Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
Note: File does not exist in v6.13.7.
   1/**
   2 * drivers/net/ksx884x.c - Micrel KSZ8841/2 PCI Ethernet driver
   3 *
   4 * Copyright (c) 2009-2010 Micrel, Inc.
   5 * 	Tristram Ha <Tristram.Ha@micrel.com>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 */
  16
  17#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18
  19#include <linux/init.h>
  20#include <linux/interrupt.h>
  21#include <linux/kernel.h>
  22#include <linux/module.h>
  23#include <linux/ioport.h>
  24#include <linux/pci.h>
  25#include <linux/proc_fs.h>
  26#include <linux/mii.h>
  27#include <linux/platform_device.h>
  28#include <linux/ethtool.h>
  29#include <linux/etherdevice.h>
  30#include <linux/in.h>
  31#include <linux/ip.h>
  32#include <linux/if_vlan.h>
  33#include <linux/crc32.h>
  34#include <linux/sched.h>
  35#include <linux/slab.h>
  36
  37
  38/* DMA Registers */
  39
  40#define KS_DMA_TX_CTRL			0x0000
  41#define DMA_TX_ENABLE			0x00000001
  42#define DMA_TX_CRC_ENABLE		0x00000002
  43#define DMA_TX_PAD_ENABLE		0x00000004
  44#define DMA_TX_LOOPBACK			0x00000100
  45#define DMA_TX_FLOW_ENABLE		0x00000200
  46#define DMA_TX_CSUM_IP			0x00010000
  47#define DMA_TX_CSUM_TCP			0x00020000
  48#define DMA_TX_CSUM_UDP			0x00040000
  49#define DMA_TX_BURST_SIZE		0x3F000000
  50
  51#define KS_DMA_RX_CTRL			0x0004
  52#define DMA_RX_ENABLE			0x00000001
  53#define KS884X_DMA_RX_MULTICAST		0x00000002
  54#define DMA_RX_PROMISCUOUS		0x00000004
  55#define DMA_RX_ERROR			0x00000008
  56#define DMA_RX_UNICAST			0x00000010
  57#define DMA_RX_ALL_MULTICAST		0x00000020
  58#define DMA_RX_BROADCAST		0x00000040
  59#define DMA_RX_FLOW_ENABLE		0x00000200
  60#define DMA_RX_CSUM_IP			0x00010000
  61#define DMA_RX_CSUM_TCP			0x00020000
  62#define DMA_RX_CSUM_UDP			0x00040000
  63#define DMA_RX_BURST_SIZE		0x3F000000
  64
  65#define DMA_BURST_SHIFT			24
  66#define DMA_BURST_DEFAULT		8
  67
  68#define KS_DMA_TX_START			0x0008
  69#define KS_DMA_RX_START			0x000C
  70#define DMA_START			0x00000001
  71
  72#define KS_DMA_TX_ADDR			0x0010
  73#define KS_DMA_RX_ADDR			0x0014
  74
  75#define DMA_ADDR_LIST_MASK		0xFFFFFFFC
  76#define DMA_ADDR_LIST_SHIFT		2
  77
  78/* MTR0 */
  79#define KS884X_MULTICAST_0_OFFSET	0x0020
  80#define KS884X_MULTICAST_1_OFFSET	0x0021
  81#define KS884X_MULTICAST_2_OFFSET	0x0022
  82#define KS884x_MULTICAST_3_OFFSET	0x0023
  83/* MTR1 */
  84#define KS884X_MULTICAST_4_OFFSET	0x0024
  85#define KS884X_MULTICAST_5_OFFSET	0x0025
  86#define KS884X_MULTICAST_6_OFFSET	0x0026
  87#define KS884X_MULTICAST_7_OFFSET	0x0027
  88
  89/* Interrupt Registers */
  90
  91/* INTEN */
  92#define KS884X_INTERRUPTS_ENABLE	0x0028
  93/* INTST */
  94#define KS884X_INTERRUPTS_STATUS	0x002C
  95
  96#define KS884X_INT_RX_STOPPED		0x02000000
  97#define KS884X_INT_TX_STOPPED		0x04000000
  98#define KS884X_INT_RX_OVERRUN		0x08000000
  99#define KS884X_INT_TX_EMPTY		0x10000000
 100#define KS884X_INT_RX			0x20000000
 101#define KS884X_INT_TX			0x40000000
 102#define KS884X_INT_PHY			0x80000000
 103
 104#define KS884X_INT_RX_MASK		\
 105	(KS884X_INT_RX | KS884X_INT_RX_OVERRUN)
 106#define KS884X_INT_TX_MASK		\
 107	(KS884X_INT_TX | KS884X_INT_TX_EMPTY)
 108#define KS884X_INT_MASK	(KS884X_INT_RX | KS884X_INT_TX | KS884X_INT_PHY)
 109
 110/* MAC Additional Station Address */
 111
 112/* MAAL0 */
 113#define KS_ADD_ADDR_0_LO		0x0080
 114/* MAAH0 */
 115#define KS_ADD_ADDR_0_HI		0x0084
 116/* MAAL1 */
 117#define KS_ADD_ADDR_1_LO		0x0088
 118/* MAAH1 */
 119#define KS_ADD_ADDR_1_HI		0x008C
 120/* MAAL2 */
 121#define KS_ADD_ADDR_2_LO		0x0090
 122/* MAAH2 */
 123#define KS_ADD_ADDR_2_HI		0x0094
 124/* MAAL3 */
 125#define KS_ADD_ADDR_3_LO		0x0098
 126/* MAAH3 */
 127#define KS_ADD_ADDR_3_HI		0x009C
 128/* MAAL4 */
 129#define KS_ADD_ADDR_4_LO		0x00A0
 130/* MAAH4 */
 131#define KS_ADD_ADDR_4_HI		0x00A4
 132/* MAAL5 */
 133#define KS_ADD_ADDR_5_LO		0x00A8
 134/* MAAH5 */
 135#define KS_ADD_ADDR_5_HI		0x00AC
 136/* MAAL6 */
 137#define KS_ADD_ADDR_6_LO		0x00B0
 138/* MAAH6 */
 139#define KS_ADD_ADDR_6_HI		0x00B4
 140/* MAAL7 */
 141#define KS_ADD_ADDR_7_LO		0x00B8
 142/* MAAH7 */
 143#define KS_ADD_ADDR_7_HI		0x00BC
 144/* MAAL8 */
 145#define KS_ADD_ADDR_8_LO		0x00C0
 146/* MAAH8 */
 147#define KS_ADD_ADDR_8_HI		0x00C4
 148/* MAAL9 */
 149#define KS_ADD_ADDR_9_LO		0x00C8
 150/* MAAH9 */
 151#define KS_ADD_ADDR_9_HI		0x00CC
 152/* MAAL10 */
 153#define KS_ADD_ADDR_A_LO		0x00D0
 154/* MAAH10 */
 155#define KS_ADD_ADDR_A_HI		0x00D4
 156/* MAAL11 */
 157#define KS_ADD_ADDR_B_LO		0x00D8
 158/* MAAH11 */
 159#define KS_ADD_ADDR_B_HI		0x00DC
 160/* MAAL12 */
 161#define KS_ADD_ADDR_C_LO		0x00E0
 162/* MAAH12 */
 163#define KS_ADD_ADDR_C_HI		0x00E4
 164/* MAAL13 */
 165#define KS_ADD_ADDR_D_LO		0x00E8
 166/* MAAH13 */
 167#define KS_ADD_ADDR_D_HI		0x00EC
 168/* MAAL14 */
 169#define KS_ADD_ADDR_E_LO		0x00F0
 170/* MAAH14 */
 171#define KS_ADD_ADDR_E_HI		0x00F4
 172/* MAAL15 */
 173#define KS_ADD_ADDR_F_LO		0x00F8
 174/* MAAH15 */
 175#define KS_ADD_ADDR_F_HI		0x00FC
 176
 177#define ADD_ADDR_HI_MASK		0x0000FFFF
 178#define ADD_ADDR_ENABLE			0x80000000
 179#define ADD_ADDR_INCR			8
 180
 181/* Miscellaneous Registers */
 182
 183/* MARL */
 184#define KS884X_ADDR_0_OFFSET		0x0200
 185#define KS884X_ADDR_1_OFFSET		0x0201
 186/* MARM */
 187#define KS884X_ADDR_2_OFFSET		0x0202
 188#define KS884X_ADDR_3_OFFSET		0x0203
 189/* MARH */
 190#define KS884X_ADDR_4_OFFSET		0x0204
 191#define KS884X_ADDR_5_OFFSET		0x0205
 192
 193/* OBCR */
 194#define KS884X_BUS_CTRL_OFFSET		0x0210
 195
 196#define BUS_SPEED_125_MHZ		0x0000
 197#define BUS_SPEED_62_5_MHZ		0x0001
 198#define BUS_SPEED_41_66_MHZ		0x0002
 199#define BUS_SPEED_25_MHZ		0x0003
 200
 201/* EEPCR */
 202#define KS884X_EEPROM_CTRL_OFFSET	0x0212
 203
 204#define EEPROM_CHIP_SELECT		0x0001
 205#define EEPROM_SERIAL_CLOCK		0x0002
 206#define EEPROM_DATA_OUT			0x0004
 207#define EEPROM_DATA_IN			0x0008
 208#define EEPROM_ACCESS_ENABLE		0x0010
 209
 210/* MBIR */
 211#define KS884X_MEM_INFO_OFFSET		0x0214
 212
 213#define RX_MEM_TEST_FAILED		0x0008
 214#define RX_MEM_TEST_FINISHED		0x0010
 215#define TX_MEM_TEST_FAILED		0x0800
 216#define TX_MEM_TEST_FINISHED		0x1000
 217
 218/* GCR */
 219#define KS884X_GLOBAL_CTRL_OFFSET	0x0216
 220#define GLOBAL_SOFTWARE_RESET		0x0001
 221
 222#define KS8841_POWER_MANAGE_OFFSET	0x0218
 223
 224/* WFCR */
 225#define KS8841_WOL_CTRL_OFFSET		0x021A
 226#define KS8841_WOL_MAGIC_ENABLE		0x0080
 227#define KS8841_WOL_FRAME3_ENABLE	0x0008
 228#define KS8841_WOL_FRAME2_ENABLE	0x0004
 229#define KS8841_WOL_FRAME1_ENABLE	0x0002
 230#define KS8841_WOL_FRAME0_ENABLE	0x0001
 231
 232/* WF0 */
 233#define KS8841_WOL_FRAME_CRC_OFFSET	0x0220
 234#define KS8841_WOL_FRAME_BYTE0_OFFSET	0x0224
 235#define KS8841_WOL_FRAME_BYTE2_OFFSET	0x0228
 236
 237/* IACR */
 238#define KS884X_IACR_P			0x04A0
 239#define KS884X_IACR_OFFSET		KS884X_IACR_P
 240
 241/* IADR1 */
 242#define KS884X_IADR1_P			0x04A2
 243#define KS884X_IADR2_P			0x04A4
 244#define KS884X_IADR3_P			0x04A6
 245#define KS884X_IADR4_P			0x04A8
 246#define KS884X_IADR5_P			0x04AA
 247
 248#define KS884X_ACC_CTRL_SEL_OFFSET	KS884X_IACR_P
 249#define KS884X_ACC_CTRL_INDEX_OFFSET	(KS884X_ACC_CTRL_SEL_OFFSET + 1)
 250
 251#define KS884X_ACC_DATA_0_OFFSET	KS884X_IADR4_P
 252#define KS884X_ACC_DATA_1_OFFSET	(KS884X_ACC_DATA_0_OFFSET + 1)
 253#define KS884X_ACC_DATA_2_OFFSET	KS884X_IADR5_P
 254#define KS884X_ACC_DATA_3_OFFSET	(KS884X_ACC_DATA_2_OFFSET + 1)
 255#define KS884X_ACC_DATA_4_OFFSET	KS884X_IADR2_P
 256#define KS884X_ACC_DATA_5_OFFSET	(KS884X_ACC_DATA_4_OFFSET + 1)
 257#define KS884X_ACC_DATA_6_OFFSET	KS884X_IADR3_P
 258#define KS884X_ACC_DATA_7_OFFSET	(KS884X_ACC_DATA_6_OFFSET + 1)
 259#define KS884X_ACC_DATA_8_OFFSET	KS884X_IADR1_P
 260
 261/* P1MBCR */
 262#define KS884X_P1MBCR_P			0x04D0
 263#define KS884X_P1MBSR_P			0x04D2
 264#define KS884X_PHY1ILR_P		0x04D4
 265#define KS884X_PHY1IHR_P		0x04D6
 266#define KS884X_P1ANAR_P			0x04D8
 267#define KS884X_P1ANLPR_P		0x04DA
 268
 269/* P2MBCR */
 270#define KS884X_P2MBCR_P			0x04E0
 271#define KS884X_P2MBSR_P			0x04E2
 272#define KS884X_PHY2ILR_P		0x04E4
 273#define KS884X_PHY2IHR_P		0x04E6
 274#define KS884X_P2ANAR_P			0x04E8
 275#define KS884X_P2ANLPR_P		0x04EA
 276
 277#define KS884X_PHY_1_CTRL_OFFSET	KS884X_P1MBCR_P
 278#define PHY_CTRL_INTERVAL		(KS884X_P2MBCR_P - KS884X_P1MBCR_P)
 279
 280#define KS884X_PHY_CTRL_OFFSET		0x00
 281
 282/* Mode Control Register */
 283#define PHY_REG_CTRL			0
 284
 285#define PHY_RESET			0x8000
 286#define PHY_LOOPBACK			0x4000
 287#define PHY_SPEED_100MBIT		0x2000
 288#define PHY_AUTO_NEG_ENABLE		0x1000
 289#define PHY_POWER_DOWN			0x0800
 290#define PHY_MII_DISABLE			0x0400
 291#define PHY_AUTO_NEG_RESTART		0x0200
 292#define PHY_FULL_DUPLEX			0x0100
 293#define PHY_COLLISION_TEST		0x0080
 294#define PHY_HP_MDIX			0x0020
 295#define PHY_FORCE_MDIX			0x0010
 296#define PHY_AUTO_MDIX_DISABLE		0x0008
 297#define PHY_REMOTE_FAULT_DISABLE	0x0004
 298#define PHY_TRANSMIT_DISABLE		0x0002
 299#define PHY_LED_DISABLE			0x0001
 300
 301#define KS884X_PHY_STATUS_OFFSET	0x02
 302
 303/* Mode Status Register */
 304#define PHY_REG_STATUS			1
 305
 306#define PHY_100BT4_CAPABLE		0x8000
 307#define PHY_100BTX_FD_CAPABLE		0x4000
 308#define PHY_100BTX_CAPABLE		0x2000
 309#define PHY_10BT_FD_CAPABLE		0x1000
 310#define PHY_10BT_CAPABLE		0x0800
 311#define PHY_MII_SUPPRESS_CAPABLE	0x0040
 312#define PHY_AUTO_NEG_ACKNOWLEDGE	0x0020
 313#define PHY_REMOTE_FAULT		0x0010
 314#define PHY_AUTO_NEG_CAPABLE		0x0008
 315#define PHY_LINK_STATUS			0x0004
 316#define PHY_JABBER_DETECT		0x0002
 317#define PHY_EXTENDED_CAPABILITY		0x0001
 318
 319#define KS884X_PHY_ID_1_OFFSET		0x04
 320#define KS884X_PHY_ID_2_OFFSET		0x06
 321
 322/* PHY Identifier Registers */
 323#define PHY_REG_ID_1			2
 324#define PHY_REG_ID_2			3
 325
 326#define KS884X_PHY_AUTO_NEG_OFFSET	0x08
 327
 328/* Auto-Negotiation Advertisement Register */
 329#define PHY_REG_AUTO_NEGOTIATION	4
 330
 331#define PHY_AUTO_NEG_NEXT_PAGE		0x8000
 332#define PHY_AUTO_NEG_REMOTE_FAULT	0x2000
 333/* Not supported. */
 334#define PHY_AUTO_NEG_ASYM_PAUSE		0x0800
 335#define PHY_AUTO_NEG_SYM_PAUSE		0x0400
 336#define PHY_AUTO_NEG_100BT4		0x0200
 337#define PHY_AUTO_NEG_100BTX_FD		0x0100
 338#define PHY_AUTO_NEG_100BTX		0x0080
 339#define PHY_AUTO_NEG_10BT_FD		0x0040
 340#define PHY_AUTO_NEG_10BT		0x0020
 341#define PHY_AUTO_NEG_SELECTOR		0x001F
 342#define PHY_AUTO_NEG_802_3		0x0001
 343
 344#define PHY_AUTO_NEG_PAUSE  (PHY_AUTO_NEG_SYM_PAUSE | PHY_AUTO_NEG_ASYM_PAUSE)
 345
 346#define KS884X_PHY_REMOTE_CAP_OFFSET	0x0A
 347
 348/* Auto-Negotiation Link Partner Ability Register */
 349#define PHY_REG_REMOTE_CAPABILITY	5
 350
 351#define PHY_REMOTE_NEXT_PAGE		0x8000
 352#define PHY_REMOTE_ACKNOWLEDGE		0x4000
 353#define PHY_REMOTE_REMOTE_FAULT		0x2000
 354#define PHY_REMOTE_SYM_PAUSE		0x0400
 355#define PHY_REMOTE_100BTX_FD		0x0100
 356#define PHY_REMOTE_100BTX		0x0080
 357#define PHY_REMOTE_10BT_FD		0x0040
 358#define PHY_REMOTE_10BT			0x0020
 359
 360/* P1VCT */
 361#define KS884X_P1VCT_P			0x04F0
 362#define KS884X_P1PHYCTRL_P		0x04F2
 363
 364/* P2VCT */
 365#define KS884X_P2VCT_P			0x04F4
 366#define KS884X_P2PHYCTRL_P		0x04F6
 367
 368#define KS884X_PHY_SPECIAL_OFFSET	KS884X_P1VCT_P
 369#define PHY_SPECIAL_INTERVAL		(KS884X_P2VCT_P - KS884X_P1VCT_P)
 370
 371#define KS884X_PHY_LINK_MD_OFFSET	0x00
 372
 373#define PHY_START_CABLE_DIAG		0x8000
 374#define PHY_CABLE_DIAG_RESULT		0x6000
 375#define PHY_CABLE_STAT_NORMAL		0x0000
 376#define PHY_CABLE_STAT_OPEN		0x2000
 377#define PHY_CABLE_STAT_SHORT		0x4000
 378#define PHY_CABLE_STAT_FAILED		0x6000
 379#define PHY_CABLE_10M_SHORT		0x1000
 380#define PHY_CABLE_FAULT_COUNTER		0x01FF
 381
 382#define KS884X_PHY_PHY_CTRL_OFFSET	0x02
 383
 384#define PHY_STAT_REVERSED_POLARITY	0x0020
 385#define PHY_STAT_MDIX			0x0010
 386#define PHY_FORCE_LINK			0x0008
 387#define PHY_POWER_SAVING_DISABLE	0x0004
 388#define PHY_REMOTE_LOOPBACK		0x0002
 389
 390/* SIDER */
 391#define KS884X_SIDER_P			0x0400
 392#define KS884X_CHIP_ID_OFFSET		KS884X_SIDER_P
 393#define KS884X_FAMILY_ID_OFFSET		(KS884X_CHIP_ID_OFFSET + 1)
 394
 395#define REG_FAMILY_ID			0x88
 396
 397#define REG_CHIP_ID_41			0x8810
 398#define REG_CHIP_ID_42			0x8800
 399
 400#define KS884X_CHIP_ID_MASK_41		0xFF10
 401#define KS884X_CHIP_ID_MASK		0xFFF0
 402#define KS884X_CHIP_ID_SHIFT		4
 403#define KS884X_REVISION_MASK		0x000E
 404#define KS884X_REVISION_SHIFT		1
 405#define KS8842_START			0x0001
 406
 407#define CHIP_IP_41_M			0x8810
 408#define CHIP_IP_42_M			0x8800
 409#define CHIP_IP_61_M			0x8890
 410#define CHIP_IP_62_M			0x8880
 411
 412#define CHIP_IP_41_P			0x8850
 413#define CHIP_IP_42_P			0x8840
 414#define CHIP_IP_61_P			0x88D0
 415#define CHIP_IP_62_P			0x88C0
 416
 417/* SGCR1 */
 418#define KS8842_SGCR1_P			0x0402
 419#define KS8842_SWITCH_CTRL_1_OFFSET	KS8842_SGCR1_P
 420
 421#define SWITCH_PASS_ALL			0x8000
 422#define SWITCH_TX_FLOW_CTRL		0x2000
 423#define SWITCH_RX_FLOW_CTRL		0x1000
 424#define SWITCH_CHECK_LENGTH		0x0800
 425#define SWITCH_AGING_ENABLE		0x0400
 426#define SWITCH_FAST_AGING		0x0200
 427#define SWITCH_AGGR_BACKOFF		0x0100
 428#define SWITCH_PASS_PAUSE		0x0008
 429#define SWITCH_LINK_AUTO_AGING		0x0001
 430
 431/* SGCR2 */
 432#define KS8842_SGCR2_P			0x0404
 433#define KS8842_SWITCH_CTRL_2_OFFSET	KS8842_SGCR2_P
 434
 435#define SWITCH_VLAN_ENABLE		0x8000
 436#define SWITCH_IGMP_SNOOP		0x4000
 437#define IPV6_MLD_SNOOP_ENABLE		0x2000
 438#define IPV6_MLD_SNOOP_OPTION		0x1000
 439#define PRIORITY_SCHEME_SELECT		0x0800
 440#define SWITCH_MIRROR_RX_TX		0x0100
 441#define UNICAST_VLAN_BOUNDARY		0x0080
 442#define MULTICAST_STORM_DISABLE		0x0040
 443#define SWITCH_BACK_PRESSURE		0x0020
 444#define FAIR_FLOW_CTRL			0x0010
 445#define NO_EXC_COLLISION_DROP		0x0008
 446#define SWITCH_HUGE_PACKET		0x0004
 447#define SWITCH_LEGAL_PACKET		0x0002
 448#define SWITCH_BUF_RESERVE		0x0001
 449
 450/* SGCR3 */
 451#define KS8842_SGCR3_P			0x0406
 452#define KS8842_SWITCH_CTRL_3_OFFSET	KS8842_SGCR3_P
 453
 454#define BROADCAST_STORM_RATE_LO		0xFF00
 455#define SWITCH_REPEATER			0x0080
 456#define SWITCH_HALF_DUPLEX		0x0040
 457#define SWITCH_FLOW_CTRL		0x0020
 458#define SWITCH_10_MBIT			0x0010
 459#define SWITCH_REPLACE_NULL_VID		0x0008
 460#define BROADCAST_STORM_RATE_HI		0x0007
 461
 462#define BROADCAST_STORM_RATE		0x07FF
 463
 464/* SGCR4 */
 465#define KS8842_SGCR4_P			0x0408
 466
 467/* SGCR5 */
 468#define KS8842_SGCR5_P			0x040A
 469#define KS8842_SWITCH_CTRL_5_OFFSET	KS8842_SGCR5_P
 470
 471#define LED_MODE			0x8200
 472#define LED_SPEED_DUPLEX_ACT		0x0000
 473#define LED_SPEED_DUPLEX_LINK_ACT	0x8000
 474#define LED_DUPLEX_10_100		0x0200
 475
 476/* SGCR6 */
 477#define KS8842_SGCR6_P			0x0410
 478#define KS8842_SWITCH_CTRL_6_OFFSET	KS8842_SGCR6_P
 479
 480#define KS8842_PRIORITY_MASK		3
 481#define KS8842_PRIORITY_SHIFT		2
 482
 483/* SGCR7 */
 484#define KS8842_SGCR7_P			0x0412
 485#define KS8842_SWITCH_CTRL_7_OFFSET	KS8842_SGCR7_P
 486
 487#define SWITCH_UNK_DEF_PORT_ENABLE	0x0008
 488#define SWITCH_UNK_DEF_PORT_3		0x0004
 489#define SWITCH_UNK_DEF_PORT_2		0x0002
 490#define SWITCH_UNK_DEF_PORT_1		0x0001
 491
 492/* MACAR1 */
 493#define KS8842_MACAR1_P			0x0470
 494#define KS8842_MACAR2_P			0x0472
 495#define KS8842_MACAR3_P			0x0474
 496#define KS8842_MAC_ADDR_1_OFFSET	KS8842_MACAR1_P
 497#define KS8842_MAC_ADDR_0_OFFSET	(KS8842_MAC_ADDR_1_OFFSET + 1)
 498#define KS8842_MAC_ADDR_3_OFFSET	KS8842_MACAR2_P
 499#define KS8842_MAC_ADDR_2_OFFSET	(KS8842_MAC_ADDR_3_OFFSET + 1)
 500#define KS8842_MAC_ADDR_5_OFFSET	KS8842_MACAR3_P
 501#define KS8842_MAC_ADDR_4_OFFSET	(KS8842_MAC_ADDR_5_OFFSET + 1)
 502
 503/* TOSR1 */
 504#define KS8842_TOSR1_P			0x0480
 505#define KS8842_TOSR2_P			0x0482
 506#define KS8842_TOSR3_P			0x0484
 507#define KS8842_TOSR4_P			0x0486
 508#define KS8842_TOSR5_P			0x0488
 509#define KS8842_TOSR6_P			0x048A
 510#define KS8842_TOSR7_P			0x0490
 511#define KS8842_TOSR8_P			0x0492
 512#define KS8842_TOS_1_OFFSET		KS8842_TOSR1_P
 513#define KS8842_TOS_2_OFFSET		KS8842_TOSR2_P
 514#define KS8842_TOS_3_OFFSET		KS8842_TOSR3_P
 515#define KS8842_TOS_4_OFFSET		KS8842_TOSR4_P
 516#define KS8842_TOS_5_OFFSET		KS8842_TOSR5_P
 517#define KS8842_TOS_6_OFFSET		KS8842_TOSR6_P
 518
 519#define KS8842_TOS_7_OFFSET		KS8842_TOSR7_P
 520#define KS8842_TOS_8_OFFSET		KS8842_TOSR8_P
 521
 522/* P1CR1 */
 523#define KS8842_P1CR1_P			0x0500
 524#define KS8842_P1CR2_P			0x0502
 525#define KS8842_P1VIDR_P			0x0504
 526#define KS8842_P1CR3_P			0x0506
 527#define KS8842_P1IRCR_P			0x0508
 528#define KS8842_P1ERCR_P			0x050A
 529#define KS884X_P1SCSLMD_P		0x0510
 530#define KS884X_P1CR4_P			0x0512
 531#define KS884X_P1SR_P			0x0514
 532
 533/* P2CR1 */
 534#define KS8842_P2CR1_P			0x0520
 535#define KS8842_P2CR2_P			0x0522
 536#define KS8842_P2VIDR_P			0x0524
 537#define KS8842_P2CR3_P			0x0526
 538#define KS8842_P2IRCR_P			0x0528
 539#define KS8842_P2ERCR_P			0x052A
 540#define KS884X_P2SCSLMD_P		0x0530
 541#define KS884X_P2CR4_P			0x0532
 542#define KS884X_P2SR_P			0x0534
 543
 544/* P3CR1 */
 545#define KS8842_P3CR1_P			0x0540
 546#define KS8842_P3CR2_P			0x0542
 547#define KS8842_P3VIDR_P			0x0544
 548#define KS8842_P3CR3_P			0x0546
 549#define KS8842_P3IRCR_P			0x0548
 550#define KS8842_P3ERCR_P			0x054A
 551
 552#define KS8842_PORT_1_CTRL_1		KS8842_P1CR1_P
 553#define KS8842_PORT_2_CTRL_1		KS8842_P2CR1_P
 554#define KS8842_PORT_3_CTRL_1		KS8842_P3CR1_P
 555
 556#define PORT_CTRL_ADDR(port, addr)		\
 557	(addr = KS8842_PORT_1_CTRL_1 + (port) *	\
 558		(KS8842_PORT_2_CTRL_1 - KS8842_PORT_1_CTRL_1))
 559
 560#define KS8842_PORT_CTRL_1_OFFSET	0x00
 561
 562#define PORT_BROADCAST_STORM		0x0080
 563#define PORT_DIFFSERV_ENABLE		0x0040
 564#define PORT_802_1P_ENABLE		0x0020
 565#define PORT_BASED_PRIORITY_MASK	0x0018
 566#define PORT_BASED_PRIORITY_BASE	0x0003
 567#define PORT_BASED_PRIORITY_SHIFT	3
 568#define PORT_BASED_PRIORITY_0		0x0000
 569#define PORT_BASED_PRIORITY_1		0x0008
 570#define PORT_BASED_PRIORITY_2		0x0010
 571#define PORT_BASED_PRIORITY_3		0x0018
 572#define PORT_INSERT_TAG			0x0004
 573#define PORT_REMOVE_TAG			0x0002
 574#define PORT_PRIO_QUEUE_ENABLE		0x0001
 575
 576#define KS8842_PORT_CTRL_2_OFFSET	0x02
 577
 578#define PORT_INGRESS_VLAN_FILTER	0x4000
 579#define PORT_DISCARD_NON_VID		0x2000
 580#define PORT_FORCE_FLOW_CTRL		0x1000
 581#define PORT_BACK_PRESSURE		0x0800
 582#define PORT_TX_ENABLE			0x0400
 583#define PORT_RX_ENABLE			0x0200
 584#define PORT_LEARN_DISABLE		0x0100
 585#define PORT_MIRROR_SNIFFER		0x0080
 586#define PORT_MIRROR_RX			0x0040
 587#define PORT_MIRROR_TX			0x0020
 588#define PORT_USER_PRIORITY_CEILING	0x0008
 589#define PORT_VLAN_MEMBERSHIP		0x0007
 590
 591#define KS8842_PORT_CTRL_VID_OFFSET	0x04
 592
 593#define PORT_DEFAULT_VID		0x0001
 594
 595#define KS8842_PORT_CTRL_3_OFFSET	0x06
 596
 597#define PORT_INGRESS_LIMIT_MODE		0x000C
 598#define PORT_INGRESS_ALL		0x0000
 599#define PORT_INGRESS_UNICAST		0x0004
 600#define PORT_INGRESS_MULTICAST		0x0008
 601#define PORT_INGRESS_BROADCAST		0x000C
 602#define PORT_COUNT_IFG			0x0002
 603#define PORT_COUNT_PREAMBLE		0x0001
 604
 605#define KS8842_PORT_IN_RATE_OFFSET	0x08
 606#define KS8842_PORT_OUT_RATE_OFFSET	0x0A
 607
 608#define PORT_PRIORITY_RATE		0x0F
 609#define PORT_PRIORITY_RATE_SHIFT	4
 610
 611#define KS884X_PORT_LINK_MD		0x10
 612
 613#define PORT_CABLE_10M_SHORT		0x8000
 614#define PORT_CABLE_DIAG_RESULT		0x6000
 615#define PORT_CABLE_STAT_NORMAL		0x0000
 616#define PORT_CABLE_STAT_OPEN		0x2000
 617#define PORT_CABLE_STAT_SHORT		0x4000
 618#define PORT_CABLE_STAT_FAILED		0x6000
 619#define PORT_START_CABLE_DIAG		0x1000
 620#define PORT_FORCE_LINK			0x0800
 621#define PORT_POWER_SAVING_DISABLE	0x0400
 622#define PORT_PHY_REMOTE_LOOPBACK	0x0200
 623#define PORT_CABLE_FAULT_COUNTER	0x01FF
 624
 625#define KS884X_PORT_CTRL_4_OFFSET	0x12
 626
 627#define PORT_LED_OFF			0x8000
 628#define PORT_TX_DISABLE			0x4000
 629#define PORT_AUTO_NEG_RESTART		0x2000
 630#define PORT_REMOTE_FAULT_DISABLE	0x1000
 631#define PORT_POWER_DOWN			0x0800
 632#define PORT_AUTO_MDIX_DISABLE		0x0400
 633#define PORT_FORCE_MDIX			0x0200
 634#define PORT_LOOPBACK			0x0100
 635#define PORT_AUTO_NEG_ENABLE		0x0080
 636#define PORT_FORCE_100_MBIT		0x0040
 637#define PORT_FORCE_FULL_DUPLEX		0x0020
 638#define PORT_AUTO_NEG_SYM_PAUSE		0x0010
 639#define PORT_AUTO_NEG_100BTX_FD		0x0008
 640#define PORT_AUTO_NEG_100BTX		0x0004
 641#define PORT_AUTO_NEG_10BT_FD		0x0002
 642#define PORT_AUTO_NEG_10BT		0x0001
 643
 644#define KS884X_PORT_STATUS_OFFSET	0x14
 645
 646#define PORT_HP_MDIX			0x8000
 647#define PORT_REVERSED_POLARITY		0x2000
 648#define PORT_RX_FLOW_CTRL		0x0800
 649#define PORT_TX_FLOW_CTRL		0x1000
 650#define PORT_STATUS_SPEED_100MBIT	0x0400
 651#define PORT_STATUS_FULL_DUPLEX		0x0200
 652#define PORT_REMOTE_FAULT		0x0100
 653#define PORT_MDIX_STATUS		0x0080
 654#define PORT_AUTO_NEG_COMPLETE		0x0040
 655#define PORT_STATUS_LINK_GOOD		0x0020
 656#define PORT_REMOTE_SYM_PAUSE		0x0010
 657#define PORT_REMOTE_100BTX_FD		0x0008
 658#define PORT_REMOTE_100BTX		0x0004
 659#define PORT_REMOTE_10BT_FD		0x0002
 660#define PORT_REMOTE_10BT		0x0001
 661
 662/*
 663#define STATIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 664#define STATIC_MAC_TABLE_FWD_PORTS	00-00070000-00000000
 665#define STATIC_MAC_TABLE_VALID		00-00080000-00000000
 666#define STATIC_MAC_TABLE_OVERRIDE	00-00100000-00000000
 667#define STATIC_MAC_TABLE_USE_FID	00-00200000-00000000
 668#define STATIC_MAC_TABLE_FID		00-03C00000-00000000
 669*/
 670
 671#define STATIC_MAC_TABLE_ADDR		0x0000FFFF
 672#define STATIC_MAC_TABLE_FWD_PORTS	0x00070000
 673#define STATIC_MAC_TABLE_VALID		0x00080000
 674#define STATIC_MAC_TABLE_OVERRIDE	0x00100000
 675#define STATIC_MAC_TABLE_USE_FID	0x00200000
 676#define STATIC_MAC_TABLE_FID		0x03C00000
 677
 678#define STATIC_MAC_FWD_PORTS_SHIFT	16
 679#define STATIC_MAC_FID_SHIFT		22
 680
 681/*
 682#define VLAN_TABLE_VID			00-00000000-00000FFF
 683#define VLAN_TABLE_FID			00-00000000-0000F000
 684#define VLAN_TABLE_MEMBERSHIP		00-00000000-00070000
 685#define VLAN_TABLE_VALID		00-00000000-00080000
 686*/
 687
 688#define VLAN_TABLE_VID			0x00000FFF
 689#define VLAN_TABLE_FID			0x0000F000
 690#define VLAN_TABLE_MEMBERSHIP		0x00070000
 691#define VLAN_TABLE_VALID		0x00080000
 692
 693#define VLAN_TABLE_FID_SHIFT		12
 694#define VLAN_TABLE_MEMBERSHIP_SHIFT	16
 695
 696/*
 697#define DYNAMIC_MAC_TABLE_ADDR		00-0000FFFF-FFFFFFFF
 698#define DYNAMIC_MAC_TABLE_FID		00-000F0000-00000000
 699#define DYNAMIC_MAC_TABLE_SRC_PORT	00-00300000-00000000
 700#define DYNAMIC_MAC_TABLE_TIMESTAMP	00-00C00000-00000000
 701#define DYNAMIC_MAC_TABLE_ENTRIES	03-FF000000-00000000
 702#define DYNAMIC_MAC_TABLE_MAC_EMPTY	04-00000000-00000000
 703#define DYNAMIC_MAC_TABLE_RESERVED	78-00000000-00000000
 704#define DYNAMIC_MAC_TABLE_NOT_READY	80-00000000-00000000
 705*/
 706
 707#define DYNAMIC_MAC_TABLE_ADDR		0x0000FFFF
 708#define DYNAMIC_MAC_TABLE_FID		0x000F0000
 709#define DYNAMIC_MAC_TABLE_SRC_PORT	0x00300000
 710#define DYNAMIC_MAC_TABLE_TIMESTAMP	0x00C00000
 711#define DYNAMIC_MAC_TABLE_ENTRIES	0xFF000000
 712
 713#define DYNAMIC_MAC_TABLE_ENTRIES_H	0x03
 714#define DYNAMIC_MAC_TABLE_MAC_EMPTY	0x04
 715#define DYNAMIC_MAC_TABLE_RESERVED	0x78
 716#define DYNAMIC_MAC_TABLE_NOT_READY	0x80
 717
 718#define DYNAMIC_MAC_FID_SHIFT		16
 719#define DYNAMIC_MAC_SRC_PORT_SHIFT	20
 720#define DYNAMIC_MAC_TIMESTAMP_SHIFT	22
 721#define DYNAMIC_MAC_ENTRIES_SHIFT	24
 722#define DYNAMIC_MAC_ENTRIES_H_SHIFT	8
 723
 724/*
 725#define MIB_COUNTER_VALUE		00-00000000-3FFFFFFF
 726#define MIB_COUNTER_VALID		00-00000000-40000000
 727#define MIB_COUNTER_OVERFLOW		00-00000000-80000000
 728*/
 729
 730#define MIB_COUNTER_VALUE		0x3FFFFFFF
 731#define MIB_COUNTER_VALID		0x40000000
 732#define MIB_COUNTER_OVERFLOW		0x80000000
 733
 734#define MIB_PACKET_DROPPED		0x0000FFFF
 735
 736#define KS_MIB_PACKET_DROPPED_TX_0	0x100
 737#define KS_MIB_PACKET_DROPPED_TX_1	0x101
 738#define KS_MIB_PACKET_DROPPED_TX	0x102
