	struct net_device *dev;
2003	struct de4x5_private *lp;
2004
2005	edev = to_eisa_device (gendev);
2006	iobase = edev->base_addr;
2007
2008	if (!request_region (iobase, DE4X5_EISA_TOTAL_SIZE, "de4x5"))
2009		return -EBUSY;
2010
2011	if (!request_region (iobase + DE4X5_EISA_IO_PORTS,
2012			     DE4X5_EISA_TOTAL_SIZE, "de4x5")) {
2013		status = -EBUSY;
2014		goto release_reg_1;
2015	}
2016
2017	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2018		status = -ENOMEM;
2019		goto release_reg_2;
2020	}
2021	lp = netdev_priv(dev);
2022
2023	cfid = (u32) inl(PCI_CFID);
2024	lp->cfrv = (u_short) inl(PCI_CFRV);
2025	device = (cfid >> 8) & 0x00ffff00;
2026	vendor = (u_short) cfid;
2027
2028	/* Read the EISA Configuration Registers */
2029	regval = inb(EISA_REG0) & (ER0_INTL | ER0_INTT);
2030#ifdef CONFIG_ALPHA
2031	/* Looks like the Jensen firmware (rev 2.2) doesn't really
2032	 * care about the EISA configuration, and thus doesn't
2033	 * configure the PLX bridge properly. Oh well... Simply mimic
2034	 * the EISA config file to sort it out. */
2035
2036	/* EISA REG1: Assert DecChip 21040 HW Reset */
2037	outb (ER1_IAM | 1, EISA_REG1);
2038	mdelay (1);
2039
2040        /* EISA REG1: Deassert DecChip 21040 HW Reset */
2041	outb (ER1_IAM, EISA_REG1);
2042	mdelay (1);
2043
2044	/* EISA REG3: R/W Burst Transfer Enable */
2045	outb (ER3_BWE | ER3_BRE, EISA_REG3);
2046
2047	/* 32_bit slave/master, Preempt Time=23 bclks, Unlatched Interrupt */
2048	outb (ER0_BSW | ER0_BMW | ER0_EPT | regval, EISA_REG0);
2049#endif
2050	irq = de4x5_irq[(regval >> 1) & 0x03];
2051
2052	if (is_DC2114x) {
2053	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2054	}
2055	lp->chipset = device;
2056	lp->bus = EISA;
2057
2058	/* Write the PCI Configuration Registers */
2059	outl(PCI_COMMAND_IO | PCI_COMMAND_MASTER, PCI_CFCS);
2060	outl(0x00006000, PCI_CFLT);
2061	outl(iobase, PCI_CBIO);
2062
2063	DevicePresent(dev, EISA_APROM);
2064
2065	dev->irq = irq;
2066
2067	if (!(status = de4x5_hw_init (dev, iobase, gendev))) {
2068		return 0;
2069	}
2070
2071	free_netdev (dev);
2072 release_reg_2:
2073	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2074 release_reg_1:
2075	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2076
2077	return status;
2078}
2079
2080static int __devexit de4x5_eisa_remove (struct device *device)
2081{
2082	struct net_device *dev;
2083	u_long iobase;
2084
2085	dev = dev_get_drvdata(device);
2086	iobase = dev->base_addr;
2087
2088	unregister_netdev (dev);
2089	free_netdev (dev);
2090	release_region (iobase + DE4X5_EISA_IO_PORTS, DE4X5_EISA_TOTAL_SIZE);
2091	release_region (iobase, DE4X5_EISA_TOTAL_SIZE);
2092
2093	return 0;
2094}
2095
2096static struct eisa_device_id de4x5_eisa_ids[] = {
2097        { "DEC4250", 0 },	/* 0 is the board name index... */
2098        { "" }
2099};
2100MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2101
2102static struct eisa_driver de4x5_eisa_driver = {
2103        .id_table = de4x5_eisa_ids,
2104        .driver   = {
2105                .name    = "de4x5",
2106                .probe   = de4x5_eisa_probe,
2107                .remove  = __devexit_p (de4x5_eisa_remove),
2108        }
2109};
2110MODULE_DEVICE_TABLE(eisa, de4x5_eisa_ids);
2111#endif
2112
2113#ifdef CONFIG_PCI
2114
2115/*
2116** This function searches the current bus (which is >0) for a DECchip with an
2117** SROM, so that in multiport cards that have one SROM shared between multiple
2118** DECchips, we can find the base SROM irrespective of the BIOS scan direction.
2119** For single port cards this is a time waster...
2120*/
2121static void __devinit
2122srom_search(struct net_device *dev, struct pci_dev *pdev)
2123{
2124    u_char pb;
2125    u_short vendor, status;
2126    u_int irq = 0, device;
2127    u_long iobase = 0;                     /* Clear upper 32 bits in Alphas */
2128    int i, j;
2129    struct de4x5_private *lp = netdev_priv(dev);
2130    struct list_head *walk;
2131
2132    list_for_each(walk, &pdev->bus_list) {
2133	struct pci_dev *this_dev = pci_dev_b(walk);
2134
2135	/* Skip the pci_bus list entry */
2136	if (list_entry(walk, struct pci_bus, devices) == pdev->bus) continue;
2137
2138	vendor = this_dev->vendor;
2139	device = this_dev->device << 8;
2140	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x)) continue;
2141
2142	/* Get the chip configuration revision register */
2143	pb = this_dev->bus->number;
2144
2145	/* Set the device number information */
2146	lp->device = PCI_SLOT(this_dev->devfn);
2147	lp->bus_num = pb;
2148
2149	/* Set the chipset information */
2150	if (is_DC2114x) {
2151	    device = ((this_dev->revision & CFRV_RN) < DC2114x_BRK
2152		      ? DC21142 : DC21143);
2153	}
2154	lp->chipset = device;
2155
2156	/* Get the board I/O address (64 bits on sparc64) */
2157	iobase = pci_resource_start(this_dev, 0);
2158
2159	/* Fetch the IRQ to be used */
2160	irq = this_dev->irq;
2161	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) continue;
2162
2163	/* Check if I/O accesses are enabled */
2164	pci_read_config_word(this_dev, PCI_COMMAND, &status);
2165	if (!(status & PCI_COMMAND_IO)) continue;
2166
2167	/* Search for a valid SROM attached to this DECchip */
2168	DevicePresent(dev, DE4X5_APROM);
2169	for (j=0, i=0; i<ETH_ALEN; i++) {
2170	    j += (u_char) *((u_char *)&lp->srom + SROM_HWADD + i);
2171	}
2172	if (j != 0 && j != 6 * 0xff) {
2173	    last.chipset = device;
2174	    last.bus = pb;
2175	    last.irq = irq;
2176	    for (i=0; i<ETH_ALEN; i++) {
2177		last.addr[i] = (u_char)*((u_char *)&lp->srom + SROM_HWADD + i);
2178	    }
2179	    return;
2180	}
2181    }
2182}
2183
2184/*
2185** PCI bus I/O device probe
2186** NB: PCI I/O accesses and Bus Mastering are enabled by the PCI BIOS, not
2187** the driver. Some PCI BIOS's, pre V2.1, need the slot + features to be
2188** enabled by the user first in the set up utility. Hence we just check for
2189** enabled features and silently ignore the card if they're not.
2190**
2191** STOP PRESS: Some BIOS's __require__ the driver to enable the bus mastering
2192** bit. Here, check for I/O accesses and then set BM. If you put the card in
2193** a non BM slot, you're on your own (and complain to the PC vendor that your
2194** PC doesn't conform to the PCI standard)!
2195**
2196** This function is only compatible with the *latest* 2.1.x kernels. For 2.0.x
2197** kernels use the V0.535[n] drivers.
2198*/
2199
2200static int __devinit de4x5_pci_probe (struct pci_dev *pdev,
2201				   const struct pci_device_id *ent)
2202{
2203	u_char pb, pbus = 0, dev_num, dnum = 0, timer;
2204	u_short vendor, status;
2205	u_int irq = 0, device;
2206	u_long iobase = 0;	/* Clear upper 32 bits in Alphas */
2207	int error;
2208	struct net_device *dev;
2209	struct de4x5_private *lp;
2210
2211	dev_num = PCI_SLOT(pdev->devfn);
2212	pb = pdev->bus->number;
2213
2214	if (io) { /* probe a single PCI device */
2215		pbus = (u_short)(io >> 8);
2216		dnum = (u_short)(io & 0xff);
2217		if ((pbus != pb) || (dnum != dev_num))
2218			return -ENODEV;
2219	}
2220
2221	vendor = pdev->vendor;
2222	device = pdev->device << 8;
2223	if (!(is_DC21040 || is_DC21041 || is_DC21140 || is_DC2114x))
2224		return -ENODEV;
2225
2226	/* Ok, the device seems to be for us. */
2227	if ((error = pci_enable_device (pdev)))
2228		return error;
2229
2230	if (!(dev = alloc_etherdev (sizeof (struct de4x5_private)))) {
2231		error = -ENOMEM;
2232		goto disable_dev;
2233	}
2234
2235	lp = netdev_priv(dev);
2236	lp->bus = PCI;
2237	lp->bus_num = 0;
2238
2239	/* Search for an SROM on this bus */
2240	if (lp->bus_num != pb) {
2241	    lp->bus_num = pb;
2242	    srom_search(dev, pdev);
2243	}
2244
2245	/* Get the chip configuration revision register */
2246	lp->cfrv = pdev->revision;
2247
2248	/* Set the device number information */
2249	lp->device = dev_num;
2250	lp->bus_num = pb;
2251
2252	/* Set the chipset information */
2253	if (is_DC2114x) {
2254	    device = ((lp->cfrv & CFRV_RN) < DC2114x_BRK ? DC21142 : DC21143);
2255	}
2256	lp->chipset = device;
2257
2258	/* Get the board I/O address (64 bits on sparc64) */
2259	iobase = pci_resource_start(pdev, 0);
2260
2261	/* Fetch the IRQ to be used */
2262	irq = pdev->irq;
2263	if ((irq == 0) || (irq == 0xff) || ((int)irq == -1)) {
2264		error = -ENODEV;
2265		goto free_dev;
2266	}
2267
2268	/* Check if I/O accesses and Bus Mastering are enabled */
2269	pci_read_config_word(pdev, PCI_COMMAND, &status);
2270#ifdef __powerpc__
2271	if (!(status & PCI_COMMAND_IO)) {
2272	    status |= PCI_COMMAND_IO;
2273	    pci_write_config_word(pdev, PCI_COMMAND, status);
2274	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2275	}
2276#endif /* __powerpc__ */
2277	if (!(status & PCI_COMMAND_IO)) {
2278		error = -ENODEV;
2279		goto free_dev;
2280	}
2281
2282	if (!(status & PCI_COMMAND_MASTER)) {
2283	    status |= PCI_COMMAND_MASTER;
2284	    pci_write_config_word(pdev, PCI_COMMAND, status);
2285	    pci_read_config_word(pdev, PCI_COMMAND, &status);
2286	}
2287	if (!(status & PCI_COMMAND_MASTER)) {
2288		error = -ENODEV;
2289		goto free_dev;
2290	}
2291
2292	/* Check the latency timer for values >= 0x60 */
2293	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &timer);
2294	if (timer < 0x60) {
2295	    pci_write_config_byte(pdev, PCI_LATENCY_TIMER, 0x60);
2296	}
2297
2298	DevicePresent(dev, DE4X5_APROM);
2299
2300	if (!request_region (iobase, DE4X5_PCI_TOTAL_SIZE, "de4x5")) {
2301		error = -EBUSY;
2302		goto free_dev;
2303	}
2304
2305	dev->irq = irq;
2306
2307	if ((error = de4x5_hw_init(dev, iobase, &pdev->dev))) {
2308		goto release;
2309	}
2310
2311	return 0;
2312
2313 release:
2314	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2315 free_dev:
2316	free_netdev (dev);
2317 disable_dev:
2318	pci_disable_device (pdev);
2319	return error;
2320}
2321
2322static void __devexit de4x5_pci_remove (struct pci_dev *pdev)
2323{
2324	struct net_device *dev;
2325	u_long iobase;
2326
2327	dev = dev_get_drvdata(&pdev->dev);
2328	iobase = dev->base_addr;
2329
2330	unregister_netdev (dev);
2331	free_netdev (dev);
2332	release_region (iobase, DE4X5_PCI_TOTAL_SIZE);
2333	pci_disable_device (pdev);
2334}
2335
2336static struct pci_device_id de4x5_pci_tbl[] = {
2337        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP,
2338          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
2339        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_PLUS,
2340          PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
2341        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_TULIP_FAST,
2342	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 2 },
2343        { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_21142,
2344	  PCI_ANY_ID, PCI_ANY_ID, 0, 0, 3 },
2345        { },
2346};
2347
2348static struct pci_driver de4x5_pci_driver = {
2349        .name           = "de4x5",
2350        .id_table       = de4x5_pci_tbl,
2351        .probe          = de4x5_pci_probe,
2352	.remove         = __devexit_p (de4x5_pci_remove),
2353};
2354
2355#endif
2356
2357/*
2358** Auto configure the media here rather than setting the port at compile
2359** time. This routine is called by de4x5_init() and when a loss of media is
2360** detected (excessive collisions, loss of carrier, no carrier or link fail
2361** [TP] or no recent receive activity) to check whether the user has been
2362** sneaky and changed the port on us.
2363*/
2364static int
2365autoconf_media(struct net_device *dev)
2366{
2367	struct de4x5_private *lp = netdev_priv(dev);
2368	u_long iobase = dev->base_addr;
2369
2370	disable_ast(dev);
2371
2372	lp->c_media = AUTO;                     /* Bogus last media */
2373	inl(DE4X5_MFC);                         /* Zero the lost frames counter */
2374	lp->media = INIT;
2375	lp->tcount = 0;
2376
2377	de4x5_ast(dev);
2378
2379	return lp->media;
2380}
2381
2382/*
2383** Autoconfigure the media when using the DC21040. AUI cannot be distinguished
2384** from BNC as the port has a jumper to set thick or thin wire. When set for
2385** BNC, the BNC port will indicate activity if it's not terminated correctly.
2386** The only way to test for that is to place a loopback packet onto the
2387** network and watch for errors. Since we're messing with the interrupt mask
2388** register, disable the board interrupts and do not allow any more packets to
2389** be queued to the hardware. Re-enable everything only when the media is
2390** found.
2391** I may have to "age out" locally queued packets so that the higher layer
2392** timeouts don't effectively duplicate packets on the network.
