Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*******************************************************************************
   2
   3  Intel(R) 82576 Virtual Function Linux driver
   4  Copyright(c) 2009 - 2010 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/module.h>
  29#include <linux/types.h>
  30#include <linux/init.h>
  31#include <linux/pci.h>
  32#include <linux/vmalloc.h>
  33#include <linux/pagemap.h>
  34#include <linux/delay.h>
  35#include <linux/netdevice.h>
  36#include <linux/tcp.h>
  37#include <linux/ipv6.h>
  38#include <linux/slab.h>
  39#include <net/checksum.h>
  40#include <net/ip6_checksum.h>
  41#include <linux/mii.h>
  42#include <linux/ethtool.h>
  43#include <linux/if_vlan.h>
  44#include <linux/prefetch.h>
  45
  46#include "igbvf.h"
  47
  48#define DRV_VERSION "2.0.0-k"
  49char igbvf_driver_name[] = "igbvf";
  50const char igbvf_driver_version[] = DRV_VERSION;
  51static const char igbvf_driver_string[] =
  52				"Intel(R) Virtual Function Network Driver";
  53static const char igbvf_copyright[] =
  54				"Copyright (c) 2009 - 2010 Intel Corporation.";
  55
  56static int igbvf_poll(struct napi_struct *napi, int budget);
  57static void igbvf_reset(struct igbvf_adapter *);
  58static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
  59static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
  60
  61static struct igbvf_info igbvf_vf_info = {
  62	.mac                    = e1000_vfadapt,
  63	.flags                  = 0,
  64	.pba                    = 10,
  65	.init_ops               = e1000_init_function_pointers_vf,
  66};
  67
  68static struct igbvf_info igbvf_i350_vf_info = {
  69	.mac			= e1000_vfadapt_i350,
  70	.flags			= 0,
  71	.pba			= 10,
  72	.init_ops		= e1000_init_function_pointers_vf,
  73};
  74
  75static const struct igbvf_info *igbvf_info_tbl[] = {
  76	[board_vf]              = &igbvf_vf_info,
  77	[board_i350_vf]		= &igbvf_i350_vf_info,
  78};
  79
  80/**
  81 * igbvf_desc_unused - calculate if we have unused descriptors
  82 **/
  83static int igbvf_desc_unused(struct igbvf_ring *ring)
  84{
  85	if (ring->next_to_clean > ring->next_to_use)
  86		return ring->next_to_clean - ring->next_to_use - 1;
  87
  88	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
  89}
  90
  91/**
  92 * igbvf_receive_skb - helper function to handle Rx indications
  93 * @adapter: board private structure
  94 * @status: descriptor status field as written by hardware
  95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
  96 * @skb: pointer to sk_buff to be indicated to stack
  97 **/
  98static void igbvf_receive_skb(struct igbvf_adapter *adapter,
  99                              struct net_device *netdev,
 100                              struct sk_buff *skb,
 101                              u32 status, u16 vlan)
 102{
 103	if (status & E1000_RXD_STAT_VP) {
 104		u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
 105
 106		__vlan_hwaccel_put_tag(skb, vid);
 107	}
 108	netif_receive_skb(skb);
 109}
 110
 111static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
 112                                         u32 status_err, struct sk_buff *skb)
 113{
 114	skb_checksum_none_assert(skb);
 115
 116	/* Ignore Checksum bit is set or checksum is disabled through ethtool */
 117	if ((status_err & E1000_RXD_STAT_IXSM) ||
 118	    (adapter->flags & IGBVF_FLAG_RX_CSUM_DISABLED))
 119		return;
 120
 121	/* TCP/UDP checksum error bit is set */
 122	if (status_err &
 123	    (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
 124		/* let the stack verify checksum errors */
 125		adapter->hw_csum_err++;
 126		return;
 127	}
 128
 129	/* It must be a TCP or UDP packet with a valid checksum */
 130	if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
 131		skb->ip_summed = CHECKSUM_UNNECESSARY;
 132
 133	adapter->hw_csum_good++;
 134}
 135
 136/**
 137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
 138 * @rx_ring: address of ring structure to repopulate
 139 * @cleaned_count: number of buffers to repopulate
 140 **/
 141static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
 142                                   int cleaned_count)
 143{
 144	struct igbvf_adapter *adapter = rx_ring->adapter;
 145	struct net_device *netdev = adapter->netdev;
 146	struct pci_dev *pdev = adapter->pdev;
 147	union e1000_adv_rx_desc *rx_desc;
 148	struct igbvf_buffer *buffer_info;
 149	struct sk_buff *skb;
 150	unsigned int i;
 151	int bufsz;
 152
 153	i = rx_ring->next_to_use;
 154	buffer_info = &rx_ring->buffer_info[i];
 155
 156	if (adapter->rx_ps_hdr_size)
 157		bufsz = adapter->rx_ps_hdr_size;
 158	else
 159		bufsz = adapter->rx_buffer_len;
 160
 161	while (cleaned_count--) {
 162		rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 163
 164		if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
 165			if (!buffer_info->page) {
 166				buffer_info->page = alloc_page(GFP_ATOMIC);
 167				if (!buffer_info->page) {
 168					adapter->alloc_rx_buff_failed++;
 169					goto no_buffers;
 170				}
 171				buffer_info->page_offset = 0;
 172			} else {
 173				buffer_info->page_offset ^= PAGE_SIZE / 2;
 174			}
 175			buffer_info->page_dma =
 176				dma_map_page(&pdev->dev, buffer_info->page,
 177				             buffer_info->page_offset,
 178				             PAGE_SIZE / 2,
 179					     DMA_FROM_DEVICE);
 180		}
 181
 182		if (!buffer_info->skb) {
 183			skb = netdev_alloc_skb_ip_align(netdev, bufsz);
 184			if (!skb) {
 185				adapter->alloc_rx_buff_failed++;
 186				goto no_buffers;
 187			}
 188
 189			buffer_info->skb = skb;
 190			buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 191			                                  bufsz,
 192							  DMA_FROM_DEVICE);
 193		}
 194		/* Refresh the desc even if buffer_addrs didn't change because
 195		 * each write-back erases this info. */
 196		if (adapter->rx_ps_hdr_size) {
 197			rx_desc->read.pkt_addr =
 198			     cpu_to_le64(buffer_info->page_dma);
 199			rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
 200		} else {
 201			rx_desc->read.pkt_addr =
 202			     cpu_to_le64(buffer_info->dma);
 203			rx_desc->read.hdr_addr = 0;
 204		}
 205
 206		i++;
 207		if (i == rx_ring->count)
 208			i = 0;
 209		buffer_info = &rx_ring->buffer_info[i];
 210	}
 211
 212no_buffers:
 213	if (rx_ring->next_to_use != i) {
 214		rx_ring->next_to_use = i;
 215		if (i == 0)
 216			i = (rx_ring->count - 1);
 217		else
 218			i--;
 219
 220		/* Force memory writes to complete before letting h/w
 221		 * know there are new descriptors to fetch.  (Only
 222		 * applicable for weak-ordered memory model archs,
 223		 * such as IA-64). */
 224		wmb();
 225		writel(i, adapter->hw.hw_addr + rx_ring->tail);
 226	}
 227}
 228
 229/**
 230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
 231 * @adapter: board private structure
 232 *
 233 * the return value indicates whether actual cleaning was done, there
 234 * is no guarantee that everything was cleaned
 235 **/
 236static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
 237                               int *work_done, int work_to_do)
 238{
 239	struct igbvf_ring *rx_ring = adapter->rx_ring;
 240	struct net_device *netdev = adapter->netdev;
 241	struct pci_dev *pdev = adapter->pdev;
 242	union e1000_adv_rx_desc *rx_desc, *next_rxd;
 243	struct igbvf_buffer *buffer_info, *next_buffer;
 244	struct sk_buff *skb;
 245	bool cleaned = false;
 246	int cleaned_count = 0;
 247	unsigned int total_bytes = 0, total_packets = 0;
 248	unsigned int i;
 249	u32 length, hlen, staterr;
 250
 251	i = rx_ring->next_to_clean;
 252	rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
 253	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 254
 255	while (staterr & E1000_RXD_STAT_DD) {
 256		if (*work_done >= work_to_do)
 257			break;
 258		(*work_done)++;
 259		rmb(); /* read descriptor and rx_buffer_info after status DD */
 260
 261		buffer_info = &rx_ring->buffer_info[i];
 262
 263		/* HW will not DMA in data larger than the given buffer, even
 264		 * if it parses the (NFS, of course) header to be larger.  In
 265		 * that case, it fills the header buffer and spills the rest
 266		 * into the page.
