Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Simple MTD partitioning layer
  4 *
  5 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  6 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  7 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  8 */
  9
 10#include <linux/module.h>
 11#include <linux/types.h>
 12#include <linux/kernel.h>
 13#include <linux/slab.h>
 14#include <linux/list.h>
 15#include <linux/kmod.h>
 16#include <linux/mtd/mtd.h>
 17#include <linux/mtd/partitions.h>
 18#include <linux/err.h>
 19#include <linux/of.h>
 20#include <linux/of_platform.h>
 21
 22#include "mtdcore.h"
 23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24/*
 25 * MTD methods which simply translate the effective address and pass through
 26 * to the _real_ device.
 27 */
 28
 29static inline void free_partition(struct mtd_info *mtd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 30{
 31	kfree(mtd->name);
 32	kfree(mtd);
 
 
 
 33}
 34
 35void release_mtd_partition(struct mtd_info *mtd)
 36{
 37	WARN_ON(!list_empty(&mtd->part.node));
 38	free_partition(mtd);
 
 
 
 
 
 
 
 
 
 
 39}
 40
 41static struct mtd_info *allocate_partition(struct mtd_info *parent,
 42					   const struct mtd_partition *part,
 43					   int partno, uint64_t cur_offset)
 
 
 
 
 
 
 
 
 
 44{
 45	struct mtd_info *master = mtd_get_master(parent);
 46	int wr_alignment = (parent->flags & MTD_NO_ERASE) ?
 47			   master->writesize : master->erasesize;
 48	u64 parent_size = mtd_is_partition(parent) ?
 49			  parent->part.size : parent->size;
 50	struct mtd_info *child;
 51	u32 remainder;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 52	char *name;
 53	u64 tmp;
 54
 55	/* allocate the partition structure */
 56	child = kzalloc(sizeof(*child), GFP_KERNEL);
 57	name = kstrdup(part->name, GFP_KERNEL);
 58	if (!name || !child) {
 59		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
 60		       parent->name);
 61		kfree(name);
 62		kfree(child);
 63		return ERR_PTR(-ENOMEM);
 64	}
 65
 66	/* set up the MTD object for this partition */
 67	child->type = parent->type;
 68	child->part.flags = parent->flags & ~part->mask_flags;
 69	child->part.flags |= part->add_flags;
 70	child->flags = child->part.flags;
 71	child->part.size = part->size;
 72	child->writesize = parent->writesize;
 73	child->writebufsize = parent->writebufsize;
 74	child->oobsize = parent->oobsize;
 75	child->oobavail = parent->oobavail;
 76	child->subpage_sft = parent->subpage_sft;
 77
 78	child->name = name;
 79	child->owner = parent->owner;
 80
 81	/* NOTE: Historically, we didn't arrange MTDs as a tree out of
 82	 * concern for showing the same data in multiple partitions.
 83	 * However, it is very useful to have the master node present,
 84	 * so the MTD_PARTITIONED_MASTER option allows that. The master
 85	 * will have device nodes etc only if this is set, so make the
 86	 * parent conditional on that option. Note, this is a way to
 87	 * distinguish between the parent and its partitions in sysfs.
 88	 */
 89	child->dev.parent = IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) || mtd_is_partition(parent) ?
 90			    &parent->dev : parent->dev.parent;
 91	child->dev.of_node = part->of_node;
 92	child->parent = parent;
 93	child->part.offset = part->offset;
 94	INIT_LIST_HEAD(&child->partitions);
 95
 96	if (child->part.offset == MTDPART_OFS_APPEND)
 97		child->part.offset = cur_offset;
 98	if (child->part.offset == MTDPART_OFS_NXTBLK) {
 99		tmp = cur_offset;
100		child->part.offset = cur_offset;
101		remainder = do_div(tmp, wr_alignment);
102		if (remainder) {
103			child->part.offset += wr_alignment - remainder;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
104			printk(KERN_NOTICE "Moving partition %d: "
105			       "0x%012llx -> 0x%012llx\n", partno,
106			       (unsigned long long)cur_offset,
107			       child->part.offset);
108		}
109	}
110	if (child->part.offset == MTDPART_OFS_RETAIN) {
111		child->part.offset = cur_offset;
112		if (parent_size - child->part.offset >= child->part.size) {
113			child->part.size = parent_size - child->part.offset -
114					   child->part.size;
115		} else {
116			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
117				part->name, parent_size - child->part.offset,
118				child->part.size);
119			/* register to preserve ordering */
120			goto out_register;
121		}
122	}
123	if (child->part.size == MTDPART_SIZ_FULL)
124		child->part.size = parent_size - child->part.offset;
125
126	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n",
127	       child->part.offset, child->part.offset + child->part.size,
128	       child->name);
129
130	/* let's do some sanity checks */
131	if (child->part.offset >= parent_size) {
132		/* let's register it anyway to preserve ordering */
133		child->part.offset = 0;
134		child->part.size = 0;
135
136		/* Initialize ->erasesize to make add_mtd_device() happy. */
137		child->erasesize = parent->erasesize;
138		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
139			part->name);
140		goto out_register;
141	}
142	if (child->part.offset + child->part.size > parent->size) {
143		child->part.size = parent_size - child->part.offset;
144		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
145			part->name, parent->name, child->part.size);
146	}
147
148	if (parent->numeraseregions > 1) {
149		/* Deal with variable erase size stuff */
150		int i, max = parent->numeraseregions;
151		u64 end = child->part.offset + child->part.size;
152		struct mtd_erase_region_info *regions = parent->eraseregions;
153
154		/* Find the first erase regions which is part of this
155		 * partition. */
156		for (i = 0; i < max && regions[i].offset <= child->part.offset;
157		     i++)
158			;
159		/* The loop searched for the region _behind_ the first one */
160		if (i > 0)
161			i--;
162
163		/* Pick biggest erasesize */
164		for (; i < max && regions[i].offset < end; i++) {
165			if (child->erasesize < regions[i].erasesize)
166				child->erasesize = regions[i].erasesize;
 