2393*/
2394static int
2395dc21040_autoconf(struct net_device *dev)
2396{
2397    struct de4x5_private *lp = netdev_priv(dev);
2398    u_long iobase = dev->base_addr;
2399    int next_tick = DE4X5_AUTOSENSE_MS;
2400    s32 imr;
2401
2402    switch (lp->media) {
2403    case INIT:
2404	DISABLE_IRQs;
2405	lp->tx_enable = false;
2406	lp->timeout = -1;
2407	de4x5_save_skbs(dev);
2408	if ((lp->autosense == AUTO) || (lp->autosense == TP)) {
2409	    lp->media = TP;
2410	} else if ((lp->autosense == BNC) || (lp->autosense == AUI) || (lp->autosense == BNC_AUI)) {
2411	    lp->media = BNC_AUI;
2412	} else if (lp->autosense == EXT_SIA) {
2413	    lp->media = EXT_SIA;
2414	} else {
2415	    lp->media = NC;
2416	}
2417	lp->local_state = 0;
2418	next_tick = dc21040_autoconf(dev);
2419	break;
2420
2421    case TP:
2422	next_tick = dc21040_state(dev, 0x8f01, 0xffff, 0x0000, 3000, BNC_AUI,
2423		                                         TP_SUSPECT, test_tp);
2424	break;
2425
2426    case TP_SUSPECT:
2427	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21040_autoconf);
2428	break;
2429
2430    case BNC:
2431    case AUI:
2432    case BNC_AUI:
2433	next_tick = dc21040_state(dev, 0x8f09, 0x0705, 0x0006, 3000, EXT_SIA,
2434		                                  BNC_AUI_SUSPECT, ping_media);
2435	break;
2436
2437    case BNC_AUI_SUSPECT:
2438	next_tick = de4x5_suspect_state(dev, 1000, BNC_AUI, ping_media, dc21040_autoconf);
2439	break;
2440
2441    case EXT_SIA:
2442	next_tick = dc21040_state(dev, 0x3041, 0x0000, 0x0006, 3000,
2443		                              NC, EXT_SIA_SUSPECT, ping_media);
2444	break;
2445
2446    case EXT_SIA_SUSPECT:
2447	next_tick = de4x5_suspect_state(dev, 1000, EXT_SIA, ping_media, dc21040_autoconf);
2448	break;
2449
2450    case NC:
2451	/* default to TP for all */
2452	reset_init_sia(dev, 0x8f01, 0xffff, 0x0000);
2453	if (lp->media != lp->c_media) {
2454	    de4x5_dbg_media(dev);
2455	    lp->c_media = lp->media;
2456	}
2457	lp->media = INIT;
2458	lp->tx_enable = false;
2459	break;
2460    }
2461
2462    return next_tick;
2463}
2464
2465static int
2466dc21040_state(struct net_device *dev, int csr13, int csr14, int csr15, int timeout,
2467	      int next_state, int suspect_state,
2468	      int (*fn)(struct net_device *, int))
2469{
2470    struct de4x5_private *lp = netdev_priv(dev);
2471    int next_tick = DE4X5_AUTOSENSE_MS;
2472    int linkBad;
2473
2474    switch (lp->local_state) {
2475    case 0:
2476	reset_init_sia(dev, csr13, csr14, csr15);
2477	lp->local_state++;
2478	next_tick = 500;
2479	break;
2480
2481    case 1:
2482	if (!lp->tx_enable) {
2483	    linkBad = fn(dev, timeout);
2484	    if (linkBad < 0) {
2485		next_tick = linkBad & ~TIMER_CB;
2486	    } else {
2487		if (linkBad && (lp->autosense == AUTO)) {
2488		    lp->local_state = 0;
2489		    lp->media = next_state;
2490		} else {
2491		    de4x5_init_connection(dev);
2492		}
2493	    }
2494	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2495	    lp->media = suspect_state;
2496	    next_tick = 3000;
2497	}
2498	break;
2499    }
2500
2501    return next_tick;
2502}
2503
2504static int
2505de4x5_suspect_state(struct net_device *dev, int timeout, int prev_state,
2506		      int (*fn)(struct net_device *, int),
2507		      int (*asfn)(struct net_device *))
2508{
2509    struct de4x5_private *lp = netdev_priv(dev);
2510    int next_tick = DE4X5_AUTOSENSE_MS;
2511    int linkBad;
2512
2513    switch (lp->local_state) {
2514    case 1:
2515	if (lp->linkOK) {
2516	    lp->media = prev_state;
2517	} else {
2518	    lp->local_state++;
2519	    next_tick = asfn(dev);
2520	}
2521	break;
2522
2523    case 2:
2524	linkBad = fn(dev, timeout);
2525	if (linkBad < 0) {
2526	    next_tick = linkBad & ~TIMER_CB;
2527	} else if (!linkBad) {
2528	    lp->local_state--;
2529	    lp->media = prev_state;
2530	} else {
2531	    lp->media = INIT;
2532	    lp->tcount++;
2533	}
2534    }
2535
2536    return next_tick;
2537}
2538
2539/*
2540** Autoconfigure the media when using the DC21041. AUI needs to be tested
2541** before BNC, because the BNC port will indicate activity if it's not
2542** terminated correctly. The only way to test for that is to place a loopback
2543** packet onto the network and watch for errors. Since we're messing with
2544** the interrupt mask register, disable the board interrupts and do not allow
2545** any more packets to be queued to the hardware. Re-enable everything only
2546** when the media is found.
2547*/
2548static int
2549dc21041_autoconf(struct net_device *dev)
2550{
2551    struct de4x5_private *lp = netdev_priv(dev);
2552    u_long iobase = dev->base_addr;
2553    s32 sts, irqs, irq_mask, imr, omr;
2554    int next_tick = DE4X5_AUTOSENSE_MS;
2555
2556    switch (lp->media) {
2557    case INIT:
2558	DISABLE_IRQs;
2559	lp->tx_enable = false;
2560	lp->timeout = -1;
2561	de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2562	if ((lp->autosense == AUTO) || (lp->autosense == TP_NW)) {
2563	    lp->media = TP;            /* On chip auto negotiation is broken */
2564	} else if (lp->autosense == TP) {
2565	    lp->media = TP;
2566	} else if (lp->autosense == BNC) {
2567	    lp->media = BNC;
2568	} else if (lp->autosense == AUI) {
2569	    lp->media = AUI;
2570	} else {
2571	    lp->media = NC;
2572	}
2573	lp->local_state = 0;
2574	next_tick = dc21041_autoconf(dev);
2575	break;
2576
2577    case TP_NW:
2578	if (lp->timeout < 0) {
2579	    omr = inl(DE4X5_OMR);/* Set up full duplex for the autonegotiate */
2580	    outl(omr | OMR_FDX, DE4X5_OMR);
2581	}
2582	irqs = STS_LNF | STS_LNP;
2583	irq_mask = IMR_LFM | IMR_LPM;
2584	sts = test_media(dev, irqs, irq_mask, 0xef01, 0xffff, 0x0008, 2400);
2585	if (sts < 0) {
2586	    next_tick = sts & ~TIMER_CB;
2587	} else {
2588	    if (sts & STS_LNP) {
2589		lp->media = ANS;
2590	    } else {
2591		lp->media = AUI;
2592	    }
2593	    next_tick = dc21041_autoconf(dev);
2594	}
2595	break;
2596
2597    case ANS:
2598	if (!lp->tx_enable) {
2599	    irqs = STS_LNP;
2600	    irq_mask = IMR_LPM;
2601	    sts = test_ans(dev, irqs, irq_mask, 3000);
2602	    if (sts < 0) {
2603		next_tick = sts & ~TIMER_CB;
2604	    } else {
2605		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2606		    lp->media = TP;
2607		    next_tick = dc21041_autoconf(dev);
2608		} else {
2609		    lp->local_state = 1;
2610		    de4x5_init_connection(dev);
2611		}
2612	    }
2613	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2614	    lp->media = ANS_SUSPECT;
2615	    next_tick = 3000;
2616	}
2617	break;
2618
2619    case ANS_SUSPECT:
2620	next_tick = de4x5_suspect_state(dev, 1000, ANS, test_tp, dc21041_autoconf);
2621	break;
2622
2623    case TP:
2624	if (!lp->tx_enable) {
2625	    if (lp->timeout < 0) {
2626		omr = inl(DE4X5_OMR);          /* Set up half duplex for TP */
2627		outl(omr & ~OMR_FDX, DE4X5_OMR);
2628	    }
2629	    irqs = STS_LNF | STS_LNP;
2630	    irq_mask = IMR_LFM | IMR_LPM;
2631	    sts = test_media(dev,irqs, irq_mask, 0xef01, 0xff3f, 0x0008, 2400);
2632	    if (sts < 0) {
2633		next_tick = sts & ~TIMER_CB;
2634	    } else {
2635		if (!(sts & STS_LNP) && (lp->autosense == AUTO)) {
2636		    if (inl(DE4X5_SISR) & SISR_NRA) {
2637			lp->media = AUI;       /* Non selected port activity */
2638		    } else {
2639			lp->media = BNC;
2640		    }
2641		    next_tick = dc21041_autoconf(dev);
2642		} else {
2643		    lp->local_state = 1;
2644		    de4x5_init_connection(dev);
2645		}
2646	    }
2647	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2648	    lp->media = TP_SUSPECT;
2649	    next_tick = 3000;
2650	}
2651	break;
2652
2653    case TP_SUSPECT:
2654	next_tick = de4x5_suspect_state(dev, 1000, TP, test_tp, dc21041_autoconf);
2655	break;
2656
2657    case AUI:
2658	if (!lp->tx_enable) {
2659	    if (lp->timeout < 0) {
2660		omr = inl(DE4X5_OMR);          /* Set up half duplex for AUI */
2661		outl(omr & ~OMR_FDX, DE4X5_OMR);
2662	    }
2663	    irqs = 0;
2664	    irq_mask = 0;
2665	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x000e, 1000);
2666	    if (sts < 0) {
2667		next_tick = sts & ~TIMER_CB;
2668	    } else {
2669		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
2670		    lp->media = BNC;
2671		    next_tick = dc21041_autoconf(dev);
2672		} else {
2673		    lp->local_state = 1;
2674		    de4x5_init_connection(dev);
2675		}
2676	    }
2677	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
2678	    lp->media = AUI_SUSPECT;
2679	    next_tick = 3000;
2680	}
2681	break;
2682
2683    case AUI_SUSPECT:
2684	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc21041_autoconf);
2685	break;
2686
2687    case BNC:
2688	switch (lp->local_state) {
2689	case 0:
2690	    if (lp->timeout < 0) {
2691		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
2692		outl(omr & ~OMR_FDX, DE4X5_OMR);
2693	    }
2694	    irqs = 0;
2695	    irq_mask = 0;
2696	    sts = test_media(dev,irqs, irq_mask, 0xef09, 0xf73d, 0x0006, 1000);
2697	    if (sts < 0) {
2698		next_tick = sts & ~TIMER_CB;
2699	    } else {
2700		lp->local_state++;             /* Ensure media connected */
2701		next_tick = dc21041_autoconf(dev);
2702	    }
2703	    break;
2704
2705	case 1:
2706	    if (!lp->tx_enable) {
2707		if ((sts = ping_media(dev, 3000)) < 0) {
2708		    next_tick = sts & ~TIMER_CB;
2709		} else {
2710		    if (sts) {
2711			lp->local_state = 0;
2712			lp->media = NC;
2713		    } else {
2714			de4x5_init_connection(dev);
2715		    }
2716		}
2717	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
2718		lp->media = BNC_SUSPECT;
2719		next_tick = 3000;
2720	    }
2721	    break;
2722	}
2723	break;
2724
2725    case BNC_SUSPECT:
2726	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc21041_autoconf);
2727	break;
2728
2729    case NC:
2730	omr = inl(DE4X5_OMR);    /* Set up full duplex for the autonegotiate */
2731	outl(omr | OMR_FDX, DE4X5_OMR);
2732	reset_init_sia(dev, 0xef01, 0xffff, 0x0008);/* Initialise the SIA */
2733	if (lp->media != lp->c_media) {
2734	    de4x5_dbg_media(dev);
2735	    lp->c_media = lp->media;
2736	}
2737	lp->media = INIT;
2738	lp->tx_enable = false;
2739	break;
2740    }
2741
2742    return next_tick;
2743}
2744
2745/*
2746** Some autonegotiation chips are broken in that they do not return the
2747** acknowledge bit (anlpa & MII_ANLPA_ACK) in the link partner advertisement
2748** register, except at the first power up negotiation.
2749*/
2750static int
2751dc21140m_autoconf(struct net_device *dev)
2752{
2753    struct de4x5_private *lp = netdev_priv(dev);
2754    int ana, anlpa, cap, cr, slnk, sr;
2755    int next_tick = DE4X5_AUTOSENSE_MS;
2756    u_long imr, omr, iobase = dev->base_addr;
2757
2758    switch(lp->media) {
2759    case INIT:
2760        if (lp->timeout < 0) {
2761	    DISABLE_IRQs;
2762	    lp->tx_enable = false;
2763	    lp->linkOK = 0;
2764	    de4x5_save_skbs(dev);          /* Save non transmitted skb's */
2765	}
2766	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2767	    next_tick &= ~TIMER_CB;
2768	} else {
2769	    if (lp->useSROM) {
2770		if (srom_map_media(dev) < 0) {
2771		    lp->tcount++;
2772		    return next_tick;
2773		}
2774		srom_exec(dev, lp->phy[lp->active].gep);
2775		if (lp->infoblock_media == ANS) {
2776		    ana = lp->phy[lp->active].ana | MII_ANA_CSMA;
2777		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2778		}
2779	    } else {
2780		lp->tmp = MII_SR_ASSC;     /* Fake out the MII speed set */
2781		SET_10Mb;
2782		if (lp->autosense == _100Mb) {
2783		    lp->media = _100Mb;
2784		} else if (lp->autosense == _10Mb) {
2785		    lp->media = _10Mb;
2786		} else if ((lp->autosense == AUTO) &&
2787			            ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2788		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2789		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2790		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2791		    lp->media = ANS;
2792		} else if (lp->autosense == AUTO) {
2793		    lp->media = SPD_DET;
2794		} else if (is_spd_100(dev) && is_100_up(dev)) {
2795		    lp->media = _100Mb;
2796		} else {
2797		    lp->media = NC;
2798		}
2799	    }
2800	    lp->local_state = 0;
2801	    next_tick = dc21140m_autoconf(dev);
2802	}
2803	break;
2804
2805    case ANS:
2806	switch (lp->local_state) {
2807	case 0:
2808	    if (lp->timeout < 0) {
2809		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2810	    }
2811	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2812	    if (cr < 0) {
2813		next_tick = cr & ~TIMER_CB;
2814	    } else {
2815		if (cr) {
2816		    lp->local_state = 0;
2817		    lp->media = SPD_DET;
2818		} else {
2819		    lp->local_state++;
2820		}
2821		next_tick = dc21140m_autoconf(dev);
2822	    }
2823	    break;
2824
2825	case 1:
2826	    if ((sr=test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000)) < 0) {
2827		next_tick = sr & ~TIMER_CB;
2828	    } else {
2829		lp->media = SPD_DET;
2830		lp->local_state = 0;
2831		if (sr) {                         /* Success! */
2832		    lp->tmp = MII_SR_ASSC;
2833		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
2834		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2835		    if (!(anlpa & MII_ANLPA_RF) &&
2836			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
2837			if (cap & MII_ANA_100M) {
2838			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
2839			    lp->media = _100Mb;
2840			} else if (cap & MII_ANA_10M) {
2841			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
2842
2843			    lp->media = _10Mb;
2844			}
2845		    }
2846		}                       /* Auto Negotiation failed to finish */
2847		next_tick = dc21140m_autoconf(dev);
2848	    }                           /* Auto Negotiation failed to start */
2849	    break;
2850	}
2851	break;
2852
2853    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
2854        if (lp->timeout < 0) {
2855	    lp->tmp = (lp->phy[lp->active].id ? MII_SR_LKS :
2856		                                  (~gep_rd(dev) & GEP_LNP));
2857	    SET_100Mb_PDET;
2858	}
2859        if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
2860	    next_tick = slnk & ~TIMER_CB;
2861	} else {
2862	    if (is_spd_100(dev) && is_100_up(dev)) {
2863		lp->media = _100Mb;
2864	    } else if ((!is_spd_100(dev) && (is_10_up(dev) & lp->tmp))) {
2865		lp->media = _10Mb;
2866	    } else {
2867		lp->media = NC;
2868	    }
2869	    next_tick = dc21140m_autoconf(dev);
2870	}
2871	break;
2872
2873    case _100Mb:                               /* Set 100Mb/s */
2874        next_tick = 3000;
2875	if (!lp->tx_enable) {
2876	    SET_100Mb;
2877	    de4x5_init_connection(dev);
2878	} else {
2879	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2880		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
2881		    lp->media = INIT;
2882		    lp->tcount++;
2883		    next_tick = DE4X5_AUTOSENSE_MS;
2884		}
2885	    }
2886	}
2887	break;
2888
2889    case BNC:
2890    case AUI:
2891    case _10Mb:                                /* Set 10Mb/s */
2892        next_tick = 3000;
2893	if (!lp->tx_enable) {
2894	    SET_10Mb;
2895	    de4x5_init_connection(dev);
2896	} else {
2897	    if (!lp->linkOK && (lp->autosense == AUTO)) {
2898		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
2899		    lp->media = INIT;
2900		    lp->tcount++;
2901		    next_tick = DE4X5_AUTOSENSE_MS;
2902		}
2903	    }
2904	}
2905	break;
2906
2907    case NC:
2908        if (lp->media != lp->c_media) {
2909	    de4x5_dbg_media(dev);
2910	    lp->c_media = lp->media;
2911	}
2912	lp->media = INIT;
2913	lp->tx_enable = false;
2914	break;
2915    }
2916
2917    return next_tick;
2918}
2919
2920/*
2921** This routine may be merged into dc21140m_autoconf() sometime as I'm
2922** changing how I figure out the media - but trying to keep it backwards
2923** compatible with the de500-xa and de500-aa.
2924** Whether it's BNC, AUI, SYM or MII is sorted out in the infoblock
2925** functions and set during de4x5_mac_port() and/or de4x5_reset_phy().
2926** This routine just has to figure out whether 10Mb/s or 100Mb/s is
2927** active.
2928** When autonegotiation is working, the ANS part searches the SROM for
2929** the highest common speed (TP) link that both can run and if that can
2930** be full duplex. That infoblock is executed and then the link speed set.
2931**
2932** Only _10Mb and _100Mb are tested here.