 267		 */
 268		hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
 269		  E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
 270		if (hlen > adapter->rx_ps_hdr_size)
 271			hlen = adapter->rx_ps_hdr_size;
 272
 273		length = le16_to_cpu(rx_desc->wb.upper.length);
 274		cleaned = true;
 275		cleaned_count++;
 276
 277		skb = buffer_info->skb;
 278		prefetch(skb->data - NET_IP_ALIGN);
 279		buffer_info->skb = NULL;
 280		if (!adapter->rx_ps_hdr_size) {
 281			dma_unmap_single(&pdev->dev, buffer_info->dma,
 282			                 adapter->rx_buffer_len,
 283					 DMA_FROM_DEVICE);
 284			buffer_info->dma = 0;
 285			skb_put(skb, length);
 286			goto send_up;
 287		}
 288
 289		if (!skb_shinfo(skb)->nr_frags) {
 290			dma_unmap_single(&pdev->dev, buffer_info->dma,
 291			                 adapter->rx_ps_hdr_size,
 292					 DMA_FROM_DEVICE);
 293			skb_put(skb, hlen);
 294		}
 295
 296		if (length) {
 297			dma_unmap_page(&pdev->dev, buffer_info->page_dma,
 298			               PAGE_SIZE / 2,
 299				       DMA_FROM_DEVICE);
 300			buffer_info->page_dma = 0;
 301
 302			skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
 303			                   buffer_info->page,
 304			                   buffer_info->page_offset,
 305			                   length);
 306
 307			if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
 308			    (page_count(buffer_info->page) != 1))
 309				buffer_info->page = NULL;
 310			else
 311				get_page(buffer_info->page);
 312
 313			skb->len += length;
 314			skb->data_len += length;
 315			skb->truesize += length;
 316		}
 317send_up:
 318		i++;
 319		if (i == rx_ring->count)
 320			i = 0;
 321		next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
 322		prefetch(next_rxd);
 323		next_buffer = &rx_ring->buffer_info[i];
 324
 325		if (!(staterr & E1000_RXD_STAT_EOP)) {
 326			buffer_info->skb = next_buffer->skb;
 327			buffer_info->dma = next_buffer->dma;
 328			next_buffer->skb = skb;
 329			next_buffer->dma = 0;
 330			goto next_desc;
 331		}
 332
 333		if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
 334			dev_kfree_skb_irq(skb);
 335			goto next_desc;
 336		}
 337
 338		total_bytes += skb->len;
 339		total_packets++;
 340
 341		igbvf_rx_checksum_adv(adapter, staterr, skb);
 342
 343		skb->protocol = eth_type_trans(skb, netdev);
 344
 345		igbvf_receive_skb(adapter, netdev, skb, staterr,
 346		                  rx_desc->wb.upper.vlan);
 347
 348next_desc:
 349		rx_desc->wb.upper.status_error = 0;
 350
 351		/* return some buffers to hardware, one at a time is too slow */
 352		if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
 353			igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 354			cleaned_count = 0;
 355		}
 356
 357		/* use prefetched values */
 358		rx_desc = next_rxd;
 359		buffer_info = next_buffer;
 360
 361		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 362	}
 363
 364	rx_ring->next_to_clean = i;
 365	cleaned_count = igbvf_desc_unused(rx_ring);
 366
 367	if (cleaned_count)
 368		igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
 369
 370	adapter->total_rx_packets += total_packets;
 371	adapter->total_rx_bytes += total_bytes;
 372	adapter->net_stats.rx_bytes += total_bytes;
 373	adapter->net_stats.rx_packets += total_packets;
 374	return cleaned;
 375}
 376
 377static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
 378                            struct igbvf_buffer *buffer_info)
 379{
 380	if (buffer_info->dma) {
 381		if (buffer_info->mapped_as_page)
 382			dma_unmap_page(&adapter->pdev->dev,
 383				       buffer_info->dma,
 384				       buffer_info->length,
 385				       DMA_TO_DEVICE);
 386		else
 387			dma_unmap_single(&adapter->pdev->dev,
 388					 buffer_info->dma,
 389					 buffer_info->length,
 390					 DMA_TO_DEVICE);
 391		buffer_info->dma = 0;
 392	}
 393	if (buffer_info->skb) {
 394		dev_kfree_skb_any(buffer_info->skb);
 395		buffer_info->skb = NULL;
 396	}
 397	buffer_info->time_stamp = 0;
 398}
 399
 400/**
 401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
 402 * @adapter: board private structure
 403 *
 404 * Return 0 on success, negative on failure
 405 **/
 406int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
 407                             struct igbvf_ring *tx_ring)
 408{
 409	struct pci_dev *pdev = adapter->pdev;
 410	int size;
 411
 412	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 413	tx_ring->buffer_info = vzalloc(size);
 414	if (!tx_ring->buffer_info)
 415		goto err;
 416
 417	/* round up to nearest 4K */
 418	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 419	tx_ring->size = ALIGN(tx_ring->size, 4096);
 420
 421	tx_ring->desc = dma_alloc_coherent(&pdev->dev, tx_ring->size,
 422					   &tx_ring->dma, GFP_KERNEL);
 423
 424	if (!tx_ring->desc)
 425		goto err;
 426
 427	tx_ring->adapter = adapter;
 428	tx_ring->next_to_use = 0;
 429	tx_ring->next_to_clean = 0;
 430
 431	return 0;
 432err:
 433	vfree(tx_ring->buffer_info);
 434	dev_err(&adapter->pdev->dev,
 435	        "Unable to allocate memory for the transmit descriptor ring\n");
 436	return -ENOMEM;
 437}
 438
 439/**
 440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
 441 * @adapter: board private structure
 442 *
 443 * Returns 0 on success, negative on failure
 444 **/
 445int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
 446			     struct igbvf_ring *rx_ring)
 447{
 448	struct pci_dev *pdev = adapter->pdev;
 449	int size, desc_len;
 450
 451	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 452	rx_ring->buffer_info = vzalloc(size);
 453	if (!rx_ring->buffer_info)
 454		goto err;
 455
 456	desc_len = sizeof(union e1000_adv_rx_desc);
 457
 458	/* Round up to nearest 4K */
 459	rx_ring->size = rx_ring->count * desc_len;
 460	rx_ring->size = ALIGN(rx_ring->size, 4096);
 461
 462	rx_ring->desc = dma_alloc_coherent(&pdev->dev, rx_ring->size,
 463					   &rx_ring->dma, GFP_KERNEL);
 464
 465	if (!rx_ring->desc)
 466		goto err;
 467
 468	rx_ring->next_to_clean = 0;
 469	rx_ring->next_to_use = 0;
 470
 471	rx_ring->adapter = adapter;
 472
 473	return 0;
 474
 475err:
 476	vfree(rx_ring->buffer_info);
 477	rx_ring->buffer_info = NULL;
 478	dev_err(&adapter->pdev->dev,
 479	        "Unable to allocate memory for the receive descriptor ring\n");
 480	return -ENOMEM;
 481}
 482
 483/**
 484 * igbvf_clean_tx_ring - Free Tx Buffers
 485 * @tx_ring: ring to be cleaned
 486 **/
 487static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
 488{
 489	struct igbvf_adapter *adapter = tx_ring->adapter;
 490	struct igbvf_buffer *buffer_info;
 491	unsigned long size;
 492	unsigned int i;
 493
 494	if (!tx_ring->buffer_info)
 495		return;
 496
 497	/* Free all the Tx ring sk_buffs */
 498	for (i = 0; i < tx_ring->count; i++) {
 499		buffer_info = &tx_ring->buffer_info[i];
 500		igbvf_put_txbuf(adapter, buffer_info);
 501	}
 502
 503	size = sizeof(struct igbvf_buffer) * tx_ring->count;
 504	memset(tx_ring->buffer_info, 0, size);
 505
 506	/* Zero out the descriptor ring */
 507	memset(tx_ring->desc, 0, tx_ring->size);
 508
 509	tx_ring->next_to_use = 0;
 510	tx_ring->next_to_clean = 0;
 511
 512	writel(0, adapter->hw.hw_addr + tx_ring->head);
 513	writel(0, adapter->hw.hw_addr + tx_ring->tail);
 514}
 515
 516/**
 517 * igbvf_free_tx_resources - Free Tx Resources per Queue
 518 * @tx_ring: ring to free resources from
 519 *
 520 * Free all transmit software resources
 521 **/
 522void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
 523{
 524	struct pci_dev *pdev = tx_ring->adapter->pdev;
 525
 526	igbvf_clean_tx_ring(tx_ring);
 527
 528	vfree(tx_ring->buffer_info);
 529	tx_ring->buffer_info = NULL;
 530
 531	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
 532			  tx_ring->dma);
 533
 534	tx_ring->desc = NULL;
 535}
 536
 537/**
 538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
 539 * @adapter: board private structure
 540 **/
 541static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
 542{
 543	struct igbvf_adapter *adapter = rx_ring->adapter;
 544	struct igbvf_buffer *buffer_info;
 545	struct pci_dev *pdev = adapter->pdev;
 546	unsigned long size;
 547	unsigned int i;
 548
 549	if (!rx_ring->buffer_info)
 550		return;
 551
 552	/* Free all the Rx ring sk_buffs */
 553	for (i = 0; i < rx_ring->count; i++) {
 554		buffer_info = &rx_ring->buffer_info[i];
 555		if (buffer_info->dma) {
 556			if (adapter->rx_ps_hdr_size){
 557				dma_unmap_single(&pdev->dev, buffer_info->dma,
 558				                 adapter->rx_ps_hdr_size,
 559						 DMA_FROM_DEVICE);
 560			} else {
 561				dma_unmap_single(&pdev->dev, buffer_info->dma,
 562				                 adapter->rx_buffer_len,
 563						 DMA_FROM_DEVICE);
 564			}
 565			buffer_info->dma = 0;
 566		}
 567
 568		if (buffer_info->skb) {
 569			dev_kfree_skb(buffer_info->skb);
 570			buffer_info->skb = NULL;
 571		}
 572
 573		if (buffer_info->page) {
 574			if (buffer_info->page_dma)
 575				dma_unmap_page(&pdev->dev,
 576					       buffer_info->page_dma,
 577				               PAGE_SIZE / 2,
 578					       DMA_FROM_DEVICE);
 579			put_page(buffer_info->page);
 580			buffer_info->page = NULL;
 581			buffer_info->page_dma = 0;
 582			buffer_info->page_offset = 0;
 583		}
 584	}
 585
 586	size = sizeof(struct igbvf_buffer) * rx_ring->count;
 587	memset(rx_ring->buffer_info, 0, size);
 588
 589	/* Zero out the descriptor ring */
 590	memset(rx_ring->desc, 0, rx_ring->size);
 591
 592	rx_ring->next_to_clean = 0;
 593	rx_ring->next_to_use = 0;
 594
 595	writel(0, adapter->hw.hw_addr + rx_ring->head);
 596	writel(0, adapter->hw.hw_addr + rx_ring->tail);
 597}
 598
 599/**
 600 * igbvf_free_rx_resources - Free Rx Resources
 601 * @rx_ring: ring to clean the resources from
 602 *
 603 * Free all receive software resources
 604 **/
 605
 606void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
 607{
 608	struct pci_dev *pdev = rx_ring->adapter->pdev;
 609
 610	igbvf_clean_rx_ring(rx_ring);
 611
 612	vfree(rx_ring->buffer_info);
 613	rx_ring->buffer_info = NULL;
 614
 615	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
 616	                  rx_ring->dma);
 617	rx_ring->desc = NULL;
 618}
 619
 620/**
 621 * igbvf_update_itr - update the dynamic ITR value based on statistics
 622 * @adapter: pointer to adapter
 623 * @itr_setting: current adapter->itr
 624 * @packets: the number of packets during this measurement interval
 625 * @bytes: the number of bytes during this measurement interval
 626 *
 627 *      Stores a new ITR value based on packets and byte
 628 *      counts during the last interrupt.  The advantage of per interrupt
 629 *      computation is faster updates and more accurate ITR for the current
 630 *      traffic pattern.  Constants in this function were computed
 631 *      based on theoretical maximum wire speed and thresholds were set based
 632 *      on testing data as well as attempting to minimize response time
 633 *      while increasing bulk throughput.  This functionality is controlled
 634 *      by the InterruptThrottleRate module parameter.
 635 **/
 636static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
 637                                     u16 itr_setting, int packets,
 638                                     int bytes)
 639{
 640	unsigned int retval = itr_setting;
 641
 642	if (packets == 0)
 643		goto update_itr_done;
 644
 645	switch (itr_setting) {
 646	case lowest_latency:
 647		/* handle TSO and jumbo frames */
 648		if (bytes/packets > 8000)
 649			retval = bulk_latency;
 650		else if ((packets < 5) && (bytes > 512))
 651			retval = low_latency;
 652		break;
 653	case low_latency:  /* 50 usec aka 20000 ints/s */
 654		if (bytes > 10000) {
 655			/* this if handles the TSO accounting */
 656			if (bytes/packets > 8000)
 657				retval = bulk_latency;
 658			else if ((packets < 10) || ((bytes/packets) > 1200))
 659				retval = bulk_latency;
 660			else if ((packets > 35))
 661				retval = lowest_latency;
 662		} else if (bytes/packets > 2000) {
 663			retval = bulk_latency;
 664		} else if (packets <= 2 && bytes < 512) {
 665			retval = lowest_latency;
 666		}
 667		break;
 668	case bulk_latency: /* 250 usec aka 4000 ints/s */
 669		if (bytes > 25000) {
 670			if (packets > 35)
 671				retval = low_latency;
 672		} else if (bytes < 6000) {
 673			retval = low_latency;
 674		}
 675		break;
 676	}
 677
 678update_itr_done:
 679	return retval;
 680}
 681
 682static void igbvf_set_itr(struct igbvf_adapter *adapter)
 683{
 684	struct e1000_hw *hw = &adapter->hw;
 685	u16 current_itr;
 686	u32 new_itr = adapter->itr;
 687
 688	adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
 689	                                   adapter->total_tx_packets,
 690	                                   adapter->total_tx_bytes);
 691	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 692	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
 693		adapter->tx_itr = low_latency;
 694
 695	adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
 696	                                   adapter->total_rx_packets,
 697	                                   adapter->total_rx_bytes);
 698	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 699	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
 700		adapter->rx_itr = low_latency;
 701
 702	current_itr = max(adapter->rx_itr, adapter->tx_itr);
 703
 704	switch (current_itr) {
 705	/* counts and packets in update_itr are dependent on these numbers */
 706	case lowest_latency:
 707		new_itr = 70000;
 708		break;
 709	case low_latency:
 710		new_itr = 20000; /* aka hwitr = ~200 */
 711		break;
 712	case bulk_latency:
 713		new_itr = 4000;
 714		break;
 715	default:
 716		break;
 717	}
 718
 719	if (new_itr != adapter->itr) {
 720		/*
 721		 * this attempts to bias the interrupt rate towards Bulk
 722		 * by adding intermediate steps when interrupt rate is
 723		 * increasing
 724		 */
 725		new_itr = new_itr > adapter->itr ?
