Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Copyright(c) 2005 - 2006 Attansic Corporation. All rights reserved.
   3 * Copyright(c) 2006 - 2007 Chris Snook <csnook@redhat.com>
   4 * Copyright(c) 2006 - 2008 Jay Cliburn <jcliburn@gmail.com>
   5 *
   6 * Derived from Intel e1000 driver
   7 * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify it
  10 * under the terms of the GNU General Public License as published by the Free
  11 * Software Foundation; either version 2 of the License, or (at your option)
  12 * any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful, but WITHOUT
  15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  17 * more details.
  18 *
  19 * You should have received a copy of the GNU General Public License along with
  20 * this program; if not, write to the Free Software Foundation, Inc., 59
  21 * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  22 *
  23 * The full GNU General Public License is included in this distribution in the
  24 * file called COPYING.
  25 *
  26 * Contact Information:
  27 * Xiong Huang <xiong.huang@atheros.com>
  28 * Jie Yang <jie.yang@atheros.com>
  29 * Chris Snook <csnook@redhat.com>
  30 * Jay Cliburn <jcliburn@gmail.com>
  31 *
  32 * This version is adapted from the Attansic reference driver.
  33 *
  34 * TODO:
  35 * Add more ethtool functions.
  36 * Fix abstruse irq enable/disable condition described here:
  37 *	http://marc.theaimsgroup.com/?l=linux-netdev&m=116398508500553&w=2
  38 *
  39 * NEEDS TESTING:
  40 * VLAN
  41 * multicast
  42 * promiscuous mode
  43 * interrupt coalescing
  44 * SMP torture testing
  45 */
  46
  47#include <linux/atomic.h>
  48#include <asm/byteorder.h>
  49
  50#include <linux/compiler.h>
  51#include <linux/crc32.h>
  52#include <linux/delay.h>
  53#include <linux/dma-mapping.h>
  54#include <linux/etherdevice.h>
  55#include <linux/hardirq.h>
  56#include <linux/if_ether.h>
  57#include <linux/if_vlan.h>
  58#include <linux/in.h>
  59#include <linux/interrupt.h>
  60#include <linux/ip.h>
  61#include <linux/irqflags.h>
  62#include <linux/irqreturn.h>
  63#include <linux/jiffies.h>
  64#include <linux/mii.h>
  65#include <linux/module.h>
  66#include <linux/moduleparam.h>
  67#include <linux/net.h>
  68#include <linux/netdevice.h>
  69#include <linux/pci.h>
  70#include <linux/pci_ids.h>
  71#include <linux/pm.h>
  72#include <linux/skbuff.h>
  73#include <linux/slab.h>
  74#include <linux/spinlock.h>
  75#include <linux/string.h>
  76#include <linux/tcp.h>
  77#include <linux/timer.h>
  78#include <linux/types.h>
  79#include <linux/workqueue.h>
  80
  81#include <net/checksum.h>
  82
  83#include "atl1.h"
  84
  85#define ATLX_DRIVER_VERSION "2.1.3"
  86MODULE_AUTHOR("Xiong Huang <xiong.huang@atheros.com>, "
  87	      "Chris Snook <csnook@redhat.com>, "
  88	      "Jay Cliburn <jcliburn@gmail.com>");
  89MODULE_LICENSE("GPL");
  90MODULE_VERSION(ATLX_DRIVER_VERSION);
  91
  92/* Temporary hack for merging atl1 and atl2 */
  93#include "atlx.c"
  94
  95static const struct ethtool_ops atl1_ethtool_ops;
  96
  97/*
  98 * This is the only thing that needs to be changed to adjust the
  99 * maximum number of ports that the driver can manage.
 100 */
 101#define ATL1_MAX_NIC 4
 102
 103#define OPTION_UNSET    -1
 104#define OPTION_DISABLED 0
 105#define OPTION_ENABLED  1
 106
 107#define ATL1_PARAM_INIT { [0 ... ATL1_MAX_NIC] = OPTION_UNSET }
 108
 109/*
 110 * Interrupt Moderate Timer in units of 2 us
 111 *
 112 * Valid Range: 10-65535
 113 *
 114 * Default Value: 100 (200us)
 115 */
 116static int __devinitdata int_mod_timer[ATL1_MAX_NIC+1] = ATL1_PARAM_INIT;
 117static unsigned int num_int_mod_timer;
 118module_param_array_named(int_mod_timer, int_mod_timer, int,
 119	&num_int_mod_timer, 0);
 120MODULE_PARM_DESC(int_mod_timer, "Interrupt moderator timer");
 121
 122#define DEFAULT_INT_MOD_CNT	100	/* 200us */
 123#define MAX_INT_MOD_CNT		65000
 124#define MIN_INT_MOD_CNT		50
 125
 126struct atl1_option {
 127	enum { enable_option, range_option, list_option } type;
 128	char *name;
 129	char *err;
 130	int def;
 131	union {
 132		struct {	/* range_option info */
 133			int min;
 134			int max;
 135		} r;
 136		struct {	/* list_option info */
 137			int nr;
 138			struct atl1_opt_list {
 139				int i;
 140				char *str;
 141			} *p;
 142		} l;
 143	} arg;
 144};
 145
 146static int __devinit atl1_validate_option(int *value, struct atl1_option *opt,
 147	struct pci_dev *pdev)
 148{
 149	if (*value == OPTION_UNSET) {
 150		*value = opt->def;
 151		return 0;
 152	}
 153
 154	switch (opt->type) {
 155	case enable_option:
 156		switch (*value) {
 157		case OPTION_ENABLED:
 158			dev_info(&pdev->dev, "%s enabled\n", opt->name);
 159			return 0;
 160		case OPTION_DISABLED:
 161			dev_info(&pdev->dev, "%s disabled\n", opt->name);
 162			return 0;
 163		}
 164		break;
 165	case range_option:
 166		if (*value >= opt->arg.r.min && *value <= opt->arg.r.max) {
 167			dev_info(&pdev->dev, "%s set to %i\n", opt->name,
 168				*value);
 169			return 0;
 170		}
 171		break;
 172	case list_option:{
 173			int i;
 174			struct atl1_opt_list *ent;
 175
 176			for (i = 0; i < opt->arg.l.nr; i++) {
 177				ent = &opt->arg.l.p[i];
 178				if (*value == ent->i) {
 179					if (ent->str[0] != '\0')
 180						dev_info(&pdev->dev, "%s\n",
 181							ent->str);
 182					return 0;
 183				}
 184			}
 185		}
 186		break;
 187
 188	default:
 189		break;
 190	}
 191
 192	dev_info(&pdev->dev, "invalid %s specified (%i) %s\n",
 193		opt->name, *value, opt->err);
 194	*value = opt->def;
 195	return -1;
 196}
 197
 198/*
 199 * atl1_check_options - Range Checking for Command Line Parameters
 200 * @adapter: board private structure
 201 *
 202 * This routine checks all command line parameters for valid user
 203 * input.  If an invalid value is given, or if no user specified
 204 * value exists, a default value is used.  The final value is stored
 205 * in a variable in the adapter structure.
 206 */
 207static void __devinit atl1_check_options(struct atl1_adapter *adapter)
 208{
 209	struct pci_dev *pdev = adapter->pdev;
 210	int bd = adapter->bd_number;
 211	if (bd >= ATL1_MAX_NIC) {
 212		dev_notice(&pdev->dev, "no configuration for board#%i\n", bd);
 213		dev_notice(&pdev->dev, "using defaults for all values\n");
 214	}
 215	{			/* Interrupt Moderate Timer */
 216		struct atl1_option opt = {
 217			.type = range_option,
 218			.name = "Interrupt Moderator Timer",
 219			.err = "using default of "
 220				__MODULE_STRING(DEFAULT_INT_MOD_CNT),
 221			.def = DEFAULT_INT_MOD_CNT,
 222			.arg = {.r = {.min = MIN_INT_MOD_CNT,
 223					.max = MAX_INT_MOD_CNT} }
 224		};
 225		int val;
 226		if (num_int_mod_timer > bd) {
 227			val = int_mod_timer[bd];
 228			atl1_validate_option(&val, &opt, pdev);
 229			adapter->imt = (u16) val;
 230		} else
 231			adapter->imt = (u16) (opt.def);
 232	}
 233}
 234
 235/*
 236 * atl1_pci_tbl - PCI Device ID Table
 237 */
 238static DEFINE_PCI_DEVICE_TABLE(atl1_pci_tbl) = {
 239	{PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1)},
 240	/* required last entry */
 241	{0,}
 242};
 243MODULE_DEVICE_TABLE(pci, atl1_pci_tbl);
 244
 245static const u32 atl1_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
 246	NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP;
 247
 248static int debug = -1;
 249module_param(debug, int, 0);
 250MODULE_PARM_DESC(debug, "Message level (0=none,...,16=all)");
 251
 252/*
 253 * Reset the transmit and receive units; mask and clear all interrupts.
 254 * hw - Struct containing variables accessed by shared code
 255 * return : 0  or  idle status (if error)
 256 */
 257static s32 atl1_reset_hw(struct atl1_hw *hw)
 258{
 259	struct pci_dev *pdev = hw->back->pdev;
 260	struct atl1_adapter *adapter = hw->back;
 261	u32 icr;
 262	int i;
 263
 264	/*
 265	 * Clear Interrupt mask to stop board from generating
 266	 * interrupts & Clear any pending interrupt events
 267	 */
 268	/*
 269	 * iowrite32(0, hw->hw_addr + REG_IMR);
 270	 * iowrite32(0xffffffff, hw->hw_addr + REG_ISR);
 271	 */
 272
 273	/*
 274	 * Issue Soft Reset to the MAC.  This will reset the chip's
 275	 * transmit, receive, DMA.  It will not effect
 276	 * the current PCI configuration.  The global reset bit is self-
 277	 * clearing, and should clear within a microsecond.
 278	 */
 279	iowrite32(MASTER_CTRL_SOFT_RST, hw->hw_addr + REG_MASTER_CTRL);
 280	ioread32(hw->hw_addr + REG_MASTER_CTRL);
 281
 282	iowrite16(1, hw->hw_addr + REG_PHY_ENABLE);
 283	ioread16(hw->hw_addr + REG_PHY_ENABLE);
 284
 285	/* delay about 1ms */
 286	msleep(1);
 287
 288	/* Wait at least 10ms for All module to be Idle */
 289	for (i = 0; i < 10; i++) {
 290		icr = ioread32(hw->hw_addr + REG_IDLE_STATUS);
 291		if (!icr)
 292			break;
 293		/* delay 1 ms */
 294		msleep(1);
 295		/* FIXME: still the right way to do this? */
 296		cpu_relax();
 297	}
 298
 299	if (icr) {
 300		if (netif_msg_hw(adapter))
 301			dev_dbg(&pdev->dev, "ICR = 0x%x\n", icr);
 302		return icr;
 303	}
 304
 305	return 0;
 306}
 307
 308/* function about EEPROM
 309 *
 310 * check_eeprom_exist
 311 * return 0 if eeprom exist
 312 */
 313static int atl1_check_eeprom_exist(struct atl1_hw *hw)
 314{
 315	u32 value;
 316	value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 317	if (value & SPI_FLASH_CTRL_EN_VPD) {
 318		value &= ~SPI_FLASH_CTRL_EN_VPD;
 319		iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 320	}
 321
 322	value = ioread16(hw->hw_addr + REG_PCIE_CAP_LIST);
 323	return ((value & 0xFF00) == 0x6C00) ? 0 : 1;
 324}
 325
 326static bool atl1_read_eeprom(struct atl1_hw *hw, u32 offset, u32 *p_value)
 327{
 328	int i;
 329	u32 control;
 330
 331	if (offset & 3)
 332		/* address do not align */
 333		return false;
 334
 335	iowrite32(0, hw->hw_addr + REG_VPD_DATA);
 336	control = (offset & VPD_CAP_VPD_ADDR_MASK) << VPD_CAP_VPD_ADDR_SHIFT;
 337	iowrite32(control, hw->hw_addr + REG_VPD_CAP);
 338	ioread32(hw->hw_addr + REG_VPD_CAP);
 339
 340	for (i = 0; i < 10; i++) {
 341		msleep(2);
 342		control = ioread32(hw->hw_addr + REG_VPD_CAP);
 343		if (control & VPD_CAP_VPD_FLAG)
 344			break;
 345	}
 346	if (control & VPD_CAP_VPD_FLAG) {
 347		*p_value = ioread32(hw->hw_addr + REG_VPD_DATA);
 348		return true;
 349	}
 350	/* timeout */
 351	return false;
 352}
 353
 354/*
 355 * Reads the value from a PHY register
 356 * hw - Struct containing variables accessed by shared code
 357 * reg_addr - address of the PHY register to read
 358 */
 359static s32 atl1_read_phy_reg(struct atl1_hw *hw, u16 reg_addr, u16 *phy_data)
 360{
 361	u32 val;
 362	int i;
 363
 364	val = ((u32) (reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT |
 365		MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | MDIO_CLK_25_4 <<
 366		MDIO_CLK_SEL_SHIFT;
 367	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
 368	ioread32(hw->hw_addr + REG_MDIO_CTRL);
 369
 370	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 371		udelay(2);
 372		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 373		if (!(val & (MDIO_START | MDIO_BUSY)))
 374			break;
 375	}
 376	if (!(val & (MDIO_START | MDIO_BUSY))) {
 377		*phy_data = (u16) val;
 378		return 0;
 379	}
 380	return ATLX_ERR_PHY;
 381}
 382
 383#define CUSTOM_SPI_CS_SETUP	2
 384#define CUSTOM_SPI_CLK_HI	2
 385#define CUSTOM_SPI_CLK_LO	2
 386#define CUSTOM_SPI_CS_HOLD	2
 387#define CUSTOM_SPI_CS_HI	3
 388
 389static bool atl1_spi_read(struct atl1_hw *hw, u32 addr, u32 *buf)
 390{
 391	int i;
 392	u32 value;
 393
 394	iowrite32(0, hw->hw_addr + REG_SPI_DATA);
 395	iowrite32(addr, hw->hw_addr + REG_SPI_ADDR);
 396
 397	value = SPI_FLASH_CTRL_WAIT_READY |
 398	    (CUSTOM_SPI_CS_SETUP & SPI_FLASH_CTRL_CS_SETUP_MASK) <<
 399	    SPI_FLASH_CTRL_CS_SETUP_SHIFT | (CUSTOM_SPI_CLK_HI &
 400					     SPI_FLASH_CTRL_CLK_HI_MASK) <<
 401	    SPI_FLASH_CTRL_CLK_HI_SHIFT | (CUSTOM_SPI_CLK_LO &
 402					   SPI_FLASH_CTRL_CLK_LO_MASK) <<
 403	    SPI_FLASH_CTRL_CLK_LO_SHIFT | (CUSTOM_SPI_CS_HOLD &
 404					   SPI_FLASH_CTRL_CS_HOLD_MASK) <<
 405	    SPI_FLASH_CTRL_CS_HOLD_SHIFT | (CUSTOM_SPI_CS_HI &
 406					    SPI_FLASH_CTRL_CS_HI_MASK) <<
 407	    SPI_FLASH_CTRL_CS_HI_SHIFT | (1 & SPI_FLASH_CTRL_INS_MASK) <<
 408	    SPI_FLASH_CTRL_INS_SHIFT;
 409
 410	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 411
 412	value |= SPI_FLASH_CTRL_START;
 413	iowrite32(value, hw->hw_addr + REG_SPI_FLASH_CTRL);
 414	ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 415
 416	for (i = 0; i < 10; i++) {
 417		msleep(1);
 418		value = ioread32(hw->hw_addr + REG_SPI_FLASH_CTRL);
 419		if (!(value & SPI_FLASH_CTRL_START))
 420			break;
 421	}
 422
 423	if (value & SPI_FLASH_CTRL_START)
 424		return false;
 425
 426	*buf = ioread32(hw->hw_addr + REG_SPI_DATA);
 427
 428	return true;
 429}
 430
 431/*
 432 * get_permanent_address
 433 * return 0 if get valid mac address,
 434 */
 435static int atl1_get_permanent_address(struct atl1_hw *hw)
 436{
 437	u32 addr[2];
 438	u32 i, control;
 439	u16 reg;
 440	u8 eth_addr[ETH_ALEN];
 441	bool key_valid;
 442
 443	if (is_valid_ether_addr(hw->perm_mac_addr))
 444		return 0;
 445
 446	/* init */
 447	addr[0] = addr[1] = 0;
 448
 449	if (!atl1_check_eeprom_exist(hw)) {
 450		reg = 0;
 451		key_valid = false;
 452		/* Read out all EEPROM content */
 453		i = 0;
 454		while (1) {
 455			if (atl1_read_eeprom(hw, i + 0x100, &control)) {
 456				if (key_valid) {
 457					if (reg == REG_MAC_STA_ADDR)
 458						addr[0] = control;
 459					else if (reg == (REG_MAC_STA_ADDR + 4))
 460						addr[1] = control;
 461					key_valid = false;
 462				} else if ((control & 0xff) == 0x5A) {
 463					key_valid = true;
 464					reg = (u16) (control >> 16);
 465				} else
 466					break;
 467			} else
 468				/* read error */
 469				break;
 470			i += 4;
 471		}
 472
 473		*(u32 *) &eth_addr[2] = swab32(addr[0]);
 474		*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 475		if (is_valid_ether_addr(eth_addr)) {
 476			memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 477			return 0;
 478		}
 479	}
 480
 481	/* see if SPI FLAGS exist ? */
 482	addr[0] = addr[1] = 0;
 483	reg = 0;
 484	key_valid = false;
 485	i = 0;
 486	while (1) {
 487		if (atl1_spi_read(hw, i + 0x1f000, &control)) {
 488			if (key_valid) {
 489				if (reg == REG_MAC_STA_ADDR)
 490					addr[0] = control;
 491				else if (reg == (REG_MAC_STA_ADDR + 4))
 492					addr[1] = control;
 493				key_valid = false;
 494			} else if ((control & 0xff) == 0x5A) {
 495				key_valid = true;
 496				reg = (u16) (control >> 16);
 497			} else
 498				/* data end */
 499				break;
 500		} else
 501			/* read error */
 502			break;
 503		i += 4;
 504	}
 505
 506	*(u32 *) &eth_addr[2] = swab32(addr[0]);
 507	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 508	if (is_valid_ether_addr(eth_addr)) {
 509		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 510		return 0;
 511	}
 512
 513	/*
 514	 * On some motherboards, the MAC address is written by the
 515	 * BIOS directly to the MAC register during POST, and is
 516	 * not stored in eeprom.  If all else thus far has failed
 517	 * to fetch the permanent MAC address, try reading it directly.