167		}
168		BUG_ON(child->erasesize == 0);
169	} else {
170		/* Single erase size */
171		child->erasesize = master->erasesize;
172	}
173
174	/*
175	 * Child erasesize might differ from the parent one if the parent
176	 * exposes several regions with different erasesize. Adjust
177	 * wr_alignment accordingly.
178	 */
179	if (!(child->flags & MTD_NO_ERASE))
180		wr_alignment = child->erasesize;
181
182	tmp = mtd_get_master_ofs(child, 0);
183	remainder = do_div(tmp, wr_alignment);
184	if ((child->flags & MTD_WRITEABLE) && remainder) {
185		/* Doesn't start on a boundary of major erase size */
186		/* FIXME: Let it be writable if it is on a boundary of
187		 * _minor_ erase size though */
188		child->flags &= ~MTD_WRITEABLE;
189		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase/write block boundary -- force read-only\n",
190			part->name);
191	}
192
193	tmp = mtd_get_master_ofs(child, 0) + child->part.size;
194	remainder = do_div(tmp, wr_alignment);
195	if ((child->flags & MTD_WRITEABLE) && remainder) {
196		child->flags &= ~MTD_WRITEABLE;
197		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase/write block -- force read-only\n",
198			part->name);
199	}
200
201	child->size = child->part.size;
202	child->ecc_step_size = parent->ecc_step_size;
203	child->ecc_strength = parent->ecc_strength;
204	child->bitflip_threshold = parent->bitflip_threshold;
205
206	if (master->_block_isbad) {
207		uint64_t offs = 0;
208
209		while (offs < child->part.size) {
210			if (mtd_block_isreserved(child, offs))
211				child->ecc_stats.bbtblocks++;
212			else if (mtd_block_isbad(child, offs))
213				child->ecc_stats.badblocks++;
214			offs += child->erasesize;
215		}
216	}
217
218out_register:
219	return child;
220}
221
222static ssize_t offset_show(struct device *dev,
223			   struct device_attribute *attr, char *buf)
224{
225	struct mtd_info *mtd = dev_get_drvdata(dev);
226
227	return sysfs_emit(buf, "%lld\n", mtd->part.offset);
228}
229static DEVICE_ATTR_RO(offset);	/* mtd partition offset */
230
231static const struct attribute *mtd_partition_attrs[] = {
232	&dev_attr_offset.attr,
233	NULL
234};
235
236static int mtd_add_partition_attrs(struct mtd_info *new)
237{
238	int ret = sysfs_create_files(&new->dev.kobj, mtd_partition_attrs);
239	if (ret)
240		printk(KERN_WARNING
241		       "mtd: failed to create partition attrs, err=%d\n", ret);
242	return ret;
243}
244
245int mtd_add_partition(struct mtd_info *parent, const char *name,
246		      long long offset, long long length)
247{
248	struct mtd_info *master = mtd_get_master(parent);
249	u64 parent_size = mtd_is_partition(parent) ?
250			  parent->part.size : parent->size;
251	struct mtd_partition part;
252	struct mtd_info *child;
 
253	int ret = 0;
254
255	/* the direct offset is expected */
256	if (offset == MTDPART_OFS_APPEND ||
257	    offset == MTDPART_OFS_NXTBLK)
258		return -EINVAL;
259
260	if (length == MTDPART_SIZ_FULL)
261		length = parent_size - offset;
262
263	if (length <= 0)
264		return -EINVAL;
265
266	memset(&part, 0, sizeof(part));
267	part.name = name;
268	part.size = length;
269	part.offset = offset;
 
 
270
271	child = allocate_partition(parent, &part, -1, offset);
272	if (IS_ERR(child))
273		return PTR_ERR(child);
274
275	mutex_lock(&master->master.partitions_lock);
276	list_add_tail(&child->part.node, &parent->partitions);
277	mutex_unlock(&master->master.partitions_lock);
278
279	ret = add_mtd_device(child);
280	if (ret)
281		goto err_remove_part;
282
283	mtd_add_partition_attrs(child);
284
285	return 0;
286
287err_remove_part:
288	mutex_lock(&master->master.partitions_lock);
289	list_del(&child->part.node);
290	mutex_unlock(&master->master.partitions_lock);
291
292	free_partition(child);
293
294	return ret;
295}
296EXPORT_SYMBOL_GPL(mtd_add_partition);
297
298/**
299 * __mtd_del_partition - delete MTD partition
300 *
301 * @mtd: MTD structure to be deleted
302 *
303 * This function must be called with the partitions mutex locked.
304 */
305static int __mtd_del_partition(struct mtd_info *mtd)
306{
307	struct mtd_info *child, *next;
308	int err;
309
310	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
311		err = __mtd_del_partition(child);
312		if (err)
313			return err;
314	}
315
316	sysfs_remove_files(&mtd->dev.kobj, mtd_partition_attrs);
317
318	list_del_init(&mtd->part.node);
319	err = del_mtd_device(mtd);
320	if (err)
321		return err;
322
323	return 0;
324}
325
326/*
327 * This function unregisters and destroy all slave MTD objects which are
328 * attached to the given MTD object, recursively.
329 */
330static int __del_mtd_partitions(struct mtd_info *mtd)
331{
332	struct mtd_info *child, *next;
333	int ret, err = 0;
334
335	list_for_each_entry_safe(child, next, &mtd->partitions, part.node) {
336		if (mtd_has_partitions(child))
337			__del_mtd_partitions(child);
338
339		pr_info("Deleting %s MTD partition\n", child->name);
340		list_del_init(&child->part.node);
341		ret = del_mtd_device(child);
342		if (ret < 0) {
343			pr_err("Error when deleting partition \"%s\" (%d)\n",
344			       child->name, ret);
345			err = ret;
346			continue;
347		}
348	}
349
350	return err;
351}
352
353int del_mtd_partitions(struct mtd_info *mtd)
354{
355	struct mtd_info *master = mtd_get_master(mtd);
356	int ret;
357
358	pr_info("Deleting MTD partitions on \"%s\":\n", mtd->name);
 