 726		             min(adapter->itr + (new_itr >> 2), new_itr) :
 727		             new_itr;
 728		adapter->itr = new_itr;
 729		adapter->rx_ring->itr_val = 1952;
 730
 731		if (adapter->msix_entries)
 732			adapter->rx_ring->set_itr = 1;
 733		else
 734			ew32(ITR, 1952);
 735	}
 736}
 737
 738/**
 739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
 740 * @adapter: board private structure
 741 * returns true if ring is completely cleaned
 742 **/
 743static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
 744{
 745	struct igbvf_adapter *adapter = tx_ring->adapter;
 746	struct net_device *netdev = adapter->netdev;
 747	struct igbvf_buffer *buffer_info;
 748	struct sk_buff *skb;
 749	union e1000_adv_tx_desc *tx_desc, *eop_desc;
 750	unsigned int total_bytes = 0, total_packets = 0;
 751	unsigned int i, eop, count = 0;
 752	bool cleaned = false;
 753
 754	i = tx_ring->next_to_clean;
 755	eop = tx_ring->buffer_info[i].next_to_watch;
 756	eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 757
 758	while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
 759	       (count < tx_ring->count)) {
 760		rmb();	/* read buffer_info after eop_desc status */
 761		for (cleaned = false; !cleaned; count++) {
 762			tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
 763			buffer_info = &tx_ring->buffer_info[i];
 764			cleaned = (i == eop);
 765			skb = buffer_info->skb;
 766
 767			if (skb) {
 768				unsigned int segs, bytecount;
 769
 770				/* gso_segs is currently only valid for tcp */
 771				segs = skb_shinfo(skb)->gso_segs ?: 1;
 772				/* multiply data chunks by size of headers */
 773				bytecount = ((segs - 1) * skb_headlen(skb)) +
 774				            skb->len;
 775				total_packets += segs;
 776				total_bytes += bytecount;
 777			}
 778
 779			igbvf_put_txbuf(adapter, buffer_info);
 780			tx_desc->wb.status = 0;
 781
 782			i++;
 783			if (i == tx_ring->count)
 784				i = 0;
 785		}
 786		eop = tx_ring->buffer_info[i].next_to_watch;
 787		eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
 788	}
 789
 790	tx_ring->next_to_clean = i;
 791
 792	if (unlikely(count &&
 793	             netif_carrier_ok(netdev) &&
 794	             igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
 795		/* Make sure that anybody stopping the queue after this
 796		 * sees the new next_to_clean.
 797		 */
 798		smp_mb();
 799		if (netif_queue_stopped(netdev) &&
 800		    !(test_bit(__IGBVF_DOWN, &adapter->state))) {
 801			netif_wake_queue(netdev);
 802			++adapter->restart_queue;
 803		}
 804	}
 805
 806	adapter->net_stats.tx_bytes += total_bytes;
 807	adapter->net_stats.tx_packets += total_packets;
 808	return count < tx_ring->count;
 809}
 810
 811static irqreturn_t igbvf_msix_other(int irq, void *data)
 812{
 813	struct net_device *netdev = data;
 814	struct igbvf_adapter *adapter = netdev_priv(netdev);
 815	struct e1000_hw *hw = &adapter->hw;
 816
 817	adapter->int_counter1++;
 818
 819	netif_carrier_off(netdev);
 820	hw->mac.get_link_status = 1;
 821	if (!test_bit(__IGBVF_DOWN, &adapter->state))
 822		mod_timer(&adapter->watchdog_timer, jiffies + 1);
 823
 824	ew32(EIMS, adapter->eims_other);
 825
 826	return IRQ_HANDLED;
 827}
 828
 829static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
 830{
 831	struct net_device *netdev = data;
 832	struct igbvf_adapter *adapter = netdev_priv(netdev);
 833	struct e1000_hw *hw = &adapter->hw;
 834	struct igbvf_ring *tx_ring = adapter->tx_ring;
 835
 836
 837	adapter->total_tx_bytes = 0;
 838	adapter->total_tx_packets = 0;
 839
 840	/* auto mask will automatically reenable the interrupt when we write
 841	 * EICS */
 842	if (!igbvf_clean_tx_irq(tx_ring))
 843		/* Ring was not completely cleaned, so fire another interrupt */
 844		ew32(EICS, tx_ring->eims_value);
 845	else
 846		ew32(EIMS, tx_ring->eims_value);
 847
 848	return IRQ_HANDLED;
 849}
 850
 851static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
 852{
 853	struct net_device *netdev = data;
 854	struct igbvf_adapter *adapter = netdev_priv(netdev);
 855
 856	adapter->int_counter0++;
 857
 858	/* Write the ITR value calculated at the end of the
 859	 * previous interrupt.
 860	 */
 861	if (adapter->rx_ring->set_itr) {
 862		writel(adapter->rx_ring->itr_val,
 863		       adapter->hw.hw_addr + adapter->rx_ring->itr_register);
 864		adapter->rx_ring->set_itr = 0;
 865	}
 866
 867	if (napi_schedule_prep(&adapter->rx_ring->napi)) {
 868		adapter->total_rx_bytes = 0;
 869		adapter->total_rx_packets = 0;
 870		__napi_schedule(&adapter->rx_ring->napi);
 871	}
 872
 873	return IRQ_HANDLED;
 874}
 875
 876#define IGBVF_NO_QUEUE -1
 877
 878static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
 879                                int tx_queue, int msix_vector)
 880{
 881	struct e1000_hw *hw = &adapter->hw;
 882	u32 ivar, index;
 883
 884	/* 82576 uses a table-based method for assigning vectors.
 885	   Each queue has a single entry in the table to which we write
 886	   a vector number along with a "valid" bit.  Sadly, the layout
 887	   of the table is somewhat counterintuitive. */
 888	if (rx_queue > IGBVF_NO_QUEUE) {
 889		index = (rx_queue >> 1);
 890		ivar = array_er32(IVAR0, index);
 891		if (rx_queue & 0x1) {
 892			/* vector goes into third byte of register */
 893			ivar = ivar & 0xFF00FFFF;
 894			ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
 895		} else {
 896			/* vector goes into low byte of register */
 897			ivar = ivar & 0xFFFFFF00;
 898			ivar |= msix_vector | E1000_IVAR_VALID;
 899		}
 900		adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
 901		array_ew32(IVAR0, index, ivar);
 902	}
 903	if (tx_queue > IGBVF_NO_QUEUE) {
 904		index = (tx_queue >> 1);
 905		ivar = array_er32(IVAR0, index);
 906		if (tx_queue & 0x1) {
 907			/* vector goes into high byte of register */
 908			ivar = ivar & 0x00FFFFFF;
 909			ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
 910		} else {
 911			/* vector goes into second byte of register */
 912			ivar = ivar & 0xFFFF00FF;
 913			ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
 914		}
 915		adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
 916		array_ew32(IVAR0, index, ivar);
 917	}
 918}
 919
 920/**
 921 * igbvf_configure_msix - Configure MSI-X hardware
 922 *
 923 * igbvf_configure_msix sets up the hardware to properly
 924 * generate MSI-X interrupts.
 925 **/
 926static void igbvf_configure_msix(struct igbvf_adapter *adapter)
 927{
 928	u32 tmp;
 929	struct e1000_hw *hw = &adapter->hw;
 930	struct igbvf_ring *tx_ring = adapter->tx_ring;
 931	struct igbvf_ring *rx_ring = adapter->rx_ring;
 932	int vector = 0;
 933
 934	adapter->eims_enable_mask = 0;
 935
 936	igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
 937	adapter->eims_enable_mask |= tx_ring->eims_value;
 938	if (tx_ring->itr_val)
 939		writel(tx_ring->itr_val,
 940		       hw->hw_addr + tx_ring->itr_register);
 941	else
 942		writel(1952, hw->hw_addr + tx_ring->itr_register);
 943
 944	igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
 945	adapter->eims_enable_mask |= rx_ring->eims_value;
 946	if (rx_ring->itr_val)
 947		writel(rx_ring->itr_val,
 948		       hw->hw_addr + rx_ring->itr_register);
 949	else
 950		writel(1952, hw->hw_addr + rx_ring->itr_register);
 951
 952	/* set vector for other causes, i.e. link changes */
 953
 954	tmp = (vector++ | E1000_IVAR_VALID);
 955
 956	ew32(IVAR_MISC, tmp);
 957
 958	adapter->eims_enable_mask = (1 << (vector)) - 1;
 959	adapter->eims_other = 1 << (vector - 1);
 960	e1e_flush();
 961}
 962
 963static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
 964{
 965	if (adapter->msix_entries) {
 966		pci_disable_msix(adapter->pdev);
 967		kfree(adapter->msix_entries);
 968		adapter->msix_entries = NULL;
 969	}
 970}
 971
 972/**
 973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
 974 *
 975 * Attempt to configure interrupts using the best available
 976 * capabilities of the hardware and kernel.
 977 **/
 978static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
 979{
 980	int err = -ENOMEM;
 981	int i;
 982
 983	/* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
 984	adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
 985	                                GFP_KERNEL);
 986	if (adapter->msix_entries) {
 987		for (i = 0; i < 3; i++)
 988			adapter->msix_entries[i].entry = i;
 989
 990		err = pci_enable_msix(adapter->pdev,
 991		                      adapter->msix_entries, 3);
 992	}
 993
 994	if (err) {
 995		/* MSI-X failed */
 996		dev_err(&adapter->pdev->dev,
 997		        "Failed to initialize MSI-X interrupts.\n");
 998		igbvf_reset_interrupt_capability(adapter);
 999	}
1000}
1001
1002/**
1003 * igbvf_request_msix - Initialize MSI-X interrupts
1004 *
1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1006 * kernel.
1007 **/
1008static int igbvf_request_msix(struct igbvf_adapter *adapter)
1009{
1010	struct net_device *netdev = adapter->netdev;
1011	int err = 0, vector = 0;
1012
1013	if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1014		sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1015		sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1016	} else {
1017		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1018		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1019	}
1020
1021	err = request_irq(adapter->msix_entries[vector].vector,
1022	                  igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1023	                  netdev);
1024	if (err)
1025		goto out;
1026
1027	adapter->tx_ring->itr_register = E1000_EITR(vector);
1028	adapter->tx_ring->itr_val = 1952;
1029	vector++;
1030
1031	err = request_irq(adapter->msix_entries[vector].vector,
1032	                  igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1033	                  netdev);
1034	if (err)
1035		goto out;
1036
1037	adapter->rx_ring->itr_register = E1000_EITR(vector);
1038	adapter->rx_ring->itr_val = 1952;
1039	vector++;
1040
1041	err = request_irq(adapter->msix_entries[vector].vector,
1042	                  igbvf_msix_other, 0, netdev->name, netdev);
1043	if (err)
1044		goto out;
1045
1046	igbvf_configure_msix(adapter);
1047	return 0;
1048out:
1049	return err;
1050}
1051
1052/**
1053 * igbvf_alloc_queues - Allocate memory for all rings
1054 * @adapter: board private structure to initialize
1055 **/
1056static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1057{
1058	struct net_device *netdev = adapter->netdev;
1059
1060	adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1061	if (!adapter->tx_ring)
1062		return -ENOMEM;
1063
1064	adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1065	if (!adapter->rx_ring) {
1066		kfree(adapter->tx_ring);
1067		return -ENOMEM;
1068	}
1069
1070	netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1071
1072	return 0;
1073}
1074
1075/**
1076 * igbvf_request_irq - initialize interrupts
1077 *
1078 * Attempts to configure interrupts using the best available
1079 * capabilities of the hardware and kernel.