 518	 */
 519	addr[0] = ioread32(hw->hw_addr + REG_MAC_STA_ADDR);
 520	addr[1] = ioread16(hw->hw_addr + (REG_MAC_STA_ADDR + 4));
 521	*(u32 *) &eth_addr[2] = swab32(addr[0]);
 522	*(u16 *) &eth_addr[0] = swab16(*(u16 *) &addr[1]);
 523	if (is_valid_ether_addr(eth_addr)) {
 524		memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN);
 525		return 0;
 526	}
 527
 528	return 1;
 529}
 530
 531/*
 532 * Reads the adapter's MAC address from the EEPROM
 533 * hw - Struct containing variables accessed by shared code
 534 */
 535static s32 atl1_read_mac_addr(struct atl1_hw *hw)
 536{
 537	u16 i;
 538
 539	if (atl1_get_permanent_address(hw))
 540		random_ether_addr(hw->perm_mac_addr);
 541
 542	for (i = 0; i < ETH_ALEN; i++)
 543		hw->mac_addr[i] = hw->perm_mac_addr[i];
 544	return 0;
 545}
 546
 547/*
 548 * Hashes an address to determine its location in the multicast table
 549 * hw - Struct containing variables accessed by shared code
 550 * mc_addr - the multicast address to hash
 551 *
 552 * atl1_hash_mc_addr
 553 *  purpose
 554 *      set hash value for a multicast address
 555 *      hash calcu processing :
 556 *          1. calcu 32bit CRC for multicast address
 557 *          2. reverse crc with MSB to LSB
 558 */
 559static u32 atl1_hash_mc_addr(struct atl1_hw *hw, u8 *mc_addr)
 560{
 561	u32 crc32, value = 0;
 562	int i;
 563
 564	crc32 = ether_crc_le(6, mc_addr);
 565	for (i = 0; i < 32; i++)
 566		value |= (((crc32 >> i) & 1) << (31 - i));
 567
 568	return value;
 569}
 570
 571/*
 572 * Sets the bit in the multicast table corresponding to the hash value.
 573 * hw - Struct containing variables accessed by shared code
 574 * hash_value - Multicast address hash value
 575 */
 576static void atl1_hash_set(struct atl1_hw *hw, u32 hash_value)
 577{
 578	u32 hash_bit, hash_reg;
 579	u32 mta;
 580
 581	/*
 582	 * The HASH Table  is a register array of 2 32-bit registers.
 583	 * It is treated like an array of 64 bits.  We want to set
 584	 * bit BitArray[hash_value]. So we figure out what register
 585	 * the bit is in, read it, OR in the new bit, then write
 586	 * back the new value.  The register is determined by the
 587	 * upper 7 bits of the hash value and the bit within that
 588	 * register are determined by the lower 5 bits of the value.
 589	 */
 590	hash_reg = (hash_value >> 31) & 0x1;
 591	hash_bit = (hash_value >> 26) & 0x1F;
 592	mta = ioread32((hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
 593	mta |= (1 << hash_bit);
 594	iowrite32(mta, (hw->hw_addr + REG_RX_HASH_TABLE) + (hash_reg << 2));
 595}
 596
 597/*
 598 * Writes a value to a PHY register
 599 * hw - Struct containing variables accessed by shared code
 600 * reg_addr - address of the PHY register to write
 601 * data - data to write to the PHY
 602 */
 603static s32 atl1_write_phy_reg(struct atl1_hw *hw, u32 reg_addr, u16 phy_data)
 604{
 605	int i;
 606	u32 val;
 607
 608	val = ((u32) (phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT |
 609	    (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT |
 610	    MDIO_SUP_PREAMBLE |
 611	    MDIO_START | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT;
 612	iowrite32(val, hw->hw_addr + REG_MDIO_CTRL);
 613	ioread32(hw->hw_addr + REG_MDIO_CTRL);
 614
 615	for (i = 0; i < MDIO_WAIT_TIMES; i++) {
 616		udelay(2);
 617		val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 618		if (!(val & (MDIO_START | MDIO_BUSY)))
 619			break;
 620	}
 621
 622	if (!(val & (MDIO_START | MDIO_BUSY)))
 623		return 0;
 624
 625	return ATLX_ERR_PHY;
 626}
 627
 628/*
 629 * Make L001's PHY out of Power Saving State (bug)
 630 * hw - Struct containing variables accessed by shared code
 631 * when power on, L001's PHY always on Power saving State
 632 * (Gigabit Link forbidden)
 633 */
 634static s32 atl1_phy_leave_power_saving(struct atl1_hw *hw)
 635{
 636	s32 ret;
 637	ret = atl1_write_phy_reg(hw, 29, 0x0029);
 638	if (ret)
 639		return ret;
 640	return atl1_write_phy_reg(hw, 30, 0);
 641}
 642
 643/*
 644 * Resets the PHY and make all config validate
 645 * hw - Struct containing variables accessed by shared code
 646 *
 647 * Sets bit 15 and 12 of the MII Control regiser (for F001 bug)
 648 */
 649static s32 atl1_phy_reset(struct atl1_hw *hw)
 650{
 651	struct pci_dev *pdev = hw->back->pdev;
 652	struct atl1_adapter *adapter = hw->back;
 653	s32 ret_val;
 654	u16 phy_data;
 655
 656	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
 657	    hw->media_type == MEDIA_TYPE_1000M_FULL)
 658		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
 659	else {
 660		switch (hw->media_type) {
 661		case MEDIA_TYPE_100M_FULL:
 662			phy_data =
 663			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
 664			    MII_CR_RESET;
 665			break;
 666		case MEDIA_TYPE_100M_HALF:
 667			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
 668			break;
 669		case MEDIA_TYPE_10M_FULL:
 670			phy_data =
 671			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
 672			break;
 673		default:
 674			/* MEDIA_TYPE_10M_HALF: */
 675			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
 676			break;
 677		}
 678	}
 679
 680	ret_val = atl1_write_phy_reg(hw, MII_BMCR, phy_data);
 681	if (ret_val) {
 682		u32 val;
 683		int i;
 684		/* pcie serdes link may be down! */
 685		if (netif_msg_hw(adapter))
 686			dev_dbg(&pdev->dev, "pcie phy link down\n");
 687
 688		for (i = 0; i < 25; i++) {
 689			msleep(1);
 690			val = ioread32(hw->hw_addr + REG_MDIO_CTRL);
 691			if (!(val & (MDIO_START | MDIO_BUSY)))
 692				break;
 693		}
 694
 695		if ((val & (MDIO_START | MDIO_BUSY)) != 0) {
 696			if (netif_msg_hw(adapter))
 697				dev_warn(&pdev->dev,
 698					"pcie link down at least 25ms\n");
 699			return ret_val;
 700		}
 701	}
 702	return 0;
 703}
 704
 705/*
 706 * Configures PHY autoneg and flow control advertisement settings
 707 * hw - Struct containing variables accessed by shared code
 708 */
 709static s32 atl1_phy_setup_autoneg_adv(struct atl1_hw *hw)
 710{
 711	s32 ret_val;
 712	s16 mii_autoneg_adv_reg;
 713	s16 mii_1000t_ctrl_reg;
 714
 715	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
 716	mii_autoneg_adv_reg = MII_AR_DEFAULT_CAP_MASK;
 717
 718	/* Read the MII 1000Base-T Control Register (Address 9). */
 719	mii_1000t_ctrl_reg = MII_ATLX_CR_1000T_DEFAULT_CAP_MASK;
 720
 721	/*
 722	 * First we clear all the 10/100 mb speed bits in the Auto-Neg
 723	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
 724	 * the  1000Base-T Control Register (Address 9).
 725	 */
 726	mii_autoneg_adv_reg &= ~MII_AR_SPEED_MASK;
 727	mii_1000t_ctrl_reg &= ~MII_ATLX_CR_1000T_SPEED_MASK;
 728
 729	/*
 730	 * Need to parse media_type  and set up
 731	 * the appropriate PHY registers.
 732	 */
 733	switch (hw->media_type) {
 734	case MEDIA_TYPE_AUTO_SENSOR:
 735		mii_autoneg_adv_reg |= (MII_AR_10T_HD_CAPS |
 736					MII_AR_10T_FD_CAPS |
 737					MII_AR_100TX_HD_CAPS |
 738					MII_AR_100TX_FD_CAPS);
 739		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
 740		break;
 741
 742	case MEDIA_TYPE_1000M_FULL:
 743		mii_1000t_ctrl_reg |= MII_ATLX_CR_1000T_FD_CAPS;
 744		break;
 745
 746	case MEDIA_TYPE_100M_FULL:
 747		mii_autoneg_adv_reg |= MII_AR_100TX_FD_CAPS;
 748		break;
 749
 750	case MEDIA_TYPE_100M_HALF:
 751		mii_autoneg_adv_reg |= MII_AR_100TX_HD_CAPS;
 752		break;
 753
 754	case MEDIA_TYPE_10M_FULL:
 755		mii_autoneg_adv_reg |= MII_AR_10T_FD_CAPS;
 756		break;
 757
 758	default:
 759		mii_autoneg_adv_reg |= MII_AR_10T_HD_CAPS;
 760		break;
 761	}
 762
 763	/* flow control fixed to enable all */
 764	mii_autoneg_adv_reg |= (MII_AR_ASM_DIR | MII_AR_PAUSE);
 765
 766	hw->mii_autoneg_adv_reg = mii_autoneg_adv_reg;
 767	hw->mii_1000t_ctrl_reg = mii_1000t_ctrl_reg;
 768
 769	ret_val = atl1_write_phy_reg(hw, MII_ADVERTISE, mii_autoneg_adv_reg);
 770	if (ret_val)
 771		return ret_val;
 772
 773	ret_val = atl1_write_phy_reg(hw, MII_ATLX_CR, mii_1000t_ctrl_reg);
 774	if (ret_val)
 775		return ret_val;
 776
 777	return 0;
 778}
 779
 780/*
 781 * Configures link settings.
 782 * hw - Struct containing variables accessed by shared code
 783 * Assumes the hardware has previously been reset and the
 784 * transmitter and receiver are not enabled.
 785 */
 786static s32 atl1_setup_link(struct atl1_hw *hw)
 787{
 788	struct pci_dev *pdev = hw->back->pdev;
 789	struct atl1_adapter *adapter = hw->back;
 790	s32 ret_val;
 791
 792	/*
 793	 * Options:
 794	 *  PHY will advertise value(s) parsed from
 795	 *  autoneg_advertised and fc
 796	 *  no matter what autoneg is , We will not wait link result.
 797	 */
 798	ret_val = atl1_phy_setup_autoneg_adv(hw);
 799	if (ret_val) {
 800		if (netif_msg_link(adapter))
 801			dev_dbg(&pdev->dev,
 802				"error setting up autonegotiation\n");
 803		return ret_val;
 804	}
 805	/* SW.Reset , En-Auto-Neg if needed */
 806	ret_val = atl1_phy_reset(hw);
 807	if (ret_val) {
 808		if (netif_msg_link(adapter))
 809			dev_dbg(&pdev->dev, "error resetting phy\n");
 810		return ret_val;
 811	}
 812	hw->phy_configured = true;
 813	return ret_val;
 814}
 815
 816static void atl1_init_flash_opcode(struct atl1_hw *hw)
 817{
 818	if (hw->flash_vendor >= ARRAY_SIZE(flash_table))
 819		/* Atmel */
 820		hw->flash_vendor = 0;
 821
 822	/* Init OP table */
 823	iowrite8(flash_table[hw->flash_vendor].cmd_program,
 824		hw->hw_addr + REG_SPI_FLASH_OP_PROGRAM);
 825	iowrite8(flash_table[hw->flash_vendor].cmd_sector_erase,
 826		hw->hw_addr + REG_SPI_FLASH_OP_SC_ERASE);
 827	iowrite8(flash_table[hw->flash_vendor].cmd_chip_erase,
 828		hw->hw_addr + REG_SPI_FLASH_OP_CHIP_ERASE);
 829	iowrite8(flash_table[hw->flash_vendor].cmd_rdid,
 830		hw->hw_addr + REG_SPI_FLASH_OP_RDID);
 831	iowrite8(flash_table[hw->flash_vendor].cmd_wren,
 832		hw->hw_addr + REG_SPI_FLASH_OP_WREN);
 833	iowrite8(flash_table[hw->flash_vendor].cmd_rdsr,
 834		hw->hw_addr + REG_SPI_FLASH_OP_RDSR);
 835	iowrite8(flash_table[hw->flash_vendor].cmd_wrsr,
 836		hw->hw_addr + REG_SPI_FLASH_OP_WRSR);
 837	iowrite8(flash_table[hw->flash_vendor].cmd_read,
 838		hw->hw_addr + REG_SPI_FLASH_OP_READ);
 839}
 840
 841/*
 842 * Performs basic configuration of the adapter.
 843 * hw - Struct containing variables accessed by shared code
 844 * Assumes that the controller has previously been reset and is in a
 845 * post-reset uninitialized state. Initializes multicast table,
 846 * and  Calls routines to setup link
 847 * Leaves the transmit and receive units disabled and uninitialized.
 848 */
 849static s32 atl1_init_hw(struct atl1_hw *hw)
 850{
 851	u32 ret_val = 0;
 852
 853	/* Zero out the Multicast HASH table */
 854	iowrite32(0, hw->hw_addr + REG_RX_HASH_TABLE);
 855	/* clear the old settings from the multicast hash table */
 856	iowrite32(0, (hw->hw_addr + REG_RX_HASH_TABLE) + (1 << 2));
 857
 858	atl1_init_flash_opcode(hw);
 859
 860	if (!hw->phy_configured) {
 861		/* enable GPHY LinkChange Interrrupt */
 862		ret_val = atl1_write_phy_reg(hw, 18, 0xC00);
 863		if (ret_val)
 864			return ret_val;
 865		/* make PHY out of power-saving state */
 866		ret_val = atl1_phy_leave_power_saving(hw);
 867		if (ret_val)
 868			return ret_val;
 869		/* Call a subroutine to configure the link */
 870		ret_val = atl1_setup_link(hw);
 871	}
 872	return ret_val;
 873}
 874
 875/*
 876 * Detects the current speed and duplex settings of the hardware.
 877 * hw - Struct containing variables accessed by shared code
 878 * speed - Speed of the connection
 879 * duplex - Duplex setting of the connection
 880 */
 881static s32 atl1_get_speed_and_duplex(struct atl1_hw *hw, u16 *speed, u16 *duplex)
 882{
 883	struct pci_dev *pdev = hw->back->pdev;
 884	struct atl1_adapter *adapter = hw->back;
 885	s32 ret_val;
 886	u16 phy_data;
 887
 888	/* ; --- Read   PHY Specific Status Register (17) */
 889	ret_val = atl1_read_phy_reg(hw, MII_ATLX_PSSR, &phy_data);
 890	if (ret_val)
 891		return ret_val;
 892
 893	if (!(phy_data & MII_ATLX_PSSR_SPD_DPLX_RESOLVED))
 894		return ATLX_ERR_PHY_RES;
 895
 896	switch (phy_data & MII_ATLX_PSSR_SPEED) {
 897	case MII_ATLX_PSSR_1000MBS:
 898		*speed = SPEED_1000;
 899		break;
 900	case MII_ATLX_PSSR_100MBS:
 901		*speed = SPEED_100;
 902		break;
 903	case MII_ATLX_PSSR_10MBS:
 904		*speed = SPEED_10;
 905		break;
 906	default:
 907		if (netif_msg_hw(adapter))
 908			dev_dbg(&pdev->dev, "error getting speed\n");
 909		return ATLX_ERR_PHY_SPEED;
 910		break;
 911	}
 912	if (phy_data & MII_ATLX_PSSR_DPLX)
 913		*duplex = FULL_DUPLEX;
 914	else
 915		*duplex = HALF_DUPLEX;
 916
 917	return 0;
 918}
 919
 920static void atl1_set_mac_addr(struct atl1_hw *hw)
 921{
 922	u32 value;
 923	/*
 924	 * 00-0B-6A-F6-00-DC
 925	 * 0:  6AF600DC   1: 000B
 926	 * low dword
 927	 */
 928	value = (((u32) hw->mac_addr[2]) << 24) |
 929	    (((u32) hw->mac_addr[3]) << 16) |
 930	    (((u32) hw->mac_addr[4]) << 8) | (((u32) hw->mac_addr[5]));
 931	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
 932	/* high dword */
 933	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
 934	iowrite32(value, (hw->hw_addr + REG_MAC_STA_ADDR) + (1 << 2));
 935}
 936
 937/*
 938 * atl1_sw_init - Initialize general software structures (struct atl1_adapter)
 939 * @adapter: board private structure to initialize
 940 *
 941 * atl1_sw_init initializes the Adapter private data structure.
 942 * Fields are initialized based on PCI device information and
 943 * OS network device settings (MTU size).
