Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * 6pack.c	This module implements the 6pack protocol for kernel-based
  4 *		devices like TTY. It interfaces between a raw TTY and the
  5 *		kernel's AX.25 protocol layers.
  6 *
  7 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
  8 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
  9 *
 10 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
 11 *
 12 *		Laurence Culhane, <loz@holmes.demon.co.uk>
 13 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
 14 */
 15
 16#include <linux/module.h>
 17#include <linux/uaccess.h>
 
 18#include <linux/bitops.h>
 19#include <linux/string.h>
 20#include <linux/mm.h>
 21#include <linux/interrupt.h>
 22#include <linux/in.h>
 23#include <linux/tty.h>
 24#include <linux/errno.h>
 25#include <linux/netdevice.h>
 26#include <linux/timer.h>
 27#include <linux/slab.h>
 28#include <net/ax25.h>
 29#include <linux/etherdevice.h>
 30#include <linux/skbuff.h>
 31#include <linux/rtnetlink.h>
 32#include <linux/spinlock.h>
 33#include <linux/if_arp.h>
 34#include <linux/init.h>
 35#include <linux/ip.h>
 36#include <linux/tcp.h>
 37#include <linux/semaphore.h>
 38#include <linux/refcount.h>
 
 
 
 39
 40/* sixpack priority commands */
 41#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
 42#define SIXP_TX_URUN		0x48	/* transmit overrun */
 43#define SIXP_RX_ORUN		0x50	/* receive overrun */
 44#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
 45
 46#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
 47
 48/* masks to get certain bits out of the status bytes sent by the TNC */
 49
 50#define SIXP_CMD_MASK		0xC0
 51#define SIXP_CHN_MASK		0x07
 52#define SIXP_PRIO_CMD_MASK	0x80
 53#define SIXP_STD_CMD_MASK	0x40
 54#define SIXP_PRIO_DATA_MASK	0x38
 55#define SIXP_TX_MASK		0x20
 56#define SIXP_RX_MASK		0x10
 57#define SIXP_RX_DCD_MASK	0x18
 58#define SIXP_LEDS_ON		0x78
 59#define SIXP_LEDS_OFF		0x60
 60#define SIXP_CON		0x08
 61#define SIXP_STA		0x10
 62
 63#define SIXP_FOUND_TNC		0xe9
 64#define SIXP_CON_ON		0x68
 65#define SIXP_DCD_MASK		0x08
 66#define SIXP_DAMA_OFF		0
 67
 68/* default level 2 parameters */
 69#define SIXP_TXDELAY			25	/* 250 ms */
 70#define SIXP_PERSIST			50	/* in 256ths */
 71#define SIXP_SLOTTIME			10	/* 100 ms */
 72#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
 73#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
 74
 75/* 6pack configuration. */
 76#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
 77#define SIXP_MTU			256	/* Default MTU */
 78
 79enum sixpack_flags {
 80	SIXPF_ERROR,	/* Parity, etc. error	*/
 81};
 82
 83struct sixpack {
 84	/* Various fields. */
 85	struct tty_struct	*tty;		/* ptr to TTY structure	*/
 86	struct net_device	*dev;		/* easy for intr handling  */
 87
 88	/* These are pointers to the malloc()ed frame buffers. */
 
 89	int			rcount;         /* received chars counter  */
 90	unsigned char		*xbuff;		/* transmitter buffer	*/
 91	unsigned char		*xhead;         /* next byte to XMIT */
 92	int			xleft;          /* bytes left in XMIT queue  */
 93
 94	u8			raw_buf[4];
 95	u8			cooked_buf[400];
 96
 97	unsigned int		rx_count;
 98	unsigned int		rx_count_cooked;
 99	spinlock_t		rxlock;
 
 
100
101	unsigned long		flags;		/* Flag values/ mode etc */
102	unsigned char		mode;		/* 6pack mode */
103
104	/* 6pack stuff */
105	unsigned char		tx_delay;
106	unsigned char		persistence;
107	unsigned char		slottime;
108	unsigned char		duplex;
109	unsigned char		led_state;
110	u8			status;
111	u8			status1;
112	unsigned char		status2;
113	unsigned char		tx_enable;
114	unsigned char		tnc_state;
115
116	struct timer_list	tx_t;
117	struct timer_list	resync_t;
118	refcount_t		refcnt;
119	struct completion	dead;
120	spinlock_t		lock;
121};
122
123#define AX25_6PACK_HEADER_LEN 0
124
125static void sixpack_decode(struct sixpack *, const u8 *, size_t);
126static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
127
128/*
129 * Perform the persistence/slottime algorithm for CSMA access. If the
130 * persistence check was successful, write the data to the serial driver.
131 * Note that in case of DAMA operation, the data is not sent here.
132 */
133
134static void sp_xmit_on_air(struct timer_list *t)
135{
136	struct sixpack *sp = from_timer(sp, t, tx_t);
137	int actual, when = sp->slottime;
138	static unsigned char random;
139
140	random = random * 17 + 41;
141
142	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
143		sp->led_state = 0x70;
144		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
145		sp->tx_enable = 1;
146		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
147		sp->xleft -= actual;
148		sp->xhead += actual;
149		sp->led_state = 0x60;
150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
151		sp->status2 = 0;
152	} else
153		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
154}
155
156/* ----> 6pack timer interrupt handler and friends. <---- */
157
158/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
159static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
160{
161	unsigned char *msg, *p = icp;
162	int actual, count;
163
164	if (len > AX25_MTU + 73) {
 
 
 
 
 
165		msg = "oversized transmit packet!";
166		goto out_drop;
167	}
168
169	if (p[0] > 5) {
170		msg = "invalid KISS command";
171		goto out_drop;
172	}
173
174	if ((p[0] != 0) && (len > 2)) {
175		msg = "KISS control packet too long";
176		goto out_drop;
177	}
178
179	if ((p[0] == 0) && (len < 15)) {
180		msg = "bad AX.25 packet to transmit";
181		goto out_drop;
182	}
183
184	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
185	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
186
187	switch (p[0]) {
188	case 1:	sp->tx_delay = p[1];
189		return;
190	case 2:	sp->persistence = p[1];
191		return;
192	case 3:	sp->slottime = p[1];
193		return;
194	case 4:	/* ignored */
195		return;
196	case 5:	sp->duplex = p[1];
197		return;
198	}
199
200	if (p[0] != 0)
201		return;
202
203	/*
204	 * In case of fullduplex or DAMA operation, we don't take care about the
205	 * state of the DCD or of any timers, as the determination of the
206	 * correct time to send is the job of the AX.25 layer. We send
207	 * immediately after data has arrived.
208	 */
209	if (sp->duplex == 1) {
210		sp->led_state = 0x70;
211		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
212		sp->tx_enable = 1;
213		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
214		sp->xleft = count - actual;
215		sp->xhead = sp->xbuff + actual;
216		sp->led_state = 0x60;
217		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
218	} else {
219		sp->xleft = count;
220		sp->xhead = sp->xbuff;
221		sp->status2 = count;
222		sp_xmit_on_air(&sp->tx_t);
223	}
224
225	return;
226
227out_drop:
228	sp->dev->stats.tx_dropped++;
229	netif_start_queue(sp->dev);
230	if (net_ratelimit())
231		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
232}
233
234/* Encapsulate an IP datagram and kick it into a TTY queue. */
235
236static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
237{
238	struct sixpack *sp = netdev_priv(dev);
239
240	if (skb->protocol == htons(ETH_P_IP))
241		return ax25_ip_xmit(skb);
242
243	spin_lock_bh(&sp->lock);
244	/* We were not busy, so we are now... :-) */
245	netif_stop_queue(dev);
246	dev->stats.tx_bytes += skb->len;
247	sp_encaps(sp, skb->data, skb->len);
248	spin_unlock_bh(&sp->lock);
249
250	dev_kfree_skb(skb);
251
252	return NETDEV_TX_OK;
253}
254
255static int sp_open_dev(struct net_device *dev)
256{
257	struct sixpack *sp = netdev_priv(dev);
258
259	if (sp->tty == NULL)
260		return -ENODEV;
261	return 0;
262}
263
264/* Close the low-level part of the 6pack channel. */
265static int sp_close(struct net_device *dev)
266{
267	struct sixpack *sp = netdev_priv(dev);
268
269	spin_lock_bh(&sp->lock);
270	if (sp->tty) {
271		/* TTY discipline is running. */
272		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
273	}
274	netif_stop_queue(dev);
275	spin_unlock_bh(&sp->lock);
276
277	return 0;
278}
279
 