2933*/
2934static int
2935dc2114x_autoconf(struct net_device *dev)
2936{
2937    struct de4x5_private *lp = netdev_priv(dev);
2938    u_long iobase = dev->base_addr;
2939    s32 cr, anlpa, ana, cap, irqs, irq_mask, imr, omr, slnk, sr, sts;
2940    int next_tick = DE4X5_AUTOSENSE_MS;
2941
2942    switch (lp->media) {
2943    case INIT:
2944        if (lp->timeout < 0) {
2945	    DISABLE_IRQs;
2946	    lp->tx_enable = false;
2947	    lp->linkOK = 0;
2948            lp->timeout = -1;
2949	    de4x5_save_skbs(dev);            /* Save non transmitted skb's */
2950	    if (lp->params.autosense & ~AUTO) {
2951		srom_map_media(dev);         /* Fixed media requested      */
2952		if (lp->media != lp->params.autosense) {
2953		    lp->tcount++;
2954		    lp->media = INIT;
2955		    return next_tick;
2956		}
2957		lp->media = INIT;
2958	    }
2959	}
2960	if ((next_tick = de4x5_reset_phy(dev)) < 0) {
2961	    next_tick &= ~TIMER_CB;
2962	} else {
2963	    if (lp->autosense == _100Mb) {
2964		lp->media = _100Mb;
2965	    } else if (lp->autosense == _10Mb) {
2966		lp->media = _10Mb;
2967	    } else if (lp->autosense == TP) {
2968		lp->media = TP;
2969	    } else if (lp->autosense == BNC) {
2970		lp->media = BNC;
2971	    } else if (lp->autosense == AUI) {
2972		lp->media = AUI;
2973	    } else {
2974		lp->media = SPD_DET;
2975		if ((lp->infoblock_media == ANS) &&
2976		                    ((sr=is_anc_capable(dev)) & MII_SR_ANC)) {
2977		    ana = (((sr >> 6) & MII_ANA_TAF) | MII_ANA_CSMA);
2978		    ana &= (lp->fdx ? ~0 : ~MII_ANA_FDAM);
2979		    mii_wr(ana, MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
2980		    lp->media = ANS;
2981		}
2982	    }
2983	    lp->local_state = 0;
2984	    next_tick = dc2114x_autoconf(dev);
2985        }
2986	break;
2987
2988    case ANS:
2989	switch (lp->local_state) {
2990	case 0:
2991	    if (lp->timeout < 0) {
2992		mii_wr(MII_CR_ASSE | MII_CR_RAN, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
2993	    }
2994	    cr = test_mii_reg(dev, MII_CR, MII_CR_RAN, false, 500);
2995	    if (cr < 0) {
2996		next_tick = cr & ~TIMER_CB;
2997	    } else {
2998		if (cr) {
2999		    lp->local_state = 0;
3000		    lp->media = SPD_DET;
3001		} else {
3002		    lp->local_state++;
3003		}
3004		next_tick = dc2114x_autoconf(dev);
3005	    }
3006	    break;
3007
3008	case 1:
3009	    sr = test_mii_reg(dev, MII_SR, MII_SR_ASSC, true, 2000);
3010	    if (sr < 0) {
3011		next_tick = sr & ~TIMER_CB;
3012	    } else {
3013		lp->media = SPD_DET;
3014		lp->local_state = 0;
3015		if (sr) {                         /* Success! */
3016		    lp->tmp = MII_SR_ASSC;
3017		    anlpa = mii_rd(MII_ANLPA, lp->phy[lp->active].addr, DE4X5_MII);
3018		    ana = mii_rd(MII_ANA, lp->phy[lp->active].addr, DE4X5_MII);
3019		    if (!(anlpa & MII_ANLPA_RF) &&
3020			 (cap = anlpa & MII_ANLPA_TAF & ana)) {
3021			if (cap & MII_ANA_100M) {
3022			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_100M) != 0;
3023			    lp->media = _100Mb;
3024			} else if (cap & MII_ANA_10M) {
3025			    lp->fdx = (ana & anlpa & MII_ANA_FDAM & MII_ANA_10M) != 0;
3026			    lp->media = _10Mb;
3027			}
3028		    }
3029		}                       /* Auto Negotiation failed to finish */
3030		next_tick = dc2114x_autoconf(dev);
3031	    }                           /* Auto Negotiation failed to start  */
3032	    break;
3033	}
3034	break;
3035
3036    case AUI:
3037	if (!lp->tx_enable) {
3038	    if (lp->timeout < 0) {
3039		omr = inl(DE4X5_OMR);   /* Set up half duplex for AUI        */
3040		outl(omr & ~OMR_FDX, DE4X5_OMR);
3041	    }
3042	    irqs = 0;
3043	    irq_mask = 0;
3044	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3045	    if (sts < 0) {
3046		next_tick = sts & ~TIMER_CB;
3047	    } else {
3048		if (!(inl(DE4X5_SISR) & SISR_SRA) && (lp->autosense == AUTO)) {
3049		    lp->media = BNC;
3050		    next_tick = dc2114x_autoconf(dev);
3051		} else {
3052		    lp->local_state = 1;
3053		    de4x5_init_connection(dev);
3054		}
3055	    }
3056	} else if (!lp->linkOK && (lp->autosense == AUTO)) {
3057	    lp->media = AUI_SUSPECT;
3058	    next_tick = 3000;
3059	}
3060	break;
3061
3062    case AUI_SUSPECT:
3063	next_tick = de4x5_suspect_state(dev, 1000, AUI, ping_media, dc2114x_autoconf);
3064	break;
3065
3066    case BNC:
3067	switch (lp->local_state) {
3068	case 0:
3069	    if (lp->timeout < 0) {
3070		omr = inl(DE4X5_OMR);          /* Set up half duplex for BNC */
3071		outl(omr & ~OMR_FDX, DE4X5_OMR);
3072	    }
3073	    irqs = 0;
3074	    irq_mask = 0;
3075	    sts = test_media(dev,irqs, irq_mask, 0, 0, 0, 1000);
3076	    if (sts < 0) {
3077		next_tick = sts & ~TIMER_CB;
3078	    } else {
3079		lp->local_state++;             /* Ensure media connected */
3080		next_tick = dc2114x_autoconf(dev);
3081	    }
3082	    break;
3083
3084	case 1:
3085	    if (!lp->tx_enable) {
3086		if ((sts = ping_media(dev, 3000)) < 0) {
3087		    next_tick = sts & ~TIMER_CB;
3088		} else {
3089		    if (sts) {
3090			lp->local_state = 0;
3091			lp->tcount++;
3092			lp->media = INIT;
3093		    } else {
3094			de4x5_init_connection(dev);
3095		    }
3096		}
3097	    } else if (!lp->linkOK && (lp->autosense == AUTO)) {
3098		lp->media = BNC_SUSPECT;
3099		next_tick = 3000;
3100	    }
3101	    break;
3102	}
3103	break;
3104
3105    case BNC_SUSPECT:
3106	next_tick = de4x5_suspect_state(dev, 1000, BNC, ping_media, dc2114x_autoconf);
3107	break;
3108
3109    case SPD_DET:                              /* Choose 10Mb/s or 100Mb/s */
3110	  if (srom_map_media(dev) < 0) {
3111	      lp->tcount++;
3112	      lp->media = INIT;
3113	      return next_tick;
3114	  }
3115	  if (lp->media == _100Mb) {
3116	      if ((slnk = test_for_100Mb(dev, 6500)) < 0) {
3117		  lp->media = SPD_DET;
3118		  return slnk & ~TIMER_CB;
3119	      }
3120	  } else {
3121	      if (wait_for_link(dev) < 0) {
3122		  lp->media = SPD_DET;
3123		  return PDET_LINK_WAIT;
3124	      }
3125	  }
3126	  if (lp->media == ANS) {           /* Do MII parallel detection */
3127	      if (is_spd_100(dev)) {
3128		  lp->media = _100Mb;
3129	      } else {
3130		  lp->media = _10Mb;
3131	      }
3132	      next_tick = dc2114x_autoconf(dev);
3133	  } else if (((lp->media == _100Mb) && is_100_up(dev)) ||
3134		     (((lp->media == _10Mb) || (lp->media == TP) ||
3135		       (lp->media == BNC)   || (lp->media == AUI)) &&
3136		      is_10_up(dev))) {
3137	      next_tick = dc2114x_autoconf(dev);
3138	  } else {
3139	      lp->tcount++;
3140	      lp->media = INIT;
3141	  }
3142	  break;
3143
3144    case _10Mb:
3145        next_tick = 3000;
3146	if (!lp->tx_enable) {
3147	    SET_10Mb;
3148	    de4x5_init_connection(dev);
3149	} else {
3150	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3151		if (!is_10_up(dev) || (!lp->useSROM && is_spd_100(dev))) {
3152		    lp->media = INIT;
3153		    lp->tcount++;
3154		    next_tick = DE4X5_AUTOSENSE_MS;
3155		}
3156	    }
3157	}
3158	break;
3159
3160    case _100Mb:
3161        next_tick = 3000;
3162	if (!lp->tx_enable) {
3163	    SET_100Mb;
3164	    de4x5_init_connection(dev);
3165	} else {
3166	    if (!lp->linkOK && (lp->autosense == AUTO)) {
3167		if (!is_100_up(dev) || (!lp->useSROM && !is_spd_100(dev))) {
3168		    lp->media = INIT;
3169		    lp->tcount++;
3170		    next_tick = DE4X5_AUTOSENSE_MS;
3171		}
3172	    }
3173	}
3174	break;
3175
3176    default:
3177	lp->tcount++;
3178printk("Huh?: media:%02x\n", lp->media);
3179	lp->media = INIT;
3180	break;
3181    }
3182
3183    return next_tick;
3184}
3185
3186static int
3187srom_autoconf(struct net_device *dev)
3188{
3189    struct de4x5_private *lp = netdev_priv(dev);
3190
3191    return lp->infoleaf_fn(dev);
3192}
3193
3194/*
3195** This mapping keeps the original media codes and FDX flag unchanged.
3196** While it isn't strictly necessary, it helps me for the moment...
3197** The early return avoids a media state / SROM media space clash.
3198*/
3199static int
3200srom_map_media(struct net_device *dev)
3201{
3202    struct de4x5_private *lp = netdev_priv(dev);
3203
3204    lp->fdx = false;
3205    if (lp->infoblock_media == lp->media)
3206      return 0;
3207
3208    switch(lp->infoblock_media) {
3209      case SROM_10BASETF:
3210	if (!lp->params.fdx) return -1;
3211	lp->fdx = true;
3212      case SROM_10BASET:
3213	if (lp->params.fdx && !lp->fdx) return -1;
3214	if ((lp->chipset == DC21140) || ((lp->chipset & ~0x00ff) == DC2114x)) {
3215	    lp->media = _10Mb;
3216	} else {
3217	    lp->media = TP;
3218	}
3219	break;
3220
3221      case SROM_10BASE2:
3222	lp->media = BNC;
3223	break;
3224
3225      case SROM_10BASE5:
3226	lp->media = AUI;
3227	break;
3228
3229      case SROM_100BASETF:
3230        if (!lp->params.fdx) return -1;
3231	lp->fdx = true;
3232      case SROM_100BASET:
3233	if (lp->params.fdx && !lp->fdx) return -1;
3234	lp->media = _100Mb;
3235	break;
3236
3237      case SROM_100BASET4:
3238	lp->media = _100Mb;
3239	break;
3240
3241      case SROM_100BASEFF:
3242	if (!lp->params.fdx) return -1;
3243	lp->fdx = true;
3244      case SROM_100BASEF:
3245	if (lp->params.fdx && !lp->fdx) return -1;
3246	lp->media = _100Mb;
3247	break;
3248
3249      case ANS:
3250	lp->media = ANS;
3251	lp->fdx = lp->params.fdx;
3252	break;
3253
3254      default:
3255	printk("%s: Bad media code [%d] detected in SROM!\n", dev->name,
3256	                                                  lp->infoblock_media);
3257	return -1;
3258	break;
3259    }
3260
3261    return 0;
3262}
3263
3264static void
3265de4x5_init_connection(struct net_device *dev)
3266{
3267    struct de4x5_private *lp = netdev_priv(dev);
3268    u_long iobase = dev->base_addr;
3269    u_long flags = 0;
3270
3271    if (lp->media != lp->c_media) {
3272        de4x5_dbg_media(dev);
3273	lp->c_media = lp->media;          /* Stop scrolling media messages */
3274    }
3275
3276    spin_lock_irqsave(&lp->lock, flags);
3277    de4x5_rst_desc_ring(dev);
3278    de4x5_setup_intr(dev);
3279    lp->tx_enable = true;
3280    spin_unlock_irqrestore(&lp->lock, flags);
3281    outl(POLL_DEMAND, DE4X5_TPD);
3282
3283    netif_wake_queue(dev);
3284}
3285
3286/*
3287** General PHY reset function. Some MII devices don't reset correctly
3288** since their MII address pins can float at voltages that are dependent
3289** on the signal pin use. Do a double reset to ensure a reset.
3290*/
3291static int
3292de4x5_reset_phy(struct net_device *dev)
3293{
3294    struct de4x5_private *lp = netdev_priv(dev);
3295    u_long iobase = dev->base_addr;
3296    int next_tick = 0;
3297
3298    if ((lp->useSROM) || (lp->phy[lp->active].id)) {
3299	if (lp->timeout < 0) {
3300	    if (lp->useSROM) {
3301		if (lp->phy[lp->active].rst) {
3302		    srom_exec(dev, lp->phy[lp->active].rst);
3303		    srom_exec(dev, lp->phy[lp->active].rst);
3304		} else if (lp->rst) {          /* Type 5 infoblock reset */
3305		    srom_exec(dev, lp->rst);
3306		    srom_exec(dev, lp->rst);
3307		}
3308	    } else {
3309		PHY_HARD_RESET;
3310	    }
3311	    if (lp->useMII) {
3312	        mii_wr(MII_CR_RST, MII_CR, lp->phy[lp->active].addr, DE4X5_MII);
3313            }
3314        }
3315	if (lp->useMII) {
3316	    next_tick = test_mii_reg(dev, MII_CR, MII_CR_RST, false, 500);
3317	}
3318    } else if (lp->chipset == DC21140) {
3319	PHY_HARD_RESET;
3320    }
3321
3322    return next_tick;
3323}
3324
3325static int
3326test_media(struct net_device *dev, s32 irqs, s32 irq_mask, s32 csr13, s32 csr14, s32 csr15, s32 msec)
3327{
3328    struct de4x5_private *lp = netdev_priv(dev);
3329    u_long iobase = dev->base_addr;
3330    s32 sts, csr12;
3331
3332    if (lp->timeout < 0) {
3333	lp->timeout = msec/100;
3334	if (!lp->useSROM) {      /* Already done if by SROM, else dc2104[01] */
3335	    reset_init_sia(dev, csr13, csr14, csr15);
3336	}
3337
3338	/* set up the interrupt mask */
3339	outl(irq_mask, DE4X5_IMR);
3340
3341	/* clear all pending interrupts */
3342	sts = inl(DE4X5_STS);
3343	outl(sts, DE4X5_STS);
3344
3345	/* clear csr12 NRA and SRA bits */
3346	if ((lp->chipset == DC21041) || lp->useSROM) {
3347	    csr12 = inl(DE4X5_SISR);
3348	    outl(csr12, DE4X5_SISR);
3349	}
3350    }
3351
3352    sts = inl(DE4X5_STS) & ~TIMER_CB;
3353
3354    if (!(sts & irqs) && --lp->timeout) {
3355	sts = 100 | TIMER_CB;
3356    } else {
3357	lp->timeout = -1;
3358    }
3359
3360    return sts;
3361}
3362
3363static int
3364test_tp(struct net_device *dev, s32 msec)
3365{
3366    struct de4x5_private *lp = netdev_priv(dev);
3367    u_long iobase = dev->base_addr;
3368    int sisr;
3369
3370    if (lp->timeout < 0) {
3371	lp->timeout = msec/100;
3372    }
3373
3374    sisr = (inl(DE4X5_SISR) & ~TIMER_CB) & (SISR_LKF | SISR_NCR);
3375
3376    if (sisr && --lp->timeout) {
3377	sisr = 100 | TIMER_CB;
3378    } else {
3379	lp->timeout = -1;
3380    }
3381
3382    return sisr;
3383}
3384
3385/*
3386** Samples the 100Mb Link State Signal. The sample interval is important
3387** because too fast a rate can give erroneous results and confuse the
3388** speed sense algorithm.