 944 */
 945static int __devinit atl1_sw_init(struct atl1_adapter *adapter)
 946{
 947	struct atl1_hw *hw = &adapter->hw;
 948	struct net_device *netdev = adapter->netdev;
 949
 950	hw->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
 951	hw->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 952
 953	adapter->wol = 0;
 954	device_set_wakeup_enable(&adapter->pdev->dev, false);
 955	adapter->rx_buffer_len = (hw->max_frame_size + 7) & ~7;
 956	adapter->ict = 50000;		/* 100ms */
 957	adapter->link_speed = SPEED_0;	/* hardware init */
 958	adapter->link_duplex = FULL_DUPLEX;
 959
 960	hw->phy_configured = false;
 961	hw->preamble_len = 7;
 962	hw->ipgt = 0x60;
 963	hw->min_ifg = 0x50;
 964	hw->ipgr1 = 0x40;
 965	hw->ipgr2 = 0x60;
 966	hw->max_retry = 0xf;
 967	hw->lcol = 0x37;
 968	hw->jam_ipg = 7;
 969	hw->rfd_burst = 8;
 970	hw->rrd_burst = 8;
 971	hw->rfd_fetch_gap = 1;
 972	hw->rx_jumbo_th = adapter->rx_buffer_len / 8;
 973	hw->rx_jumbo_lkah = 1;
 974	hw->rrd_ret_timer = 16;
 975	hw->tpd_burst = 4;
 976	hw->tpd_fetch_th = 16;
 977	hw->txf_burst = 0x100;
 978	hw->tx_jumbo_task_th = (hw->max_frame_size + 7) >> 3;
 979	hw->tpd_fetch_gap = 1;
 980	hw->rcb_value = atl1_rcb_64;
 981	hw->dma_ord = atl1_dma_ord_enh;
 982	hw->dmar_block = atl1_dma_req_256;
 983	hw->dmaw_block = atl1_dma_req_256;
 984	hw->cmb_rrd = 4;
 985	hw->cmb_tpd = 4;
 986	hw->cmb_rx_timer = 1;	/* about 2us */
 987	hw->cmb_tx_timer = 1;	/* about 2us */
 988	hw->smb_timer = 100000;	/* about 200ms */
 989
 990	spin_lock_init(&adapter->lock);
 991	spin_lock_init(&adapter->mb_lock);
 992
 993	return 0;
 994}
 995
 996static int mdio_read(struct net_device *netdev, int phy_id, int reg_num)
 997{
 998	struct atl1_adapter *adapter = netdev_priv(netdev);
 999	u16 result;
1000
1001	atl1_read_phy_reg(&adapter->hw, reg_num & 0x1f, &result);
1002
1003	return result;
1004}
1005
1006static void mdio_write(struct net_device *netdev, int phy_id, int reg_num,
1007	int val)
1008{
1009	struct atl1_adapter *adapter = netdev_priv(netdev);
1010
1011	atl1_write_phy_reg(&adapter->hw, reg_num, val);
1012}
1013
1014/*
1015 * atl1_mii_ioctl -
1016 * @netdev:
1017 * @ifreq:
1018 * @cmd:
1019 */
1020static int atl1_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1021{
1022	struct atl1_adapter *adapter = netdev_priv(netdev);
1023	unsigned long flags;
1024	int retval;
1025
1026	if (!netif_running(netdev))
1027		return -EINVAL;
1028
1029	spin_lock_irqsave(&adapter->lock, flags);
1030	retval = generic_mii_ioctl(&adapter->mii, if_mii(ifr), cmd, NULL);
1031	spin_unlock_irqrestore(&adapter->lock, flags);
1032
1033	return retval;
1034}
1035
1036/*
1037 * atl1_setup_mem_resources - allocate Tx / RX descriptor resources
1038 * @adapter: board private structure
1039 *
1040 * Return 0 on success, negative on failure
1041 */
1042static s32 atl1_setup_ring_resources(struct atl1_adapter *adapter)
1043{
1044	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1045	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1046	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1047	struct atl1_ring_header *ring_header = &adapter->ring_header;
1048	struct pci_dev *pdev = adapter->pdev;
1049	int size;
1050	u8 offset = 0;
1051
1052	size = sizeof(struct atl1_buffer) * (tpd_ring->count + rfd_ring->count);
1053	tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL);
1054	if (unlikely(!tpd_ring->buffer_info)) {
1055		if (netif_msg_drv(adapter))
1056			dev_err(&pdev->dev, "kzalloc failed , size = D%d\n",
1057				size);
1058		goto err_nomem;
1059	}
1060	rfd_ring->buffer_info =
1061		(struct atl1_buffer *)(tpd_ring->buffer_info + tpd_ring->count);
1062
1063	/*
1064	 * real ring DMA buffer
1065	 * each ring/block may need up to 8 bytes for alignment, hence the
1066	 * additional 40 bytes tacked onto the end.
1067	 */
1068	ring_header->size = size =
1069		sizeof(struct tx_packet_desc) * tpd_ring->count
1070		+ sizeof(struct rx_free_desc) * rfd_ring->count
1071		+ sizeof(struct rx_return_desc) * rrd_ring->count
1072		+ sizeof(struct coals_msg_block)
1073		+ sizeof(struct stats_msg_block)
1074		+ 40;
1075
1076	ring_header->desc = pci_alloc_consistent(pdev, ring_header->size,
1077		&ring_header->dma);
1078	if (unlikely(!ring_header->desc)) {
1079		if (netif_msg_drv(adapter))
1080			dev_err(&pdev->dev, "pci_alloc_consistent failed\n");
1081		goto err_nomem;
1082	}
1083
1084	memset(ring_header->desc, 0, ring_header->size);
1085
1086	/* init TPD ring */
1087	tpd_ring->dma = ring_header->dma;
1088	offset = (tpd_ring->dma & 0x7) ? (8 - (ring_header->dma & 0x7)) : 0;
1089	tpd_ring->dma += offset;
1090	tpd_ring->desc = (u8 *) ring_header->desc + offset;
1091	tpd_ring->size = sizeof(struct tx_packet_desc) * tpd_ring->count;
1092
1093	/* init RFD ring */
1094	rfd_ring->dma = tpd_ring->dma + tpd_ring->size;
1095	offset = (rfd_ring->dma & 0x7) ? (8 - (rfd_ring->dma & 0x7)) : 0;
1096	rfd_ring->dma += offset;
1097	rfd_ring->desc = (u8 *) tpd_ring->desc + (tpd_ring->size + offset);
1098	rfd_ring->size = sizeof(struct rx_free_desc) * rfd_ring->count;
1099
1100
1101	/* init RRD ring */
1102	rrd_ring->dma = rfd_ring->dma + rfd_ring->size;
1103	offset = (rrd_ring->dma & 0x7) ? (8 - (rrd_ring->dma & 0x7)) : 0;
1104	rrd_ring->dma += offset;
1105	rrd_ring->desc = (u8 *) rfd_ring->desc + (rfd_ring->size + offset);
1106	rrd_ring->size = sizeof(struct rx_return_desc) * rrd_ring->count;
1107
1108
1109	/* init CMB */
1110	adapter->cmb.dma = rrd_ring->dma + rrd_ring->size;
1111	offset = (adapter->cmb.dma & 0x7) ? (8 - (adapter->cmb.dma & 0x7)) : 0;
1112	adapter->cmb.dma += offset;
1113	adapter->cmb.cmb = (struct coals_msg_block *)
1114		((u8 *) rrd_ring->desc + (rrd_ring->size + offset));
1115
1116	/* init SMB */
1117	adapter->smb.dma = adapter->cmb.dma + sizeof(struct coals_msg_block);
1118	offset = (adapter->smb.dma & 0x7) ? (8 - (adapter->smb.dma & 0x7)) : 0;
1119	adapter->smb.dma += offset;
1120	adapter->smb.smb = (struct stats_msg_block *)
1121		((u8 *) adapter->cmb.cmb +
1122		(sizeof(struct coals_msg_block) + offset));
1123
1124	return 0;
1125
1126err_nomem:
1127	kfree(tpd_ring->buffer_info);
1128	return -ENOMEM;
1129}
1130
1131static void atl1_init_ring_ptrs(struct atl1_adapter *adapter)
1132{
1133	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1134	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1135	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1136
1137	atomic_set(&tpd_ring->next_to_use, 0);
1138	atomic_set(&tpd_ring->next_to_clean, 0);
1139
1140	rfd_ring->next_to_clean = 0;
1141	atomic_set(&rfd_ring->next_to_use, 0);
1142
1143	rrd_ring->next_to_use = 0;
1144	atomic_set(&rrd_ring->next_to_clean, 0);
1145}
1146
1147/*
1148 * atl1_clean_rx_ring - Free RFD Buffers
1149 * @adapter: board private structure
1150 */
1151static void atl1_clean_rx_ring(struct atl1_adapter *adapter)
1152{
1153	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1154	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1155	struct atl1_buffer *buffer_info;
1156	struct pci_dev *pdev = adapter->pdev;
1157	unsigned long size;
1158	unsigned int i;
1159
1160	/* Free all the Rx ring sk_buffs */
1161	for (i = 0; i < rfd_ring->count; i++) {
1162		buffer_info = &rfd_ring->buffer_info[i];
1163		if (buffer_info->dma) {
1164			pci_unmap_page(pdev, buffer_info->dma,
1165				buffer_info->length, PCI_DMA_FROMDEVICE);
1166			buffer_info->dma = 0;
1167		}
1168		if (buffer_info->skb) {
1169			dev_kfree_skb(buffer_info->skb);
1170			buffer_info->skb = NULL;
1171		}
1172	}
1173
1174	size = sizeof(struct atl1_buffer) * rfd_ring->count;
1175	memset(rfd_ring->buffer_info, 0, size);
1176
1177	/* Zero out the descriptor ring */
1178	memset(rfd_ring->desc, 0, rfd_ring->size);
1179
1180	rfd_ring->next_to_clean = 0;
1181	atomic_set(&rfd_ring->next_to_use, 0);
1182
1183	rrd_ring->next_to_use = 0;
1184	atomic_set(&rrd_ring->next_to_clean, 0);
1185}
1186
1187/*
1188 * atl1_clean_tx_ring - Free Tx Buffers
1189 * @adapter: board private structure
1190 */
1191static void atl1_clean_tx_ring(struct atl1_adapter *adapter)
1192{
1193	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1194	struct atl1_buffer *buffer_info;
1195	struct pci_dev *pdev = adapter->pdev;
1196	unsigned long size;
1197	unsigned int i;
1198
1199	/* Free all the Tx ring sk_buffs */
1200	for (i = 0; i < tpd_ring->count; i++) {
1201		buffer_info = &tpd_ring->buffer_info[i];
1202		if (buffer_info->dma) {
1203			pci_unmap_page(pdev, buffer_info->dma,
1204				buffer_info->length, PCI_DMA_TODEVICE);
1205			buffer_info->dma = 0;
1206		}
1207	}
1208
1209	for (i = 0; i < tpd_ring->count; i++) {
1210		buffer_info = &tpd_ring->buffer_info[i];
1211		if (buffer_info->skb) {
1212			dev_kfree_skb_any(buffer_info->skb);
1213			buffer_info->skb = NULL;
1214		}
1215	}
1216
1217	size = sizeof(struct atl1_buffer) * tpd_ring->count;
1218	memset(tpd_ring->buffer_info, 0, size);
1219
1220	/* Zero out the descriptor ring */
1221	memset(tpd_ring->desc, 0, tpd_ring->size);
1222
1223	atomic_set(&tpd_ring->next_to_use, 0);
1224	atomic_set(&tpd_ring->next_to_clean, 0);
1225}
1226
1227/*
1228 * atl1_free_ring_resources - Free Tx / RX descriptor Resources
1229 * @adapter: board private structure
1230 *
1231 * Free all transmit software resources
1232 */
1233static void atl1_free_ring_resources(struct atl1_adapter *adapter)
1234{
1235	struct pci_dev *pdev = adapter->pdev;
1236	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
1237	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1238	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1239	struct atl1_ring_header *ring_header = &adapter->ring_header;
1240
1241	atl1_clean_tx_ring(adapter);
1242	atl1_clean_rx_ring(adapter);
1243
1244	kfree(tpd_ring->buffer_info);
1245	pci_free_consistent(pdev, ring_header->size, ring_header->desc,
1246		ring_header->dma);
1247
1248	tpd_ring->buffer_info = NULL;
1249	tpd_ring->desc = NULL;
1250	tpd_ring->dma = 0;
1251
1252	rfd_ring->buffer_info = NULL;
1253	rfd_ring->desc = NULL;
1254	rfd_ring->dma = 0;
1255
1256	rrd_ring->desc = NULL;
1257	rrd_ring->dma = 0;
1258
1259	adapter->cmb.dma = 0;
1260	adapter->cmb.cmb = NULL;
1261
1262	adapter->smb.dma = 0;
1263	adapter->smb.smb = NULL;
1264}
1265
1266static void atl1_setup_mac_ctrl(struct atl1_adapter *adapter)
1267{
1268	u32 value;
1269	struct atl1_hw *hw = &adapter->hw;
1270	struct net_device *netdev = adapter->netdev;
1271	/* Config MAC CTRL Register */
1272	value = MAC_CTRL_TX_EN | MAC_CTRL_RX_EN;
1273	/* duplex */
1274	if (FULL_DUPLEX == adapter->link_duplex)
1275		value |= MAC_CTRL_DUPLX;
1276	/* speed */
1277	value |= ((u32) ((SPEED_1000 == adapter->link_speed) ?
1278			 MAC_CTRL_SPEED_1000 : MAC_CTRL_SPEED_10_100) <<
1279		  MAC_CTRL_SPEED_SHIFT);
1280	/* flow control */
1281	value |= (MAC_CTRL_TX_FLOW | MAC_CTRL_RX_FLOW);
1282	/* PAD & CRC */
1283	value |= (MAC_CTRL_ADD_CRC | MAC_CTRL_PAD);
1284	/* preamble length */
1285	value |= (((u32) adapter->hw.preamble_len
1286		   & MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
1287	/* vlan */
1288	__atlx_vlan_mode(netdev->features, &value);
1289	/* rx checksum
1290	   if (adapter->rx_csum)
1291	   value |= MAC_CTRL_RX_CHKSUM_EN;
1292	 */
1293	/* filter mode */
1294	value |= MAC_CTRL_BC_EN;
1295	if (netdev->flags & IFF_PROMISC)
1296		value |= MAC_CTRL_PROMIS_EN;
1297	else if (netdev->flags & IFF_ALLMULTI)
1298		value |= MAC_CTRL_MC_ALL_EN;
1299	/* value |= MAC_CTRL_LOOPBACK; */
1300	iowrite32(value, hw->hw_addr + REG_MAC_CTRL);
1301}
1302
1303static u32 atl1_check_link(struct atl1_adapter *adapter)
1304{
1305	struct atl1_hw *hw = &adapter->hw;
1306	struct net_device *netdev = adapter->netdev;
1307	u32 ret_val;
1308	u16 speed, duplex, phy_data;
1309	int reconfig = 0;
1310
1311	/* MII_BMSR must read twice */
1312	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1313	atl1_read_phy_reg(hw, MII_BMSR, &phy_data);
1314	if (!(phy_data & BMSR_LSTATUS)) {
1315		/* link down */
1316		if (netif_carrier_ok(netdev)) {
1317			/* old link state: Up */
1318			if (netif_msg_link(adapter))
1319				dev_info(&adapter->pdev->dev, "link is down\n");
1320			adapter->link_speed = SPEED_0;
1321			netif_carrier_off(netdev);
1322		}
1323		return 0;
1324	}
1325
1326	/* Link Up */
1327	ret_val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
1328	if (ret_val)
1329		return ret_val;
1330
1331	switch (hw->media_type) {
1332	case MEDIA_TYPE_1000M_FULL:
1333		if (speed != SPEED_1000 || duplex != FULL_DUPLEX)
1334			reconfig = 1;
1335		break;
1336	case MEDIA_TYPE_100M_FULL:
1337		if (speed != SPEED_100 || duplex != FULL_DUPLEX)
1338			reconfig = 1;
1339		break;
1340	case MEDIA_TYPE_100M_HALF:
1341		if (speed != SPEED_100 || duplex != HALF_DUPLEX)
1342			reconfig = 1;
1343		break;
1344	case MEDIA_TYPE_10M_FULL:
1345		if (speed != SPEED_10 || duplex != FULL_DUPLEX)
1346			reconfig = 1;
1347		break;
1348	case MEDIA_TYPE_10M_HALF:
1349		if (speed != SPEED_10 || duplex != HALF_DUPLEX)
1350			reconfig = 1;
1351		break;
1352	}
1353
1354	/* link result is our setting */
1355	if (!reconfig) {
1356		if (adapter->link_speed != speed ||
1357		    adapter->link_duplex != duplex) {
1358			adapter->link_speed = speed;
1359			adapter->link_duplex = duplex;
1360			atl1_setup_mac_ctrl(adapter);
1361			if (netif_msg_link(adapter))
1362				dev_info(&adapter->pdev->dev,
1363					"%s link is up %d Mbps %s\n",
1364					netdev->name, adapter->link_speed,
1365					adapter->link_duplex == FULL_DUPLEX ?
1366					"full duplex" : "half duplex");
1367		}
1368		if (!netif_carrier_ok(netdev)) {
1369			/* Link down -> Up */
1370			netif_carrier_on(netdev);
1371		}
1372		return 0;
1373	}
1374
1375	/* change original link status */
1376	if (netif_carrier_ok(netdev)) {
1377		adapter->link_speed = SPEED_0;
1378		netif_carrier_off(netdev);
1379		netif_stop_queue(netdev);
1380	}
1381
1382	if (hw->media_type != MEDIA_TYPE_AUTO_SENSOR &&
1383	    hw->media_type != MEDIA_TYPE_1000M_FULL) {
1384		switch (hw->media_type) {
1385		case MEDIA_TYPE_100M_FULL:
1386			phy_data = MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
1387			           MII_CR_RESET;
1388			break;
1389		case MEDIA_TYPE_100M_HALF:
1390			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
1391			break;
1392		case MEDIA_TYPE_10M_FULL:
1393			phy_data =
1394			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
1395			break;
1396		default:
1397			/* MEDIA_TYPE_10M_HALF: */
1398			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
1399			break;
1400		}
1401		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
1402		return 0;
1403	}
1404
1405	/* auto-neg, insert timer to re-config phy */
1406	if (!adapter->phy_timer_pending) {
1407		adapter->phy_timer_pending = true;
1408		mod_timer(&adapter->phy_config_timer,
1409			  round_jiffies(jiffies + 3 * HZ));
1410	}
1411
1412	return 0;
1413}
1414
1415static void set_flow_ctrl_old(struct atl1_adapter *adapter)
1416{
1417	u32 hi, lo, value;
1418
1419	/* RFD Flow Control */
1420	value = adapter->rfd_ring.count;
1421	hi = value / 16;
1422	if (hi < 2)
1423		hi = 2;
1424	lo = value * 7 / 8;
1425
1426	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1427		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1428	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1429
1430	/* RRD Flow Control */
1431	value = adapter->rrd_ring.count;
1432	lo = value / 16;
1433	hi = value * 7 / 8;
1434	if (lo < 2)
1435		lo = 2;
1436	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1437		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1438	iowrite32(value, adapter->hw.hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1439}
1440
1441static void set_flow_ctrl_new(struct atl1_hw *hw)
1442{
1443	u32 hi, lo, value;
1444
1445	/* RXF Flow Control */
1446	value = ioread32(hw->hw_addr + REG_SRAM_RXF_LEN);
1447	lo = value / 16;
1448	if (lo < 192)
1449		lo = 192;
1450	hi = value * 7 / 8;
1451	if (hi < lo)
1452		hi = lo + 16;
1453	value = ((hi & RXQ_RXF_PAUSE_TH_HI_MASK) << RXQ_RXF_PAUSE_TH_HI_SHIFT) |
1454		((lo & RXQ_RXF_PAUSE_TH_LO_MASK) << RXQ_RXF_PAUSE_TH_LO_SHIFT);
1455	iowrite32(value, hw->hw_addr + REG_RXQ_RXF_PAUSE_THRESH);
1456
1457	/* RRD Flow Control */
1458	value = ioread32(hw->hw_addr + REG_SRAM_RRD_LEN);
1459	lo = value / 8;
1460	hi = value * 7 / 8;
1461	if (lo < 2)
1462		lo = 2;
1463	if (hi < lo)
1464		hi = lo + 3;
1465	value = ((hi & RXQ_RRD_PAUSE_TH_HI_MASK) << RXQ_RRD_PAUSE_TH_HI_SHIFT) |
1466		((lo & RXQ_RRD_PAUSE_TH_LO_MASK) << RXQ_RRD_PAUSE_TH_LO_SHIFT);
1467	iowrite32(value, hw->hw_addr + REG_RXQ_RRD_PAUSE_THRESH);
1468}
1469
1470/*
1471 * atl1_configure - Configure Transmit&Receive Unit after Reset
1472 * @adapter: board private structure
1473 *
1474 * Configure the Tx /Rx unit of the MAC after a reset.