1080 **/
1081static int igbvf_request_irq(struct igbvf_adapter *adapter)
1082{
1083	int err = -1;
1084
1085	/* igbvf supports msi-x only */
1086	if (adapter->msix_entries)
1087		err = igbvf_request_msix(adapter);
1088
1089	if (!err)
1090		return err;
1091
1092	dev_err(&adapter->pdev->dev,
1093	        "Unable to allocate interrupt, Error: %d\n", err);
1094
1095	return err;
1096}
1097
1098static void igbvf_free_irq(struct igbvf_adapter *adapter)
1099{
1100	struct net_device *netdev = adapter->netdev;
1101	int vector;
1102
1103	if (adapter->msix_entries) {
1104		for (vector = 0; vector < 3; vector++)
1105			free_irq(adapter->msix_entries[vector].vector, netdev);
1106	}
1107}
1108
1109/**
1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1111 **/
1112static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1113{
1114	struct e1000_hw *hw = &adapter->hw;
1115
1116	ew32(EIMC, ~0);
1117
1118	if (adapter->msix_entries)
1119		ew32(EIAC, 0);
1120}
1121
1122/**
1123 * igbvf_irq_enable - Enable default interrupt generation settings
1124 **/
1125static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1126{
1127	struct e1000_hw *hw = &adapter->hw;
1128
1129	ew32(EIAC, adapter->eims_enable_mask);
1130	ew32(EIAM, adapter->eims_enable_mask);
1131	ew32(EIMS, adapter->eims_enable_mask);
1132}
1133
1134/**
1135 * igbvf_poll - NAPI Rx polling callback
1136 * @napi: struct associated with this polling callback
1137 * @budget: amount of packets driver is allowed to process this poll
1138 **/
1139static int igbvf_poll(struct napi_struct *napi, int budget)
1140{
1141	struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1142	struct igbvf_adapter *adapter = rx_ring->adapter;
1143	struct e1000_hw *hw = &adapter->hw;
1144	int work_done = 0;
1145
1146	igbvf_clean_rx_irq(adapter, &work_done, budget);
1147
1148	/* If not enough Rx work done, exit the polling mode */
1149	if (work_done < budget) {
1150		napi_complete(napi);
1151
1152		if (adapter->itr_setting & 3)
1153			igbvf_set_itr(adapter);
1154
1155		if (!test_bit(__IGBVF_DOWN, &adapter->state))
1156			ew32(EIMS, adapter->rx_ring->eims_value);
1157	}
1158
1159	return work_done;
1160}
1161
1162/**
1163 * igbvf_set_rlpml - set receive large packet maximum length
1164 * @adapter: board private structure
1165 *
1166 * Configure the maximum size of packets that will be received
1167 */
1168static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1169{
1170	int max_frame_size;
1171	struct e1000_hw *hw = &adapter->hw;
1172
1173	max_frame_size = adapter->max_frame_size + VLAN_TAG_SIZE;
1174	e1000_rlpml_set_vf(hw, max_frame_size);
1175}
1176
1177static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1178{
1179	struct igbvf_adapter *adapter = netdev_priv(netdev);
1180	struct e1000_hw *hw = &adapter->hw;
1181
1182	if (hw->mac.ops.set_vfta(hw, vid, true))
1183		dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1184	else
1185		set_bit(vid, adapter->active_vlans);
1186}
1187
1188static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1189{
1190	struct igbvf_adapter *adapter = netdev_priv(netdev);
1191	struct e1000_hw *hw = &adapter->hw;
1192
1193	igbvf_irq_disable(adapter);
1194
1195	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1196		igbvf_irq_enable(adapter);
1197
1198	if (hw->mac.ops.set_vfta(hw, vid, false))
1199		dev_err(&adapter->pdev->dev,
1200		        "Failed to remove vlan id %d\n", vid);
1201	else
1202		clear_bit(vid, adapter->active_vlans);
1203}
1204
1205static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1206{
1207	u16 vid;
1208
1209	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
1210		igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1211}
1212
1213/**
1214 * igbvf_configure_tx - Configure Transmit Unit after Reset
1215 * @adapter: board private structure
1216 *
1217 * Configure the Tx unit of the MAC after a reset.
1218 **/
1219static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1220{
1221	struct e1000_hw *hw = &adapter->hw;
1222	struct igbvf_ring *tx_ring = adapter->tx_ring;
1223	u64 tdba;
1224	u32 txdctl, dca_txctrl;
1225
1226	/* disable transmits */
1227	txdctl = er32(TXDCTL(0));
1228	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1229	e1e_flush();
1230	msleep(10);
1231
1232	/* Setup the HW Tx Head and Tail descriptor pointers */
1233	ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1234	tdba = tx_ring->dma;
1235	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
1236	ew32(TDBAH(0), (tdba >> 32));
1237	ew32(TDH(0), 0);
1238	ew32(TDT(0), 0);
1239	tx_ring->head = E1000_TDH(0);
1240	tx_ring->tail = E1000_TDT(0);
1241
1242	/* Turn off Relaxed Ordering on head write-backs.  The writebacks
1243	 * MUST be delivered in order or it will completely screw up
1244	 * our bookeeping.
1245	 */
1246	dca_txctrl = er32(DCA_TXCTRL(0));
1247	dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1248	ew32(DCA_TXCTRL(0), dca_txctrl);
1249
1250	/* enable transmits */
1251	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1252	ew32(TXDCTL(0), txdctl);
1253
1254	/* Setup Transmit Descriptor Settings for eop descriptor */
1255	adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1256
1257	/* enable Report Status bit */
1258	adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1259}
1260
1261/**
1262 * igbvf_setup_srrctl - configure the receive control registers
1263 * @adapter: Board private structure
1264 **/
1265static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1266{
1267	struct e1000_hw *hw = &adapter->hw;
1268	u32 srrctl = 0;
1269
1270	srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1271	            E1000_SRRCTL_BSIZEHDR_MASK |
1272	            E1000_SRRCTL_BSIZEPKT_MASK);
1273
1274	/* Enable queue drop to avoid head of line blocking */
1275	srrctl |= E1000_SRRCTL_DROP_EN;
1276
1277	/* Setup buffer sizes */
1278	srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1279	          E1000_SRRCTL_BSIZEPKT_SHIFT;
1280
1281	if (adapter->rx_buffer_len < 2048) {
1282		adapter->rx_ps_hdr_size = 0;
1283		srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1284	} else {
1285		adapter->rx_ps_hdr_size = 128;
1286		srrctl |= adapter->rx_ps_hdr_size <<
1287		          E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1288		srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1289	}
1290
1291	ew32(SRRCTL(0), srrctl);
1292}
1293
1294/**
1295 * igbvf_configure_rx - Configure Receive Unit after Reset
1296 * @adapter: board private structure
1297 *
1298 * Configure the Rx unit of the MAC after a reset.
1299 **/
1300static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1301{
1302	struct e1000_hw *hw = &adapter->hw;
1303	struct igbvf_ring *rx_ring = adapter->rx_ring;
1304	u64 rdba;
1305	u32 rdlen, rxdctl;
1306
1307	/* disable receives */
1308	rxdctl = er32(RXDCTL(0));
1309	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1310	e1e_flush();
1311	msleep(10);
1312
1313	rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1314
1315	/*
1316	 * Setup the HW Rx Head and Tail Descriptor Pointers and
1317	 * the Base and Length of the Rx Descriptor Ring
1318	 */
1319	rdba = rx_ring->dma;
1320	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
1321	ew32(RDBAH(0), (rdba >> 32));
1322	ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1323	rx_ring->head = E1000_RDH(0);
1324	rx_ring->tail = E1000_RDT(0);
1325	ew32(RDH(0), 0);
1326	ew32(RDT(0), 0);
1327
1328	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1329	rxdctl &= 0xFFF00000;
1330	rxdctl |= IGBVF_RX_PTHRESH;
1331	rxdctl |= IGBVF_RX_HTHRESH << 8;
1332	rxdctl |= IGBVF_RX_WTHRESH << 16;
1333
1334	igbvf_set_rlpml(adapter);
1335
1336	/* enable receives */
1337	ew32(RXDCTL(0), rxdctl);
1338}
1339
1340/**
1341 * igbvf_set_multi - Multicast and Promiscuous mode set
1342 * @netdev: network interface device structure
1343 *
1344 * The set_multi entry point is called whenever the multicast address
1345 * list or the network interface flags are updated.  This routine is
1346 * responsible for configuring the hardware for proper multicast,
1347 * promiscuous mode, and all-multi behavior.
1348 **/
1349static void igbvf_set_multi(struct net_device *netdev)
1350{
1351	struct igbvf_adapter *adapter = netdev_priv(netdev);
1352	struct e1000_hw *hw = &adapter->hw;
1353	struct netdev_hw_addr *ha;
1354	u8  *mta_list = NULL;
1355	int i;
1356
1357	if (!netdev_mc_empty(netdev)) {
1358		mta_list = kmalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
1359		if (!mta_list) {
1360			dev_err(&adapter->pdev->dev,
1361			        "failed to allocate multicast filter list\n");
1362			return;
1363		}
1364	}
1365
1366	/* prepare a packed array of only addresses. */
1367	i = 0;
1368	netdev_for_each_mc_addr(ha, netdev)
1369		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
1370
1371	hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1372	kfree(mta_list);
1373}
1374
1375/**
1376 * igbvf_configure - configure the hardware for Rx and Tx
1377 * @adapter: private board structure
1378 **/
1379static void igbvf_configure(struct igbvf_adapter *adapter)
1380{
1381	igbvf_set_multi(adapter->netdev);
1382
1383	igbvf_restore_vlan(adapter);
1384
1385	igbvf_configure_tx(adapter);
1386	igbvf_setup_srrctl(adapter);
1387	igbvf_configure_rx(adapter);
1388	igbvf_alloc_rx_buffers(adapter->rx_ring,
1389	                       igbvf_desc_unused(adapter->rx_ring));
1390}
1391
1392/* igbvf_reset - bring the hardware into a known good state
1393 *
1394 * This function boots the hardware and enables some settings that
1395 * require a configuration cycle of the hardware - those cannot be
1396 * set/changed during runtime. After reset the device needs to be
1397 * properly configured for Rx, Tx etc.
