Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10#include <linux/err.h>
11#include <linux/sizes.h>
12#include <linux/slab.h>
13#include <linux/stat.h>
14#include <linux/pm_runtime.h>
15#include <linux/random.h>
16#include <linux/scatterlist.h>
17#include <linux/sysfs.h>
18
19#include <linux/mmc/host.h>
20#include <linux/mmc/card.h>
21#include <linux/mmc/mmc.h>
22#include <linux/mmc/sd.h>
23
24#include "core.h"
25#include "card.h"
26#include "host.h"
27#include "bus.h"
28#include "mmc_ops.h"
29#include "quirks.h"
30#include "sd.h"
31#include "sd_ops.h"
32
33static const unsigned int tran_exp[] = {
34 10000, 100000, 1000000, 10000000,
35 0, 0, 0, 0
36};
37
38static const unsigned char tran_mant[] = {
39 0, 10, 12, 13, 15, 20, 25, 30,
40 35, 40, 45, 50, 55, 60, 70, 80,
41};
42
43static const unsigned int taac_exp[] = {
44 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
45};
46
47static const unsigned int taac_mant[] = {
48 0, 10, 12, 13, 15, 20, 25, 30,
49 35, 40, 45, 50, 55, 60, 70, 80,
50};
51
52static const unsigned int sd_au_size[] = {
53 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
54 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
55 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
56 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
57};
58
59#define SD_POWEROFF_NOTIFY_TIMEOUT_MS 1000
60#define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
61
62struct sd_busy_data {
63 struct mmc_card *card;
64 u8 *reg_buf;
65};
66
67/*
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
69 */
70void mmc_decode_cid(struct mmc_card *card)
71{
72 u32 *resp = card->raw_cid;
73
74 /*
75 * Add the raw card ID (cid) data to the entropy pool. It doesn't
76 * matter that not all of it is unique, it's just bonus entropy.
77 */
78 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
79
80 /*
81 * SD doesn't currently have a version field so we will
82 * have to assume we can parse this.
83 */
84 card->cid.manfid = unstuff_bits(resp, 120, 8);
85 card->cid.oemid = unstuff_bits(resp, 104, 16);
86 card->cid.prod_name[0] = unstuff_bits(resp, 96, 8);
87 card->cid.prod_name[1] = unstuff_bits(resp, 88, 8);
88 card->cid.prod_name[2] = unstuff_bits(resp, 80, 8);
89 card->cid.prod_name[3] = unstuff_bits(resp, 72, 8);
90 card->cid.prod_name[4] = unstuff_bits(resp, 64, 8);
91 card->cid.hwrev = unstuff_bits(resp, 60, 4);
92 card->cid.fwrev = unstuff_bits(resp, 56, 4);
93 card->cid.serial = unstuff_bits(resp, 24, 32);
94 card->cid.year = unstuff_bits(resp, 12, 8);
95 card->cid.month = unstuff_bits(resp, 8, 4);
96
97 card->cid.year += 2000; /* SD cards year offset */
98}
99
100/*
101 * Given a 128-bit response, decode to our card CSD structure.
102 */
103static int mmc_decode_csd(struct mmc_card *card, bool is_sduc)
104{
105 struct mmc_csd *csd = &card->csd;
106 unsigned int e, m, csd_struct;
107 u32 *resp = card->raw_csd;
108
109 csd_struct = unstuff_bits(resp, 126, 2);
110
111 switch (csd_struct) {
112 case 0:
113 m = unstuff_bits(resp, 115, 4);
114 e = unstuff_bits(resp, 112, 3);
115 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
116 csd->taac_clks = unstuff_bits(resp, 104, 8) * 100;
117
118 m = unstuff_bits(resp, 99, 4);
119 e = unstuff_bits(resp, 96, 3);
120 csd->max_dtr = tran_exp[e] * tran_mant[m];
121 csd->cmdclass = unstuff_bits(resp, 84, 12);
122
123 e = unstuff_bits(resp, 47, 3);
124 m = unstuff_bits(resp, 62, 12);
125 csd->capacity = (1 + m) << (e + 2);
126
127 csd->read_blkbits = unstuff_bits(resp, 80, 4);
128 csd->read_partial = unstuff_bits(resp, 79, 1);
129 csd->write_misalign = unstuff_bits(resp, 78, 1);
130 csd->read_misalign = unstuff_bits(resp, 77, 1);
131 csd->dsr_imp = unstuff_bits(resp, 76, 1);
132 csd->r2w_factor = unstuff_bits(resp, 26, 3);
133 csd->write_blkbits = unstuff_bits(resp, 22, 4);
134 csd->write_partial = unstuff_bits(resp, 21, 1);
135
136 if (unstuff_bits(resp, 46, 1)) {
137 csd->erase_size = 1;
138 } else if (csd->write_blkbits >= 9) {
139 csd->erase_size = unstuff_bits(resp, 39, 7) + 1;
140 csd->erase_size <<= csd->write_blkbits - 9;
141 }
142
143 if (unstuff_bits(resp, 13, 1))
144 mmc_card_set_readonly(card);
145 break;
146 case 1:
147 case 2:
148 /*
149 * This is a block-addressed SDHC, SDXC or SDUC card.