1475 */
1476static u32 atl1_configure(struct atl1_adapter *adapter)
1477{
1478	struct atl1_hw *hw = &adapter->hw;
1479	u32 value;
1480
1481	/* clear interrupt status */
1482	iowrite32(0xffffffff, adapter->hw.hw_addr + REG_ISR);
1483
1484	/* set MAC Address */
1485	value = (((u32) hw->mac_addr[2]) << 24) |
1486		(((u32) hw->mac_addr[3]) << 16) |
1487		(((u32) hw->mac_addr[4]) << 8) |
1488		(((u32) hw->mac_addr[5]));
1489	iowrite32(value, hw->hw_addr + REG_MAC_STA_ADDR);
1490	value = (((u32) hw->mac_addr[0]) << 8) | (((u32) hw->mac_addr[1]));
1491	iowrite32(value, hw->hw_addr + (REG_MAC_STA_ADDR + 4));
1492
1493	/* tx / rx ring */
1494
1495	/* HI base address */
1496	iowrite32((u32) ((adapter->tpd_ring.dma & 0xffffffff00000000ULL) >> 32),
1497		hw->hw_addr + REG_DESC_BASE_ADDR_HI);
1498	/* LO base address */
1499	iowrite32((u32) (adapter->rfd_ring.dma & 0x00000000ffffffffULL),
1500		hw->hw_addr + REG_DESC_RFD_ADDR_LO);
1501	iowrite32((u32) (adapter->rrd_ring.dma & 0x00000000ffffffffULL),
1502		hw->hw_addr + REG_DESC_RRD_ADDR_LO);
1503	iowrite32((u32) (adapter->tpd_ring.dma & 0x00000000ffffffffULL),
1504		hw->hw_addr + REG_DESC_TPD_ADDR_LO);
1505	iowrite32((u32) (adapter->cmb.dma & 0x00000000ffffffffULL),
1506		hw->hw_addr + REG_DESC_CMB_ADDR_LO);
1507	iowrite32((u32) (adapter->smb.dma & 0x00000000ffffffffULL),
1508		hw->hw_addr + REG_DESC_SMB_ADDR_LO);
1509
1510	/* element count */
1511	value = adapter->rrd_ring.count;
1512	value <<= 16;
1513	value += adapter->rfd_ring.count;
1514	iowrite32(value, hw->hw_addr + REG_DESC_RFD_RRD_RING_SIZE);
1515	iowrite32(adapter->tpd_ring.count, hw->hw_addr +
1516		REG_DESC_TPD_RING_SIZE);
1517
1518	/* Load Ptr */
1519	iowrite32(1, hw->hw_addr + REG_LOAD_PTR);
1520
1521	/* config Mailbox */
1522	value = ((atomic_read(&adapter->tpd_ring.next_to_use)
1523		  & MB_TPD_PROD_INDX_MASK) << MB_TPD_PROD_INDX_SHIFT) |
1524		((atomic_read(&adapter->rrd_ring.next_to_clean)
1525		& MB_RRD_CONS_INDX_MASK) << MB_RRD_CONS_INDX_SHIFT) |
1526		((atomic_read(&adapter->rfd_ring.next_to_use)
1527		& MB_RFD_PROD_INDX_MASK) << MB_RFD_PROD_INDX_SHIFT);
1528	iowrite32(value, hw->hw_addr + REG_MAILBOX);
1529
1530	/* config IPG/IFG */
1531	value = (((u32) hw->ipgt & MAC_IPG_IFG_IPGT_MASK)
1532		 << MAC_IPG_IFG_IPGT_SHIFT) |
1533		(((u32) hw->min_ifg & MAC_IPG_IFG_MIFG_MASK)
1534		<< MAC_IPG_IFG_MIFG_SHIFT) |
1535		(((u32) hw->ipgr1 & MAC_IPG_IFG_IPGR1_MASK)
1536		<< MAC_IPG_IFG_IPGR1_SHIFT) |
1537		(((u32) hw->ipgr2 & MAC_IPG_IFG_IPGR2_MASK)
1538		<< MAC_IPG_IFG_IPGR2_SHIFT);
1539	iowrite32(value, hw->hw_addr + REG_MAC_IPG_IFG);
1540
1541	/* config  Half-Duplex Control */
1542	value = ((u32) hw->lcol & MAC_HALF_DUPLX_CTRL_LCOL_MASK) |
1543		(((u32) hw->max_retry & MAC_HALF_DUPLX_CTRL_RETRY_MASK)
1544		<< MAC_HALF_DUPLX_CTRL_RETRY_SHIFT) |
1545		MAC_HALF_DUPLX_CTRL_EXC_DEF_EN |
1546		(0xa << MAC_HALF_DUPLX_CTRL_ABEBT_SHIFT) |
1547		(((u32) hw->jam_ipg & MAC_HALF_DUPLX_CTRL_JAMIPG_MASK)
1548		<< MAC_HALF_DUPLX_CTRL_JAMIPG_SHIFT);
1549	iowrite32(value, hw->hw_addr + REG_MAC_HALF_DUPLX_CTRL);
1550
1551	/* set Interrupt Moderator Timer */
1552	iowrite16(adapter->imt, hw->hw_addr + REG_IRQ_MODU_TIMER_INIT);
1553	iowrite32(MASTER_CTRL_ITIMER_EN, hw->hw_addr + REG_MASTER_CTRL);
1554
1555	/* set Interrupt Clear Timer */
1556	iowrite16(adapter->ict, hw->hw_addr + REG_CMBDISDMA_TIMER);
1557
1558	/* set max frame size hw will accept */
1559	iowrite32(hw->max_frame_size, hw->hw_addr + REG_MTU);
1560
1561	/* jumbo size & rrd retirement timer */
1562	value = (((u32) hw->rx_jumbo_th & RXQ_JMBOSZ_TH_MASK)
1563		 << RXQ_JMBOSZ_TH_SHIFT) |
1564		(((u32) hw->rx_jumbo_lkah & RXQ_JMBO_LKAH_MASK)
1565		<< RXQ_JMBO_LKAH_SHIFT) |
1566		(((u32) hw->rrd_ret_timer & RXQ_RRD_TIMER_MASK)
1567		<< RXQ_RRD_TIMER_SHIFT);
1568	iowrite32(value, hw->hw_addr + REG_RXQ_JMBOSZ_RRDTIM);
1569
1570	/* Flow Control */
1571	switch (hw->dev_rev) {
1572	case 0x8001:
1573	case 0x9001:
1574	case 0x9002:
1575	case 0x9003:
1576		set_flow_ctrl_old(adapter);
1577		break;
1578	default:
1579		set_flow_ctrl_new(hw);
1580		break;
1581	}
1582
1583	/* config TXQ */
1584	value = (((u32) hw->tpd_burst & TXQ_CTRL_TPD_BURST_NUM_MASK)
1585		 << TXQ_CTRL_TPD_BURST_NUM_SHIFT) |
1586		(((u32) hw->txf_burst & TXQ_CTRL_TXF_BURST_NUM_MASK)
1587		<< TXQ_CTRL_TXF_BURST_NUM_SHIFT) |
1588		(((u32) hw->tpd_fetch_th & TXQ_CTRL_TPD_FETCH_TH_MASK)
1589		<< TXQ_CTRL_TPD_FETCH_TH_SHIFT) | TXQ_CTRL_ENH_MODE |
1590		TXQ_CTRL_EN;
1591	iowrite32(value, hw->hw_addr + REG_TXQ_CTRL);
1592
1593	/* min tpd fetch gap & tx jumbo packet size threshold for taskoffload */
1594	value = (((u32) hw->tx_jumbo_task_th & TX_JUMBO_TASK_TH_MASK)
1595		<< TX_JUMBO_TASK_TH_SHIFT) |
1596		(((u32) hw->tpd_fetch_gap & TX_TPD_MIN_IPG_MASK)
1597		<< TX_TPD_MIN_IPG_SHIFT);
1598	iowrite32(value, hw->hw_addr + REG_TX_JUMBO_TASK_TH_TPD_IPG);
1599
1600	/* config RXQ */
1601	value = (((u32) hw->rfd_burst & RXQ_CTRL_RFD_BURST_NUM_MASK)
1602		<< RXQ_CTRL_RFD_BURST_NUM_SHIFT) |
1603		(((u32) hw->rrd_burst & RXQ_CTRL_RRD_BURST_THRESH_MASK)
1604		<< RXQ_CTRL_RRD_BURST_THRESH_SHIFT) |
1605		(((u32) hw->rfd_fetch_gap & RXQ_CTRL_RFD_PREF_MIN_IPG_MASK)
1606		<< RXQ_CTRL_RFD_PREF_MIN_IPG_SHIFT) | RXQ_CTRL_CUT_THRU_EN |
1607		RXQ_CTRL_EN;
1608	iowrite32(value, hw->hw_addr + REG_RXQ_CTRL);
1609
1610	/* config DMA Engine */
1611	value = ((((u32) hw->dmar_block) & DMA_CTRL_DMAR_BURST_LEN_MASK)
1612		<< DMA_CTRL_DMAR_BURST_LEN_SHIFT) |
1613		((((u32) hw->dmaw_block) & DMA_CTRL_DMAW_BURST_LEN_MASK)
1614		<< DMA_CTRL_DMAW_BURST_LEN_SHIFT) | DMA_CTRL_DMAR_EN |
1615		DMA_CTRL_DMAW_EN;
1616	value |= (u32) hw->dma_ord;
1617	if (atl1_rcb_128 == hw->rcb_value)
1618		value |= DMA_CTRL_RCB_VALUE;
1619	iowrite32(value, hw->hw_addr + REG_DMA_CTRL);
1620
1621	/* config CMB / SMB */
1622	value = (hw->cmb_tpd > adapter->tpd_ring.count) ?
1623		hw->cmb_tpd : adapter->tpd_ring.count;
1624	value <<= 16;
1625	value |= hw->cmb_rrd;
1626	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TH);
1627	value = hw->cmb_rx_timer | ((u32) hw->cmb_tx_timer << 16);
1628	iowrite32(value, hw->hw_addr + REG_CMB_WRITE_TIMER);
1629	iowrite32(hw->smb_timer, hw->hw_addr + REG_SMB_TIMER);
1630
1631	/* --- enable CMB / SMB */
1632	value = CSMB_CTRL_CMB_EN | CSMB_CTRL_SMB_EN;
1633	iowrite32(value, hw->hw_addr + REG_CSMB_CTRL);
1634
1635	value = ioread32(adapter->hw.hw_addr + REG_ISR);
1636	if (unlikely((value & ISR_PHY_LINKDOWN) != 0))
1637		value = 1;	/* config failed */
1638	else
1639		value = 0;
1640
1641	/* clear all interrupt status */
1642	iowrite32(0x3fffffff, adapter->hw.hw_addr + REG_ISR);
1643	iowrite32(0, adapter->hw.hw_addr + REG_ISR);
1644	return value;
1645}
1646
1647/*
1648 * atl1_pcie_patch - Patch for PCIE module
1649 */
1650static void atl1_pcie_patch(struct atl1_adapter *adapter)
1651{
1652	u32 value;
1653
1654	/* much vendor magic here */
1655	value = 0x6500;
1656	iowrite32(value, adapter->hw.hw_addr + 0x12FC);
1657	/* pcie flow control mode change */
1658	value = ioread32(adapter->hw.hw_addr + 0x1008);
1659	value |= 0x8000;
1660	iowrite32(value, adapter->hw.hw_addr + 0x1008);
1661}
1662
1663/*
1664 * When ACPI resume on some VIA MotherBoard, the Interrupt Disable bit/0x400
1665 * on PCI Command register is disable.
1666 * The function enable this bit.
1667 * Brackett, 2006/03/15
1668 */
1669static void atl1_via_workaround(struct atl1_adapter *adapter)
1670{
1671	unsigned long value;
1672
1673	value = ioread16(adapter->hw.hw_addr + PCI_COMMAND);
1674	if (value & PCI_COMMAND_INTX_DISABLE)
1675		value &= ~PCI_COMMAND_INTX_DISABLE;
1676	iowrite32(value, adapter->hw.hw_addr + PCI_COMMAND);
1677}
1678
1679static void atl1_inc_smb(struct atl1_adapter *adapter)
1680{
1681	struct net_device *netdev = adapter->netdev;
1682	struct stats_msg_block *smb = adapter->smb.smb;
1683
1684	/* Fill out the OS statistics structure */
1685	adapter->soft_stats.rx_packets += smb->rx_ok;
1686	adapter->soft_stats.tx_packets += smb->tx_ok;
1687	adapter->soft_stats.rx_bytes += smb->rx_byte_cnt;
1688	adapter->soft_stats.tx_bytes += smb->tx_byte_cnt;
1689	adapter->soft_stats.multicast += smb->rx_mcast;
1690	adapter->soft_stats.collisions += (smb->tx_1_col + smb->tx_2_col * 2 +
1691		smb->tx_late_col + smb->tx_abort_col * adapter->hw.max_retry);
1692
1693	/* Rx Errors */
1694	adapter->soft_stats.rx_errors += (smb->rx_frag + smb->rx_fcs_err +
1695		smb->rx_len_err + smb->rx_sz_ov + smb->rx_rxf_ov +
1696		smb->rx_rrd_ov + smb->rx_align_err);
1697	adapter->soft_stats.rx_fifo_errors += smb->rx_rxf_ov;
1698	adapter->soft_stats.rx_length_errors += smb->rx_len_err;
1699	adapter->soft_stats.rx_crc_errors += smb->rx_fcs_err;
1700	adapter->soft_stats.rx_frame_errors += smb->rx_align_err;
1701	adapter->soft_stats.rx_missed_errors += (smb->rx_rrd_ov +
1702		smb->rx_rxf_ov);
1703
1704	adapter->soft_stats.rx_pause += smb->rx_pause;
1705	adapter->soft_stats.rx_rrd_ov += smb->rx_rrd_ov;
1706	adapter->soft_stats.rx_trunc += smb->rx_sz_ov;
1707
1708	/* Tx Errors */
1709	adapter->soft_stats.tx_errors += (smb->tx_late_col +
1710		smb->tx_abort_col + smb->tx_underrun + smb->tx_trunc);
1711	adapter->soft_stats.tx_fifo_errors += smb->tx_underrun;
1712	adapter->soft_stats.tx_aborted_errors += smb->tx_abort_col;
1713	adapter->soft_stats.tx_window_errors += smb->tx_late_col;
1714
1715	adapter->soft_stats.excecol += smb->tx_abort_col;
1716	adapter->soft_stats.deffer += smb->tx_defer;
1717	adapter->soft_stats.scc += smb->tx_1_col;
1718	adapter->soft_stats.mcc += smb->tx_2_col;
1719	adapter->soft_stats.latecol += smb->tx_late_col;
1720	adapter->soft_stats.tx_underun += smb->tx_underrun;
1721	adapter->soft_stats.tx_trunc += smb->tx_trunc;
1722	adapter->soft_stats.tx_pause += smb->tx_pause;
1723
1724	netdev->stats.rx_packets = adapter->soft_stats.rx_packets;
1725	netdev->stats.tx_packets = adapter->soft_stats.tx_packets;
1726	netdev->stats.rx_bytes = adapter->soft_stats.rx_bytes;
1727	netdev->stats.tx_bytes = adapter->soft_stats.tx_bytes;
1728	netdev->stats.multicast = adapter->soft_stats.multicast;
1729	netdev->stats.collisions = adapter->soft_stats.collisions;
1730	netdev->stats.rx_errors = adapter->soft_stats.rx_errors;
1731	netdev->stats.rx_over_errors =
1732		adapter->soft_stats.rx_missed_errors;
1733	netdev->stats.rx_length_errors =
1734		adapter->soft_stats.rx_length_errors;
1735	netdev->stats.rx_crc_errors = adapter->soft_stats.rx_crc_errors;
1736	netdev->stats.rx_frame_errors =
1737		adapter->soft_stats.rx_frame_errors;
1738	netdev->stats.rx_fifo_errors = adapter->soft_stats.rx_fifo_errors;
1739	netdev->stats.rx_missed_errors =
1740		adapter->soft_stats.rx_missed_errors;
1741	netdev->stats.tx_errors = adapter->soft_stats.tx_errors;
1742	netdev->stats.tx_fifo_errors = adapter->soft_stats.tx_fifo_errors;
1743	netdev->stats.tx_aborted_errors =
1744		adapter->soft_stats.tx_aborted_errors;
1745	netdev->stats.tx_window_errors =
1746		adapter->soft_stats.tx_window_errors;
1747	netdev->stats.tx_carrier_errors =
1748		adapter->soft_stats.tx_carrier_errors;
1749}
1750
1751static void atl1_update_mailbox(struct atl1_adapter *adapter)
1752{
1753	unsigned long flags;
1754	u32 tpd_next_to_use;
1755	u32 rfd_next_to_use;
1756	u32 rrd_next_to_clean;
1757	u32 value;
1758
1759	spin_lock_irqsave(&adapter->mb_lock, flags);
1760
1761	tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
1762	rfd_next_to_use = atomic_read(&adapter->rfd_ring.next_to_use);
1763	rrd_next_to_clean = atomic_read(&adapter->rrd_ring.next_to_clean);
1764
1765	value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
1766		MB_RFD_PROD_INDX_SHIFT) |
1767		((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
1768		MB_RRD_CONS_INDX_SHIFT) |
1769		((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
1770		MB_TPD_PROD_INDX_SHIFT);
1771	iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
1772
1773	spin_unlock_irqrestore(&adapter->mb_lock, flags);
1774}
1775
1776static void atl1_clean_alloc_flag(struct atl1_adapter *adapter,
1777	struct rx_return_desc *rrd, u16 offset)
1778{
1779	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1780
1781	while (rfd_ring->next_to_clean != (rrd->buf_indx + offset)) {
1782		rfd_ring->buffer_info[rfd_ring->next_to_clean].alloced = 0;
1783		if (++rfd_ring->next_to_clean == rfd_ring->count) {
1784			rfd_ring->next_to_clean = 0;
1785		}
1786	}
1787}
1788
1789static void atl1_update_rfd_index(struct atl1_adapter *adapter,
1790	struct rx_return_desc *rrd)
1791{
1792	u16 num_buf;
1793
1794	num_buf = (rrd->xsz.xsum_sz.pkt_size + adapter->rx_buffer_len - 1) /
1795		adapter->rx_buffer_len;
1796	if (rrd->num_buf == num_buf)
1797		/* clean alloc flag for bad rrd */
1798		atl1_clean_alloc_flag(adapter, rrd, num_buf);
1799}
1800
1801static void atl1_rx_checksum(struct atl1_adapter *adapter,
1802	struct rx_return_desc *rrd, struct sk_buff *skb)
1803{
1804	struct pci_dev *pdev = adapter->pdev;
1805
1806	/*
1807	 * The L1 hardware contains a bug that erroneously sets the
1808	 * PACKET_FLAG_ERR and ERR_FLAG_L4_CHKSUM bits whenever a
1809	 * fragmented IP packet is received, even though the packet
1810	 * is perfectly valid and its checksum is correct. There's
1811	 * no way to distinguish between one of these good packets
1812	 * and a packet that actually contains a TCP/UDP checksum
1813	 * error, so all we can do is allow it to be handed up to
1814	 * the higher layers and let it be sorted out there.