359
360	mutex_lock(&master->master.partitions_lock);
361	ret = __del_mtd_partitions(mtd);
362	mutex_unlock(&master->master.partitions_lock);
363
364	return ret;
 
 
 
 
365}
 
366
367int mtd_del_partition(struct mtd_info *mtd, int partno)
368{
369	struct mtd_info *child, *master = mtd_get_master(mtd);
370	int ret = -EINVAL;
371
372	mutex_lock(&master->master.partitions_lock);
373	list_for_each_entry(child, &mtd->partitions, part.node) {
374		if (child->index == partno) {
375			ret = __mtd_del_partition(child);
 
 
 
 
 
 
376			break;
377		}
378	}
379	mutex_unlock(&master->master.partitions_lock);
380
381	return ret;
382}
383EXPORT_SYMBOL_GPL(mtd_del_partition);
384
385/*
386 * This function, given a parent MTD object and a partition table, creates
387 * and registers the child MTD objects which are bound to the parent according
388 * to the partition definitions.
389 *
390 * For historical reasons, this function's caller only registers the parent
391 * if the MTD_PARTITIONED_MASTER config option is set.
392 */
393
394int add_mtd_partitions(struct mtd_info *parent,
395		       const struct mtd_partition *parts,
396		       int nbparts)
397{
398	struct mtd_info *child, *master = mtd_get_master(parent);
399	uint64_t cur_offset = 0;
400	int i, ret;
401
402	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n",
403	       nbparts, parent->name);
404
405	for (i = 0; i < nbparts; i++) {
406		child = allocate_partition(parent, parts + i, i, cur_offset);
407		if (IS_ERR(child)) {
408			ret = PTR_ERR(child);
409			goto err_del_partitions;
410		}
411
412		mutex_lock(&master->master.partitions_lock);
413		list_add_tail(&child->part.node, &parent->partitions);
414		mutex_unlock(&master->master.partitions_lock);
415
416		ret = add_mtd_device(child);
417		if (ret) {
418			mutex_lock(&master->master.partitions_lock);
419			list_del(&child->part.node);
420			mutex_unlock(&master->master.partitions_lock);
421
422			free_partition(child);
423			goto err_del_partitions;
424		}
425
426		mtd_add_partition_attrs(child);
427
428		/* Look for subpartitions */
429		ret = parse_mtd_partitions(child, parts[i].types, NULL);
430		if (ret < 0) {
431			pr_err("Failed to parse subpartitions: %d\n", ret);
432			goto err_del_partitions;
433		}
434
435		cur_offset = child->part.offset + child->part.size;
436	}
437
438	return 0;
439
440err_del_partitions:
441	del_mtd_partitions(master);
442
443	return ret;
444}
445
446static DEFINE_SPINLOCK(part_parser_lock);
447static LIST_HEAD(part_parsers);
448
449static struct mtd_part_parser *mtd_part_parser_get(const char *name)
450{
451	struct mtd_part_parser *p, *ret = NULL;
452
453	spin_lock(&part_parser_lock);
454
455	list_for_each_entry(p, &part_parsers, list)
456		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
457			ret = p;
458			break;
459		}
460
461	spin_unlock(&part_parser_lock);
462
463	return ret;
464}
465
466static inline void mtd_part_parser_put(const struct mtd_part_parser *p)
467{
468	module_put(p->owner);
469}
470
471/*
472 * Many partition parsers just expected the core to kfree() all their data in
473 * one chunk. Do that by default.
474 */
475static void mtd_part_parser_cleanup_default(const struct mtd_partition *pparts,
476					    int nr_parts)
477{
478	kfree(pparts);
479}
480
481int __register_mtd_parser(struct mtd_part_parser *p, struct module *owner)
482{
483	p->owner = owner;
484
485	if (!p->cleanup)
486		p->cleanup = &mtd_part_parser_cleanup_default;
487
488	spin_lock(&part_parser_lock);
489	list_add(&p->list, &part_parsers);
490	spin_unlock(&part_parser_lock);
491
492	return 0;
493}
494EXPORT_SYMBOL_GPL(__register_mtd_parser);
495
496void deregister_mtd_parser(struct mtd_part_parser *p)
497{
498	spin_lock(&part_parser_lock);
499	list_del(&p->list);
500	spin_unlock(&part_parser_lock);
 