1398 */
1399static void igbvf_reset(struct igbvf_adapter *adapter)
1400{
1401	struct e1000_mac_info *mac = &adapter->hw.mac;
1402	struct net_device *netdev = adapter->netdev;
1403	struct e1000_hw *hw = &adapter->hw;
1404
1405	/* Allow time for pending master requests to run */
1406	if (mac->ops.reset_hw(hw))
1407		dev_err(&adapter->pdev->dev, "PF still resetting\n");
1408
1409	mac->ops.init_hw(hw);
1410
1411	if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1412		memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1413		       netdev->addr_len);
1414		memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1415		       netdev->addr_len);
1416	}
1417
1418	adapter->last_reset = jiffies;
1419}
1420
1421int igbvf_up(struct igbvf_adapter *adapter)
1422{
1423	struct e1000_hw *hw = &adapter->hw;
1424
1425	/* hardware has been reset, we need to reload some things */
1426	igbvf_configure(adapter);
1427
1428	clear_bit(__IGBVF_DOWN, &adapter->state);
1429
1430	napi_enable(&adapter->rx_ring->napi);
1431	if (adapter->msix_entries)
1432		igbvf_configure_msix(adapter);
1433
1434	/* Clear any pending interrupts. */
1435	er32(EICR);
1436	igbvf_irq_enable(adapter);
1437
1438	/* start the watchdog */
1439	hw->mac.get_link_status = 1;
1440	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1441
1442
1443	return 0;
1444}
1445
1446void igbvf_down(struct igbvf_adapter *adapter)
1447{
1448	struct net_device *netdev = adapter->netdev;
1449	struct e1000_hw *hw = &adapter->hw;
1450	u32 rxdctl, txdctl;
1451
1452	/*
1453	 * signal that we're down so the interrupt handler does not
1454	 * reschedule our watchdog timer
1455	 */
1456	set_bit(__IGBVF_DOWN, &adapter->state);
1457
1458	/* disable receives in the hardware */
1459	rxdctl = er32(RXDCTL(0));
1460	ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1461
1462	netif_stop_queue(netdev);
1463
1464	/* disable transmits in the hardware */
1465	txdctl = er32(TXDCTL(0));
1466	ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1467
1468	/* flush both disables and wait for them to finish */
1469	e1e_flush();
1470	msleep(10);
1471
1472	napi_disable(&adapter->rx_ring->napi);
1473
1474	igbvf_irq_disable(adapter);
1475
1476	del_timer_sync(&adapter->watchdog_timer);
1477
1478	netif_carrier_off(netdev);
1479
1480	/* record the stats before reset*/
1481	igbvf_update_stats(adapter);
1482
1483	adapter->link_speed = 0;
1484	adapter->link_duplex = 0;
1485
1486	igbvf_reset(adapter);
1487	igbvf_clean_tx_ring(adapter->tx_ring);
1488	igbvf_clean_rx_ring(adapter->rx_ring);
1489}
1490
1491void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1492{
1493	might_sleep();
1494	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1495		msleep(1);
1496	igbvf_down(adapter);
1497	igbvf_up(adapter);
1498	clear_bit(__IGBVF_RESETTING, &adapter->state);
1499}
1500
1501/**
1502 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1503 * @adapter: board private structure to initialize
1504 *
1505 * igbvf_sw_init initializes the Adapter private data structure.
1506 * Fields are initialized based on PCI device information and
1507 * OS network device settings (MTU size).
1508 **/
1509static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1510{
1511	struct net_device *netdev = adapter->netdev;
1512	s32 rc;
1513
1514	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1515	adapter->rx_ps_hdr_size = 0;
1516	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1517	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1518
1519	adapter->tx_int_delay = 8;
1520	adapter->tx_abs_int_delay = 32;
1521	adapter->rx_int_delay = 0;
1522	adapter->rx_abs_int_delay = 8;
1523	adapter->itr_setting = 3;
1524	adapter->itr = 20000;
1525
1526	/* Set various function pointers */
1527	adapter->ei->init_ops(&adapter->hw);
1528
1529	rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1530	if (rc)
1531		return rc;
1532
1533	rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1534	if (rc)
1535		return rc;
1536
1537	igbvf_set_interrupt_capability(adapter);
1538
1539	if (igbvf_alloc_queues(adapter))
1540		return -ENOMEM;
1541
1542	spin_lock_init(&adapter->tx_queue_lock);
1543
1544	/* Explicitly disable IRQ since the NIC can be in any state. */
1545	igbvf_irq_disable(adapter);
1546
1547	spin_lock_init(&adapter->stats_lock);
1548
1549	set_bit(__IGBVF_DOWN, &adapter->state);
1550	return 0;
1551}
1552
1553static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1554{
1555	struct e1000_hw *hw = &adapter->hw;
1556
1557	adapter->stats.last_gprc = er32(VFGPRC);
1558	adapter->stats.last_gorc = er32(VFGORC);
1559	adapter->stats.last_gptc = er32(VFGPTC);
1560	adapter->stats.last_gotc = er32(VFGOTC);
1561	adapter->stats.last_mprc = er32(VFMPRC);
1562	adapter->stats.last_gotlbc = er32(VFGOTLBC);
1563	adapter->stats.last_gptlbc = er32(VFGPTLBC);
1564	adapter->stats.last_gorlbc = er32(VFGORLBC);
1565	adapter->stats.last_gprlbc = er32(VFGPRLBC);
1566
1567	adapter->stats.base_gprc = er32(VFGPRC);
1568	adapter->stats.base_gorc = er32(VFGORC);
1569	adapter->stats.base_gptc = er32(VFGPTC);
1570	adapter->stats.base_gotc = er32(VFGOTC);
1571	adapter->stats.base_mprc = er32(VFMPRC);
1572	adapter->stats.base_gotlbc = er32(VFGOTLBC);
1573	adapter->stats.base_gptlbc = er32(VFGPTLBC);
1574	adapter->stats.base_gorlbc = er32(VFGORLBC);
1575	adapter->stats.base_gprlbc = er32(VFGPRLBC);
1576}
1577
1578/**
1579 * igbvf_open - Called when a network interface is made active
1580 * @netdev: network interface device structure
1581 *
1582 * Returns 0 on success, negative value on failure
1583 *
1584 * The open entry point is called when a network interface is made
1585 * active by the system (IFF_UP).  At this point all resources needed
1586 * for transmit and receive operations are allocated, the interrupt
1587 * handler is registered with the OS, the watchdog timer is started,
1588 * and the stack is notified that the interface is ready.
1589 **/
1590static int igbvf_open(struct net_device *netdev)
1591{
1592	struct igbvf_adapter *adapter = netdev_priv(netdev);
1593	struct e1000_hw *hw = &adapter->hw;
1594	int err;
1595
1596	/* disallow open during test */
1597	if (test_bit(__IGBVF_TESTING, &adapter->state))
1598		return -EBUSY;
1599
1600	/* allocate transmit descriptors */
1601	err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1602	if (err)
1603		goto err_setup_tx;
1604
1605	/* allocate receive descriptors */
1606	err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1607	if (err)
1608		goto err_setup_rx;
1609
1610	/*
1611	 * before we allocate an interrupt, we must be ready to handle it.
1612	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1613	 * as soon as we call pci_request_irq, so we have to setup our
1614	 * clean_rx handler before we do so.
1615	 */
1616	igbvf_configure(adapter);
1617
1618	err = igbvf_request_irq(adapter);
1619	if (err)
1620		goto err_req_irq;
1621
1622	/* From here on the code is the same as igbvf_up() */
1623	clear_bit(__IGBVF_DOWN, &adapter->state);
1624
1625	napi_enable(&adapter->rx_ring->napi);
1626
1627	/* clear any pending interrupts */
1628	er32(EICR);
1629
1630	igbvf_irq_enable(adapter);
1631
1632	/* start the watchdog */
1633	hw->mac.get_link_status = 1;
1634	mod_timer(&adapter->watchdog_timer, jiffies + 1);
1635
1636	return 0;
1637
1638err_req_irq:
1639	igbvf_free_rx_resources(adapter->rx_ring);
1640err_setup_rx:
1641	igbvf_free_tx_resources(adapter->tx_ring);
1642err_setup_tx:
1643	igbvf_reset(adapter);
1644
1645	return err;
1646}
1647
1648/**
1649 * igbvf_close - Disables a network interface
1650 * @netdev: network interface device structure
1651 *
1652 * Returns 0, this is not allowed to fail
1653 *
1654 * The close entry point is called when an interface is de-activated
1655 * by the OS.  The hardware is still under the drivers control, but
1656 * needs to be disabled.  A global MAC reset is issued to stop the
1657 * hardware, and all transmit and receive resources are freed.
1658 **/
1659static int igbvf_close(struct net_device *netdev)
1660{
1661	struct igbvf_adapter *adapter = netdev_priv(netdev);
1662
1663	WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1664	igbvf_down(adapter);
1665
1666	igbvf_free_irq(adapter);
1667
1668	igbvf_free_tx_resources(adapter->tx_ring);
1669	igbvf_free_rx_resources(adapter->rx_ring);
1670
1671	return 0;
1672}
1673/**
1674 * igbvf_set_mac - Change the Ethernet Address of the NIC
1675 * @netdev: network interface device structure
1676 * @p: pointer to an address structure
1677 *
1678 * Returns 0 on success, negative on failure
1679 **/
1680static int igbvf_set_mac(struct net_device *netdev, void *p)
1681{
1682	struct igbvf_adapter *adapter = netdev_priv(netdev);
1683	struct e1000_hw *hw = &adapter->hw;
1684	struct sockaddr *addr = p;
1685
1686	if (!is_valid_ether_addr(addr->sa_data))
1687		return -EADDRNOTAVAIL;
1688
1689	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1690
1691	hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1692
1693	if (memcmp(addr->sa_data, hw->mac.addr, 6))
1694		return -EADDRNOTAVAIL;
1695
1696	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1697
1698	return 0;
1699}
1700
1701#define UPDATE_VF_COUNTER(reg, name)                                    \
1702	{                                                               \
1703		u32 current_counter = er32(reg);                        \
1704		if (current_counter < adapter->stats.last_##name)       \
1705			adapter->stats.name += 0x100000000LL;           \
1706		adapter->stats.last_##name = current_counter;           \
1707		adapter->stats.name &= 0xFFFFFFFF00000000LL;            \
1708		adapter->stats.name |= current_counter;                 \
1709	}
1710
1711/**
1712 * igbvf_update_stats - Update the board statistics counters
1713 * @adapter: board private structure
1714**/
1715void igbvf_update_stats(struct igbvf_adapter *adapter)
1716{
1717	struct e1000_hw *hw = &adapter->hw;
1718	struct pci_dev *pdev = adapter->pdev;
1719
1720	/*
1721	 * Prevent stats update while adapter is being reset, link is down
1722	 * or if the pci connection is down.
1723	 */
1724	if (adapter->link_speed == 0)
1725		return;
1726
1727	if (test_bit(__IGBVF_RESETTING, &adapter->state))
1728		return;
1729
1730	if (pci_channel_offline(pdev))
1731		return;
1732
1733	UPDATE_VF_COUNTER(VFGPRC, gprc);
1734	UPDATE_VF_COUNTER(VFGORC, gorc);
1735	UPDATE_VF_COUNTER(VFGPTC, gptc);
1736	UPDATE_VF_COUNTER(VFGOTC, gotc);
1737	UPDATE_VF_COUNTER(VFMPRC, mprc);
1738	UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1739	UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1740	UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1741	UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1742
1743	/* Fill out the OS statistics structure */
1744	adapter->net_stats.multicast = adapter->stats.mprc;
1745}
1746
1747static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1748{
1749	dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1750	         adapter->link_speed,
1751	         ((adapter->link_duplex == FULL_DUPLEX) ?