3389*/
3390#define SAMPLE_INTERVAL 500  /* ms */
3391#define SAMPLE_DELAY    2000 /* ms */
3392static int
3393test_for_100Mb(struct net_device *dev, int msec)
3394{
3395    struct de4x5_private *lp = netdev_priv(dev);
3396    int gep = 0, ret = ((lp->chipset & ~0x00ff)==DC2114x? -1 :GEP_SLNK);
3397
3398    if (lp->timeout < 0) {
3399	if ((msec/SAMPLE_INTERVAL) <= 0) return 0;
3400	if (msec > SAMPLE_DELAY) {
3401	    lp->timeout = (msec - SAMPLE_DELAY)/SAMPLE_INTERVAL;
3402	    gep = SAMPLE_DELAY | TIMER_CB;
3403	    return gep;
3404	} else {
3405	    lp->timeout = msec/SAMPLE_INTERVAL;
3406	}
3407    }
3408
3409    if (lp->phy[lp->active].id || lp->useSROM) {
3410	gep = is_100_up(dev) | is_spd_100(dev);
3411    } else {
3412	gep = (~gep_rd(dev) & (GEP_SLNK | GEP_LNP));
3413    }
3414    if (!(gep & ret) && --lp->timeout) {
3415	gep = SAMPLE_INTERVAL | TIMER_CB;
3416    } else {
3417	lp->timeout = -1;
3418    }
3419
3420    return gep;
3421}
3422
3423static int
3424wait_for_link(struct net_device *dev)
3425{
3426    struct de4x5_private *lp = netdev_priv(dev);
3427
3428    if (lp->timeout < 0) {
3429	lp->timeout = 1;
3430    }
3431
3432    if (lp->timeout--) {
3433	return TIMER_CB;
3434    } else {
3435	lp->timeout = -1;
3436    }
3437
3438    return 0;
3439}
3440
3441/*
3442**
3443**
3444*/
3445static int
3446test_mii_reg(struct net_device *dev, int reg, int mask, bool pol, long msec)
3447{
3448    struct de4x5_private *lp = netdev_priv(dev);
3449    int test;
3450    u_long iobase = dev->base_addr;
3451
3452    if (lp->timeout < 0) {
3453	lp->timeout = msec/100;
3454    }
3455
3456    reg = mii_rd((u_char)reg, lp->phy[lp->active].addr, DE4X5_MII) & mask;
3457    test = (reg ^ (pol ? ~0 : 0)) & mask;
3458
3459    if (test && --lp->timeout) {
3460	reg = 100 | TIMER_CB;
3461    } else {
3462	lp->timeout = -1;
3463    }
3464
3465    return reg;
3466}
3467
3468static int
3469is_spd_100(struct net_device *dev)
3470{
3471    struct de4x5_private *lp = netdev_priv(dev);
3472    u_long iobase = dev->base_addr;
3473    int spd;
3474
3475    if (lp->useMII) {
3476	spd = mii_rd(lp->phy[lp->active].spd.reg, lp->phy[lp->active].addr, DE4X5_MII);
3477	spd = ~(spd ^ lp->phy[lp->active].spd.value);
3478	spd &= lp->phy[lp->active].spd.mask;
3479    } else if (!lp->useSROM) {                      /* de500-xa */
3480	spd = ((~gep_rd(dev)) & GEP_SLNK);
3481    } else {
3482	if ((lp->ibn == 2) || !lp->asBitValid)
3483	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3484
3485	spd = (lp->asBitValid & (lp->asPolarity ^ (gep_rd(dev) & lp->asBit))) |
3486	          (lp->linkOK & ~lp->asBitValid);
3487    }
3488
3489    return spd;
3490}
3491
3492static int
3493is_100_up(struct net_device *dev)
3494{
3495    struct de4x5_private *lp = netdev_priv(dev);
3496    u_long iobase = dev->base_addr;
3497
3498    if (lp->useMII) {
3499	/* Double read for sticky bits & temporary drops */
3500	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3501	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3502    } else if (!lp->useSROM) {                       /* de500-xa */
3503	return (~gep_rd(dev)) & GEP_SLNK;
3504    } else {
3505	if ((lp->ibn == 2) || !lp->asBitValid)
3506	    return (lp->chipset == DC21143) ? (~inl(DE4X5_SISR)&SISR_LS100) : 0;
3507
3508        return (lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3509		(lp->linkOK & ~lp->asBitValid);
3510    }
3511}
3512
3513static int
3514is_10_up(struct net_device *dev)
3515{
3516    struct de4x5_private *lp = netdev_priv(dev);
3517    u_long iobase = dev->base_addr;
3518
3519    if (lp->useMII) {
3520	/* Double read for sticky bits & temporary drops */
3521	mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3522	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII) & MII_SR_LKS;
3523    } else if (!lp->useSROM) {                       /* de500-xa */
3524	return (~gep_rd(dev)) & GEP_LNP;
3525    } else {
3526	if ((lp->ibn == 2) || !lp->asBitValid)
3527	    return ((lp->chipset & ~0x00ff) == DC2114x) ?
3528		    (~inl(DE4X5_SISR)&SISR_LS10):
3529		    0;
3530
3531	return	(lp->asBitValid&(lp->asPolarity^(gep_rd(dev)&lp->asBit))) |
3532		(lp->linkOK & ~lp->asBitValid);
3533    }
3534}
3535
3536static int
3537is_anc_capable(struct net_device *dev)
3538{
3539    struct de4x5_private *lp = netdev_priv(dev);
3540    u_long iobase = dev->base_addr;
3541
3542    if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
3543	return mii_rd(MII_SR, lp->phy[lp->active].addr, DE4X5_MII);
3544    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3545	return (inl(DE4X5_SISR) & SISR_LPN) >> 12;
3546    } else {
3547	return 0;
3548    }
3549}
3550
3551/*
3552** Send a packet onto the media and watch for send errors that indicate the
3553** media is bad or unconnected.
3554*/
3555static int
3556ping_media(struct net_device *dev, int msec)
3557{
3558    struct de4x5_private *lp = netdev_priv(dev);
3559    u_long iobase = dev->base_addr;
3560    int sisr;
3561
3562    if (lp->timeout < 0) {
3563	lp->timeout = msec/100;
3564
3565	lp->tmp = lp->tx_new;                /* Remember the ring position */
3566	load_packet(dev, lp->frame, TD_LS | TD_FS | sizeof(lp->frame), (struct sk_buff *)1);
3567	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
3568	outl(POLL_DEMAND, DE4X5_TPD);
3569    }
3570
3571    sisr = inl(DE4X5_SISR);
3572
3573    if ((!(sisr & SISR_NCR)) &&
3574	((s32)le32_to_cpu(lp->tx_ring[lp->tmp].status) < 0) &&
3575	 (--lp->timeout)) {
3576	sisr = 100 | TIMER_CB;
3577    } else {
3578	if ((!(sisr & SISR_NCR)) &&
3579	    !(le32_to_cpu(lp->tx_ring[lp->tmp].status) & (T_OWN | TD_ES)) &&
3580	    lp->timeout) {
3581	    sisr = 0;
3582	} else {
3583	    sisr = 1;
3584	}
3585	lp->timeout = -1;
3586    }
3587
3588    return sisr;
3589}
3590
3591/*
3592** This function does 2 things: on Intels it kmalloc's another buffer to
3593** replace the one about to be passed up. On Alpha's it kmallocs a buffer
3594** into which the packet is copied.
3595*/
3596static struct sk_buff *
3597de4x5_alloc_rx_buff(struct net_device *dev, int index, int len)
3598{
3599    struct de4x5_private *lp = netdev_priv(dev);
3600    struct sk_buff *p;
3601
3602#if !defined(__alpha__) && !defined(__powerpc__) && !defined(CONFIG_SPARC) && !defined(DE4X5_DO_MEMCPY)
3603    struct sk_buff *ret;
3604    u_long i=0, tmp;
3605
3606    p = dev_alloc_skb(IEEE802_3_SZ + DE4X5_ALIGN + 2);
3607    if (!p) return NULL;
3608
3609    tmp = virt_to_bus(p->data);
3610    i = ((tmp + DE4X5_ALIGN) & ~DE4X5_ALIGN) - tmp;
3611    skb_reserve(p, i);
3612    lp->rx_ring[index].buf = cpu_to_le32(tmp + i);
3613
3614    ret = lp->rx_skb[index];
3615    lp->rx_skb[index] = p;
3616
3617    if ((u_long) ret > 1) {
3618	skb_put(ret, len);
3619    }
3620
3621    return ret;
3622
3623#else
3624    if (lp->state != OPEN) return (struct sk_buff *)1; /* Fake out the open */
3625
3626    p = dev_alloc_skb(len + 2);
3627    if (!p) return NULL;
3628
3629    skb_reserve(p, 2);	                               /* Align */
3630    if (index < lp->rx_old) {                          /* Wrapped buffer */
3631	short tlen = (lp->rxRingSize - lp->rx_old) * RX_BUFF_SZ;
3632	memcpy(skb_put(p,tlen),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,tlen);
3633	memcpy(skb_put(p,len-tlen),lp->rx_bufs,len-tlen);
3634    } else {                                           /* Linear buffer */
3635	memcpy(skb_put(p,len),lp->rx_bufs + lp->rx_old * RX_BUFF_SZ,len);
3636    }
3637
3638    return p;
3639#endif
3640}
3641
3642static void
3643de4x5_free_rx_buffs(struct net_device *dev)
3644{
3645    struct de4x5_private *lp = netdev_priv(dev);
3646    int i;
3647
3648    for (i=0; i<lp->rxRingSize; i++) {
3649	if ((u_long) lp->rx_skb[i] > 1) {
3650	    dev_kfree_skb(lp->rx_skb[i]);
3651	}
3652	lp->rx_ring[i].status = 0;
3653	lp->rx_skb[i] = (struct sk_buff *)1;    /* Dummy entry */
3654    }
3655}
3656
3657static void
3658de4x5_free_tx_buffs(struct net_device *dev)
3659{
3660    struct de4x5_private *lp = netdev_priv(dev);
3661    int i;
3662
3663    for (i=0; i<lp->txRingSize; i++) {
3664	if (lp->tx_skb[i])
3665	    de4x5_free_tx_buff(lp, i);
3666	lp->tx_ring[i].status = 0;
3667    }
3668
3669    /* Unload the locally queued packets */
3670    __skb_queue_purge(&lp->cache.queue);
3671}
3672
3673/*
3674** When a user pulls a connection, the DECchip can end up in a
3675** 'running - waiting for end of transmission' state. This means that we
3676** have to perform a chip soft reset to ensure that we can synchronize
3677** the hardware and software and make any media probes using a loopback
3678** packet meaningful.
3679*/
3680static void
3681de4x5_save_skbs(struct net_device *dev)
3682{
3683    struct de4x5_private *lp = netdev_priv(dev);
3684    u_long iobase = dev->base_addr;
3685    s32 omr;
3686
3687    if (!lp->cache.save_cnt) {
3688	STOP_DE4X5;
3689	de4x5_tx(dev);                          /* Flush any sent skb's */
3690	de4x5_free_tx_buffs(dev);
3691	de4x5_cache_state(dev, DE4X5_SAVE_STATE);
3692	de4x5_sw_reset(dev);
3693	de4x5_cache_state(dev, DE4X5_RESTORE_STATE);
3694	lp->cache.save_cnt++;
3695	START_DE4X5;
3696    }
3697}
3698
3699static void
3700de4x5_rst_desc_ring(struct net_device *dev)
3701{
3702    struct de4x5_private *lp = netdev_priv(dev);
3703    u_long iobase = dev->base_addr;
3704    int i;
3705    s32 omr;
3706
3707    if (lp->cache.save_cnt) {
3708	STOP_DE4X5;
3709	outl(lp->dma_rings, DE4X5_RRBA);
3710	outl(lp->dma_rings + NUM_RX_DESC * sizeof(struct de4x5_desc),
3711	     DE4X5_TRBA);
3712
3713	lp->rx_new = lp->rx_old = 0;
3714	lp->tx_new = lp->tx_old = 0;
3715
3716	for (i = 0; i < lp->rxRingSize; i++) {
3717	    lp->rx_ring[i].status = cpu_to_le32(R_OWN);
3718	}
3719
3720	for (i = 0; i < lp->txRingSize; i++) {
3721	    lp->tx_ring[i].status = cpu_to_le32(0);
3722	}
3723
3724	barrier();
3725	lp->cache.save_cnt--;
3726	START_DE4X5;
3727    }
3728}
3729
3730static void
3731de4x5_cache_state(struct net_device *dev, int flag)
3732{
3733    struct de4x5_private *lp = netdev_priv(dev);
3734    u_long iobase = dev->base_addr;
3735
3736    switch(flag) {
3737      case DE4X5_SAVE_STATE:
3738	lp->cache.csr0 = inl(DE4X5_BMR);
3739	lp->cache.csr6 = (inl(DE4X5_OMR) & ~(OMR_ST | OMR_SR));
3740	lp->cache.csr7 = inl(DE4X5_IMR);
3741	break;
3742
3743      case DE4X5_RESTORE_STATE:
3744	outl(lp->cache.csr0, DE4X5_BMR);
3745	outl(lp->cache.csr6, DE4X5_OMR);
3746	outl(lp->cache.csr7, DE4X5_IMR);
3747	if (lp->chipset == DC21140) {
3748	    gep_wr(lp->cache.gepc, dev);
3749	    gep_wr(lp->cache.gep, dev);
3750	} else {
3751	    reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14,
3752			                                      lp->cache.csr15);
3753	}
3754	break;
3755    }
3756}
3757
3758static void
3759de4x5_put_cache(struct net_device *dev, struct sk_buff *skb)
3760{
3761    struct de4x5_private *lp = netdev_priv(dev);
3762
3763    __skb_queue_tail(&lp->cache.queue, skb);
3764}
3765
3766static void
3767de4x5_putb_cache(struct net_device *dev, struct sk_buff *skb)
3768{
3769    struct de4x5_private *lp = netdev_priv(dev);
3770
3771    __skb_queue_head(&lp->cache.queue, skb);
3772}
3773
3774static struct sk_buff *
3775de4x5_get_cache(struct net_device *dev)
3776{
3777    struct de4x5_private *lp = netdev_priv(dev);
3778
3779    return __skb_dequeue(&lp->cache.queue);
3780}
3781
3782/*
3783** Check the Auto Negotiation State. Return OK when a link pass interrupt
3784** is received and the auto-negotiation status is NWAY OK.