 
 
 
 
 
 
 
 
 
 
 
280static int sp_set_mac_address(struct net_device *dev, void *addr)
281{
282	struct sockaddr_ax25 *sa = addr;
283
284	netif_tx_lock_bh(dev);
285	netif_addr_lock(dev);
286	__dev_addr_set(dev, &sa->sax25_call, AX25_ADDR_LEN);
287	netif_addr_unlock(dev);
288	netif_tx_unlock_bh(dev);
289
290	return 0;
291}
292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293static const struct net_device_ops sp_netdev_ops = {
294	.ndo_open		= sp_open_dev,
295	.ndo_stop		= sp_close,
296	.ndo_start_xmit		= sp_xmit,
297	.ndo_set_mac_address    = sp_set_mac_address,
298};
299
300static void sp_setup(struct net_device *dev)
301{
302	/* Finish setting up the DEVICE info. */
303	dev->netdev_ops		= &sp_netdev_ops;
 
304	dev->mtu		= SIXP_MTU;
305	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
306	dev->header_ops 	= &ax25_header_ops;
307
308	dev->addr_len		= AX25_ADDR_LEN;
309	dev->type		= ARPHRD_AX25;
310	dev->tx_queue_len	= 10;
311
312	/* Only activated in AX.25 mode */
313	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
314	dev_addr_set(dev, (u8 *)&ax25_defaddr);
315
316	dev->flags		= 0;
317}
318
319/* Send one completely decapsulated IP datagram to the IP layer. */
320
321/*
322 * This is the routine that sends the received data to the kernel AX.25.
323 * 'cmd' is the KISS command. For AX.25 data, it is zero.
324 */
325
326static void sp_bump(struct sixpack *sp, char cmd)
327{
328	struct sk_buff *skb;
329	int count;
330	u8 *ptr;
331
332	count = sp->rcount + 1;
333
334	sp->dev->stats.rx_bytes += count;
335
336	if ((skb = dev_alloc_skb(count + 1)) == NULL)
337		goto out_mem;
338
339	ptr = skb_put(skb, count + 1);
340	*ptr++ = cmd;	/* KISS command */
341
342	memcpy(ptr, sp->cooked_buf + 1, count);
343	skb->protocol = ax25_type_trans(skb, sp->dev);
344	netif_rx(skb);
345	sp->dev->stats.rx_packets++;
346
347	return;
348
349out_mem:
350	sp->dev->stats.rx_dropped++;
351}
352
353
354/* ----------------------------------------------------------------------- */
355
356/*
357 * We have a potential race on dereferencing tty->disc_data, because the tty
358 * layer provides no locking at all - thus one cpu could be running
359 * sixpack_receive_buf while another calls sixpack_close, which zeroes
360 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
361 * best way to fix this is to use a rwlock in the tty struct, but for now we
362 * use a single global rwlock for all ttys in ppp line discipline.
363 */
364static DEFINE_RWLOCK(disc_data_lock);
365                                                                                
366static struct sixpack *sp_get(struct tty_struct *tty)
367{
368	struct sixpack *sp;
369
370	read_lock(&disc_data_lock);
371	sp = tty->disc_data;
372	if (sp)
373		refcount_inc(&sp->refcnt);
374	read_unlock(&disc_data_lock);
375
376	return sp;
377}
378
379static void sp_put(struct sixpack *sp)
380{
381	if (refcount_dec_and_test(&sp->refcnt))
382		complete(&sp->dead);
383}
384
385/*
386 * Called by the TTY driver when there's room for more data.  If we have
387 * more packets to send, we send them here.
388 */
389static void sixpack_write_wakeup(struct tty_struct *tty)
390{
391	struct sixpack *sp = sp_get(tty);
392	int actual;
393
394	if (!sp)
395		return;
396	if (sp->xleft <= 0)  {
397		/* Now serial buffer is almost free & we can start
398		 * transmission of another packet */
399		sp->dev->stats.tx_packets++;
400		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
401		sp->tx_enable = 0;
402		netif_wake_queue(sp->dev);
403		goto out;
404	}
405
406	if (sp->tx_enable) {
407		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
408		sp->xleft -= actual;
409		sp->xhead += actual;
410	}
411
412out:
413	sp_put(sp);
414}
415
416/* ----------------------------------------------------------------------- */
417
418/*
419 * Handle the 'receiver data ready' interrupt.
420 * This function is called by the tty module in the kernel when
421 * a block of 6pack data has been received, which can now be decapsulated
422 * and sent on to some IP layer for further processing.
423 */
424static void sixpack_receive_buf(struct tty_struct *tty, const u8 *cp,
425				const u8 *fp, size_t count)
426{
427	struct sixpack *sp;
428	size_t count1;
 
429
430	if (!count)
431		return;
432
433	sp = sp_get(tty);
434	if (!sp)
435		return;
436
 
 
437	/* Read the characters out of the buffer */
 
438	count1 = count;
439	while (count) {
440		count--;
441		if (fp && *fp++) {
442			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
443				sp->dev->stats.rx_errors++;
444			continue;
445		}
446	}
447	sixpack_decode(sp, cp, count1);
448
449	sp_put(sp);
450	tty_unthrottle(tty);
451}
452
453/*
454 * Try to resync the TNC. Called by the resync timer defined in
455 * decode_prio_command
456 */
457
458#define TNC_UNINITIALIZED	0
459#define TNC_UNSYNC_STARTUP	1
460#define TNC_UNSYNCED		2
461#define TNC_IN_SYNC		3
462
463static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
464{
465	char *msg;
466
467	switch (new_tnc_state) {
468	default:			/* gcc oh piece-o-crap ... */
469	case TNC_UNSYNC_STARTUP:
470		msg = "Synchronizing with TNC";
471		break;
472	case TNC_UNSYNCED:
473		msg = "Lost synchronization with TNC\n";
474		break;
475	case TNC_IN_SYNC:
476		msg = "Found TNC";
477		break;
478	}
479
480	sp->tnc_state = new_tnc_state;
481	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
482}
483
484static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
485{
486	int old_tnc_state = sp->tnc_state;
487
488	if (old_tnc_state != new_tnc_state)
489		__tnc_set_sync_state(sp, new_tnc_state);
490}
491
492static void resync_tnc(struct timer_list *t)
493{
494	struct sixpack *sp = from_timer(sp, t, resync_t);
495	static char resync_cmd = 0xe8;
496
497	/* clear any data that might have been received */
498
499	sp->rx_count = 0;
500	sp->rx_count_cooked = 0;
501
502	/* reset state machine */
503
504	sp->status = 1;
505	sp->status1 = 1;
506	sp->status2 = 0;
507
508	/* resync the TNC */
509
510	sp->led_state = 0x60;
511	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
512	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
513
514
515	/* Start resync timer again -- the TNC might be still absent */
516	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
 