1752	          "Full Duplex" : "Half Duplex"));
1753}
1754
1755static bool igbvf_has_link(struct igbvf_adapter *adapter)
1756{
1757	struct e1000_hw *hw = &adapter->hw;
1758	s32 ret_val = E1000_SUCCESS;
1759	bool link_active;
1760
1761	/* If interface is down, stay link down */
1762	if (test_bit(__IGBVF_DOWN, &adapter->state))
1763		return false;
1764
1765	ret_val = hw->mac.ops.check_for_link(hw);
1766	link_active = !hw->mac.get_link_status;
1767
1768	/* if check for link returns error we will need to reset */
1769	if (ret_val && time_after(jiffies, adapter->last_reset + (10 * HZ)))
1770		schedule_work(&adapter->reset_task);
1771
1772	return link_active;
1773}
1774
1775/**
1776 * igbvf_watchdog - Timer Call-back
1777 * @data: pointer to adapter cast into an unsigned long
1778 **/
1779static void igbvf_watchdog(unsigned long data)
1780{
1781	struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1782
1783	/* Do the rest outside of interrupt context */
1784	schedule_work(&adapter->watchdog_task);
1785}
1786
1787static void igbvf_watchdog_task(struct work_struct *work)
1788{
1789	struct igbvf_adapter *adapter = container_of(work,
1790	                                             struct igbvf_adapter,
1791	                                             watchdog_task);
1792	struct net_device *netdev = adapter->netdev;
1793	struct e1000_mac_info *mac = &adapter->hw.mac;
1794	struct igbvf_ring *tx_ring = adapter->tx_ring;
1795	struct e1000_hw *hw = &adapter->hw;
1796	u32 link;
1797	int tx_pending = 0;
1798
1799	link = igbvf_has_link(adapter);
1800
1801	if (link) {
1802		if (!netif_carrier_ok(netdev)) {
1803			mac->ops.get_link_up_info(&adapter->hw,
1804			                          &adapter->link_speed,
1805			                          &adapter->link_duplex);
1806			igbvf_print_link_info(adapter);
1807
1808			netif_carrier_on(netdev);
1809			netif_wake_queue(netdev);
1810		}
1811	} else {
1812		if (netif_carrier_ok(netdev)) {
1813			adapter->link_speed = 0;
1814			adapter->link_duplex = 0;
1815			dev_info(&adapter->pdev->dev, "Link is Down\n");
1816			netif_carrier_off(netdev);
1817			netif_stop_queue(netdev);
1818		}
1819	}
1820
1821	if (netif_carrier_ok(netdev)) {
1822		igbvf_update_stats(adapter);
1823	} else {
1824		tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1825		              tx_ring->count);
1826		if (tx_pending) {
1827			/*
1828			 * We've lost link, so the controller stops DMA,
1829			 * but we've got queued Tx work that's never going
1830			 * to get done, so reset controller to flush Tx.
1831			 * (Do the reset outside of interrupt context).
1832			 */
1833			adapter->tx_timeout_count++;
1834			schedule_work(&adapter->reset_task);
1835		}
1836	}
1837
1838	/* Cause software interrupt to ensure Rx ring is cleaned */
1839	ew32(EICS, adapter->rx_ring->eims_value);
1840
1841	/* Reset the timer */
1842	if (!test_bit(__IGBVF_DOWN, &adapter->state))
1843		mod_timer(&adapter->watchdog_timer,
1844			  round_jiffies(jiffies + (2 * HZ)));
1845}
1846
1847#define IGBVF_TX_FLAGS_CSUM             0x00000001
1848#define IGBVF_TX_FLAGS_VLAN             0x00000002
1849#define IGBVF_TX_FLAGS_TSO              0x00000004
1850#define IGBVF_TX_FLAGS_IPV4             0x00000008
1851#define IGBVF_TX_FLAGS_VLAN_MASK        0xffff0000
1852#define IGBVF_TX_FLAGS_VLAN_SHIFT       16
1853
1854static int igbvf_tso(struct igbvf_adapter *adapter,
1855                     struct igbvf_ring *tx_ring,
1856                     struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1857{
1858	struct e1000_adv_tx_context_desc *context_desc;
1859	unsigned int i;
1860	int err;
1861	struct igbvf_buffer *buffer_info;
1862	u32 info = 0, tu_cmd = 0;
1863	u32 mss_l4len_idx, l4len;
1864	*hdr_len = 0;
1865
1866	if (skb_header_cloned(skb)) {
1867		err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1868		if (err) {
1869			dev_err(&adapter->pdev->dev,
1870			        "igbvf_tso returning an error\n");
1871			return err;
1872		}
1873	}
1874
1875	l4len = tcp_hdrlen(skb);
1876	*hdr_len += l4len;
1877
1878	if (skb->protocol == htons(ETH_P_IP)) {
1879		struct iphdr *iph = ip_hdr(skb);
1880		iph->tot_len = 0;
1881		iph->check = 0;
1882		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1883		                                         iph->daddr, 0,
1884		                                         IPPROTO_TCP,
1885		                                         0);
1886	} else if (skb_is_gso_v6(skb)) {
1887		ipv6_hdr(skb)->payload_len = 0;
1888		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1889		                                       &ipv6_hdr(skb)->daddr,
1890		                                       0, IPPROTO_TCP, 0);
1891	}
1892
1893	i = tx_ring->next_to_use;
1894
1895	buffer_info = &tx_ring->buffer_info[i];
1896	context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1897	/* VLAN MACLEN IPLEN */
1898	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1899		info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1900	info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1901	*hdr_len += skb_network_offset(skb);
1902	info |= (skb_transport_header(skb) - skb_network_header(skb));
1903	*hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1904	context_desc->vlan_macip_lens = cpu_to_le32(info);
1905
1906	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907	tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1908
1909	if (skb->protocol == htons(ETH_P_IP))
1910		tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1911	tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1912
1913	context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1914
1915	/* MSS L4LEN IDX */
1916	mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1917	mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1918
1919	context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1920	context_desc->seqnum_seed = 0;
1921
1922	buffer_info->time_stamp = jiffies;
1923	buffer_info->next_to_watch = i;
1924	buffer_info->dma = 0;
1925	i++;
1926	if (i == tx_ring->count)
1927		i = 0;
1928
1929	tx_ring->next_to_use = i;
1930
1931	return true;
1932}
1933
1934static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
1935                                 struct igbvf_ring *tx_ring,
1936                                 struct sk_buff *skb, u32 tx_flags)
1937{
1938	struct e1000_adv_tx_context_desc *context_desc;
1939	unsigned int i;
1940	struct igbvf_buffer *buffer_info;
1941	u32 info = 0, tu_cmd = 0;
1942
1943	if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
1944	    (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
1945		i = tx_ring->next_to_use;
1946		buffer_info = &tx_ring->buffer_info[i];
1947		context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1948
1949		if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1950			info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1951
1952		info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1953		if (skb->ip_summed == CHECKSUM_PARTIAL)
1954			info |= (skb_transport_header(skb) -
1955			         skb_network_header(skb));
1956
1957
1958		context_desc->vlan_macip_lens = cpu_to_le32(info);
1959
1960		tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1961
1962		if (skb->ip_summed == CHECKSUM_PARTIAL) {
1963			switch (skb->protocol) {
1964			case __constant_htons(ETH_P_IP):
1965				tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1966				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
1967					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1968				break;
1969			case __constant_htons(ETH_P_IPV6):
1970				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
1971					tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1972				break;
1973			default:
1974				break;
1975			}
1976		}
1977
1978		context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1979		context_desc->seqnum_seed = 0;
1980		context_desc->mss_l4len_idx = 0;
1981
1982		buffer_info->time_stamp = jiffies;
1983		buffer_info->next_to_watch = i;
1984		buffer_info->dma = 0;
1985		i++;
1986		if (i == tx_ring->count)
1987			i = 0;
1988		tx_ring->next_to_use = i;
1989
1990		return true;
1991	}
1992
1993	return false;
1994}
1995
1996static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
1997{
1998	struct igbvf_adapter *adapter = netdev_priv(netdev);
1999
2000	/* there is enough descriptors then we don't need to worry  */
2001	if (igbvf_desc_unused(adapter->tx_ring) >= size)
2002		return 0;
2003
2004	netif_stop_queue(netdev);
2005
2006	smp_mb();
2007
2008	/* We need to check again just in case room has been made available */
2009	if (igbvf_desc_unused(adapter->tx_ring) < size)
2010		return -EBUSY;
2011
2012	netif_wake_queue(netdev);
2013
2014	++adapter->restart_queue;
2015	return 0;
2016}
2017
2018#define IGBVF_MAX_TXD_PWR       16
2019#define IGBVF_MAX_DATA_PER_TXD  (1 << IGBVF_MAX_TXD_PWR)
2020
2021static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2022                                   struct igbvf_ring *tx_ring,
2023                                   struct sk_buff *skb,
2024                                   unsigned int first)
2025{
2026	struct igbvf_buffer *buffer_info;
2027	struct pci_dev *pdev = adapter->pdev;
2028	unsigned int len = skb_headlen(skb);
2029	unsigned int count = 0, i;
2030	unsigned int f;
2031
2032	i = tx_ring->next_to_use;
2033
2034	buffer_info = &tx_ring->buffer_info[i];
2035	BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2036	buffer_info->length = len;
2037	/* set time_stamp *before* dma to help avoid a possible race */
2038	buffer_info->time_stamp = jiffies;
2039	buffer_info->next_to_watch = i;
2040	buffer_info->mapped_as_page = false;
2041	buffer_info->dma = dma_map_single(&pdev->dev, skb->data, len,
2042					  DMA_TO_DEVICE);
2043	if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2044		goto dma_error;
2045
2046
2047	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2048		struct skb_frag_struct *frag;
2049
2050		count++;
2051		i++;
2052		if (i == tx_ring->count)
2053			i = 0;
2054
2055		frag = &skb_shinfo(skb)->frags[f];
2056		len = frag->size;
2057
2058		buffer_info = &tx_ring->buffer_info[i];
2059		BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2060		buffer_info->length = len;
2061		buffer_info->time_stamp = jiffies;
2062		buffer_info->next_to_watch = i;
2063		buffer_info->mapped_as_page = true;
2064		buffer_info->dma = dma_map_page(&pdev->dev,
2065						frag->page,
2066						frag->page_offset,
2067						len,
2068						DMA_TO_DEVICE);
2069		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
2070			goto dma_error;
2071	}
2072
2073	tx_ring->buffer_info[i].skb = skb;
2074	tx_ring->buffer_info[first].next_to_watch = i;
2075
2076	return ++count;
2077
2078dma_error:
2079	dev_err(&pdev->dev, "TX DMA map failed\n");
2080
2081	/* clear timestamp and dma mappings for failed buffer_info mapping */
2082	buffer_info->dma = 0;
2083	buffer_info->time_stamp = 0;
2084	buffer_info->length = 0;
2085	buffer_info->next_to_watch = 0;
2086	buffer_info->mapped_as_page = false;
2087	if (count)
2088		count--;
2089
2090	/* clear timestamp and dma mappings for remaining portion of packet */
2091	while (count--) {
2092		if (i==0)
2093			i += tx_ring->count;
2094		i--;
2095		buffer_info = &tx_ring->buffer_info[i];
2096		igbvf_put_txbuf(adapter, buffer_info);
2097	}
2098
2099	return 0;
2100}
2101
2102static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2103                                      struct igbvf_ring *tx_ring,
2104                                      int tx_flags, int count, u32 paylen,
2105                                      u8 hdr_len)
2106{
2107	union e1000_adv_tx_desc *tx_desc = NULL;
2108	struct igbvf_buffer *buffer_info;
2109	u32 olinfo_status = 0, cmd_type_len;
2110	unsigned int i;
2111
2112	cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2113	                E1000_ADVTXD_DCMD_DEXT);
2114
2115	if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2116		cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2117
2118	if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2119		cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2120
2121		/* insert tcp checksum */
2122		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2123
2124		/* insert ip checksum */
2125		if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2126			olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2127
2128	} else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2129		olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2130	}
2131
2132	olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2133
2134	i = tx_ring->next_to_use;
2135	while (count--) {
2136		buffer_info = &tx_ring->buffer_info[i];
2137		tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2138		tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2139		tx_desc->read.cmd_type_len =
2140		         cpu_to_le32(cmd_type_len | buffer_info->length);
2141		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2142		i++;
2143		if (i == tx_ring->count)
2144			i = 0;
2145	}
2146
2147	tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2148	/* Force memory writes to complete before letting h/w
2149	 * know there are new descriptors to fetch.  (Only
2150	 * applicable for weak-ordered memory model archs,
2151	 * such as IA-64). */
2152	wmb();
2153
2154	tx_ring->next_to_use = i;
2155	writel(i, adapter->hw.hw_addr + tx_ring->tail);
2156	/* we need this if more than one processor can write to our tail
2157	 * at a time, it syncronizes IO on IA64/Altix systems */
2158	mmiowb();
2159}
2160
2161static netdev_tx_t igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2162					     struct net_device *netdev,
2163					     struct igbvf_ring *tx_ring)
2164{
2165	struct igbvf_adapter *adapter = netdev_priv(netdev);
2166	unsigned int first, tx_flags = 0;
2167	u8 hdr_len = 0;
2168	int count = 0;
2169	int tso = 0;
2170
2171	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2172		dev_kfree_skb_any(skb);
2173		return NETDEV_TX_OK;
2174	}
2175
2176	if (skb->len <= 0) {
2177		dev_kfree_skb_any(skb);
2178		return NETDEV_TX_OK;
2179	}
2180
2181	/*
2182	 * need: count + 4 desc gap to keep tail from touching
2183         *       + 2 desc gap to keep tail from touching head,
2184         *       + 1 desc for skb->data,
2185         *       + 1 desc for context descriptor,
2186	 * head, otherwise try next time
2187	 */
2188	if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2189		/* this is a hard error */
2190		return NETDEV_TX_BUSY;
2191	}
2192
2193	if (vlan_tx_tag_present(skb)) {
2194		tx_flags |= IGBVF_TX_FLAGS_VLAN;
2195		tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2196	}
2197
2198	if (skb->protocol == htons(ETH_P_IP))
2199		tx_flags |= IGBVF_TX_FLAGS_IPV4;
2200
2201	first = tx_ring->next_to_use;
2202
2203	tso = skb_is_gso(skb) ?