3785*/
3786static int
3787test_ans(struct net_device *dev, s32 irqs, s32 irq_mask, s32 msec)
3788{
3789    struct de4x5_private *lp = netdev_priv(dev);
3790    u_long iobase = dev->base_addr;
3791    s32 sts, ans;
3792
3793    if (lp->timeout < 0) {
3794	lp->timeout = msec/100;
3795	outl(irq_mask, DE4X5_IMR);
3796
3797	/* clear all pending interrupts */
3798	sts = inl(DE4X5_STS);
3799	outl(sts, DE4X5_STS);
3800    }
3801
3802    ans = inl(DE4X5_SISR) & SISR_ANS;
3803    sts = inl(DE4X5_STS) & ~TIMER_CB;
3804
3805    if (!(sts & irqs) && (ans ^ ANS_NWOK) && --lp->timeout) {
3806	sts = 100 | TIMER_CB;
3807    } else {
3808	lp->timeout = -1;
3809    }
3810
3811    return sts;
3812}
3813
3814static void
3815de4x5_setup_intr(struct net_device *dev)
3816{
3817    struct de4x5_private *lp = netdev_priv(dev);
3818    u_long iobase = dev->base_addr;
3819    s32 imr, sts;
3820
3821    if (inl(DE4X5_OMR) & OMR_SR) {   /* Only unmask if TX/RX is enabled */
3822	imr = 0;
3823	UNMASK_IRQs;
3824	sts = inl(DE4X5_STS);        /* Reset any pending (stale) interrupts */
3825	outl(sts, DE4X5_STS);
3826	ENABLE_IRQs;
3827    }
3828}
3829
3830/*
3831**
3832*/
3833static void
3834reset_init_sia(struct net_device *dev, s32 csr13, s32 csr14, s32 csr15)
3835{
3836    struct de4x5_private *lp = netdev_priv(dev);
3837    u_long iobase = dev->base_addr;
3838
3839    RESET_SIA;
3840    if (lp->useSROM) {
3841	if (lp->ibn == 3) {
3842	    srom_exec(dev, lp->phy[lp->active].rst);
3843	    srom_exec(dev, lp->phy[lp->active].gep);
3844	    outl(1, DE4X5_SICR);
3845	    return;
3846	} else {
3847	    csr15 = lp->cache.csr15;
3848	    csr14 = lp->cache.csr14;
3849	    csr13 = lp->cache.csr13;
3850	    outl(csr15 | lp->cache.gepc, DE4X5_SIGR);
3851	    outl(csr15 | lp->cache.gep, DE4X5_SIGR);
3852	}
3853    } else {
3854	outl(csr15, DE4X5_SIGR);
3855    }
3856    outl(csr14, DE4X5_STRR);
3857    outl(csr13, DE4X5_SICR);
3858
3859    mdelay(10);
3860}
3861
3862/*
3863** Create a loopback ethernet packet
3864*/
3865static void
3866create_packet(struct net_device *dev, char *frame, int len)
3867{
3868    int i;
3869    char *buf = frame;
3870
3871    for (i=0; i<ETH_ALEN; i++) {             /* Use this source address */
3872	*buf++ = dev->dev_addr[i];
3873    }
3874    for (i=0; i<ETH_ALEN; i++) {             /* Use this destination address */
3875	*buf++ = dev->dev_addr[i];
3876    }
3877
3878    *buf++ = 0;                              /* Packet length (2 bytes) */
3879    *buf++ = 1;
3880}
3881
3882/*
3883** Look for a particular board name in the EISA configuration space
3884*/
3885static int
3886EISA_signature(char *name, struct device *device)
3887{
3888    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3889    struct eisa_device *edev;
3890
3891    *name = '\0';
3892    edev = to_eisa_device (device);
3893    i = edev->id.driver_data;
3894
3895    if (i >= 0 && i < siglen) {
3896	    strcpy (name, de4x5_signatures[i]);
3897	    status = 1;
3898    }
3899
3900    return status;                         /* return the device name string */
3901}
3902
3903/*
3904** Look for a particular board name in the PCI configuration space
3905*/
3906static int
3907PCI_signature(char *name, struct de4x5_private *lp)
3908{
3909    int i, status = 0, siglen = ARRAY_SIZE(de4x5_signatures);
3910
3911    if (lp->chipset == DC21040) {
3912	strcpy(name, "DE434/5");
3913	return status;
3914    } else {                           /* Search for a DEC name in the SROM */
3915	int tmp = *((char *)&lp->srom + 19) * 3;
3916	strncpy(name, (char *)&lp->srom + 26 + tmp, 8);
3917    }
3918    name[8] = '\0';
3919    for (i=0; i<siglen; i++) {
3920	if (strstr(name,de4x5_signatures[i])!=NULL) break;
3921    }
3922    if (i == siglen) {
3923	if (dec_only) {
3924	    *name = '\0';
3925	} else {                        /* Use chip name to avoid confusion */
3926	    strcpy(name, (((lp->chipset == DC21040) ? "DC21040" :
3927			   ((lp->chipset == DC21041) ? "DC21041" :
3928			    ((lp->chipset == DC21140) ? "DC21140" :
3929			     ((lp->chipset == DC21142) ? "DC21142" :
3930			      ((lp->chipset == DC21143) ? "DC21143" : "UNKNOWN"
3931			     )))))));
3932	}
3933	if (lp->chipset != DC21041) {
3934	    lp->useSROM = true;             /* card is not recognisably DEC */
3935	}
3936    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
3937	lp->useSROM = true;
3938    }
3939
3940    return status;
3941}
3942
3943/*
3944** Set up the Ethernet PROM counter to the start of the Ethernet address on
3945** the DC21040, else  read the SROM for the other chips.
3946** The SROM may not be present in a multi-MAC card, so first read the
3947** MAC address and check for a bad address. If there is a bad one then exit
3948** immediately with the prior srom contents intact (the h/w address will
3949** be fixed up later).
3950*/
3951static void
3952DevicePresent(struct net_device *dev, u_long aprom_addr)
3953{
3954    int i, j=0;
3955    struct de4x5_private *lp = netdev_priv(dev);
3956
3957    if (lp->chipset == DC21040) {
3958	if (lp->bus == EISA) {
3959	    enet_addr_rst(aprom_addr); /* Reset Ethernet Address ROM Pointer */
3960	} else {
3961	    outl(0, aprom_addr);       /* Reset Ethernet Address ROM Pointer */
3962	}
3963    } else {                           /* Read new srom */
3964	u_short tmp;
3965	__le16 *p = (__le16 *)((char *)&lp->srom + SROM_HWADD);
3966	for (i=0; i<(ETH_ALEN>>1); i++) {
3967	    tmp = srom_rd(aprom_addr, (SROM_HWADD>>1) + i);
3968	    j += tmp;	/* for check for 0:0:0:0:0:0 or ff:ff:ff:ff:ff:ff */
3969	    *p = cpu_to_le16(tmp);
3970	}
3971	if (j == 0 || j == 3 * 0xffff) {
3972		/* could get 0 only from all-0 and 3 * 0xffff only from all-1 */
3973		return;
3974	}
3975
3976	p = (__le16 *)&lp->srom;
3977	for (i=0; i<(sizeof(struct de4x5_srom)>>1); i++) {
3978	    tmp = srom_rd(aprom_addr, i);
3979	    *p++ = cpu_to_le16(tmp);
3980	}
3981	de4x5_dbg_srom((struct de4x5_srom *)&lp->srom);
3982    }
3983}
3984
3985/*
3986** Since the write on the Enet PROM register doesn't seem to reset the PROM
3987** pointer correctly (at least on my DE425 EISA card), this routine should do
3988** it...from depca.c.
3989*/
3990static void
3991enet_addr_rst(u_long aprom_addr)
3992{
3993    union {
3994	struct {
3995	    u32 a;
3996	    u32 b;
3997	} llsig;
3998	char Sig[sizeof(u32) << 1];
3999    } dev;
4000    short sigLength=0;
4001    s8 data;
4002    int i, j;
4003
4004    dev.llsig.a = ETH_PROM_SIG;
4005    dev.llsig.b = ETH_PROM_SIG;
4006    sigLength = sizeof(u32) << 1;
4007
4008    for (i=0,j=0;j<sigLength && i<PROBE_LENGTH+sigLength-1;i++) {
4009	data = inb(aprom_addr);
4010	if (dev.Sig[j] == data) {    /* track signature */
4011	    j++;
4012	} else {                     /* lost signature; begin search again */
4013	    if (data == dev.Sig[0]) {  /* rare case.... */
4014		j=1;
4015	    } else {
4016		j=0;
4017	    }
4018	}
4019    }
4020}
4021
4022/*
4023** For the bad status case and no SROM, then add one to the previous
4024** address. However, need to add one backwards in case we have 0xff
4025** as one or more of the bytes. Only the last 3 bytes should be checked
4026** as the first three are invariant - assigned to an organisation.
4027*/
4028static int
4029get_hw_addr(struct net_device *dev)
4030{
4031    u_long iobase = dev->base_addr;
4032    int broken, i, k, tmp, status = 0;
4033    u_short j,chksum;
4034    struct de4x5_private *lp = netdev_priv(dev);
4035
4036    broken = de4x5_bad_srom(lp);
4037
4038    for (i=0,k=0,j=0;j<3;j++) {
4039	k <<= 1;
4040	if (k > 0xffff) k-=0xffff;
4041
4042	if (lp->bus == PCI) {
4043	    if (lp->chipset == DC21040) {
4044		while ((tmp = inl(DE4X5_APROM)) < 0);
4045		k += (u_char) tmp;
4046		dev->dev_addr[i++] = (u_char) tmp;
4047		while ((tmp = inl(DE4X5_APROM)) < 0);
4048		k += (u_short) (tmp << 8);
4049		dev->dev_addr[i++] = (u_char) tmp;
4050	    } else if (!broken) {
4051		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4052		dev->dev_addr[i] = (u_char) lp->srom.ieee_addr[i]; i++;
4053	    } else if ((broken == SMC) || (broken == ACCTON)) {
4054		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4055		dev->dev_addr[i] = *((u_char *)&lp->srom + i); i++;
4056	    }
4057	} else {
4058	    k += (u_char) (tmp = inb(EISA_APROM));
4059	    dev->dev_addr[i++] = (u_char) tmp;
4060	    k += (u_short) ((tmp = inb(EISA_APROM)) << 8);
4061	    dev->dev_addr[i++] = (u_char) tmp;
4062	}
4063
4064	if (k > 0xffff) k-=0xffff;
4065    }
4066    if (k == 0xffff) k=0;
4067
4068    if (lp->bus == PCI) {
4069	if (lp->chipset == DC21040) {
4070	    while ((tmp = inl(DE4X5_APROM)) < 0);
4071	    chksum = (u_char) tmp;
4072	    while ((tmp = inl(DE4X5_APROM)) < 0);
4073	    chksum |= (u_short) (tmp << 8);
4074	    if ((k != chksum) && (dec_only)) status = -1;
4075	}
4076    } else {
4077	chksum = (u_char) inb(EISA_APROM);
4078	chksum |= (u_short) (inb(EISA_APROM) << 8);
4079	if ((k != chksum) && (dec_only)) status = -1;
4080    }
4081
4082    /* If possible, try to fix a broken card - SMC only so far */
4083    srom_repair(dev, broken);
4084
4085#ifdef CONFIG_PPC_PMAC
4086    /*
4087    ** If the address starts with 00 a0, we have to bit-reverse
4088    ** each byte of the address.
4089    */
4090    if ( machine_is(powermac) &&
4091	 (dev->dev_addr[0] == 0) &&
4092	 (dev->dev_addr[1] == 0xa0) )
4093    {
4094	    for (i = 0; i < ETH_ALEN; ++i)
4095	    {
4096		    int x = dev->dev_addr[i];
4097		    x = ((x & 0xf) << 4) + ((x & 0xf0) >> 4);
4098		    x = ((x & 0x33) << 2) + ((x & 0xcc) >> 2);
4099		    dev->dev_addr[i] = ((x & 0x55) << 1) + ((x & 0xaa) >> 1);
4100	    }
4101    }
4102#endif /* CONFIG_PPC_PMAC */
4103
4104    /* Test for a bad enet address */
4105    status = test_bad_enet(dev, status);
4106
4107    return status;
4108}
4109
4110/*
4111** Test for enet addresses in the first 32 bytes. The built-in strncmp
4112** didn't seem to work here...?
4113*/
4114static int
4115de4x5_bad_srom(struct de4x5_private *lp)
4116{
4117    int i, status = 0;
4118
4119    for (i = 0; i < ARRAY_SIZE(enet_det); i++) {
4120	if (!de4x5_strncmp((char *)&lp->srom, (char *)&enet_det[i], 3) &&
4121	    !de4x5_strncmp((char *)&lp->srom+0x10, (char *)&enet_det[i], 3)) {
4122	    if (i == 0) {
4123		status = SMC;
4124	    } else if (i == 1) {
4125		status = ACCTON;
4126	    }
4127	    break;
4128	}
4129    }
4130
4131    return status;
4132}
4133
4134static int
4135de4x5_strncmp(char *a, char *b, int n)
4136{
4137    int ret=0;
4138
4139    for (;n && !ret; n--) {
4140	ret = *a++ - *b++;
4141    }
4142
4143    return ret;
4144}
4145
4146static void
4147srom_repair(struct net_device *dev, int card)
4148{
4149    struct de4x5_private *lp = netdev_priv(dev);
4150
4151    switch(card) {
4152      case SMC:
4153	memset((char *)&lp->srom, 0, sizeof(struct de4x5_srom));
4154	memcpy(lp->srom.ieee_addr, (char *)dev->dev_addr, ETH_ALEN);
4155	memcpy(lp->srom.info, (char *)&srom_repair_info[SMC-1], 100);
4156	lp->useSROM = true;
4157	break;
4158    }
4159}
4160
4161/*
4162** Assume that the irq's do not follow the PCI spec - this is seems
4163** to be true so far (2 for 2).
4164*/
4165static int
4166test_bad_enet(struct net_device *dev, int status)
4167{
4168    struct de4x5_private *lp = netdev_priv(dev);
4169    int i, tmp;
4170
4171    for (tmp=0,i=0; i<ETH_ALEN; i++) tmp += (u_char)dev->dev_addr[i];
4172    if ((tmp == 0) || (tmp == 0x5fa)) {
4173	if ((lp->chipset == last.chipset) &&
4174	    (lp->bus_num == last.bus) && (lp->bus_num > 0)) {
4175	    for (i=0; i<ETH_ALEN; i++) dev->dev_addr[i] = last.addr[i];
4176	    for (i=ETH_ALEN-1; i>2; --i) {
4177		dev->dev_addr[i] += 1;
4178		if (dev->dev_addr[i] != 0) break;
4179	    }
4180	    for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4181	    if (!an_exception(lp)) {
4182		dev->irq = last.irq;
4183	    }
4184
4185	    status = 0;
4186	}
4187    } else if (!status) {
4188	last.chipset = lp->chipset;
4189	last.bus = lp->bus_num;
4190	last.irq = dev->irq;
4191	for (i=0; i<ETH_ALEN; i++) last.addr[i] = dev->dev_addr[i];
4192    }
4193
4194    return status;
4195}
4196
4197/*
4198** List of board exceptions with correctly wired IRQs
4199*/
4200static int
4201an_exception(struct de4x5_private *lp)
4202{
4203    if ((*(u_short *)lp->srom.sub_vendor_id == 0x00c0) &&
4204	(*(u_short *)lp->srom.sub_system_id == 0x95e0)) {
4205	return -1;
4206    }
4207
4208    return 0;
4209}
4210
4211/*
4212** SROM Read
4213*/
4214static short
4215srom_rd(u_long addr, u_char offset)
4216{
4217    sendto_srom(SROM_RD | SROM_SR, addr);
4218
4219    srom_latch(SROM_RD | SROM_SR | DT_CS, addr);
4220    srom_command(SROM_RD | SROM_SR | DT_IN | DT_CS, addr);
4221    srom_address(SROM_RD | SROM_SR | DT_CS, addr, offset);
4222
4223    return srom_data(SROM_RD | SROM_SR | DT_CS, addr);
4224}
4225
4226static void
4227srom_latch(u_int command, u_long addr)
4228{
4229    sendto_srom(command, addr);
4230    sendto_srom(command | DT_CLK, addr);
4231    sendto_srom(command, addr);
4232}
4233
4234static void
4235srom_command(u_int command, u_long addr)
4236{
4237    srom_latch(command, addr);
4238    srom_latch(command, addr);
4239    srom_latch((command & 0x0000ff00) | DT_CS, addr);
4240}
4241
4242static void
4243srom_address(u_int command, u_long addr, u_char offset)
4244{
4245    int i, a;
4246
4247    a = offset << 2;
4248    for (i=0; i<6; i++, a <<= 1) {
4249	srom_latch(command | ((a & 0x80) ? DT_IN : 0), addr);
4250    }
4251    udelay(1);
4252
4253    i = (getfrom_srom(addr) >> 3) & 0x01;
4254}
4255
4256static short
4257srom_data(u_int command, u_long addr)
4258{
4259    int i;
4260    short word = 0;
4261    s32 tmp;
4262
4263    for (i=0; i<16; i++) {
4264	sendto_srom(command  | DT_CLK, addr);
4265	tmp = getfrom_srom(addr);
4266	sendto_srom(command, addr);
4267
4268	word = (word << 1) | ((tmp >> 3) & 0x01);
4269    }
4270
4271    sendto_srom(command & 0x0000ff00, addr);
4272
4273    return word;
4274}
4275
4276/*
4277static void
4278srom_busy(u_int command, u_long addr)
4279{
4280   sendto_srom((command & 0x0000ff00) | DT_CS, addr);
4281
4282   while (!((getfrom_srom(addr) >> 3) & 0x01)) {
4283       mdelay(1);
4284   }
4285
4286   sendto_srom(command & 0x0000ff00, addr);
4287}
4288*/
4289
4290static void
4291sendto_srom(u_int command, u_long addr)
4292{
4293    outl(command, addr);
4294    udelay(1);
4295}
4296
4297static int
4298getfrom_srom(u_long addr)
4299{
4300    s32 tmp;
4301
4302    tmp = inl(addr);
4303    udelay(1);
4304
4305    return tmp;
4306}
4307
4308static int
4309srom_infoleaf_info(struct net_device *dev)
4310{
4311    struct de4x5_private *lp = netdev_priv(dev);
4312    int i, count;
4313    u_char *p;
4314
4315    /* Find the infoleaf decoder function that matches this chipset */
4316    for (i=0; i<INFOLEAF_SIZE; i++) {
4317	if (lp->chipset == infoleaf_array[i].chipset) break;
4318    }
4319    if (i == INFOLEAF_SIZE) {
4320	lp->useSROM = false;
4321	printk("%s: Cannot find correct chipset for SROM decoding!\n",
4322	                                                          dev->name);
4323	return -ENXIO;
4324    }
4325
4326    lp->infoleaf_fn = infoleaf_array[i].fn;
4327
4328    /* Find the information offset that this function should use */
4329    count = *((u_char *)&lp->srom + 19);
4330    p  = (u_char *)&lp->srom + 26;
4331
4332    if (count > 1) {
4333	for (i=count; i; --i, p+=3) {
4334	    if (lp->device == *p) break;
4335	}
4336	if (i == 0) {
4337	    lp->useSROM = false;
4338	    printk("%s: Cannot find correct PCI device [%d] for SROM decoding!\n",
4339	                                               dev->name, lp->device);
4340	    return -ENXIO;
4341	}
4342    }
4343
4344	lp->infoleaf_offset = get_unaligned_le16(p + 1);
4345
4346    return 0;
4347}
4348
4349/*
4350** This routine loads any type 1 or 3 MII info into the mii device
4351** struct and executes any type 5 code to reset PHY devices for this
4352** controller.