1815	 */
1816
1817	skb_checksum_none_assert(skb);
1818
1819	if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
1820		if (rrd->err_flg & (ERR_FLAG_CRC | ERR_FLAG_TRUNC |
1821					ERR_FLAG_CODE | ERR_FLAG_OV)) {
1822			adapter->hw_csum_err++;
1823			if (netif_msg_rx_err(adapter))
1824				dev_printk(KERN_DEBUG, &pdev->dev,
1825					"rx checksum error\n");
1826			return;
1827		}
1828	}
1829
1830	/* not IPv4 */
1831	if (!(rrd->pkt_flg & PACKET_FLAG_IPV4))
1832		/* checksum is invalid, but it's not an IPv4 pkt, so ok */
1833		return;
1834
1835	/* IPv4 packet */
1836	if (likely(!(rrd->err_flg &
1837		(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM)))) {
1838		skb->ip_summed = CHECKSUM_UNNECESSARY;
1839		adapter->hw_csum_good++;
1840		return;
1841	}
1842}
1843
1844/*
1845 * atl1_alloc_rx_buffers - Replace used receive buffers
1846 * @adapter: address of board private structure
1847 */
1848static u16 atl1_alloc_rx_buffers(struct atl1_adapter *adapter)
1849{
1850	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1851	struct pci_dev *pdev = adapter->pdev;
1852	struct page *page;
1853	unsigned long offset;
1854	struct atl1_buffer *buffer_info, *next_info;
1855	struct sk_buff *skb;
1856	u16 num_alloc = 0;
1857	u16 rfd_next_to_use, next_next;
1858	struct rx_free_desc *rfd_desc;
1859
1860	next_next = rfd_next_to_use = atomic_read(&rfd_ring->next_to_use);
1861	if (++next_next == rfd_ring->count)
1862		next_next = 0;
1863	buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1864	next_info = &rfd_ring->buffer_info[next_next];
1865
1866	while (!buffer_info->alloced && !next_info->alloced) {
1867		if (buffer_info->skb) {
1868			buffer_info->alloced = 1;
1869			goto next;
1870		}
1871
1872		rfd_desc = ATL1_RFD_DESC(rfd_ring, rfd_next_to_use);
1873
1874		skb = netdev_alloc_skb_ip_align(adapter->netdev,
1875						adapter->rx_buffer_len);
1876		if (unlikely(!skb)) {
1877			/* Better luck next round */
1878			adapter->netdev->stats.rx_dropped++;
1879			break;
1880		}
1881
1882		buffer_info->alloced = 1;
1883		buffer_info->skb = skb;
1884		buffer_info->length = (u16) adapter->rx_buffer_len;
1885		page = virt_to_page(skb->data);
1886		offset = (unsigned long)skb->data & ~PAGE_MASK;
1887		buffer_info->dma = pci_map_page(pdev, page, offset,
1888						adapter->rx_buffer_len,
1889						PCI_DMA_FROMDEVICE);
1890		rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
1891		rfd_desc->buf_len = cpu_to_le16(adapter->rx_buffer_len);
1892		rfd_desc->coalese = 0;
1893
1894next:
1895		rfd_next_to_use = next_next;
1896		if (unlikely(++next_next == rfd_ring->count))
1897			next_next = 0;
1898
1899		buffer_info = &rfd_ring->buffer_info[rfd_next_to_use];
1900		next_info = &rfd_ring->buffer_info[next_next];
1901		num_alloc++;
1902	}
1903
1904	if (num_alloc) {
1905		/*
1906		 * Force memory writes to complete before letting h/w
1907		 * know there are new descriptors to fetch.  (Only
1908		 * applicable for weak-ordered memory model archs,
1909		 * such as IA-64).
1910		 */
1911		wmb();
1912		atomic_set(&rfd_ring->next_to_use, (int)rfd_next_to_use);
1913	}
1914	return num_alloc;
1915}
1916
1917static void atl1_intr_rx(struct atl1_adapter *adapter)
1918{
1919	int i, count;
1920	u16 length;
1921	u16 rrd_next_to_clean;
1922	u32 value;
1923	struct atl1_rfd_ring *rfd_ring = &adapter->rfd_ring;
1924	struct atl1_rrd_ring *rrd_ring = &adapter->rrd_ring;
1925	struct atl1_buffer *buffer_info;
1926	struct rx_return_desc *rrd;
1927	struct sk_buff *skb;
1928
1929	count = 0;
1930
1931	rrd_next_to_clean = atomic_read(&rrd_ring->next_to_clean);
1932
1933	while (1) {
1934		rrd = ATL1_RRD_DESC(rrd_ring, rrd_next_to_clean);
1935		i = 1;
1936		if (likely(rrd->xsz.valid)) {	/* packet valid */
1937chk_rrd:
1938			/* check rrd status */
1939			if (likely(rrd->num_buf == 1))
1940				goto rrd_ok;
1941			else if (netif_msg_rx_err(adapter)) {
1942				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1943					"unexpected RRD buffer count\n");
1944				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1945					"rx_buf_len = %d\n",
1946					adapter->rx_buffer_len);
1947				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1948					"RRD num_buf = %d\n",
1949					rrd->num_buf);
1950				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1951					"RRD pkt_len = %d\n",
1952					rrd->xsz.xsum_sz.pkt_size);
1953				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1954					"RRD pkt_flg = 0x%08X\n",
1955					rrd->pkt_flg);
1956				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1957					"RRD err_flg = 0x%08X\n",
1958					rrd->err_flg);
1959				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1960					"RRD vlan_tag = 0x%08X\n",
1961					rrd->vlan_tag);
1962			}
1963
1964			/* rrd seems to be bad */
1965			if (unlikely(i-- > 0)) {
1966				/* rrd may not be DMAed completely */
1967				udelay(1);
1968				goto chk_rrd;
1969			}
1970			/* bad rrd */
1971			if (netif_msg_rx_err(adapter))
1972				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
1973					"bad RRD\n");
1974			/* see if update RFD index */
1975			if (rrd->num_buf > 1)
1976				atl1_update_rfd_index(adapter, rrd);
1977
1978			/* update rrd */
1979			rrd->xsz.valid = 0;
1980			if (++rrd_next_to_clean == rrd_ring->count)
1981				rrd_next_to_clean = 0;
1982			count++;
1983			continue;
1984		} else {	/* current rrd still not be updated */
1985
1986			break;
1987		}
1988rrd_ok:
1989		/* clean alloc flag for bad rrd */
1990		atl1_clean_alloc_flag(adapter, rrd, 0);
1991
1992		buffer_info = &rfd_ring->buffer_info[rrd->buf_indx];
1993		if (++rfd_ring->next_to_clean == rfd_ring->count)
1994			rfd_ring->next_to_clean = 0;
1995
1996		/* update rrd next to clean */
1997		if (++rrd_next_to_clean == rrd_ring->count)
1998			rrd_next_to_clean = 0;
1999		count++;
2000
2001		if (unlikely(rrd->pkt_flg & PACKET_FLAG_ERR)) {
2002			if (!(rrd->err_flg &
2003				(ERR_FLAG_IP_CHKSUM | ERR_FLAG_L4_CHKSUM
2004				| ERR_FLAG_LEN))) {
2005				/* packet error, don't need upstream */
2006				buffer_info->alloced = 0;
2007				rrd->xsz.valid = 0;
2008				continue;
2009			}
2010		}
2011
2012		/* Good Receive */
2013		pci_unmap_page(adapter->pdev, buffer_info->dma,
2014			       buffer_info->length, PCI_DMA_FROMDEVICE);
2015		buffer_info->dma = 0;
2016		skb = buffer_info->skb;
2017		length = le16_to_cpu(rrd->xsz.xsum_sz.pkt_size);
2018
2019		skb_put(skb, length - ETH_FCS_LEN);
2020
2021		/* Receive Checksum Offload */
2022		atl1_rx_checksum(adapter, rrd, skb);
2023		skb->protocol = eth_type_trans(skb, adapter->netdev);
2024
2025		if (rrd->pkt_flg & PACKET_FLAG_VLAN_INS) {
2026			u16 vlan_tag = (rrd->vlan_tag >> 4) |
2027					((rrd->vlan_tag & 7) << 13) |
2028					((rrd->vlan_tag & 8) << 9);
2029
2030			__vlan_hwaccel_put_tag(skb, vlan_tag);
2031		}
2032		netif_rx(skb);
2033
2034		/* let protocol layer free skb */
2035		buffer_info->skb = NULL;
2036		buffer_info->alloced = 0;
2037		rrd->xsz.valid = 0;
2038	}
2039
2040	atomic_set(&rrd_ring->next_to_clean, rrd_next_to_clean);
2041
2042	atl1_alloc_rx_buffers(adapter);
2043
2044	/* update mailbox ? */
2045	if (count) {
2046		u32 tpd_next_to_use;
2047		u32 rfd_next_to_use;
2048
2049		spin_lock(&adapter->mb_lock);
2050
2051		tpd_next_to_use = atomic_read(&adapter->tpd_ring.next_to_use);
2052		rfd_next_to_use =
2053		    atomic_read(&adapter->rfd_ring.next_to_use);
2054		rrd_next_to_clean =
2055		    atomic_read(&adapter->rrd_ring.next_to_clean);
2056		value = ((rfd_next_to_use & MB_RFD_PROD_INDX_MASK) <<
2057			MB_RFD_PROD_INDX_SHIFT) |
2058                        ((rrd_next_to_clean & MB_RRD_CONS_INDX_MASK) <<
2059			MB_RRD_CONS_INDX_SHIFT) |
2060                        ((tpd_next_to_use & MB_TPD_PROD_INDX_MASK) <<
2061			MB_TPD_PROD_INDX_SHIFT);
2062		iowrite32(value, adapter->hw.hw_addr + REG_MAILBOX);
2063		spin_unlock(&adapter->mb_lock);
2064	}
2065}
2066
2067static void atl1_intr_tx(struct atl1_adapter *adapter)
2068{
2069	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2070	struct atl1_buffer *buffer_info;
2071	u16 sw_tpd_next_to_clean;
2072	u16 cmb_tpd_next_to_clean;
2073
2074	sw_tpd_next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2075	cmb_tpd_next_to_clean = le16_to_cpu(adapter->cmb.cmb->tpd_cons_idx);
2076
2077	while (cmb_tpd_next_to_clean != sw_tpd_next_to_clean) {
2078		buffer_info = &tpd_ring->buffer_info[sw_tpd_next_to_clean];
2079		if (buffer_info->dma) {
2080			pci_unmap_page(adapter->pdev, buffer_info->dma,
2081				       buffer_info->length, PCI_DMA_TODEVICE);
2082			buffer_info->dma = 0;
2083		}
2084
2085		if (buffer_info->skb) {
2086			dev_kfree_skb_irq(buffer_info->skb);
2087			buffer_info->skb = NULL;
2088		}
2089
2090		if (++sw_tpd_next_to_clean == tpd_ring->count)
2091			sw_tpd_next_to_clean = 0;
2092	}
2093	atomic_set(&tpd_ring->next_to_clean, sw_tpd_next_to_clean);
2094
2095	if (netif_queue_stopped(adapter->netdev) &&
2096	    netif_carrier_ok(adapter->netdev))
2097		netif_wake_queue(adapter->netdev);
2098}
2099
2100static u16 atl1_tpd_avail(struct atl1_tpd_ring *tpd_ring)
2101{
2102	u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean);
2103	u16 next_to_use = atomic_read(&tpd_ring->next_to_use);
2104	return (next_to_clean > next_to_use) ?
2105		next_to_clean - next_to_use - 1 :
2106		tpd_ring->count + next_to_clean - next_to_use - 1;
2107}
2108
2109static int atl1_tso(struct atl1_adapter *adapter, struct sk_buff *skb,
2110	struct tx_packet_desc *ptpd)
2111{
2112	u8 hdr_len, ip_off;
2113	u32 real_len;
2114	int err;
2115
2116	if (skb_shinfo(skb)->gso_size) {
2117		if (skb_header_cloned(skb)) {
2118			err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2119			if (unlikely(err))
2120				return -1;
2121		}
2122
2123		if (skb->protocol == htons(ETH_P_IP)) {
2124			struct iphdr *iph = ip_hdr(skb);
2125
2126			real_len = (((unsigned char *)iph - skb->data) +
2127				ntohs(iph->tot_len));
2128			if (real_len < skb->len)
2129				pskb_trim(skb, real_len);
2130			hdr_len = (skb_transport_offset(skb) + tcp_hdrlen(skb));
2131			if (skb->len == hdr_len) {
2132				iph->check = 0;
2133				tcp_hdr(skb)->check =
2134					~csum_tcpudp_magic(iph->saddr,
2135					iph->daddr, tcp_hdrlen(skb),
2136					IPPROTO_TCP, 0);
2137				ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2138					TPD_IPHL_SHIFT;
2139				ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2140					TPD_TCPHDRLEN_MASK) <<
2141					TPD_TCPHDRLEN_SHIFT;
2142				ptpd->word3 |= 1 << TPD_IP_CSUM_SHIFT;
2143				ptpd->word3 |= 1 << TPD_TCP_CSUM_SHIFT;
2144				return 1;
2145			}
2146
2147			iph->check = 0;
2148			tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2149					iph->daddr, 0, IPPROTO_TCP, 0);
2150			ip_off = (unsigned char *)iph -
2151				(unsigned char *) skb_network_header(skb);
2152			if (ip_off == 8) /* 802.3-SNAP frame */
2153				ptpd->word3 |= 1 << TPD_ETHTYPE_SHIFT;
2154			else if (ip_off != 0)
2155				return -2;
2156
2157			ptpd->word3 |= (iph->ihl & TPD_IPHL_MASK) <<
2158				TPD_IPHL_SHIFT;
2159			ptpd->word3 |= ((tcp_hdrlen(skb) >> 2) &
2160				TPD_TCPHDRLEN_MASK) << TPD_TCPHDRLEN_SHIFT;
2161			ptpd->word3 |= (skb_shinfo(skb)->gso_size &
2162				TPD_MSS_MASK) << TPD_MSS_SHIFT;
2163			ptpd->word3 |= 1 << TPD_SEGMENT_EN_SHIFT;
2164			return 3;
2165		}
2166	}
2167	return false;
2168}
2169
2170static int atl1_tx_csum(struct atl1_adapter *adapter, struct sk_buff *skb,
2171	struct tx_packet_desc *ptpd)
2172{
2173	u8 css, cso;
2174
2175	if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2176		css = skb_checksum_start_offset(skb);
2177		cso = css + (u8) skb->csum_offset;
2178		if (unlikely(css & 0x1)) {
2179			/* L1 hardware requires an even number here */
2180			if (netif_msg_tx_err(adapter))
2181				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2182					"payload offset not an even number\n");
2183			return -1;
2184		}
2185		ptpd->word3 |= (css & TPD_PLOADOFFSET_MASK) <<
2186			TPD_PLOADOFFSET_SHIFT;
2187		ptpd->word3 |= (cso & TPD_CCSUMOFFSET_MASK) <<
2188			TPD_CCSUMOFFSET_SHIFT;
2189		ptpd->word3 |= 1 << TPD_CUST_CSUM_EN_SHIFT;
2190		return true;
2191	}
2192	return 0;
2193}
2194
2195static void atl1_tx_map(struct atl1_adapter *adapter, struct sk_buff *skb,
2196	struct tx_packet_desc *ptpd)
2197{
2198	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2199	struct atl1_buffer *buffer_info;
2200	u16 buf_len = skb->len;
2201	struct page *page;
2202	unsigned long offset;
2203	unsigned int nr_frags;
2204	unsigned int f;
2205	int retval;
2206	u16 next_to_use;
2207	u16 data_len;
2208	u8 hdr_len;
2209
2210	buf_len -= skb->data_len;
2211	nr_frags = skb_shinfo(skb)->nr_frags;
2212	next_to_use = atomic_read(&tpd_ring->next_to_use);
2213	buffer_info = &tpd_ring->buffer_info[next_to_use];
2214	BUG_ON(buffer_info->skb);
2215	/* put skb in last TPD */
2216	buffer_info->skb = NULL;
2217
2218	retval = (ptpd->word3 >> TPD_SEGMENT_EN_SHIFT) & TPD_SEGMENT_EN_MASK;
2219	if (retval) {
2220		/* TSO */
2221		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2222		buffer_info->length = hdr_len;
2223		page = virt_to_page(skb->data);
2224		offset = (unsigned long)skb->data & ~PAGE_MASK;
2225		buffer_info->dma = pci_map_page(adapter->pdev, page,
2226						offset, hdr_len,
2227						PCI_DMA_TODEVICE);
2228
2229		if (++next_to_use == tpd_ring->count)
2230			next_to_use = 0;
2231
2232		if (buf_len > hdr_len) {
2233			int i, nseg;
2234
2235			data_len = buf_len - hdr_len;
2236			nseg = (data_len + ATL1_MAX_TX_BUF_LEN - 1) /
2237				ATL1_MAX_TX_BUF_LEN;
2238			for (i = 0; i < nseg; i++) {
2239				buffer_info =
2240				    &tpd_ring->buffer_info[next_to_use];
2241				buffer_info->skb = NULL;
2242				buffer_info->length =
2243				    (ATL1_MAX_TX_BUF_LEN >=
2244				     data_len) ? ATL1_MAX_TX_BUF_LEN : data_len;
2245				data_len -= buffer_info->length;
2246				page = virt_to_page(skb->data +
2247					(hdr_len + i * ATL1_MAX_TX_BUF_LEN));
2248				offset = (unsigned long)(skb->data +
2249					(hdr_len + i * ATL1_MAX_TX_BUF_LEN)) &
2250					~PAGE_MASK;
2251				buffer_info->dma = pci_map_page(adapter->pdev,
2252					page, offset, buffer_info->length,
2253					PCI_DMA_TODEVICE);
2254				if (++next_to_use == tpd_ring->count)
2255					next_to_use = 0;
2256			}
2257		}
2258	} else {
2259		/* not TSO */
2260		buffer_info->length = buf_len;
2261		page = virt_to_page(skb->data);
2262		offset = (unsigned long)skb->data & ~PAGE_MASK;
2263		buffer_info->dma = pci_map_page(adapter->pdev, page,
2264			offset, buf_len, PCI_DMA_TODEVICE);
2265		if (++next_to_use == tpd_ring->count)
2266			next_to_use = 0;
2267	}
2268
2269	for (f = 0; f < nr_frags; f++) {
2270		struct skb_frag_struct *frag;
2271		u16 i, nseg;
2272
2273		frag = &skb_shinfo(skb)->frags[f];
2274		buf_len = frag->size;
2275
2276		nseg = (buf_len + ATL1_MAX_TX_BUF_LEN - 1) /
2277			ATL1_MAX_TX_BUF_LEN;
2278		for (i = 0; i < nseg; i++) {
2279			buffer_info = &tpd_ring->buffer_info[next_to_use];
2280			BUG_ON(buffer_info->skb);
2281
2282			buffer_info->skb = NULL;
2283			buffer_info->length = (buf_len > ATL1_MAX_TX_BUF_LEN) ?