 739#define KS_MIB_PACKET_DROPPED_RX_0	0x103
 740#define KS_MIB_PACKET_DROPPED_RX_1	0x104
 741#define KS_MIB_PACKET_DROPPED_RX	0x105
 742
 743/* Change default LED mode. */
 744#define SET_DEFAULT_LED			LED_SPEED_DUPLEX_ACT
 745
 746#define MAC_ADDR_LEN			6
 747#define MAC_ADDR_ORDER(i)		(MAC_ADDR_LEN - 1 - (i))
 748
 749#define MAX_ETHERNET_BODY_SIZE		1500
 750#define ETHERNET_HEADER_SIZE		14
 751
 752#define MAX_ETHERNET_PACKET_SIZE	\
 753	(MAX_ETHERNET_BODY_SIZE + ETHERNET_HEADER_SIZE)
 754
 755#define REGULAR_RX_BUF_SIZE		(MAX_ETHERNET_PACKET_SIZE + 4)
 756#define MAX_RX_BUF_SIZE			(1912 + 4)
 757
 758#define ADDITIONAL_ENTRIES		16
 759#define MAX_MULTICAST_LIST		32
 760
 761#define HW_MULTICAST_SIZE		8
 762
 763#define HW_TO_DEV_PORT(port)		(port - 1)
 764
 765enum {
 766	media_connected,
 767	media_disconnected
 768};
 769
 770enum {
 771	OID_COUNTER_UNKOWN,
 772
 773	OID_COUNTER_FIRST,
 774
 775	/* total transmit errors */
 776	OID_COUNTER_XMIT_ERROR,
 777
 778	/* total receive errors */
 779	OID_COUNTER_RCV_ERROR,
 780
 781	OID_COUNTER_LAST
 782};
 783
 784/*
 785 * Hardware descriptor definitions
 786 */
 787
 788#define DESC_ALIGNMENT			16
 789#define BUFFER_ALIGNMENT		8
 790
 791#define NUM_OF_RX_DESC			64
 792#define NUM_OF_TX_DESC			64
 793
 794#define KS_DESC_RX_FRAME_LEN		0x000007FF
 795#define KS_DESC_RX_FRAME_TYPE		0x00008000
 796#define KS_DESC_RX_ERROR_CRC		0x00010000
 797#define KS_DESC_RX_ERROR_RUNT		0x00020000
 798#define KS_DESC_RX_ERROR_TOO_LONG	0x00040000
 799#define KS_DESC_RX_ERROR_PHY		0x00080000
 800#define KS884X_DESC_RX_PORT_MASK	0x00300000
 801#define KS_DESC_RX_MULTICAST		0x01000000
 802#define KS_DESC_RX_ERROR		0x02000000
 803#define KS_DESC_RX_ERROR_CSUM_UDP	0x04000000
 804#define KS_DESC_RX_ERROR_CSUM_TCP	0x08000000
 805#define KS_DESC_RX_ERROR_CSUM_IP	0x10000000
 806#define KS_DESC_RX_LAST			0x20000000
 807#define KS_DESC_RX_FIRST		0x40000000
 808#define KS_DESC_RX_ERROR_COND		\
 809	(KS_DESC_RX_ERROR_CRC |		\
 810	KS_DESC_RX_ERROR_RUNT |		\
 811	KS_DESC_RX_ERROR_PHY |		\
 812	KS_DESC_RX_ERROR_TOO_LONG)
 813
 814#define KS_DESC_HW_OWNED		0x80000000
 815
 816#define KS_DESC_BUF_SIZE		0x000007FF
 817#define KS884X_DESC_TX_PORT_MASK	0x00300000
 818#define KS_DESC_END_OF_RING		0x02000000
 819#define KS_DESC_TX_CSUM_GEN_UDP		0x04000000
 820#define KS_DESC_TX_CSUM_GEN_TCP		0x08000000
 821#define KS_DESC_TX_CSUM_GEN_IP		0x10000000
 822#define KS_DESC_TX_LAST			0x20000000
 823#define KS_DESC_TX_FIRST		0x40000000
 824#define KS_DESC_TX_INTERRUPT		0x80000000
 825
 826#define KS_DESC_PORT_SHIFT		20
 827
 828#define KS_DESC_RX_MASK			(KS_DESC_BUF_SIZE)
 829
 830#define KS_DESC_TX_MASK			\
 831	(KS_DESC_TX_INTERRUPT |		\
 832	KS_DESC_TX_FIRST |		\
 833	KS_DESC_TX_LAST |		\
 834	KS_DESC_TX_CSUM_GEN_IP |	\
 835	KS_DESC_TX_CSUM_GEN_TCP |	\
 836	KS_DESC_TX_CSUM_GEN_UDP |	\
 837	KS_DESC_BUF_SIZE)
 838
 839struct ksz_desc_rx_stat {
 840#ifdef __BIG_ENDIAN_BITFIELD
 841	u32 hw_owned:1;
 842	u32 first_desc:1;
 843	u32 last_desc:1;
 844	u32 csum_err_ip:1;
 845	u32 csum_err_tcp:1;
 846	u32 csum_err_udp:1;
 847	u32 error:1;
 848	u32 multicast:1;
 849	u32 src_port:4;
 850	u32 err_phy:1;
 851	u32 err_too_long:1;
 852	u32 err_runt:1;
 853	u32 err_crc:1;
 854	u32 frame_type:1;
 855	u32 reserved1:4;
 856	u32 frame_len:11;
 857#else
 858	u32 frame_len:11;
 859	u32 reserved1:4;
 860	u32 frame_type:1;
 861	u32 err_crc:1;
 862	u32 err_runt:1;
 863	u32 err_too_long:1;
 864	u32 err_phy:1;
 865	u32 src_port:4;
 866	u32 multicast:1;
 867	u32 error:1;
 868	u32 csum_err_udp:1;
 869	u32 csum_err_tcp:1;
 870	u32 csum_err_ip:1;
 871	u32 last_desc:1;
 872	u32 first_desc:1;
 873	u32 hw_owned:1;
 874#endif
 875};
 876
 877struct ksz_desc_tx_stat {
 878#ifdef __BIG_ENDIAN_BITFIELD
 879	u32 hw_owned:1;
 880	u32 reserved1:31;
 881#else
 882	u32 reserved1:31;
 883	u32 hw_owned:1;
 884#endif
 885};
 886
 887struct ksz_desc_rx_buf {
 888#ifdef __BIG_ENDIAN_BITFIELD
 889	u32 reserved4:6;
 890	u32 end_of_ring:1;
 891	u32 reserved3:14;
 892	u32 buf_size:11;
 893#else
 894	u32 buf_size:11;
 895	u32 reserved3:14;
 896	u32 end_of_ring:1;
 897	u32 reserved4:6;
 898#endif
 899};
 900
 901struct ksz_desc_tx_buf {
 902#ifdef __BIG_ENDIAN_BITFIELD
 903	u32 intr:1;
 904	u32 first_seg:1;
 905	u32 last_seg:1;
 906	u32 csum_gen_ip:1;
 907	u32 csum_gen_tcp:1;
 908	u32 csum_gen_udp:1;
 909	u32 end_of_ring:1;
 910	u32 reserved4:1;
 911	u32 dest_port:4;
 912	u32 reserved3:9;
 913	u32 buf_size:11;
 914#else
 915	u32 buf_size:11;
 916	u32 reserved3:9;
 917	u32 dest_port:4;
 918	u32 reserved4:1;
 919	u32 end_of_ring:1;
 920	u32 csum_gen_udp:1;
 921	u32 csum_gen_tcp:1;
 922	u32 csum_gen_ip:1;
 923	u32 last_seg:1;
 924	u32 first_seg:1;
 925	u32 intr:1;
 926#endif
 927};
 928
 929union desc_stat {
 930	struct ksz_desc_rx_stat rx;
 931	struct ksz_desc_tx_stat tx;
 932	u32 data;
 933};
 934
 935union desc_buf {
 936	struct ksz_desc_rx_buf rx;
 937	struct ksz_desc_tx_buf tx;
 938	u32 data;
 939};
 940
 941/**
 942 * struct ksz_hw_desc - Hardware descriptor data structure
 943 * @ctrl:	Descriptor control value.
 944 * @buf:	Descriptor buffer value.
 945 * @addr:	Physical address of memory buffer.
 946 * @next:	Pointer to next hardware descriptor.
 947 */
 948struct ksz_hw_desc {
 949	union desc_stat ctrl;
 950	union desc_buf buf;
 951	u32 addr;
 952	u32 next;
 953};
 954
 955/**
 956 * struct ksz_sw_desc - Software descriptor data structure
 957 * @ctrl:	Descriptor control value.
 958 * @buf:	Descriptor buffer value.
 959 * @buf_size:	Current buffers size value in hardware descriptor.
 960 */
 961struct ksz_sw_desc {
 962	union desc_stat ctrl;
 963	union desc_buf buf;
 964	u32 buf_size;
 965};
 966
 967/**
 968 * struct ksz_dma_buf - OS dependent DMA buffer data structure
 969 * @skb:	Associated socket buffer.
 970 * @dma:	Associated physical DMA address.
 971 * len:		Actual len used.
 972 */
 973struct ksz_dma_buf {
 974	struct sk_buff *skb;
 975	dma_addr_t dma;
 976	int len;
 977};
 978
 979/**
 980 * struct ksz_desc - Descriptor structure
 981 * @phw:	Hardware descriptor pointer to uncached physical memory.
 982 * @sw:		Cached memory to hold hardware descriptor values for
 983 * 		manipulation.
 984 * @dma_buf:	Operating system dependent data structure to hold physical
 985 * 		memory buffer allocation information.
 986 */
 987struct ksz_desc {
 988	struct ksz_hw_desc *phw;
 989	struct ksz_sw_desc sw;
 990	struct ksz_dma_buf dma_buf;
 991};
 992
 993#define DMA_BUFFER(desc)  ((struct ksz_dma_buf *)(&(desc)->dma_buf))
 994
 995/**
 996 * struct ksz_desc_info - Descriptor information data structure
 997 * @ring:	First descriptor in the ring.
 998 * @cur:	Current descriptor being manipulated.
 999 * @ring_virt:	First hardware descriptor in the ring.
1000 * @ring_phys:	The physical address of the first descriptor of the ring.
1001 * @size:	Size of hardware descriptor.
1002 * @alloc:	Number of descriptors allocated.
1003 * @avail:	Number of descriptors available for use.
1004 * @last:	Index for last descriptor released to hardware.
1005 * @next:	Index for next descriptor available for use.
1006 * @mask:	Mask for index wrapping.
1007 */
1008struct ksz_desc_info {
1009	struct ksz_desc *ring;
1010	struct ksz_desc *cur;
1011	struct ksz_hw_desc *ring_virt;
1012	u32 ring_phys;
1013	int size;
1014	int alloc;
1015	int avail;
1016	int last;
1017	int next;
1018	int mask;
1019};
1020
1021/*
1022 * KSZ8842 switch definitions
1023 */
1024
1025enum {
1026	TABLE_STATIC_MAC = 0,
1027	TABLE_VLAN,
1028	TABLE_DYNAMIC_MAC,
1029	TABLE_MIB
1030};
1031
1032#define LEARNED_MAC_TABLE_ENTRIES	1024
1033#define STATIC_MAC_TABLE_ENTRIES	8
1034
1035/**
1036 * struct ksz_mac_table - Static MAC table data structure
1037 * @mac_addr:	MAC address to filter.
1038 * @vid:	VID value.
1039 * @fid:	FID value.
1040 * @ports:	Port membership.
1041 * @override:	Override setting.
1042 * @use_fid:	FID use setting.
1043 * @valid:	Valid setting indicating the entry is being used.
1044 */
1045struct ksz_mac_table {
1046	u8 mac_addr[MAC_ADDR_LEN];
1047	u16 vid;
1048	u8 fid;
1049	u8 ports;
1050	u8 override:1;
1051	u8 use_fid:1;
1052	u8 valid:1;
1053};
1054
1055#define VLAN_TABLE_ENTRIES		16
1056
1057/**
1058 * struct ksz_vlan_table - VLAN table data structure
1059 * @vid:	VID value.
1060 * @fid:	FID value.
1061 * @member:	Port membership.
1062 */
1063struct ksz_vlan_table {
1064	u16 vid;
1065	u8 fid;
1066	u8 member;
1067};
1068
1069#define DIFFSERV_ENTRIES		64
1070#define PRIO_802_1P_ENTRIES		8
1071#define PRIO_QUEUES			4
1072
1073#define SWITCH_PORT_NUM			2
1074#define TOTAL_PORT_NUM			(SWITCH_PORT_NUM + 1)
1075#define HOST_MASK			(1 << SWITCH_PORT_NUM)
1076#define PORT_MASK			7
1077
1078#define MAIN_PORT			0
1079#define OTHER_PORT			1
1080#define HOST_PORT			SWITCH_PORT_NUM
1081
1082#define PORT_COUNTER_NUM		0x20
1083#define TOTAL_PORT_COUNTER_NUM		(PORT_COUNTER_NUM + 2)
1084
1085#define MIB_COUNTER_RX_LO_PRIORITY	0x00
1086#define MIB_COUNTER_RX_HI_PRIORITY	0x01
1087#define MIB_COUNTER_RX_UNDERSIZE	0x02
1088#define MIB_COUNTER_RX_FRAGMENT		0x03
1089#define MIB_COUNTER_RX_OVERSIZE		0x04
1090#define MIB_COUNTER_RX_JABBER		0x05
1091#define MIB_COUNTER_RX_SYMBOL_ERR	0x06
1092#define MIB_COUNTER_RX_CRC_ERR		0x07
1093#define MIB_COUNTER_RX_ALIGNMENT_ERR	0x08
1094#define MIB_COUNTER_RX_CTRL_8808	0x09
1095#define MIB_COUNTER_RX_PAUSE		0x0A
1096#define MIB_COUNTER_RX_BROADCAST	0x0B
1097#define MIB_COUNTER_RX_MULTICAST	0x0C
1098#define MIB_COUNTER_RX_UNICAST		0x0D
1099#define MIB_COUNTER_RX_OCTET_64		0x0E
1100#define MIB_COUNTER_RX_OCTET_65_127	0x0F
1101#define MIB_COUNTER_RX_OCTET_128_255	0x10
1102#define MIB_COUNTER_RX_OCTET_256_511	0x11
1103#define MIB_COUNTER_RX_OCTET_512_1023	0x12
1104#define MIB_COUNTER_RX_OCTET_1024_1522	0x13
1105#define MIB_COUNTER_TX_LO_PRIORITY	0x14
1106#define MIB_COUNTER_TX_HI_PRIORITY	0x15
1107#define MIB_COUNTER_TX_LATE_COLLISION	0x16
1108#define MIB_COUNTER_TX_PAUSE		0x17
1109#define MIB_COUNTER_TX_BROADCAST	0x18
1110#define MIB_COUNTER_TX_MULTICAST	0x19
1111#define MIB_COUNTER_TX_UNICAST		0x1A
1112#define MIB_COUNTER_TX_DEFERRED		0x1B
1113#define MIB_COUNTER_TX_TOTAL_COLLISION	0x1C
1114#define MIB_COUNTER_TX_EXCESS_COLLISION	0x1D
1115#define MIB_COUNTER_TX_SINGLE_COLLISION	0x1E
1116#define MIB_COUNTER_TX_MULTI_COLLISION	0x1F
1117
1118#define MIB_COUNTER_RX_DROPPED_PACKET	0x20
1119#define MIB_COUNTER_TX_DROPPED_PACKET	0x21
1120
1121/**
1122 * struct ksz_port_mib - Port MIB data structure
1123 * @cnt_ptr:	Current pointer to MIB counter index.
1124 * @link_down:	Indication the link has just gone down.
1125 * @state:	Connection status of the port.
1126 * @mib_start:	The starting counter index.  Some ports do not start at 0.
1127 * @counter:	64-bit MIB counter value.
1128 * @dropped:	Temporary buffer to remember last read packet dropped values.
1129 *
1130 * MIB counters needs to be read periodically so that counters do not get
1131 * overflowed and give incorrect values.  A right balance is needed to
1132 * satisfy this condition and not waste too much CPU time.
1133 *
1134 * It is pointless to read MIB counters when the port is disconnected.  The
1135 * @state provides the connection status so that MIB counters are read only
1136 * when the port is connected.  The @link_down indicates the port is just
1137 * disconnected so that all MIB counters are read one last time to update the
1138 * information.
1139 */
1140struct ksz_port_mib {
1141	u8 cnt_ptr;
1142	u8 link_down;
1143	u8 state;
1144	u8 mib_start;
1145
1146	u64 counter[TOTAL_PORT_COUNTER_NUM];
1147	u32 dropped[2];
1148};
1149
1150/**
1151 * struct ksz_port_cfg - Port configuration data structure
1152 * @vid:	VID value.
1153 * @member:	Port membership.
1154 * @port_prio:	Port priority.
1155 * @rx_rate:	Receive priority rate.
1156 * @tx_rate:	Transmit priority rate.
1157 * @stp_state:	Current Spanning Tree Protocol state.
1158 */
1159struct ksz_port_cfg {
1160	u16 vid;
1161	u8 member;
1162	u8 port_prio;
1163	u32 rx_rate[PRIO_QUEUES];
1164	u32 tx_rate[PRIO_QUEUES];
1165	int stp_state;
1166};
1167
1168/**
1169 * struct ksz_switch - KSZ8842 switch data structure
1170 * @mac_table:	MAC table entries information.
1171 * @vlan_table:	VLAN table entries information.
1172 * @port_cfg:	Port configuration information.
1173 * @diffserv:	DiffServ priority settings.  Possible values from 6-bit of ToS
1174 * 		(bit7 ~ bit2) field.
1175 * @p_802_1p:	802.1P priority settings.  Possible values from 3-bit of 802.1p
1176 * 		Tag priority field.
1177 * @br_addr:	Bridge address.  Used for STP.
1178 * @other_addr:	Other MAC address.  Used for multiple network device mode.
1179 * @broad_per:	Broadcast storm percentage.
1180 * @member:	Current port membership.  Used for STP.
1181 */
1182struct ksz_switch {
1183	struct ksz_mac_table mac_table[STATIC_MAC_TABLE_ENTRIES];
1184	struct ksz_vlan_table vlan_table[VLAN_TABLE_ENTRIES];
1185	struct ksz_port_cfg port_cfg[TOTAL_PORT_NUM];
1186
1187	u8 diffserv[DIFFSERV_ENTRIES];
1188	u8 p_802_1p[PRIO_802_1P_ENTRIES];
1189
1190	u8 br_addr[MAC_ADDR_LEN];
1191	u8 other_addr[MAC_ADDR_LEN];
1192
1193	u8 broad_per;
1194	u8 member;
1195};
1196
1197#define TX_RATE_UNIT			10000
1198
1199/**
1200 * struct ksz_port_info - Port information data structure
1201 * @state:	Connection status of the port.
1202 * @tx_rate:	Transmit rate divided by 10000 to get Mbit.
1203 * @duplex:	Duplex mode.
1204 * @advertised:	Advertised auto-negotiation setting.  Used to determine link.
1205 * @partner:	Auto-negotiation partner setting.  Used to determine link.
1206 * @port_id:	Port index to access actual hardware register.
1207 * @pdev:	Pointer to OS dependent network device.
1208 */
1209struct ksz_port_info {
1210	uint state;
1211	uint tx_rate;
1212	u8 duplex;
1213	u8 advertised;
1214	u8 partner;
1215	u8 port_id;
1216	void *pdev;
1217};
1218
1219#define MAX_TX_HELD_SIZE		52000
1220
1221/* Hardware features and bug fixes. */
1222#define LINK_INT_WORKING		(1 << 0)
1223#define SMALL_PACKET_TX_BUG		(1 << 1)
1224#define HALF_DUPLEX_SIGNAL_BUG		(1 << 2)
1225#define RX_HUGE_FRAME			(1 << 4)
1226#define STP_SUPPORT			(1 << 8)
1227
1228/* Software overrides. */
1229#define PAUSE_FLOW_CTRL			(1 << 0)
1230#define FAST_AGING			(1 << 1)
1231
1232/**
1233 * struct ksz_hw - KSZ884X hardware data structure
1234 * @io:			Virtual address assigned.
1235 * @ksz_switch:		Pointer to KSZ8842 switch.
1236 * @port_info:		Port information.
1237 * @port_mib:		Port MIB information.
1238 * @dev_count:		Number of network devices this hardware supports.
1239 * @dst_ports:		Destination ports in switch for transmission.
1240 * @id:			Hardware ID.  Used for display only.
1241 * @mib_cnt:		Number of MIB counters this hardware has.
1242 * @mib_port_cnt:	Number of ports with MIB counters.
1243 * @tx_cfg:		Cached transmit control settings.
1244 * @rx_cfg:		Cached receive control settings.
1245 * @intr_mask:		Current interrupt mask.
1246 * @intr_set:		Current interrup set.
1247 * @intr_blocked:	Interrupt blocked.
1248 * @rx_desc_info:	Receive descriptor information.
1249 * @tx_desc_info:	Transmit descriptor information.
1250 * @tx_int_cnt:		Transmit interrupt count.  Used for TX optimization.
1251 * @tx_int_mask:	Transmit interrupt mask.  Used for TX optimization.
1252 * @tx_size:		Transmit data size.  Used for TX optimization.
1253 * 			The maximum is defined by MAX_TX_HELD_SIZE.
1254 * @perm_addr:		Permanent MAC address.
1255 * @override_addr:	Overrided MAC address.
1256 * @address:		Additional MAC address entries.
1257 * @addr_list_size:	Additional MAC address list size.
1258 * @mac_override:	Indication of MAC address overrided.
1259 * @promiscuous:	Counter to keep track of promiscuous mode set.
1260 * @all_multi:		Counter to keep track of all multicast mode set.
1261 * @multi_list:		Multicast address entries.
1262 * @multi_bits:		Cached multicast hash table settings.
1263 * @multi_list_size:	Multicast address list size.
1264 * @enabled:		Indication of hardware enabled.
1265 * @rx_stop:		Indication of receive process stop.
1266 * @features:		Hardware features to enable.
1267 * @overrides:		Hardware features to override.
1268 * @parent:		Pointer to parent, network device private structure.
1269 */
1270struct ksz_hw {
1271	void __iomem *io;
1272
1273	struct ksz_switch *ksz_switch;
1274	struct ksz_port_info port_info[SWITCH_PORT_NUM];
1275	struct ksz_port_mib port_mib[TOTAL_PORT_NUM];
1276	int dev_count;
1277	int dst_ports;
1278	int id;
1279	int mib_cnt;
1280	int mib_port_cnt;
1281
1282	u32 tx_cfg;
1283	u32 rx_cfg;
1284	u32 intr_mask;
1285	u32 intr_set;
1286	uint intr_blocked;
1287
1288	struct ksz_desc_info rx_desc_info;
1289	struct ksz_desc_info tx_desc_info;
1290
1291	int tx_int_cnt;
1292	int tx_int_mask;
1293	int tx_size;
1294
1295	u8 perm_addr[MAC_ADDR_LEN];
1296	u8 override_addr[MAC_ADDR_LEN];
1297	u8 address[ADDITIONAL_ENTRIES][MAC_ADDR_LEN];
1298	u8 addr_list_size;
1299	u8 mac_override;
1300	u8 promiscuous;
1301	u8 all_multi;
1302	u8 multi_list[MAX_MULTICAST_LIST][MAC_ADDR_LEN];
1303	u8 multi_bits[HW_MULTICAST_SIZE];
1304	u8 multi_list_size;
1305
1306	u8 enabled;
1307	u8 rx_stop;
1308	u8 reserved2[1];
1309
1310	uint features;
1311	uint overrides;
1312
1313	void *parent;
1314};
1315
1316enum {
1317	PHY_NO_FLOW_CTRL,
1318	PHY_FLOW_CTRL,
1319	PHY_TX_ONLY,
1320	PHY_RX_ONLY
1321};
1322
1323/**
1324 * struct ksz_port - Virtual port data structure
1325 * @duplex:		Duplex mode setting.  1 for half duplex, 2 for full
1326 * 			duplex, and 0 for auto, which normally results in full
1327 * 			duplex.
1328 * @speed:		Speed setting.  10 for 10 Mbit, 100 for 100 Mbit, and
1329 * 			0 for auto, which normally results in 100 Mbit.
1330 * @force_link:		Force link setting.  0 for auto-negotiation, and 1 for
1331 * 			force.
1332 * @flow_ctrl:		Flow control setting.  PHY_NO_FLOW_CTRL for no flow
1333 * 			control, and PHY_FLOW_CTRL for flow control.
1334 * 			PHY_TX_ONLY and PHY_RX_ONLY are not supported for 100
1335 * 			Mbit PHY.
1336 * @first_port:		Index of first port this port supports.
1337 * @mib_port_cnt:	Number of ports with MIB counters.
1338 * @port_cnt:		Number of ports this port supports.
1339 * @counter:		Port statistics counter.
1340 * @hw:			Pointer to hardware structure.
1341 * @linked:		Pointer to port information linked to this port.
1342 */
1343struct ksz_port {
1344	u8 duplex;
1345	u8 speed;
1346	u8 force_link;
1347	u8 flow_ctrl;
1348
1349	int first_port;
1350	int mib_port_cnt;
1351	int port_cnt;
1352	u64 counter[OID_COUNTER_LAST];
1353
1354	struct ksz_hw *hw;
1355	struct ksz_port_info *linked;
1356};
1357
1358/**
1359 * struct ksz_timer_info - Timer information data structure
1360 * @timer:	Kernel timer.
1361 * @cnt:	Running timer counter.
1362 * @max:	Number of times to run timer; -1 for infinity.
1363 * @period:	Timer period in jiffies.
1364 */
1365struct ksz_timer_info {
1366	struct timer_list timer;
1367	int cnt;
1368	int max;
1369	int period;
1370};
1371
1372/**
1373 * struct ksz_shared_mem - OS dependent shared memory data structure
1374 * @dma_addr:	Physical DMA address allocated.
1375 * @alloc_size:	Allocation size.
1376 * @phys:	Actual physical address used.
1377 * @alloc_virt:	Virtual address allocated.
1378 * @virt:	Actual virtual address used.
1379 */
1380struct ksz_shared_mem {
1381	dma_addr_t dma_addr;
1382	uint alloc_size;
1383	uint phys;
1384	u8 *alloc_virt;
1385	u8 *virt;
1386};
1387
1388/**
1389 * struct ksz_counter_info - OS dependent counter information data structure
1390 * @counter:	Wait queue to wakeup after counters are read.
1391 * @time:	Next time in jiffies to read counter.
1392 * @read:	Indication of counters read in full or not.
1393 */
1394struct ksz_counter_info {
1395	wait_queue_head_t counter;
1396	unsigned long time;
1397	int read;
1398};
1399
1400/**
1401 * struct dev_info - Network device information data structure
1402 * @dev:		Pointer to network device.
1403 * @pdev:		Pointer to PCI device.
1404 * @hw:			Hardware structure.
1405 * @desc_pool:		Physical memory used for descriptor pool.
1406 * @hwlock:		Spinlock to prevent hardware from accessing.
1407 * @lock:		Mutex lock to prevent device from accessing.
1408 * @dev_rcv:		Receive process function used.
1409 * @last_skb:		Socket buffer allocated for descriptor rx fragments.
1410 * @skb_index:		Buffer index for receiving fragments.
1411 * @skb_len:		Buffer length for receiving fragments.
1412 * @mib_read:		Workqueue to read MIB counters.
1413 * @mib_timer_info:	Timer to read MIB counters.
1414 * @counter:		Used for MIB reading.
1415 * @mtu:		Current MTU used.  The default is REGULAR_RX_BUF_SIZE;
1416 * 			the maximum is MAX_RX_BUF_SIZE.
1417 * @opened:		Counter to keep track of device open.
1418 * @rx_tasklet:		Receive processing tasklet.
1419 * @tx_tasklet:		Transmit processing tasklet.
1420 * @wol_enable:		Wake-on-LAN enable set by ethtool.
1421 * @wol_support:	Wake-on-LAN support used by ethtool.
1422 * @pme_wait:		Used for KSZ8841 power management.
1423 */
1424struct dev_info {
1425	struct net_device *dev;
1426	struct pci_dev *pdev;
1427
1428	struct ksz_hw hw;
1429	struct ksz_shared_mem desc_pool;
1430
1431	spinlock_t hwlock;
1432	struct mutex lock;
1433
1434	int (*dev_rcv)(struct dev_info *);
1435
1436	struct sk_buff *last_skb;
1437	int skb_index;
1438	int skb_len;
1439
1440	struct work_struct mib_read;
1441	struct ksz_timer_info mib_timer_info;
1442	struct ksz_counter_info counter[TOTAL_PORT_NUM];
1443
1444	int mtu;
1445	int opened;
1446
1447	struct tasklet_struct rx_tasklet;
1448	struct tasklet_struct tx_tasklet;
1449
1450	int wol_enable;
1451	int wol_support;
1452	unsigned long pme_wait;
1453};
1454
1455/**
1456 * struct dev_priv - Network device private data structure
1457 * @adapter:		Adapter device information.
1458 * @port:		Port information.
1459 * @monitor_time_info:	Timer to monitor ports.
1460 * @proc_sem:		Semaphore for proc accessing.
1461 * @id:			Device ID.
1462 * @mii_if:		MII interface information.
1463 * @advertising:	Temporary variable to store advertised settings.
1464 * @msg_enable:		The message flags controlling driver output.
1465 * @media_state:	The connection status of the device.
1466 * @multicast:		The all multicast state of the device.
1467 * @promiscuous:	The promiscuous state of the device.
1468 */
1469struct dev_priv {
1470	struct dev_info *adapter;
1471	struct ksz_port port;
1472	struct ksz_timer_info monitor_timer_info;
1473
1474	struct semaphore proc_sem;
1475	int id;
1476
1477	struct mii_if_info mii_if;
1478	u32 advertising;
1479
1480	u32 msg_enable;
1481	int media_state;
1482	int multicast;
1483	int promiscuous;
1484};
1485
1486#define DRV_NAME		"KSZ884X PCI"
1487#define DEVICE_NAME		"KSZ884x PCI"
1488#define DRV_VERSION		"1.0.0"
1489#define DRV_RELDATE		"Feb 8, 2010"
1490
1491static char version[] __devinitdata =
1492	"Micrel " DEVICE_NAME " " DRV_VERSION " (" DRV_RELDATE ")";
1493
1494static u8 DEFAULT_MAC_ADDRESS[] = { 0x00, 0x10, 0xA1, 0x88, 0x42, 0x01 };
1495
1496/*
1497 * Interrupt processing primary routines
1498 */
1499
1500static inline void hw_ack_intr(struct ksz_hw *hw, uint interrupt)
1501{
1502	writel(interrupt, hw->io + KS884X_INTERRUPTS_STATUS);
1503}
1504
1505static inline void hw_dis_intr(struct ksz_hw *hw)
1506{
1507	hw->intr_blocked = hw->intr_mask;
1508	writel(0, hw->io + KS884X_INTERRUPTS_ENABLE);
1509	hw->intr_set = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1510}
1511
1512static inline void hw_set_intr(struct ksz_hw *hw, uint interrupt)
1513{
1514	hw->intr_set = interrupt;
1515	writel(interrupt, hw->io + KS884X_INTERRUPTS_ENABLE);
1516}
1517
1518static inline void hw_ena_intr(struct ksz_hw *hw)
1519{
1520	hw->intr_blocked = 0;
1521	hw_set_intr(hw, hw->intr_mask);
1522}
1523
1524static inline void hw_dis_intr_bit(struct ksz_hw *hw, uint bit)
1525{
1526	hw->intr_mask &= ~(bit);
1527}
1528
1529static inline void hw_turn_off_intr(struct ksz_hw *hw, uint interrupt)
1530{
1531	u32 read_intr;
1532
1533	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1534	hw->intr_set = read_intr & ~interrupt;
1535	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1536	hw_dis_intr_bit(hw, interrupt);
1537}
1538
1539/**
1540 * hw_turn_on_intr - turn on specified interrupts
1541 * @hw: 	The hardware instance.