517}
518
519static inline int tnc_init(struct sixpack *sp)
520{
521	unsigned char inbyte = 0xe8;
522
523	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
524
525	sp->tty->ops->write(sp->tty, &inbyte, 1);
526
527	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
 
 
 
 
528
529	return 0;
530}
531
532/*
533 * Open the high-level part of the 6pack channel.
534 * This function is called by the TTY module when the
535 * 6pack line discipline is called for.  Because we are
536 * sure the tty line exists, we only have to link it to
537 * a free 6pcack channel...
538 */
539static int sixpack_open(struct tty_struct *tty)
540{
541	char *xbuff = NULL;
542	struct net_device *dev;
543	struct sixpack *sp;
544	unsigned long len;
545	int err = 0;
546
547	if (!capable(CAP_NET_ADMIN))
548		return -EPERM;
549	if (tty->ops->write == NULL)
550		return -EOPNOTSUPP;
551
552	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
553			   sp_setup);
554	if (!dev) {
555		err = -ENOMEM;
556		goto out;
557	}
558
559	sp = netdev_priv(dev);
560	sp->dev = dev;
561
562	spin_lock_init(&sp->lock);
563	spin_lock_init(&sp->rxlock);
564	refcount_set(&sp->refcnt, 1);
565	init_completion(&sp->dead);
566
567	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
568
569	len = dev->mtu * 2;
570
 
571	xbuff = kmalloc(len + 4, GFP_KERNEL);
572	if (xbuff == NULL) {
 
573		err = -ENOBUFS;
574		goto out_free;
575	}
576
577	spin_lock_bh(&sp->lock);
578
579	sp->tty = tty;
580
 
581	sp->xbuff	= xbuff;
582
 
 
583	sp->rcount	= 0;
584	sp->rx_count	= 0;
585	sp->rx_count_cooked = 0;
586	sp->xleft	= 0;
587
588	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
589
590	sp->duplex	= 0;
591	sp->tx_delay    = SIXP_TXDELAY;
592	sp->persistence = SIXP_PERSIST;
593	sp->slottime    = SIXP_SLOTTIME;
594	sp->led_state   = 0x60;
595	sp->status      = 1;
596	sp->status1     = 1;
597	sp->status2     = 0;
598	sp->tx_enable   = 0;
599
600	netif_start_queue(dev);
601
602	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
 
 
603
604	timer_setup(&sp->resync_t, resync_tnc, 0);
605
606	spin_unlock_bh(&sp->lock);
607
608	/* Done.  We have linked the TTY line to a channel. */
609	tty->disc_data = sp;
610	tty->receive_room = 65536;
611
612	/* Now we're ready to register. */
613	err = register_netdev(dev);
614	if (err)
615		goto out_free;
616
617	tnc_init(sp);
618
619	return 0;
620
621out_free:
622	kfree(xbuff);
 
623
624	free_netdev(dev);
 
625
626out:
627	return err;
628}
629
630
631/*
632 * Close down a 6pack channel.
633 * This means flushing out any pending queues, and then restoring the
634 * TTY line discipline to what it was before it got hooked to 6pack
635 * (which usually is TTY again).
636 */
637static void sixpack_close(struct tty_struct *tty)
638{
639	struct sixpack *sp;
640
641	write_lock_irq(&disc_data_lock);
642	sp = tty->disc_data;
643	tty->disc_data = NULL;
644	write_unlock_irq(&disc_data_lock);
645	if (!sp)
646		return;
647
648	/*
649	 * We have now ensured that nobody can start using ap from now on, but
650	 * we have to wait for all existing users to finish.
651	 */
652	if (!refcount_dec_and_test(&sp->refcnt))
653		wait_for_completion(&sp->dead);
654
655	/* We must stop the queue to avoid potentially scribbling
656	 * on the free buffers. The sp->dead completion is not sufficient
657	 * to protect us from sp->xbuff access.
658	 */
659	netif_stop_queue(sp->dev);
660
661	unregister_netdev(sp->dev);
662
663	del_timer_sync(&sp->tx_t);
664	del_timer_sync(&sp->resync_t);
665
666	/* Free all 6pack frame buffers after unreg. */
 
667	kfree(sp->xbuff);
668
669	free_netdev(sp->dev);
670}
671
672/* Perform I/O control on an active 6pack channel. */
673static int sixpack_ioctl(struct tty_struct *tty, unsigned int cmd,
674		unsigned long arg)
675{
676	struct sixpack *sp = sp_get(tty);
677	struct net_device *dev;
678	unsigned int tmp, err;
679
680	if (!sp)
681		return -ENXIO;
682	dev = sp->dev;
683
684	switch(cmd) {
685	case SIOCGIFNAME:
686		err = copy_to_user((void __user *) arg, dev->name,
687		                   strlen(dev->name) + 1) ? -EFAULT : 0;
688		break;
689
690	case SIOCGIFENCAP:
691		err = put_user(0, (int __user *) arg);
692		break;
693
694	case SIOCSIFENCAP:
695		if (get_user(tmp, (int __user *) arg)) {
696			err = -EFAULT;
697			break;
698		}
699
700		sp->mode = tmp;
701		dev->addr_len        = AX25_ADDR_LEN;
702		dev->hard_header_len = AX25_KISS_HEADER_LEN +
703		                       AX25_MAX_HEADER_LEN + 3;
704		dev->type            = ARPHRD_AX25;
705
706		err = 0;
707		break;
708
709	case SIOCSIFHWADDR: {
710			char addr[AX25_ADDR_LEN];
711
712			if (copy_from_user(&addr,
713					   (void __user *)arg, AX25_ADDR_LEN)) {
714				err = -EFAULT;
715				break;
716			}
717
718			netif_tx_lock_bh(dev);
719			__dev_addr_set(dev, &addr, AX25_ADDR_LEN);
720			netif_tx_unlock_bh(dev);
 
721			err = 0;
722			break;
723		}
 
724	default:
725		err = tty_mode_ioctl(tty, cmd, arg);
726	}
727
728	sp_put(sp);
729
730	return err;
731}
732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733static struct tty_ldisc_ops sp_ldisc = {
734	.owner		= THIS_MODULE,
735	.num		= N_6PACK,
736	.name		= "6pack",
737	.open		= sixpack_open,
738	.close		= sixpack_close,
739	.ioctl		= sixpack_ioctl,
 
 
 
740	.receive_buf	= sixpack_receive_buf,
741	.write_wakeup	= sixpack_write_wakeup,
742};
743
744/* Initialize 6pack control device -- register 6pack line discipline */
745
 
 
 
 
 
746static int __init sixpack_init_driver(void)
747{
748	int status;
749
 
 
750	/* Register the provided line protocol discipline */
751	status = tty_register_ldisc(&sp_ldisc);
752	if (status)
753		pr_err("6pack: can't register line discipline (err = %d)\n", status);
754
755	return status;
756}
757
 
 
 
758static void __exit sixpack_exit_driver(void)
759{
760	tty_unregister_ldisc(&sp_ldisc);
 
 
 