150 * Most interesting fields are unused and have fixed
151 * values. To avoid getting tripped by buggy cards,
152 * we assume those fixed values ourselves.
153 */
154 mmc_card_set_blockaddr(card);
155
156 csd->taac_ns = 0; /* Unused */
157 csd->taac_clks = 0; /* Unused */
158
159 m = unstuff_bits(resp, 99, 4);
160 e = unstuff_bits(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = unstuff_bits(resp, 84, 12);
163
164 if (csd_struct == 1)
165 m = unstuff_bits(resp, 48, 22);
166 else
167 m = unstuff_bits(resp, 48, 28);
168 csd->c_size = m;
169
170 if (csd->c_size >= 0x400000 && is_sduc)
171 mmc_card_set_ult_capacity(card);
172 else if (csd->c_size >= 0xFFFF)
173 mmc_card_set_ext_capacity(card);
174
175 csd->capacity = (1 + (typeof(sector_t))m) << 10;
176
177 csd->read_blkbits = 9;
178 csd->read_partial = 0;
179 csd->write_misalign = 0;
180 csd->read_misalign = 0;
181 csd->r2w_factor = 4; /* Unused */
182 csd->write_blkbits = 9;
183 csd->write_partial = 0;
184 csd->erase_size = 1;
185
186 if (unstuff_bits(resp, 13, 1))
187 mmc_card_set_readonly(card);
188 break;
189 default:
190 pr_err("%s: unrecognised CSD structure version %d\n",
191 mmc_hostname(card->host), csd_struct);
192 return -EINVAL;
193 }
194
195 card->erase_size = csd->erase_size;
196
197 return 0;
198}
199
200/*
201 * Given a 64-bit response, decode to our card SCR structure.
202 */
203int mmc_decode_scr(struct mmc_card *card)
204{
205 struct sd_scr *scr = &card->scr;
206 unsigned int scr_struct;
207 u32 resp[4];
208
209 resp[3] = card->raw_scr[1];
210 resp[2] = card->raw_scr[0];
211
212 scr_struct = unstuff_bits(resp, 60, 4);
213 if (scr_struct != 0) {
214 pr_err("%s: unrecognised SCR structure version %d\n",
215 mmc_hostname(card->host), scr_struct);
216 return -EINVAL;
217 }
218
219 scr->sda_vsn = unstuff_bits(resp, 56, 4);
220 scr->bus_widths = unstuff_bits(resp, 48, 4);
221 if (scr->sda_vsn == SCR_SPEC_VER_2)
222 /* Check if Physical Layer Spec v3.0 is supported */
223 scr->sda_spec3 = unstuff_bits(resp, 47, 1);
224
225 if (scr->sda_spec3) {
226 scr->sda_spec4 = unstuff_bits(resp, 42, 1);
227 scr->sda_specx = unstuff_bits(resp, 38, 4);
228 }
229
230 if (unstuff_bits(resp, 55, 1))
231 card->erased_byte = 0xFF;
232 else
233 card->erased_byte = 0x0;
234
235 if (scr->sda_spec4)
236 scr->cmds = unstuff_bits(resp, 32, 4);
237 else if (scr->sda_spec3)
238 scr->cmds = unstuff_bits(resp, 32, 2);
239
240 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
241 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
242 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
243 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
244 return -EINVAL;
245 }
246
247 return 0;
248}
249
250/*
251 * Fetch and process SD Status register.
252 */
253static int mmc_read_ssr(struct mmc_card *card)
254{
255 unsigned int au, es, et, eo;
256 __be32 *raw_ssr;
257 u32 resp[4] = {};
258 u8 discard_support;
259 int i;
260
261 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
262 pr_warn("%s: card lacks mandatory SD Status function\n",
263 mmc_hostname(card->host));
264 return 0;
265 }
266
267 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
268 if (!raw_ssr)
269 return -ENOMEM;
270
271 if (mmc_app_sd_status(card, raw_ssr)) {
272 pr_warn("%s: problem reading SD Status register\n",
273 mmc_hostname(card->host));
274 kfree(raw_ssr);
275 return 0;
276 }
277
278 for (i = 0; i < 16; i++)
279 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
280
281 kfree(raw_ssr);
282
283 /*
284 * unstuff_bits only works with four u32s so we have to offset the
285 * bitfield positions accordingly.