1542 * @bit:	The interrupt bits to be on.
1543 *
1544 * This routine turns on the specified interrupts in the interrupt mask so that
1545 * those interrupts will be enabled.
1546 */
1547static void hw_turn_on_intr(struct ksz_hw *hw, u32 bit)
1548{
1549	hw->intr_mask |= bit;
1550
1551	if (!hw->intr_blocked)
1552		hw_set_intr(hw, hw->intr_mask);
1553}
1554
1555static inline void hw_ena_intr_bit(struct ksz_hw *hw, uint interrupt)
1556{
1557	u32 read_intr;
1558
1559	read_intr = readl(hw->io + KS884X_INTERRUPTS_ENABLE);
1560	hw->intr_set = read_intr | interrupt;
1561	writel(hw->intr_set, hw->io + KS884X_INTERRUPTS_ENABLE);
1562}
1563
1564static inline void hw_read_intr(struct ksz_hw *hw, uint *status)
1565{
1566	*status = readl(hw->io + KS884X_INTERRUPTS_STATUS);
1567	*status = *status & hw->intr_set;
1568}
1569
1570static inline void hw_restore_intr(struct ksz_hw *hw, uint interrupt)
1571{
1572	if (interrupt)
1573		hw_ena_intr(hw);
1574}
1575
1576/**
1577 * hw_block_intr - block hardware interrupts
1578 *
1579 * This function blocks all interrupts of the hardware and returns the current
1580 * interrupt enable mask so that interrupts can be restored later.
1581 *
1582 * Return the current interrupt enable mask.
1583 */
1584static uint hw_block_intr(struct ksz_hw *hw)
1585{
1586	uint interrupt = 0;
1587
1588	if (!hw->intr_blocked) {
1589		hw_dis_intr(hw);
1590		interrupt = hw->intr_blocked;
1591	}
1592	return interrupt;
1593}
1594
1595/*
1596 * Hardware descriptor routines
1597 */
1598
1599static inline void reset_desc(struct ksz_desc *desc, union desc_stat status)
1600{
1601	status.rx.hw_owned = 0;
1602	desc->phw->ctrl.data = cpu_to_le32(status.data);
1603}
1604
1605static inline void release_desc(struct ksz_desc *desc)
1606{
1607	desc->sw.ctrl.tx.hw_owned = 1;
1608	if (desc->sw.buf_size != desc->sw.buf.data) {
1609		desc->sw.buf_size = desc->sw.buf.data;
1610		desc->phw->buf.data = cpu_to_le32(desc->sw.buf.data);
1611	}
1612	desc->phw->ctrl.data = cpu_to_le32(desc->sw.ctrl.data);
1613}
1614
1615static void get_rx_pkt(struct ksz_desc_info *info, struct ksz_desc **desc)
1616{
1617	*desc = &info->ring[info->last];
1618	info->last++;
1619	info->last &= info->mask;
1620	info->avail--;
1621	(*desc)->sw.buf.data &= ~KS_DESC_RX_MASK;
1622}
1623
1624static inline void set_rx_buf(struct ksz_desc *desc, u32 addr)
1625{
1626	desc->phw->addr = cpu_to_le32(addr);
1627}
1628
1629static inline void set_rx_len(struct ksz_desc *desc, u32 len)
1630{
1631	desc->sw.buf.rx.buf_size = len;
1632}
1633
1634static inline void get_tx_pkt(struct ksz_desc_info *info,
1635	struct ksz_desc **desc)
1636{
1637	*desc = &info->ring[info->next];
1638	info->next++;
1639	info->next &= info->mask;
1640	info->avail--;
1641	(*desc)->sw.buf.data &= ~KS_DESC_TX_MASK;
1642}
1643
1644static inline void set_tx_buf(struct ksz_desc *desc, u32 addr)
1645{
1646	desc->phw->addr = cpu_to_le32(addr);
1647}
1648
1649static inline void set_tx_len(struct ksz_desc *desc, u32 len)
1650{
1651	desc->sw.buf.tx.buf_size = len;
1652}
1653
1654/* Switch functions */
1655
1656#define TABLE_READ			0x10
1657#define TABLE_SEL_SHIFT			2
1658
1659#define HW_DELAY(hw, reg)			\
1660	do {					\
1661		u16 dummy;			\
1662		dummy = readw(hw->io + reg);	\
1663	} while (0)
1664
1665/**
1666 * sw_r_table - read 4 bytes of data from switch table
1667 * @hw:		The hardware instance.
1668 * @table:	The table selector.
1669 * @addr:	The address of the table entry.
1670 * @data:	Buffer to store the read data.
1671 *
1672 * This routine reads 4 bytes of data from the table of the switch.
1673 * Hardware interrupts are disabled to minimize corruption of read data.
1674 */
1675static void sw_r_table(struct ksz_hw *hw, int table, u16 addr, u32 *data)
1676{
1677	u16 ctrl_addr;
1678	uint interrupt;
1679
1680	ctrl_addr = (((table << TABLE_SEL_SHIFT) | TABLE_READ) << 8) | addr;
1681
1682	interrupt = hw_block_intr(hw);
1683
1684	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1685	HW_DELAY(hw, KS884X_IACR_OFFSET);
1686	*data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1687
1688	hw_restore_intr(hw, interrupt);
1689}
1690
1691/**
1692 * sw_w_table_64 - write 8 bytes of data to the switch table
1693 * @hw:		The hardware instance.
1694 * @table:	The table selector.
1695 * @addr:	The address of the table entry.
1696 * @data_hi:	The high part of data to be written (bit63 ~ bit32).
1697 * @data_lo:	The low part of data to be written (bit31 ~ bit0).
1698 *
1699 * This routine writes 8 bytes of data to the table of the switch.
1700 * Hardware interrupts are disabled to minimize corruption of written data.
1701 */
1702static void sw_w_table_64(struct ksz_hw *hw, int table, u16 addr, u32 data_hi,
1703	u32 data_lo)
1704{
1705	u16 ctrl_addr;
1706	uint interrupt;
1707
1708	ctrl_addr = ((table << TABLE_SEL_SHIFT) << 8) | addr;
1709
1710	interrupt = hw_block_intr(hw);
1711
1712	writel(data_hi, hw->io + KS884X_ACC_DATA_4_OFFSET);
1713	writel(data_lo, hw->io + KS884X_ACC_DATA_0_OFFSET);
1714
1715	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1716	HW_DELAY(hw, KS884X_IACR_OFFSET);
1717
1718	hw_restore_intr(hw, interrupt);
1719}
1720
1721/**
1722 * sw_w_sta_mac_table - write to the static MAC table
1723 * @hw: 	The hardware instance.
1724 * @addr:	The address of the table entry.
1725 * @mac_addr:	The MAC address.
1726 * @ports:	The port members.
1727 * @override:	The flag to override the port receive/transmit settings.
1728 * @valid:	The flag to indicate entry is valid.
1729 * @use_fid:	The flag to indicate the FID is valid.
1730 * @fid:	The FID value.
1731 *
1732 * This routine writes an entry of the static MAC table of the switch.  It
1733 * calls sw_w_table_64() to write the data.
1734 */
1735static void sw_w_sta_mac_table(struct ksz_hw *hw, u16 addr, u8 *mac_addr,
1736	u8 ports, int override, int valid, int use_fid, u8 fid)
1737{
1738	u32 data_hi;
1739	u32 data_lo;
1740
1741	data_lo = ((u32) mac_addr[2] << 24) |
1742		((u32) mac_addr[3] << 16) |
1743		((u32) mac_addr[4] << 8) | mac_addr[5];
1744	data_hi = ((u32) mac_addr[0] << 8) | mac_addr[1];
1745	data_hi |= (u32) ports << STATIC_MAC_FWD_PORTS_SHIFT;
1746
1747	if (override)
1748		data_hi |= STATIC_MAC_TABLE_OVERRIDE;
1749	if (use_fid) {
1750		data_hi |= STATIC_MAC_TABLE_USE_FID;
1751		data_hi |= (u32) fid << STATIC_MAC_FID_SHIFT;
1752	}
1753	if (valid)
1754		data_hi |= STATIC_MAC_TABLE_VALID;
1755
1756	sw_w_table_64(hw, TABLE_STATIC_MAC, addr, data_hi, data_lo);
1757}
1758
1759/**
1760 * sw_r_vlan_table - read from the VLAN table
1761 * @hw: 	The hardware instance.
1762 * @addr:	The address of the table entry.
1763 * @vid:	Buffer to store the VID.
1764 * @fid:	Buffer to store the VID.
1765 * @member:	Buffer to store the port membership.
1766 *
1767 * This function reads an entry of the VLAN table of the switch.  It calls
1768 * sw_r_table() to get the data.
1769 *
1770 * Return 0 if the entry is valid; otherwise -1.
1771 */
1772static int sw_r_vlan_table(struct ksz_hw *hw, u16 addr, u16 *vid, u8 *fid,
1773	u8 *member)
1774{
1775	u32 data;
1776
1777	sw_r_table(hw, TABLE_VLAN, addr, &data);
1778	if (data & VLAN_TABLE_VALID) {
1779		*vid = (u16)(data & VLAN_TABLE_VID);
1780		*fid = (u8)((data & VLAN_TABLE_FID) >> VLAN_TABLE_FID_SHIFT);
1781		*member = (u8)((data & VLAN_TABLE_MEMBERSHIP) >>
1782			VLAN_TABLE_MEMBERSHIP_SHIFT);
1783		return 0;
1784	}
1785	return -1;
1786}
1787
1788/**
1789 * port_r_mib_cnt - read MIB counter
1790 * @hw: 	The hardware instance.
1791 * @port:	The port index.
1792 * @addr:	The address of the counter.
1793 * @cnt:	Buffer to store the counter.
1794 *
1795 * This routine reads a MIB counter of the port.
1796 * Hardware interrupts are disabled to minimize corruption of read data.
1797 */
1798static void port_r_mib_cnt(struct ksz_hw *hw, int port, u16 addr, u64 *cnt)
1799{
1800	u32 data;
1801	u16 ctrl_addr;
1802	uint interrupt;
1803	int timeout;
1804
1805	ctrl_addr = addr + PORT_COUNTER_NUM * port;
1806
1807	interrupt = hw_block_intr(hw);
1808
1809	ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ) << 8);
1810	writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1811	HW_DELAY(hw, KS884X_IACR_OFFSET);
1812
1813	for (timeout = 100; timeout > 0; timeout--) {
1814		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1815
1816		if (data & MIB_COUNTER_VALID) {
1817			if (data & MIB_COUNTER_OVERFLOW)
1818				*cnt += MIB_COUNTER_VALUE + 1;
1819			*cnt += data & MIB_COUNTER_VALUE;
1820			break;
1821		}
1822	}
1823
1824	hw_restore_intr(hw, interrupt);
1825}
1826
1827/**
1828 * port_r_mib_pkt - read dropped packet counts
1829 * @hw: 	The hardware instance.
1830 * @port:	The port index.
1831 * @cnt:	Buffer to store the receive and transmit dropped packet counts.
1832 *
1833 * This routine reads the dropped packet counts of the port.
1834 * Hardware interrupts are disabled to minimize corruption of read data.
1835 */
1836static void port_r_mib_pkt(struct ksz_hw *hw, int port, u32 *last, u64 *cnt)
1837{
1838	u32 cur;
1839	u32 data;
1840	u16 ctrl_addr;
1841	uint interrupt;
1842	int index;
1843
1844	index = KS_MIB_PACKET_DROPPED_RX_0 + port;
1845	do {
1846		interrupt = hw_block_intr(hw);
1847
1848		ctrl_addr = (u16) index;
1849		ctrl_addr |= (((TABLE_MIB << TABLE_SEL_SHIFT) | TABLE_READ)
1850			<< 8);
1851		writew(ctrl_addr, hw->io + KS884X_IACR_OFFSET);
1852		HW_DELAY(hw, KS884X_IACR_OFFSET);
1853		data = readl(hw->io + KS884X_ACC_DATA_0_OFFSET);
1854
1855		hw_restore_intr(hw, interrupt);
1856
1857		data &= MIB_PACKET_DROPPED;
1858		cur = *last;
1859		if (data != cur) {
1860			*last = data;
1861			if (data < cur)
1862				data += MIB_PACKET_DROPPED + 1;
1863			data -= cur;
1864			*cnt += data;
1865		}
1866		++last;
1867		++cnt;
1868		index -= KS_MIB_PACKET_DROPPED_TX -
1869			KS_MIB_PACKET_DROPPED_TX_0 + 1;
1870	} while (index >= KS_MIB_PACKET_DROPPED_TX_0 + port);
1871}
1872
1873/**
1874 * port_r_cnt - read MIB counters periodically
1875 * @hw: 	The hardware instance.
1876 * @port:	The port index.
1877 *
1878 * This routine is used to read the counters of the port periodically to avoid
1879 * counter overflow.  The hardware should be acquired first before calling this
1880 * routine.
1881 *
1882 * Return non-zero when not all counters not read.
1883 */
1884static int port_r_cnt(struct ksz_hw *hw, int port)
1885{
1886	struct ksz_port_mib *mib = &hw->port_mib[port];
1887
1888	if (mib->mib_start < PORT_COUNTER_NUM)
1889		while (mib->cnt_ptr < PORT_COUNTER_NUM) {
1890			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1891				&mib->counter[mib->cnt_ptr]);
1892			++mib->cnt_ptr;
1893		}
1894	if (hw->mib_cnt > PORT_COUNTER_NUM)
1895		port_r_mib_pkt(hw, port, mib->dropped,
1896			&mib->counter[PORT_COUNTER_NUM]);
1897	mib->cnt_ptr = 0;
1898	return 0;
1899}
1900
1901/**
1902 * port_init_cnt - initialize MIB counter values
1903 * @hw: 	The hardware instance.
1904 * @port:	The port index.
1905 *
1906 * This routine is used to initialize all counters to zero if the hardware
1907 * cannot do it after reset.
1908 */
1909static void port_init_cnt(struct ksz_hw *hw, int port)
1910{
1911	struct ksz_port_mib *mib = &hw->port_mib[port];
1912
1913	mib->cnt_ptr = 0;
1914	if (mib->mib_start < PORT_COUNTER_NUM)
1915		do {
1916			port_r_mib_cnt(hw, port, mib->cnt_ptr,
1917				&mib->counter[mib->cnt_ptr]);
1918			++mib->cnt_ptr;
1919		} while (mib->cnt_ptr < PORT_COUNTER_NUM);
1920	if (hw->mib_cnt > PORT_COUNTER_NUM)
1921		port_r_mib_pkt(hw, port, mib->dropped,
1922			&mib->counter[PORT_COUNTER_NUM]);
1923	memset((void *) mib->counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
1924	mib->cnt_ptr = 0;
1925}
1926
1927/*
1928 * Port functions
1929 */
1930
1931/**
1932 * port_chk - check port register bits
1933 * @hw: 	The hardware instance.
1934 * @port:	The port index.
1935 * @offset:	The offset of the port register.
1936 * @bits:	The data bits to check.
1937 *
1938 * This function checks whether the specified bits of the port register are set
1939 * or not.
1940 *
1941 * Return 0 if the bits are not set.
1942 */
1943static int port_chk(struct ksz_hw *hw, int port, int offset, u16 bits)
1944{
1945	u32 addr;
1946	u16 data;
1947
1948	PORT_CTRL_ADDR(port, addr);
1949	addr += offset;
1950	data = readw(hw->io + addr);
1951	return (data & bits) == bits;
1952}
1953
1954/**
1955 * port_cfg - set port register bits
1956 * @hw: 	The hardware instance.
1957 * @port:	The port index.
1958 * @offset:	The offset of the port register.
1959 * @bits:	The data bits to set.
1960 * @set:	The flag indicating whether the bits are to be set or not.
1961 *
1962 * This routine sets or resets the specified bits of the port register.
1963 */
1964static void port_cfg(struct ksz_hw *hw, int port, int offset, u16 bits,
1965	int set)
1966{
1967	u32 addr;
1968	u16 data;
1969
1970	PORT_CTRL_ADDR(port, addr);
1971	addr += offset;
1972	data = readw(hw->io + addr);
1973	if (set)
1974		data |= bits;
1975	else
1976		data &= ~bits;
1977	writew(data, hw->io + addr);
1978}
1979
1980/**
1981 * port_chk_shift - check port bit
1982 * @hw: 	The hardware instance.
1983 * @port:	The port index.
1984 * @offset:	The offset of the register.
1985 * @shift:	Number of bits to shift.
1986 *
1987 * This function checks whether the specified port is set in the register or
1988 * not.
1989 *
1990 * Return 0 if the port is not set.
1991 */
1992static int port_chk_shift(struct ksz_hw *hw, int port, u32 addr, int shift)
1993{
1994	u16 data;
1995	u16 bit = 1 << port;
1996
1997	data = readw(hw->io + addr);
1998	data >>= shift;
1999	return (data & bit) == bit;
2000}
2001
2002/**
2003 * port_cfg_shift - set port bit
2004 * @hw: 	The hardware instance.
2005 * @port:	The port index.
2006 * @offset:	The offset of the register.
2007 * @shift:	Number of bits to shift.
2008 * @set:	The flag indicating whether the port is to be set or not.
2009 *
2010 * This routine sets or resets the specified port in the register.
2011 */
2012static void port_cfg_shift(struct ksz_hw *hw, int port, u32 addr, int shift,
2013	int set)
2014{
2015	u16 data;
2016	u16 bits = 1 << port;
2017
2018	data = readw(hw->io + addr);
2019	bits <<= shift;
2020	if (set)
2021		data |= bits;
2022	else
2023		data &= ~bits;
2024	writew(data, hw->io + addr);
2025}
2026
2027/**
2028 * port_r8 - read byte from port register
2029 * @hw: 	The hardware instance.
2030 * @port:	The port index.
2031 * @offset:	The offset of the port register.
2032 * @data:	Buffer to store the data.
2033 *
2034 * This routine reads a byte from the port register.
2035 */
2036static void port_r8(struct ksz_hw *hw, int port, int offset, u8 *data)
2037{
2038	u32 addr;
2039
2040	PORT_CTRL_ADDR(port, addr);
2041	addr += offset;
2042	*data = readb(hw->io + addr);
2043}
2044
2045/**
2046 * port_r16 - read word from port register.
2047 * @hw: 	The hardware instance.
2048 * @port:	The port index.
2049 * @offset:	The offset of the port register.
2050 * @data:	Buffer to store the data.
2051 *
2052 * This routine reads a word from the port register.
2053 */
2054static void port_r16(struct ksz_hw *hw, int port, int offset, u16 *data)
2055{
2056	u32 addr;
2057
2058	PORT_CTRL_ADDR(port, addr);
2059	addr += offset;
2060	*data = readw(hw->io + addr);
2061}
2062
2063/**
2064 * port_w16 - write word to port register.
2065 * @hw: 	The hardware instance.
2066 * @port:	The port index.
2067 * @offset:	The offset of the port register.
2068 * @data:	Data to write.
2069 *
2070 * This routine writes a word to the port register.
2071 */
2072static void port_w16(struct ksz_hw *hw, int port, int offset, u16 data)
2073{
2074	u32 addr;
2075
2076	PORT_CTRL_ADDR(port, addr);
2077	addr += offset;
2078	writew(data, hw->io + addr);
2079}
2080
2081/**
2082 * sw_chk - check switch register bits
2083 * @hw: 	The hardware instance.
2084 * @addr:	The address of the switch register.
2085 * @bits:	The data bits to check.
2086 *
2087 * This function checks whether the specified bits of the switch register are
2088 * set or not.
2089 *
2090 * Return 0 if the bits are not set.
2091 */
2092static int sw_chk(struct ksz_hw *hw, u32 addr, u16 bits)
2093{
2094	u16 data;
2095
2096	data = readw(hw->io + addr);
2097	return (data & bits) == bits;
2098}
2099
2100/**
2101 * sw_cfg - set switch register bits
2102 * @hw: 	The hardware instance.
2103 * @addr:	The address of the switch register.
2104 * @bits:	The data bits to set.
2105 * @set:	The flag indicating whether the bits are to be set or not.
2106 *
2107 * This function sets or resets the specified bits of the switch register.
2108 */
2109static void sw_cfg(struct ksz_hw *hw, u32 addr, u16 bits, int set)
2110{
2111	u16 data;
2112
2113	data = readw(hw->io + addr);
2114	if (set)
2115		data |= bits;
2116	else
2117		data &= ~bits;
2118	writew(data, hw->io + addr);
2119}
2120
2121/* Bandwidth */
2122
2123static inline void port_cfg_broad_storm(struct ksz_hw *hw, int p, int set)
2124{
2125	port_cfg(hw, p,
2126		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM, set);
2127}
2128
2129static inline int port_chk_broad_storm(struct ksz_hw *hw, int p)
2130{
2131	return port_chk(hw, p,
2132		KS8842_PORT_CTRL_1_OFFSET, PORT_BROADCAST_STORM);
2133}
2134
2135/* Driver set switch broadcast storm protection at 10% rate. */
2136#define BROADCAST_STORM_PROTECTION_RATE	10
2137
2138/* 148,800 frames * 67 ms / 100 */
2139#define BROADCAST_STORM_VALUE		9969
2140
2141/**
2142 * sw_cfg_broad_storm - configure broadcast storm threshold
2143 * @hw: 	The hardware instance.
2144 * @percent:	Broadcast storm threshold in percent of transmit rate.
2145 *
2146 * This routine configures the broadcast storm threshold of the switch.
2147 */
2148static void sw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2149{
2150	u16 data;
2151	u32 value = ((u32) BROADCAST_STORM_VALUE * (u32) percent / 100);
2152
2153	if (value > BROADCAST_STORM_RATE)
2154		value = BROADCAST_STORM_RATE;
2155
2156	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2157	data &= ~(BROADCAST_STORM_RATE_LO | BROADCAST_STORM_RATE_HI);
2158	data |= ((value & 0x00FF) << 8) | ((value & 0xFF00) >> 8);
2159	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2160}
2161
2162/**
2163 * sw_get_board_storm - get broadcast storm threshold
2164 * @hw: 	The hardware instance.
2165 * @percent:	Buffer to store the broadcast storm threshold percentage.
2166 *
2167 * This routine retrieves the broadcast storm threshold of the switch.
2168 */
2169static void sw_get_broad_storm(struct ksz_hw *hw, u8 *percent)
2170{
2171	int num;
2172	u16 data;
2173
2174	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2175	num = (data & BROADCAST_STORM_RATE_HI);
2176	num <<= 8;
2177	num |= (data & BROADCAST_STORM_RATE_LO) >> 8;
2178	num = (num * 100 + BROADCAST_STORM_VALUE / 2) / BROADCAST_STORM_VALUE;
2179	*percent = (u8) num;
2180}
2181
2182/**
2183 * sw_dis_broad_storm - disable broadstorm
2184 * @hw: 	The hardware instance.
2185 * @port:	The port index.
2186 *
2187 * This routine disables the broadcast storm limit function of the switch.
2188 */
2189static void sw_dis_broad_storm(struct ksz_hw *hw, int port)
2190{
2191	port_cfg_broad_storm(hw, port, 0);
2192}
2193
2194/**
2195 * sw_ena_broad_storm - enable broadcast storm
2196 * @hw: 	The hardware instance.
2197 * @port:	The port index.
2198 *
2199 * This routine enables the broadcast storm limit function of the switch.
2200 */
2201static void sw_ena_broad_storm(struct ksz_hw *hw, int port)
2202{
2203	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2204	port_cfg_broad_storm(hw, port, 1);
2205}
2206
2207/**
2208 * sw_init_broad_storm - initialize broadcast storm
2209 * @hw: 	The hardware instance.
2210 *
2211 * This routine initializes the broadcast storm limit function of the switch.
2212 */
2213static void sw_init_broad_storm(struct ksz_hw *hw)
2214{
2215	int port;
2216
2217	hw->ksz_switch->broad_per = 1;
2218	sw_cfg_broad_storm(hw, hw->ksz_switch->broad_per);
2219	for (port = 0; port < TOTAL_PORT_NUM; port++)
2220		sw_dis_broad_storm(hw, port);
2221	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, MULTICAST_STORM_DISABLE, 1);
2222}
2223
2224/**
2225 * hw_cfg_broad_storm - configure broadcast storm
2226 * @hw: 	The hardware instance.
2227 * @percent:	Broadcast storm threshold in percent of transmit rate.
2228 *
2229 * This routine configures the broadcast storm threshold of the switch.
2230 * It is called by user functions.  The hardware should be acquired first.
2231 */
2232static void hw_cfg_broad_storm(struct ksz_hw *hw, u8 percent)
2233{
2234	if (percent > 100)
2235		percent = 100;
2236
2237	sw_cfg_broad_storm(hw, percent);
2238	sw_get_broad_storm(hw, &percent);
2239	hw->ksz_switch->broad_per = percent;
2240}
2241
2242/**
2243 * sw_dis_prio_rate - disable switch priority rate
2244 * @hw: 	The hardware instance.
2245 * @port:	The port index.
2246 *
2247 * This routine disables the priority rate function of the switch.
2248 */
2249static void sw_dis_prio_rate(struct ksz_hw *hw, int port)
2250{
2251	u32 addr;
2252
2253	PORT_CTRL_ADDR(port, addr);
2254	addr += KS8842_PORT_IN_RATE_OFFSET;
2255	writel(0, hw->io + addr);
2256}
2257
2258/**
2259 * sw_init_prio_rate - initialize switch prioirty rate
2260 * @hw: 	The hardware instance.
2261 *
2262 * This routine initializes the priority rate function of the switch.
2263 */
2264static void sw_init_prio_rate(struct ksz_hw *hw)
2265{
2266	int port;
2267	int prio;
2268	struct ksz_switch *sw = hw->ksz_switch;
2269
2270	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2271		for (prio = 0; prio < PRIO_QUEUES; prio++) {
2272			sw->port_cfg[port].rx_rate[prio] =
2273			sw->port_cfg[port].tx_rate[prio] = 0;
2274		}
2275		sw_dis_prio_rate(hw, port);
2276	}
2277}
2278
2279/* Communication */
2280
2281static inline void port_cfg_back_pressure(struct ksz_hw *hw, int p, int set)
2282{
2283	port_cfg(hw, p,
2284		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE, set);
2285}
2286
2287static inline void port_cfg_force_flow_ctrl(struct ksz_hw *hw, int p, int set)
2288{
2289	port_cfg(hw, p,
2290		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL, set);
2291}
2292
2293static inline int port_chk_back_pressure(struct ksz_hw *hw, int p)
2294{
2295	return port_chk(hw, p,
2296		KS8842_PORT_CTRL_2_OFFSET, PORT_BACK_PRESSURE);
2297}
2298
2299static inline int port_chk_force_flow_ctrl(struct ksz_hw *hw, int p)
2300{
2301	return port_chk(hw, p,
2302		KS8842_PORT_CTRL_2_OFFSET, PORT_FORCE_FLOW_CTRL);
2303}
2304
2305/* Spanning Tree */
2306
2307static inline void port_cfg_dis_learn(struct ksz_hw *hw, int p, int set)
2308{
2309	port_cfg(hw, p,
2310		KS8842_PORT_CTRL_2_OFFSET, PORT_LEARN_DISABLE, set);
2311}
2312
2313static inline void port_cfg_rx(struct ksz_hw *hw, int p, int set)
2314{
2315	port_cfg(hw, p,
2316		KS8842_PORT_CTRL_2_OFFSET, PORT_RX_ENABLE, set);
2317}
2318
2319static inline void port_cfg_tx(struct ksz_hw *hw, int p, int set)
2320{
2321	port_cfg(hw, p,
2322		KS8842_PORT_CTRL_2_OFFSET, PORT_TX_ENABLE, set);
2323}
2324
2325static inline void sw_cfg_fast_aging(struct ksz_hw *hw, int set)
2326{
2327	sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET, SWITCH_FAST_AGING, set);
2328}
2329
2330static inline void sw_flush_dyn_mac_table(struct ksz_hw *hw)
2331{
2332	if (!(hw->overrides & FAST_AGING)) {
2333		sw_cfg_fast_aging(hw, 1);
2334		mdelay(1);
2335		sw_cfg_fast_aging(hw, 0);
2336	}
2337}
2338
2339/* VLAN */
2340
2341static inline void port_cfg_ins_tag(struct ksz_hw *hw, int p, int insert)
2342{
2343	port_cfg(hw, p,
2344		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG, insert);
2345}
2346
2347static inline void port_cfg_rmv_tag(struct ksz_hw *hw, int p, int remove)
2348{
2349	port_cfg(hw, p,
2350		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG, remove);
2351}
2352
2353static inline int port_chk_ins_tag(struct ksz_hw *hw, int p)
2354{
2355	return port_chk(hw, p,
2356		KS8842_PORT_CTRL_1_OFFSET, PORT_INSERT_TAG);
2357}
2358
2359static inline int port_chk_rmv_tag(struct ksz_hw *hw, int p)
2360{
2361	return port_chk(hw, p,
2362		KS8842_PORT_CTRL_1_OFFSET, PORT_REMOVE_TAG);
2363}
2364
2365static inline void port_cfg_dis_non_vid(struct ksz_hw *hw, int p, int set)
2366{
2367	port_cfg(hw, p,
2368		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID, set);
2369}
2370
2371static inline void port_cfg_in_filter(struct ksz_hw *hw, int p, int set)
2372{
2373	port_cfg(hw, p,
2374		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER, set);
2375}
2376
2377static inline int port_chk_dis_non_vid(struct ksz_hw *hw, int p)
2378{
2379	return port_chk(hw, p,
2380		KS8842_PORT_CTRL_2_OFFSET, PORT_DISCARD_NON_VID);
2381}
2382
2383static inline int port_chk_in_filter(struct ksz_hw *hw, int p)
2384{
2385	return port_chk(hw, p,
2386		KS8842_PORT_CTRL_2_OFFSET, PORT_INGRESS_VLAN_FILTER);
2387}
2388
2389/* Mirroring */
2390
2391static inline void port_cfg_mirror_sniffer(struct ksz_hw *hw, int p, int set)
2392{
2393	port_cfg(hw, p,
2394		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_SNIFFER, set);
2395}
2396
2397static inline void port_cfg_mirror_rx(struct ksz_hw *hw, int p, int set)
2398{
2399	port_cfg(hw, p,
2400		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_RX, set);
2401}
2402
2403static inline void port_cfg_mirror_tx(struct ksz_hw *hw, int p, int set)
2404{
2405	port_cfg(hw, p,
2406		KS8842_PORT_CTRL_2_OFFSET, PORT_MIRROR_TX, set);
2407}
2408
2409static inline void sw_cfg_mirror_rx_tx(struct ksz_hw *hw, int set)
2410{
2411	sw_cfg(hw, KS8842_SWITCH_CTRL_2_OFFSET, SWITCH_MIRROR_RX_TX, set);
2412}
2413
2414static void sw_init_mirror(struct ksz_hw *hw)
2415{
2416	int port;
2417
2418	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2419		port_cfg_mirror_sniffer(hw, port, 0);
2420		port_cfg_mirror_rx(hw, port, 0);
2421		port_cfg_mirror_tx(hw, port, 0);
2422	}
2423	sw_cfg_mirror_rx_tx(hw, 0);
2424}
2425
2426static inline void sw_cfg_unk_def_deliver(struct ksz_hw *hw, int set)
2427{
2428	sw_cfg(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2429		SWITCH_UNK_DEF_PORT_ENABLE, set);
2430}
2431
2432static inline int sw_cfg_chk_unk_def_deliver(struct ksz_hw *hw)
2433{
2434	return sw_chk(hw, KS8842_SWITCH_CTRL_7_OFFSET,
2435		SWITCH_UNK_DEF_PORT_ENABLE);
2436}
2437
2438static inline void sw_cfg_unk_def_port(struct ksz_hw *hw, int port, int set)
2439{
2440	port_cfg_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0, set);
2441}
2442
2443static inline int sw_chk_unk_def_port(struct ksz_hw *hw, int port)
2444{
2445	return port_chk_shift(hw, port, KS8842_SWITCH_CTRL_7_OFFSET, 0);
2446}
2447
2448/* Priority */
2449
2450static inline void port_cfg_diffserv(struct ksz_hw *hw, int p, int set)
2451{
2452	port_cfg(hw, p,
2453		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE, set);
2454}
2455
2456static inline void port_cfg_802_1p(struct ksz_hw *hw, int p, int set)
2457{
2458	port_cfg(hw, p,
2459		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE, set);
2460}
2461
2462static inline void port_cfg_replace_vid(struct ksz_hw *hw, int p, int set)
2463{
2464	port_cfg(hw, p,
2465		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING, set);
2466}
2467
2468static inline void port_cfg_prio(struct ksz_hw *hw, int p, int set)
2469{
2470	port_cfg(hw, p,
2471		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE, set);
2472}
2473
2474static inline int port_chk_diffserv(struct ksz_hw *hw, int p)
2475{
2476	return port_chk(hw, p,
2477		KS8842_PORT_CTRL_1_OFFSET, PORT_DIFFSERV_ENABLE);
2478}
2479
2480static inline int port_chk_802_1p(struct ksz_hw *hw, int p)
2481{
2482	return port_chk(hw, p,
2483		KS8842_PORT_CTRL_1_OFFSET, PORT_802_1P_ENABLE);
2484}
2485
2486static inline int port_chk_replace_vid(struct ksz_hw *hw, int p)
2487{
2488	return port_chk(hw, p,
2489		KS8842_PORT_CTRL_2_OFFSET, PORT_USER_PRIORITY_CEILING);
2490}
2491
2492static inline int port_chk_prio(struct ksz_hw *hw, int p)
2493{
2494	return port_chk(hw, p,
2495		KS8842_PORT_CTRL_1_OFFSET, PORT_PRIO_QUEUE_ENABLE);
2496}
2497
2498/**
2499 * sw_dis_diffserv - disable switch DiffServ priority
2500 * @hw: 	The hardware instance.
2501 * @port:	The port index.