761}
762
763/* encode an AX.25 packet into 6pack */
764
765static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
766	int length, unsigned char tx_delay)
767{
768	int count = 0;
769	unsigned char checksum = 0, buf[400];
770	int raw_count = 0;
771
772	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
773	tx_buf_raw[raw_count++] = SIXP_SEOF;
774
775	buf[0] = tx_delay;
776	for (count = 1; count < length; count++)
777		buf[count] = tx_buf[count];
778
779	for (count = 0; count < length; count++)
780		checksum += buf[count];
781	buf[length] = (unsigned char) 0xff - checksum;
782
783	for (count = 0; count <= length; count++) {
784		if ((count % 3) == 0) {
785			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
786			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
787		} else if ((count % 3) == 1) {
788			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
789			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
790		} else {
791			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
792			tx_buf_raw[raw_count++] = (buf[count] >> 2);
793		}
794	}
795	if ((length % 3) != 2)
796		raw_count++;
797	tx_buf_raw[raw_count++] = SIXP_SEOF;
798	return raw_count;
799}
800
801/* decode 4 sixpack-encoded bytes into 3 data bytes */
802
803static void decode_data(struct sixpack *sp, u8 inbyte)
804{
805	u8 *buf;
806
807	if (sp->rx_count != 3) {
808		sp->raw_buf[sp->rx_count++] = inbyte;
809
810		return;
811	}
812
813	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
814		pr_err("6pack: cooked buffer overrun, data loss\n");
815		sp->rx_count = 0;
816		return;
817	}
818
819	buf = sp->raw_buf;
820	sp->cooked_buf[sp->rx_count_cooked++] =
821		buf[0] | ((buf[1] << 2) & 0xc0);
822	sp->cooked_buf[sp->rx_count_cooked++] =
823		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
824	sp->cooked_buf[sp->rx_count_cooked++] =
825		(buf[2] & 0x03) | (inbyte << 2);
826	sp->rx_count = 0;
827}
828
829/* identify and execute a 6pack priority command byte */
830
831static void decode_prio_command(struct sixpack *sp, u8 cmd)
832{
833	ssize_t actual;
 
834
 
835	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
836
837	/* RX and DCD flags can only be set in the same prio command,
838	   if the DCD flag has been set without the RX flag in the previous
839	   prio command. If DCD has not been set before, something in the
840	   transmission has gone wrong. In this case, RX and DCD are
841	   cleared in order to prevent the decode_data routine from
842	   reading further data that might be corrupt. */
843
844		if (((sp->status & SIXP_DCD_MASK) == 0) &&
845			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
846				if (sp->status != 1)
847					printk(KERN_DEBUG "6pack: protocol violation\n");
848				else
849					sp->status = 0;
850				cmd &= ~SIXP_RX_DCD_MASK;
851		}
852		sp->status = cmd & SIXP_PRIO_DATA_MASK;
853	} else { /* output watchdog char if idle */
854		if ((sp->status2 != 0) && (sp->duplex == 1)) {
855			sp->led_state = 0x70;
856			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
857			sp->tx_enable = 1;
858			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
859			sp->xleft -= actual;
860			sp->xhead += actual;
861			sp->led_state = 0x60;
862			sp->status2 = 0;
863
864		}
865	}
866
867	/* needed to trigger the TNC watchdog */
868	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
869
870        /* if the state byte has been received, the TNC is present,
871           so the resync timer can be reset. */
872
873	if (sp->tnc_state == TNC_IN_SYNC)
874		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
 
 
 
 
 
875
876	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
877}
878
879/* identify and execute a standard 6pack command byte */
880
881static void decode_std_command(struct sixpack *sp, u8 cmd)
882{
883	u8 checksum = 0, rest = 0;
884	short i;
885
 
886	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
887	case SIXP_SEOF:
888		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
889			if ((sp->status & SIXP_RX_DCD_MASK) ==
890				SIXP_RX_DCD_MASK) {
891				sp->led_state = 0x68;
892				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
893			}
894		} else {
895			sp->led_state = 0x60;
896			/* fill trailing bytes with zeroes */
897			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
898			spin_lock_bh(&sp->rxlock);
899			rest = sp->rx_count;
900			if (rest != 0)
901				 for (i = rest; i <= 3; i++)
902					decode_data(sp, 0);
903			if (rest == 2)
904				sp->rx_count_cooked -= 2;
905			else if (rest == 3)
906				sp->rx_count_cooked -= 1;
907			for (i = 0; i < sp->rx_count_cooked; i++)
908				checksum += sp->cooked_buf[i];
909			if (checksum != SIXP_CHKSUM) {
910				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
911			} else {
912				sp->rcount = sp->rx_count_cooked-2;
913				sp_bump(sp, 0);
914			}
915			sp->rx_count_cooked = 0;
916			spin_unlock_bh(&sp->rxlock);
917		}
918		break;
919	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
920		break;
921	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
922		break;
923	case SIXP_RX_BUF_OVL:
924		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
925	}
926}
927
928/* decode a 6pack packet */
929
930static void
931sixpack_decode(struct sixpack *sp, const u8 *pre_rbuff, size_t count)
932{
933	size_t count1;
934	u8 inbyte;
935
936	for (count1 = 0; count1 < count; count1++) {
937		inbyte = pre_rbuff[count1];
938		if (inbyte == SIXP_FOUND_TNC) {
939			tnc_set_sync_state(sp, TNC_IN_SYNC);
940			del_timer(&sp->resync_t);
941		}
942		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
943			decode_prio_command(sp, inbyte);
944		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
945			decode_std_command(sp, inbyte);
946		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK) {
947			spin_lock_bh(&sp->rxlock);
948			decode_data(sp, inbyte);
949			spin_unlock_bh(&sp->rxlock);
950		}
951	}
952}
953
954MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
955MODULE_DESCRIPTION("6pack driver for AX.25");
956MODULE_LICENSE("GPL");
957MODULE_ALIAS_LDISC(N_6PACK);
958
959module_init(sixpack_init_driver);
960module_exit(sixpack_exit_driver);
v3.1
 