501}
502EXPORT_SYMBOL_GPL(deregister_mtd_parser);
503
504/*
505 * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
506 * are changing this array!
507 */
508static const char * const default_mtd_part_types[] = {
509	"cmdlinepart",
510	"ofpart",
511	NULL
512};
513
514/* Check DT only when looking for subpartitions. */
515static const char * const default_subpartition_types[] = {
516	"ofpart",
517	NULL
518};
519
520static int mtd_part_do_parse(struct mtd_part_parser *parser,
521			     struct mtd_info *master,
522			     struct mtd_partitions *pparts,
523			     struct mtd_part_parser_data *data)
524{
525	int ret;
526
527	ret = (*parser->parse_fn)(master, &pparts->parts, data);
528	pr_debug("%s: parser %s: %i\n", master->name, parser->name, ret);
529	if (ret <= 0)
530		return ret;
531
532	pr_notice("%d %s partitions found on MTD device %s\n", ret,
533		  parser->name, master->name);
534
535	pparts->nr_parts = ret;
536	pparts->parser = parser;
537
538	return ret;
539}
540
541/**
542 * mtd_part_get_compatible_parser - find MTD parser by a compatible string
543 *
544 * @compat: compatible string describing partitions in a device tree
545 *
546 * MTD parsers can specify supported partitions by providing a table of
547 * compatibility strings. This function finds a parser that advertises support
548 * for a passed value of "compatible".
549 */
550static struct mtd_part_parser *mtd_part_get_compatible_parser(const char *compat)
551{
552	struct mtd_part_parser *p, *ret = NULL;
553
554	spin_lock(&part_parser_lock);
555
556	list_for_each_entry(p, &part_parsers, list) {
557		const struct of_device_id *matches;
558
559		matches = p->of_match_table;
560		if (!matches)
561			continue;
562
563		for (; matches->compatible[0]; matches++) {
564			if (!strcmp(matches->compatible, compat) &&
565			    try_module_get(p->owner)) {
566				ret = p;
567				break;
568			}
569		}
570
571		if (ret)
572			break;
573	}
574
575	spin_unlock(&part_parser_lock);
576
577	return ret;
578}
579
580static int mtd_part_of_parse(struct mtd_info *master,
581			     struct mtd_partitions *pparts)
582{
583	struct mtd_part_parser *parser;
584	struct device_node *np;
585	struct device_node *child;
586	struct property *prop;
587	struct device *dev;
588	const char *compat;
589	const char *fixed = "fixed-partitions";
590	int ret, err = 0;
591
592	dev = &master->dev;
593	/* Use parent device (controller) if the top level MTD is not registered */
594	if (!IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER) && !mtd_is_partition(master))
595		dev = master->dev.parent;
596
597	np = mtd_get_of_node(master);
598	if (mtd_is_partition(master))
599		of_node_get(np);
600	else
601		np = of_get_child_by_name(np, "partitions");
602
603	/*
604	 * Don't create devices that are added to a bus but will never get
605	 * probed. That'll cause fw_devlink to block probing of consumers of
606	 * this partition until the partition device is probed.
607	 */
608	for_each_child_of_node(np, child)
609		if (of_device_is_compatible(child, "nvmem-cells"))
610			of_node_set_flag(child, OF_POPULATED);
611
612	of_property_for_each_string(np, "compatible", prop, compat) {
613		parser = mtd_part_get_compatible_parser(compat);
 
 
614		if (!parser)
615			continue;
616		ret = mtd_part_do_parse(parser, master, pparts, NULL);
617		if (ret > 0) {
618			of_platform_populate(np, NULL, NULL, dev);
619			of_node_put(np);
620			return ret;
621		}
622		mtd_part_parser_put(parser);
623		if (ret < 0 && !err)
624			err = ret;
625	}
626	of_platform_populate(np, NULL, NULL, dev);
627	of_node_put(np);
628
629	/*
630	 * For backward compatibility we have to try the "fixed-partitions"
631	 * parser. It supports old DT format with partitions specified as a
632	 * direct subnodes of a flash device DT node without any compatibility
633	 * specified we could match.
634	 */
635	parser = mtd_part_parser_get(fixed);
636	if (!parser && !request_module("%s", fixed))
637		parser = mtd_part_parser_get(fixed);
638	if (parser) {
639		ret = mtd_part_do_parse(parser, master, pparts, NULL);
640		if (ret > 0)
641			return ret;
642		mtd_part_parser_put(parser);
643		if (ret < 0 && !err)
644			err = ret;
645	}
646
647	return err;
648}
 
649
650/**
651 * parse_mtd_partitions - parse and register MTD partitions
652 *
653 * @master: the master partition (describes whole MTD device)
654 * @types: names of partition parsers to try or %NULL
655 * @data: MTD partition parser-specific data
656 *
657 * This function tries to find & register partitions on MTD device @master. It
658 * uses MTD partition parsers, specified in @types. However, if @types is %NULL,
659 * then the default list of parsers is used. The default list contains only the
660 * "cmdlinepart" and "ofpart" parsers ATM.
661 * Note: If there are more then one parser in @types, the kernel only takes the
662 * partitions parsed out by the first parser.
663 *
664 * This function may return:
665 * o a negative error code in case of failure
666 * o number of found partitions otherwise
667 */
668int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
669			 struct mtd_part_parser_data *data)
670{
671	struct mtd_partitions pparts = { };
672	struct mtd_part_parser *parser;
673	int ret, err = 0;
674
675	if (!types)
676		types = mtd_is_partition(master) ? default_subpartition_types :
677			default_mtd_part_types;
678
679	for ( ; *types; types++) {
680		/*
681		 * ofpart is a special type that means OF partitioning info
682		 * should be used. It requires a bit different logic so it is
683		 * handled in a separated function.
684		 */
685		if (!strcmp(*types, "ofpart")) {
686			ret = mtd_part_of_parse(master, &pparts);
687		} else {
688			pr_debug("%s: parsing partitions %s\n", master->name,
689				 *types);
690			parser = mtd_part_parser_get(*types);
691			if (!parser && !request_module("%s", *types))
692				parser = mtd_part_parser_get(*types);
693			pr_debug("%s: got parser %s\n", master->name,
694				parser ? parser->name : NULL);
695			if (!parser)
696				continue;
697			ret = mtd_part_do_parse(parser, master, &pparts, data);
698			if (ret <= 0)
699				mtd_part_parser_put(parser);
700		}
701		/* Found partitions! */
702		if (ret > 0) {
703			err = add_mtd_partitions(master, pparts.parts,
704						 pparts.nr_parts);
705			mtd_part_parser_cleanup(&pparts);
706			return err ? err : pparts.nr_parts;
707		}
708		/*
709		 * Stash the first error we see; only report it if no parser
710		 * succeeds
711		 */
712		if (ret < 0 && !err)
713			err = ret;
714	}
715	return err;
716}
717
718void mtd_part_parser_cleanup(struct mtd_partitions *parts)
719{
720	const struct mtd_part_parser *parser;
721
722	if (!parts)
723		return;
724
725	parser = parts->parser;
726	if (parser) {
727		if (parser->cleanup)
728			parser->cleanup(parts->parts, parts->nr_parts);
729
730		mtd_part_parser_put(parser);
731	}
732}
733
734/* Returns the size of the entire flash chip */
735uint64_t mtd_get_device_size(const struct mtd_info *mtd)
736{
737	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
738
739	return master->size;
740}
741EXPORT_SYMBOL_GPL(mtd_get_device_size);
v3.1
 