2502 *
2503 * This routine disables the DiffServ priority function of the switch.
2504 */
2505static void sw_dis_diffserv(struct ksz_hw *hw, int port)
2506{
2507	port_cfg_diffserv(hw, port, 0);
2508}
2509
2510/**
2511 * sw_dis_802_1p - disable switch 802.1p priority
2512 * @hw: 	The hardware instance.
2513 * @port:	The port index.
2514 *
2515 * This routine disables the 802.1p priority function of the switch.
2516 */
2517static void sw_dis_802_1p(struct ksz_hw *hw, int port)
2518{
2519	port_cfg_802_1p(hw, port, 0);
2520}
2521
2522/**
2523 * sw_cfg_replace_null_vid -
2524 * @hw: 	The hardware instance.
2525 * @set:	The flag to disable or enable.
2526 *
2527 */
2528static void sw_cfg_replace_null_vid(struct ksz_hw *hw, int set)
2529{
2530	sw_cfg(hw, KS8842_SWITCH_CTRL_3_OFFSET, SWITCH_REPLACE_NULL_VID, set);
2531}
2532
2533/**
2534 * sw_cfg_replace_vid - enable switch 802.10 priority re-mapping
2535 * @hw: 	The hardware instance.
2536 * @port:	The port index.
2537 * @set:	The flag to disable or enable.
2538 *
2539 * This routine enables the 802.1p priority re-mapping function of the switch.
2540 * That allows 802.1p priority field to be replaced with the port's default
2541 * tag's priority value if the ingress packet's 802.1p priority has a higher
2542 * priority than port's default tag's priority.
2543 */
2544static void sw_cfg_replace_vid(struct ksz_hw *hw, int port, int set)
2545{
2546	port_cfg_replace_vid(hw, port, set);
2547}
2548
2549/**
2550 * sw_cfg_port_based - configure switch port based priority
2551 * @hw: 	The hardware instance.
2552 * @port:	The port index.
2553 * @prio:	The priority to set.
2554 *
2555 * This routine configures the port based priority of the switch.
2556 */
2557static void sw_cfg_port_based(struct ksz_hw *hw, int port, u8 prio)
2558{
2559	u16 data;
2560
2561	if (prio > PORT_BASED_PRIORITY_BASE)
2562		prio = PORT_BASED_PRIORITY_BASE;
2563
2564	hw->ksz_switch->port_cfg[port].port_prio = prio;
2565
2566	port_r16(hw, port, KS8842_PORT_CTRL_1_OFFSET, &data);
2567	data &= ~PORT_BASED_PRIORITY_MASK;
2568	data |= prio << PORT_BASED_PRIORITY_SHIFT;
2569	port_w16(hw, port, KS8842_PORT_CTRL_1_OFFSET, data);
2570}
2571
2572/**
2573 * sw_dis_multi_queue - disable transmit multiple queues
2574 * @hw: 	The hardware instance.
2575 * @port:	The port index.
2576 *
2577 * This routine disables the transmit multiple queues selection of the switch
2578 * port.  Only single transmit queue on the port.
2579 */
2580static void sw_dis_multi_queue(struct ksz_hw *hw, int port)
2581{
2582	port_cfg_prio(hw, port, 0);
2583}
2584
2585/**
2586 * sw_init_prio - initialize switch priority
2587 * @hw: 	The hardware instance.
2588 *
2589 * This routine initializes the switch QoS priority functions.
2590 */
2591static void sw_init_prio(struct ksz_hw *hw)
2592{
2593	int port;
2594	int tos;
2595	struct ksz_switch *sw = hw->ksz_switch;
2596
2597	/*
2598	 * Init all the 802.1p tag priority value to be assigned to different
2599	 * priority queue.
2600	 */
2601	sw->p_802_1p[0] = 0;
2602	sw->p_802_1p[1] = 0;
2603	sw->p_802_1p[2] = 1;
2604	sw->p_802_1p[3] = 1;
2605	sw->p_802_1p[4] = 2;
2606	sw->p_802_1p[5] = 2;
2607	sw->p_802_1p[6] = 3;
2608	sw->p_802_1p[7] = 3;
2609
2610	/*
2611	 * Init all the DiffServ priority value to be assigned to priority
2612	 * queue 0.
2613	 */
2614	for (tos = 0; tos < DIFFSERV_ENTRIES; tos++)
2615		sw->diffserv[tos] = 0;
2616
2617	/* All QoS functions disabled. */
2618	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2619		sw_dis_multi_queue(hw, port);
2620		sw_dis_diffserv(hw, port);
2621		sw_dis_802_1p(hw, port);
2622		sw_cfg_replace_vid(hw, port, 0);
2623
2624		sw->port_cfg[port].port_prio = 0;
2625		sw_cfg_port_based(hw, port, sw->port_cfg[port].port_prio);
2626	}
2627	sw_cfg_replace_null_vid(hw, 0);
2628}
2629
2630/**
2631 * port_get_def_vid - get port default VID.
2632 * @hw: 	The hardware instance.
2633 * @port:	The port index.
2634 * @vid:	Buffer to store the VID.
2635 *
2636 * This routine retrieves the default VID of the port.
2637 */
2638static void port_get_def_vid(struct ksz_hw *hw, int port, u16 *vid)
2639{
2640	u32 addr;
2641
2642	PORT_CTRL_ADDR(port, addr);
2643	addr += KS8842_PORT_CTRL_VID_OFFSET;
2644	*vid = readw(hw->io + addr);
2645}
2646
2647/**
2648 * sw_init_vlan - initialize switch VLAN
2649 * @hw: 	The hardware instance.
2650 *
2651 * This routine initializes the VLAN function of the switch.
2652 */
2653static void sw_init_vlan(struct ksz_hw *hw)
2654{
2655	int port;
2656	int entry;
2657	struct ksz_switch *sw = hw->ksz_switch;
2658
2659	/* Read 16 VLAN entries from device's VLAN table. */
2660	for (entry = 0; entry < VLAN_TABLE_ENTRIES; entry++) {
2661		sw_r_vlan_table(hw, entry,
2662			&sw->vlan_table[entry].vid,
2663			&sw->vlan_table[entry].fid,
2664			&sw->vlan_table[entry].member);
2665	}
2666
2667	for (port = 0; port < TOTAL_PORT_NUM; port++) {
2668		port_get_def_vid(hw, port, &sw->port_cfg[port].vid);
2669		sw->port_cfg[port].member = PORT_MASK;
2670	}
2671}
2672
2673/**
2674 * sw_cfg_port_base_vlan - configure port-based VLAN membership
2675 * @hw: 	The hardware instance.
2676 * @port:	The port index.
2677 * @member:	The port-based VLAN membership.
2678 *
2679 * This routine configures the port-based VLAN membership of the port.
2680 */
2681static void sw_cfg_port_base_vlan(struct ksz_hw *hw, int port, u8 member)
2682{
2683	u32 addr;
2684	u8 data;
2685
2686	PORT_CTRL_ADDR(port, addr);
2687	addr += KS8842_PORT_CTRL_2_OFFSET;
2688
2689	data = readb(hw->io + addr);
2690	data &= ~PORT_VLAN_MEMBERSHIP;
2691	data |= (member & PORT_MASK);
2692	writeb(data, hw->io + addr);
2693
2694	hw->ksz_switch->port_cfg[port].member = member;
2695}
2696
2697/**
2698 * sw_get_addr - get the switch MAC address.
2699 * @hw: 	The hardware instance.
2700 * @mac_addr:	Buffer to store the MAC address.
2701 *
2702 * This function retrieves the MAC address of the switch.
2703 */
2704static inline void sw_get_addr(struct ksz_hw *hw, u8 *mac_addr)
2705{
2706	int i;
2707
2708	for (i = 0; i < 6; i += 2) {
2709		mac_addr[i] = readb(hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2710		mac_addr[1 + i] = readb(hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2711	}
2712}
2713
2714/**
2715 * sw_set_addr - configure switch MAC address
2716 * @hw: 	The hardware instance.
2717 * @mac_addr:	The MAC address.
2718 *
2719 * This function configures the MAC address of the switch.
2720 */
2721static void sw_set_addr(struct ksz_hw *hw, u8 *mac_addr)
2722{
2723	int i;
2724
2725	for (i = 0; i < 6; i += 2) {
2726		writeb(mac_addr[i], hw->io + KS8842_MAC_ADDR_0_OFFSET + i);
2727		writeb(mac_addr[1 + i], hw->io + KS8842_MAC_ADDR_1_OFFSET + i);
2728	}
2729}
2730
2731/**
2732 * sw_set_global_ctrl - set switch global control
2733 * @hw: 	The hardware instance.
2734 *
2735 * This routine sets the global control of the switch function.
2736 */
2737static void sw_set_global_ctrl(struct ksz_hw *hw)
2738{
2739	u16 data;
2740
2741	/* Enable switch MII flow control. */
2742	data = readw(hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2743	data |= SWITCH_FLOW_CTRL;
2744	writew(data, hw->io + KS8842_SWITCH_CTRL_3_OFFSET);
2745
2746	data = readw(hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2747
2748	/* Enable aggressive back off algorithm in half duplex mode. */
2749	data |= SWITCH_AGGR_BACKOFF;
2750
2751	/* Enable automatic fast aging when link changed detected. */
2752	data |= SWITCH_AGING_ENABLE;
2753	data |= SWITCH_LINK_AUTO_AGING;
2754
2755	if (hw->overrides & FAST_AGING)
2756		data |= SWITCH_FAST_AGING;
2757	else
2758		data &= ~SWITCH_FAST_AGING;
2759	writew(data, hw->io + KS8842_SWITCH_CTRL_1_OFFSET);
2760
2761	data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2762
2763	/* Enable no excessive collision drop. */
2764	data |= NO_EXC_COLLISION_DROP;
2765	writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
2766}
2767
2768enum {
2769	STP_STATE_DISABLED = 0,
2770	STP_STATE_LISTENING,
2771	STP_STATE_LEARNING,
2772	STP_STATE_FORWARDING,
2773	STP_STATE_BLOCKED,
2774	STP_STATE_SIMPLE
2775};
2776
2777/**
2778 * port_set_stp_state - configure port spanning tree state
2779 * @hw: 	The hardware instance.
2780 * @port:	The port index.
2781 * @state:	The spanning tree state.
2782 *
2783 * This routine configures the spanning tree state of the port.
2784 */
2785static void port_set_stp_state(struct ksz_hw *hw, int port, int state)
2786{
2787	u16 data;
2788
2789	port_r16(hw, port, KS8842_PORT_CTRL_2_OFFSET, &data);
2790	switch (state) {
2791	case STP_STATE_DISABLED:
2792		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2793		data |= PORT_LEARN_DISABLE;
2794		break;
2795	case STP_STATE_LISTENING:
2796/*
2797 * No need to turn on transmit because of port direct mode.
2798 * Turning on receive is required if static MAC table is not setup.
2799 */
2800		data &= ~PORT_TX_ENABLE;
2801		data |= PORT_RX_ENABLE;
2802		data |= PORT_LEARN_DISABLE;
2803		break;
2804	case STP_STATE_LEARNING:
2805		data &= ~PORT_TX_ENABLE;
2806		data |= PORT_RX_ENABLE;
2807		data &= ~PORT_LEARN_DISABLE;
2808		break;
2809	case STP_STATE_FORWARDING:
2810		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2811		data &= ~PORT_LEARN_DISABLE;
2812		break;
2813	case STP_STATE_BLOCKED:
2814/*
2815 * Need to setup static MAC table with override to keep receiving BPDU
2816 * messages.  See sw_init_stp routine.
2817 */
2818		data &= ~(PORT_TX_ENABLE | PORT_RX_ENABLE);
2819		data |= PORT_LEARN_DISABLE;
2820		break;
2821	case STP_STATE_SIMPLE:
2822		data |= (PORT_TX_ENABLE | PORT_RX_ENABLE);
2823		data |= PORT_LEARN_DISABLE;
2824		break;
2825	}
2826	port_w16(hw, port, KS8842_PORT_CTRL_2_OFFSET, data);
2827	hw->ksz_switch->port_cfg[port].stp_state = state;
2828}
2829
2830#define STP_ENTRY			0
2831#define BROADCAST_ENTRY			1
2832#define BRIDGE_ADDR_ENTRY		2
2833#define IPV6_ADDR_ENTRY			3
2834
2835/**
2836 * sw_clr_sta_mac_table - clear static MAC table
2837 * @hw: 	The hardware instance.
2838 *
2839 * This routine clears the static MAC table.
2840 */
2841static void sw_clr_sta_mac_table(struct ksz_hw *hw)
2842{
2843	struct ksz_mac_table *entry;
2844	int i;
2845
2846	for (i = 0; i < STATIC_MAC_TABLE_ENTRIES; i++) {
2847		entry = &hw->ksz_switch->mac_table[i];
2848		sw_w_sta_mac_table(hw, i,
2849			entry->mac_addr, entry->ports,
2850			entry->override, 0,
2851			entry->use_fid, entry->fid);
2852	}
2853}
2854
2855/**
2856 * sw_init_stp - initialize switch spanning tree support
2857 * @hw: 	The hardware instance.
2858 *
2859 * This routine initializes the spanning tree support of the switch.
2860 */
2861static void sw_init_stp(struct ksz_hw *hw)
2862{
2863	struct ksz_mac_table *entry;
2864
2865	entry = &hw->ksz_switch->mac_table[STP_ENTRY];
2866	entry->mac_addr[0] = 0x01;
2867	entry->mac_addr[1] = 0x80;
2868	entry->mac_addr[2] = 0xC2;
2869	entry->mac_addr[3] = 0x00;
2870	entry->mac_addr[4] = 0x00;
2871	entry->mac_addr[5] = 0x00;
2872	entry->ports = HOST_MASK;
2873	entry->override = 1;
2874	entry->valid = 1;
2875	sw_w_sta_mac_table(hw, STP_ENTRY,
2876		entry->mac_addr, entry->ports,
2877		entry->override, entry->valid,
2878		entry->use_fid, entry->fid);
2879}
2880
2881/**
2882 * sw_block_addr - block certain packets from the host port
2883 * @hw: 	The hardware instance.
2884 *
2885 * This routine blocks certain packets from reaching to the host port.
2886 */
2887static void sw_block_addr(struct ksz_hw *hw)
2888{
2889	struct ksz_mac_table *entry;
2890	int i;
2891
2892	for (i = BROADCAST_ENTRY; i <= IPV6_ADDR_ENTRY; i++) {
2893		entry = &hw->ksz_switch->mac_table[i];
2894		entry->valid = 0;
2895		sw_w_sta_mac_table(hw, i,
2896			entry->mac_addr, entry->ports,
2897			entry->override, entry->valid,
2898			entry->use_fid, entry->fid);
2899	}
2900}
2901
2902#define PHY_LINK_SUPPORT		\
2903	(PHY_AUTO_NEG_ASYM_PAUSE |	\
2904	PHY_AUTO_NEG_SYM_PAUSE |	\
2905	PHY_AUTO_NEG_100BT4 |		\
2906	PHY_AUTO_NEG_100BTX_FD |	\
2907	PHY_AUTO_NEG_100BTX |		\
2908	PHY_AUTO_NEG_10BT_FD |		\
2909	PHY_AUTO_NEG_10BT)
2910
2911static inline void hw_r_phy_ctrl(struct ksz_hw *hw, int phy, u16 *data)
2912{
2913	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2914}
2915
2916static inline void hw_w_phy_ctrl(struct ksz_hw *hw, int phy, u16 data)
2917{
2918	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2919}
2920
2921static inline void hw_r_phy_link_stat(struct ksz_hw *hw, int phy, u16 *data)
2922{
2923	*data = readw(hw->io + phy + KS884X_PHY_STATUS_OFFSET);
2924}
2925
2926static inline void hw_r_phy_auto_neg(struct ksz_hw *hw, int phy, u16 *data)
2927{
2928	*data = readw(hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2929}
2930
2931static inline void hw_w_phy_auto_neg(struct ksz_hw *hw, int phy, u16 data)
2932{
2933	writew(data, hw->io + phy + KS884X_PHY_AUTO_NEG_OFFSET);
2934}
2935
2936static inline void hw_r_phy_rem_cap(struct ksz_hw *hw, int phy, u16 *data)
2937{
2938	*data = readw(hw->io + phy + KS884X_PHY_REMOTE_CAP_OFFSET);
2939}
2940
2941static inline void hw_r_phy_crossover(struct ksz_hw *hw, int phy, u16 *data)
2942{
2943	*data = readw(hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2944}
2945
2946static inline void hw_w_phy_crossover(struct ksz_hw *hw, int phy, u16 data)
2947{
2948	writew(data, hw->io + phy + KS884X_PHY_CTRL_OFFSET);
2949}
2950
2951static inline void hw_r_phy_polarity(struct ksz_hw *hw, int phy, u16 *data)
2952{
2953	*data = readw(hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2954}
2955
2956static inline void hw_w_phy_polarity(struct ksz_hw *hw, int phy, u16 data)
2957{
2958	writew(data, hw->io + phy + KS884X_PHY_PHY_CTRL_OFFSET);
2959}
2960
2961static inline void hw_r_phy_link_md(struct ksz_hw *hw, int phy, u16 *data)
2962{
2963	*data = readw(hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2964}
2965
2966static inline void hw_w_phy_link_md(struct ksz_hw *hw, int phy, u16 data)
2967{
2968	writew(data, hw->io + phy + KS884X_PHY_LINK_MD_OFFSET);
2969}
2970
2971/**
2972 * hw_r_phy - read data from PHY register
2973 * @hw: 	The hardware instance.
2974 * @port:	Port to read.
2975 * @reg:	PHY register to read.
2976 * @val:	Buffer to store the read data.
2977 *
2978 * This routine reads data from the PHY register.
2979 */
2980static void hw_r_phy(struct ksz_hw *hw, int port, u16 reg, u16 *val)
2981{
2982	int phy;
2983
2984	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
2985	*val = readw(hw->io + phy);
2986}
2987
2988/**
2989 * port_w_phy - write data to PHY register
2990 * @hw: 	The hardware instance.
2991 * @port:	Port to write.
2992 * @reg:	PHY register to write.
2993 * @val:	Word data to write.
2994 *
2995 * This routine writes data to the PHY register.
2996 */
2997static void hw_w_phy(struct ksz_hw *hw, int port, u16 reg, u16 val)
2998{
2999	int phy;
3000
3001	phy = KS884X_PHY_1_CTRL_OFFSET + port * PHY_CTRL_INTERVAL + reg;
3002	writew(val, hw->io + phy);
3003}
3004
3005/*
3006 * EEPROM access functions
3007 */
3008
3009#define AT93C_CODE			0
3010#define AT93C_WR_OFF			0x00
3011#define AT93C_WR_ALL			0x10
3012#define AT93C_ER_ALL			0x20
3013#define AT93C_WR_ON			0x30
3014
3015#define AT93C_WRITE			1
3016#define AT93C_READ			2
3017#define AT93C_ERASE			3
3018
3019#define EEPROM_DELAY			4
3020
3021static inline void drop_gpio(struct ksz_hw *hw, u8 gpio)
3022{
3023	u16 data;
3024
3025	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3026	data &= ~gpio;
3027	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3028}
3029
3030static inline void raise_gpio(struct ksz_hw *hw, u8 gpio)
3031{
3032	u16 data;
3033
3034	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3035	data |= gpio;
3036	writew(data, hw->io + KS884X_EEPROM_CTRL_OFFSET);
3037}
3038
3039static inline u8 state_gpio(struct ksz_hw *hw, u8 gpio)
3040{
3041	u16 data;
3042
3043	data = readw(hw->io + KS884X_EEPROM_CTRL_OFFSET);
3044	return (u8)(data & gpio);
3045}
3046
3047static void eeprom_clk(struct ksz_hw *hw)
3048{
3049	raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3050	udelay(EEPROM_DELAY);
3051	drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3052	udelay(EEPROM_DELAY);
3053}
3054
3055static u16 spi_r(struct ksz_hw *hw)
3056{
3057	int i;
3058	u16 temp = 0;
3059
3060	for (i = 15; i >= 0; i--) {
3061		raise_gpio(hw, EEPROM_SERIAL_CLOCK);
3062		udelay(EEPROM_DELAY);
3063
3064		temp |= (state_gpio(hw, EEPROM_DATA_IN)) ? 1 << i : 0;
3065
3066		drop_gpio(hw, EEPROM_SERIAL_CLOCK);
3067		udelay(EEPROM_DELAY);
3068	}
3069	return temp;
3070}
3071
3072static void spi_w(struct ksz_hw *hw, u16 data)
3073{
3074	int i;
3075
3076	for (i = 15; i >= 0; i--) {
3077		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3078			drop_gpio(hw, EEPROM_DATA_OUT);
3079		eeprom_clk(hw);
3080	}
3081}
3082
3083static void spi_reg(struct ksz_hw *hw, u8 data, u8 reg)
3084{
3085	int i;
3086
3087	/* Initial start bit */
3088	raise_gpio(hw, EEPROM_DATA_OUT);
3089	eeprom_clk(hw);
3090
3091	/* AT93C operation */
3092	for (i = 1; i >= 0; i--) {
3093		(data & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3094			drop_gpio(hw, EEPROM_DATA_OUT);
3095		eeprom_clk(hw);
3096	}
3097
3098	/* Address location */
3099	for (i = 5; i >= 0; i--) {
3100		(reg & (0x01 << i)) ? raise_gpio(hw, EEPROM_DATA_OUT) :
3101			drop_gpio(hw, EEPROM_DATA_OUT);
3102		eeprom_clk(hw);
3103	}
3104}
3105
3106#define EEPROM_DATA_RESERVED		0
3107#define EEPROM_DATA_MAC_ADDR_0		1
3108#define EEPROM_DATA_MAC_ADDR_1		2
3109#define EEPROM_DATA_MAC_ADDR_2		3
3110#define EEPROM_DATA_SUBSYS_ID		4
3111#define EEPROM_DATA_SUBSYS_VEN_ID	5
3112#define EEPROM_DATA_PM_CAP		6
3113
3114/* User defined EEPROM data */
3115#define EEPROM_DATA_OTHER_MAC_ADDR	9
3116
3117/**
3118 * eeprom_read - read from AT93C46 EEPROM
3119 * @hw: 	The hardware instance.
3120 * @reg:	The register offset.
3121 *
3122 * This function reads a word from the AT93C46 EEPROM.
3123 *
3124 * Return the data value.
3125 */
3126static u16 eeprom_read(struct ksz_hw *hw, u8 reg)
3127{
3128	u16 data;
3129
3130	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3131
3132	spi_reg(hw, AT93C_READ, reg);
3133	data = spi_r(hw);
3134
3135	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3136
3137	return data;
3138}
3139
3140/**
3141 * eeprom_write - write to AT93C46 EEPROM
3142 * @hw: 	The hardware instance.
3143 * @reg:	The register offset.
3144 * @data:	The data value.
3145 *
3146 * This procedure writes a word to the AT93C46 EEPROM.
3147 */
3148static void eeprom_write(struct ksz_hw *hw, u8 reg, u16 data)
3149{
3150	int timeout;
3151
3152	raise_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3153
3154	/* Enable write. */
3155	spi_reg(hw, AT93C_CODE, AT93C_WR_ON);
3156	drop_gpio(hw, EEPROM_CHIP_SELECT);
3157	udelay(1);
3158
3159	/* Erase the register. */
3160	raise_gpio(hw, EEPROM_CHIP_SELECT);
3161	spi_reg(hw, AT93C_ERASE, reg);
3162	drop_gpio(hw, EEPROM_CHIP_SELECT);
3163	udelay(1);
3164
3165	/* Check operation complete. */
3166	raise_gpio(hw, EEPROM_CHIP_SELECT);
3167	timeout = 8;
3168	mdelay(2);
3169	do {
3170		mdelay(1);
3171	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3172	drop_gpio(hw, EEPROM_CHIP_SELECT);
3173	udelay(1);
3174
3175	/* Write the register. */
3176	raise_gpio(hw, EEPROM_CHIP_SELECT);
3177	spi_reg(hw, AT93C_WRITE, reg);
3178	spi_w(hw, data);
3179	drop_gpio(hw, EEPROM_CHIP_SELECT);
3180	udelay(1);
3181
3182	/* Check operation complete. */
3183	raise_gpio(hw, EEPROM_CHIP_SELECT);
3184	timeout = 8;
3185	mdelay(2);
3186	do {
3187		mdelay(1);
3188	} while (!state_gpio(hw, EEPROM_DATA_IN) && --timeout);
3189	drop_gpio(hw, EEPROM_CHIP_SELECT);
3190	udelay(1);
3191
3192	/* Disable write. */
3193	raise_gpio(hw, EEPROM_CHIP_SELECT);
3194	spi_reg(hw, AT93C_CODE, AT93C_WR_OFF);
3195
3196	drop_gpio(hw, EEPROM_ACCESS_ENABLE | EEPROM_CHIP_SELECT);
3197}
3198
3199/*
3200 * Link detection routines
3201 */
3202
3203static u16 advertised_flow_ctrl(struct ksz_port *port, u16 ctrl)
3204{
3205	ctrl &= ~PORT_AUTO_NEG_SYM_PAUSE;
3206	switch (port->flow_ctrl) {
3207	case PHY_FLOW_CTRL:
3208		ctrl |= PORT_AUTO_NEG_SYM_PAUSE;
3209		break;
3210	/* Not supported. */
3211	case PHY_TX_ONLY:
3212	case PHY_RX_ONLY:
3213	default:
3214		break;
3215	}
3216	return ctrl;
3217}
3218
3219static void set_flow_ctrl(struct ksz_hw *hw, int rx, int tx)
3220{
3221	u32 rx_cfg;
3222	u32 tx_cfg;
3223
3224	rx_cfg = hw->rx_cfg;
3225	tx_cfg = hw->tx_cfg;
3226	if (rx)
3227		hw->rx_cfg |= DMA_RX_FLOW_ENABLE;
3228	else
3229		hw->rx_cfg &= ~DMA_RX_FLOW_ENABLE;
3230	if (tx)
3231		hw->tx_cfg |= DMA_TX_FLOW_ENABLE;
3232	else
3233		hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3234	if (hw->enabled) {
3235		if (rx_cfg != hw->rx_cfg)
3236			writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3237		if (tx_cfg != hw->tx_cfg)
3238			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3239	}
3240}
3241
3242static void determine_flow_ctrl(struct ksz_hw *hw, struct ksz_port *port,
3243	u16 local, u16 remote)
3244{
3245	int rx;
3246	int tx;
3247
3248	if (hw->overrides & PAUSE_FLOW_CTRL)
3249		return;
3250
3251	rx = tx = 0;
3252	if (port->force_link)
3253		rx = tx = 1;
3254	if (remote & PHY_AUTO_NEG_SYM_PAUSE) {
3255		if (local & PHY_AUTO_NEG_SYM_PAUSE) {
3256			rx = tx = 1;
3257		} else if ((remote & PHY_AUTO_NEG_ASYM_PAUSE) &&
3258				(local & PHY_AUTO_NEG_PAUSE) ==
3259				PHY_AUTO_NEG_ASYM_PAUSE) {
3260			tx = 1;
3261		}
3262	} else if (remote & PHY_AUTO_NEG_ASYM_PAUSE) {
3263		if ((local & PHY_AUTO_NEG_PAUSE) == PHY_AUTO_NEG_PAUSE)
3264			rx = 1;
3265	}
3266	if (!hw->ksz_switch)
3267		set_flow_ctrl(hw, rx, tx);
3268}
3269
3270static inline void port_cfg_change(struct ksz_hw *hw, struct ksz_port *port,
3271	struct ksz_port_info *info, u16 link_status)
3272{
3273	if ((hw->features & HALF_DUPLEX_SIGNAL_BUG) &&
3274			!(hw->overrides & PAUSE_FLOW_CTRL)) {
3275		u32 cfg = hw->tx_cfg;
3276
3277		/* Disable flow control in the half duplex mode. */
3278		if (1 == info->duplex)
3279			hw->tx_cfg &= ~DMA_TX_FLOW_ENABLE;
3280		if (hw->enabled && cfg != hw->tx_cfg)
3281			writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3282	}
3283}
3284
3285/**
3286 * port_get_link_speed - get current link status
3287 * @port: 	The port instance.
3288 *
3289 * This routine reads PHY registers to determine the current link status of the
3290 * switch ports.
3291 */
3292static void port_get_link_speed(struct ksz_port *port)
3293{
3294	uint interrupt;
3295	struct ksz_port_info *info;
3296	struct ksz_port_info *linked = NULL;
3297	struct ksz_hw *hw = port->hw;
3298	u16 data;
3299	u16 status;
3300	u8 local;
3301	u8 remote;
3302	int i;
3303	int p;
3304	int change = 0;
3305
3306	interrupt = hw_block_intr(hw);
3307
3308	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3309		info = &hw->port_info[p];
3310		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3311		port_r16(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3312
3313		/*
3314		 * Link status is changing all the time even when there is no
3315		 * cable connection!
3316		 */
3317		remote = status & (PORT_AUTO_NEG_COMPLETE |
3318			PORT_STATUS_LINK_GOOD);
3319		local = (u8) data;
3320
3321		/* No change to status. */
3322		if (local == info->advertised && remote == info->partner)
3323			continue;
3324
3325		info->advertised = local;
3326		info->partner = remote;
3327		if (status & PORT_STATUS_LINK_GOOD) {
3328
3329			/* Remember the first linked port. */
3330			if (!linked)
3331				linked = info;
3332
3333			info->tx_rate = 10 * TX_RATE_UNIT;
3334			if (status & PORT_STATUS_SPEED_100MBIT)
3335				info->tx_rate = 100 * TX_RATE_UNIT;
3336
3337			info->duplex = 1;
3338			if (status & PORT_STATUS_FULL_DUPLEX)
3339				info->duplex = 2;
3340
3341			if (media_connected != info->state) {
3342				hw_r_phy(hw, p, KS884X_PHY_AUTO_NEG_OFFSET,
3343					&data);
3344				hw_r_phy(hw, p, KS884X_PHY_REMOTE_CAP_OFFSET,
3345					&status);
3346				determine_flow_ctrl(hw, port, data, status);
3347				if (hw->ksz_switch) {
3348					port_cfg_back_pressure(hw, p,
3349						(1 == info->duplex));
3350				}
3351				change |= 1 << i;
3352				port_cfg_change(hw, port, info, status);
3353			}
3354			info->state = media_connected;
3355		} else {
3356			if (media_disconnected != info->state) {
3357				change |= 1 << i;
3358
3359				/* Indicate the link just goes down. */
3360				hw->port_mib[p].link_down = 1;
3361			}
3362			info->state = media_disconnected;
3363		}
3364		hw->port_mib[p].state = (u8) info->state;
3365	}
3366
3367	if (linked && media_disconnected == port->linked->state)
3368		port->linked = linked;
3369
3370	hw_restore_intr(hw, interrupt);
3371}
3372
3373#define PHY_RESET_TIMEOUT		10
3374
3375/**
3376 * port_set_link_speed - set port speed
3377 * @port: 	The port instance.
3378 *
3379 * This routine sets the link speed of the switch ports.
3380 */
3381static void port_set_link_speed(struct ksz_port *port)
3382{
3383	struct ksz_port_info *info;
3384	struct ksz_hw *hw = port->hw;
3385	u16 data;
3386	u16 cfg;
3387	u8 status;
3388	int i;
3389	int p;
3390
3391	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3392		info = &hw->port_info[p];
3393
3394		port_r16(hw, p, KS884X_PORT_CTRL_4_OFFSET, &data);
3395		port_r8(hw, p, KS884X_PORT_STATUS_OFFSET, &status);
3396
3397		cfg = 0;
3398		if (status & PORT_STATUS_LINK_GOOD)
3399			cfg = data;
3400
3401		data |= PORT_AUTO_NEG_ENABLE;
3402		data = advertised_flow_ctrl(port, data);
3403
3404		data |= PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX |
3405			PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT;
3406
3407		/* Check if manual configuration is specified by the user. */
3408		if (port->speed || port->duplex) {
3409			if (10 == port->speed)
3410				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3411					PORT_AUTO_NEG_100BTX);
3412			else if (100 == port->speed)
3413				data &= ~(PORT_AUTO_NEG_10BT_FD |
3414					PORT_AUTO_NEG_10BT);
3415			if (1 == port->duplex)
3416				data &= ~(PORT_AUTO_NEG_100BTX_FD |
3417					PORT_AUTO_NEG_10BT_FD);
3418			else if (2 == port->duplex)
3419				data &= ~(PORT_AUTO_NEG_100BTX |
3420					PORT_AUTO_NEG_10BT);
3421		}
3422		if (data != cfg) {
3423			data |= PORT_AUTO_NEG_RESTART;
3424			port_w16(hw, p, KS884X_PORT_CTRL_4_OFFSET, data);
3425		}
3426	}
3427}
3428
3429/**
3430 * port_force_link_speed - force port speed
3431 * @port: 	The port instance.
3432 *
3433 * This routine forces the link speed of the switch ports.
3434 */
3435static void port_force_link_speed(struct ksz_port *port)
3436{
3437	struct ksz_hw *hw = port->hw;
3438	u16 data;
3439	int i;
3440	int phy;
3441	int p;
3442
3443	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
3444		phy = KS884X_PHY_1_CTRL_OFFSET + p * PHY_CTRL_INTERVAL;
3445		hw_r_phy_ctrl(hw, phy, &data);
3446
3447		data &= ~PHY_AUTO_NEG_ENABLE;
3448
3449		if (10 == port->speed)
3450			data &= ~PHY_SPEED_100MBIT;
3451		else if (100 == port->speed)
3452			data |= PHY_SPEED_100MBIT;
3453		if (1 == port->duplex)
3454			data &= ~PHY_FULL_DUPLEX;
3455		else if (2 == port->duplex)
3456			data |= PHY_FULL_DUPLEX;
3457		hw_w_phy_ctrl(hw, phy, data);
3458	}
3459}
3460
3461static void port_set_power_saving(struct ksz_port *port, int enable)
3462{
3463	struct ksz_hw *hw = port->hw;
3464	int i;
3465	int p;
3466
3467	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++)
3468		port_cfg(hw, p,
3469			KS884X_PORT_CTRL_4_OFFSET, PORT_POWER_DOWN, enable);
3470}
3471
3472/*
3473 * KSZ8841 power management functions
3474 */
3475
3476/**
3477 * hw_chk_wol_pme_status - check PMEN pin
3478 * @hw: 	The hardware instance.
3479 *
3480 * This function is used to check PMEN pin is asserted.
3481 *
3482 * Return 1 if PMEN pin is asserted; otherwise, 0.