   1/*
   2 * 6pack.c	This module implements the 6pack protocol for kernel-based
   3 *		devices like TTY. It interfaces between a raw TTY and the
   4 *		kernel's AX.25 protocol layers.
   5 *
   6 * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
   7 *              Ralf Baechle DL5RB <ralf@linux-mips.org>
   8 *
   9 * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
  10 *
  11 *		Laurence Culhane, <loz@holmes.demon.co.uk>
  12 *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
  13 */
  14
  15#include <linux/module.h>
  16#include <asm/system.h>
  17#include <asm/uaccess.h>
  18#include <linux/bitops.h>
  19#include <linux/string.h>
  20#include <linux/mm.h>
  21#include <linux/interrupt.h>
  22#include <linux/in.h>
  23#include <linux/tty.h>
  24#include <linux/errno.h>
  25#include <linux/netdevice.h>
  26#include <linux/timer.h>
  27#include <linux/slab.h>
  28#include <net/ax25.h>
  29#include <linux/etherdevice.h>
  30#include <linux/skbuff.h>
  31#include <linux/rtnetlink.h>
  32#include <linux/spinlock.h>
  33#include <linux/if_arp.h>
  34#include <linux/init.h>
  35#include <linux/ip.h>
  36#include <linux/tcp.h>
  37#include <linux/semaphore.h>
  38#include <linux/compat.h>
  39#include <linux/atomic.h>
  40
  41#define SIXPACK_VERSION    "Revision: 0.3.0"
  42
  43/* sixpack priority commands */
  44#define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
  45#define SIXP_TX_URUN		0x48	/* transmit overrun */
  46#define SIXP_RX_ORUN		0x50	/* receive overrun */
  47#define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
  48
  49#define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
  50
  51/* masks to get certain bits out of the status bytes sent by the TNC */
  52
  53#define SIXP_CMD_MASK		0xC0
  54#define SIXP_CHN_MASK		0x07
  55#define SIXP_PRIO_CMD_MASK	0x80
  56#define SIXP_STD_CMD_MASK	0x40
  57#define SIXP_PRIO_DATA_MASK	0x38
  58#define SIXP_TX_MASK		0x20
  59#define SIXP_RX_MASK		0x10
  60#define SIXP_RX_DCD_MASK	0x18
  61#define SIXP_LEDS_ON		0x78
  62#define SIXP_LEDS_OFF		0x60
  63#define SIXP_CON		0x08
  64#define SIXP_STA		0x10
  65
  66#define SIXP_FOUND_TNC		0xe9
  67#define SIXP_CON_ON		0x68
  68#define SIXP_DCD_MASK		0x08
  69#define SIXP_DAMA_OFF		0
  70
  71/* default level 2 parameters */
  72#define SIXP_TXDELAY			(HZ/4)	/* in 1 s */
  73#define SIXP_PERSIST			50	/* in 256ths */
  74#define SIXP_SLOTTIME			(HZ/10)	/* in 1 s */
  75#define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
  76#define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
  77
  78/* 6pack configuration. */
  79#define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
  80#define SIXP_MTU			256	/* Default MTU */
  81
  82enum sixpack_flags {
  83	SIXPF_ERROR,	/* Parity, etc. error	*/
  84};
  85
  86struct sixpack {
  87	/* Various fields. */
  88	struct tty_struct	*tty;		/* ptr to TTY structure	*/
  89	struct net_device	*dev;		/* easy for intr handling  */
  90
  91	/* These are pointers to the malloc()ed frame buffers. */
  92	unsigned char		*rbuff;		/* receiver buffer	*/
  93	int			rcount;         /* received chars counter  */
  94	unsigned char		*xbuff;		/* transmitter buffer	*/
  95	unsigned char		*xhead;         /* next byte to XMIT */
  96	int			xleft;          /* bytes left in XMIT queue  */
  97
  98	unsigned char		raw_buf[4];
  99	unsigned char		cooked_buf[400];
 100
 101	unsigned int		rx_count;
 102	unsigned int		rx_count_cooked;
 103
 104	int			mtu;		/* Our mtu (to spot changes!) */
 105	int			buffsize;       /* Max buffers sizes */
 106
 107	unsigned long		flags;		/* Flag values/ mode etc */
 108	unsigned char		mode;		/* 6pack mode */
 109
 110	/* 6pack stuff */
 111	unsigned char		tx_delay;
 112	unsigned char		persistence;
 113	unsigned char		slottime;
 114	unsigned char		duplex;
 115	unsigned char		led_state;
 116	unsigned char		status;
 117	unsigned char		status1;
 118	unsigned char		status2;
 119	unsigned char		tx_enable;
 120	unsigned char		tnc_state;
 121
 122	struct timer_list	tx_t;
 123	struct timer_list	resync_t;
 124	atomic_t		refcnt;
 125	struct semaphore	dead_sem;
 126	spinlock_t		lock;
 127};
 128
 129#define AX25_6PACK_HEADER_LEN 0
 130
 131static void sixpack_decode(struct sixpack *, unsigned char[], int);
 132static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
 133
 134/*
 135 * Perform the persistence/slottime algorithm for CSMA access. If the
 136 * persistence check was successful, write the data to the serial driver.
 137 * Note that in case of DAMA operation, the data is not sent here.
 138 */
 139
 140static void sp_xmit_on_air(unsigned long channel)
 141{
 142	struct sixpack *sp = (struct sixpack *) channel;
 143	int actual, when = sp->slottime;
 144	static unsigned char random;
 145
 146	random = random * 17 + 41;
 147
 148	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
 149		sp->led_state = 0x70;
 150		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 151		sp->tx_enable = 1;
 152		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 153		sp->xleft -= actual;
 154		sp->xhead += actual;
 155		sp->led_state = 0x60;
 156		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 157		sp->status2 = 0;
 158	} else
 159		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
 160}
 161
 162/* ----> 6pack timer interrupt handler and friends. <---- */
 163
 164/* Encapsulate one AX.25 frame and stuff into a TTY queue. */
 165static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
 166{
 167	unsigned char *msg, *p = icp;
 168	int actual, count;
 169
 170	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 171		msg = "oversized transmit packet!";
 172		goto out_drop;
 173	}
 174
 175	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
 176		msg = "oversized transmit packet!";
 177		goto out_drop;
 178	}
 179
 180	if (p[0] > 5) {
 181		msg = "invalid KISS command";
 182		goto out_drop;
 183	}
 184
 185	if ((p[0] != 0) && (len > 2)) {
 186		msg = "KISS control packet too long";
 187		goto out_drop;
 188	}
 189
 190	if ((p[0] == 0) && (len < 15)) {
 191		msg = "bad AX.25 packet to transmit";
 192		goto out_drop;
 193	}
 194
 195	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
 196	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 197
 198	switch (p[0]) {
 199	case 1:	sp->tx_delay = p[1];
 200		return;
 201	case 2:	sp->persistence = p[1];
 202		return;
 203	case 3:	sp->slottime = p[1];
 204		return;
 205	case 4:	/* ignored */
 206		return;
 207	case 5:	sp->duplex = p[1];
 208		return;
 209	}
 210
 211	if (p[0] != 0)
 212		return;
 213
 214	/*
 215	 * In case of fullduplex or DAMA operation, we don't take care about the
 216	 * state of the DCD or of any timers, as the determination of the
 217	 * correct time to send is the job of the AX.25 layer. We send
 218	 * immediately after data has arrived.
 219	 */
 220	if (sp->duplex == 1) {
 221		sp->led_state = 0x70;
 222		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 223		sp->tx_enable = 1;
 224		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
 225		sp->xleft = count - actual;
 226		sp->xhead = sp->xbuff + actual;
 227		sp->led_state = 0x60;
 228		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 229	} else {
 230		sp->xleft = count;
 231		sp->xhead = sp->xbuff;
 232		sp->status2 = count;
 233		sp_xmit_on_air((unsigned long)sp);
 234	}
 235
 236	return;
 237
 238out_drop:
 239	sp->dev->stats.tx_dropped++;
 240	netif_start_queue(sp->dev);
 241	if (net_ratelimit())
 242		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
 243}
 244
 245/* Encapsulate an IP datagram and kick it into a TTY queue. */
 246
 247static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
 248{
 249	struct sixpack *sp = netdev_priv(dev);
 250
 
 
 