2204		igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2205	if (unlikely(tso < 0)) {
2206		dev_kfree_skb_any(skb);
2207		return NETDEV_TX_OK;
2208	}
2209
2210	if (tso)
2211		tx_flags |= IGBVF_TX_FLAGS_TSO;
2212	else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2213	         (skb->ip_summed == CHECKSUM_PARTIAL))
2214		tx_flags |= IGBVF_TX_FLAGS_CSUM;
2215
2216	/*
2217	 * count reflects descriptors mapped, if 0 then mapping error
2218	 * has occurred and we need to rewind the descriptor queue
2219	 */
2220	count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2221
2222	if (count) {
2223		igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2224		                   skb->len, hdr_len);
2225		/* Make sure there is space in the ring for the next send. */
2226		igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2227	} else {
2228		dev_kfree_skb_any(skb);
2229		tx_ring->buffer_info[first].time_stamp = 0;
2230		tx_ring->next_to_use = first;
2231	}
2232
2233	return NETDEV_TX_OK;
2234}
2235
2236static netdev_tx_t igbvf_xmit_frame(struct sk_buff *skb,
2237				    struct net_device *netdev)
2238{
2239	struct igbvf_adapter *adapter = netdev_priv(netdev);
2240	struct igbvf_ring *tx_ring;
2241
2242	if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2243		dev_kfree_skb_any(skb);
2244		return NETDEV_TX_OK;
2245	}
2246
2247	tx_ring = &adapter->tx_ring[0];
2248
2249	return igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2250}
2251
2252/**
2253 * igbvf_tx_timeout - Respond to a Tx Hang
2254 * @netdev: network interface device structure
2255 **/
2256static void igbvf_tx_timeout(struct net_device *netdev)
2257{
2258	struct igbvf_adapter *adapter = netdev_priv(netdev);
2259
2260	/* Do the reset outside of interrupt context */
2261	adapter->tx_timeout_count++;
2262	schedule_work(&adapter->reset_task);
2263}
2264
2265static void igbvf_reset_task(struct work_struct *work)
2266{
2267	struct igbvf_adapter *adapter;
2268	adapter = container_of(work, struct igbvf_adapter, reset_task);
2269
2270	igbvf_reinit_locked(adapter);
2271}
2272
2273/**
2274 * igbvf_get_stats - Get System Network Statistics
2275 * @netdev: network interface device structure
2276 *
2277 * Returns the address of the device statistics structure.
2278 * The statistics are actually updated from the timer callback.
2279 **/
2280static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2281{
2282	struct igbvf_adapter *adapter = netdev_priv(netdev);
2283
2284	/* only return the current stats */
2285	return &adapter->net_stats;
2286}
2287
2288/**
2289 * igbvf_change_mtu - Change the Maximum Transfer Unit
2290 * @netdev: network interface device structure
2291 * @new_mtu: new value for maximum frame size
2292 *
2293 * Returns 0 on success, negative on failure
2294 **/
2295static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2296{
2297	struct igbvf_adapter *adapter = netdev_priv(netdev);
2298	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2299
2300	if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2301		dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2302		return -EINVAL;
2303	}
2304
2305#define MAX_STD_JUMBO_FRAME_SIZE 9234
2306	if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2307		dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2308		return -EINVAL;
2309	}
2310
2311	while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2312		msleep(1);
2313	/* igbvf_down has a dependency on max_frame_size */
2314	adapter->max_frame_size = max_frame;
2315	if (netif_running(netdev))
2316		igbvf_down(adapter);
2317
2318	/*
2319	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2320	 * means we reserve 2 more, this pushes us to allocate from the next
2321	 * larger slab size.
2322	 * i.e. RXBUFFER_2048 --> size-4096 slab
2323	 * However with the new *_jumbo_rx* routines, jumbo receives will use
2324	 * fragmented skbs
2325	 */
2326
2327	if (max_frame <= 1024)
2328		adapter->rx_buffer_len = 1024;
2329	else if (max_frame <= 2048)
2330		adapter->rx_buffer_len = 2048;
2331	else
2332#if (PAGE_SIZE / 2) > 16384
2333		adapter->rx_buffer_len = 16384;
2334#else
2335		adapter->rx_buffer_len = PAGE_SIZE / 2;
2336#endif
2337
2338
2339	/* adjust allocation if LPE protects us, and we aren't using SBP */
2340	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2341	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2342		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2343		                         ETH_FCS_LEN;
2344
2345	dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2346	         netdev->mtu, new_mtu);
2347	netdev->mtu = new_mtu;
2348
2349	if (netif_running(netdev))
2350		igbvf_up(adapter);
2351	else
2352		igbvf_reset(adapter);
2353
2354	clear_bit(__IGBVF_RESETTING, &adapter->state);
2355
2356	return 0;
2357}
2358
2359static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2360{
2361	switch (cmd) {
2362	default:
2363		return -EOPNOTSUPP;
2364	}
2365}
2366
2367static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2368{
2369	struct net_device *netdev = pci_get_drvdata(pdev);
2370	struct igbvf_adapter *adapter = netdev_priv(netdev);
2371#ifdef CONFIG_PM
2372	int retval = 0;
2373#endif
2374
2375	netif_device_detach(netdev);
2376
2377	if (netif_running(netdev)) {
2378		WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2379		igbvf_down(adapter);
2380		igbvf_free_irq(adapter);
2381	}
2382
2383#ifdef CONFIG_PM
2384	retval = pci_save_state(pdev);
2385	if (retval)
2386		return retval;
2387#endif
2388
2389	pci_disable_device(pdev);
2390
2391	return 0;
2392}
2393
2394#ifdef CONFIG_PM
2395static int igbvf_resume(struct pci_dev *pdev)
2396{
2397	struct net_device *netdev = pci_get_drvdata(pdev);
2398	struct igbvf_adapter *adapter = netdev_priv(netdev);
2399	u32 err;
2400
2401	pci_restore_state(pdev);
2402	err = pci_enable_device_mem(pdev);
2403	if (err) {
2404		dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2405		return err;
2406	}
2407
2408	pci_set_master(pdev);
2409
2410	if (netif_running(netdev)) {
2411		err = igbvf_request_irq(adapter);
2412		if (err)
2413			return err;
2414	}
2415
2416	igbvf_reset(adapter);
2417
2418	if (netif_running(netdev))
2419		igbvf_up(adapter);
2420
2421	netif_device_attach(netdev);
2422
2423	return 0;
2424}
2425#endif
2426
2427static void igbvf_shutdown(struct pci_dev *pdev)
2428{
2429	igbvf_suspend(pdev, PMSG_SUSPEND);
2430}
2431
2432#ifdef CONFIG_NET_POLL_CONTROLLER
2433/*
2434 * Polling 'interrupt' - used by things like netconsole to send skbs
2435 * without having to re-enable interrupts. It's not called while
2436 * the interrupt routine is executing.
2437 */
2438static void igbvf_netpoll(struct net_device *netdev)
2439{
2440	struct igbvf_adapter *adapter = netdev_priv(netdev);
2441
2442	disable_irq(adapter->pdev->irq);
2443
2444	igbvf_clean_tx_irq(adapter->tx_ring);
2445
2446	enable_irq(adapter->pdev->irq);
2447}
2448#endif
2449
2450/**
2451 * igbvf_io_error_detected - called when PCI error is detected
2452 * @pdev: Pointer to PCI device
2453 * @state: The current pci connection state
2454 *
2455 * This function is called after a PCI bus error affecting
2456 * this device has been detected.
2457 */
2458static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2459                                                pci_channel_state_t state)
2460{
2461	struct net_device *netdev = pci_get_drvdata(pdev);
2462	struct igbvf_adapter *adapter = netdev_priv(netdev);
2463
2464	netif_device_detach(netdev);
2465
2466	if (state == pci_channel_io_perm_failure)
2467		return PCI_ERS_RESULT_DISCONNECT;
2468
2469	if (netif_running(netdev))
2470		igbvf_down(adapter);
2471	pci_disable_device(pdev);
2472
2473	/* Request a slot slot reset. */
2474	return PCI_ERS_RESULT_NEED_RESET;
2475}
2476
2477/**
2478 * igbvf_io_slot_reset - called after the pci bus has been reset.
2479 * @pdev: Pointer to PCI device
2480 *
2481 * Restart the card from scratch, as if from a cold-boot. Implementation
2482 * resembles the first-half of the igbvf_resume routine.
2483 */
2484static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2485{
2486	struct net_device *netdev = pci_get_drvdata(pdev);
2487	struct igbvf_adapter *adapter = netdev_priv(netdev);
2488
2489	if (pci_enable_device_mem(pdev)) {
2490		dev_err(&pdev->dev,
2491			"Cannot re-enable PCI device after reset.\n");
2492		return PCI_ERS_RESULT_DISCONNECT;
2493	}
2494	pci_set_master(pdev);
2495
2496	igbvf_reset(adapter);
2497
2498	return PCI_ERS_RESULT_RECOVERED;
2499}
2500
2501/**
2502 * igbvf_io_resume - called when traffic can start flowing again.
2503 * @pdev: Pointer to PCI device
2504 *
2505 * This callback is called when the error recovery driver tells us that
2506 * its OK to resume normal operation. Implementation resembles the
2507 * second-half of the igbvf_resume routine.