3483 */
3484static int hw_chk_wol_pme_status(struct ksz_hw *hw)
3485{
3486	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3487	struct pci_dev *pdev = hw_priv->pdev;
3488	u16 data;
3489
3490	if (!pdev->pm_cap)
3491		return 0;
3492	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3493	return (data & PCI_PM_CTRL_PME_STATUS) == PCI_PM_CTRL_PME_STATUS;
3494}
3495
3496/**
3497 * hw_clr_wol_pme_status - clear PMEN pin
3498 * @hw: 	The hardware instance.
3499 *
3500 * This routine is used to clear PME_Status to deassert PMEN pin.
3501 */
3502static void hw_clr_wol_pme_status(struct ksz_hw *hw)
3503{
3504	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3505	struct pci_dev *pdev = hw_priv->pdev;
3506	u16 data;
3507
3508	if (!pdev->pm_cap)
3509		return;
3510
3511	/* Clear PME_Status to deassert PMEN pin. */
3512	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3513	data |= PCI_PM_CTRL_PME_STATUS;
3514	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3515}
3516
3517/**
3518 * hw_cfg_wol_pme - enable or disable Wake-on-LAN
3519 * @hw: 	The hardware instance.
3520 * @set:	The flag indicating whether to enable or disable.
3521 *
3522 * This routine is used to enable or disable Wake-on-LAN.
3523 */
3524static void hw_cfg_wol_pme(struct ksz_hw *hw, int set)
3525{
3526	struct dev_info *hw_priv = container_of(hw, struct dev_info, hw);
3527	struct pci_dev *pdev = hw_priv->pdev;
3528	u16 data;
3529
3530	if (!pdev->pm_cap)
3531		return;
3532	pci_read_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, &data);
3533	data &= ~PCI_PM_CTRL_STATE_MASK;
3534	if (set)
3535		data |= PCI_PM_CTRL_PME_ENABLE | PCI_D3hot;
3536	else
3537		data &= ~PCI_PM_CTRL_PME_ENABLE;
3538	pci_write_config_word(pdev, pdev->pm_cap + PCI_PM_CTRL, data);
3539}
3540
3541/**
3542 * hw_cfg_wol - configure Wake-on-LAN features
3543 * @hw: 	The hardware instance.
3544 * @frame:	The pattern frame bit.
3545 * @set:	The flag indicating whether to enable or disable.
3546 *
3547 * This routine is used to enable or disable certain Wake-on-LAN features.
3548 */
3549static void hw_cfg_wol(struct ksz_hw *hw, u16 frame, int set)
3550{
3551	u16 data;
3552
3553	data = readw(hw->io + KS8841_WOL_CTRL_OFFSET);
3554	if (set)
3555		data |= frame;
3556	else
3557		data &= ~frame;
3558	writew(data, hw->io + KS8841_WOL_CTRL_OFFSET);
3559}
3560
3561/**
3562 * hw_set_wol_frame - program Wake-on-LAN pattern
3563 * @hw: 	The hardware instance.
3564 * @i:		The frame index.
3565 * @mask_size:	The size of the mask.
3566 * @mask:	Mask to ignore certain bytes in the pattern.
3567 * @frame_size:	The size of the frame.
3568 * @pattern:	The frame data.
3569 *
3570 * This routine is used to program Wake-on-LAN pattern.
3571 */
3572static void hw_set_wol_frame(struct ksz_hw *hw, int i, uint mask_size,
3573	const u8 *mask, uint frame_size, const u8 *pattern)
3574{
3575	int bits;
3576	int from;
3577	int len;
3578	int to;
3579	u32 crc;
3580	u8 data[64];
3581	u8 val = 0;
3582
3583	if (frame_size > mask_size * 8)
3584		frame_size = mask_size * 8;
3585	if (frame_size > 64)
3586		frame_size = 64;
3587
3588	i *= 0x10;
3589	writel(0, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i);
3590	writel(0, hw->io + KS8841_WOL_FRAME_BYTE2_OFFSET + i);
3591
3592	bits = len = from = to = 0;
3593	do {
3594		if (bits) {
3595			if ((val & 1))
3596				data[to++] = pattern[from];
3597			val >>= 1;
3598			++from;
3599			--bits;
3600		} else {
3601			val = mask[len];
3602			writeb(val, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i
3603				+ len);
3604			++len;
3605			if (val)
3606				bits = 8;
3607			else
3608				from += 8;
3609		}
3610	} while (from < (int) frame_size);
3611	if (val) {
3612		bits = mask[len - 1];
3613		val <<= (from % 8);
3614		bits &= ~val;
3615		writeb(bits, hw->io + KS8841_WOL_FRAME_BYTE0_OFFSET + i + len -
3616			1);
3617	}
3618	crc = ether_crc(to, data);
3619	writel(crc, hw->io + KS8841_WOL_FRAME_CRC_OFFSET + i);
3620}
3621
3622/**
3623 * hw_add_wol_arp - add ARP pattern
3624 * @hw: 	The hardware instance.
3625 * @ip_addr:	The IPv4 address assigned to the device.
3626 *
3627 * This routine is used to add ARP pattern for waking up the host.
3628 */
3629static void hw_add_wol_arp(struct ksz_hw *hw, const u8 *ip_addr)
3630{
3631	static const u8 mask[6] = { 0x3F, 0xF0, 0x3F, 0x00, 0xC0, 0x03 };
3632	u8 pattern[42] = {
3633		0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
3634		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3635		0x08, 0x06,
3636		0x00, 0x01, 0x08, 0x00, 0x06, 0x04, 0x00, 0x01,
3637		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3638		0x00, 0x00, 0x00, 0x00,
3639		0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
3640		0x00, 0x00, 0x00, 0x00 };
3641
3642	memcpy(&pattern[38], ip_addr, 4);
3643	hw_set_wol_frame(hw, 3, 6, mask, 42, pattern);
3644}
3645
3646/**
3647 * hw_add_wol_bcast - add broadcast pattern
3648 * @hw: 	The hardware instance.
3649 *
3650 * This routine is used to add broadcast pattern for waking up the host.
3651 */
3652static void hw_add_wol_bcast(struct ksz_hw *hw)
3653{
3654	static const u8 mask[] = { 0x3F };
3655	static const u8 pattern[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3656
3657	hw_set_wol_frame(hw, 2, 1, mask, MAC_ADDR_LEN, pattern);
3658}
3659
3660/**
3661 * hw_add_wol_mcast - add multicast pattern
3662 * @hw: 	The hardware instance.
3663 *
3664 * This routine is used to add multicast pattern for waking up the host.
3665 *
3666 * It is assumed the multicast packet is the ICMPv6 neighbor solicitation used
3667 * by IPv6 ping command.  Note that multicast packets are filtred through the
3668 * multicast hash table, so not all multicast packets can wake up the host.
3669 */
3670static void hw_add_wol_mcast(struct ksz_hw *hw)
3671{
3672	static const u8 mask[] = { 0x3F };
3673	u8 pattern[] = { 0x33, 0x33, 0xFF, 0x00, 0x00, 0x00 };
3674
3675	memcpy(&pattern[3], &hw->override_addr[3], 3);
3676	hw_set_wol_frame(hw, 1, 1, mask, 6, pattern);
3677}
3678
3679/**
3680 * hw_add_wol_ucast - add unicast pattern
3681 * @hw: 	The hardware instance.
3682 *
3683 * This routine is used to add unicast pattern to wakeup the host.
3684 *
3685 * It is assumed the unicast packet is directed to the device, as the hardware
3686 * can only receive them in normal case.
3687 */
3688static void hw_add_wol_ucast(struct ksz_hw *hw)
3689{
3690	static const u8 mask[] = { 0x3F };
3691
3692	hw_set_wol_frame(hw, 0, 1, mask, MAC_ADDR_LEN, hw->override_addr);
3693}
3694
3695/**
3696 * hw_enable_wol - enable Wake-on-LAN
3697 * @hw: 	The hardware instance.
3698 * @wol_enable:	The Wake-on-LAN settings.
3699 * @net_addr:	The IPv4 address assigned to the device.
3700 *
3701 * This routine is used to enable Wake-on-LAN depending on driver settings.
3702 */
3703static void hw_enable_wol(struct ksz_hw *hw, u32 wol_enable, const u8 *net_addr)
3704{
3705	hw_cfg_wol(hw, KS8841_WOL_MAGIC_ENABLE, (wol_enable & WAKE_MAGIC));
3706	hw_cfg_wol(hw, KS8841_WOL_FRAME0_ENABLE, (wol_enable & WAKE_UCAST));
3707	hw_add_wol_ucast(hw);
3708	hw_cfg_wol(hw, KS8841_WOL_FRAME1_ENABLE, (wol_enable & WAKE_MCAST));
3709	hw_add_wol_mcast(hw);
3710	hw_cfg_wol(hw, KS8841_WOL_FRAME2_ENABLE, (wol_enable & WAKE_BCAST));
3711	hw_cfg_wol(hw, KS8841_WOL_FRAME3_ENABLE, (wol_enable & WAKE_ARP));
3712	hw_add_wol_arp(hw, net_addr);
3713}
3714
3715/**
3716 * hw_init - check driver is correct for the hardware
3717 * @hw: 	The hardware instance.
3718 *
3719 * This function checks the hardware is correct for this driver and sets the
3720 * hardware up for proper initialization.
3721 *
3722 * Return number of ports or 0 if not right.
3723 */
3724static int hw_init(struct ksz_hw *hw)
3725{
3726	int rc = 0;
3727	u16 data;
3728	u16 revision;
3729
3730	/* Set bus speed to 125MHz. */
3731	writew(BUS_SPEED_125_MHZ, hw->io + KS884X_BUS_CTRL_OFFSET);
3732
3733	/* Check KSZ884x chip ID. */
3734	data = readw(hw->io + KS884X_CHIP_ID_OFFSET);
3735
3736	revision = (data & KS884X_REVISION_MASK) >> KS884X_REVISION_SHIFT;
3737	data &= KS884X_CHIP_ID_MASK_41;
3738	if (REG_CHIP_ID_41 == data)
3739		rc = 1;
3740	else if (REG_CHIP_ID_42 == data)
3741		rc = 2;
3742	else
3743		return 0;
3744
3745	/* Setup hardware features or bug workarounds. */
3746	if (revision <= 1) {
3747		hw->features |= SMALL_PACKET_TX_BUG;
3748		if (1 == rc)
3749			hw->features |= HALF_DUPLEX_SIGNAL_BUG;
3750	}
3751	return rc;
3752}
3753
3754/**
3755 * hw_reset - reset the hardware
3756 * @hw: 	The hardware instance.
3757 *
3758 * This routine resets the hardware.
3759 */
3760static void hw_reset(struct ksz_hw *hw)
3761{
3762	writew(GLOBAL_SOFTWARE_RESET, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3763
3764	/* Wait for device to reset. */
3765	mdelay(10);
3766
3767	/* Write 0 to clear device reset. */
3768	writew(0, hw->io + KS884X_GLOBAL_CTRL_OFFSET);
3769}
3770
3771/**
3772 * hw_setup - setup the hardware
3773 * @hw: 	The hardware instance.
3774 *
3775 * This routine setup the hardware for proper operation.
3776 */
3777static void hw_setup(struct ksz_hw *hw)
3778{
3779#if SET_DEFAULT_LED
3780	u16 data;
3781
3782	/* Change default LED mode. */
3783	data = readw(hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3784	data &= ~LED_MODE;
3785	data |= SET_DEFAULT_LED;
3786	writew(data, hw->io + KS8842_SWITCH_CTRL_5_OFFSET);
3787#endif
3788
3789	/* Setup transmit control. */
3790	hw->tx_cfg = (DMA_TX_PAD_ENABLE | DMA_TX_CRC_ENABLE |
3791		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_TX_ENABLE);
3792
3793	/* Setup receive control. */
3794	hw->rx_cfg = (DMA_RX_BROADCAST | DMA_RX_UNICAST |
3795		(DMA_BURST_DEFAULT << DMA_BURST_SHIFT) | DMA_RX_ENABLE);
3796	hw->rx_cfg |= KS884X_DMA_RX_MULTICAST;
3797
3798	/* Hardware cannot handle UDP packet in IP fragments. */
3799	hw->rx_cfg |= (DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
3800
3801	if (hw->all_multi)
3802		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
3803	if (hw->promiscuous)
3804		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
3805}
3806
3807/**
3808 * hw_setup_intr - setup interrupt mask
3809 * @hw: 	The hardware instance.
3810 *
3811 * This routine setup the interrupt mask for proper operation.
3812 */
3813static void hw_setup_intr(struct ksz_hw *hw)
3814{
3815	hw->intr_mask = KS884X_INT_MASK | KS884X_INT_RX_OVERRUN;
3816}
3817
3818static void ksz_check_desc_num(struct ksz_desc_info *info)
3819{
3820#define MIN_DESC_SHIFT  2
3821
3822	int alloc = info->alloc;
3823	int shift;
3824
3825	shift = 0;
3826	while (!(alloc & 1)) {
3827		shift++;
3828		alloc >>= 1;
3829	}
3830	if (alloc != 1 || shift < MIN_DESC_SHIFT) {
3831		pr_alert("Hardware descriptor numbers not right!\n");
3832		while (alloc) {
3833			shift++;
3834			alloc >>= 1;
3835		}
3836		if (shift < MIN_DESC_SHIFT)
3837			shift = MIN_DESC_SHIFT;
3838		alloc = 1 << shift;
3839		info->alloc = alloc;
3840	}
3841	info->mask = info->alloc - 1;
3842}
3843
3844static void hw_init_desc(struct ksz_desc_info *desc_info, int transmit)
3845{
3846	int i;
3847	u32 phys = desc_info->ring_phys;
3848	struct ksz_hw_desc *desc = desc_info->ring_virt;
3849	struct ksz_desc *cur = desc_info->ring;
3850	struct ksz_desc *previous = NULL;
3851
3852	for (i = 0; i < desc_info->alloc; i++) {
3853		cur->phw = desc++;
3854		phys += desc_info->size;
3855		previous = cur++;
3856		previous->phw->next = cpu_to_le32(phys);
3857	}
3858	previous->phw->next = cpu_to_le32(desc_info->ring_phys);
3859	previous->sw.buf.rx.end_of_ring = 1;
3860	previous->phw->buf.data = cpu_to_le32(previous->sw.buf.data);
3861
3862	desc_info->avail = desc_info->alloc;
3863	desc_info->last = desc_info->next = 0;
3864
3865	desc_info->cur = desc_info->ring;
3866}
3867
3868/**
3869 * hw_set_desc_base - set descriptor base addresses
3870 * @hw: 	The hardware instance.
3871 * @tx_addr:	The transmit descriptor base.
3872 * @rx_addr:	The receive descriptor base.
3873 *
3874 * This routine programs the descriptor base addresses after reset.
3875 */
3876static void hw_set_desc_base(struct ksz_hw *hw, u32 tx_addr, u32 rx_addr)
3877{
3878	/* Set base address of Tx/Rx descriptors. */
3879	writel(tx_addr, hw->io + KS_DMA_TX_ADDR);
3880	writel(rx_addr, hw->io + KS_DMA_RX_ADDR);
3881}
3882
3883static void hw_reset_pkts(struct ksz_desc_info *info)
3884{
3885	info->cur = info->ring;
3886	info->avail = info->alloc;
3887	info->last = info->next = 0;
3888}
3889
3890static inline void hw_resume_rx(struct ksz_hw *hw)
3891{
3892	writel(DMA_START, hw->io + KS_DMA_RX_START);
3893}
3894
3895/**
3896 * hw_start_rx - start receiving
3897 * @hw: 	The hardware instance.
3898 *
3899 * This routine starts the receive function of the hardware.
3900 */
3901static void hw_start_rx(struct ksz_hw *hw)
3902{
3903	writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
3904
3905	/* Notify when the receive stops. */
3906	hw->intr_mask |= KS884X_INT_RX_STOPPED;
3907
3908	writel(DMA_START, hw->io + KS_DMA_RX_START);
3909	hw_ack_intr(hw, KS884X_INT_RX_STOPPED);
3910	hw->rx_stop++;
3911
3912	/* Variable overflows. */
3913	if (0 == hw->rx_stop)
3914		hw->rx_stop = 2;
3915}
3916
3917/*
3918 * hw_stop_rx - stop receiving
3919 * @hw: 	The hardware instance.
3920 *
3921 * This routine stops the receive function of the hardware.
3922 */
3923static void hw_stop_rx(struct ksz_hw *hw)
3924{
3925	hw->rx_stop = 0;
3926	hw_turn_off_intr(hw, KS884X_INT_RX_STOPPED);
3927	writel((hw->rx_cfg & ~DMA_RX_ENABLE), hw->io + KS_DMA_RX_CTRL);
3928}
3929
3930/**
3931 * hw_start_tx - start transmitting
3932 * @hw: 	The hardware instance.
3933 *
3934 * This routine starts the transmit function of the hardware.
3935 */
3936static void hw_start_tx(struct ksz_hw *hw)
3937{
3938	writel(hw->tx_cfg, hw->io + KS_DMA_TX_CTRL);
3939}
3940
3941/**
3942 * hw_stop_tx - stop transmitting
3943 * @hw: 	The hardware instance.
3944 *
3945 * This routine stops the transmit function of the hardware.
3946 */
3947static void hw_stop_tx(struct ksz_hw *hw)
3948{
3949	writel((hw->tx_cfg & ~DMA_TX_ENABLE), hw->io + KS_DMA_TX_CTRL);
3950}
3951
3952/**
3953 * hw_disable - disable hardware
3954 * @hw: 	The hardware instance.
3955 *
3956 * This routine disables the hardware.
3957 */
3958static void hw_disable(struct ksz_hw *hw)
3959{
3960	hw_stop_rx(hw);
3961	hw_stop_tx(hw);
3962	hw->enabled = 0;
3963}
3964
3965/**
3966 * hw_enable - enable hardware
3967 * @hw: 	The hardware instance.
3968 *
3969 * This routine enables the hardware.
3970 */
3971static void hw_enable(struct ksz_hw *hw)
3972{
3973	hw_start_tx(hw);
3974	hw_start_rx(hw);
3975	hw->enabled = 1;
3976}
3977
3978/**
3979 * hw_alloc_pkt - allocate enough descriptors for transmission
3980 * @hw: 	The hardware instance.
3981 * @length:	The length of the packet.
3982 * @physical:	Number of descriptors required.
3983 *
3984 * This function allocates descriptors for transmission.
3985 *
3986 * Return 0 if not successful; 1 for buffer copy; or number of descriptors.
3987 */
3988static int hw_alloc_pkt(struct ksz_hw *hw, int length, int physical)
3989{
3990	/* Always leave one descriptor free. */
3991	if (hw->tx_desc_info.avail <= 1)
3992		return 0;
3993
3994	/* Allocate a descriptor for transmission and mark it current. */
3995	get_tx_pkt(&hw->tx_desc_info, &hw->tx_desc_info.cur);
3996	hw->tx_desc_info.cur->sw.buf.tx.first_seg = 1;
3997
3998	/* Keep track of number of transmit descriptors used so far. */
3999	++hw->tx_int_cnt;
4000	hw->tx_size += length;
4001
4002	/* Cannot hold on too much data. */
4003	if (hw->tx_size >= MAX_TX_HELD_SIZE)
4004		hw->tx_int_cnt = hw->tx_int_mask + 1;
4005
4006	if (physical > hw->tx_desc_info.avail)
4007		return 1;
4008
4009	return hw->tx_desc_info.avail;
4010}
4011
4012/**
4013 * hw_send_pkt - mark packet for transmission
4014 * @hw: 	The hardware instance.
4015 *
4016 * This routine marks the packet for transmission in PCI version.
4017 */
4018static void hw_send_pkt(struct ksz_hw *hw)
4019{
4020	struct ksz_desc *cur = hw->tx_desc_info.cur;
4021
4022	cur->sw.buf.tx.last_seg = 1;
4023
4024	/* Interrupt only after specified number of descriptors used. */
4025	if (hw->tx_int_cnt > hw->tx_int_mask) {
4026		cur->sw.buf.tx.intr = 1;
4027		hw->tx_int_cnt = 0;
4028		hw->tx_size = 0;
4029	}
4030
4031	/* KSZ8842 supports port directed transmission. */
4032	cur->sw.buf.tx.dest_port = hw->dst_ports;
4033
4034	release_desc(cur);
4035
4036	writel(0, hw->io + KS_DMA_TX_START);
4037}
4038
4039static int empty_addr(u8 *addr)
4040{
4041	u32 *addr1 = (u32 *) addr;
4042	u16 *addr2 = (u16 *) &addr[4];
4043
4044	return 0 == *addr1 && 0 == *addr2;
4045}
4046
4047/**
4048 * hw_set_addr - set MAC address
4049 * @hw: 	The hardware instance.
4050 *
4051 * This routine programs the MAC address of the hardware when the address is
4052 * overrided.
4053 */
4054static void hw_set_addr(struct ksz_hw *hw)
4055{
4056	int i;
4057
4058	for (i = 0; i < MAC_ADDR_LEN; i++)
4059		writeb(hw->override_addr[MAC_ADDR_ORDER(i)],
4060			hw->io + KS884X_ADDR_0_OFFSET + i);
4061
4062	sw_set_addr(hw, hw->override_addr);
4063}
4064
4065/**
4066 * hw_read_addr - read MAC address
4067 * @hw: 	The hardware instance.
4068 *
4069 * This routine retrieves the MAC address of the hardware.
4070 */
4071static void hw_read_addr(struct ksz_hw *hw)
4072{
4073	int i;
4074
4075	for (i = 0; i < MAC_ADDR_LEN; i++)
4076		hw->perm_addr[MAC_ADDR_ORDER(i)] = readb(hw->io +
4077			KS884X_ADDR_0_OFFSET + i);
4078
4079	if (!hw->mac_override) {
4080		memcpy(hw->override_addr, hw->perm_addr, MAC_ADDR_LEN);
4081		if (empty_addr(hw->override_addr)) {
4082			memcpy(hw->perm_addr, DEFAULT_MAC_ADDRESS,
4083				MAC_ADDR_LEN);
4084			memcpy(hw->override_addr, DEFAULT_MAC_ADDRESS,
4085				MAC_ADDR_LEN);
4086			hw->override_addr[5] += hw->id;
4087			hw_set_addr(hw);
4088		}
4089	}
4090}
4091
4092static void hw_ena_add_addr(struct ksz_hw *hw, int index, u8 *mac_addr)
4093{
4094	int i;
4095	u32 mac_addr_lo;
4096	u32 mac_addr_hi;
4097
4098	mac_addr_hi = 0;
4099	for (i = 0; i < 2; i++) {
4100		mac_addr_hi <<= 8;
4101		mac_addr_hi |= mac_addr[i];
4102	}
4103	mac_addr_hi |= ADD_ADDR_ENABLE;
4104	mac_addr_lo = 0;
4105	for (i = 2; i < 6; i++) {
4106		mac_addr_lo <<= 8;
4107		mac_addr_lo |= mac_addr[i];
4108	}
4109	index *= ADD_ADDR_INCR;
4110
4111	writel(mac_addr_lo, hw->io + index + KS_ADD_ADDR_0_LO);
4112	writel(mac_addr_hi, hw->io + index + KS_ADD_ADDR_0_HI);
4113}
4114
4115static void hw_set_add_addr(struct ksz_hw *hw)
4116{
4117	int i;
4118
4119	for (i = 0; i < ADDITIONAL_ENTRIES; i++) {
4120		if (empty_addr(hw->address[i]))
4121			writel(0, hw->io + ADD_ADDR_INCR * i +
4122				KS_ADD_ADDR_0_HI);
4123		else
4124			hw_ena_add_addr(hw, i, hw->address[i]);
4125	}
4126}
4127
4128static int hw_add_addr(struct ksz_hw *hw, u8 *mac_addr)
4129{
4130	int i;
4131	int j = ADDITIONAL_ENTRIES;
4132
4133	if (!memcmp(hw->override_addr, mac_addr, MAC_ADDR_LEN))
4134		return 0;
4135	for (i = 0; i < hw->addr_list_size; i++) {
4136		if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN))
4137			return 0;
4138		if (ADDITIONAL_ENTRIES == j && empty_addr(hw->address[i]))
4139			j = i;
4140	}
4141	if (j < ADDITIONAL_ENTRIES) {
4142		memcpy(hw->address[j], mac_addr, MAC_ADDR_LEN);
4143		hw_ena_add_addr(hw, j, hw->address[j]);
4144		return 0;
4145	}
4146	return -1;
4147}
4148
4149static int hw_del_addr(struct ksz_hw *hw, u8 *mac_addr)
4150{
4151	int i;
4152
4153	for (i = 0; i < hw->addr_list_size; i++) {
4154		if (!memcmp(hw->address[i], mac_addr, MAC_ADDR_LEN)) {
4155			memset(hw->address[i], 0, MAC_ADDR_LEN);
4156			writel(0, hw->io + ADD_ADDR_INCR * i +
4157				KS_ADD_ADDR_0_HI);
4158			return 0;
4159		}
4160	}
4161	return -1;
4162}
4163
4164/**
4165 * hw_clr_multicast - clear multicast addresses
4166 * @hw: 	The hardware instance.
4167 *
4168 * This routine removes all multicast addresses set in the hardware.
4169 */
4170static void hw_clr_multicast(struct ksz_hw *hw)
4171{
4172	int i;
4173
4174	for (i = 0; i < HW_MULTICAST_SIZE; i++) {
4175		hw->multi_bits[i] = 0;
4176
4177		writeb(0, hw->io + KS884X_MULTICAST_0_OFFSET + i);
4178	}
4179}
4180
4181/**
4182 * hw_set_grp_addr - set multicast addresses
4183 * @hw: 	The hardware instance.
4184 *
4185 * This routine programs multicast addresses for the hardware to accept those
4186 * addresses.
4187 */
4188static void hw_set_grp_addr(struct ksz_hw *hw)
4189{
4190	int i;
4191	int index;
4192	int position;
4193	int value;
4194
4195	memset(hw->multi_bits, 0, sizeof(u8) * HW_MULTICAST_SIZE);
4196
4197	for (i = 0; i < hw->multi_list_size; i++) {
4198		position = (ether_crc(6, hw->multi_list[i]) >> 26) & 0x3f;
4199		index = position >> 3;
4200		value = 1 << (position & 7);
4201		hw->multi_bits[index] |= (u8) value;
4202	}
4203
4204	for (i = 0; i < HW_MULTICAST_SIZE; i++)
4205		writeb(hw->multi_bits[i], hw->io + KS884X_MULTICAST_0_OFFSET +
4206			i);
4207}
4208
4209/**
4210 * hw_set_multicast - enable or disable all multicast receiving
4211 * @hw: 	The hardware instance.
4212 * @multicast:	To turn on or off the all multicast feature.
4213 *
4214 * This routine enables/disables the hardware to accept all multicast packets.
4215 */
4216static void hw_set_multicast(struct ksz_hw *hw, u8 multicast)
4217{
4218	/* Stop receiving for reconfiguration. */
4219	hw_stop_rx(hw);
4220
4221	if (multicast)
4222		hw->rx_cfg |= DMA_RX_ALL_MULTICAST;
4223	else
4224		hw->rx_cfg &= ~DMA_RX_ALL_MULTICAST;
4225
4226	if (hw->enabled)
4227		hw_start_rx(hw);
4228}
4229
4230/**
4231 * hw_set_promiscuous - enable or disable promiscuous receiving
4232 * @hw: 	The hardware instance.
4233 * @prom:	To turn on or off the promiscuous feature.
4234 *
4235 * This routine enables/disables the hardware to accept all packets.
4236 */
4237static void hw_set_promiscuous(struct ksz_hw *hw, u8 prom)
4238{
4239	/* Stop receiving for reconfiguration. */
4240	hw_stop_rx(hw);
4241
4242	if (prom)
4243		hw->rx_cfg |= DMA_RX_PROMISCUOUS;
4244	else
4245		hw->rx_cfg &= ~DMA_RX_PROMISCUOUS;
4246
4247	if (hw->enabled)
4248		hw_start_rx(hw);
4249}
4250
4251/**
4252 * sw_enable - enable the switch
4253 * @hw: 	The hardware instance.
4254 * @enable:	The flag to enable or disable the switch
4255 *
4256 * This routine is used to enable/disable the switch in KSZ8842.
4257 */
4258static void sw_enable(struct ksz_hw *hw, int enable)
4259{
4260	int port;
4261
4262	for (port = 0; port < SWITCH_PORT_NUM; port++) {
4263		if (hw->dev_count > 1) {
4264			/* Set port-base vlan membership with host port. */
4265			sw_cfg_port_base_vlan(hw, port,
4266				HOST_MASK | (1 << port));
4267			port_set_stp_state(hw, port, STP_STATE_DISABLED);
4268		} else {
4269			sw_cfg_port_base_vlan(hw, port, PORT_MASK);
4270			port_set_stp_state(hw, port, STP_STATE_FORWARDING);
4271		}
4272	}
4273	if (hw->dev_count > 1)
4274		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
4275	else
4276		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_FORWARDING);
4277
4278	if (enable)
4279		enable = KS8842_START;
4280	writew(enable, hw->io + KS884X_CHIP_ID_OFFSET);
4281}
4282
4283/**
4284 * sw_setup - setup the switch
4285 * @hw: 	The hardware instance.
4286 *
4287 * This routine setup the hardware switch engine for default operation.
4288 */
4289static void sw_setup(struct ksz_hw *hw)
4290{
4291	int port;
4292
4293	sw_set_global_ctrl(hw);
4294
4295	/* Enable switch broadcast storm protection at 10% percent rate. */
4296	sw_init_broad_storm(hw);
4297	hw_cfg_broad_storm(hw, BROADCAST_STORM_PROTECTION_RATE);
4298	for (port = 0; port < SWITCH_PORT_NUM; port++)
4299		sw_ena_broad_storm(hw, port);
4300
4301	sw_init_prio(hw);
4302
4303	sw_init_mirror(hw);
4304
4305	sw_init_prio_rate(hw);
4306
4307	sw_init_vlan(hw);
4308
4309	if (hw->features & STP_SUPPORT)
4310		sw_init_stp(hw);
4311	if (!sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
4312			SWITCH_TX_FLOW_CTRL | SWITCH_RX_FLOW_CTRL))
4313		hw->overrides |= PAUSE_FLOW_CTRL;
4314	sw_enable(hw, 1);
4315}
4316
4317/**
4318 * ksz_start_timer - start kernel timer
4319 * @info:	Kernel timer information.
4320 * @time:	The time tick.
4321 *
4322 * This routine starts the kernel timer after the specified time tick.
4323 */
4324static void ksz_start_timer(struct ksz_timer_info *info, int time)
4325{
4326	info->cnt = 0;
4327	info->timer.expires = jiffies + time;
4328	add_timer(&info->timer);
4329
4330	/* infinity */
4331	info->max = -1;
4332}
4333
4334/**
4335 * ksz_stop_timer - stop kernel timer
4336 * @info:	Kernel timer information.
4337 *
4338 * This routine stops the kernel timer.
4339 */
4340static void ksz_stop_timer(struct ksz_timer_info *info)
4341{
4342	if (info->max) {
4343		info->max = 0;
4344		del_timer_sync(&info->timer);
4345	}
4346}
4347
4348static void ksz_init_timer(struct ksz_timer_info *info, int period,
4349	void (*function)(unsigned long), void *data)
4350{
4351	info->max = 0;
4352	info->period = period;
4353	init_timer(&info->timer);
4354	info->timer.function = function;
4355	info->timer.data = (unsigned long) data;
4356}
4357
4358static void ksz_update_timer(struct ksz_timer_info *info)
4359{
4360	++info->cnt;
4361	if (info->max > 0) {
4362		if (info->cnt < info->max) {
4363			info->timer.expires = jiffies + info->period;
4364			add_timer(&info->timer);
4365		} else
4366			info->max = 0;
4367	} else if (info->max < 0) {
4368		info->timer.expires = jiffies + info->period;
4369		add_timer(&info->timer);
4370	}
4371}
4372
4373/**
4374 * ksz_alloc_soft_desc - allocate software descriptors
4375 * @desc_info:	Descriptor information structure.
4376 * @transmit:	Indication that descriptors are for transmit.
4377 *
4378 * This local function allocates software descriptors for manipulation in
4379 * memory.
4380 *
4381 * Return 0 if successful.
4382 */
4383static int ksz_alloc_soft_desc(struct ksz_desc_info *desc_info, int transmit)
4384{
4385	desc_info->ring = kmalloc(sizeof(struct ksz_desc) * desc_info->alloc,
4386		GFP_KERNEL);
4387	if (!desc_info->ring)
4388		return 1;
4389	memset((void *) desc_info->ring, 0,
4390		sizeof(struct ksz_desc) * desc_info->alloc);
4391	hw_init_desc(desc_info, transmit);
4392	return 0;
4393}
4394
4395/**
4396 * ksz_alloc_desc - allocate hardware descriptors
4397 * @adapter:	Adapter information structure.
4398 *
4399 * This local function allocates hardware descriptors for receiving and
4400 * transmitting.
4401 *
4402 * Return 0 if successful.
4403 */
4404static int ksz_alloc_desc(struct dev_info *adapter)
4405{
4406	struct ksz_hw *hw = &adapter->hw;
4407	int offset;
4408
4409	/* Allocate memory for RX & TX descriptors. */
4410	adapter->desc_pool.alloc_size =
4411		hw->rx_desc_info.size * hw->rx_desc_info.alloc +
4412		hw->tx_desc_info.size * hw->tx_desc_info.alloc +
4413		DESC_ALIGNMENT;
4414
4415	adapter->desc_pool.alloc_virt =
4416		pci_alloc_consistent(
4417			adapter->pdev, adapter->desc_pool.alloc_size,
4418			&adapter->desc_pool.dma_addr);
4419	if (adapter->desc_pool.alloc_virt == NULL) {
4420		adapter->desc_pool.alloc_size = 0;
4421		return 1;
4422	}
4423	memset(adapter->desc_pool.alloc_virt, 0, adapter->desc_pool.alloc_size);
4424
4425	/* Align to the next cache line boundary. */
4426	offset = (((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT) ?