 251	spin_lock_bh(&sp->lock);
 252	/* We were not busy, so we are now... :-) */
 253	netif_stop_queue(dev);
 254	dev->stats.tx_bytes += skb->len;
 255	sp_encaps(sp, skb->data, skb->len);
 256	spin_unlock_bh(&sp->lock);
 257
 258	dev_kfree_skb(skb);
 259
 260	return NETDEV_TX_OK;
 261}
 262
 263static int sp_open_dev(struct net_device *dev)
 264{
 265	struct sixpack *sp = netdev_priv(dev);
 266
 267	if (sp->tty == NULL)
 268		return -ENODEV;
 269	return 0;
 270}
 271
 272/* Close the low-level part of the 6pack channel. */
 273static int sp_close(struct net_device *dev)
 274{
 275	struct sixpack *sp = netdev_priv(dev);
 276
 277	spin_lock_bh(&sp->lock);
 278	if (sp->tty) {
 279		/* TTY discipline is running. */
 280		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
 281	}
 282	netif_stop_queue(dev);
 283	spin_unlock_bh(&sp->lock);
 284
 285	return 0;
 286}
 287
 288/* Return the frame type ID */
 289static int sp_header(struct sk_buff *skb, struct net_device *dev,
 290		     unsigned short type, const void *daddr,
 291		     const void *saddr, unsigned len)
 292{
 293#ifdef CONFIG_INET
 294	if (type != ETH_P_AX25)
 295		return ax25_hard_header(skb, dev, type, daddr, saddr, len);
 296#endif
 297	return 0;
 298}
 299
 300static int sp_set_mac_address(struct net_device *dev, void *addr)
 301{
 302	struct sockaddr_ax25 *sa = addr;
 303
 304	netif_tx_lock_bh(dev);
 305	netif_addr_lock(dev);
 306	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
 307	netif_addr_unlock(dev);
 308	netif_tx_unlock_bh(dev);
 309
 310	return 0;
 311}
 312
 313static int sp_rebuild_header(struct sk_buff *skb)
 314{
 315#ifdef CONFIG_INET
 316	return ax25_rebuild_header(skb);
 317#else
 318	return 0;
 319#endif
 320}
 321
 322static const struct header_ops sp_header_ops = {
 323	.create		= sp_header,
 324	.rebuild	= sp_rebuild_header,
 325};
 326
 327static const struct net_device_ops sp_netdev_ops = {
 328	.ndo_open		= sp_open_dev,
 329	.ndo_stop		= sp_close,
 330	.ndo_start_xmit		= sp_xmit,
 331	.ndo_set_mac_address    = sp_set_mac_address,
 332};
 333
 334static void sp_setup(struct net_device *dev)
 335{
 336	/* Finish setting up the DEVICE info. */
 337	dev->netdev_ops		= &sp_netdev_ops;
 338	dev->destructor		= free_netdev;
 339	dev->mtu		= SIXP_MTU;
 340	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
 341	dev->header_ops 	= &sp_header_ops;
 342
 343	dev->addr_len		= AX25_ADDR_LEN;
 344	dev->type		= ARPHRD_AX25;
 345	dev->tx_queue_len	= 10;
 346
 347	/* Only activated in AX.25 mode */
 348	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
 349	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
 350
 351	dev->flags		= 0;
 352}
 353
 354/* Send one completely decapsulated IP datagram to the IP layer. */
 355
 356/*
 357 * This is the routine that sends the received data to the kernel AX.25.
 358 * 'cmd' is the KISS command. For AX.25 data, it is zero.
 359 */
 360
 361static void sp_bump(struct sixpack *sp, char cmd)
 362{
 363	struct sk_buff *skb;
 364	int count;
 365	unsigned char *ptr;
 366
 367	count = sp->rcount + 1;
 368
 369	sp->dev->stats.rx_bytes += count;
 370
 371	if ((skb = dev_alloc_skb(count)) == NULL)
 372		goto out_mem;
 373
 374	ptr = skb_put(skb, count);
 375	*ptr++ = cmd;	/* KISS command */
 376
 377	memcpy(ptr, sp->cooked_buf + 1, count);
 378	skb->protocol = ax25_type_trans(skb, sp->dev);
 379	netif_rx(skb);
 380	sp->dev->stats.rx_packets++;
 381
 382	return;
 383
 384out_mem:
 385	sp->dev->stats.rx_dropped++;
 386}
 387
 388
 389/* ----------------------------------------------------------------------- */
 390
 391/*
 392 * We have a potential race on dereferencing tty->disc_data, because the tty
 393 * layer provides no locking at all - thus one cpu could be running
 394 * sixpack_receive_buf while another calls sixpack_close, which zeroes
 395 * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
 396 * best way to fix this is to use a rwlock in the tty struct, but for now we
 397 * use a single global rwlock for all ttys in ppp line discipline.
 398 */
 399static DEFINE_RWLOCK(disc_data_lock);
 400                                                                                
 401static struct sixpack *sp_get(struct tty_struct *tty)
 402{
 403	struct sixpack *sp;
 404
 405	read_lock(&disc_data_lock);
 406	sp = tty->disc_data;
 407	if (sp)
 408		atomic_inc(&sp->refcnt);
 409	read_unlock(&disc_data_lock);
 410
 411	return sp;
 412}
 413
 414static void sp_put(struct sixpack *sp)
 415{
 416	if (atomic_dec_and_test(&sp->refcnt))
 417		up(&sp->dead_sem);
 418}
 419
 420/*
 421 * Called by the TTY driver when there's room for more data.  If we have
 422 * more packets to send, we send them here.
 423 */
 424static void sixpack_write_wakeup(struct tty_struct *tty)
 425{
 426	struct sixpack *sp = sp_get(tty);
 427	int actual;
 428
 429	if (!sp)
 430		return;
 431	if (sp->xleft <= 0)  {
 432		/* Now serial buffer is almost free & we can start
 433		 * transmission of another packet */
 434		sp->dev->stats.tx_packets++;
 435		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 436		sp->tx_enable = 0;
 437		netif_wake_queue(sp->dev);
 438		goto out;
 439	}
 440
 441	if (sp->tx_enable) {
 442		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
 443		sp->xleft -= actual;
 444		sp->xhead += actual;
 445	}
 446
 447out:
 448	sp_put(sp);
 449}
 450
 451/* ----------------------------------------------------------------------- */
 452
 453/*
 454 * Handle the 'receiver data ready' interrupt.
 455 * This function is called by the 'tty_io' module in the kernel when
 456 * a block of 6pack data has been received, which can now be decapsulated
 457 * and sent on to some IP layer for further processing.
 458 */
 459static void sixpack_receive_buf(struct tty_struct *tty,
 460	const unsigned char *cp, char *fp, int count)
 461{
 462	struct sixpack *sp;
 463	unsigned char buf[512];
 464	int count1;
 465
 466	if (!count)
 467		return;
 468
 469	sp = sp_get(tty);
 470	if (!sp)
 471		return;
 472
 473	memcpy(buf, cp, count < sizeof(buf) ? count : sizeof(buf));
 474
 475	/* Read the characters out of the buffer */
 476
 477	count1 = count;
 478	while (count) {
 479		count--;
 480		if (fp && *fp++) {
 481			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
 482				sp->dev->stats.rx_errors++;
 483			continue;
 484		}
 485	}
 486	sixpack_decode(sp, buf, count1);
 487
 488	sp_put(sp);
 489	tty_unthrottle(tty);
 490}
 491
 492/*
 493 * Try to resync the TNC. Called by the resync timer defined in
 494 * decode_prio_command
 495 */
 496
 497#define TNC_UNINITIALIZED	0
 498#define TNC_UNSYNC_STARTUP	1
 499#define TNC_UNSYNCED		2
 500#define TNC_IN_SYNC		3
 501
 502static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 503{
 504	char *msg;
 505
 506	switch (new_tnc_state) {
 507	default:			/* gcc oh piece-o-crap ... */
 508	case TNC_UNSYNC_STARTUP:
 509		msg = "Synchronizing with TNC";
 510		break;
 511	case TNC_UNSYNCED:
 512		msg = "Lost synchronization with TNC\n";
 513		break;
 514	case TNC_IN_SYNC:
 515		msg = "Found TNC";
 516		break;
 517	}
 518
 519	sp->tnc_state = new_tnc_state;
 520	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
 521}
 522
 523static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
 524{
 525	int old_tnc_state = sp->tnc_state;
 526
 527	if (old_tnc_state != new_tnc_state)
 528		__tnc_set_sync_state(sp, new_tnc_state);
 529}
 530
 531static void resync_tnc(unsigned long channel)
 532{
 533	struct sixpack *sp = (struct sixpack *) channel;
 534	static char resync_cmd = 0xe8;
 535
 536	/* clear any data that might have been received */
 537
 538	sp->rx_count = 0;
 539	sp->rx_count_cooked = 0;
 540
 541	/* reset state machine */
 542
 543	sp->status = 1;
 544	sp->status1 = 1;
 545	sp->status2 = 0;
 546
 547	/* resync the TNC */
 548
 549	sp->led_state = 0x60;
 550	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 551	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
 552
 553
 554	/* Start resync timer again -- the TNC might be still absent */
 555
 556	del_timer(&sp->resync_t);
 557	sp->resync_t.data	= (unsigned long) sp;
 558	sp->resync_t.function	= resync_tnc;
 559	sp->resync_t.expires	= jiffies + SIXP_RESYNC_TIMEOUT;
 560	add_timer(&sp->resync_t);
 561}
 562
 563static inline int tnc_init(struct sixpack *sp)
 564{
 565	unsigned char inbyte = 0xe8;
 566
 567	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
 568
 569	sp->tty->ops->write(sp->tty, &inbyte, 1);
 570
 571	del_timer(&sp->resync_t);
 572	sp->resync_t.data = (unsigned long) sp;
 573	sp->resync_t.function = resync_tnc;
 574	sp->resync_t.expires = jiffies + SIXP_RESYNC_TIMEOUT;
 575	add_timer(&sp->resync_t);
 576
 577	return 0;
 578}
 579
 580/*
 581 * Open the high-level part of the 6pack channel.
 582 * This function is called by the TTY module when the
 583 * 6pack line discipline is called for.  Because we are
 584 * sure the tty line exists, we only have to link it to
 585 * a free 6pcack channel...
 586 */
 587static int sixpack_open(struct tty_struct *tty)
 588{
 589	char *rbuff = NULL, *xbuff = NULL;
 590	struct net_device *dev;
 591	struct sixpack *sp;
 592	unsigned long len;
 593	int err = 0;
 594
 595	if (!capable(CAP_NET_ADMIN))
 596		return -EPERM;
 597	if (tty->ops->write == NULL)
 598		return -EOPNOTSUPP;
 599
 600	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", sp_setup);
 