2508 */
2509static void igbvf_io_resume(struct pci_dev *pdev)
2510{
2511	struct net_device *netdev = pci_get_drvdata(pdev);
2512	struct igbvf_adapter *adapter = netdev_priv(netdev);
2513
2514	if (netif_running(netdev)) {
2515		if (igbvf_up(adapter)) {
2516			dev_err(&pdev->dev,
2517				"can't bring device back up after reset\n");
2518			return;
2519		}
2520	}
2521
2522	netif_device_attach(netdev);
2523}
2524
2525static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2526{
2527	struct e1000_hw *hw = &adapter->hw;
2528	struct net_device *netdev = adapter->netdev;
2529	struct pci_dev *pdev = adapter->pdev;
2530
2531	dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2532	dev_info(&pdev->dev, "Address: %pM\n", netdev->dev_addr);
2533	dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2534}
2535
2536static const struct net_device_ops igbvf_netdev_ops = {
2537	.ndo_open                       = igbvf_open,
2538	.ndo_stop                       = igbvf_close,
2539	.ndo_start_xmit                 = igbvf_xmit_frame,
2540	.ndo_get_stats                  = igbvf_get_stats,
2541	.ndo_set_multicast_list         = igbvf_set_multi,
2542	.ndo_set_mac_address            = igbvf_set_mac,
2543	.ndo_change_mtu                 = igbvf_change_mtu,
2544	.ndo_do_ioctl                   = igbvf_ioctl,
2545	.ndo_tx_timeout                 = igbvf_tx_timeout,
2546	.ndo_vlan_rx_add_vid            = igbvf_vlan_rx_add_vid,
2547	.ndo_vlan_rx_kill_vid           = igbvf_vlan_rx_kill_vid,
2548#ifdef CONFIG_NET_POLL_CONTROLLER
2549	.ndo_poll_controller            = igbvf_netpoll,
2550#endif
2551};
2552
2553/**
2554 * igbvf_probe - Device Initialization Routine
2555 * @pdev: PCI device information struct
2556 * @ent: entry in igbvf_pci_tbl
2557 *
2558 * Returns 0 on success, negative on failure
2559 *
2560 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2561 * The OS initialization, configuring of the adapter private structure,
2562 * and a hardware reset occur.
2563 **/
2564static int __devinit igbvf_probe(struct pci_dev *pdev,
2565                                 const struct pci_device_id *ent)
2566{
2567	struct net_device *netdev;
2568	struct igbvf_adapter *adapter;
2569	struct e1000_hw *hw;
2570	const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2571
2572	static int cards_found;
2573	int err, pci_using_dac;
2574
2575	err = pci_enable_device_mem(pdev);
2576	if (err)
2577		return err;
2578
2579	pci_using_dac = 0;
2580	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
2581	if (!err) {
2582		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
2583		if (!err)
2584			pci_using_dac = 1;
2585	} else {
2586		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
2587		if (err) {
2588			err = dma_set_coherent_mask(&pdev->dev,
2589						    DMA_BIT_MASK(32));
2590			if (err) {
2591				dev_err(&pdev->dev, "No usable DMA "
2592				        "configuration, aborting\n");
2593				goto err_dma;
2594			}
2595		}
2596	}
2597
2598	err = pci_request_regions(pdev, igbvf_driver_name);
2599	if (err)
2600		goto err_pci_reg;
2601
2602	pci_set_master(pdev);
2603
2604	err = -ENOMEM;
2605	netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2606	if (!netdev)
2607		goto err_alloc_etherdev;
2608
2609	SET_NETDEV_DEV(netdev, &pdev->dev);
2610
2611	pci_set_drvdata(pdev, netdev);
2612	adapter = netdev_priv(netdev);
2613	hw = &adapter->hw;
2614	adapter->netdev = netdev;
2615	adapter->pdev = pdev;
2616	adapter->ei = ei;
2617	adapter->pba = ei->pba;
2618	adapter->flags = ei->flags;
2619	adapter->hw.back = adapter;
2620	adapter->hw.mac.type = ei->mac;
2621	adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2622
2623	/* PCI config space info */
2624
2625	hw->vendor_id = pdev->vendor;
2626	hw->device_id = pdev->device;
2627	hw->subsystem_vendor_id = pdev->subsystem_vendor;
2628	hw->subsystem_device_id = pdev->subsystem_device;
2629	hw->revision_id = pdev->revision;
2630
2631	err = -EIO;
2632	adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2633	                              pci_resource_len(pdev, 0));
2634
2635	if (!adapter->hw.hw_addr)
2636		goto err_ioremap;
2637
2638	if (ei->get_variants) {
2639		err = ei->get_variants(adapter);
2640		if (err)
2641			goto err_ioremap;
2642	}
2643
2644	/* setup adapter struct */
2645	err = igbvf_sw_init(adapter);
2646	if (err)
2647		goto err_sw_init;
2648
2649	/* construct the net_device struct */
2650	netdev->netdev_ops = &igbvf_netdev_ops;
2651
2652	igbvf_set_ethtool_ops(netdev);
2653	netdev->watchdog_timeo = 5 * HZ;
2654	strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2655
2656	adapter->bd_number = cards_found++;
2657
2658	netdev->features = NETIF_F_SG |
2659	                   NETIF_F_IP_CSUM |
2660	                   NETIF_F_HW_VLAN_TX |
2661	                   NETIF_F_HW_VLAN_RX |
2662	                   NETIF_F_HW_VLAN_FILTER;
2663
2664	netdev->features |= NETIF_F_IPV6_CSUM;
2665	netdev->features |= NETIF_F_TSO;
2666	netdev->features |= NETIF_F_TSO6;
2667
2668	if (pci_using_dac)
2669		netdev->features |= NETIF_F_HIGHDMA;
2670
2671	netdev->vlan_features |= NETIF_F_TSO;
2672	netdev->vlan_features |= NETIF_F_TSO6;
2673	netdev->vlan_features |= NETIF_F_IP_CSUM;
2674	netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2675	netdev->vlan_features |= NETIF_F_SG;
2676
2677	/*reset the controller to put the device in a known good state */
2678	err = hw->mac.ops.reset_hw(hw);
2679	if (err) {
2680		dev_info(&pdev->dev,
2681			 "PF still in reset state, assigning new address."
2682			 " Is the PF interface up?\n");
2683		dev_hw_addr_random(adapter->netdev, hw->mac.addr);
2684	} else {
2685		err = hw->mac.ops.read_mac_addr(hw);
2686		if (err) {
2687			dev_err(&pdev->dev, "Error reading MAC address\n");
2688			goto err_hw_init;
2689		}
2690	}
2691
2692	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2693	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2694
2695	if (!is_valid_ether_addr(netdev->perm_addr)) {
2696		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
2697		        netdev->dev_addr);
2698		err = -EIO;
2699		goto err_hw_init;
2700	}
2701
2702	setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2703	            (unsigned long) adapter);
2704
2705	INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2706	INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2707
2708	/* ring size defaults */
2709	adapter->rx_ring->count = 1024;
2710	adapter->tx_ring->count = 1024;
2711
2712	/* reset the hardware with the new settings */
2713	igbvf_reset(adapter);
2714
2715	strcpy(netdev->name, "eth%d");
2716	err = register_netdev(netdev);
2717	if (err)
2718		goto err_hw_init;
2719
2720	/* tell the stack to leave us alone until igbvf_open() is called */
2721	netif_carrier_off(netdev);
2722	netif_stop_queue(netdev);
2723
2724	igbvf_print_device_info(adapter);
2725
2726	igbvf_initialize_last_counter_stats(adapter);
2727
2728	return 0;
2729
2730err_hw_init:
2731	kfree(adapter->tx_ring);
2732	kfree(adapter->rx_ring);
2733err_sw_init:
2734	igbvf_reset_interrupt_capability(adapter);
2735	iounmap(adapter->hw.hw_addr);
2736err_ioremap:
2737	free_netdev(netdev);
2738err_alloc_etherdev:
2739	pci_release_regions(pdev);
2740err_pci_reg:
2741err_dma:
2742	pci_disable_device(pdev);
2743	return err;
2744}
2745
2746/**
2747 * igbvf_remove - Device Removal Routine
2748 * @pdev: PCI device information struct
2749 *
2750 * igbvf_remove is called by the PCI subsystem to alert the driver
2751 * that it should release a PCI device.  The could be caused by a
2752 * Hot-Plug event, or because the driver is going to be removed from
2753 * memory.
2754 **/
2755static void __devexit igbvf_remove(struct pci_dev *pdev)
2756{
2757	struct net_device *netdev = pci_get_drvdata(pdev);
2758	struct igbvf_adapter *adapter = netdev_priv(netdev);
2759	struct e1000_hw *hw = &adapter->hw;
2760
2761	/*
2762	 * The watchdog timer may be rescheduled, so explicitly
2763	 * disable it from being rescheduled.
2764	 */
2765	set_bit(__IGBVF_DOWN, &adapter->state);
2766	del_timer_sync(&adapter->watchdog_timer);
2767
2768	cancel_work_sync(&adapter->reset_task);
2769	cancel_work_sync(&adapter->watchdog_task);
2770
2771	unregister_netdev(netdev);
2772
2773	igbvf_reset_interrupt_capability(adapter);
2774
2775	/*
2776	 * it is important to delete the napi struct prior to freeing the
2777	 * rx ring so that you do not end up with null pointer refs
2778	 */
2779	netif_napi_del(&adapter->rx_ring->napi);
2780	kfree(adapter->tx_ring);
2781	kfree(adapter->rx_ring);
2782
2783	iounmap(hw->hw_addr);
2784	if (hw->flash_address)
2785		iounmap(hw->flash_address);
2786	pci_release_regions(pdev);
2787
2788	free_netdev(netdev);
2789
2790	pci_disable_device(pdev);
2791}
2792
2793/* PCI Error Recovery (ERS) */
2794static struct pci_error_handlers igbvf_err_handler = {
2795	.error_detected = igbvf_io_error_detected,
2796	.slot_reset = igbvf_io_slot_reset,
2797	.resume = igbvf_io_resume,
2798};
2799
2800static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl) = {
2801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_VF), board_i350_vf },
2803	{ } /* terminate list */
2804};
2805MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2806
2807/* PCI Device API Driver */
2808static struct pci_driver igbvf_driver = {
2809	.name     = igbvf_driver_name,
2810	.id_table = igbvf_pci_tbl,
2811	.probe    = igbvf_probe,
2812	.remove   = __devexit_p(igbvf_remove),
2813#ifdef CONFIG_PM
2814	/* Power Management Hooks */
2815	.suspend  = igbvf_suspend,
2816	.resume   = igbvf_resume,
2817#endif
2818	.shutdown = igbvf_shutdown,
2819	.err_handler = &igbvf_err_handler
2820};
2821
2822/**
2823 * igbvf_init_module - Driver Registration Routine
2824 *
2825 * igbvf_init_module is the first routine called when the driver is
2826 * loaded. All it does is register with the PCI subsystem.
2827 **/
2828static int __init igbvf_init_module(void)
2829{
2830	int ret;
2831	printk(KERN_INFO "%s - version %s\n",
2832	       igbvf_driver_string, igbvf_driver_version);
2833	printk(KERN_INFO "%s\n", igbvf_copyright);
2834
2835	ret = pci_register_driver(&igbvf_driver);
2836
2837	return ret;
2838}
2839module_init(igbvf_init_module);
2840
2841/**
2842 * igbvf_exit_module - Driver Exit Cleanup Routine
2843 *
2844 * igbvf_exit_module is called just before the driver is removed
2845 * from memory.
2846 **/
2847static void __exit igbvf_exit_module(void)
2848{
2849	pci_unregister_driver(&igbvf_driver);
2850}
2851module_exit(igbvf_exit_module);
2852
2853
2854MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2855MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2856MODULE_LICENSE("GPL");
2857MODULE_VERSION(DRV_VERSION);
2858
2859/* netdev.c */