2284				ATL1_MAX_TX_BUF_LEN : buf_len;
2285			buf_len -= buffer_info->length;
2286			buffer_info->dma = pci_map_page(adapter->pdev,
2287				frag->page,
2288				frag->page_offset + (i * ATL1_MAX_TX_BUF_LEN),
2289				buffer_info->length, PCI_DMA_TODEVICE);
2290
2291			if (++next_to_use == tpd_ring->count)
2292				next_to_use = 0;
2293		}
2294	}
2295
2296	/* last tpd's buffer-info */
2297	buffer_info->skb = skb;
2298}
2299
2300static void atl1_tx_queue(struct atl1_adapter *adapter, u16 count,
2301       struct tx_packet_desc *ptpd)
2302{
2303	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2304	struct atl1_buffer *buffer_info;
2305	struct tx_packet_desc *tpd;
2306	u16 j;
2307	u32 val;
2308	u16 next_to_use = (u16) atomic_read(&tpd_ring->next_to_use);
2309
2310	for (j = 0; j < count; j++) {
2311		buffer_info = &tpd_ring->buffer_info[next_to_use];
2312		tpd = ATL1_TPD_DESC(&adapter->tpd_ring, next_to_use);
2313		if (tpd != ptpd)
2314			memcpy(tpd, ptpd, sizeof(struct tx_packet_desc));
2315		tpd->buffer_addr = cpu_to_le64(buffer_info->dma);
2316		tpd->word2 &= ~(TPD_BUFLEN_MASK << TPD_BUFLEN_SHIFT);
2317		tpd->word2 |= (cpu_to_le16(buffer_info->length) &
2318			TPD_BUFLEN_MASK) << TPD_BUFLEN_SHIFT;
2319
2320		/*
2321		 * if this is the first packet in a TSO chain, set
2322		 * TPD_HDRFLAG, otherwise, clear it.
2323		 */
2324		val = (tpd->word3 >> TPD_SEGMENT_EN_SHIFT) &
2325			TPD_SEGMENT_EN_MASK;
2326		if (val) {
2327			if (!j)
2328				tpd->word3 |= 1 << TPD_HDRFLAG_SHIFT;
2329			else
2330				tpd->word3 &= ~(1 << TPD_HDRFLAG_SHIFT);
2331		}
2332
2333		if (j == (count - 1))
2334			tpd->word3 |= 1 << TPD_EOP_SHIFT;
2335
2336		if (++next_to_use == tpd_ring->count)
2337			next_to_use = 0;
2338	}
2339	/*
2340	 * Force memory writes to complete before letting h/w
2341	 * know there are new descriptors to fetch.  (Only
2342	 * applicable for weak-ordered memory model archs,
2343	 * such as IA-64).
2344	 */
2345	wmb();
2346
2347	atomic_set(&tpd_ring->next_to_use, next_to_use);
2348}
2349
2350static netdev_tx_t atl1_xmit_frame(struct sk_buff *skb,
2351					 struct net_device *netdev)
2352{
2353	struct atl1_adapter *adapter = netdev_priv(netdev);
2354	struct atl1_tpd_ring *tpd_ring = &adapter->tpd_ring;
2355	int len;
2356	int tso;
2357	int count = 1;
2358	int ret_val;
2359	struct tx_packet_desc *ptpd;
2360	u16 frag_size;
2361	u16 vlan_tag;
2362	unsigned int nr_frags = 0;
2363	unsigned int mss = 0;
2364	unsigned int f;
2365	unsigned int proto_hdr_len;
2366
2367	len = skb_headlen(skb);
2368
2369	if (unlikely(skb->len <= 0)) {
2370		dev_kfree_skb_any(skb);
2371		return NETDEV_TX_OK;
2372	}
2373
2374	nr_frags = skb_shinfo(skb)->nr_frags;
2375	for (f = 0; f < nr_frags; f++) {
2376		frag_size = skb_shinfo(skb)->frags[f].size;
2377		if (frag_size)
2378			count += (frag_size + ATL1_MAX_TX_BUF_LEN - 1) /
2379				ATL1_MAX_TX_BUF_LEN;
2380	}
2381
2382	mss = skb_shinfo(skb)->gso_size;
2383	if (mss) {
2384		if (skb->protocol == htons(ETH_P_IP)) {
2385			proto_hdr_len = (skb_transport_offset(skb) +
2386					 tcp_hdrlen(skb));
2387			if (unlikely(proto_hdr_len > len)) {
2388				dev_kfree_skb_any(skb);
2389				return NETDEV_TX_OK;
2390			}
2391			/* need additional TPD ? */
2392			if (proto_hdr_len != len)
2393				count += (len - proto_hdr_len +
2394					ATL1_MAX_TX_BUF_LEN - 1) /
2395					ATL1_MAX_TX_BUF_LEN;
2396		}
2397	}
2398
2399	if (atl1_tpd_avail(&adapter->tpd_ring) < count) {
2400		/* not enough descriptors */
2401		netif_stop_queue(netdev);
2402		if (netif_msg_tx_queued(adapter))
2403			dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2404				"tx busy\n");
2405		return NETDEV_TX_BUSY;
2406	}
2407
2408	ptpd = ATL1_TPD_DESC(tpd_ring,
2409		(u16) atomic_read(&tpd_ring->next_to_use));
2410	memset(ptpd, 0, sizeof(struct tx_packet_desc));
2411
2412	if (vlan_tx_tag_present(skb)) {
2413		vlan_tag = vlan_tx_tag_get(skb);
2414		vlan_tag = (vlan_tag << 4) | (vlan_tag >> 13) |
2415			((vlan_tag >> 9) & 0x8);
2416		ptpd->word3 |= 1 << TPD_INS_VL_TAG_SHIFT;
2417		ptpd->word2 |= (vlan_tag & TPD_VLANTAG_MASK) <<
2418			TPD_VLANTAG_SHIFT;
2419	}
2420
2421	tso = atl1_tso(adapter, skb, ptpd);
2422	if (tso < 0) {
2423		dev_kfree_skb_any(skb);
2424		return NETDEV_TX_OK;
2425	}
2426
2427	if (!tso) {
2428		ret_val = atl1_tx_csum(adapter, skb, ptpd);
2429		if (ret_val < 0) {
2430			dev_kfree_skb_any(skb);
2431			return NETDEV_TX_OK;
2432		}
2433	}
2434
2435	atl1_tx_map(adapter, skb, ptpd);
2436	atl1_tx_queue(adapter, count, ptpd);
2437	atl1_update_mailbox(adapter);
2438	mmiowb();
2439	return NETDEV_TX_OK;
2440}
2441
2442/*
2443 * atl1_intr - Interrupt Handler
2444 * @irq: interrupt number
2445 * @data: pointer to a network interface device structure
2446 * @pt_regs: CPU registers structure
2447 */
2448static irqreturn_t atl1_intr(int irq, void *data)
2449{
2450	struct atl1_adapter *adapter = netdev_priv(data);
2451	u32 status;
2452	int max_ints = 10;
2453
2454	status = adapter->cmb.cmb->int_stats;
2455	if (!status)
2456		return IRQ_NONE;
2457
2458	do {
2459		/* clear CMB interrupt status at once */
2460		adapter->cmb.cmb->int_stats = 0;
2461
2462		if (status & ISR_GPHY)	/* clear phy status */
2463			atlx_clear_phy_int(adapter);
2464
2465		/* clear ISR status, and Enable CMB DMA/Disable Interrupt */
2466		iowrite32(status | ISR_DIS_INT, adapter->hw.hw_addr + REG_ISR);
2467
2468		/* check if SMB intr */
2469		if (status & ISR_SMB)
2470			atl1_inc_smb(adapter);
2471
2472		/* check if PCIE PHY Link down */
2473		if (status & ISR_PHY_LINKDOWN) {
2474			if (netif_msg_intr(adapter))
2475				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2476					"pcie phy link down %x\n", status);
2477			if (netif_running(adapter->netdev)) {	/* reset MAC */
2478				iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2479				schedule_work(&adapter->pcie_dma_to_rst_task);
2480				return IRQ_HANDLED;
2481			}
2482		}
2483
2484		/* check if DMA read/write error ? */
2485		if (status & (ISR_DMAR_TO_RST | ISR_DMAW_TO_RST)) {
2486			if (netif_msg_intr(adapter))
2487				dev_printk(KERN_DEBUG, &adapter->pdev->dev,
2488					"pcie DMA r/w error (status = 0x%x)\n",
2489					status);
2490			iowrite32(0, adapter->hw.hw_addr + REG_IMR);
2491			schedule_work(&adapter->pcie_dma_to_rst_task);
2492			return IRQ_HANDLED;
2493		}
2494
2495		/* link event */
2496		if (status & ISR_GPHY) {
2497			adapter->soft_stats.tx_carrier_errors++;
2498			atl1_check_for_link(adapter);
2499		}
2500
2501		/* transmit event */
2502		if (status & ISR_CMB_TX)
2503			atl1_intr_tx(adapter);
2504
2505		/* rx exception */
2506		if (unlikely(status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2507			ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2508			ISR_HOST_RRD_OV | ISR_CMB_RX))) {
2509			if (status & (ISR_RXF_OV | ISR_RFD_UNRUN |
2510				ISR_RRD_OV | ISR_HOST_RFD_UNRUN |
2511				ISR_HOST_RRD_OV))
2512				if (netif_msg_intr(adapter))
2513					dev_printk(KERN_DEBUG,
2514						&adapter->pdev->dev,
2515						"rx exception, ISR = 0x%x\n",
2516						status);
2517			atl1_intr_rx(adapter);
2518		}
2519
2520		if (--max_ints < 0)
2521			break;
2522
2523	} while ((status = adapter->cmb.cmb->int_stats));
2524
2525	/* re-enable Interrupt */
2526	iowrite32(ISR_DIS_SMB | ISR_DIS_DMA, adapter->hw.hw_addr + REG_ISR);
2527	return IRQ_HANDLED;
2528}
2529
2530
2531/*
2532 * atl1_phy_config - Timer Call-back
2533 * @data: pointer to netdev cast into an unsigned long
2534 */
2535static void atl1_phy_config(unsigned long data)
2536{
2537	struct atl1_adapter *adapter = (struct atl1_adapter *)data;
2538	struct atl1_hw *hw = &adapter->hw;
2539	unsigned long flags;
2540
2541	spin_lock_irqsave(&adapter->lock, flags);
2542	adapter->phy_timer_pending = false;
2543	atl1_write_phy_reg(hw, MII_ADVERTISE, hw->mii_autoneg_adv_reg);
2544	atl1_write_phy_reg(hw, MII_ATLX_CR, hw->mii_1000t_ctrl_reg);
2545	atl1_write_phy_reg(hw, MII_BMCR, MII_CR_RESET | MII_CR_AUTO_NEG_EN);
2546	spin_unlock_irqrestore(&adapter->lock, flags);
2547}
2548
2549/*
2550 * Orphaned vendor comment left intact here:
2551 * <vendor comment>
2552 * If TPD Buffer size equal to 0, PCIE DMAR_TO_INT
2553 * will assert. We do soft reset <0x1400=1> according
2554 * with the SPEC. BUT, it seemes that PCIE or DMA
2555 * state-machine will not be reset. DMAR_TO_INT will
2556 * assert again and again.
2557 * </vendor comment>
2558 */
2559
2560static int atl1_reset(struct atl1_adapter *adapter)
2561{
2562	int ret;
2563	ret = atl1_reset_hw(&adapter->hw);
2564	if (ret)
2565		return ret;
2566	return atl1_init_hw(&adapter->hw);
2567}
2568
2569static s32 atl1_up(struct atl1_adapter *adapter)
2570{
2571	struct net_device *netdev = adapter->netdev;
2572	int err;
2573	int irq_flags = 0;
2574
2575	/* hardware has been reset, we need to reload some things */
2576	atlx_set_multi(netdev);
2577	atl1_init_ring_ptrs(adapter);
2578	atlx_restore_vlan(adapter);
2579	err = atl1_alloc_rx_buffers(adapter);
2580	if (unlikely(!err))
2581		/* no RX BUFFER allocated */
2582		return -ENOMEM;
2583
2584	if (unlikely(atl1_configure(adapter))) {
2585		err = -EIO;
2586		goto err_up;
2587	}
2588
2589	err = pci_enable_msi(adapter->pdev);
2590	if (err) {
2591		if (netif_msg_ifup(adapter))
2592			dev_info(&adapter->pdev->dev,
2593				"Unable to enable MSI: %d\n", err);
2594		irq_flags |= IRQF_SHARED;
2595	}
2596
2597	err = request_irq(adapter->pdev->irq, atl1_intr, irq_flags,
2598			netdev->name, netdev);
2599	if (unlikely(err))
2600		goto err_up;
2601
2602	atlx_irq_enable(adapter);
2603	atl1_check_link(adapter);
2604	netif_start_queue(netdev);
2605	return 0;
2606
2607err_up:
2608	pci_disable_msi(adapter->pdev);
2609	/* free rx_buffers */
2610	atl1_clean_rx_ring(adapter);
2611	return err;
2612}
2613
2614static void atl1_down(struct atl1_adapter *adapter)
2615{
2616	struct net_device *netdev = adapter->netdev;
2617
2618	netif_stop_queue(netdev);
2619	del_timer_sync(&adapter->phy_config_timer);
2620	adapter->phy_timer_pending = false;
2621
2622	atlx_irq_disable(adapter);
2623	free_irq(adapter->pdev->irq, netdev);
2624	pci_disable_msi(adapter->pdev);
2625	atl1_reset_hw(&adapter->hw);
2626	adapter->cmb.cmb->int_stats = 0;
2627
2628	adapter->link_speed = SPEED_0;
2629	adapter->link_duplex = -1;
2630	netif_carrier_off(netdev);
2631
2632	atl1_clean_tx_ring(adapter);
2633	atl1_clean_rx_ring(adapter);
2634}
2635
2636static void atl1_tx_timeout_task(struct work_struct *work)
2637{
2638	struct atl1_adapter *adapter =
2639		container_of(work, struct atl1_adapter, tx_timeout_task);
2640	struct net_device *netdev = adapter->netdev;
2641
2642	netif_device_detach(netdev);
2643	atl1_down(adapter);
2644	atl1_up(adapter);
2645	netif_device_attach(netdev);
2646}
2647
2648/*
2649 * atl1_change_mtu - Change the Maximum Transfer Unit
2650 * @netdev: network interface device structure
2651 * @new_mtu: new value for maximum frame size
2652 *
2653 * Returns 0 on success, negative on failure
2654 */
2655static int atl1_change_mtu(struct net_device *netdev, int new_mtu)
2656{
2657	struct atl1_adapter *adapter = netdev_priv(netdev);
2658	int old_mtu = netdev->mtu;
2659	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2660
2661	if ((max_frame < ETH_ZLEN + ETH_FCS_LEN) ||
2662	    (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2663		if (netif_msg_link(adapter))
2664			dev_warn(&adapter->pdev->dev, "invalid MTU setting\n");
2665		return -EINVAL;
2666	}
2667
2668	adapter->hw.max_frame_size = max_frame;
2669	adapter->hw.tx_jumbo_task_th = (max_frame + 7) >> 3;
2670	adapter->rx_buffer_len = (max_frame + 7) & ~7;
2671	adapter->hw.rx_jumbo_th = adapter->rx_buffer_len / 8;
2672
2673	netdev->mtu = new_mtu;
2674	if ((old_mtu != new_mtu) && netif_running(netdev)) {
2675		atl1_down(adapter);
2676		atl1_up(adapter);
2677	}
2678
2679	return 0;
2680}
2681
2682/*
2683 * atl1_open - Called when a network interface is made active
2684 * @netdev: network interface device structure
2685 *
2686 * Returns 0 on success, negative value on failure
2687 *
2688 * The open entry point is called when a network interface is made
2689 * active by the system (IFF_UP).  At this point all resources needed
2690 * for transmit and receive operations are allocated, the interrupt
2691 * handler is registered with the OS, the watchdog timer is started,
2692 * and the stack is notified that the interface is ready.
2693 */
2694static int atl1_open(struct net_device *netdev)
2695{
2696	struct atl1_adapter *adapter = netdev_priv(netdev);
2697	int err;
2698
2699	netif_carrier_off(netdev);
2700
2701	/* allocate transmit descriptors */
2702	err = atl1_setup_ring_resources(adapter);
2703	if (err)
2704		return err;
2705
2706	err = atl1_up(adapter);
2707	if (err)
2708		goto err_up;
2709
2710	return 0;
2711
2712err_up:
2713	atl1_reset(adapter);
2714	return err;
2715}
2716
2717/*
2718 * atl1_close - Disables a network interface
2719 * @netdev: network interface device structure
2720 *
2721 * Returns 0, this is not allowed to fail
2722 *
2723 * The close entry point is called when an interface is de-activated
2724 * by the OS.  The hardware is still under the drivers control, but
2725 * needs to be disabled.  A global MAC reset is issued to stop the
2726 * hardware, and all transmit and receive resources are freed.