4353** The info for the MII devices will be valid since the index used
4354** will follow the discovery process from MII address 1-31 then 0.
4355*/
4356static void
4357srom_init(struct net_device *dev)
4358{
4359    struct de4x5_private *lp = netdev_priv(dev);
4360    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4361    u_char count;
4362
4363    p+=2;
4364    if (lp->chipset == DC21140) {
4365	lp->cache.gepc = (*p++ | GEP_CTRL);
4366	gep_wr(lp->cache.gepc, dev);
4367    }
4368
4369    /* Block count */
4370    count = *p++;
4371
4372    /* Jump the infoblocks to find types */
4373    for (;count; --count) {
4374	if (*p < 128) {
4375	    p += COMPACT_LEN;
4376	} else if (*(p+1) == 5) {
4377	    type5_infoblock(dev, 1, p);
4378	    p += ((*p & BLOCK_LEN) + 1);
4379	} else if (*(p+1) == 4) {
4380	    p += ((*p & BLOCK_LEN) + 1);
4381	} else if (*(p+1) == 3) {
4382	    type3_infoblock(dev, 1, p);
4383	    p += ((*p & BLOCK_LEN) + 1);
4384	} else if (*(p+1) == 2) {
4385	    p += ((*p & BLOCK_LEN) + 1);
4386	} else if (*(p+1) == 1) {
4387	    type1_infoblock(dev, 1, p);
4388	    p += ((*p & BLOCK_LEN) + 1);
4389	} else {
4390	    p += ((*p & BLOCK_LEN) + 1);
4391	}
4392    }
4393}
4394
4395/*
4396** A generic routine that writes GEP control, data and reset information
4397** to the GEP register (21140) or csr15 GEP portion (2114[23]).
4398*/
4399static void
4400srom_exec(struct net_device *dev, u_char *p)
4401{
4402    struct de4x5_private *lp = netdev_priv(dev);
4403    u_long iobase = dev->base_addr;
4404    u_char count = (p ? *p++ : 0);
4405    u_short *w = (u_short *)p;
4406
4407    if (((lp->ibn != 1) && (lp->ibn != 3) && (lp->ibn != 5)) || !count) return;
4408
4409    if (lp->chipset != DC21140) RESET_SIA;
4410
4411    while (count--) {
4412	gep_wr(((lp->chipset==DC21140) && (lp->ibn!=5) ?
4413		                                   *p++ : get_unaligned_le16(w++)), dev);
4414	mdelay(2);                          /* 2ms per action */
4415    }
4416
4417    if (lp->chipset != DC21140) {
4418	outl(lp->cache.csr14, DE4X5_STRR);
4419	outl(lp->cache.csr13, DE4X5_SICR);
4420    }
4421}
4422
4423/*
4424** Basically this function is a NOP since it will never be called,
4425** unless I implement the DC21041 SROM functions. There's no need
4426** since the existing code will be satisfactory for all boards.
4427*/
4428static int
4429dc21041_infoleaf(struct net_device *dev)
4430{
4431    return DE4X5_AUTOSENSE_MS;
4432}
4433
4434static int
4435dc21140_infoleaf(struct net_device *dev)
4436{
4437    struct de4x5_private *lp = netdev_priv(dev);
4438    u_char count = 0;
4439    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4440    int next_tick = DE4X5_AUTOSENSE_MS;
4441
4442    /* Read the connection type */
4443    p+=2;
4444
4445    /* GEP control */
4446    lp->cache.gepc = (*p++ | GEP_CTRL);
4447
4448    /* Block count */
4449    count = *p++;
4450
4451    /* Recursively figure out the info blocks */
4452    if (*p < 128) {
4453	next_tick = dc_infoblock[COMPACT](dev, count, p);
4454    } else {
4455	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4456    }
4457
4458    if (lp->tcount == count) {
4459	lp->media = NC;
4460        if (lp->media != lp->c_media) {
4461	    de4x5_dbg_media(dev);
4462	    lp->c_media = lp->media;
4463	}
4464	lp->media = INIT;
4465	lp->tcount = 0;
4466	lp->tx_enable = false;
4467    }
4468
4469    return next_tick & ~TIMER_CB;
4470}
4471
4472static int
4473dc21142_infoleaf(struct net_device *dev)
4474{
4475    struct de4x5_private *lp = netdev_priv(dev);
4476    u_char count = 0;
4477    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4478    int next_tick = DE4X5_AUTOSENSE_MS;
4479
4480    /* Read the connection type */
4481    p+=2;
4482
4483    /* Block count */
4484    count = *p++;
4485
4486    /* Recursively figure out the info blocks */
4487    if (*p < 128) {
4488	next_tick = dc_infoblock[COMPACT](dev, count, p);
4489    } else {
4490	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4491    }
4492
4493    if (lp->tcount == count) {
4494	lp->media = NC;
4495        if (lp->media != lp->c_media) {
4496	    de4x5_dbg_media(dev);
4497	    lp->c_media = lp->media;
4498	}
4499	lp->media = INIT;
4500	lp->tcount = 0;
4501	lp->tx_enable = false;
4502    }
4503
4504    return next_tick & ~TIMER_CB;
4505}
4506
4507static int
4508dc21143_infoleaf(struct net_device *dev)
4509{
4510    struct de4x5_private *lp = netdev_priv(dev);
4511    u_char count = 0;
4512    u_char *p = (u_char *)&lp->srom + lp->infoleaf_offset;
4513    int next_tick = DE4X5_AUTOSENSE_MS;
4514
4515    /* Read the connection type */
4516    p+=2;
4517
4518    /* Block count */
4519    count = *p++;
4520
4521    /* Recursively figure out the info blocks */
4522    if (*p < 128) {
4523	next_tick = dc_infoblock[COMPACT](dev, count, p);
4524    } else {
4525	next_tick = dc_infoblock[*(p+1)](dev, count, p);
4526    }
4527    if (lp->tcount == count) {
4528	lp->media = NC;
4529        if (lp->media != lp->c_media) {
4530	    de4x5_dbg_media(dev);
4531	    lp->c_media = lp->media;
4532	}
4533	lp->media = INIT;
4534	lp->tcount = 0;
4535	lp->tx_enable = false;
4536    }
4537
4538    return next_tick & ~TIMER_CB;
4539}
4540
4541/*
4542** The compact infoblock is only designed for DC21140[A] chips, so
4543** we'll reuse the dc21140m_autoconf function. Non MII media only.
4544*/
4545static int
4546compact_infoblock(struct net_device *dev, u_char count, u_char *p)
4547{
4548    struct de4x5_private *lp = netdev_priv(dev);
4549    u_char flags, csr6;
4550
4551    /* Recursively figure out the info blocks */
4552    if (--count > lp->tcount) {
4553	if (*(p+COMPACT_LEN) < 128) {
4554	    return dc_infoblock[COMPACT](dev, count, p+COMPACT_LEN);
4555	} else {
4556	    return dc_infoblock[*(p+COMPACT_LEN+1)](dev, count, p+COMPACT_LEN);
4557	}
4558    }
4559
4560    if ((lp->media == INIT) && (lp->timeout < 0)) {
4561        lp->ibn = COMPACT;
4562        lp->active = 0;
4563	gep_wr(lp->cache.gepc, dev);
4564	lp->infoblock_media = (*p++) & COMPACT_MC;
4565	lp->cache.gep = *p++;
4566	csr6 = *p++;
4567	flags = *p++;
4568
4569	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4570	lp->defMedium = (flags & 0x40) ? -1 : 0;
4571	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4572	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4573	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4574	lp->useMII = false;
4575
4576	de4x5_switch_mac_port(dev);
4577    }
4578
4579    return dc21140m_autoconf(dev);
4580}
4581
4582/*
4583** This block describes non MII media for the DC21140[A] only.
4584*/
4585static int
4586type0_infoblock(struct net_device *dev, u_char count, u_char *p)
4587{
4588    struct de4x5_private *lp = netdev_priv(dev);
4589    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4590
4591    /* Recursively figure out the info blocks */
4592    if (--count > lp->tcount) {
4593	if (*(p+len) < 128) {
4594	    return dc_infoblock[COMPACT](dev, count, p+len);
4595	} else {
4596	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4597	}
4598    }
4599
4600    if ((lp->media == INIT) && (lp->timeout < 0)) {
4601        lp->ibn = 0;
4602        lp->active = 0;
4603        gep_wr(lp->cache.gepc, dev);
4604	p+=2;
4605	lp->infoblock_media = (*p++) & BLOCK0_MC;
4606	lp->cache.gep = *p++;
4607	csr6 = *p++;
4608	flags = *p++;
4609
4610	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4611	lp->defMedium = (flags & 0x40) ? -1 : 0;
4612	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4613	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4614	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4615	lp->useMII = false;
4616
4617	de4x5_switch_mac_port(dev);
4618    }
4619
4620    return dc21140m_autoconf(dev);
4621}
4622
4623/* These functions are under construction! */
4624
4625static int
4626type1_infoblock(struct net_device *dev, u_char count, u_char *p)
4627{
4628    struct de4x5_private *lp = netdev_priv(dev);
4629    u_char len = (*p & BLOCK_LEN)+1;
4630
4631    /* Recursively figure out the info blocks */
4632    if (--count > lp->tcount) {
4633	if (*(p+len) < 128) {
4634	    return dc_infoblock[COMPACT](dev, count, p+len);
4635	} else {
4636	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4637	}
4638    }
4639
4640    p += 2;
4641    if (lp->state == INITIALISED) {
4642        lp->ibn = 1;
4643	lp->active = *p++;
4644	lp->phy[lp->active].gep = (*p ? p : NULL); p += (*p + 1);
4645	lp->phy[lp->active].rst = (*p ? p : NULL); p += (*p + 1);
4646	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4647	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4648	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4649	lp->phy[lp->active].ttm = get_unaligned_le16(p);
4650	return 0;
4651    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4652        lp->ibn = 1;
4653        lp->active = *p;
4654	lp->infoblock_csr6 = OMR_MII_100;
4655	lp->useMII = true;
4656	lp->infoblock_media = ANS;
4657
4658	de4x5_switch_mac_port(dev);
4659    }
4660
4661    return dc21140m_autoconf(dev);
4662}
4663
4664static int
4665type2_infoblock(struct net_device *dev, u_char count, u_char *p)
4666{
4667    struct de4x5_private *lp = netdev_priv(dev);
4668    u_char len = (*p & BLOCK_LEN)+1;
4669
4670    /* Recursively figure out the info blocks */
4671    if (--count > lp->tcount) {
4672	if (*(p+len) < 128) {
4673	    return dc_infoblock[COMPACT](dev, count, p+len);
4674	} else {
4675	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4676	}
4677    }
4678
4679    if ((lp->media == INIT) && (lp->timeout < 0)) {
4680        lp->ibn = 2;
4681        lp->active = 0;
4682	p += 2;
4683	lp->infoblock_media = (*p) & MEDIA_CODE;
4684
4685        if ((*p++) & EXT_FIELD) {
4686	    lp->cache.csr13 = get_unaligned_le16(p); p += 2;
4687	    lp->cache.csr14 = get_unaligned_le16(p); p += 2;
4688	    lp->cache.csr15 = get_unaligned_le16(p); p += 2;
4689	} else {
4690	    lp->cache.csr13 = CSR13;
4691	    lp->cache.csr14 = CSR14;
4692	    lp->cache.csr15 = CSR15;
4693	}
4694        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4695        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16);
4696	lp->infoblock_csr6 = OMR_SIA;
4697	lp->useMII = false;
4698
4699	de4x5_switch_mac_port(dev);
4700    }
4701
4702    return dc2114x_autoconf(dev);
4703}
4704
4705static int
4706type3_infoblock(struct net_device *dev, u_char count, u_char *p)
4707{
4708    struct de4x5_private *lp = netdev_priv(dev);
4709    u_char len = (*p & BLOCK_LEN)+1;
4710
4711    /* Recursively figure out the info blocks */
4712    if (--count > lp->tcount) {
4713	if (*(p+len) < 128) {
4714	    return dc_infoblock[COMPACT](dev, count, p+len);
4715	} else {
4716	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4717	}
4718    }
4719
4720    p += 2;
4721    if (lp->state == INITIALISED) {
4722        lp->ibn = 3;
4723        lp->active = *p++;
4724	if (MOTO_SROM_BUG) lp->active = 0;
4725	lp->phy[lp->active].gep = (*p ? p : NULL); p += (2 * (*p) + 1);
4726	lp->phy[lp->active].rst = (*p ? p : NULL); p += (2 * (*p) + 1);
4727	lp->phy[lp->active].mc  = get_unaligned_le16(p); p += 2;
4728	lp->phy[lp->active].ana = get_unaligned_le16(p); p += 2;
4729	lp->phy[lp->active].fdx = get_unaligned_le16(p); p += 2;
4730	lp->phy[lp->active].ttm = get_unaligned_le16(p); p += 2;
4731	lp->phy[lp->active].mci = *p;
4732	return 0;
4733    } else if ((lp->media == INIT) && (lp->timeout < 0)) {
4734        lp->ibn = 3;
4735	lp->active = *p;
4736	if (MOTO_SROM_BUG) lp->active = 0;
4737	lp->infoblock_csr6 = OMR_MII_100;
4738	lp->useMII = true;
4739	lp->infoblock_media = ANS;
4740
4741	de4x5_switch_mac_port(dev);
4742    }
4743
4744    return dc2114x_autoconf(dev);
4745}
4746
4747static int
4748type4_infoblock(struct net_device *dev, u_char count, u_char *p)
4749{
4750    struct de4x5_private *lp = netdev_priv(dev);
4751    u_char flags, csr6, len = (*p & BLOCK_LEN)+1;
4752
4753    /* Recursively figure out the info blocks */
4754    if (--count > lp->tcount) {
4755	if (*(p+len) < 128) {
4756	    return dc_infoblock[COMPACT](dev, count, p+len);
4757	} else {
4758	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4759	}
4760    }
4761
4762    if ((lp->media == INIT) && (lp->timeout < 0)) {
4763        lp->ibn = 4;
4764        lp->active = 0;
4765	p+=2;
4766	lp->infoblock_media = (*p++) & MEDIA_CODE;
4767        lp->cache.csr13 = CSR13;              /* Hard coded defaults */
4768	lp->cache.csr14 = CSR14;
4769	lp->cache.csr15 = CSR15;
4770        lp->cache.gepc = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4771        lp->cache.gep  = ((s32)(get_unaligned_le16(p)) << 16); p += 2;
4772	csr6 = *p++;
4773	flags = *p++;
4774
4775	lp->asBitValid = (flags & 0x80) ? 0 : -1;
4776	lp->defMedium = (flags & 0x40) ? -1 : 0;
4777	lp->asBit = 1 << ((csr6 >> 1) & 0x07);
4778	lp->asPolarity = ((csr6 & 0x80) ? -1 : 0) & lp->asBit;
4779	lp->infoblock_csr6 = OMR_DEF | ((csr6 & 0x71) << 18);
4780	lp->useMII = false;
4781
4782	de4x5_switch_mac_port(dev);
4783    }
4784
4785    return dc2114x_autoconf(dev);
4786}
4787
4788/*
4789** This block type provides information for resetting external devices
4790** (chips) through the General Purpose Register.