  1/*
  2 * Simple MTD partitioning layer
  3 *
  4 * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5 * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License as published by
 10 * the Free Software Foundation; either version 2 of the License, or
 11 * (at your option) any later version.
 12 *
 13 * This program is distributed in the hope that it will be useful,
 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 16 * GNU General Public License for more details.
 17 *
 18 * You should have received a copy of the GNU General Public License
 19 * along with this program; if not, write to the Free Software
 20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 21 *
 22 */
 23
 24#include <linux/module.h>
 25#include <linux/types.h>
 26#include <linux/kernel.h>
 27#include <linux/slab.h>
 28#include <linux/list.h>
 29#include <linux/kmod.h>
 30#include <linux/mtd/mtd.h>
 31#include <linux/mtd/partitions.h>
 32#include <linux/err.h>
 
 
 33
 34#include "mtdcore.h"
 35
 36/* Our partition linked list */
 37static LIST_HEAD(mtd_partitions);
 38static DEFINE_MUTEX(mtd_partitions_mutex);
 39
 40/* Our partition node structure */
 41struct mtd_part {
 42	struct mtd_info mtd;
 43	struct mtd_info *master;
 44	uint64_t offset;
 45	struct list_head list;
 46};
 47
 48/*
 49 * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
 50 * the pointer to that structure with this macro.
 51 */
 52#define PART(x)  ((struct mtd_part *)(x))
 53
 54
 55/*
 56 * MTD methods which simply translate the effective address and pass through
 57 * to the _real_ device.
 58 */
 59
 60static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
 61		size_t *retlen, u_char *buf)
 62{
 63	struct mtd_part *part = PART(mtd);
 64	struct mtd_ecc_stats stats;
 65	int res;
 66
 67	stats = part->master->ecc_stats;
 68
 69	if (from >= mtd->size)
 70		len = 0;
 71	else if (from + len > mtd->size)
 72		len = mtd->size - from;
 73	res = part->master->read(part->master, from + part->offset,
 74				   len, retlen, buf);
 75	if (unlikely(res)) {
 76		if (res == -EUCLEAN)
 77			mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
 78		if (res == -EBADMSG)
 79			mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
 80	}
 81	return res;
 82}
 83
 84static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
 85		size_t *retlen, void **virt, resource_size_t *phys)
 86{
 87	struct mtd_part *part = PART(mtd);
 88	if (from >= mtd->size)
 89		len = 0;
 90	else if (from + len > mtd->size)
 91		len = mtd->size - from;
 92	return part->master->point (part->master, from + part->offset,
 93				    len, retlen, virt, phys);
 94}
 95
 96static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
 97{
 98	struct mtd_part *part = PART(mtd);
 99
100	part->master->unpoint(part->master, from + part->offset, len);
101}
102
103static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
104					    unsigned long len,
105					    unsigned long offset,
106					    unsigned long flags)
107{
108	struct mtd_part *part = PART(mtd);
109
110	offset += part->offset;
111	return part->master->get_unmapped_area(part->master, len, offset,
112					       flags);
113}
114
115static int part_read_oob(struct mtd_info *mtd, loff_t from,
116		struct mtd_oob_ops *ops)
117{
118	struct mtd_part *part = PART(mtd);
119	int res;
120
121	if (from >= mtd->size)
122		return -EINVAL;
123	if (ops->datbuf && from + ops->len > mtd->size)
124		return -EINVAL;
125
126	/*
127	 * If OOB is also requested, make sure that we do not read past the end
128	 * of this partition.
129	 */
130	if (ops->oobbuf) {
131		size_t len, pages;
132
133		if (ops->mode == MTD_OOB_AUTO)
134			len = mtd->oobavail;
135		else
136			len = mtd->oobsize;
137		pages = mtd_div_by_ws(mtd->size, mtd);
138		pages -= mtd_div_by_ws(from, mtd);
139		if (ops->ooboffs + ops->ooblen > pages * len)
140			return -EINVAL;
141	}
142
143	res = part->master->read_oob(part->master, from + part->offset, ops);
144	if (unlikely(res)) {
145		if (res == -EUCLEAN)
146			mtd->ecc_stats.corrected++;
147		if (res == -EBADMSG)
148			mtd->ecc_stats.failed++;
149	}
150	return res;
151}
152
153static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
154		size_t len, size_t *retlen, u_char *buf)
155{
156	struct mtd_part *part = PART(mtd);
157	return part->master->read_user_prot_reg(part->master, from,
158					len, retlen, buf);
159}
160
161static int part_get_user_prot_info(struct mtd_info *mtd,
162		struct otp_info *buf, size_t len)
163{
164	struct mtd_part *part = PART(mtd);
165	return part->master->get_user_prot_info(part->master, buf, len);
166}
167
168static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
169		size_t len, size_t *retlen, u_char *buf)
170{
171	struct mtd_part *part = PART(mtd);
172	return part->master->read_fact_prot_reg(part->master, from,
173					len, retlen, buf);
174}
175
176static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
177		size_t len)
178{
179	struct mtd_part *part = PART(mtd);
180	return part->master->get_fact_prot_info(part->master, buf, len);
181}
182
183static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
184		size_t *retlen, const u_char *buf)
185{
186	struct mtd_part *part = PART(mtd);
187	if (!(mtd->flags & MTD_WRITEABLE))
188		return -EROFS;
189	if (to >= mtd->size)
190		len = 0;
191	else if (to + len > mtd->size)
192		len = mtd->size - to;
193	return part->master->write(part->master, to + part->offset,
194				    len, retlen, buf);
195}
196
197static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
198		size_t *retlen, const u_char *buf)
199{
200	struct mtd_part *part = PART(mtd);
201	if (!(mtd->flags & MTD_WRITEABLE))
202		return -EROFS;
203	if (to >= mtd->size)
204		len = 0;
205	else if (to + len > mtd->size)
206		len = mtd->size - to;
207	return part->master->panic_write(part->master, to + part->offset,