 601	if (!dev) {
 602		err = -ENOMEM;
 603		goto out;
 604	}
 605
 606	sp = netdev_priv(dev);
 607	sp->dev = dev;
 608
 609	spin_lock_init(&sp->lock);
 610	atomic_set(&sp->refcnt, 1);
 611	sema_init(&sp->dead_sem, 0);
 
 612
 613	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
 614
 615	len = dev->mtu * 2;
 616
 617	rbuff = kmalloc(len + 4, GFP_KERNEL);
 618	xbuff = kmalloc(len + 4, GFP_KERNEL);
 619
 620	if (rbuff == NULL || xbuff == NULL) {
 621		err = -ENOBUFS;
 622		goto out_free;
 623	}
 624
 625	spin_lock_bh(&sp->lock);
 626
 627	sp->tty = tty;
 628
 629	sp->rbuff	= rbuff;
 630	sp->xbuff	= xbuff;
 631
 632	sp->mtu		= AX25_MTU + 73;
 633	sp->buffsize	= len;
 634	sp->rcount	= 0;
 635	sp->rx_count	= 0;
 636	sp->rx_count_cooked = 0;
 637	sp->xleft	= 0;
 638
 639	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
 640
 641	sp->duplex	= 0;
 642	sp->tx_delay    = SIXP_TXDELAY;
 643	sp->persistence = SIXP_PERSIST;
 644	sp->slottime    = SIXP_SLOTTIME;
 645	sp->led_state   = 0x60;
 646	sp->status      = 1;
 647	sp->status1     = 1;
 648	sp->status2     = 0;
 649	sp->tx_enable   = 0;
 650
 651	netif_start_queue(dev);
 652
 653	init_timer(&sp->tx_t);
 654	sp->tx_t.function = sp_xmit_on_air;
 655	sp->tx_t.data = (unsigned long) sp;
 656
 657	init_timer(&sp->resync_t);
 658
 659	spin_unlock_bh(&sp->lock);
 660
 661	/* Done.  We have linked the TTY line to a channel. */
 662	tty->disc_data = sp;
 663	tty->receive_room = 65536;
 664
 665	/* Now we're ready to register. */
 666	if (register_netdev(dev))
 
 667		goto out_free;
 668
 669	tnc_init(sp);
 670
 671	return 0;
 672
 673out_free:
 674	kfree(xbuff);
 675	kfree(rbuff);
 676
 677	if (dev)
 678		free_netdev(dev);
 679
 680out:
 681	return err;
 682}
 683
 684
 685/*
 686 * Close down a 6pack channel.
 687 * This means flushing out any pending queues, and then restoring the
 688 * TTY line discipline to what it was before it got hooked to 6pack
 689 * (which usually is TTY again).
 690 */
 691static void sixpack_close(struct tty_struct *tty)
 692{
 693	struct sixpack *sp;
 694
 695	write_lock_bh(&disc_data_lock);
 696	sp = tty->disc_data;
 697	tty->disc_data = NULL;
 698	write_unlock_bh(&disc_data_lock);
 699	if (!sp)
 700		return;
 701
 702	/*
 703	 * We have now ensured that nobody can start using ap from now on, but
 704	 * we have to wait for all existing users to finish.
 705	 */
 706	if (!atomic_dec_and_test(&sp->refcnt))
 707		down(&sp->dead_sem);
 
 
 
 
 
 
 708
 709	unregister_netdev(sp->dev);
 710
 711	del_timer(&sp->tx_t);
 712	del_timer(&sp->resync_t);
 713
 714	/* Free all 6pack frame buffers. */
 715	kfree(sp->rbuff);
 716	kfree(sp->xbuff);
 
 
 717}
 718
 719/* Perform I/O control on an active 6pack channel. */
 720static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
 721	unsigned int cmd, unsigned long arg)
 722{
 723	struct sixpack *sp = sp_get(tty);
 724	struct net_device *dev;
 725	unsigned int tmp, err;
 726
 727	if (!sp)
 728		return -ENXIO;
 729	dev = sp->dev;
 730
 731	switch(cmd) {
 732	case SIOCGIFNAME:
 733		err = copy_to_user((void __user *) arg, dev->name,
 734		                   strlen(dev->name) + 1) ? -EFAULT : 0;
 735		break;
 736
 737	case SIOCGIFENCAP:
 738		err = put_user(0, (int __user *) arg);
 739		break;
 740
 741	case SIOCSIFENCAP:
 742		if (get_user(tmp, (int __user *) arg)) {
 743			err = -EFAULT;
 744			break;
 745		}
 746
 747		sp->mode = tmp;
 748		dev->addr_len        = AX25_ADDR_LEN;
 749		dev->hard_header_len = AX25_KISS_HEADER_LEN +
 750		                       AX25_MAX_HEADER_LEN + 3;
 751		dev->type            = ARPHRD_AX25;
 752
 753		err = 0;
 754		break;
 755
 756	 case SIOCSIFHWADDR: {
 757		char addr[AX25_ADDR_LEN];
 758
 759		if (copy_from_user(&addr,
 760		                   (void __user *) arg, AX25_ADDR_LEN)) {
 761				err = -EFAULT;
 762				break;
 763			}
 764
 765			netif_tx_lock_bh(dev);
 766			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
 767			netif_tx_unlock_bh(dev);
 768
 769			err = 0;
 770			break;
 771		}
 772
 773	default:
 774		err = tty_mode_ioctl(tty, file, cmd, arg);
 775	}
 776
 777	sp_put(sp);
 778
 779	return err;
 780}
 781
 782#ifdef CONFIG_COMPAT
 783static long sixpack_compat_ioctl(struct tty_struct * tty, struct file * file,
 784				unsigned int cmd, unsigned long arg)
 785{
 786	switch (cmd) {
 787	case SIOCGIFNAME:
 788	case SIOCGIFENCAP:
 789	case SIOCSIFENCAP:
 790	case SIOCSIFHWADDR:
 791		return sixpack_ioctl(tty, file, cmd,
 792				(unsigned long)compat_ptr(arg));
 793	}
 794
 795	return -ENOIOCTLCMD;
 796}
 797#endif
 798
 799static struct tty_ldisc_ops sp_ldisc = {
 800	.owner		= THIS_MODULE,
 801	.magic		= TTY_LDISC_MAGIC,
 802	.name		= "6pack",
 803	.open		= sixpack_open,
 804	.close		= sixpack_close,
 805	.ioctl		= sixpack_ioctl,
 806#ifdef CONFIG_COMPAT
 807	.compat_ioctl	= sixpack_compat_ioctl,
 808#endif
 809	.receive_buf	= sixpack_receive_buf,
 810	.write_wakeup	= sixpack_write_wakeup,
 811};
 812
 813/* Initialize 6pack control device -- register 6pack line discipline */
 814
 815static const char msg_banner[]  __initdata = KERN_INFO \
 816	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
 817static const char msg_regfail[] __initdata = KERN_ERR  \
 818	"6pack: can't register line discipline (err = %d)\n";
 819
 820static int __init sixpack_init_driver(void)
 821{
 822	int status;
 823
 824	printk(msg_banner);
 825
 826	/* Register the provided line protocol discipline */
 827	if ((status = tty_register_ldisc(N_6PACK, &sp_ldisc)) != 0)
 828		printk(msg_regfail, status);
 