4791*/
4792static int
4793type5_infoblock(struct net_device *dev, u_char count, u_char *p)
4794{
4795    struct de4x5_private *lp = netdev_priv(dev);
4796    u_char len = (*p & BLOCK_LEN)+1;
4797
4798    /* Recursively figure out the info blocks */
4799    if (--count > lp->tcount) {
4800	if (*(p+len) < 128) {
4801	    return dc_infoblock[COMPACT](dev, count, p+len);
4802	} else {
4803	    return dc_infoblock[*(p+len+1)](dev, count, p+len);
4804	}
4805    }
4806
4807    /* Must be initializing to run this code */
4808    if ((lp->state == INITIALISED) || (lp->media == INIT)) {
4809	p+=2;
4810        lp->rst = p;
4811        srom_exec(dev, lp->rst);
4812    }
4813
4814    return DE4X5_AUTOSENSE_MS;
4815}
4816
4817/*
4818** MII Read/Write
4819*/
4820
4821static int
4822mii_rd(u_char phyreg, u_char phyaddr, u_long ioaddr)
4823{
4824    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4825    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4826    mii_wdata(MII_STRD, 4, ioaddr);        /* SFD and Read operation         */
4827    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4828    mii_address(phyreg, ioaddr);           /* PHY Register to read           */
4829    mii_ta(MII_STRD, ioaddr);              /* Turn around time - 2 MDC       */
4830
4831    return mii_rdata(ioaddr);              /* Read data                      */
4832}
4833
4834static void
4835mii_wr(int data, u_char phyreg, u_char phyaddr, u_long ioaddr)
4836{
4837    mii_wdata(MII_PREAMBLE,  2, ioaddr);   /* Start of 34 bit preamble...    */
4838    mii_wdata(MII_PREAMBLE, 32, ioaddr);   /* ...continued                   */
4839    mii_wdata(MII_STWR, 4, ioaddr);        /* SFD and Write operation        */
4840    mii_address(phyaddr, ioaddr);          /* PHY address to be accessed     */
4841    mii_address(phyreg, ioaddr);           /* PHY Register to write          */
4842    mii_ta(MII_STWR, ioaddr);              /* Turn around time - 2 MDC       */
4843    data = mii_swap(data, 16);             /* Swap data bit ordering         */
4844    mii_wdata(data, 16, ioaddr);           /* Write data                     */
4845}
4846
4847static int
4848mii_rdata(u_long ioaddr)
4849{
4850    int i;
4851    s32 tmp = 0;
4852
4853    for (i=0; i<16; i++) {
4854	tmp <<= 1;
4855	tmp |= getfrom_mii(MII_MRD | MII_RD, ioaddr);
4856    }
4857
4858    return tmp;
4859}
4860
4861static void
4862mii_wdata(int data, int len, u_long ioaddr)
4863{
4864    int i;
4865
4866    for (i=0; i<len; i++) {
4867	sendto_mii(MII_MWR | MII_WR, data, ioaddr);
4868	data >>= 1;
4869    }
4870}
4871
4872static void
4873mii_address(u_char addr, u_long ioaddr)
4874{
4875    int i;
4876
4877    addr = mii_swap(addr, 5);
4878    for (i=0; i<5; i++) {
4879	sendto_mii(MII_MWR | MII_WR, addr, ioaddr);
4880	addr >>= 1;
4881    }
4882}
4883
4884static void
4885mii_ta(u_long rw, u_long ioaddr)
4886{
4887    if (rw == MII_STWR) {
4888	sendto_mii(MII_MWR | MII_WR, 1, ioaddr);
4889	sendto_mii(MII_MWR | MII_WR, 0, ioaddr);
4890    } else {
4891	getfrom_mii(MII_MRD | MII_RD, ioaddr);        /* Tri-state MDIO */
4892    }
4893}
4894
4895static int
4896mii_swap(int data, int len)
4897{
4898    int i, tmp = 0;
4899
4900    for (i=0; i<len; i++) {
4901	tmp <<= 1;
4902	tmp |= (data & 1);
4903	data >>= 1;
4904    }
4905
4906    return tmp;
4907}
4908
4909static void
4910sendto_mii(u32 command, int data, u_long ioaddr)
4911{
4912    u32 j;
4913
4914    j = (data & 1) << 17;
4915    outl(command | j, ioaddr);
4916    udelay(1);
4917    outl(command | MII_MDC | j, ioaddr);
4918    udelay(1);
4919}
4920
4921static int
4922getfrom_mii(u32 command, u_long ioaddr)
4923{
4924    outl(command, ioaddr);
4925    udelay(1);
4926    outl(command | MII_MDC, ioaddr);
4927    udelay(1);
4928
4929    return (inl(ioaddr) >> 19) & 1;
4930}
4931
4932/*
4933** Here's 3 ways to calculate the OUI from the ID registers.
4934*/
4935static int
4936mii_get_oui(u_char phyaddr, u_long ioaddr)
4937{
4938/*
4939    union {
4940	u_short reg;
4941	u_char breg[2];
4942    } a;
4943    int i, r2, r3, ret=0;*/
4944    int r2, r3;
4945
4946    /* Read r2 and r3 */
4947    r2 = mii_rd(MII_ID0, phyaddr, ioaddr);
4948    r3 = mii_rd(MII_ID1, phyaddr, ioaddr);
4949                                                /* SEEQ and Cypress way * /
4950    / * Shuffle r2 and r3 * /
4951    a.reg=0;
4952    r3 = ((r3>>10)|(r2<<6))&0x0ff;
4953    r2 = ((r2>>2)&0x3fff);
4954
4955    / * Bit reverse r3 * /
4956    for (i=0;i<8;i++) {
4957	ret<<=1;
4958	ret |= (r3&1);
4959	r3>>=1;
4960    }
4961
4962    / * Bit reverse r2 * /
4963    for (i=0;i<16;i++) {
4964	a.reg<<=1;
4965	a.reg |= (r2&1);
4966	r2>>=1;
4967    }
4968
4969    / * Swap r2 bytes * /
4970    i=a.breg[0];
4971    a.breg[0]=a.breg[1];
4972    a.breg[1]=i;
4973
4974    return (a.reg<<8)|ret; */                 /* SEEQ and Cypress way */
4975/*    return (r2<<6)|(u_int)(r3>>10); */      /* NATIONAL and BROADCOM way */
4976    return r2;                                  /* (I did it) My way */
4977}
4978
4979/*
4980** The SROM spec forces us to search addresses [1-31 0]. Bummer.
4981*/
4982static int
4983mii_get_phy(struct net_device *dev)
4984{
4985    struct de4x5_private *lp = netdev_priv(dev);
4986    u_long iobase = dev->base_addr;
4987    int i, j, k, n, limit=ARRAY_SIZE(phy_info);
4988    int id;
4989
4990    lp->active = 0;
4991    lp->useMII = true;
4992
4993    /* Search the MII address space for possible PHY devices */
4994    for (n=0, lp->mii_cnt=0, i=1; !((i==1) && (n==1)); i=(i+1)%DE4X5_MAX_MII) {
4995	lp->phy[lp->active].addr = i;
4996	if (i==0) n++;                             /* Count cycles */
4997	while (de4x5_reset_phy(dev)<0) udelay(100);/* Wait for reset */
4998	id = mii_get_oui(i, DE4X5_MII);
4999	if ((id == 0) || (id == 65535)) continue;  /* Valid ID? */
5000	for (j=0; j<limit; j++) {                  /* Search PHY table */
5001	    if (id != phy_info[j].id) continue;    /* ID match? */
5002	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5003	    if (k < DE4X5_MAX_PHY) {
5004		memcpy((char *)&lp->phy[k],
5005		       (char *)&phy_info[j], sizeof(struct phy_table));
5006		lp->phy[k].addr = i;
5007		lp->mii_cnt++;
5008		lp->active++;
5009	    } else {
5010		goto purgatory;                    /* Stop the search */
5011	    }
5012	    break;
5013	}
5014	if ((j == limit) && (i < DE4X5_MAX_MII)) {
5015	    for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++);
5016	    lp->phy[k].addr = i;
5017	    lp->phy[k].id = id;
5018	    lp->phy[k].spd.reg = GENERIC_REG;      /* ANLPA register         */
5019	    lp->phy[k].spd.mask = GENERIC_MASK;    /* 100Mb/s technologies   */
5020	    lp->phy[k].spd.value = GENERIC_VALUE;  /* TX & T4, H/F Duplex    */
5021	    lp->mii_cnt++;
5022	    lp->active++;
5023	    printk("%s: Using generic MII device control. If the board doesn't operate,\nplease mail the following dump to the author:\n", dev->name);
5024	    j = de4x5_debug;
5025	    de4x5_debug |= DEBUG_MII;
5026	    de4x5_dbg_mii(dev, k);
5027	    de4x5_debug = j;
5028	    printk("\n");
5029	}
5030    }
5031  purgatory:
5032    lp->active = 0;
5033    if (lp->phy[0].id) {                           /* Reset the PHY devices */
5034	for (k=0; k < DE4X5_MAX_PHY && lp->phy[k].id; k++) { /*For each PHY*/
5035	    mii_wr(MII_CR_RST, MII_CR, lp->phy[k].addr, DE4X5_MII);
5036	    while (mii_rd(MII_CR, lp->phy[k].addr, DE4X5_MII) & MII_CR_RST);
5037
5038	    de4x5_dbg_mii(dev, k);
5039	}
5040    }
5041    if (!lp->mii_cnt) lp->useMII = false;
5042
5043    return lp->mii_cnt;
5044}
5045
5046static char *
5047build_setup_frame(struct net_device *dev, int mode)
5048{
5049    struct de4x5_private *lp = netdev_priv(dev);
5050    int i;
5051    char *pa = lp->setup_frame;
5052
5053    /* Initialise the setup frame */
5054    if (mode == ALL) {
5055	memset(lp->setup_frame, 0, SETUP_FRAME_LEN);
5056    }
5057
5058    if (lp->setup_f == HASH_PERF) {
5059	for (pa=lp->setup_frame+IMPERF_PA_OFFSET, i=0; i<ETH_ALEN; i++) {
5060	    *(pa + i) = dev->dev_addr[i];                 /* Host address */
5061	    if (i & 0x01) pa += 2;
5062	}
5063	*(lp->setup_frame + (HASH_TABLE_LEN >> 3) - 3) = 0x80;
5064    } else {
5065	for (i=0; i<ETH_ALEN; i++) { /* Host address */
5066	    *(pa + (i&1)) = dev->dev_addr[i];
5067	    if (i & 0x01) pa += 4;
5068	}
5069	for (i=0; i<ETH_ALEN; i++) { /* Broadcast address */
5070	    *(pa + (i&1)) = (char) 0xff;
5071	    if (i & 0x01) pa += 4;
5072	}
5073    }
5074
5075    return pa;                     /* Points to the next entry */
5076}
5077
5078static void
5079disable_ast(struct net_device *dev)
5080{
5081	struct de4x5_private *lp = netdev_priv(dev);
5082	del_timer_sync(&lp->timer);
5083}
5084
5085static long
5086de4x5_switch_mac_port(struct net_device *dev)
5087{
5088    struct de4x5_private *lp = netdev_priv(dev);
5089    u_long iobase = dev->base_addr;
5090    s32 omr;
5091
5092    STOP_DE4X5;
5093
5094    /* Assert the OMR_PS bit in CSR6 */
5095    omr = (inl(DE4X5_OMR) & ~(OMR_PS | OMR_HBD | OMR_TTM | OMR_PCS | OMR_SCR |
5096			                                             OMR_FDX));
5097    omr |= lp->infoblock_csr6;
5098    if (omr & OMR_PS) omr |= OMR_HBD;
5099    outl(omr, DE4X5_OMR);
5100
5101    /* Soft Reset */
5102    RESET_DE4X5;
5103
5104    /* Restore the GEP - especially for COMPACT and Type 0 Infoblocks */
5105    if (lp->chipset == DC21140) {
5106	gep_wr(lp->cache.gepc, dev);
5107	gep_wr(lp->cache.gep, dev);
5108    } else if ((lp->chipset & ~0x0ff) == DC2114x) {
5109	reset_init_sia(dev, lp->cache.csr13, lp->cache.csr14, lp->cache.csr15);
5110    }
5111
5112    /* Restore CSR6 */
5113    outl(omr, DE4X5_OMR);
5114
5115    /* Reset CSR8 */
5116    inl(DE4X5_MFC);
5117
5118    return omr;
5119}
5120
5121static void
5122gep_wr(s32 data, struct net_device *dev)
5123{
5124    struct de4x5_private *lp = netdev_priv(dev);
5125    u_long iobase = dev->base_addr;
5126
5127    if (lp->chipset == DC21140) {
5128	outl(data, DE4X5_GEP);
5129    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5130	outl((data<<16) | lp->cache.csr15, DE4X5_SIGR);
5131    }
5132}
5133
5134static int
5135gep_rd(struct net_device *dev)
5136{
5137    struct de4x5_private *lp = netdev_priv(dev);
5138    u_long iobase = dev->base_addr;
5139
5140    if (lp->chipset == DC21140) {
5141	return inl(DE4X5_GEP);
5142    } else if ((lp->chipset & ~0x00ff) == DC2114x) {
5143	return inl(DE4X5_SIGR) & 0x000fffff;
5144    }
5145
5146    return 0;
5147}
5148
5149static void
5150yawn(struct net_device *dev, int state)
5151{
5152    struct de4x5_private *lp = netdev_priv(dev);
5153    u_long iobase = dev->base_addr;
5154
5155    if ((lp->chipset == DC21040) || (lp->chipset == DC21140)) return;
5156
5157    if(lp->bus == EISA) {
5158	switch(state) {
5159	  case WAKEUP:
5160	    outb(WAKEUP, PCI_CFPM);
5161	    mdelay(10);
5162	    break;
5163
5164	  case SNOOZE:
5165	    outb(SNOOZE, PCI_CFPM);
5166	    break;
5167
5168	  case SLEEP:
5169	    outl(0, DE4X5_SICR);
5170	    outb(SLEEP, PCI_CFPM);
5171	    break;
5172	}
5173    } else {
5174	struct pci_dev *pdev = to_pci_dev (lp->gendev);
5175	switch(state) {
5176	  case WAKEUP:
5177	    pci_write_config_byte(pdev, PCI_CFDA_PSM, WAKEUP);
5178	    mdelay(10);
5179	    break;
5180
5181	  case SNOOZE:
5182	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SNOOZE);
5183	    break;
5184
5185	  case SLEEP:
5186	    outl(0, DE4X5_SICR);
5187	    pci_write_config_byte(pdev, PCI_CFDA_PSM, SLEEP);
5188	    break;
5189	}
5190    }
5191}
5192
5193static void
5194de4x5_parse_params(struct net_device *dev)
5195{
5196    struct de4x5_private *lp = netdev_priv(dev);
5197    char *p, *q, t;
5198
5199    lp->params.fdx = 0;
5200    lp->params.autosense = AUTO;
5201
5202    if (args == NULL) return;
5203
5204    if ((p = strstr(args, dev->name))) {
5205	if (!(q = strstr(p+strlen(dev->name), "eth"))) q = p + strlen(p);
5206	t = *q;
5207	*q = '\0';
5208
5209	if (strstr(p, "fdx") || strstr(p, "FDX")) lp->params.fdx = 1;
5210
5211	if (strstr(p, "autosense") || strstr(p, "AUTOSENSE")) {
5212	    if (strstr(p, "TP")) {
5213		lp->params.autosense = TP;
5214	    } else if (strstr(p, "TP_NW")) {
5215		lp->params.autosense = TP_NW;
5216	    } else if (strstr(p, "BNC")) {
5217		lp->params.autosense = BNC;
5218	    } else if (strstr(p, "AUI")) {
5219		lp->params.autosense = AUI;
5220	    } else if (strstr(p, "BNC_AUI")) {
5221		lp->params.autosense = BNC;
5222	    } else if (strstr(p, "10Mb")) {
5223		lp->params.autosense = _10Mb;
5224	    } else if (strstr(p, "100Mb")) {
5225		lp->params.autosense = _100Mb;
5226	    } else if (strstr(p, "AUTO")) {
5227		lp->params.autosense = AUTO;
5228	    }
5229	}
5230	*q = t;
5231    }
5232}
5233
5234static void
5235de4x5_dbg_open(struct net_device *dev)
5236{
5237    struct de4x5_private *lp = netdev_priv(dev);
5238    int i;
5239
5240    if (de4x5_debug & DEBUG_OPEN) {
5241	printk("%s: de4x5 opening with irq %d\n",dev->name,dev->irq);
5242	printk("\tphysical address: ");
5243	for (i=0;i<6;i++) {
5244	    printk("%2.2x:",(short)dev->dev_addr[i]);
5245	}
5246	printk("\n");
5247	printk("Descriptor head addresses:\n");
5248	printk("\t0x%8.8lx  0x%8.8lx\n",(u_long)lp->rx_ring,(u_long)lp->tx_ring);
5249	printk("Descriptor addresses:\nRX: ");
5250	for (i=0;i<lp->rxRingSize-1;i++){
5251	    if (i < 3) {
5252		printk("0x%8.8lx  ",(u_long)&lp->rx_ring[i].status);
5253	    }
5254	}
5255	printk("...0x%8.8lx\n",(u_long)&lp->rx_ring[i].status);
5256	printk("TX: ");
5257	for (i=0;i<lp->txRingSize-1;i++){
5258	    if (i < 3) {
5259		printk("0x%8.8lx  ", (u_long)&lp->tx_ring[i].status);
5260	    }
5261	}
5262	printk("...0x%8.8lx\n", (u_long)&lp->tx_ring[i].status);
5263	printk("Descriptor buffers:\nRX: ");
5264	for (i=0;i<lp->rxRingSize-1;i++){
5265	    if (i < 3) {
5266		printk("0x%8.8x  ",le32_to_cpu(lp->rx_ring[i].buf));
5267	    }
5268	}
5269	printk("...0x%8.8x\n",le32_to_cpu(lp->rx_ring[i].buf));
5270	printk("TX: ");
5271	for (i=0;i<lp->txRingSize-1;i++){
5272	    if (i < 3) {
5273		printk("0x%8.8x  ", le32_to_cpu(lp->tx_ring[i].buf));
5274	    }
5275	}
5276	printk("...0x%8.8x\n", le32_to_cpu(lp->tx_ring[i].buf));
5277	printk("Ring size:\nRX: %d\nTX: %d\n",
5278	       (short)lp->rxRingSize,
5279	       (short)lp->txRingSize);
5280    }
5281}
5282
5283static void
5284de4x5_dbg_mii(struct net_device *dev, int k)
5285{
5286    struct de4x5_private *lp = netdev_priv(dev);
5287    u_long iobase = dev->base_addr;
5288
5289    if (de4x5_debug & DEBUG_MII) {
5290	printk("\nMII device address: %d\n", lp->phy[k].addr);
5291	printk("MII CR:  %x\n",mii_rd(MII_CR,lp->phy[k].addr,DE4X5_MII));
5292	printk("MII SR:  %x\n",mii_rd(MII_SR,lp->phy[k].addr,DE4X5_MII));
5293	printk("MII ID0: %x\n",mii_rd(MII_ID0,lp->phy[k].addr,DE4X5_MII));
5294	printk("MII ID1: %x\n",mii_rd(MII_ID1,lp->phy[k].addr,DE4X5_MII));
5295	if (lp->phy[k].id != BROADCOM_T4) {
5296	    printk("MII ANA: %x\n",mii_rd(0x04,lp->phy[k].addr,DE4X5_MII));
5297	    printk("MII ANC: %x\n",mii_rd(0x05,lp->phy[k].addr,DE4X5_MII));
5298	}
5299	printk("MII 16:  %x\n",mii_rd(0x10,lp->phy[k].addr,DE4X5_MII));
5300	if (lp->phy[k].id != BROADCOM_T4) {
5301	    printk("MII 17:  %x\n",mii_rd(0x11,lp->phy[k].addr,DE4X5_MII));
5302	    printk("MII 18:  %x\n",mii_rd(0x12,lp->phy[k].addr,DE4X5_MII));
5303	} else {
5304	    printk("MII 20:  %x\n",mii_rd(0x14,lp->phy[k].addr,DE4X5_MII));
5305	}
5306    }
5307}
5308
5309static void
5310de4x5_dbg_media(struct net_device *dev)
5311{
5312    struct de4x5_private *lp = netdev_priv(dev);
5313
5314    if (lp->media != lp->c_media) {
5315	if (de4x5_debug & DEBUG_MEDIA) {
5316	    printk("%s: media is %s%s\n", dev->name,
5317		   (lp->media == NC  ? "unconnected, link down or incompatible connection" :
5318		    (lp->media == TP  ? "TP" :
5319		     (lp->media == ANS ? "TP/Nway" :
5320		      (lp->media == BNC ? "BNC" :
5321		       (lp->media == AUI ? "AUI" :
5322			(lp->media == BNC_AUI ? "BNC/AUI" :
5323			 (lp->media == EXT_SIA ? "EXT SIA" :
5324			  (lp->media == _100Mb  ? "100Mb/s" :
5325			   (lp->media == _10Mb   ? "10Mb/s" :
5326			    "???"