4427		(DESC_ALIGNMENT -
4428		((ulong) adapter->desc_pool.alloc_virt % DESC_ALIGNMENT)) : 0);
4429	adapter->desc_pool.virt = adapter->desc_pool.alloc_virt + offset;
4430	adapter->desc_pool.phys = adapter->desc_pool.dma_addr + offset;
4431
4432	/* Allocate receive/transmit descriptors. */
4433	hw->rx_desc_info.ring_virt = (struct ksz_hw_desc *)
4434		adapter->desc_pool.virt;
4435	hw->rx_desc_info.ring_phys = adapter->desc_pool.phys;
4436	offset = hw->rx_desc_info.alloc * hw->rx_desc_info.size;
4437	hw->tx_desc_info.ring_virt = (struct ksz_hw_desc *)
4438		(adapter->desc_pool.virt + offset);
4439	hw->tx_desc_info.ring_phys = adapter->desc_pool.phys + offset;
4440
4441	if (ksz_alloc_soft_desc(&hw->rx_desc_info, 0))
4442		return 1;
4443	if (ksz_alloc_soft_desc(&hw->tx_desc_info, 1))
4444		return 1;
4445
4446	return 0;
4447}
4448
4449/**
4450 * free_dma_buf - release DMA buffer resources
4451 * @adapter:	Adapter information structure.
4452 *
4453 * This routine is just a helper function to release the DMA buffer resources.
4454 */
4455static void free_dma_buf(struct dev_info *adapter, struct ksz_dma_buf *dma_buf,
4456	int direction)
4457{
4458	pci_unmap_single(adapter->pdev, dma_buf->dma, dma_buf->len, direction);
4459	dev_kfree_skb(dma_buf->skb);
4460	dma_buf->skb = NULL;
4461	dma_buf->dma = 0;
4462}
4463
4464/**
4465 * ksz_init_rx_buffers - initialize receive descriptors
4466 * @adapter:	Adapter information structure.
4467 *
4468 * This routine initializes DMA buffers for receiving.
4469 */
4470static void ksz_init_rx_buffers(struct dev_info *adapter)
4471{
4472	int i;
4473	struct ksz_desc *desc;
4474	struct ksz_dma_buf *dma_buf;
4475	struct ksz_hw *hw = &adapter->hw;
4476	struct ksz_desc_info *info = &hw->rx_desc_info;
4477
4478	for (i = 0; i < hw->rx_desc_info.alloc; i++) {
4479		get_rx_pkt(info, &desc);
4480
4481		dma_buf = DMA_BUFFER(desc);
4482		if (dma_buf->skb && dma_buf->len != adapter->mtu)
4483			free_dma_buf(adapter, dma_buf, PCI_DMA_FROMDEVICE);
4484		dma_buf->len = adapter->mtu;
4485		if (!dma_buf->skb)
4486			dma_buf->skb = alloc_skb(dma_buf->len, GFP_ATOMIC);
4487		if (dma_buf->skb && !dma_buf->dma) {
4488			dma_buf->skb->dev = adapter->dev;
4489			dma_buf->dma = pci_map_single(
4490				adapter->pdev,
4491				skb_tail_pointer(dma_buf->skb),
4492				dma_buf->len,
4493				PCI_DMA_FROMDEVICE);
4494		}
4495
4496		/* Set descriptor. */
4497		set_rx_buf(desc, dma_buf->dma);
4498		set_rx_len(desc, dma_buf->len);
4499		release_desc(desc);
4500	}
4501}
4502
4503/**
4504 * ksz_alloc_mem - allocate memory for hardware descriptors
4505 * @adapter:	Adapter information structure.
4506 *
4507 * This function allocates memory for use by hardware descriptors for receiving
4508 * and transmitting.
4509 *
4510 * Return 0 if successful.
4511 */
4512static int ksz_alloc_mem(struct dev_info *adapter)
4513{
4514	struct ksz_hw *hw = &adapter->hw;
4515
4516	/* Determine the number of receive and transmit descriptors. */
4517	hw->rx_desc_info.alloc = NUM_OF_RX_DESC;
4518	hw->tx_desc_info.alloc = NUM_OF_TX_DESC;
4519
4520	/* Determine how many descriptors to skip transmit interrupt. */
4521	hw->tx_int_cnt = 0;
4522	hw->tx_int_mask = NUM_OF_TX_DESC / 4;
4523	if (hw->tx_int_mask > 8)
4524		hw->tx_int_mask = 8;
4525	while (hw->tx_int_mask) {
4526		hw->tx_int_cnt++;
4527		hw->tx_int_mask >>= 1;
4528	}
4529	if (hw->tx_int_cnt) {
4530		hw->tx_int_mask = (1 << (hw->tx_int_cnt - 1)) - 1;
4531		hw->tx_int_cnt = 0;
4532	}
4533
4534	/* Determine the descriptor size. */
4535	hw->rx_desc_info.size =
4536		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4537		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4538	hw->tx_desc_info.size =
4539		(((sizeof(struct ksz_hw_desc) + DESC_ALIGNMENT - 1) /
4540		DESC_ALIGNMENT) * DESC_ALIGNMENT);
4541	if (hw->rx_desc_info.size != sizeof(struct ksz_hw_desc))
4542		pr_alert("Hardware descriptor size not right!\n");
4543	ksz_check_desc_num(&hw->rx_desc_info);
4544	ksz_check_desc_num(&hw->tx_desc_info);
4545
4546	/* Allocate descriptors. */
4547	if (ksz_alloc_desc(adapter))
4548		return 1;
4549
4550	return 0;
4551}
4552
4553/**
4554 * ksz_free_desc - free software and hardware descriptors
4555 * @adapter:	Adapter information structure.
4556 *
4557 * This local routine frees the software and hardware descriptors allocated by
4558 * ksz_alloc_desc().
4559 */
4560static void ksz_free_desc(struct dev_info *adapter)
4561{
4562	struct ksz_hw *hw = &adapter->hw;
4563
4564	/* Reset descriptor. */
4565	hw->rx_desc_info.ring_virt = NULL;
4566	hw->tx_desc_info.ring_virt = NULL;
4567	hw->rx_desc_info.ring_phys = 0;
4568	hw->tx_desc_info.ring_phys = 0;
4569
4570	/* Free memory. */
4571	if (adapter->desc_pool.alloc_virt)
4572		pci_free_consistent(
4573			adapter->pdev,
4574			adapter->desc_pool.alloc_size,
4575			adapter->desc_pool.alloc_virt,
4576			adapter->desc_pool.dma_addr);
4577
4578	/* Reset resource pool. */
4579	adapter->desc_pool.alloc_size = 0;
4580	adapter->desc_pool.alloc_virt = NULL;
4581
4582	kfree(hw->rx_desc_info.ring);
4583	hw->rx_desc_info.ring = NULL;
4584	kfree(hw->tx_desc_info.ring);
4585	hw->tx_desc_info.ring = NULL;
4586}
4587
4588/**
4589 * ksz_free_buffers - free buffers used in the descriptors
4590 * @adapter:	Adapter information structure.
4591 * @desc_info:	Descriptor information structure.
4592 *
4593 * This local routine frees buffers used in the DMA buffers.
4594 */
4595static void ksz_free_buffers(struct dev_info *adapter,
4596	struct ksz_desc_info *desc_info, int direction)
4597{
4598	int i;
4599	struct ksz_dma_buf *dma_buf;
4600	struct ksz_desc *desc = desc_info->ring;
4601
4602	for (i = 0; i < desc_info->alloc; i++) {
4603		dma_buf = DMA_BUFFER(desc);
4604		if (dma_buf->skb)
4605			free_dma_buf(adapter, dma_buf, direction);
4606		desc++;
4607	}
4608}
4609
4610/**
4611 * ksz_free_mem - free all resources used by descriptors
4612 * @adapter:	Adapter information structure.
4613 *
4614 * This local routine frees all the resources allocated by ksz_alloc_mem().
4615 */
4616static void ksz_free_mem(struct dev_info *adapter)
4617{
4618	/* Free transmit buffers. */
4619	ksz_free_buffers(adapter, &adapter->hw.tx_desc_info,
4620		PCI_DMA_TODEVICE);
4621
4622	/* Free receive buffers. */
4623	ksz_free_buffers(adapter, &adapter->hw.rx_desc_info,
4624		PCI_DMA_FROMDEVICE);
4625
4626	/* Free descriptors. */
4627	ksz_free_desc(adapter);
4628}
4629
4630static void get_mib_counters(struct ksz_hw *hw, int first, int cnt,
4631	u64 *counter)
4632{
4633	int i;
4634	int mib;
4635	int port;
4636	struct ksz_port_mib *port_mib;
4637
4638	memset(counter, 0, sizeof(u64) * TOTAL_PORT_COUNTER_NUM);
4639	for (i = 0, port = first; i < cnt; i++, port++) {
4640		port_mib = &hw->port_mib[port];
4641		for (mib = port_mib->mib_start; mib < hw->mib_cnt; mib++)
4642			counter[mib] += port_mib->counter[mib];
4643	}
4644}
4645
4646/**
4647 * send_packet - send packet
4648 * @skb:	Socket buffer.
4649 * @dev:	Network device.
4650 *
4651 * This routine is used to send a packet out to the network.
4652 */
4653static void send_packet(struct sk_buff *skb, struct net_device *dev)
4654{
4655	struct ksz_desc *desc;
4656	struct ksz_desc *first;
4657	struct dev_priv *priv = netdev_priv(dev);
4658	struct dev_info *hw_priv = priv->adapter;
4659	struct ksz_hw *hw = &hw_priv->hw;
4660	struct ksz_desc_info *info = &hw->tx_desc_info;
4661	struct ksz_dma_buf *dma_buf;
4662	int len;
4663	int last_frag = skb_shinfo(skb)->nr_frags;
4664
4665	/*
4666	 * KSZ8842 with multiple device interfaces needs to be told which port
4667	 * to send.
4668	 */
4669	if (hw->dev_count > 1)
4670		hw->dst_ports = 1 << priv->port.first_port;
4671
4672	/* Hardware will pad the length to 60. */
4673	len = skb->len;
4674
4675	/* Remember the very first descriptor. */
4676	first = info->cur;
4677	desc = first;
4678
4679	dma_buf = DMA_BUFFER(desc);
4680	if (last_frag) {
4681		int frag;
4682		skb_frag_t *this_frag;
4683
4684		dma_buf->len = skb_headlen(skb);
4685
4686		dma_buf->dma = pci_map_single(
4687			hw_priv->pdev, skb->data, dma_buf->len,
4688			PCI_DMA_TODEVICE);
4689		set_tx_buf(desc, dma_buf->dma);
4690		set_tx_len(desc, dma_buf->len);
4691
4692		frag = 0;
4693		do {
4694			this_frag = &skb_shinfo(skb)->frags[frag];
4695
4696			/* Get a new descriptor. */
4697			get_tx_pkt(info, &desc);
4698
4699			/* Keep track of descriptors used so far. */
4700			++hw->tx_int_cnt;
4701
4702			dma_buf = DMA_BUFFER(desc);
4703			dma_buf->len = this_frag->size;
4704
4705			dma_buf->dma = pci_map_single(
4706				hw_priv->pdev,
4707				page_address(this_frag->page) +
4708				this_frag->page_offset,
4709				dma_buf->len,
4710				PCI_DMA_TODEVICE);
4711			set_tx_buf(desc, dma_buf->dma);
4712			set_tx_len(desc, dma_buf->len);
4713
4714			frag++;
4715			if (frag == last_frag)
4716				break;
4717
4718			/* Do not release the last descriptor here. */
4719			release_desc(desc);
4720		} while (1);
4721
4722		/* current points to the last descriptor. */
4723		info->cur = desc;
4724
4725		/* Release the first descriptor. */
4726		release_desc(first);
4727	} else {
4728		dma_buf->len = len;
4729
4730		dma_buf->dma = pci_map_single(
4731			hw_priv->pdev, skb->data, dma_buf->len,
4732			PCI_DMA_TODEVICE);
4733		set_tx_buf(desc, dma_buf->dma);
4734		set_tx_len(desc, dma_buf->len);
4735	}
4736
4737	if (skb->ip_summed == CHECKSUM_PARTIAL) {
4738		(desc)->sw.buf.tx.csum_gen_tcp = 1;
4739		(desc)->sw.buf.tx.csum_gen_udp = 1;
4740	}
4741
4742	/*
4743	 * The last descriptor holds the packet so that it can be returned to
4744	 * network subsystem after all descriptors are transmitted.
4745	 */
4746	dma_buf->skb = skb;
4747
4748	hw_send_pkt(hw);
4749
4750	/* Update transmit statistics. */
4751	dev->stats.tx_packets++;
4752	dev->stats.tx_bytes += len;
4753}
4754
4755/**
4756 * transmit_cleanup - clean up transmit descriptors
4757 * @dev:	Network device.
4758 *
4759 * This routine is called to clean up the transmitted buffers.
4760 */
4761static void transmit_cleanup(struct dev_info *hw_priv, int normal)
4762{
4763	int last;
4764	union desc_stat status;
4765	struct ksz_hw *hw = &hw_priv->hw;
4766	struct ksz_desc_info *info = &hw->tx_desc_info;
4767	struct ksz_desc *desc;
4768	struct ksz_dma_buf *dma_buf;
4769	struct net_device *dev = NULL;
4770
4771	spin_lock(&hw_priv->hwlock);
4772	last = info->last;
4773
4774	while (info->avail < info->alloc) {
4775		/* Get next descriptor which is not hardware owned. */
4776		desc = &info->ring[last];
4777		status.data = le32_to_cpu(desc->phw->ctrl.data);
4778		if (status.tx.hw_owned) {
4779			if (normal)
4780				break;
4781			else
4782				reset_desc(desc, status);
4783		}
4784
4785		dma_buf = DMA_BUFFER(desc);
4786		pci_unmap_single(
4787			hw_priv->pdev, dma_buf->dma, dma_buf->len,
4788			PCI_DMA_TODEVICE);
4789
4790		/* This descriptor contains the last buffer in the packet. */
4791		if (dma_buf->skb) {
4792			dev = dma_buf->skb->dev;
4793
4794			/* Release the packet back to network subsystem. */
4795			dev_kfree_skb_irq(dma_buf->skb);
4796			dma_buf->skb = NULL;
4797		}
4798
4799		/* Free the transmitted descriptor. */
4800		last++;
4801		last &= info->mask;
4802		info->avail++;
4803	}
4804	info->last = last;
4805	spin_unlock(&hw_priv->hwlock);
4806
4807	/* Notify the network subsystem that the packet has been sent. */
4808	if (dev)
4809		dev->trans_start = jiffies;
4810}
4811
4812/**
4813 * transmit_done - transmit done processing
4814 * @dev:	Network device.
4815 *
4816 * This routine is called when the transmit interrupt is triggered, indicating
4817 * either a packet is sent successfully or there are transmit errors.
4818 */
4819static void tx_done(struct dev_info *hw_priv)
4820{
4821	struct ksz_hw *hw = &hw_priv->hw;
4822	int port;
4823
4824	transmit_cleanup(hw_priv, 1);
4825
4826	for (port = 0; port < hw->dev_count; port++) {
4827		struct net_device *dev = hw->port_info[port].pdev;
4828
4829		if (netif_running(dev) && netif_queue_stopped(dev))
4830			netif_wake_queue(dev);
4831	}
4832}
4833
4834static inline void copy_old_skb(struct sk_buff *old, struct sk_buff *skb)
4835{
4836	skb->dev = old->dev;
4837	skb->protocol = old->protocol;
4838	skb->ip_summed = old->ip_summed;
4839	skb->csum = old->csum;
4840	skb_set_network_header(skb, ETH_HLEN);
4841
4842	dev_kfree_skb(old);
4843}
4844
4845/**
4846 * netdev_tx - send out packet
4847 * @skb:	Socket buffer.
4848 * @dev:	Network device.
4849 *
4850 * This function is used by the upper network layer to send out a packet.
4851 *
4852 * Return 0 if successful; otherwise an error code indicating failure.
4853 */
4854static netdev_tx_t netdev_tx(struct sk_buff *skb, struct net_device *dev)
4855{
4856	struct dev_priv *priv = netdev_priv(dev);
4857	struct dev_info *hw_priv = priv->adapter;
4858	struct ksz_hw *hw = &hw_priv->hw;
4859	int left;
4860	int num = 1;
4861	int rc = 0;
4862
4863	if (hw->features & SMALL_PACKET_TX_BUG) {
4864		struct sk_buff *org_skb = skb;
4865
4866		if (skb->len <= 48) {
4867			if (skb_end_pointer(skb) - skb->data >= 50) {
4868				memset(&skb->data[skb->len], 0, 50 - skb->len);
4869				skb->len = 50;
4870			} else {
4871				skb = dev_alloc_skb(50);
4872				if (!skb)
4873					return NETDEV_TX_BUSY;
4874				memcpy(skb->data, org_skb->data, org_skb->len);
4875				memset(&skb->data[org_skb->len], 0,
4876					50 - org_skb->len);
4877				skb->len = 50;
4878				copy_old_skb(org_skb, skb);
4879			}
4880		}
4881	}
4882
4883	spin_lock_irq(&hw_priv->hwlock);
4884
4885	num = skb_shinfo(skb)->nr_frags + 1;
4886	left = hw_alloc_pkt(hw, skb->len, num);
4887	if (left) {
4888		if (left < num ||
4889				((CHECKSUM_PARTIAL == skb->ip_summed) &&
4890				(ETH_P_IPV6 == htons(skb->protocol)))) {
4891			struct sk_buff *org_skb = skb;
4892
4893			skb = dev_alloc_skb(org_skb->len);
4894			if (!skb) {
4895				rc = NETDEV_TX_BUSY;
4896				goto unlock;
4897			}
4898			skb_copy_and_csum_dev(org_skb, skb->data);
4899			org_skb->ip_summed = CHECKSUM_NONE;
4900			skb->len = org_skb->len;
4901			copy_old_skb(org_skb, skb);
4902		}
4903		send_packet(skb, dev);
4904		if (left <= num)
4905			netif_stop_queue(dev);
4906	} else {
4907		/* Stop the transmit queue until packet is allocated. */
4908		netif_stop_queue(dev);
4909		rc = NETDEV_TX_BUSY;
4910	}
4911unlock:
4912	spin_unlock_irq(&hw_priv->hwlock);
4913
4914	return rc;
4915}
4916
4917/**
4918 * netdev_tx_timeout - transmit timeout processing
4919 * @dev:	Network device.
4920 *
4921 * This routine is called when the transmit timer expires.  That indicates the
4922 * hardware is not running correctly because transmit interrupts are not
4923 * triggered to free up resources so that the transmit routine can continue
4924 * sending out packets.  The hardware is reset to correct the problem.
4925 */
4926static void netdev_tx_timeout(struct net_device *dev)
4927{
4928	static unsigned long last_reset;
4929
4930	struct dev_priv *priv = netdev_priv(dev);
4931	struct dev_info *hw_priv = priv->adapter;
4932	struct ksz_hw *hw = &hw_priv->hw;
4933	int port;
4934
4935	if (hw->dev_count > 1) {
4936		/*
4937		 * Only reset the hardware if time between calls is long
4938		 * enough.
4939		 */
4940		if (jiffies - last_reset <= dev->watchdog_timeo)
4941			hw_priv = NULL;
4942	}
4943
4944	last_reset = jiffies;
4945	if (hw_priv) {
4946		hw_dis_intr(hw);
4947		hw_disable(hw);
4948
4949		transmit_cleanup(hw_priv, 0);
4950		hw_reset_pkts(&hw->rx_desc_info);
4951		hw_reset_pkts(&hw->tx_desc_info);
4952		ksz_init_rx_buffers(hw_priv);
4953
4954		hw_reset(hw);
4955
4956		hw_set_desc_base(hw,
4957			hw->tx_desc_info.ring_phys,
4958			hw->rx_desc_info.ring_phys);
4959		hw_set_addr(hw);
4960		if (hw->all_multi)
4961			hw_set_multicast(hw, hw->all_multi);
4962		else if (hw->multi_list_size)
4963			hw_set_grp_addr(hw);
4964
4965		if (hw->dev_count > 1) {
4966			hw_set_add_addr(hw);
4967			for (port = 0; port < SWITCH_PORT_NUM; port++) {
4968				struct net_device *port_dev;
4969
4970				port_set_stp_state(hw, port,
4971					STP_STATE_DISABLED);
4972
4973				port_dev = hw->port_info[port].pdev;
4974				if (netif_running(port_dev))
4975					port_set_stp_state(hw, port,
4976						STP_STATE_SIMPLE);
4977			}
4978		}
4979
4980		hw_enable(hw);
4981		hw_ena_intr(hw);
4982	}
4983
4984	dev->trans_start = jiffies;
4985	netif_wake_queue(dev);
4986}
4987
4988static inline void csum_verified(struct sk_buff *skb)
4989{
4990	unsigned short protocol;
4991	struct iphdr *iph;
4992
4993	protocol = skb->protocol;
4994	skb_reset_network_header(skb);
4995	iph = (struct iphdr *) skb_network_header(skb);
4996	if (protocol == htons(ETH_P_8021Q)) {
4997		protocol = iph->tot_len;
4998		skb_set_network_header(skb, VLAN_HLEN);
4999		iph = (struct iphdr *) skb_network_header(skb);
5000	}
5001	if (protocol == htons(ETH_P_IP)) {
5002		if (iph->protocol == IPPROTO_TCP)
5003			skb->ip_summed = CHECKSUM_UNNECESSARY;
5004	}
5005}
5006
5007static inline int rx_proc(struct net_device *dev, struct ksz_hw* hw,
5008	struct ksz_desc *desc, union desc_stat status)
5009{
5010	int packet_len;
5011	struct dev_priv *priv = netdev_priv(dev);
5012	struct dev_info *hw_priv = priv->adapter;
5013	struct ksz_dma_buf *dma_buf;
5014	struct sk_buff *skb;
5015	int rx_status;
5016
5017	/* Received length includes 4-byte CRC. */
5018	packet_len = status.rx.frame_len - 4;
5019
5020	dma_buf = DMA_BUFFER(desc);
5021	pci_dma_sync_single_for_cpu(
5022		hw_priv->pdev, dma_buf->dma, packet_len + 4,
5023		PCI_DMA_FROMDEVICE);
5024
5025	do {
5026		/* skb->data != skb->head */
5027		skb = dev_alloc_skb(packet_len + 2);
5028		if (!skb) {
5029			dev->stats.rx_dropped++;
5030			return -ENOMEM;
5031		}
5032
5033		/*
5034		 * Align socket buffer in 4-byte boundary for better
5035		 * performance.
5036		 */
5037		skb_reserve(skb, 2);
5038
5039		memcpy(skb_put(skb, packet_len),
5040			dma_buf->skb->data, packet_len);
5041	} while (0);
5042
5043	skb->protocol = eth_type_trans(skb, dev);
5044
5045	if (hw->rx_cfg & (DMA_RX_CSUM_UDP | DMA_RX_CSUM_TCP))
5046		csum_verified(skb);
5047
5048	/* Update receive statistics. */
5049	dev->stats.rx_packets++;
5050	dev->stats.rx_bytes += packet_len;
5051
5052	/* Notify upper layer for received packet. */
5053	rx_status = netif_rx(skb);
5054
5055	return 0;
5056}
5057
5058static int dev_rcv_packets(struct dev_info *hw_priv)
5059{
5060	int next;
5061	union desc_stat status;
5062	struct ksz_hw *hw = &hw_priv->hw;
5063	struct net_device *dev = hw->port_info[0].pdev;
5064	struct ksz_desc_info *info = &hw->rx_desc_info;
5065	int left = info->alloc;
5066	struct ksz_desc *desc;
5067	int received = 0;
5068
5069	next = info->next;
5070	while (left--) {
5071		/* Get next descriptor which is not hardware owned. */
5072		desc = &info->ring[next];
5073		status.data = le32_to_cpu(desc->phw->ctrl.data);
5074		if (status.rx.hw_owned)
5075			break;
5076
5077		/* Status valid only when last descriptor bit is set. */
5078		if (status.rx.last_desc && status.rx.first_desc) {
5079			if (rx_proc(dev, hw, desc, status))
5080				goto release_packet;
5081			received++;
5082		}
5083
5084release_packet:
5085		release_desc(desc);
5086		next++;
5087		next &= info->mask;
5088	}
5089	info->next = next;
5090
5091	return received;
5092}
5093
5094static int port_rcv_packets(struct dev_info *hw_priv)
5095{
5096	int next;
5097	union desc_stat status;
5098	struct ksz_hw *hw = &hw_priv->hw;
5099	struct net_device *dev = hw->port_info[0].pdev;
5100	struct ksz_desc_info *info = &hw->rx_desc_info;
5101	int left = info->alloc;
5102	struct ksz_desc *desc;
5103	int received = 0;
5104
5105	next = info->next;
5106	while (left--) {
5107		/* Get next descriptor which is not hardware owned. */
5108		desc = &info->ring[next];
5109		status.data = le32_to_cpu(desc->phw->ctrl.data);
5110		if (status.rx.hw_owned)
5111			break;
5112
5113		if (hw->dev_count > 1) {
5114			/* Get received port number. */
5115			int p = HW_TO_DEV_PORT(status.rx.src_port);
5116
5117			dev = hw->port_info[p].pdev;
5118			if (!netif_running(dev))
5119				goto release_packet;
5120		}
5121
5122		/* Status valid only when last descriptor bit is set. */
5123		if (status.rx.last_desc && status.rx.first_desc) {
5124			if (rx_proc(dev, hw, desc, status))
5125				goto release_packet;
5126			received++;
5127		}
5128
5129release_packet:
5130		release_desc(desc);
5131		next++;
5132		next &= info->mask;
5133	}
5134	info->next = next;
5135
5136	return received;
5137}
5138
5139static int dev_rcv_special(struct dev_info *hw_priv)
5140{
5141	int next;
5142	union desc_stat status;
5143	struct ksz_hw *hw = &hw_priv->hw;
5144	struct net_device *dev = hw->port_info[0].pdev;
5145	struct ksz_desc_info *info = &hw->rx_desc_info;
5146	int left = info->alloc;
5147	struct ksz_desc *desc;
5148	int received = 0;
5149
5150	next = info->next;
5151	while (left--) {
5152		/* Get next descriptor which is not hardware owned. */
5153		desc = &info->ring[next];
5154		status.data = le32_to_cpu(desc->phw->ctrl.data);
5155		if (status.rx.hw_owned)
5156			break;
5157
5158		if (hw->dev_count > 1) {
5159			/* Get received port number. */
5160			int p = HW_TO_DEV_PORT(status.rx.src_port);
5161
5162			dev = hw->port_info[p].pdev;
5163			if (!netif_running(dev))
5164				goto release_packet;
5165		}
5166
5167		/* Status valid only when last descriptor bit is set. */
5168		if (status.rx.last_desc && status.rx.first_desc) {
5169			/*
5170			 * Receive without error.  With receive errors
5171			 * disabled, packets with receive errors will be
5172			 * dropped, so no need to check the error bit.
5173			 */
5174			if (!status.rx.error || (status.data &
5175					KS_DESC_RX_ERROR_COND) ==
5176					KS_DESC_RX_ERROR_TOO_LONG) {
5177				if (rx_proc(dev, hw, desc, status))
5178					goto release_packet;
5179				received++;
5180			} else {
5181				struct dev_priv *priv = netdev_priv(dev);
5182
5183				/* Update receive error statistics. */
5184				priv->port.counter[OID_COUNTER_RCV_ERROR]++;
5185			}
5186		}
5187
5188release_packet:
5189		release_desc(desc);
5190		next++;
5191		next &= info->mask;
5192	}
5193	info->next = next;
5194
5195	return received;
5196}
5197
5198static void rx_proc_task(unsigned long data)
5199{
5200	struct dev_info *hw_priv = (struct dev_info *) data;
5201	struct ksz_hw *hw = &hw_priv->hw;
5202
5203	if (!hw->enabled)
5204		return;
5205	if (unlikely(!hw_priv->dev_rcv(hw_priv))) {
5206
5207		/* In case receive process is suspended because of overrun. */
5208		hw_resume_rx(hw);
5209
5210		/* tasklets are interruptible. */
5211		spin_lock_irq(&hw_priv->hwlock);
5212		hw_turn_on_intr(hw, KS884X_INT_RX_MASK);
5213		spin_unlock_irq(&hw_priv->hwlock);
5214	} else {
5215		hw_ack_intr(hw, KS884X_INT_RX);
5216		tasklet_schedule(&hw_priv->rx_tasklet);
5217	}
5218}
5219
5220static void tx_proc_task(unsigned long data)
5221{
5222	struct dev_info *hw_priv = (struct dev_info *) data;
5223	struct ksz_hw *hw = &hw_priv->hw;
5224
5225	hw_ack_intr(hw, KS884X_INT_TX_MASK);
5226
5227	tx_done(hw_priv);
5228
5229	/* tasklets are interruptible. */
5230	spin_lock_irq(&hw_priv->hwlock);
5231	hw_turn_on_intr(hw, KS884X_INT_TX);
5232	spin_unlock_irq(&hw_priv->hwlock);
5233}
5234
5235static inline void handle_rx_stop(struct ksz_hw *hw)
5236{
5237	/* Receive just has been stopped. */
5238	if (0 == hw->rx_stop)
5239		hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5240	else if (hw->rx_stop > 1) {
5241		if (hw->enabled && (hw->rx_cfg & DMA_RX_ENABLE)) {
5242			hw_start_rx(hw);
5243		} else {
5244			hw->intr_mask &= ~KS884X_INT_RX_STOPPED;
5245			hw->rx_stop = 0;
5246		}
5247	} else
5248		/* Receive just has been started. */
5249		hw->rx_stop++;
5250}
5251
5252/**
5253 * netdev_intr - interrupt handling
5254 * @irq:	Interrupt number.
5255 * @dev_id:	Network device.
5256 *
5257 * This function is called by upper network layer to signal interrupt.
5258 *
5259 * Return IRQ_HANDLED if interrupt is handled.
5260 */
5261static irqreturn_t netdev_intr(int irq, void *dev_id)
5262{
5263	uint int_enable = 0;
5264	struct net_device *dev = (struct net_device *) dev_id;
5265	struct dev_priv *priv = netdev_priv(dev);
5266	struct dev_info *hw_priv = priv->adapter;
5267	struct ksz_hw *hw = &hw_priv->hw;
5268
5269	hw_read_intr(hw, &int_enable);
5270
5271	/* Not our interrupt! */
5272	if (!int_enable)
5273		return IRQ_NONE;
5274
5275	do {
5276		hw_ack_intr(hw, int_enable);
5277		int_enable &= hw->intr_mask;
5278
5279		if (unlikely(int_enable & KS884X_INT_TX_MASK)) {
5280			hw_dis_intr_bit(hw, KS884X_INT_TX_MASK);
5281			tasklet_schedule(&hw_priv->tx_tasklet);
5282		}
5283
5284		if (likely(int_enable & KS884X_INT_RX)) {
5285			hw_dis_intr_bit(hw, KS884X_INT_RX);
5286			tasklet_schedule(&hw_priv->rx_tasklet);
5287		}
5288
5289		if (unlikely(int_enable & KS884X_INT_RX_OVERRUN)) {
5290			dev->stats.rx_fifo_errors++;
5291			hw_resume_rx(hw);
5292		}
5293
5294		if (unlikely(int_enable & KS884X_INT_PHY)) {
5295			struct ksz_port *port = &priv->port;
5296
5297			hw->features |= LINK_INT_WORKING;
5298			port_get_link_speed(port);
5299		}
5300
5301		if (unlikely(int_enable & KS884X_INT_RX_STOPPED)) {
5302			handle_rx_stop(hw);
5303			break;
5304		}
5305
5306		if (unlikely(int_enable & KS884X_INT_TX_STOPPED)) {
5307			u32 data;
5308
5309			hw->intr_mask &= ~KS884X_INT_TX_STOPPED;
5310			pr_info("Tx stopped\n");
5311			data = readl(hw->io + KS_DMA_TX_CTRL);
5312			if (!(data & DMA_TX_ENABLE))
5313				pr_info("Tx disabled\n");
5314			break;
5315		}
5316	} while (0);
5317
5318	hw_ena_intr(hw);
5319
5320	return IRQ_HANDLED;
5321}
5322
5323/*
5324 * Linux network device functions
5325 */
5326
5327static unsigned long next_jiffies;
5328
5329#ifdef CONFIG_NET_POLL_CONTROLLER
5330static void netdev_netpoll(struct net_device *dev)
5331{
5332	struct dev_priv *priv = netdev_priv(dev);
5333	struct dev_info *hw_priv = priv->adapter;
5334
5335	hw_dis_intr(&hw_priv->hw);
5336	netdev_intr(dev->irq, dev);
5337}
5338#endif
5339
5340static void bridge_change(struct ksz_hw *hw)
5341{
5342	int port;
5343	u8  member;
5344	struct ksz_switch *sw = hw->ksz_switch;
5345
5346	/* No ports in forwarding state. */
5347	if (!sw->member) {
5348		port_set_stp_state(hw, SWITCH_PORT_NUM, STP_STATE_SIMPLE);
5349		sw_block_addr(hw);
5350	}
5351	for (port = 0; port < SWITCH_PORT_NUM; port++) {
5352		if (STP_STATE_FORWARDING == sw->port_cfg[port].stp_state)
5353			member = HOST_MASK | sw->member;
5354		else
5355			member = HOST_MASK | (1 << port);
5356		if (member != sw->port_cfg[port].member)
5357			sw_cfg_port_base_vlan(hw, port, member);
5358	}
5359}
5360
5361/**
5362 * netdev_close - close network device
5363 * @dev:	Network device.
5364 *
5365 * This function process the close operation of network device.  This is caused
5366 * by the user command "ifconfig ethX down."
5367 *
5368 * Return 0 if successful; otherwise an error code indicating failure.