208				    len, retlen, buf);
209}
210
211static int part_write_oob(struct mtd_info *mtd, loff_t to,
212		struct mtd_oob_ops *ops)
213{
214	struct mtd_part *part = PART(mtd);
215
216	if (!(mtd->flags & MTD_WRITEABLE))
217		return -EROFS;
218
219	if (to >= mtd->size)
220		return -EINVAL;
221	if (ops->datbuf && to + ops->len > mtd->size)
222		return -EINVAL;
223	return part->master->write_oob(part->master, to + part->offset, ops);
224}
225
226static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
227		size_t len, size_t *retlen, u_char *buf)
228{
229	struct mtd_part *part = PART(mtd);
230	return part->master->write_user_prot_reg(part->master, from,
231					len, retlen, buf);
232}
233
234static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
235		size_t len)
236{
237	struct mtd_part *part = PART(mtd);
238	return part->master->lock_user_prot_reg(part->master, from, len);
239}
240
241static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
242		unsigned long count, loff_t to, size_t *retlen)
243{
244	struct mtd_part *part = PART(mtd);
245	if (!(mtd->flags & MTD_WRITEABLE))
246		return -EROFS;
247	return part->master->writev(part->master, vecs, count,
248					to + part->offset, retlen);
249}
250
251static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
252{
253	struct mtd_part *part = PART(mtd);
254	int ret;
255	if (!(mtd->flags & MTD_WRITEABLE))
256		return -EROFS;
257	if (instr->addr >= mtd->size)
258		return -EINVAL;
259	instr->addr += part->offset;
260	ret = part->master->erase(part->master, instr);
261	if (ret) {
262		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
263			instr->fail_addr -= part->offset;
264		instr->addr -= part->offset;
265	}
266	return ret;
267}
268
269void mtd_erase_callback(struct erase_info *instr)
270{
271	if (instr->mtd->erase == part_erase) {
272		struct mtd_part *part = PART(instr->mtd);
273
274		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
275			instr->fail_addr -= part->offset;
276		instr->addr -= part->offset;
277	}
278	if (instr->callback)
279		instr->callback(instr);
280}
281EXPORT_SYMBOL_GPL(mtd_erase_callback);
282
283static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
284{
285	struct mtd_part *part = PART(mtd);
286	if ((len + ofs) > mtd->size)
287		return -EINVAL;
288	return part->master->lock(part->master, ofs + part->offset, len);
289}
290
291static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
292{
293	struct mtd_part *part = PART(mtd);
294	if ((len + ofs) > mtd->size)
295		return -EINVAL;
296	return part->master->unlock(part->master, ofs + part->offset, len);
297}
298
299static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
300{
301	struct mtd_part *part = PART(mtd);
302	if ((len + ofs) > mtd->size)
303		return -EINVAL;
304	return part->master->is_locked(part->master, ofs + part->offset, len);
305}
306
307static void part_sync(struct mtd_info *mtd)
308{
309	struct mtd_part *part = PART(mtd);
310	part->master->sync(part->master);
311}
312
313static int part_suspend(struct mtd_info *mtd)
314{
315	struct mtd_part *part = PART(mtd);
316	return part->master->suspend(part->master);
317}
318
319static void part_resume(struct mtd_info *mtd)
320{
321	struct mtd_part *part = PART(mtd);
322	part->master->resume(part->master);
323}
324
325static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
326{
327	struct mtd_part *part = PART(mtd);
328	if (ofs >= mtd->size)
329		return -EINVAL;
330	ofs += part->offset;
331	return part->master->block_isbad(part->master, ofs);
332}
333
334static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
335{
336	struct mtd_part *part = PART(mtd);
337	int res;
338
339	if (!(mtd->flags & MTD_WRITEABLE))
340		return -EROFS;
341	if (ofs >= mtd->size)
342		return -EINVAL;
343	ofs += part->offset;
344	res = part->master->block_markbad(part->master, ofs);
345	if (!res)
346		mtd->ecc_stats.badblocks++;
347	return res;
348}
349
350static inline void free_partition(struct mtd_part *p)
351{
352	kfree(p->mtd.name);
353	kfree(p);
354}
355
356/*
357 * This function unregisters and destroy all slave MTD objects which are
358 * attached to the given master MTD object.
359 */
360
361int del_mtd_partitions(struct mtd_info *master)
362{
363	struct mtd_part *slave, *next;
364	int ret, err = 0;
365
366	mutex_lock(&mtd_partitions_mutex);
367	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
368		if (slave->master == master) {
369			ret = del_mtd_device(&slave->mtd);
370			if (ret < 0) {
371				err = ret;
372				continue;
373			}
374			list_del(&slave->list);
375			free_partition(slave);
376		}
377	mutex_unlock(&mtd_partitions_mutex);
378
379	return err;
380}
381
382static struct mtd_part *allocate_partition(struct mtd_info *master,
383			const struct mtd_partition *part, int partno,
384			uint64_t cur_offset)
385{
386	struct mtd_part *slave;
387	char *name;
 
388
389	/* allocate the partition structure */
390	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
391	name = kstrdup(part->name, GFP_KERNEL);
392	if (!name || !slave) {
393		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
394		       master->name);
395		kfree(name);
396		kfree(slave);
397		return ERR_PTR(-ENOMEM);
398	}
399
400	/* set up the MTD object for this partition */
401	slave->mtd.type = master->type;
402	slave->mtd.flags = master->flags & ~part->mask_flags;
403	slave->mtd.size = part->size;
404	slave->mtd.writesize = master->writesize;
405	slave->mtd.writebufsize = master->writebufsize;
406	slave->mtd.oobsize = master->oobsize;
407	slave->mtd.oobavail = master->oobavail;
408	slave->mtd.subpage_sft = master->subpage_sft;
409
410	slave->mtd.name = name;
411	slave->mtd.owner = master->owner;
412	slave->mtd.backing_dev_info = master->backing_dev_info;
413
414	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
415	 * to have the same data be in two different partitions.
 