2727 */
2728static int atl1_close(struct net_device *netdev)
2729{
2730	struct atl1_adapter *adapter = netdev_priv(netdev);
2731	atl1_down(adapter);
2732	atl1_free_ring_resources(adapter);
2733	return 0;
2734}
2735
2736#ifdef CONFIG_PM
2737static int atl1_suspend(struct device *dev)
2738{
2739	struct pci_dev *pdev = to_pci_dev(dev);
2740	struct net_device *netdev = pci_get_drvdata(pdev);
2741	struct atl1_adapter *adapter = netdev_priv(netdev);
2742	struct atl1_hw *hw = &adapter->hw;
2743	u32 ctrl = 0;
2744	u32 wufc = adapter->wol;
2745	u32 val;
2746	u16 speed;
2747	u16 duplex;
2748
2749	netif_device_detach(netdev);
2750	if (netif_running(netdev))
2751		atl1_down(adapter);
2752
2753	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2754	atl1_read_phy_reg(hw, MII_BMSR, (u16 *) & ctrl);
2755	val = ctrl & BMSR_LSTATUS;
2756	if (val)
2757		wufc &= ~ATLX_WUFC_LNKC;
2758	if (!wufc)
2759		goto disable_wol;
2760
2761	if (val) {
2762		val = atl1_get_speed_and_duplex(hw, &speed, &duplex);
2763		if (val) {
2764			if (netif_msg_ifdown(adapter))
2765				dev_printk(KERN_DEBUG, &pdev->dev,
2766					"error getting speed/duplex\n");
2767			goto disable_wol;
2768		}
2769
2770		ctrl = 0;
2771
2772		/* enable magic packet WOL */
2773		if (wufc & ATLX_WUFC_MAG)
2774			ctrl |= (WOL_MAGIC_EN | WOL_MAGIC_PME_EN);
2775		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2776		ioread32(hw->hw_addr + REG_WOL_CTRL);
2777
2778		/* configure the mac */
2779		ctrl = MAC_CTRL_RX_EN;
2780		ctrl |= ((u32)((speed == SPEED_1000) ? MAC_CTRL_SPEED_1000 :
2781			MAC_CTRL_SPEED_10_100) << MAC_CTRL_SPEED_SHIFT);
2782		if (duplex == FULL_DUPLEX)
2783			ctrl |= MAC_CTRL_DUPLX;
2784		ctrl |= (((u32)adapter->hw.preamble_len &
2785			MAC_CTRL_PRMLEN_MASK) << MAC_CTRL_PRMLEN_SHIFT);
2786		__atlx_vlan_mode(netdev->features, &ctrl);
2787		if (wufc & ATLX_WUFC_MAG)
2788			ctrl |= MAC_CTRL_BC_EN;
2789		iowrite32(ctrl, hw->hw_addr + REG_MAC_CTRL);
2790		ioread32(hw->hw_addr + REG_MAC_CTRL);
2791
2792		/* poke the PHY */
2793		ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2794		ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2795		iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2796		ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2797	} else {
2798		ctrl |= (WOL_LINK_CHG_EN | WOL_LINK_CHG_PME_EN);
2799		iowrite32(ctrl, hw->hw_addr + REG_WOL_CTRL);
2800		ioread32(hw->hw_addr + REG_WOL_CTRL);
2801		iowrite32(0, hw->hw_addr + REG_MAC_CTRL);
2802		ioread32(hw->hw_addr + REG_MAC_CTRL);
2803		hw->phy_configured = false;
2804	}
2805
2806	return 0;
2807
2808 disable_wol:
2809	iowrite32(0, hw->hw_addr + REG_WOL_CTRL);
2810	ioread32(hw->hw_addr + REG_WOL_CTRL);
2811	ctrl = ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2812	ctrl |= PCIE_PHYMISC_FORCE_RCV_DET;
2813	iowrite32(ctrl, hw->hw_addr + REG_PCIE_PHYMISC);
2814	ioread32(hw->hw_addr + REG_PCIE_PHYMISC);
2815	hw->phy_configured = false;
2816
2817	return 0;
2818}
2819
2820static int atl1_resume(struct device *dev)
2821{
2822	struct pci_dev *pdev = to_pci_dev(dev);
2823	struct net_device *netdev = pci_get_drvdata(pdev);
2824	struct atl1_adapter *adapter = netdev_priv(netdev);
2825
2826	iowrite32(0, adapter->hw.hw_addr + REG_WOL_CTRL);
2827
2828	atl1_reset_hw(&adapter->hw);
2829
2830	if (netif_running(netdev)) {
2831		adapter->cmb.cmb->int_stats = 0;
2832		atl1_up(adapter);
2833	}
2834	netif_device_attach(netdev);
2835
2836	return 0;
2837}
2838
2839static SIMPLE_DEV_PM_OPS(atl1_pm_ops, atl1_suspend, atl1_resume);
2840#define ATL1_PM_OPS	(&atl1_pm_ops)
2841
2842#else
2843
2844static int atl1_suspend(struct device *dev) { return 0; }
2845
2846#define ATL1_PM_OPS	NULL
2847#endif
2848
2849static void atl1_shutdown(struct pci_dev *pdev)
2850{
2851	struct net_device *netdev = pci_get_drvdata(pdev);
2852	struct atl1_adapter *adapter = netdev_priv(netdev);
2853
2854	atl1_suspend(&pdev->dev);
2855	pci_wake_from_d3(pdev, adapter->wol);
2856	pci_set_power_state(pdev, PCI_D3hot);
2857}
2858
2859#ifdef CONFIG_NET_POLL_CONTROLLER
2860static void atl1_poll_controller(struct net_device *netdev)
2861{
2862	disable_irq(netdev->irq);
2863	atl1_intr(netdev->irq, netdev);
2864	enable_irq(netdev->irq);
2865}
2866#endif
2867
2868static const struct net_device_ops atl1_netdev_ops = {
2869	.ndo_open		= atl1_open,
2870	.ndo_stop		= atl1_close,
2871	.ndo_start_xmit		= atl1_xmit_frame,
2872	.ndo_set_multicast_list	= atlx_set_multi,
2873	.ndo_validate_addr	= eth_validate_addr,
2874	.ndo_set_mac_address	= atl1_set_mac,
2875	.ndo_change_mtu		= atl1_change_mtu,
2876	.ndo_fix_features	= atlx_fix_features,
2877	.ndo_set_features	= atlx_set_features,
2878	.ndo_do_ioctl		= atlx_ioctl,
2879	.ndo_tx_timeout		= atlx_tx_timeout,
2880#ifdef CONFIG_NET_POLL_CONTROLLER
2881	.ndo_poll_controller	= atl1_poll_controller,
2882#endif
2883};
2884
2885/*
2886 * atl1_probe - Device Initialization Routine
2887 * @pdev: PCI device information struct
2888 * @ent: entry in atl1_pci_tbl
2889 *
2890 * Returns 0 on success, negative on failure
2891 *
2892 * atl1_probe initializes an adapter identified by a pci_dev structure.
2893 * The OS initialization, configuring of the adapter private structure,
2894 * and a hardware reset occur.
2895 */
2896static int __devinit atl1_probe(struct pci_dev *pdev,
2897	const struct pci_device_id *ent)
2898{
2899	struct net_device *netdev;
2900	struct atl1_adapter *adapter;
2901	static int cards_found = 0;
2902	int err;
2903
2904	err = pci_enable_device(pdev);
2905	if (err)
2906		return err;
2907
2908	/*
2909	 * The atl1 chip can DMA to 64-bit addresses, but it uses a single
2910	 * shared register for the high 32 bits, so only a single, aligned,
2911	 * 4 GB physical address range can be used at a time.
2912	 *
2913	 * Supporting 64-bit DMA on this hardware is more trouble than it's
2914	 * worth.  It is far easier to limit to 32-bit DMA than update
2915	 * various kernel subsystems to support the mechanics required by a
2916	 * fixed-high-32-bit system.
2917	 */
2918	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
2919	if (err) {
2920		dev_err(&pdev->dev, "no usable DMA configuration\n");
2921		goto err_dma;
2922	}
2923	/*
2924	 * Mark all PCI regions associated with PCI device
2925	 * pdev as being reserved by owner atl1_driver_name
2926	 */
2927	err = pci_request_regions(pdev, ATLX_DRIVER_NAME);
2928	if (err)
2929		goto err_request_regions;
2930
2931	/*
2932	 * Enables bus-mastering on the device and calls
2933	 * pcibios_set_master to do the needed arch specific settings
2934	 */
2935	pci_set_master(pdev);
2936
2937	netdev = alloc_etherdev(sizeof(struct atl1_adapter));
2938	if (!netdev) {
2939		err = -ENOMEM;
2940		goto err_alloc_etherdev;
2941	}
2942	SET_NETDEV_DEV(netdev, &pdev->dev);
2943
2944	pci_set_drvdata(pdev, netdev);
2945	adapter = netdev_priv(netdev);
2946	adapter->netdev = netdev;
2947	adapter->pdev = pdev;
2948	adapter->hw.back = adapter;
2949	adapter->msg_enable = netif_msg_init(debug, atl1_default_msg);
2950
2951	adapter->hw.hw_addr = pci_iomap(pdev, 0, 0);
2952	if (!adapter->hw.hw_addr) {
2953		err = -EIO;
2954		goto err_pci_iomap;
2955	}
2956	/* get device revision number */
2957	adapter->hw.dev_rev = ioread16(adapter->hw.hw_addr +
2958		(REG_MASTER_CTRL + 2));
2959	if (netif_msg_probe(adapter))
2960		dev_info(&pdev->dev, "version %s\n", ATLX_DRIVER_VERSION);
2961
2962	/* set default ring resource counts */
2963	adapter->rfd_ring.count = adapter->rrd_ring.count = ATL1_DEFAULT_RFD;
2964	adapter->tpd_ring.count = ATL1_DEFAULT_TPD;
2965
2966	adapter->mii.dev = netdev;
2967	adapter->mii.mdio_read = mdio_read;
2968	adapter->mii.mdio_write = mdio_write;
2969	adapter->mii.phy_id_mask = 0x1f;
2970	adapter->mii.reg_num_mask = 0x1f;
2971
2972	netdev->netdev_ops = &atl1_netdev_ops;
2973	netdev->watchdog_timeo = 5 * HZ;
2974
2975	netdev->ethtool_ops = &atl1_ethtool_ops;
2976	adapter->bd_number = cards_found;
2977
2978	/* setup the private structure */
2979	err = atl1_sw_init(adapter);
2980	if (err)
2981		goto err_common;
2982
2983	netdev->features = NETIF_F_HW_CSUM;
2984	netdev->features |= NETIF_F_SG;
2985	netdev->features |= (NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX);
2986
2987	netdev->hw_features = NETIF_F_HW_CSUM | NETIF_F_SG | NETIF_F_TSO |
2988			      NETIF_F_HW_VLAN_RX;
2989
2990	/* is this valid? see atl1_setup_mac_ctrl() */
2991	netdev->features |= NETIF_F_RXCSUM;
2992
2993	/*
2994	 * patch for some L1 of old version,
2995	 * the final version of L1 may not need these
2996	 * patches
2997	 */
2998	/* atl1_pcie_patch(adapter); */
2999
3000	/* really reset GPHY core */
3001	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3002
3003	/*
3004	 * reset the controller to
3005	 * put the device in a known good starting state
3006	 */
3007	if (atl1_reset_hw(&adapter->hw)) {
3008		err = -EIO;
3009		goto err_common;
3010	}
3011
3012	/* copy the MAC address out of the EEPROM */
3013	atl1_read_mac_addr(&adapter->hw);
3014	memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
3015
3016	if (!is_valid_ether_addr(netdev->dev_addr)) {
3017		err = -EIO;
3018		goto err_common;
3019	}
3020
3021	atl1_check_options(adapter);
3022
3023	/* pre-init the MAC, and setup link */
3024	err = atl1_init_hw(&adapter->hw);
3025	if (err) {
3026		err = -EIO;
3027		goto err_common;
3028	}
3029
3030	atl1_pcie_patch(adapter);
3031	/* assume we have no link for now */
3032	netif_carrier_off(netdev);
3033
3034	setup_timer(&adapter->phy_config_timer, atl1_phy_config,
3035		    (unsigned long)adapter);
3036	adapter->phy_timer_pending = false;
3037
3038	INIT_WORK(&adapter->tx_timeout_task, atl1_tx_timeout_task);
3039
3040	INIT_WORK(&adapter->link_chg_task, atlx_link_chg_task);
3041
3042	INIT_WORK(&adapter->pcie_dma_to_rst_task, atl1_tx_timeout_task);
3043
3044	err = register_netdev(netdev);
3045	if (err)
3046		goto err_common;
3047
3048	cards_found++;
3049	atl1_via_workaround(adapter);
3050	return 0;
3051
3052err_common:
3053	pci_iounmap(pdev, adapter->hw.hw_addr);
3054err_pci_iomap:
3055	free_netdev(netdev);
3056err_alloc_etherdev:
3057	pci_release_regions(pdev);
3058err_dma:
3059err_request_regions:
3060	pci_disable_device(pdev);
3061	return err;
3062}
3063
3064/*
3065 * atl1_remove - Device Removal Routine
3066 * @pdev: PCI device information struct
3067 *
3068 * atl1_remove is called by the PCI subsystem to alert the driver
3069 * that it should release a PCI device.  The could be caused by a
3070 * Hot-Plug event, or because the driver is going to be removed from
3071 * memory.
3072 */
3073static void __devexit atl1_remove(struct pci_dev *pdev)
3074{
3075	struct net_device *netdev = pci_get_drvdata(pdev);
3076	struct atl1_adapter *adapter;
3077	/* Device not available. Return. */
3078	if (!netdev)
3079		return;
3080
3081	adapter = netdev_priv(netdev);
3082
3083	/*
3084	 * Some atl1 boards lack persistent storage for their MAC, and get it
3085	 * from the BIOS during POST.  If we've been messing with the MAC
3086	 * address, we need to save the permanent one.
3087	 */
3088	if (memcmp(adapter->hw.mac_addr, adapter->hw.perm_mac_addr, ETH_ALEN)) {
3089		memcpy(adapter->hw.mac_addr, adapter->hw.perm_mac_addr,
3090			ETH_ALEN);
3091		atl1_set_mac_addr(&adapter->hw);
3092	}
3093
3094	iowrite16(0, adapter->hw.hw_addr + REG_PHY_ENABLE);
3095	unregister_netdev(netdev);
3096	pci_iounmap(pdev, adapter->hw.hw_addr);
3097	pci_release_regions(pdev);
3098	free_netdev(netdev);
3099	pci_disable_device(pdev);
3100}
3101
3102static struct pci_driver atl1_driver = {
3103	.name = ATLX_DRIVER_NAME,
3104	.id_table = atl1_pci_tbl,
3105	.probe = atl1_probe,
3106	.remove = __devexit_p(atl1_remove),
3107	.shutdown = atl1_shutdown,
3108	.driver.pm = ATL1_PM_OPS,
3109};
3110
3111/*
3112 * atl1_exit_module - Driver Exit Cleanup Routine
3113 *
3114 * atl1_exit_module is called just before the driver is removed
3115 * from memory.
3116 */
3117static void __exit atl1_exit_module(void)
3118{
3119	pci_unregister_driver(&atl1_driver);
3120}
3121
3122/*
3123 * atl1_init_module - Driver Registration Routine
3124 *
3125 * atl1_init_module is the first routine called when the driver is
3126 * loaded. All it does is register with the PCI subsystem.