5369 */
5370static int netdev_close(struct net_device *dev)
5371{
5372	struct dev_priv *priv = netdev_priv(dev);
5373	struct dev_info *hw_priv = priv->adapter;
5374	struct ksz_port *port = &priv->port;
5375	struct ksz_hw *hw = &hw_priv->hw;
5376	int pi;
5377
5378	netif_stop_queue(dev);
5379
5380	ksz_stop_timer(&priv->monitor_timer_info);
5381
5382	/* Need to shut the port manually in multiple device interfaces mode. */
5383	if (hw->dev_count > 1) {
5384		port_set_stp_state(hw, port->first_port, STP_STATE_DISABLED);
5385
5386		/* Port is closed.  Need to change bridge setting. */
5387		if (hw->features & STP_SUPPORT) {
5388			pi = 1 << port->first_port;
5389			if (hw->ksz_switch->member & pi) {
5390				hw->ksz_switch->member &= ~pi;
5391				bridge_change(hw);
5392			}
5393		}
5394	}
5395	if (port->first_port > 0)
5396		hw_del_addr(hw, dev->dev_addr);
5397	if (!hw_priv->wol_enable)
5398		port_set_power_saving(port, true);
5399
5400	if (priv->multicast)
5401		--hw->all_multi;
5402	if (priv->promiscuous)
5403		--hw->promiscuous;
5404
5405	hw_priv->opened--;
5406	if (!(hw_priv->opened)) {
5407		ksz_stop_timer(&hw_priv->mib_timer_info);
5408		flush_work(&hw_priv->mib_read);
5409
5410		hw_dis_intr(hw);
5411		hw_disable(hw);
5412		hw_clr_multicast(hw);
5413
5414		/* Delay for receive task to stop scheduling itself. */
5415		msleep(2000 / HZ);
5416
5417		tasklet_disable(&hw_priv->rx_tasklet);
5418		tasklet_disable(&hw_priv->tx_tasklet);
5419		free_irq(dev->irq, hw_priv->dev);
5420
5421		transmit_cleanup(hw_priv, 0);
5422		hw_reset_pkts(&hw->rx_desc_info);
5423		hw_reset_pkts(&hw->tx_desc_info);
5424
5425		/* Clean out static MAC table when the switch is shutdown. */
5426		if (hw->features & STP_SUPPORT)
5427			sw_clr_sta_mac_table(hw);
5428	}
5429
5430	return 0;
5431}
5432
5433static void hw_cfg_huge_frame(struct dev_info *hw_priv, struct ksz_hw *hw)
5434{
5435	if (hw->ksz_switch) {
5436		u32 data;
5437
5438		data = readw(hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5439		if (hw->features & RX_HUGE_FRAME)
5440			data |= SWITCH_HUGE_PACKET;
5441		else
5442			data &= ~SWITCH_HUGE_PACKET;
5443		writew(data, hw->io + KS8842_SWITCH_CTRL_2_OFFSET);
5444	}
5445	if (hw->features & RX_HUGE_FRAME) {
5446		hw->rx_cfg |= DMA_RX_ERROR;
5447		hw_priv->dev_rcv = dev_rcv_special;
5448	} else {
5449		hw->rx_cfg &= ~DMA_RX_ERROR;
5450		if (hw->dev_count > 1)
5451			hw_priv->dev_rcv = port_rcv_packets;
5452		else
5453			hw_priv->dev_rcv = dev_rcv_packets;
5454	}
5455}
5456
5457static int prepare_hardware(struct net_device *dev)
5458{
5459	struct dev_priv *priv = netdev_priv(dev);
5460	struct dev_info *hw_priv = priv->adapter;
5461	struct ksz_hw *hw = &hw_priv->hw;
5462	int rc = 0;
5463
5464	/* Remember the network device that requests interrupts. */
5465	hw_priv->dev = dev;
5466	rc = request_irq(dev->irq, netdev_intr, IRQF_SHARED, dev->name, dev);
5467	if (rc)
5468		return rc;
5469	tasklet_enable(&hw_priv->rx_tasklet);
5470	tasklet_enable(&hw_priv->tx_tasklet);
5471
5472	hw->promiscuous = 0;
5473	hw->all_multi = 0;
5474	hw->multi_list_size = 0;
5475
5476	hw_reset(hw);
5477
5478	hw_set_desc_base(hw,
5479		hw->tx_desc_info.ring_phys, hw->rx_desc_info.ring_phys);
5480	hw_set_addr(hw);
5481	hw_cfg_huge_frame(hw_priv, hw);
5482	ksz_init_rx_buffers(hw_priv);
5483	return 0;
5484}
5485
5486static void set_media_state(struct net_device *dev, int media_state)
5487{
5488	struct dev_priv *priv = netdev_priv(dev);
5489
5490	if (media_state == priv->media_state)
5491		netif_carrier_on(dev);
5492	else
5493		netif_carrier_off(dev);
5494	netif_info(priv, link, dev, "link %s\n",
5495		   media_state == priv->media_state ? "on" : "off");
5496}
5497
5498/**
5499 * netdev_open - open network device
5500 * @dev:	Network device.
5501 *
5502 * This function process the open operation of network device.  This is caused
5503 * by the user command "ifconfig ethX up."
5504 *
5505 * Return 0 if successful; otherwise an error code indicating failure.
5506 */
5507static int netdev_open(struct net_device *dev)
5508{
5509	struct dev_priv *priv = netdev_priv(dev);
5510	struct dev_info *hw_priv = priv->adapter;
5511	struct ksz_hw *hw = &hw_priv->hw;
5512	struct ksz_port *port = &priv->port;
5513	int i;
5514	int p;
5515	int rc = 0;
5516
5517	priv->multicast = 0;
5518	priv->promiscuous = 0;
5519
5520	/* Reset device statistics. */
5521	memset(&dev->stats, 0, sizeof(struct net_device_stats));
5522	memset((void *) port->counter, 0,
5523		(sizeof(u64) * OID_COUNTER_LAST));
5524
5525	if (!(hw_priv->opened)) {
5526		rc = prepare_hardware(dev);
5527		if (rc)
5528			return rc;
5529		for (i = 0; i < hw->mib_port_cnt; i++) {
5530			if (next_jiffies < jiffies)
5531				next_jiffies = jiffies + HZ * 2;
5532			else
5533				next_jiffies += HZ * 1;
5534			hw_priv->counter[i].time = next_jiffies;
5535			hw->port_mib[i].state = media_disconnected;
5536			port_init_cnt(hw, i);
5537		}
5538		if (hw->ksz_switch)
5539			hw->port_mib[HOST_PORT].state = media_connected;
5540		else {
5541			hw_add_wol_bcast(hw);
5542			hw_cfg_wol_pme(hw, 0);
5543			hw_clr_wol_pme_status(&hw_priv->hw);
5544		}
5545	}
5546	port_set_power_saving(port, false);
5547
5548	for (i = 0, p = port->first_port; i < port->port_cnt; i++, p++) {
5549		/*
5550		 * Initialize to invalid value so that link detection
5551		 * is done.
5552		 */
5553		hw->port_info[p].partner = 0xFF;
5554		hw->port_info[p].state = media_disconnected;
5555	}
5556
5557	/* Need to open the port in multiple device interfaces mode. */
5558	if (hw->dev_count > 1) {
5559		port_set_stp_state(hw, port->first_port, STP_STATE_SIMPLE);
5560		if (port->first_port > 0)
5561			hw_add_addr(hw, dev->dev_addr);
5562	}
5563
5564	port_get_link_speed(port);
5565	if (port->force_link)
5566		port_force_link_speed(port);
5567	else
5568		port_set_link_speed(port);
5569
5570	if (!(hw_priv->opened)) {
5571		hw_setup_intr(hw);
5572		hw_enable(hw);
5573		hw_ena_intr(hw);
5574
5575		if (hw->mib_port_cnt)
5576			ksz_start_timer(&hw_priv->mib_timer_info,
5577				hw_priv->mib_timer_info.period);
5578	}
5579
5580	hw_priv->opened++;
5581
5582	ksz_start_timer(&priv->monitor_timer_info,
5583		priv->monitor_timer_info.period);
5584
5585	priv->media_state = port->linked->state;
5586
5587	set_media_state(dev, media_connected);
5588	netif_start_queue(dev);
5589
5590	return 0;
5591}
5592
5593/* RX errors = rx_errors */
5594/* RX dropped = rx_dropped */
5595/* RX overruns = rx_fifo_errors */
5596/* RX frame = rx_crc_errors + rx_frame_errors + rx_length_errors */
5597/* TX errors = tx_errors */
5598/* TX dropped = tx_dropped */
5599/* TX overruns = tx_fifo_errors */
5600/* TX carrier = tx_aborted_errors + tx_carrier_errors + tx_window_errors */
5601/* collisions = collisions */
5602
5603/**
5604 * netdev_query_statistics - query network device statistics
5605 * @dev:	Network device.
5606 *
5607 * This function returns the statistics of the network device.  The device
5608 * needs not be opened.
5609 *
5610 * Return network device statistics.
5611 */
5612static struct net_device_stats *netdev_query_statistics(struct net_device *dev)
5613{
5614	struct dev_priv *priv = netdev_priv(dev);
5615	struct ksz_port *port = &priv->port;
5616	struct ksz_hw *hw = &priv->adapter->hw;
5617	struct ksz_port_mib *mib;
5618	int i;
5619	int p;
5620
5621	dev->stats.rx_errors = port->counter[OID_COUNTER_RCV_ERROR];
5622	dev->stats.tx_errors = port->counter[OID_COUNTER_XMIT_ERROR];
5623
5624	/* Reset to zero to add count later. */
5625	dev->stats.multicast = 0;
5626	dev->stats.collisions = 0;
5627	dev->stats.rx_length_errors = 0;
5628	dev->stats.rx_crc_errors = 0;
5629	dev->stats.rx_frame_errors = 0;
5630	dev->stats.tx_window_errors = 0;
5631
5632	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
5633		mib = &hw->port_mib[p];
5634
5635		dev->stats.multicast += (unsigned long)
5636			mib->counter[MIB_COUNTER_RX_MULTICAST];
5637
5638		dev->stats.collisions += (unsigned long)
5639			mib->counter[MIB_COUNTER_TX_TOTAL_COLLISION];
5640
5641		dev->stats.rx_length_errors += (unsigned long)(
5642			mib->counter[MIB_COUNTER_RX_UNDERSIZE] +
5643			mib->counter[MIB_COUNTER_RX_FRAGMENT] +
5644			mib->counter[MIB_COUNTER_RX_OVERSIZE] +
5645			mib->counter[MIB_COUNTER_RX_JABBER]);
5646		dev->stats.rx_crc_errors += (unsigned long)
5647			mib->counter[MIB_COUNTER_RX_CRC_ERR];
5648		dev->stats.rx_frame_errors += (unsigned long)(
5649			mib->counter[MIB_COUNTER_RX_ALIGNMENT_ERR] +
5650			mib->counter[MIB_COUNTER_RX_SYMBOL_ERR]);
5651
5652		dev->stats.tx_window_errors += (unsigned long)
5653			mib->counter[MIB_COUNTER_TX_LATE_COLLISION];
5654	}
5655
5656	return &dev->stats;
5657}
5658
5659/**
5660 * netdev_set_mac_address - set network device MAC address
5661 * @dev:	Network device.
5662 * @addr:	Buffer of MAC address.
5663 *
5664 * This function is used to set the MAC address of the network device.
5665 *
5666 * Return 0 to indicate success.
5667 */
5668static int netdev_set_mac_address(struct net_device *dev, void *addr)
5669{
5670	struct dev_priv *priv = netdev_priv(dev);
5671	struct dev_info *hw_priv = priv->adapter;
5672	struct ksz_hw *hw = &hw_priv->hw;
5673	struct sockaddr *mac = addr;
5674	uint interrupt;
5675
5676	if (priv->port.first_port > 0)
5677		hw_del_addr(hw, dev->dev_addr);
5678	else {
5679		hw->mac_override = 1;
5680		memcpy(hw->override_addr, mac->sa_data, MAC_ADDR_LEN);
5681	}
5682
5683	memcpy(dev->dev_addr, mac->sa_data, MAX_ADDR_LEN);
5684
5685	interrupt = hw_block_intr(hw);
5686
5687	if (priv->port.first_port > 0)
5688		hw_add_addr(hw, dev->dev_addr);
5689	else
5690		hw_set_addr(hw);
5691	hw_restore_intr(hw, interrupt);
5692
5693	return 0;
5694}
5695
5696static void dev_set_promiscuous(struct net_device *dev, struct dev_priv *priv,
5697	struct ksz_hw *hw, int promiscuous)
5698{
5699	if (promiscuous != priv->promiscuous) {
5700		u8 prev_state = hw->promiscuous;
5701
5702		if (promiscuous)
5703			++hw->promiscuous;
5704		else
5705			--hw->promiscuous;
5706		priv->promiscuous = promiscuous;
5707
5708		/* Turn on/off promiscuous mode. */
5709		if (hw->promiscuous <= 1 && prev_state <= 1)
5710			hw_set_promiscuous(hw, hw->promiscuous);
5711
5712		/*
5713		 * Port is not in promiscuous mode, meaning it is released
5714		 * from the bridge.
5715		 */
5716		if ((hw->features & STP_SUPPORT) && !promiscuous &&
5717		    (dev->priv_flags & IFF_BRIDGE_PORT)) {
5718			struct ksz_switch *sw = hw->ksz_switch;
5719			int port = priv->port.first_port;
5720
5721			port_set_stp_state(hw, port, STP_STATE_DISABLED);
5722			port = 1 << port;
5723			if (sw->member & port) {
5724				sw->member &= ~port;
5725				bridge_change(hw);
5726			}
5727		}
5728	}
5729}
5730
5731static void dev_set_multicast(struct dev_priv *priv, struct ksz_hw *hw,
5732	int multicast)
5733{
5734	if (multicast != priv->multicast) {
5735		u8 all_multi = hw->all_multi;
5736
5737		if (multicast)
5738			++hw->all_multi;
5739		else
5740			--hw->all_multi;
5741		priv->multicast = multicast;
5742
5743		/* Turn on/off all multicast mode. */
5744		if (hw->all_multi <= 1 && all_multi <= 1)
5745			hw_set_multicast(hw, hw->all_multi);
5746	}
5747}
5748
5749/**
5750 * netdev_set_rx_mode
5751 * @dev:	Network device.
5752 *
5753 * This routine is used to set multicast addresses or put the network device
5754 * into promiscuous mode.
5755 */
5756static void netdev_set_rx_mode(struct net_device *dev)
5757{
5758	struct dev_priv *priv = netdev_priv(dev);
5759	struct dev_info *hw_priv = priv->adapter;
5760	struct ksz_hw *hw = &hw_priv->hw;
5761	struct netdev_hw_addr *ha;
5762	int multicast = (dev->flags & IFF_ALLMULTI);
5763
5764	dev_set_promiscuous(dev, priv, hw, (dev->flags & IFF_PROMISC));
5765
5766	if (hw_priv->hw.dev_count > 1)
5767		multicast |= (dev->flags & IFF_MULTICAST);
5768	dev_set_multicast(priv, hw, multicast);
5769
5770	/* Cannot use different hashes in multiple device interfaces mode. */
5771	if (hw_priv->hw.dev_count > 1)
5772		return;
5773
5774	if ((dev->flags & IFF_MULTICAST) && !netdev_mc_empty(dev)) {
5775		int i = 0;
5776
5777		/* List too big to support so turn on all multicast mode. */
5778		if (netdev_mc_count(dev) > MAX_MULTICAST_LIST) {
5779			if (MAX_MULTICAST_LIST != hw->multi_list_size) {
5780				hw->multi_list_size = MAX_MULTICAST_LIST;
5781				++hw->all_multi;
5782				hw_set_multicast(hw, hw->all_multi);
5783			}
5784			return;
5785		}
5786
5787		netdev_for_each_mc_addr(ha, dev) {
5788			if (i >= MAX_MULTICAST_LIST)
5789				break;
5790			memcpy(hw->multi_list[i++], ha->addr, MAC_ADDR_LEN);
5791		}
5792		hw->multi_list_size = (u8) i;
5793		hw_set_grp_addr(hw);
5794	} else {
5795		if (MAX_MULTICAST_LIST == hw->multi_list_size) {
5796			--hw->all_multi;
5797			hw_set_multicast(hw, hw->all_multi);
5798		}
5799		hw->multi_list_size = 0;
5800		hw_clr_multicast(hw);
5801	}
5802}
5803
5804static int netdev_change_mtu(struct net_device *dev, int new_mtu)
5805{
5806	struct dev_priv *priv = netdev_priv(dev);
5807	struct dev_info *hw_priv = priv->adapter;
5808	struct ksz_hw *hw = &hw_priv->hw;
5809	int hw_mtu;
5810
5811	if (netif_running(dev))
5812		return -EBUSY;
5813
5814	/* Cannot use different MTU in multiple device interfaces mode. */
5815	if (hw->dev_count > 1)
5816		if (dev != hw_priv->dev)
5817			return 0;
5818	if (new_mtu < 60)
5819		return -EINVAL;
5820
5821	if (dev->mtu != new_mtu) {
5822		hw_mtu = new_mtu + ETHERNET_HEADER_SIZE + 4;
5823		if (hw_mtu > MAX_RX_BUF_SIZE)
5824			return -EINVAL;
5825		if (hw_mtu > REGULAR_RX_BUF_SIZE) {
5826			hw->features |= RX_HUGE_FRAME;
5827			hw_mtu = MAX_RX_BUF_SIZE;
5828		} else {
5829			hw->features &= ~RX_HUGE_FRAME;
5830			hw_mtu = REGULAR_RX_BUF_SIZE;
5831		}
5832		hw_mtu = (hw_mtu + 3) & ~3;
5833		hw_priv->mtu = hw_mtu;
5834		dev->mtu = new_mtu;
5835	}
5836	return 0;
5837}
5838
5839/**
5840 * netdev_ioctl - I/O control processing
5841 * @dev:	Network device.
5842 * @ifr:	Interface request structure.
5843 * @cmd:	I/O control code.
5844 *
5845 * This function is used to process I/O control calls.
5846 *
5847 * Return 0 to indicate success.
5848 */
5849static int netdev_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
5850{
5851	struct dev_priv *priv = netdev_priv(dev);
5852	struct dev_info *hw_priv = priv->adapter;
5853	struct ksz_hw *hw = &hw_priv->hw;
5854	struct ksz_port *port = &priv->port;
5855	int rc;
5856	int result = 0;
5857	struct mii_ioctl_data *data = if_mii(ifr);
5858
5859	if (down_interruptible(&priv->proc_sem))
5860		return -ERESTARTSYS;
5861
5862	/* assume success */
5863	rc = 0;
5864	switch (cmd) {
5865	/* Get address of MII PHY in use. */
5866	case SIOCGMIIPHY:
5867		data->phy_id = priv->id;
5868
5869		/* Fallthrough... */
5870
5871	/* Read MII PHY register. */
5872	case SIOCGMIIREG:
5873		if (data->phy_id != priv->id || data->reg_num >= 6)
5874			result = -EIO;
5875		else
5876			hw_r_phy(hw, port->linked->port_id, data->reg_num,
5877				&data->val_out);
5878		break;
5879
5880	/* Write MII PHY register. */
5881	case SIOCSMIIREG:
5882		if (!capable(CAP_NET_ADMIN))
5883			result = -EPERM;
5884		else if (data->phy_id != priv->id || data->reg_num >= 6)
5885			result = -EIO;
5886		else
5887			hw_w_phy(hw, port->linked->port_id, data->reg_num,
5888				data->val_in);
5889		break;
5890
5891	default:
5892		result = -EOPNOTSUPP;
5893	}
5894
5895	up(&priv->proc_sem);
5896
5897	return result;
5898}
5899
5900/*
5901 * MII support
5902 */
5903
5904/**
5905 * mdio_read - read PHY register
5906 * @dev:	Network device.
5907 * @phy_id:	The PHY id.
5908 * @reg_num:	The register number.
5909 *
5910 * This function returns the PHY register value.
5911 *
5912 * Return the register value.
5913 */
5914static int mdio_read(struct net_device *dev, int phy_id, int reg_num)
5915{
5916	struct dev_priv *priv = netdev_priv(dev);
5917	struct ksz_port *port = &priv->port;
5918	struct ksz_hw *hw = port->hw;
5919	u16 val_out;
5920
5921	hw_r_phy(hw, port->linked->port_id, reg_num << 1, &val_out);
5922	return val_out;
5923}
5924
5925/**
5926 * mdio_write - set PHY register
5927 * @dev:	Network device.
5928 * @phy_id:	The PHY id.
5929 * @reg_num:	The register number.
5930 * @val:	The register value.
5931 *
5932 * This procedure sets the PHY register value.
5933 */
5934static void mdio_write(struct net_device *dev, int phy_id, int reg_num, int val)
5935{
5936	struct dev_priv *priv = netdev_priv(dev);
5937	struct ksz_port *port = &priv->port;
5938	struct ksz_hw *hw = port->hw;
5939	int i;
5940	int pi;
5941
5942	for (i = 0, pi = port->first_port; i < port->port_cnt; i++, pi++)
5943		hw_w_phy(hw, pi, reg_num << 1, val);
5944}
5945
5946/*
5947 * ethtool support
5948 */
5949
5950#define EEPROM_SIZE			0x40
5951
5952static u16 eeprom_data[EEPROM_SIZE] = { 0 };
5953
5954#define ADVERTISED_ALL			\
5955	(ADVERTISED_10baseT_Half |	\
5956	ADVERTISED_10baseT_Full |	\
5957	ADVERTISED_100baseT_Half |	\
5958	ADVERTISED_100baseT_Full)
5959
5960/* These functions use the MII functions in mii.c. */
5961
5962/**
5963 * netdev_get_settings - get network device settings
5964 * @dev:	Network device.
5965 * @cmd:	Ethtool command.
5966 *
5967 * This function queries the PHY and returns its state in the ethtool command.
5968 *
5969 * Return 0 if successful; otherwise an error code.
5970 */
5971static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5972{
5973	struct dev_priv *priv = netdev_priv(dev);
5974	struct dev_info *hw_priv = priv->adapter;
5975
5976	mutex_lock(&hw_priv->lock);
5977	mii_ethtool_gset(&priv->mii_if, cmd);
5978	cmd->advertising |= SUPPORTED_TP;
5979	mutex_unlock(&hw_priv->lock);
5980
5981	/* Save advertised settings for workaround in next function. */
5982	priv->advertising = cmd->advertising;
5983	return 0;
5984}
5985
5986/**
5987 * netdev_set_settings - set network device settings
5988 * @dev:	Network device.
5989 * @cmd:	Ethtool command.
5990 *
5991 * This function sets the PHY according to the ethtool command.
5992 *
5993 * Return 0 if successful; otherwise an error code.
5994 */
5995static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
5996{
5997	struct dev_priv *priv = netdev_priv(dev);
5998	struct dev_info *hw_priv = priv->adapter;
5999	struct ksz_port *port = &priv->port;
6000	u32 speed = ethtool_cmd_speed(cmd);
6001	int rc;
6002
6003	/*
6004	 * ethtool utility does not change advertised setting if auto
6005	 * negotiation is not specified explicitly.
6006	 */
6007	if (cmd->autoneg && priv->advertising == cmd->advertising) {
6008		cmd->advertising |= ADVERTISED_ALL;
6009		if (10 == speed)
6010			cmd->advertising &=
6011				~(ADVERTISED_100baseT_Full |
6012				ADVERTISED_100baseT_Half);
6013		else if (100 == speed)
6014			cmd->advertising &=
6015				~(ADVERTISED_10baseT_Full |
6016				ADVERTISED_10baseT_Half);
6017		if (0 == cmd->duplex)
6018			cmd->advertising &=
6019				~(ADVERTISED_100baseT_Full |
6020				ADVERTISED_10baseT_Full);
6021		else if (1 == cmd->duplex)
6022			cmd->advertising &=
6023				~(ADVERTISED_100baseT_Half |
6024				ADVERTISED_10baseT_Half);
6025	}
6026	mutex_lock(&hw_priv->lock);
6027	if (cmd->autoneg &&
6028			(cmd->advertising & ADVERTISED_ALL) ==
6029			ADVERTISED_ALL) {
6030		port->duplex = 0;
6031		port->speed = 0;
6032		port->force_link = 0;
6033	} else {
6034		port->duplex = cmd->duplex + 1;
6035		if (1000 != speed)
6036			port->speed = speed;
6037		if (cmd->autoneg)
6038			port->force_link = 0;
6039		else
6040			port->force_link = 1;
6041	}
6042	rc = mii_ethtool_sset(&priv->mii_if, cmd);
6043	mutex_unlock(&hw_priv->lock);
6044	return rc;
6045}
6046
6047/**
6048 * netdev_nway_reset - restart auto-negotiation
6049 * @dev:	Network device.
6050 *
6051 * This function restarts the PHY for auto-negotiation.
6052 *
6053 * Return 0 if successful; otherwise an error code.
6054 */
6055static int netdev_nway_reset(struct net_device *dev)
6056{
6057	struct dev_priv *priv = netdev_priv(dev);
6058	struct dev_info *hw_priv = priv->adapter;
6059	int rc;
6060
6061	mutex_lock(&hw_priv->lock);
6062	rc = mii_nway_restart(&priv->mii_if);
6063	mutex_unlock(&hw_priv->lock);
6064	return rc;
6065}
6066
6067/**
6068 * netdev_get_link - get network device link status
6069 * @dev:	Network device.
6070 *
6071 * This function gets the link status from the PHY.
6072 *
6073 * Return true if PHY is linked and false otherwise.
6074 */
6075static u32 netdev_get_link(struct net_device *dev)
6076{
6077	struct dev_priv *priv = netdev_priv(dev);
6078	int rc;
6079
6080	rc = mii_link_ok(&priv->mii_if);
6081	return rc;
6082}
6083
6084/**
6085 * netdev_get_drvinfo - get network driver information
6086 * @dev:	Network device.
6087 * @info:	Ethtool driver info data structure.
6088 *
6089 * This procedure returns the driver information.
6090 */
6091static void netdev_get_drvinfo(struct net_device *dev,
6092	struct ethtool_drvinfo *info)
6093{
6094	struct dev_priv *priv = netdev_priv(dev);
6095	struct dev_info *hw_priv = priv->adapter;
6096
6097	strcpy(info->driver, DRV_NAME);
6098	strcpy(info->version, DRV_VERSION);
6099	strcpy(info->bus_info, pci_name(hw_priv->pdev));
6100}
6101
6102/**
6103 * netdev_get_regs_len - get length of register dump
6104 * @dev:	Network device.
6105 *
6106 * This function returns the length of the register dump.
6107 *
6108 * Return length of the register dump.
6109 */
6110static struct hw_regs {
6111	int start;
6112	int end;
6113} hw_regs_range[] = {
6114	{ KS_DMA_TX_CTRL,	KS884X_INTERRUPTS_STATUS },
6115	{ KS_ADD_ADDR_0_LO,	KS_ADD_ADDR_F_HI },
6116	{ KS884X_ADDR_0_OFFSET,	KS8841_WOL_FRAME_BYTE2_OFFSET },
6117	{ KS884X_SIDER_P,	KS8842_SGCR7_P },
6118	{ KS8842_MACAR1_P,	KS8842_TOSR8_P },
6119	{ KS884X_P1MBCR_P,	KS8842_P3ERCR_P },
6120	{ 0, 0 }
6121};
6122
6123static int netdev_get_regs_len(struct net_device *dev)
6124{
6125	struct hw_regs *range = hw_regs_range;
6126	int regs_len = 0x10 * sizeof(u32);
6127
6128	while (range->end > range->start) {
6129		regs_len += (range->end - range->start + 3) / 4 * 4;
6130		range++;
6131	}
6132	return regs_len;
6133}
6134
6135/**
6136 * netdev_get_regs - get register dump
6137 * @dev:	Network device.
6138 * @regs:	Ethtool registers data structure.
6139 * @ptr:	Buffer to store the register values.
6140 *
6141 * This procedure dumps the register values in the provided buffer.
6142 */
6143static void netdev_get_regs(struct net_device *dev, struct ethtool_regs *regs,
6144	void *ptr)
6145{
6146	struct dev_priv *priv = netdev_priv(dev);
6147	struct dev_info *hw_priv = priv->adapter;
6148	struct ksz_hw *hw = &hw_priv->hw;
6149	int *buf = (int *) ptr;
6150	struct hw_regs *range = hw_regs_range;
6151	int len;
6152
6153	mutex_lock(&hw_priv->lock);
6154	regs->version = 0;
6155	for (len = 0; len < 0x40; len += 4) {
6156		pci_read_config_dword(hw_priv->pdev, len, buf);
6157		buf++;
6158	}
6159	while (range->end > range->start) {
6160		for (len = range->start; len < range->end; len += 4) {
6161			*buf = readl(hw->io + len);
6162			buf++;
6163		}
6164		range++;
6165	}
6166	mutex_unlock(&hw_priv->lock);
6167}
6168
6169#define WOL_SUPPORT			\
6170	(WAKE_PHY | WAKE_MAGIC |	\
6171	WAKE_UCAST | WAKE_MCAST |	\
6172	WAKE_BCAST | WAKE_ARP)
6173
6174/**
6175 * netdev_get_wol - get Wake-on-LAN support
6176 * @dev:	Network device.
6177 * @wol:	Ethtool Wake-on-LAN data structure.
6178 *
6179 * This procedure returns Wake-on-LAN support.
6180 */
6181static void netdev_get_wol(struct net_device *dev,
6182	struct ethtool_wolinfo *wol)
6183{
6184	struct dev_priv *priv = netdev_priv(dev);
6185	struct dev_info *hw_priv = priv->adapter;
6186
6187	wol->supported = hw_priv->wol_support;
6188	wol->wolopts = hw_priv->wol_enable;
6189	memset(&wol->sopass, 0, sizeof(wol->sopass));
6190}
6191
6192/**
6193 * netdev_set_wol - set Wake-on-LAN support
6194 * @dev:	Network device.
6195 * @wol:	Ethtool Wake-on-LAN data structure.
6196 *
6197 * This function sets Wake-on-LAN support.
6198 *
6199 * Return 0 if successful; otherwise an error code.
6200 */
6201static int netdev_set_wol(struct net_device *dev,
6202	struct ethtool_wolinfo *wol)
6203{
6204	struct dev_priv *priv = netdev_priv(dev);
6205	struct dev_info *hw_priv = priv->adapter;
6206
6207	/* Need to find a way to retrieve the device IP address. */
6208	static const u8 net_addr[] = { 192, 168, 1, 1 };
6209
6210	if (wol->wolopts & ~hw_priv->wol_support)
6211		return -EINVAL;
6212
6213	hw_priv->wol_enable = wol->wolopts;
6214
6215	/* Link wakeup cannot really be disabled. */
6216	if (wol->wolopts)
6217		hw_priv->wol_enable |= WAKE_PHY;
6218	hw_enable_wol(&hw_priv->hw, hw_priv->wol_enable, net_addr);
6219	return 0;
6220}
6221
6222/**
6223 * netdev_get_msglevel - get debug message level
6224 * @dev:	Network device.
6225 *
6226 * This function returns current debug message level.
6227 *
6228 * Return current debug message flags.
6229 */
6230static u32 netdev_get_msglevel(struct net_device *dev)
6231{
6232	struct dev_priv *priv = netdev_priv(dev);
6233
6234	return priv->msg_enable;
6235}
6236
6237/**
6238 * netdev_set_msglevel - set debug message level
6239 * @dev:	Network device.
6240 * @value:	Debug message flags.
6241 *
6242 * This procedure sets debug message level.
6243 */
6244static void netdev_set_msglevel(struct net_device *dev, u32 value)
6245{
6246	struct dev_priv *priv = netdev_priv(dev);
6247
6248	priv->msg_enable = value;
6249}
6250
6251/**
6252 * netdev_get_eeprom_len - get EEPROM length
6253 * @dev:	Network device.
6254 *
6255 * This function returns the length of the EEPROM.
6256 *
6257 * Return length of the EEPROM.
6258 */
6259static int netdev_get_eeprom_len(struct net_device *dev)
6260{
6261	return EEPROM_SIZE * 2;
6262}
6263
6264/**
6265 * netdev_get_eeprom - get EEPROM data
6266 * @dev:	Network device.
6267 * @eeprom:	Ethtool EEPROM data structure.
6268 * @data:	Buffer to store the EEPROM data.
6269 *
6270 * This function dumps the EEPROM data in the provided buffer.
6271 *
6272 * Return 0 if successful; otherwise an error code.
6273 */
6274#define EEPROM_MAGIC			0x10A18842
6275
6276static int netdev_get_eeprom(struct net_device *dev,
6277	struct ethtool_eeprom *eeprom, u8 *data)
6278{
6279	struct dev_priv *priv = netdev_priv(dev);
6280	struct dev_info *hw_priv = priv->adapter;
6281	u8 *eeprom_byte = (u8 *) eeprom_data;
6282	int i;
6283	int len;
6284
6285	len = (eeprom->offset + eeprom->len + 1) / 2;
6286	for (i = eeprom->offset / 2; i < len; i++)
6287		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6288	eeprom->magic = EEPROM_MAGIC;
6289	memcpy(data, &eeprom_byte[eeprom->offset], eeprom->len);
6290
6291	return 0;
6292}
6293
6294/**
6295 * netdev_set_eeprom - write EEPROM data
6296 * @dev:	Network device.
6297 * @eeprom:	Ethtool EEPROM data structure.
6298 * @data:	Data buffer.
6299 *
6300 * This function modifies the EEPROM data one byte at a time.
6301 *
6302 * Return 0 if successful; otherwise an error code.
6303 */
6304static int netdev_set_eeprom(struct net_device *dev,
6305	struct ethtool_eeprom *eeprom, u8 *data)
6306{
6307	struct dev_priv *priv = netdev_priv(dev);
6308	struct dev_info *hw_priv = priv->adapter;
6309	u16 eeprom_word[EEPROM_SIZE];
6310	u8 *eeprom_byte = (u8 *) eeprom_word;
6311	int i;
6312	int len;
6313
6314	if (eeprom->magic != EEPROM_MAGIC)
6315		return -EINVAL;
6316
6317	len = (eeprom->offset + eeprom->len + 1) / 2;
6318	for (i = eeprom->offset / 2; i < len; i++)
6319		eeprom_data[i] = eeprom_read(&hw_priv->hw, i);
6320	memcpy(eeprom_word, eeprom_data, EEPROM_SIZE * 2);
6321	memcpy(&eeprom_byte[eeprom->offset], data, eeprom->len);
6322	for (i = 0; i < EEPROM_SIZE; i++)
6323		if (eeprom_word[i] != eeprom_data[i]) {
6324			eeprom_data[i] = eeprom_word[i];
6325			eeprom_write(&hw_priv->hw, i, eeprom_data[i]);
6326	}
6327
6328	return 0;
6329}
6330
6331/**
6332 * netdev_get_pauseparam - get flow control parameters
6333 * @dev:	Network device.
6334 * @pause:	Ethtool PAUSE settings data structure.
6335 *
6336 * This procedure returns the PAUSE control flow settings.
6337 */
6338static void netdev_get_pauseparam(struct net_device *dev,
6339	struct ethtool_pauseparam *pause)
6340{
6341	struct dev_priv *priv = netdev_priv(dev);
6342	struct dev_info *hw_priv = priv->adapter;
6343	struct ksz_hw *hw = &hw_priv->hw;
6344
6345	pause->autoneg = (hw->overrides & PAUSE_FLOW_CTRL) ? 0 : 1;
6346	if (!hw->ksz_switch) {
6347		pause->rx_pause =
6348			(hw->rx_cfg & DMA_RX_FLOW_ENABLE) ? 1 : 0;
6349		pause->tx_pause =
6350			(hw->tx_cfg & DMA_TX_FLOW_ENABLE) ? 1 : 0;
6351	} else {
6352		pause->rx_pause =
6353			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6354				SWITCH_RX_FLOW_CTRL)) ? 1 : 0;
6355		pause->tx_pause =
6356			(sw_chk(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6357				SWITCH_TX_FLOW_CTRL)) ? 1 : 0;
6358	}
6359}
6360
6361/**
6362 * netdev_set_pauseparam - set flow control parameters
6363 * @dev:	Network device.