 
 
 
 
 
416	 */
417	slave->mtd.dev.parent = master->dev.parent;
418
419	slave->mtd.read = part_read;
420	slave->mtd.write = part_write;
421
422	if (master->panic_write)
423		slave->mtd.panic_write = part_panic_write;
424
425	if (master->point && master->unpoint) {
426		slave->mtd.point = part_point;
427		slave->mtd.unpoint = part_unpoint;
428	}
429
430	if (master->get_unmapped_area)
431		slave->mtd.get_unmapped_area = part_get_unmapped_area;
432	if (master->read_oob)
433		slave->mtd.read_oob = part_read_oob;
434	if (master->write_oob)
435		slave->mtd.write_oob = part_write_oob;
436	if (master->read_user_prot_reg)
437		slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
438	if (master->read_fact_prot_reg)
439		slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
440	if (master->write_user_prot_reg)
441		slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
442	if (master->lock_user_prot_reg)
443		slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
444	if (master->get_user_prot_info)
445		slave->mtd.get_user_prot_info = part_get_user_prot_info;
446	if (master->get_fact_prot_info)
447		slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
448	if (master->sync)
449		slave->mtd.sync = part_sync;
450	if (!partno && !master->dev.class && master->suspend && master->resume) {
451			slave->mtd.suspend = part_suspend;
452			slave->mtd.resume = part_resume;
453	}
454	if (master->writev)
455		slave->mtd.writev = part_writev;
456	if (master->lock)
457		slave->mtd.lock = part_lock;
458	if (master->unlock)
459		slave->mtd.unlock = part_unlock;
460	if (master->is_locked)
461		slave->mtd.is_locked = part_is_locked;
462	if (master->block_isbad)
463		slave->mtd.block_isbad = part_block_isbad;
464	if (master->block_markbad)
465		slave->mtd.block_markbad = part_block_markbad;
466	slave->mtd.erase = part_erase;
467	slave->master = master;
468	slave->offset = part->offset;
469
470	if (slave->offset == MTDPART_OFS_APPEND)
471		slave->offset = cur_offset;
472	if (slave->offset == MTDPART_OFS_NXTBLK) {
473		slave->offset = cur_offset;
474		if (mtd_mod_by_eb(cur_offset, master) != 0) {
475			/* Round up to next erasesize */
476			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
477			printk(KERN_NOTICE "Moving partition %d: "
478			       "0x%012llx -> 0x%012llx\n", partno,
479			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
 
480		}
481	}
482	if (slave->mtd.size == MTDPART_SIZ_FULL)
483		slave->mtd.size = master->size - slave->offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
484
485	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
486		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
 
487
488	/* let's do some sanity checks */
489	if (slave->offset >= master->size) {
490		/* let's register it anyway to preserve ordering */
491		slave->offset = 0;
492		slave->mtd.size = 0;
 
 
 
493		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
494			part->name);
495		goto out_register;
496	}
497	if (slave->offset + slave->mtd.size > master->size) {
498		slave->mtd.size = master->size - slave->offset;
499		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
500			part->name, master->name, (unsigned long long)slave->mtd.size);
501	}
502	if (master->numeraseregions > 1) {
 
503		/* Deal with variable erase size stuff */
504		int i, max = master->numeraseregions;
505		u64 end = slave->offset + slave->mtd.size;
506		struct mtd_erase_region_info *regions = master->eraseregions;
507
508		/* Find the first erase regions which is part of this
509		 * partition. */
510		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
 
511			;
512		/* The loop searched for the region _behind_ the first one */
513		if (i > 0)
514			i--;
515
516		/* Pick biggest erasesize */
517		for (; i < max && regions[i].offset < end; i++) {
518			if (slave->mtd.erasesize < regions[i].erasesize) {
519				slave->mtd.erasesize = regions[i].erasesize;
520			}
521		}
522		BUG_ON(slave->mtd.erasesize == 0);
523	} else {
524		/* Single erase size */
525		slave->mtd.erasesize = master->erasesize;
526	}
527
528	if ((slave->mtd.flags & MTD_WRITEABLE) &&
529	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
 
 
 
 
 
 
 
 
 
530		/* Doesn't start on a boundary of major erase size */
531		/* FIXME: Let it be writable if it is on a boundary of
532		 * _minor_ erase size though */
533		slave->mtd.flags &= ~MTD_WRITEABLE;
534		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
535			part->name);
536	}
537	if ((slave->mtd.flags & MTD_WRITEABLE) &&
538	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
539		slave->mtd.flags &= ~MTD_WRITEABLE;
540		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
 
 
541			part->name);
542	}
543
544	slave->mtd.ecclayout = master->ecclayout;
545	if (master->block_isbad) {
 
 
 
 
546		uint64_t offs = 0;
547
548		while (offs < slave->mtd.size) {
549			if (master->block_isbad(master,
550						offs + slave->offset))
551				slave->mtd.ecc_stats.badblocks++;
552			offs += slave->mtd.erasesize;
 
553		}
554	}
555
556out_register:
557	return slave;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
558}
559
560int mtd_add_partition(struct mtd_info *master, char *name,
561		      long long offset, long long length)
562{
 
 
 