 829
 830	return status;
 831}
 832
 833static const char msg_unregfail[] __exitdata = KERN_ERR \
 834	"6pack: can't unregister line discipline (err = %d)\n";
 835
 836static void __exit sixpack_exit_driver(void)
 837{
 838	int ret;
 839
 840	if ((ret = tty_unregister_ldisc(N_6PACK)))
 841		printk(msg_unregfail, ret);
 842}
 843
 844/* encode an AX.25 packet into 6pack */
 845
 846static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
 847	int length, unsigned char tx_delay)
 848{
 849	int count = 0;
 850	unsigned char checksum = 0, buf[400];
 851	int raw_count = 0;
 852
 853	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
 854	tx_buf_raw[raw_count++] = SIXP_SEOF;
 855
 856	buf[0] = tx_delay;
 857	for (count = 1; count < length; count++)
 858		buf[count] = tx_buf[count];
 859
 860	for (count = 0; count < length; count++)
 861		checksum += buf[count];
 862	buf[length] = (unsigned char) 0xff - checksum;
 863
 864	for (count = 0; count <= length; count++) {
 865		if ((count % 3) == 0) {
 866			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
 867			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
 868		} else if ((count % 3) == 1) {
 869			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
 870			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
 871		} else {
 872			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
 873			tx_buf_raw[raw_count++] = (buf[count] >> 2);
 874		}
 875	}
 876	if ((length % 3) != 2)
 877		raw_count++;
 878	tx_buf_raw[raw_count++] = SIXP_SEOF;
 879	return raw_count;
 880}
 881
 882/* decode 4 sixpack-encoded bytes into 3 data bytes */
 883
 884static void decode_data(struct sixpack *sp, unsigned char inbyte)
 885{
 886	unsigned char *buf;
 887
 888	if (sp->rx_count != 3) {
 889		sp->raw_buf[sp->rx_count++] = inbyte;
 890
 891		return;
 892	}
 893
 
 
 
 
 
 
 894	buf = sp->raw_buf;
 895	sp->cooked_buf[sp->rx_count_cooked++] =
 896		buf[0] | ((buf[1] << 2) & 0xc0);
 897	sp->cooked_buf[sp->rx_count_cooked++] =
 898		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
 899	sp->cooked_buf[sp->rx_count_cooked++] =
 900		(buf[2] & 0x03) | (inbyte << 2);
 901	sp->rx_count = 0;
 902}
 903
 904/* identify and execute a 6pack priority command byte */
 905
 906static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
 907{
 908	unsigned char channel;
 909	int actual;
 910
 911	channel = cmd & SIXP_CHN_MASK;
 912	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
 913
 914	/* RX and DCD flags can only be set in the same prio command,
 915	   if the DCD flag has been set without the RX flag in the previous
 916	   prio command. If DCD has not been set before, something in the
 917	   transmission has gone wrong. In this case, RX and DCD are
 918	   cleared in order to prevent the decode_data routine from
 919	   reading further data that might be corrupt. */
 920
 921		if (((sp->status & SIXP_DCD_MASK) == 0) &&
 922			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
 923				if (sp->status != 1)
 924					printk(KERN_DEBUG "6pack: protocol violation\n");
 925				else
 926					sp->status = 0;
 927				cmd &= ~SIXP_RX_DCD_MASK;
 928		}
 929		sp->status = cmd & SIXP_PRIO_DATA_MASK;
 930	} else { /* output watchdog char if idle */
 931		if ((sp->status2 != 0) && (sp->duplex == 1)) {
 932			sp->led_state = 0x70;
 933			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 934			sp->tx_enable = 1;
 935			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
 936			sp->xleft -= actual;
 937			sp->xhead += actual;
 938			sp->led_state = 0x60;
 939			sp->status2 = 0;
 940
 941		}
 942	}
 943
 944	/* needed to trigger the TNC watchdog */
 945	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 946
 947        /* if the state byte has been received, the TNC is present,
 948           so the resync timer can be reset. */
 949
 950	if (sp->tnc_state == TNC_IN_SYNC) {
 951		del_timer(&sp->resync_t);
 952		sp->resync_t.data	= (unsigned long) sp;
 953		sp->resync_t.function	= resync_tnc;
 954		sp->resync_t.expires	= jiffies + SIXP_INIT_RESYNC_TIMEOUT;
 955		add_timer(&sp->resync_t);
 956	}
 957
 958	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
 959}
 960
 961/* identify and execute a standard 6pack command byte */
 962
 963static void decode_std_command(struct sixpack *sp, unsigned char cmd)
 964{
 965	unsigned char checksum = 0, rest = 0, channel;
 966	short i;
 967
 968	channel = cmd & SIXP_CHN_MASK;
 969	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
 970	case SIXP_SEOF:
 971		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
 972			if ((sp->status & SIXP_RX_DCD_MASK) ==
 973				SIXP_RX_DCD_MASK) {
 974				sp->led_state = 0x68;
 975				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 976			}
 977		} else {
 978			sp->led_state = 0x60;
 979			/* fill trailing bytes with zeroes */
 980			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
 
 981			rest = sp->rx_count;
 982			if (rest != 0)
 983				 for (i = rest; i <= 3; i++)
 984					decode_data(sp, 0);
 985			if (rest == 2)
 986				sp->rx_count_cooked -= 2;
 987			else if (rest == 3)
 988				sp->rx_count_cooked -= 1;
 989			for (i = 0; i < sp->rx_count_cooked; i++)
 990				checksum += sp->cooked_buf[i];
 991			if (checksum != SIXP_CHKSUM) {
 992				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
 993			} else {
 994				sp->rcount = sp->rx_count_cooked-2;
 995				sp_bump(sp, 0);
 996			}
 997			sp->rx_count_cooked = 0;
 
 998		}
 999		break;
1000	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
1001		break;
1002	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
1003		break;
1004	case SIXP_RX_BUF_OVL:
1005		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
1006	}
1007}
1008
1009/* decode a 6pack packet */
1010
1011static void
1012sixpack_decode(struct sixpack *sp, unsigned char *pre_rbuff, int count)
1013{
1014	unsigned char inbyte;
1015	int count1;
1016
1017	for (count1 = 0; count1 < count; count1++) {
1018		inbyte = pre_rbuff[count1];
1019		if (inbyte == SIXP_FOUND_TNC) {
1020			tnc_set_sync_state(sp, TNC_IN_SYNC);
1021			del_timer(&sp->resync_t);
1022		}
1023		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
1024			decode_prio_command(sp, inbyte);
1025		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
1026			decode_std_command(sp, inbyte);
1027		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
 
1028			decode_data(sp, inbyte);
 
 
1029	}
1030}
1031
1032MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
1033MODULE_DESCRIPTION("6pack driver for AX.25");
1034MODULE_LICENSE("GPL");
1035MODULE_ALIAS_LDISC(N_6PACK);
1036
1037module_init(sixpack_init_driver);
1038module_exit(sixpack_exit_driver);