5327			    ))))))))), (lp->fdx?" full duplex.":"."));
5328	}
5329	lp->c_media = lp->media;
5330    }
5331}
5332
5333static void
5334de4x5_dbg_srom(struct de4x5_srom *p)
5335{
5336    int i;
5337
5338    if (de4x5_debug & DEBUG_SROM) {
5339	printk("Sub-system Vendor ID: %04x\n", *((u_short *)p->sub_vendor_id));
5340	printk("Sub-system ID:        %04x\n", *((u_short *)p->sub_system_id));
5341	printk("ID Block CRC:         %02x\n", (u_char)(p->id_block_crc));
5342	printk("SROM version:         %02x\n", (u_char)(p->version));
5343	printk("# controllers:        %02x\n", (u_char)(p->num_controllers));
5344
5345	printk("Hardware Address:     %pM\n", p->ieee_addr);
5346	printk("CRC checksum:         %04x\n", (u_short)(p->chksum));
5347	for (i=0; i<64; i++) {
5348	    printk("%3d %04x\n", i<<1, (u_short)*((u_short *)p+i));
5349	}
5350    }
5351}
5352
5353static void
5354de4x5_dbg_rx(struct sk_buff *skb, int len)
5355{
5356    int i, j;
5357
5358    if (de4x5_debug & DEBUG_RX) {
5359	printk("R: %pM <- %pM len/SAP:%02x%02x [%d]\n",
5360	       skb->data, &skb->data[6],
5361	       (u_char)skb->data[12],
5362	       (u_char)skb->data[13],
5363	       len);
5364	for (j=0; len>0;j+=16, len-=16) {
5365	  printk("    %03x: ",j);
5366	  for (i=0; i<16 && i<len; i++) {
5367	    printk("%02x ",(u_char)skb->data[i+j]);
5368	  }
5369	  printk("\n");
5370	}
5371    }
5372}
5373
5374/*
5375** Perform IOCTL call functions here. Some are privileged operations and the
5376** effective uid is checked in those cases. In the normal course of events
5377** this function is only used for my testing.
5378*/
5379static int
5380de4x5_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
5381{
5382    struct de4x5_private *lp = netdev_priv(dev);
5383    struct de4x5_ioctl *ioc = (struct de4x5_ioctl *) &rq->ifr_ifru;
5384    u_long iobase = dev->base_addr;
5385    int i, j, status = 0;
5386    s32 omr;
5387    union {
5388	u8  addr[144];
5389	u16 sval[72];
5390	u32 lval[36];
5391    } tmp;
5392    u_long flags = 0;
5393
5394    switch(ioc->cmd) {
5395    case DE4X5_GET_HWADDR:           /* Get the hardware address */
5396	ioc->len = ETH_ALEN;
5397	for (i=0; i<ETH_ALEN; i++) {
5398	    tmp.addr[i] = dev->dev_addr[i];
5399	}
5400	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5401	break;
5402
5403    case DE4X5_SET_HWADDR:           /* Set the hardware address */
5404	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5405	if (copy_from_user(tmp.addr, ioc->data, ETH_ALEN)) return -EFAULT;
5406	if (netif_queue_stopped(dev))
5407		return -EBUSY;
5408	netif_stop_queue(dev);
5409	for (i=0; i<ETH_ALEN; i++) {
5410	    dev->dev_addr[i] = tmp.addr[i];
5411	}
5412	build_setup_frame(dev, PHYS_ADDR_ONLY);
5413	/* Set up the descriptor and give ownership to the card */
5414	load_packet(dev, lp->setup_frame, TD_IC | PERFECT_F | TD_SET |
5415		                                       SETUP_FRAME_LEN, (struct sk_buff *)1);
5416	lp->tx_new = (lp->tx_new + 1) % lp->txRingSize;
5417	outl(POLL_DEMAND, DE4X5_TPD);                /* Start the TX */
5418	netif_wake_queue(dev);                      /* Unlock the TX ring */
5419	break;
5420
5421    case DE4X5_SAY_BOO:              /* Say "Boo!" to the kernel log file */
5422	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5423	printk("%s: Boo!\n", dev->name);
5424	break;
5425
5426    case DE4X5_MCA_EN:               /* Enable pass all multicast addressing */
5427	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5428	omr = inl(DE4X5_OMR);
5429	omr |= OMR_PM;
5430	outl(omr, DE4X5_OMR);
5431	break;
5432
5433    case DE4X5_GET_STATS:            /* Get the driver statistics */
5434    {
5435        struct pkt_stats statbuf;
5436	ioc->len = sizeof(statbuf);
5437	spin_lock_irqsave(&lp->lock, flags);
5438	memcpy(&statbuf, &lp->pktStats, ioc->len);
5439	spin_unlock_irqrestore(&lp->lock, flags);
5440	if (copy_to_user(ioc->data, &statbuf, ioc->len))
5441		return -EFAULT;
5442	break;
5443    }
5444    case DE4X5_CLR_STATS:            /* Zero out the driver statistics */
5445	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5446	spin_lock_irqsave(&lp->lock, flags);
5447	memset(&lp->pktStats, 0, sizeof(lp->pktStats));
5448	spin_unlock_irqrestore(&lp->lock, flags);
5449	break;
5450
5451    case DE4X5_GET_OMR:              /* Get the OMR Register contents */
5452	tmp.addr[0] = inl(DE4X5_OMR);
5453	if (copy_to_user(ioc->data, tmp.addr, 1)) return -EFAULT;
5454	break;
5455
5456    case DE4X5_SET_OMR:              /* Set the OMR Register contents */
5457	if (!capable(CAP_NET_ADMIN)) return -EPERM;
5458	if (copy_from_user(tmp.addr, ioc->data, 1)) return -EFAULT;
5459	outl(tmp.addr[0], DE4X5_OMR);
5460	break;
5461
5462    case DE4X5_GET_REG:              /* Get the DE4X5 Registers */
5463	j = 0;
5464	tmp.lval[0] = inl(DE4X5_STS); j+=4;
5465	tmp.lval[1] = inl(DE4X5_BMR); j+=4;
5466	tmp.lval[2] = inl(DE4X5_IMR); j+=4;
5467	tmp.lval[3] = inl(DE4X5_OMR); j+=4;
5468	tmp.lval[4] = inl(DE4X5_SISR); j+=4;
5469	tmp.lval[5] = inl(DE4X5_SICR); j+=4;
5470	tmp.lval[6] = inl(DE4X5_STRR); j+=4;
5471	tmp.lval[7] = inl(DE4X5_SIGR); j+=4;
5472	ioc->len = j;
5473	if (copy_to_user(ioc->data, tmp.lval, ioc->len))
5474		return -EFAULT;
5475	break;
5476
5477#define DE4X5_DUMP              0x0f /* Dump the DE4X5 Status */
5478/*
5479      case DE4X5_DUMP:
5480	j = 0;
5481	tmp.addr[j++] = dev->irq;
5482	for (i=0; i<ETH_ALEN; i++) {
5483	    tmp.addr[j++] = dev->dev_addr[i];
5484	}
5485	tmp.addr[j++] = lp->rxRingSize;
5486	tmp.lval[j>>2] = (long)lp->rx_ring; j+=4;
5487	tmp.lval[j>>2] = (long)lp->tx_ring; j+=4;
5488
5489	for (i=0;i<lp->rxRingSize-1;i++){
5490	    if (i < 3) {
5491		tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5492	    }
5493	}
5494	tmp.lval[j>>2] = (long)&lp->rx_ring[i].status; j+=4;
5495	for (i=0;i<lp->txRingSize-1;i++){
5496	    if (i < 3) {
5497		tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5498	    }
5499	}
5500	tmp.lval[j>>2] = (long)&lp->tx_ring[i].status; j+=4;
5501
5502	for (i=0;i<lp->rxRingSize-1;i++){
5503	    if (i < 3) {
5504		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5505	    }
5506	}
5507	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->rx_ring[i].buf); j+=4;
5508	for (i=0;i<lp->txRingSize-1;i++){
5509	    if (i < 3) {
5510		tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5511	    }
5512	}
5513	tmp.lval[j>>2] = (s32)le32_to_cpu(lp->tx_ring[i].buf); j+=4;
5514
5515	for (i=0;i<lp->rxRingSize;i++){
5516	    tmp.lval[j>>2] = le32_to_cpu(lp->rx_ring[i].status); j+=4;
5517	}
5518	for (i=0;i<lp->txRingSize;i++){
5519	    tmp.lval[j>>2] = le32_to_cpu(lp->tx_ring[i].status); j+=4;
5520	}
5521
5522	tmp.lval[j>>2] = inl(DE4X5_BMR);  j+=4;
5523	tmp.lval[j>>2] = inl(DE4X5_TPD);  j+=4;
5524	tmp.lval[j>>2] = inl(DE4X5_RPD);  j+=4;
5525	tmp.lval[j>>2] = inl(DE4X5_RRBA); j+=4;
5526	tmp.lval[j>>2] = inl(DE4X5_TRBA); j+=4;
5527	tmp.lval[j>>2] = inl(DE4X5_STS);  j+=4;
5528	tmp.lval[j>>2] = inl(DE4X5_OMR);  j+=4;
5529	tmp.lval[j>>2] = inl(DE4X5_IMR);  j+=4;
5530	tmp.lval[j>>2] = lp->chipset; j+=4;
5531	if (lp->chipset == DC21140) {
5532	    tmp.lval[j>>2] = gep_rd(dev);  j+=4;
5533	} else {
5534	    tmp.lval[j>>2] = inl(DE4X5_SISR); j+=4;
5535	    tmp.lval[j>>2] = inl(DE4X5_SICR); j+=4;
5536	    tmp.lval[j>>2] = inl(DE4X5_STRR); j+=4;
5537	    tmp.lval[j>>2] = inl(DE4X5_SIGR); j+=4;
5538	}
5539	tmp.lval[j>>2] = lp->phy[lp->active].id; j+=4;
5540	if (lp->phy[lp->active].id && (!lp->useSROM || lp->useMII)) {
5541	    tmp.lval[j>>2] = lp->active; j+=4;
5542	    tmp.lval[j>>2]=mii_rd(MII_CR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5543	    tmp.lval[j>>2]=mii_rd(MII_SR,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5544	    tmp.lval[j>>2]=mii_rd(MII_ID0,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5545	    tmp.lval[j>>2]=mii_rd(MII_ID1,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5546	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5547		tmp.lval[j>>2]=mii_rd(MII_ANA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5548		tmp.lval[j>>2]=mii_rd(MII_ANLPA,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5549	    }
5550	    tmp.lval[j>>2]=mii_rd(0x10,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5551	    if (lp->phy[lp->active].id != BROADCOM_T4) {
5552		tmp.lval[j>>2]=mii_rd(0x11,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5553		tmp.lval[j>>2]=mii_rd(0x12,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5554	    } else {
5555		tmp.lval[j>>2]=mii_rd(0x14,lp->phy[lp->active].addr,DE4X5_MII); j+=4;
5556	    }
5557	}
5558
5559	tmp.addr[j++] = lp->txRingSize;
5560	tmp.addr[j++] = netif_queue_stopped(dev);
5561
5562	ioc->len = j;
5563	if (copy_to_user(ioc->data, tmp.addr, ioc->len)) return -EFAULT;
5564	break;
5565
5566*/
5567    default:
5568	return -EOPNOTSUPP;
5569    }
5570
5571    return status;
5572}
5573
5574static int __init de4x5_module_init (void)
5575{
5576	int err = 0;
5577
5578#ifdef CONFIG_PCI
5579	err = pci_register_driver(&de4x5_pci_driver);
5580#endif
5581#ifdef CONFIG_EISA
5582	err |= eisa_driver_register (&de4x5_eisa_driver);
5583#endif
5584
5585	return err;
5586}
5587
5588static void __exit de4x5_module_exit (void)
5589{
5590#ifdef CONFIG_PCI
5591	pci_unregister_driver (&de4x5_pci_driver);
5592#endif
5593#ifdef CONFIG_EISA
5594	eisa_driver_unregister (&de4x5_eisa_driver);
5595#endif
5596}
5597
5598module_init (de4x5_module_init);
5599module_exit (de4x5_module_exit);