3127 */
3128static int __init atl1_init_module(void)
3129{
3130	return pci_register_driver(&atl1_driver);
3131}
3132
3133module_init(atl1_init_module);
3134module_exit(atl1_exit_module);
3135
3136struct atl1_stats {
3137	char stat_string[ETH_GSTRING_LEN];
3138	int sizeof_stat;
3139	int stat_offset;
3140};
3141
3142#define ATL1_STAT(m) \
3143	sizeof(((struct atl1_adapter *)0)->m), offsetof(struct atl1_adapter, m)
3144
3145static struct atl1_stats atl1_gstrings_stats[] = {
3146	{"rx_packets", ATL1_STAT(soft_stats.rx_packets)},
3147	{"tx_packets", ATL1_STAT(soft_stats.tx_packets)},
3148	{"rx_bytes", ATL1_STAT(soft_stats.rx_bytes)},
3149	{"tx_bytes", ATL1_STAT(soft_stats.tx_bytes)},
3150	{"rx_errors", ATL1_STAT(soft_stats.rx_errors)},
3151	{"tx_errors", ATL1_STAT(soft_stats.tx_errors)},
3152	{"multicast", ATL1_STAT(soft_stats.multicast)},
3153	{"collisions", ATL1_STAT(soft_stats.collisions)},
3154	{"rx_length_errors", ATL1_STAT(soft_stats.rx_length_errors)},
3155	{"rx_over_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3156	{"rx_crc_errors", ATL1_STAT(soft_stats.rx_crc_errors)},
3157	{"rx_frame_errors", ATL1_STAT(soft_stats.rx_frame_errors)},
3158	{"rx_fifo_errors", ATL1_STAT(soft_stats.rx_fifo_errors)},
3159	{"rx_missed_errors", ATL1_STAT(soft_stats.rx_missed_errors)},
3160	{"tx_aborted_errors", ATL1_STAT(soft_stats.tx_aborted_errors)},
3161	{"tx_carrier_errors", ATL1_STAT(soft_stats.tx_carrier_errors)},
3162	{"tx_fifo_errors", ATL1_STAT(soft_stats.tx_fifo_errors)},
3163	{"tx_window_errors", ATL1_STAT(soft_stats.tx_window_errors)},
3164	{"tx_abort_exce_coll", ATL1_STAT(soft_stats.excecol)},
3165	{"tx_abort_late_coll", ATL1_STAT(soft_stats.latecol)},
3166	{"tx_deferred_ok", ATL1_STAT(soft_stats.deffer)},
3167	{"tx_single_coll_ok", ATL1_STAT(soft_stats.scc)},
3168	{"tx_multi_coll_ok", ATL1_STAT(soft_stats.mcc)},
3169	{"tx_underun", ATL1_STAT(soft_stats.tx_underun)},
3170	{"tx_trunc", ATL1_STAT(soft_stats.tx_trunc)},
3171	{"tx_pause", ATL1_STAT(soft_stats.tx_pause)},
3172	{"rx_pause", ATL1_STAT(soft_stats.rx_pause)},
3173	{"rx_rrd_ov", ATL1_STAT(soft_stats.rx_rrd_ov)},
3174	{"rx_trunc", ATL1_STAT(soft_stats.rx_trunc)}
3175};
3176
3177static void atl1_get_ethtool_stats(struct net_device *netdev,
3178	struct ethtool_stats *stats, u64 *data)
3179{
3180	struct atl1_adapter *adapter = netdev_priv(netdev);
3181	int i;
3182	char *p;
3183
3184	for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3185		p = (char *)adapter+atl1_gstrings_stats[i].stat_offset;
3186		data[i] = (atl1_gstrings_stats[i].sizeof_stat ==
3187			sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
3188	}
3189
3190}
3191
3192static int atl1_get_sset_count(struct net_device *netdev, int sset)
3193{
3194	switch (sset) {
3195	case ETH_SS_STATS:
3196		return ARRAY_SIZE(atl1_gstrings_stats);
3197	default:
3198		return -EOPNOTSUPP;
3199	}
3200}
3201
3202static int atl1_get_settings(struct net_device *netdev,
3203	struct ethtool_cmd *ecmd)
3204{
3205	struct atl1_adapter *adapter = netdev_priv(netdev);
3206	struct atl1_hw *hw = &adapter->hw;
3207
3208	ecmd->supported = (SUPPORTED_10baseT_Half |
3209			   SUPPORTED_10baseT_Full |
3210			   SUPPORTED_100baseT_Half |
3211			   SUPPORTED_100baseT_Full |
3212			   SUPPORTED_1000baseT_Full |
3213			   SUPPORTED_Autoneg | SUPPORTED_TP);
3214	ecmd->advertising = ADVERTISED_TP;
3215	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3216	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3217		ecmd->advertising |= ADVERTISED_Autoneg;
3218		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR) {
3219			ecmd->advertising |= ADVERTISED_Autoneg;
3220			ecmd->advertising |=
3221			    (ADVERTISED_10baseT_Half |
3222			     ADVERTISED_10baseT_Full |
3223			     ADVERTISED_100baseT_Half |
3224			     ADVERTISED_100baseT_Full |
3225			     ADVERTISED_1000baseT_Full);
3226		} else
3227			ecmd->advertising |= (ADVERTISED_1000baseT_Full);
3228	}
3229	ecmd->port = PORT_TP;
3230	ecmd->phy_address = 0;
3231	ecmd->transceiver = XCVR_INTERNAL;
3232
3233	if (netif_carrier_ok(adapter->netdev)) {
3234		u16 link_speed, link_duplex;
3235		atl1_get_speed_and_duplex(hw, &link_speed, &link_duplex);
3236		ethtool_cmd_speed_set(ecmd, link_speed);
3237		if (link_duplex == FULL_DUPLEX)
3238			ecmd->duplex = DUPLEX_FULL;
3239		else
3240			ecmd->duplex = DUPLEX_HALF;
3241	} else {
3242		ethtool_cmd_speed_set(ecmd, -1);
3243		ecmd->duplex = -1;
3244	}
3245	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3246	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3247		ecmd->autoneg = AUTONEG_ENABLE;
3248	else
3249		ecmd->autoneg = AUTONEG_DISABLE;
3250
3251	return 0;
3252}
3253
3254static int atl1_set_settings(struct net_device *netdev,
3255	struct ethtool_cmd *ecmd)
3256{
3257	struct atl1_adapter *adapter = netdev_priv(netdev);
3258	struct atl1_hw *hw = &adapter->hw;
3259	u16 phy_data;
3260	int ret_val = 0;
3261	u16 old_media_type = hw->media_type;
3262
3263	if (netif_running(adapter->netdev)) {
3264		if (netif_msg_link(adapter))
3265			dev_dbg(&adapter->pdev->dev,
3266				"ethtool shutting down adapter\n");
3267		atl1_down(adapter);
3268	}
3269
3270	if (ecmd->autoneg == AUTONEG_ENABLE)
3271		hw->media_type = MEDIA_TYPE_AUTO_SENSOR;
3272	else {
3273		u32 speed = ethtool_cmd_speed(ecmd);
3274		if (speed == SPEED_1000) {
3275			if (ecmd->duplex != DUPLEX_FULL) {
3276				if (netif_msg_link(adapter))
3277					dev_warn(&adapter->pdev->dev,
3278						"1000M half is invalid\n");
3279				ret_val = -EINVAL;
3280				goto exit_sset;
3281			}
3282			hw->media_type = MEDIA_TYPE_1000M_FULL;
3283		} else if (speed == SPEED_100) {
3284			if (ecmd->duplex == DUPLEX_FULL)
3285				hw->media_type = MEDIA_TYPE_100M_FULL;
3286			else
3287				hw->media_type = MEDIA_TYPE_100M_HALF;
3288		} else {
3289			if (ecmd->duplex == DUPLEX_FULL)
3290				hw->media_type = MEDIA_TYPE_10M_FULL;
3291			else
3292				hw->media_type = MEDIA_TYPE_10M_HALF;
3293		}
3294	}
3295	switch (hw->media_type) {
3296	case MEDIA_TYPE_AUTO_SENSOR:
3297		ecmd->advertising =
3298		    ADVERTISED_10baseT_Half |
3299		    ADVERTISED_10baseT_Full |
3300		    ADVERTISED_100baseT_Half |
3301		    ADVERTISED_100baseT_Full |
3302		    ADVERTISED_1000baseT_Full |
3303		    ADVERTISED_Autoneg | ADVERTISED_TP;
3304		break;
3305	case MEDIA_TYPE_1000M_FULL:
3306		ecmd->advertising =
3307		    ADVERTISED_1000baseT_Full |
3308		    ADVERTISED_Autoneg | ADVERTISED_TP;
3309		break;
3310	default:
3311		ecmd->advertising = 0;
3312		break;
3313	}
3314	if (atl1_phy_setup_autoneg_adv(hw)) {
3315		ret_val = -EINVAL;
3316		if (netif_msg_link(adapter))
3317			dev_warn(&adapter->pdev->dev,
3318				"invalid ethtool speed/duplex setting\n");
3319		goto exit_sset;
3320	}
3321	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3322	    hw->media_type == MEDIA_TYPE_1000M_FULL)
3323		phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3324	else {
3325		switch (hw->media_type) {
3326		case MEDIA_TYPE_100M_FULL:
3327			phy_data =
3328			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_100 |
3329			    MII_CR_RESET;
3330			break;
3331		case MEDIA_TYPE_100M_HALF:
3332			phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3333			break;
3334		case MEDIA_TYPE_10M_FULL:
3335			phy_data =
3336			    MII_CR_FULL_DUPLEX | MII_CR_SPEED_10 | MII_CR_RESET;
3337			break;
3338		default:
3339			/* MEDIA_TYPE_10M_HALF: */
3340			phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3341			break;
3342		}
3343	}
3344	atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3345exit_sset:
3346	if (ret_val)
3347		hw->media_type = old_media_type;
3348
3349	if (netif_running(adapter->netdev)) {
3350		if (netif_msg_link(adapter))
3351			dev_dbg(&adapter->pdev->dev,
3352				"ethtool starting adapter\n");
3353		atl1_up(adapter);
3354	} else if (!ret_val) {
3355		if (netif_msg_link(adapter))
3356			dev_dbg(&adapter->pdev->dev,
3357				"ethtool resetting adapter\n");
3358		atl1_reset(adapter);
3359	}
3360	return ret_val;
3361}
3362
3363static void atl1_get_drvinfo(struct net_device *netdev,
3364	struct ethtool_drvinfo *drvinfo)
3365{
3366	struct atl1_adapter *adapter = netdev_priv(netdev);
3367
3368	strlcpy(drvinfo->driver, ATLX_DRIVER_NAME, sizeof(drvinfo->driver));
3369	strlcpy(drvinfo->version, ATLX_DRIVER_VERSION,
3370		sizeof(drvinfo->version));
3371	strlcpy(drvinfo->fw_version, "N/A", sizeof(drvinfo->fw_version));
3372	strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
3373		sizeof(drvinfo->bus_info));
3374	drvinfo->eedump_len = ATL1_EEDUMP_LEN;
3375}
3376
3377static void atl1_get_wol(struct net_device *netdev,
3378	struct ethtool_wolinfo *wol)
3379{
3380	struct atl1_adapter *adapter = netdev_priv(netdev);
3381
3382	wol->supported = WAKE_MAGIC;
3383	wol->wolopts = 0;
3384	if (adapter->wol & ATLX_WUFC_MAG)
3385		wol->wolopts |= WAKE_MAGIC;
3386}
3387
3388static int atl1_set_wol(struct net_device *netdev,
3389	struct ethtool_wolinfo *wol)
3390{
3391	struct atl1_adapter *adapter = netdev_priv(netdev);
3392
3393	if (wol->wolopts & (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST |
3394		WAKE_ARP | WAKE_MAGICSECURE))
3395		return -EOPNOTSUPP;
3396	adapter->wol = 0;
3397	if (wol->wolopts & WAKE_MAGIC)
3398		adapter->wol |= ATLX_WUFC_MAG;
3399
3400	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
3401
3402	return 0;
3403}
3404
3405static u32 atl1_get_msglevel(struct net_device *netdev)
3406{
3407	struct atl1_adapter *adapter = netdev_priv(netdev);
3408	return adapter->msg_enable;
3409}
3410
3411static void atl1_set_msglevel(struct net_device *netdev, u32 value)
3412{
3413	struct atl1_adapter *adapter = netdev_priv(netdev);
3414	adapter->msg_enable = value;
3415}
3416
3417static int atl1_get_regs_len(struct net_device *netdev)
3418{
3419	return ATL1_REG_COUNT * sizeof(u32);
3420}
3421
3422static void atl1_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
3423	void *p)
3424{
3425	struct atl1_adapter *adapter = netdev_priv(netdev);
3426	struct atl1_hw *hw = &adapter->hw;
3427	unsigned int i;
3428	u32 *regbuf = p;
3429
3430	for (i = 0; i < ATL1_REG_COUNT; i++) {
3431		/*
3432		 * This switch statement avoids reserved regions
3433		 * of register space.
3434		 */
3435		switch (i) {
3436		case 6 ... 9:
3437		case 14:
3438		case 29 ... 31:
3439		case 34 ... 63:
3440		case 75 ... 127:
3441		case 136 ... 1023:
3442		case 1027 ... 1087:
3443		case 1091 ... 1151:
3444		case 1194 ... 1195:
3445		case 1200 ... 1201:
3446		case 1206 ... 1213:
3447		case 1216 ... 1279:
3448		case 1290 ... 1311:
3449		case 1323 ... 1343:
3450		case 1358 ... 1359:
3451		case 1368 ... 1375:
3452		case 1378 ... 1383:
3453		case 1388 ... 1391:
3454		case 1393 ... 1395:
3455		case 1402 ... 1403:
3456		case 1410 ... 1471:
3457		case 1522 ... 1535:
3458			/* reserved region; don't read it */
3459			regbuf[i] = 0;
3460			break;
3461		default:
3462			/* unreserved region */
3463			regbuf[i] = ioread32(hw->hw_addr + (i * sizeof(u32)));
3464		}
3465	}
3466}
3467
3468static void atl1_get_ringparam(struct net_device *netdev,
3469	struct ethtool_ringparam *ring)
3470{
3471	struct atl1_adapter *adapter = netdev_priv(netdev);
3472	struct atl1_tpd_ring *txdr = &adapter->tpd_ring;
3473	struct atl1_rfd_ring *rxdr = &adapter->rfd_ring;
3474
3475	ring->rx_max_pending = ATL1_MAX_RFD;
3476	ring->tx_max_pending = ATL1_MAX_TPD;
3477	ring->rx_mini_max_pending = 0;
3478	ring->rx_jumbo_max_pending = 0;
3479	ring->rx_pending = rxdr->count;
3480	ring->tx_pending = txdr->count;
3481	ring->rx_mini_pending = 0;
3482	ring->rx_jumbo_pending = 0;
3483}
3484
3485static int atl1_set_ringparam(struct net_device *netdev,
3486	struct ethtool_ringparam *ring)
3487{
3488	struct atl1_adapter *adapter = netdev_priv(netdev);
3489	struct atl1_tpd_ring *tpdr = &adapter->tpd_ring;
3490	struct atl1_rrd_ring *rrdr = &adapter->rrd_ring;
3491	struct atl1_rfd_ring *rfdr = &adapter->rfd_ring;
3492
3493	struct atl1_tpd_ring tpd_old, tpd_new;
3494	struct atl1_rfd_ring rfd_old, rfd_new;
3495	struct atl1_rrd_ring rrd_old, rrd_new;
3496	struct atl1_ring_header rhdr_old, rhdr_new;
3497	struct atl1_smb smb;
3498	struct atl1_cmb cmb;
3499	int err;
3500
3501	tpd_old = adapter->tpd_ring;
3502	rfd_old = adapter->rfd_ring;
3503	rrd_old = adapter->rrd_ring;
3504	rhdr_old = adapter->ring_header;
3505
3506	if (netif_running(adapter->netdev))
3507		atl1_down(adapter);
3508
3509	rfdr->count = (u16) max(ring->rx_pending, (u32) ATL1_MIN_RFD);
3510	rfdr->count = rfdr->count > ATL1_MAX_RFD ? ATL1_MAX_RFD :
3511			rfdr->count;
3512	rfdr->count = (rfdr->count + 3) & ~3;
3513	rrdr->count = rfdr->count;
3514
3515	tpdr->count = (u16) max(ring->tx_pending, (u32) ATL1_MIN_TPD);
3516	tpdr->count = tpdr->count > ATL1_MAX_TPD ? ATL1_MAX_TPD :
3517			tpdr->count;
3518	tpdr->count = (tpdr->count + 3) & ~3;
3519
3520	if (netif_running(adapter->netdev)) {
3521		/* try to get new resources before deleting old */
3522		err = atl1_setup_ring_resources(adapter);
3523		if (err)
3524			goto err_setup_ring;
3525
3526		/*
3527		 * save the new, restore the old in order to free it,
3528		 * then restore the new back again
3529		 */
3530
3531		rfd_new = adapter->rfd_ring;
3532		rrd_new = adapter->rrd_ring;
3533		tpd_new = adapter->tpd_ring;
3534		rhdr_new = adapter->ring_header;
3535		adapter->rfd_ring = rfd_old;
3536		adapter->rrd_ring = rrd_old;
3537		adapter->tpd_ring = tpd_old;
3538		adapter->ring_header = rhdr_old;
3539		/*
3540		 * Save SMB and CMB, since atl1_free_ring_resources
3541		 * will clear them.
3542		 */
3543		smb = adapter->smb;
3544		cmb = adapter->cmb;
3545		atl1_free_ring_resources(adapter);
3546		adapter->rfd_ring = rfd_new;
3547		adapter->rrd_ring = rrd_new;
3548		adapter->tpd_ring = tpd_new;
3549		adapter->ring_header = rhdr_new;
3550		adapter->smb = smb;
3551		adapter->cmb = cmb;
3552
3553		err = atl1_up(adapter);
3554		if (err)
3555			return err;
3556	}
3557	return 0;
3558
3559err_setup_ring:
3560	adapter->rfd_ring = rfd_old;
3561	adapter->rrd_ring = rrd_old;
3562	adapter->tpd_ring = tpd_old;
3563	adapter->ring_header = rhdr_old;
3564	atl1_up(adapter);
3565	return err;
3566}
3567
3568static void atl1_get_pauseparam(struct net_device *netdev,
3569	struct ethtool_pauseparam *epause)
3570{
3571	struct atl1_adapter *adapter = netdev_priv(netdev);
3572	struct atl1_hw *hw = &adapter->hw;
3573
3574	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3575	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3576		epause->autoneg = AUTONEG_ENABLE;
3577	} else {
3578		epause->autoneg = AUTONEG_DISABLE;
3579	}
3580	epause->rx_pause = 1;
3581	epause->tx_pause = 1;
3582}
3583
3584static int atl1_set_pauseparam(struct net_device *netdev,
3585	struct ethtool_pauseparam *epause)
3586{
3587	struct atl1_adapter *adapter = netdev_priv(netdev);
3588	struct atl1_hw *hw = &adapter->hw;
3589
3590	if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3591	    hw->media_type == MEDIA_TYPE_1000M_FULL) {
3592		epause->autoneg = AUTONEG_ENABLE;
3593	} else {
3594		epause->autoneg = AUTONEG_DISABLE;
3595	}
3596
3597	epause->rx_pause = 1;
3598	epause->tx_pause = 1;
3599
3600	return 0;
3601}
3602
3603static void atl1_get_strings(struct net_device *netdev, u32 stringset,
3604	u8 *data)
3605{
3606	u8 *p = data;
3607	int i;
3608
3609	switch (stringset) {
3610	case ETH_SS_STATS:
3611		for (i = 0; i < ARRAY_SIZE(atl1_gstrings_stats); i++) {
3612			memcpy(p, atl1_gstrings_stats[i].stat_string,
3613				ETH_GSTRING_LEN);
3614			p += ETH_GSTRING_LEN;
3615		}
3616		break;
3617	}
3618}
3619
3620static int atl1_nway_reset(struct net_device *netdev)
3621{
3622	struct atl1_adapter *adapter = netdev_priv(netdev);
3623	struct atl1_hw *hw = &adapter->hw;
3624
3625	if (netif_running(netdev)) {
3626		u16 phy_data;
3627		atl1_down(adapter);
3628
3629		if (hw->media_type == MEDIA_TYPE_AUTO_SENSOR ||
3630			hw->media_type == MEDIA_TYPE_1000M_FULL) {
3631			phy_data = MII_CR_RESET | MII_CR_AUTO_NEG_EN;
3632		} else {
3633			switch (hw->media_type) {
3634			case MEDIA_TYPE_100M_FULL:
3635				phy_data = MII_CR_FULL_DUPLEX |
3636					MII_CR_SPEED_100 | MII_CR_RESET;
3637				break;
3638			case MEDIA_TYPE_100M_HALF:
3639				phy_data = MII_CR_SPEED_100 | MII_CR_RESET;
3640				break;
3641			case MEDIA_TYPE_10M_FULL:
3642				phy_data = MII_CR_FULL_DUPLEX |
3643					MII_CR_SPEED_10 | MII_CR_RESET;
3644				break;
3645			default:
3646				/* MEDIA_TYPE_10M_HALF */
3647				phy_data = MII_CR_SPEED_10 | MII_CR_RESET;
3648			}
3649		}
3650		atl1_write_phy_reg(hw, MII_BMCR, phy_data);
3651		atl1_up(adapter);
3652	}
3653	return 0;
3654}
3655
3656static const struct ethtool_ops atl1_ethtool_ops = {
3657	.get_settings		= atl1_get_settings,
3658	.set_settings		= atl1_set_settings,
3659	.get_drvinfo		= atl1_get_drvinfo,
3660	.get_wol		= atl1_get_wol,
3661	.set_wol		= atl1_set_wol,
3662	.get_msglevel		= atl1_get_msglevel,
3663	.set_msglevel		= atl1_set_msglevel,
3664	.get_regs_len		= atl1_get_regs_len,
3665	.get_regs		= atl1_get_regs,
3666	.get_ringparam		= atl1_get_ringparam,
3667	.set_ringparam		= atl1_set_ringparam,
3668	.get_pauseparam		= atl1_get_pauseparam,
3669	.set_pauseparam		= atl1_set_pauseparam,
3670	.get_link		= ethtool_op_get_link,
3671	.get_strings		= atl1_get_strings,
3672	.nway_reset		= atl1_nway_reset,
3673	.get_ethtool_stats	= atl1_get_ethtool_stats,
3674	.get_sset_count		= atl1_get_sset_count,
3675};