563	struct mtd_partition part;
564	struct mtd_part *p, *new;
565	uint64_t start, end;
566	int ret = 0;
567
568	/* the direct offset is expected */
569	if (offset == MTDPART_OFS_APPEND ||
570	    offset == MTDPART_OFS_NXTBLK)
571		return -EINVAL;
572
573	if (length == MTDPART_SIZ_FULL)
574		length = master->size - offset;
575
576	if (length <= 0)
577		return -EINVAL;
578
 
579	part.name = name;
580	part.size = length;
581	part.offset = offset;
582	part.mask_flags = 0;
583	part.ecclayout = NULL;
584
585	new = allocate_partition(master, &part, -1, offset);
586	if (IS_ERR(new))
587		return PTR_ERR(new);
 
 
 
 
 
 
 
 
 
 
 
 
588
589	start = offset;
590	end = offset + length;
 
 
591
592	mutex_lock(&mtd_partitions_mutex);
593	list_for_each_entry(p, &mtd_partitions, list)
594		if (p->master == master) {
595			if ((start >= p->offset) &&
596			    (start < (p->offset + p->mtd.size)))
597				goto err_inv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
598
599			if ((end >= p->offset) &&
600			    (end < (p->offset + p->mtd.size)))
601				goto err_inv;
 
 
 
 
 
 
 
 
 
602		}
 
 
 
 
 
 
 
 
 
603
604	list_add(&new->list, &mtd_partitions);
605	mutex_unlock(&mtd_partitions_mutex);
606
607	add_mtd_device(&new->mtd);
 
 
608
609	return ret;
610err_inv:
611	mutex_unlock(&mtd_partitions_mutex);
612	free_partition(new);
613	return -EINVAL;
614}
615EXPORT_SYMBOL_GPL(mtd_add_partition);
616
617int mtd_del_partition(struct mtd_info *master, int partno)
618{
619	struct mtd_part *slave, *next;
620	int ret = -EINVAL;
621
622	mutex_lock(&mtd_partitions_mutex);
623	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
624		if ((slave->master == master) &&
625		    (slave->mtd.index == partno)) {
626			ret = del_mtd_device(&slave->mtd);
627			if (ret < 0)
628				break;
629
630			list_del(&slave->list);
631			free_partition(slave);
632			break;
633		}
634	mutex_unlock(&mtd_partitions_mutex);
 
635
636	return ret;
637}
638EXPORT_SYMBOL_GPL(mtd_del_partition);
639
640/*
641 * This function, given a master MTD object and a partition table, creates
642 * and registers slave MTD objects which are bound to the master according to
643 * the partition definitions.
644 *
645 * We don't register the master, or expect the caller to have done so,
646 * for reasons of data integrity.
647 */
648
649int add_mtd_partitions(struct mtd_info *master,
650		       const struct mtd_partition *parts,
651		       int nbparts)
652{
653	struct mtd_part *slave;
654	uint64_t cur_offset = 0;
655	int i;
656
657	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
 
658
659	for (i = 0; i < nbparts; i++) {
660		slave = allocate_partition(master, parts + i, i, cur_offset);
661		if (IS_ERR(slave))
662			return PTR_ERR(slave);
 
 
663
664		mutex_lock(&mtd_partitions_mutex);
665		list_add(&slave->list, &mtd_partitions);
666		mutex_unlock(&mtd_partitions_mutex);
 
 
 
 
 
 
667
668		add_mtd_device(&slave->mtd);
 
 
 
 
 
 
 
 
 
 
 
669
670		cur_offset = slave->offset + slave->mtd.size;
671	}
672
673	return 0;
 
 
 
 
 
674}
675
676static DEFINE_SPINLOCK(part_parser_lock);
677static LIST_HEAD(part_parsers);
678
679static struct mtd_part_parser *get_partition_parser(const char *name)
680{
681	struct mtd_part_parser *p, *ret = NULL;
682
683	spin_lock(&part_parser_lock);
684
685	list_for_each_entry(p, &part_parsers, list)
686		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
687			ret = p;
688			break;
689		}
690
691	spin_unlock(&part_parser_lock);
692
693	return ret;
694}
695
696int register_mtd_parser(struct mtd_part_parser *p)
697{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698	spin_lock(&part_parser_lock);
699	list_add(&p->list, &part_parsers);
700	spin_unlock(&part_parser_lock);
701
702	return 0;
703}
704EXPORT_SYMBOL_GPL(register_mtd_parser);
705
706int deregister_mtd_parser(struct mtd_part_parser *p)
707{
708	spin_lock(&part_parser_lock);
709	list_del(&p->list);
710	spin_unlock(&part_parser_lock);
711	return 0;
712}
713EXPORT_SYMBOL_GPL(deregister_mtd_parser);
714
715int parse_mtd_partitions(struct mtd_info *master, const char **types,
716			 struct mtd_partition **pparts, unsigned long origin)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717{
718	struct mtd_part_parser *parser;
719	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
720
721	for ( ; ret <= 0 && *types; types++) {
722		parser = get_partition_parser(*types);
723		if (!parser && !request_module("%s", *types))
724				parser = get_partition_parser(*types);
725		if (!parser)
726			continue;
727		ret = (*parser->parse_fn)(master, pparts, origin);
728		if (ret > 0) {
729			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
730			       ret, parser->name, master->name);
 
731		}
732		put_partition_parser(parser);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
733	}
734	return ret;
 
735}
736EXPORT_SYMBOL_GPL(parse_mtd_partitions);
737
738int mtd_is_partition(struct mtd_info *mtd)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
739{
740	struct mtd_part *part;
741	int ispart = 0;
 
742
743	mutex_lock(&mtd_partitions_mutex);
744	list_for_each_entry(part, &mtd_partitions, list)
745		if (&part->mtd == mtd) {
746			ispart = 1;
747			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
748		}
749	mutex_unlock(&mtd_partitions_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
750
751	return ispart;
752}
753EXPORT_SYMBOL_GPL(mtd_is_partition);