6364 * @pause:	Ethtool PAUSE settings data structure.
6365 *
6366 * This function sets the PAUSE control flow settings.
6367 * Not implemented yet.
6368 *
6369 * Return 0 if successful; otherwise an error code.
6370 */
6371static int netdev_set_pauseparam(struct net_device *dev,
6372	struct ethtool_pauseparam *pause)
6373{
6374	struct dev_priv *priv = netdev_priv(dev);
6375	struct dev_info *hw_priv = priv->adapter;
6376	struct ksz_hw *hw = &hw_priv->hw;
6377	struct ksz_port *port = &priv->port;
6378
6379	mutex_lock(&hw_priv->lock);
6380	if (pause->autoneg) {
6381		if (!pause->rx_pause && !pause->tx_pause)
6382			port->flow_ctrl = PHY_NO_FLOW_CTRL;
6383		else
6384			port->flow_ctrl = PHY_FLOW_CTRL;
6385		hw->overrides &= ~PAUSE_FLOW_CTRL;
6386		port->force_link = 0;
6387		if (hw->ksz_switch) {
6388			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6389				SWITCH_RX_FLOW_CTRL, 1);
6390			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6391				SWITCH_TX_FLOW_CTRL, 1);
6392		}
6393		port_set_link_speed(port);
6394	} else {
6395		hw->overrides |= PAUSE_FLOW_CTRL;
6396		if (hw->ksz_switch) {
6397			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6398				SWITCH_RX_FLOW_CTRL, pause->rx_pause);
6399			sw_cfg(hw, KS8842_SWITCH_CTRL_1_OFFSET,
6400				SWITCH_TX_FLOW_CTRL, pause->tx_pause);
6401		} else
6402			set_flow_ctrl(hw, pause->rx_pause, pause->tx_pause);
6403	}
6404	mutex_unlock(&hw_priv->lock);
6405
6406	return 0;
6407}
6408
6409/**
6410 * netdev_get_ringparam - get tx/rx ring parameters
6411 * @dev:	Network device.
6412 * @pause:	Ethtool RING settings data structure.
6413 *
6414 * This procedure returns the TX/RX ring settings.
6415 */
6416static void netdev_get_ringparam(struct net_device *dev,
6417	struct ethtool_ringparam *ring)
6418{
6419	struct dev_priv *priv = netdev_priv(dev);
6420	struct dev_info *hw_priv = priv->adapter;
6421	struct ksz_hw *hw = &hw_priv->hw;
6422
6423	ring->tx_max_pending = (1 << 9);
6424	ring->tx_pending = hw->tx_desc_info.alloc;
6425	ring->rx_max_pending = (1 << 9);
6426	ring->rx_pending = hw->rx_desc_info.alloc;
6427}
6428
6429#define STATS_LEN			(TOTAL_PORT_COUNTER_NUM)
6430
6431static struct {
6432	char string[ETH_GSTRING_LEN];
6433} ethtool_stats_keys[STATS_LEN] = {
6434	{ "rx_lo_priority_octets" },
6435	{ "rx_hi_priority_octets" },
6436	{ "rx_undersize_packets" },
6437	{ "rx_fragments" },
6438	{ "rx_oversize_packets" },
6439	{ "rx_jabbers" },
6440	{ "rx_symbol_errors" },
6441	{ "rx_crc_errors" },
6442	{ "rx_align_errors" },
6443	{ "rx_mac_ctrl_packets" },
6444	{ "rx_pause_packets" },
6445	{ "rx_bcast_packets" },
6446	{ "rx_mcast_packets" },
6447	{ "rx_ucast_packets" },
6448	{ "rx_64_or_less_octet_packets" },
6449	{ "rx_65_to_127_octet_packets" },
6450	{ "rx_128_to_255_octet_packets" },
6451	{ "rx_256_to_511_octet_packets" },
6452	{ "rx_512_to_1023_octet_packets" },
6453	{ "rx_1024_to_1522_octet_packets" },
6454
6455	{ "tx_lo_priority_octets" },
6456	{ "tx_hi_priority_octets" },
6457	{ "tx_late_collisions" },
6458	{ "tx_pause_packets" },
6459	{ "tx_bcast_packets" },
6460	{ "tx_mcast_packets" },
6461	{ "tx_ucast_packets" },
6462	{ "tx_deferred" },
6463	{ "tx_total_collisions" },
6464	{ "tx_excessive_collisions" },
6465	{ "tx_single_collisions" },
6466	{ "tx_mult_collisions" },
6467
6468	{ "rx_discards" },
6469	{ "tx_discards" },
6470};
6471
6472/**
6473 * netdev_get_strings - get statistics identity strings
6474 * @dev:	Network device.
6475 * @stringset:	String set identifier.
6476 * @buf:	Buffer to store the strings.
6477 *
6478 * This procedure returns the strings used to identify the statistics.
6479 */
6480static void netdev_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
6481{
6482	struct dev_priv *priv = netdev_priv(dev);
6483	struct dev_info *hw_priv = priv->adapter;
6484	struct ksz_hw *hw = &hw_priv->hw;
6485
6486	if (ETH_SS_STATS == stringset)
6487		memcpy(buf, &ethtool_stats_keys,
6488			ETH_GSTRING_LEN * hw->mib_cnt);
6489}
6490
6491/**
6492 * netdev_get_sset_count - get statistics size
6493 * @dev:	Network device.
6494 * @sset:	The statistics set number.
6495 *
6496 * This function returns the size of the statistics to be reported.
6497 *
6498 * Return size of the statistics to be reported.
6499 */
6500static int netdev_get_sset_count(struct net_device *dev, int sset)
6501{
6502	struct dev_priv *priv = netdev_priv(dev);
6503	struct dev_info *hw_priv = priv->adapter;
6504	struct ksz_hw *hw = &hw_priv->hw;
6505
6506	switch (sset) {
6507	case ETH_SS_STATS:
6508		return hw->mib_cnt;
6509	default:
6510		return -EOPNOTSUPP;
6511	}
6512}
6513
6514/**
6515 * netdev_get_ethtool_stats - get network device statistics
6516 * @dev:	Network device.
6517 * @stats:	Ethtool statistics data structure.
6518 * @data:	Buffer to store the statistics.
6519 *
6520 * This procedure returns the statistics.
6521 */
6522static void netdev_get_ethtool_stats(struct net_device *dev,
6523	struct ethtool_stats *stats, u64 *data)
6524{
6525	struct dev_priv *priv = netdev_priv(dev);
6526	struct dev_info *hw_priv = priv->adapter;
6527	struct ksz_hw *hw = &hw_priv->hw;
6528	struct ksz_port *port = &priv->port;
6529	int n_stats = stats->n_stats;
6530	int i;
6531	int n;
6532	int p;
6533	int rc;
6534	u64 counter[TOTAL_PORT_COUNTER_NUM];
6535
6536	mutex_lock(&hw_priv->lock);
6537	n = SWITCH_PORT_NUM;
6538	for (i = 0, p = port->first_port; i < port->mib_port_cnt; i++, p++) {
6539		if (media_connected == hw->port_mib[p].state) {
6540			hw_priv->counter[p].read = 1;
6541
6542			/* Remember first port that requests read. */
6543			if (n == SWITCH_PORT_NUM)
6544				n = p;
6545		}
6546	}
6547	mutex_unlock(&hw_priv->lock);
6548
6549	if (n < SWITCH_PORT_NUM)
6550		schedule_work(&hw_priv->mib_read);
6551
6552	if (1 == port->mib_port_cnt && n < SWITCH_PORT_NUM) {
6553		p = n;
6554		rc = wait_event_interruptible_timeout(
6555			hw_priv->counter[p].counter,
6556			2 == hw_priv->counter[p].read,
6557			HZ * 1);
6558	} else
6559		for (i = 0, p = n; i < port->mib_port_cnt - n; i++, p++) {
6560			if (0 == i) {
6561				rc = wait_event_interruptible_timeout(
6562					hw_priv->counter[p].counter,
6563					2 == hw_priv->counter[p].read,
6564					HZ * 2);
6565			} else if (hw->port_mib[p].cnt_ptr) {
6566				rc = wait_event_interruptible_timeout(
6567					hw_priv->counter[p].counter,
6568					2 == hw_priv->counter[p].read,
6569					HZ * 1);
6570			}
6571		}
6572
6573	get_mib_counters(hw, port->first_port, port->mib_port_cnt, counter);
6574	n = hw->mib_cnt;
6575	if (n > n_stats)
6576		n = n_stats;
6577	n_stats -= n;
6578	for (i = 0; i < n; i++)
6579		*data++ = counter[i];
6580}
6581
6582/**
6583 * netdev_set_features - set receive checksum support
6584 * @dev:	Network device.
6585 * @features:	New device features (offloads).
6586 *
6587 * This function sets receive checksum support setting.
6588 *
6589 * Return 0 if successful; otherwise an error code.
6590 */
6591static int netdev_set_features(struct net_device *dev, u32 features)
6592{
6593	struct dev_priv *priv = netdev_priv(dev);
6594	struct dev_info *hw_priv = priv->adapter;
6595	struct ksz_hw *hw = &hw_priv->hw;
6596
6597	mutex_lock(&hw_priv->lock);
6598
6599	/* see note in hw_setup() */
6600	if (features & NETIF_F_RXCSUM)
6601		hw->rx_cfg |= DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP;
6602	else
6603		hw->rx_cfg &= ~(DMA_RX_CSUM_TCP | DMA_RX_CSUM_IP);
6604
6605	if (hw->enabled)
6606		writel(hw->rx_cfg, hw->io + KS_DMA_RX_CTRL);
6607
6608	mutex_unlock(&hw_priv->lock);
6609
6610	return 0;
6611}
6612
6613static struct ethtool_ops netdev_ethtool_ops = {
6614	.get_settings		= netdev_get_settings,
6615	.set_settings		= netdev_set_settings,
6616	.nway_reset		= netdev_nway_reset,
6617	.get_link		= netdev_get_link,
6618	.get_drvinfo		= netdev_get_drvinfo,
6619	.get_regs_len		= netdev_get_regs_len,
6620	.get_regs		= netdev_get_regs,
6621	.get_wol		= netdev_get_wol,
6622	.set_wol		= netdev_set_wol,
6623	.get_msglevel		= netdev_get_msglevel,
6624	.set_msglevel		= netdev_set_msglevel,
6625	.get_eeprom_len		= netdev_get_eeprom_len,
6626	.get_eeprom		= netdev_get_eeprom,
6627	.set_eeprom		= netdev_set_eeprom,
6628	.get_pauseparam		= netdev_get_pauseparam,
6629	.set_pauseparam		= netdev_set_pauseparam,
6630	.get_ringparam		= netdev_get_ringparam,
6631	.get_strings		= netdev_get_strings,
6632	.get_sset_count		= netdev_get_sset_count,
6633	.get_ethtool_stats	= netdev_get_ethtool_stats,
6634};
6635
6636/*
6637 * Hardware monitoring
6638 */
6639
6640static void update_link(struct net_device *dev, struct dev_priv *priv,
6641	struct ksz_port *port)
6642{
6643	if (priv->media_state != port->linked->state) {
6644		priv->media_state = port->linked->state;
6645		if (netif_running(dev))
6646			set_media_state(dev, media_connected);
6647	}
6648}
6649
6650static void mib_read_work(struct work_struct *work)
6651{
6652	struct dev_info *hw_priv =
6653		container_of(work, struct dev_info, mib_read);
6654	struct ksz_hw *hw = &hw_priv->hw;
6655	struct ksz_port_mib *mib;
6656	int i;
6657
6658	next_jiffies = jiffies;
6659	for (i = 0; i < hw->mib_port_cnt; i++) {
6660		mib = &hw->port_mib[i];
6661
6662		/* Reading MIB counters or requested to read. */
6663		if (mib->cnt_ptr || 1 == hw_priv->counter[i].read) {
6664
6665			/* Need to process receive interrupt. */
6666			if (port_r_cnt(hw, i))
6667				break;
6668			hw_priv->counter[i].read = 0;
6669
6670			/* Finish reading counters. */
6671			if (0 == mib->cnt_ptr) {
6672				hw_priv->counter[i].read = 2;
6673				wake_up_interruptible(
6674					&hw_priv->counter[i].counter);
6675			}
6676		} else if (jiffies >= hw_priv->counter[i].time) {
6677			/* Only read MIB counters when the port is connected. */
6678			if (media_connected == mib->state)
6679				hw_priv->counter[i].read = 1;
6680			next_jiffies += HZ * 1 * hw->mib_port_cnt;
6681			hw_priv->counter[i].time = next_jiffies;
6682
6683		/* Port is just disconnected. */
6684		} else if (mib->link_down) {
6685			mib->link_down = 0;
6686
6687			/* Read counters one last time after link is lost. */
6688			hw_priv->counter[i].read = 1;
6689		}
6690	}
6691}
6692
6693static void mib_monitor(unsigned long ptr)
6694{
6695	struct dev_info *hw_priv = (struct dev_info *) ptr;
6696
6697	mib_read_work(&hw_priv->mib_read);
6698
6699	/* This is used to verify Wake-on-LAN is working. */
6700	if (hw_priv->pme_wait) {
6701		if (hw_priv->pme_wait <= jiffies) {
6702			hw_clr_wol_pme_status(&hw_priv->hw);
6703			hw_priv->pme_wait = 0;
6704		}
6705	} else if (hw_chk_wol_pme_status(&hw_priv->hw)) {
6706
6707		/* PME is asserted.  Wait 2 seconds to clear it. */
6708		hw_priv->pme_wait = jiffies + HZ * 2;
6709	}
6710
6711	ksz_update_timer(&hw_priv->mib_timer_info);
6712}
6713
6714/**
6715 * dev_monitor - periodic monitoring
6716 * @ptr:	Network device pointer.
6717 *
6718 * This routine is run in a kernel timer to monitor the network device.
6719 */
6720static void dev_monitor(unsigned long ptr)
6721{
6722	struct net_device *dev = (struct net_device *) ptr;
6723	struct dev_priv *priv = netdev_priv(dev);
6724	struct dev_info *hw_priv = priv->adapter;
6725	struct ksz_hw *hw = &hw_priv->hw;
6726	struct ksz_port *port = &priv->port;
6727
6728	if (!(hw->features & LINK_INT_WORKING))
6729		port_get_link_speed(port);
6730	update_link(dev, priv, port);
6731
6732	ksz_update_timer(&priv->monitor_timer_info);
6733}
6734
6735/*
6736 * Linux network device interface functions
6737 */
6738
6739/* Driver exported variables */
6740
6741static int msg_enable;
6742
6743static char *macaddr = ":";
6744static char *mac1addr = ":";
6745
6746/*
6747 * This enables multiple network device mode for KSZ8842, which contains a
6748 * switch with two physical ports.  Some users like to take control of the
6749 * ports for running Spanning Tree Protocol.  The driver will create an
6750 * additional eth? device for the other port.
6751 *
6752 * Some limitations are the network devices cannot have different MTU and
6753 * multicast hash tables.
6754 */
6755static int multi_dev;
6756
6757/*
6758 * As most users select multiple network device mode to use Spanning Tree
6759 * Protocol, this enables a feature in which most unicast and multicast packets
6760 * are forwarded inside the switch and not passed to the host.  Only packets
6761 * that need the host's attention are passed to it.  This prevents the host
6762 * wasting CPU time to examine each and every incoming packets and do the
6763 * forwarding itself.
6764 *
6765 * As the hack requires the private bridge header, the driver cannot compile
6766 * with just the kernel headers.
6767 *
6768 * Enabling STP support also turns on multiple network device mode.
6769 */
6770static int stp;
6771
6772/*
6773 * This enables fast aging in the KSZ8842 switch.  Not sure what situation
6774 * needs that.  However, fast aging is used to flush the dynamic MAC table when
6775 * STP suport is enabled.
6776 */
6777static int fast_aging;
6778
6779/**
6780 * netdev_init - initialize network device.
6781 * @dev:	Network device.
6782 *
6783 * This function initializes the network device.
6784 *
6785 * Return 0 if successful; otherwise an error code indicating failure.
6786 */
6787static int __init netdev_init(struct net_device *dev)
6788{
6789	struct dev_priv *priv = netdev_priv(dev);
6790
6791	/* 500 ms timeout */
6792	ksz_init_timer(&priv->monitor_timer_info, 500 * HZ / 1000,
6793		dev_monitor, dev);
6794
6795	/* 500 ms timeout */
6796	dev->watchdog_timeo = HZ / 2;
6797
6798	dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG | NETIF_F_RXCSUM;
6799
6800	/*
6801	 * Hardware does not really support IPv6 checksum generation, but
6802	 * driver actually runs faster with this on.
6803	 */
6804	dev->hw_features |= NETIF_F_IPV6_CSUM;
6805
6806	dev->features |= dev->hw_features;
6807
6808	sema_init(&priv->proc_sem, 1);
6809
6810	priv->mii_if.phy_id_mask = 0x1;
6811	priv->mii_if.reg_num_mask = 0x7;
6812	priv->mii_if.dev = dev;
6813	priv->mii_if.mdio_read = mdio_read;
6814	priv->mii_if.mdio_write = mdio_write;
6815	priv->mii_if.phy_id = priv->port.first_port + 1;
6816
6817	priv->msg_enable = netif_msg_init(msg_enable,
6818		(NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK));
6819
6820	return 0;
6821}
6822
6823static const struct net_device_ops netdev_ops = {
6824	.ndo_init		= netdev_init,
6825	.ndo_open		= netdev_open,
6826	.ndo_stop		= netdev_close,
6827	.ndo_get_stats		= netdev_query_statistics,
6828	.ndo_start_xmit		= netdev_tx,
6829	.ndo_tx_timeout		= netdev_tx_timeout,
6830	.ndo_change_mtu		= netdev_change_mtu,
6831	.ndo_set_features	= netdev_set_features,
6832	.ndo_set_mac_address	= netdev_set_mac_address,
6833	.ndo_validate_addr	= eth_validate_addr,
6834	.ndo_do_ioctl		= netdev_ioctl,
6835	.ndo_set_rx_mode	= netdev_set_rx_mode,
6836#ifdef CONFIG_NET_POLL_CONTROLLER
6837	.ndo_poll_controller	= netdev_netpoll,
6838#endif
6839};
6840
6841static void netdev_free(struct net_device *dev)
6842{
6843	if (dev->watchdog_timeo)
6844		unregister_netdev(dev);
6845
6846	free_netdev(dev);
6847}
6848
6849struct platform_info {
6850	struct dev_info dev_info;
6851	struct net_device *netdev[SWITCH_PORT_NUM];
6852};
6853
6854static int net_device_present;
6855
6856static void get_mac_addr(struct dev_info *hw_priv, u8 *macaddr, int port)
6857{
6858	int i;
6859	int j;
6860	int got_num;
6861	int num;
6862
6863	i = j = num = got_num = 0;
6864	while (j < MAC_ADDR_LEN) {
6865		if (macaddr[i]) {
6866			int digit;
6867
6868			got_num = 1;
6869			digit = hex_to_bin(macaddr[i]);
6870			if (digit >= 0)
6871				num = num * 16 + digit;
6872			else if (':' == macaddr[i])
6873				got_num = 2;
6874			else
6875				break;
6876		} else if (got_num)
6877			got_num = 2;
6878		else
6879			break;
6880		if (2 == got_num) {
6881			if (MAIN_PORT == port) {
6882				hw_priv->hw.override_addr[j++] = (u8) num;
6883				hw_priv->hw.override_addr[5] +=
6884					hw_priv->hw.id;
6885			} else {
6886				hw_priv->hw.ksz_switch->other_addr[j++] =
6887					(u8) num;
6888				hw_priv->hw.ksz_switch->other_addr[5] +=
6889					hw_priv->hw.id;
6890			}
6891			num = got_num = 0;
6892		}
6893		i++;
6894	}
6895	if (MAC_ADDR_LEN == j) {
6896		if (MAIN_PORT == port)
6897			hw_priv->hw.mac_override = 1;
6898	}
6899}
6900
6901#define KS884X_DMA_MASK			(~0x0UL)
6902
6903static void read_other_addr(struct ksz_hw *hw)
6904{
6905	int i;
6906	u16 data[3];
6907	struct ksz_switch *sw = hw->ksz_switch;
6908
6909	for (i = 0; i < 3; i++)
6910		data[i] = eeprom_read(hw, i + EEPROM_DATA_OTHER_MAC_ADDR);
6911	if ((data[0] || data[1] || data[2]) && data[0] != 0xffff) {
6912		sw->other_addr[5] = (u8) data[0];
6913		sw->other_addr[4] = (u8)(data[0] >> 8);
6914		sw->other_addr[3] = (u8) data[1];
6915		sw->other_addr[2] = (u8)(data[1] >> 8);
6916		sw->other_addr[1] = (u8) data[2];
6917		sw->other_addr[0] = (u8)(data[2] >> 8);
6918	}
6919}
6920
6921#ifndef PCI_VENDOR_ID_MICREL_KS
6922#define PCI_VENDOR_ID_MICREL_KS		0x16c6
6923#endif
6924
6925static int __devinit pcidev_init(struct pci_dev *pdev,
6926	const struct pci_device_id *id)
6927{
6928	struct net_device *dev;
6929	struct dev_priv *priv;
6930	struct dev_info *hw_priv;
6931	struct ksz_hw *hw;
6932	struct platform_info *info;
6933	struct ksz_port *port;
6934	unsigned long reg_base;
6935	unsigned long reg_len;
6936	int cnt;
6937	int i;
6938	int mib_port_count;
6939	int pi;
6940	int port_count;
6941	int result;
6942	char banner[sizeof(version)];
6943	struct ksz_switch *sw = NULL;
6944
6945	result = pci_enable_device(pdev);
6946	if (result)
6947		return result;
6948
6949	result = -ENODEV;
6950
6951	if (pci_set_dma_mask(pdev, DMA_BIT_MASK(32)) ||
6952			pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
6953		return result;
6954
6955	reg_base = pci_resource_start(pdev, 0);
6956	reg_len = pci_resource_len(pdev, 0);
6957	if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0)
6958		return result;
6959
6960	if (!request_mem_region(reg_base, reg_len, DRV_NAME))
6961		return result;
6962	pci_set_master(pdev);
6963
6964	result = -ENOMEM;
6965
6966	info = kzalloc(sizeof(struct platform_info), GFP_KERNEL);
6967	if (!info)
6968		goto pcidev_init_dev_err;
6969
6970	hw_priv = &info->dev_info;
6971	hw_priv->pdev = pdev;
6972
6973	hw = &hw_priv->hw;
6974
6975	hw->io = ioremap(reg_base, reg_len);
6976	if (!hw->io)
6977		goto pcidev_init_io_err;
6978
6979	cnt = hw_init(hw);
6980	if (!cnt) {
6981		if (msg_enable & NETIF_MSG_PROBE)
6982			pr_alert("chip not detected\n");
6983		result = -ENODEV;
6984		goto pcidev_init_alloc_err;
6985	}
6986
6987	snprintf(banner, sizeof(banner), "%s", version);
6988	banner[13] = cnt + '0';		/* Replace x in "Micrel KSZ884x" */
6989	dev_info(&hw_priv->pdev->dev, "%s\n", banner);
6990	dev_dbg(&hw_priv->pdev->dev, "Mem = %p; IRQ = %d\n", hw->io, pdev->irq);
6991
6992	/* Assume device is KSZ8841. */
6993	hw->dev_count = 1;
6994	port_count = 1;
6995	mib_port_count = 1;
6996	hw->addr_list_size = 0;
6997	hw->mib_cnt = PORT_COUNTER_NUM;
6998	hw->mib_port_cnt = 1;
6999
7000	/* KSZ8842 has a switch with multiple ports. */
7001	if (2 == cnt) {
7002		if (fast_aging)
7003			hw->overrides |= FAST_AGING;
7004
7005		hw->mib_cnt = TOTAL_PORT_COUNTER_NUM;
7006
7007		/* Multiple network device interfaces are required. */
7008		if (multi_dev) {
7009			hw->dev_count = SWITCH_PORT_NUM;
7010			hw->addr_list_size = SWITCH_PORT_NUM - 1;
7011		}
7012
7013		/* Single network device has multiple ports. */
7014		if (1 == hw->dev_count) {
7015			port_count = SWITCH_PORT_NUM;
7016			mib_port_count = SWITCH_PORT_NUM;
7017		}
7018		hw->mib_port_cnt = TOTAL_PORT_NUM;
7019		hw->ksz_switch = kzalloc(sizeof(struct ksz_switch), GFP_KERNEL);
7020		if (!hw->ksz_switch)
7021			goto pcidev_init_alloc_err;
7022
7023		sw = hw->ksz_switch;
7024	}
7025	for (i = 0; i < hw->mib_port_cnt; i++)
7026		hw->port_mib[i].mib_start = 0;
7027
7028	hw->parent = hw_priv;
7029
7030	/* Default MTU is 1500. */
7031	hw_priv->mtu = (REGULAR_RX_BUF_SIZE + 3) & ~3;
7032
7033	if (ksz_alloc_mem(hw_priv))
7034		goto pcidev_init_mem_err;
7035
7036	hw_priv->hw.id = net_device_present;
7037
7038	spin_lock_init(&hw_priv->hwlock);
7039	mutex_init(&hw_priv->lock);
7040
7041	/* tasklet is enabled. */
7042	tasklet_init(&hw_priv->rx_tasklet, rx_proc_task,
7043		(unsigned long) hw_priv);
7044	tasklet_init(&hw_priv->tx_tasklet, tx_proc_task,
7045		(unsigned long) hw_priv);
7046
7047	/* tasklet_enable will decrement the atomic counter. */
7048	tasklet_disable(&hw_priv->rx_tasklet);
7049	tasklet_disable(&hw_priv->tx_tasklet);
7050
7051	for (i = 0; i < TOTAL_PORT_NUM; i++)
7052		init_waitqueue_head(&hw_priv->counter[i].counter);
7053
7054	if (macaddr[0] != ':')
7055		get_mac_addr(hw_priv, macaddr, MAIN_PORT);
7056
7057	/* Read MAC address and initialize override address if not overrided. */
7058	hw_read_addr(hw);
7059
7060	/* Multiple device interfaces mode requires a second MAC address. */
7061	if (hw->dev_count > 1) {
7062		memcpy(sw->other_addr, hw->override_addr, MAC_ADDR_LEN);
7063		read_other_addr(hw);
7064		if (mac1addr[0] != ':')
7065			get_mac_addr(hw_priv, mac1addr, OTHER_PORT);
7066	}
7067
7068	hw_setup(hw);
7069	if (hw->ksz_switch)
7070		sw_setup(hw);
7071	else {
7072		hw_priv->wol_support = WOL_SUPPORT;
7073		hw_priv->wol_enable = 0;
7074	}
7075
7076	INIT_WORK(&hw_priv->mib_read, mib_read_work);
7077
7078	/* 500 ms timeout */
7079	ksz_init_timer(&hw_priv->mib_timer_info, 500 * HZ / 1000,
7080		mib_monitor, hw_priv);
7081
7082	for (i = 0; i < hw->dev_count; i++) {
7083		dev = alloc_etherdev(sizeof(struct dev_priv));
7084		if (!dev)
7085			goto pcidev_init_reg_err;
7086		info->netdev[i] = dev;
7087
7088		priv = netdev_priv(dev);
7089		priv->adapter = hw_priv;
7090		priv->id = net_device_present++;
7091
7092		port = &priv->port;
7093		port->port_cnt = port_count;
7094		port->mib_port_cnt = mib_port_count;
7095		port->first_port = i;
7096		port->flow_ctrl = PHY_FLOW_CTRL;
7097
7098		port->hw = hw;
7099		port->linked = &hw->port_info[port->first_port];
7100
7101		for (cnt = 0, pi = i; cnt < port_count; cnt++, pi++) {
7102			hw->port_info[pi].port_id = pi;
7103			hw->port_info[pi].pdev = dev;
7104			hw->port_info[pi].state = media_disconnected;
7105		}
7106
7107		dev->mem_start = (unsigned long) hw->io;
7108		dev->mem_end = dev->mem_start + reg_len - 1;
7109		dev->irq = pdev->irq;
7110		if (MAIN_PORT == i)
7111			memcpy(dev->dev_addr, hw_priv->hw.override_addr,
7112				MAC_ADDR_LEN);
7113		else {
7114			memcpy(dev->dev_addr, sw->other_addr,
7115				MAC_ADDR_LEN);
7116			if (!memcmp(sw->other_addr, hw->override_addr,
7117					MAC_ADDR_LEN))
7118				dev->dev_addr[5] += port->first_port;
7119		}
7120
7121		dev->netdev_ops = &netdev_ops;
7122		SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7123		if (register_netdev(dev))
7124			goto pcidev_init_reg_err;
7125		port_set_power_saving(port, true);
7126	}
7127
7128	pci_dev_get(hw_priv->pdev);
7129	pci_set_drvdata(pdev, info);
7130	return 0;
7131
7132pcidev_init_reg_err:
7133	for (i = 0; i < hw->dev_count; i++) {
7134		if (info->netdev[i]) {
7135			netdev_free(info->netdev[i]);
7136			info->netdev[i] = NULL;
7137		}
7138	}
7139
7140pcidev_init_mem_err:
7141	ksz_free_mem(hw_priv);
7142	kfree(hw->ksz_switch);
7143
7144pcidev_init_alloc_err:
7145	iounmap(hw->io);
7146
7147pcidev_init_io_err:
7148	kfree(info);
7149
7150pcidev_init_dev_err:
7151	release_mem_region(reg_base, reg_len);
7152
7153	return result;
7154}
7155
7156static void pcidev_exit(struct pci_dev *pdev)
7157{
7158	int i;
7159	struct platform_info *info = pci_get_drvdata(pdev);
7160	struct dev_info *hw_priv = &info->dev_info;
7161
7162	pci_set_drvdata(pdev, NULL);
7163
7164	release_mem_region(pci_resource_start(pdev, 0),
7165		pci_resource_len(pdev, 0));
7166	for (i = 0; i < hw_priv->hw.dev_count; i++) {
7167		if (info->netdev[i])
7168			netdev_free(info->netdev[i]);
7169	}
7170	if (hw_priv->hw.io)
7171		iounmap(hw_priv->hw.io);
7172	ksz_free_mem(hw_priv);
7173	kfree(hw_priv->hw.ksz_switch);
7174	pci_dev_put(hw_priv->pdev);
7175	kfree(info);
7176}
7177
7178#ifdef CONFIG_PM
7179static int pcidev_resume(struct pci_dev *pdev)
7180{
7181	int i;
7182	struct platform_info *info = pci_get_drvdata(pdev);
7183	struct dev_info *hw_priv = &info->dev_info;
7184	struct ksz_hw *hw = &hw_priv->hw;
7185
7186	pci_set_power_state(pdev, PCI_D0);
7187	pci_restore_state(pdev);
7188	pci_enable_wake(pdev, PCI_D0, 0);
7189
7190	if (hw_priv->wol_enable)
7191		hw_cfg_wol_pme(hw, 0);
7192	for (i = 0; i < hw->dev_count; i++) {
7193		if (info->netdev[i]) {
7194			struct net_device *dev = info->netdev[i];
7195
7196			if (netif_running(dev)) {
7197				netdev_open(dev);
7198				netif_device_attach(dev);
7199			}
7200		}
7201	}
7202	return 0;
7203}
7204
7205static int pcidev_suspend(struct pci_dev *pdev, pm_message_t state)
7206{
7207	int i;
7208	struct platform_info *info = pci_get_drvdata(pdev);
7209	struct dev_info *hw_priv = &info->dev_info;
7210	struct ksz_hw *hw = &hw_priv->hw;
7211
7212	/* Need to find a way to retrieve the device IP address. */
7213	static const u8 net_addr[] = { 192, 168, 1, 1 };
7214
7215	for (i = 0; i < hw->dev_count; i++) {
7216		if (info->netdev[i]) {
7217			struct net_device *dev = info->netdev[i];
7218
7219			if (netif_running(dev)) {
7220				netif_device_detach(dev);
7221				netdev_close(dev);
7222			}
7223		}
7224	}
7225	if (hw_priv->wol_enable) {
7226		hw_enable_wol(hw, hw_priv->wol_enable, net_addr);
7227		hw_cfg_wol_pme(hw, 1);
7228	}
7229
7230	pci_save_state(pdev);
7231	pci_enable_wake(pdev, pci_choose_state(pdev, state), 1);
7232	pci_set_power_state(pdev, pci_choose_state(pdev, state));
7233	return 0;
7234}
7235#endif
7236
7237static char pcidev_name[] = "ksz884xp";
7238
7239static struct pci_device_id pcidev_table[] = {
7240	{ PCI_VENDOR_ID_MICREL_KS, 0x8841,
7241		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7242	{ PCI_VENDOR_ID_MICREL_KS, 0x8842,
7243		PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0 },
7244	{ 0 }
7245};
7246
7247MODULE_DEVICE_TABLE(pci, pcidev_table);
7248
7249static struct pci_driver pci_device_driver = {
7250#ifdef CONFIG_PM
7251	.suspend	= pcidev_suspend,
7252	.resume		= pcidev_resume,
7253#endif
7254	.name		= pcidev_name,
7255	.id_table	= pcidev_table,
7256	.probe		= pcidev_init,
7257	.remove		= pcidev_exit
7258};
7259
7260static int __init ksz884x_init_module(void)
7261{
7262	return pci_register_driver(&pci_device_driver);
7263}
7264
7265static void __exit ksz884x_cleanup_module(void)
7266{
7267	pci_unregister_driver(&pci_device_driver);
7268}
7269
7270module_init(ksz884x_init_module);
7271module_exit(ksz884x_cleanup_module);
7272
7273MODULE_DESCRIPTION("KSZ8841/2 PCI network driver");
7274MODULE_AUTHOR("Tristram Ha <Tristram.Ha@micrel.com>");
7275MODULE_LICENSE("GPL");
7276
7277module_param_named(message, msg_enable, int, 0);
7278MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
7279
7280module_param(macaddr, charp, 0);
7281module_param(mac1addr, charp, 0);
7282module_param(fast_aging, int, 0);
7283module_param(multi_dev, int, 0);
7284module_param(stp, int, 0);
7285MODULE_PARM_DESC(macaddr, "MAC address");
7286MODULE_PARM_DESC(mac1addr, "Second MAC address");
7287MODULE_PARM_DESC(fast_aging, "Fast aging");
7288MODULE_PARM_DESC(multi_dev, "Multiple device interfaces");
7289MODULE_PARM_DESC(stp, "STP support");