286 */
287 au = unstuff_bits(card->raw_ssr, 428 - 384, 4);
288 if (au) {
289 if (au <= 9 || card->scr.sda_spec3) {
290 card->ssr.au = sd_au_size[au];
291 es = unstuff_bits(card->raw_ssr, 408 - 384, 16);
292 et = unstuff_bits(card->raw_ssr, 402 - 384, 6);
293 if (es && et) {
294 eo = unstuff_bits(card->raw_ssr, 400 - 384, 2);
295 card->ssr.erase_timeout = (et * 1000) / es;
296 card->ssr.erase_offset = eo * 1000;
297 }
298 } else {
299 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
300 mmc_hostname(card->host));
301 }
302 }
303
304 /*
305 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
306 */
307 resp[3] = card->raw_ssr[6];
308 discard_support = unstuff_bits(resp, 313 - 288, 1);
309 card->erase_arg = (card->scr.sda_specx && discard_support) ?
310 SD_DISCARD_ARG : SD_ERASE_ARG;
311
312 return 0;
313}
314
315/*
316 * Fetches and decodes switch information
317 */
318static int mmc_read_switch(struct mmc_card *card)
319{
320 int err;
321 u8 *status;
322
323 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
324 return 0;
325
326 if (!(card->csd.cmdclass & CCC_SWITCH)) {
327 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
328 mmc_hostname(card->host));
329 return 0;
330 }
331
332 status = kmalloc(64, GFP_KERNEL);
333 if (!status)
334 return -ENOMEM;
335
336 /*
337 * Find out the card's support bits with a mode 0 operation.
338 * The argument does not matter, as the support bits do not
339 * change with the arguments.
340 */
341 err = mmc_sd_switch(card, SD_SWITCH_CHECK, 0, 0, status);
342 if (err) {
343 /*
344 * If the host or the card can't do the switch,
345 * fail more gracefully.
346 */
347 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
348 goto out;
349
350 pr_warn("%s: problem reading Bus Speed modes\n",
351 mmc_hostname(card->host));
352 err = 0;
353
354 goto out;
355 }
356
357 if (status[13] & SD_MODE_HIGH_SPEED)
358 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
359
360 if (card->scr.sda_spec3) {
361 card->sw_caps.sd3_bus_mode = status[13];
362 /* Driver Strengths supported by the card */
363 card->sw_caps.sd3_drv_type = status[9];
364 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
365 }
366
367out:
368 kfree(status);
369
370 return err;
371}
372
373/*
374 * Test if the card supports high-speed mode and, if so, switch to it.
375 */
376int mmc_sd_switch_hs(struct mmc_card *card)
377{
378 int err;
379 u8 *status;
380
381 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
382 return 0;
383
384 if (!(card->csd.cmdclass & CCC_SWITCH))
385 return 0;
386
387 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
388 return 0;
389
390 if (card->sw_caps.hs_max_dtr == 0)
391 return 0;
392
393 status = kmalloc(64, GFP_KERNEL);
394 if (!status)
395 return -ENOMEM;
396
397 err = mmc_sd_switch(card, SD_SWITCH_SET, 0,
398 HIGH_SPEED_BUS_SPEED, status);
399 if (err)
400 goto out;
401
402 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
403 pr_warn("%s: Problem switching card into high-speed mode!\n",
404 mmc_hostname(card->host));
405 err = 0;
406 } else {
407 err = 1;
408 }
409
410out:
411 kfree(status);
412
413 return err;
414}
415
416static int sd_select_driver_type(struct mmc_card *card, u8 *status)
417{
418 int card_drv_type, drive_strength, drv_type;
419 int err;
420
421 card->drive_strength = 0;
422
423 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
424
425 drive_strength = mmc_select_drive_strength(card,
426 card->sw_caps.uhs_max_dtr,
427 card_drv_type, &drv_type);
428
429 if (drive_strength) {
430 err = mmc_sd_switch(card, SD_SWITCH_SET, 2,
431 drive_strength, status);
432 if (err)
433 return err;
434 if ((status[15] & 0xF) != drive_strength) {
435 pr_warn("%s: Problem setting drive strength!\n",
436 mmc_hostname(card->host));
437 return 0;
438 }
439 card->drive_strength = drive_strength;
440 }
441
442 if (drv_type)
443 mmc_set_driver_type(card->host, drv_type);
444
445 return 0;
446}
447
448static void sd_update_bus_speed_mode(struct mmc_card *card)
449{
450 /*
451 * If the host doesn't support any of the UHS-I modes, fallback on
452 * default speed.
453 */
454 if (!mmc_host_uhs(card->host)) {
455 card->sd_bus_speed = 0;
456 return;
457 }
458
459 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
460 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
461 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
462 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
463 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
464 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
466 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
467 SD_MODE_UHS_SDR50)) {
468 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
471 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
472 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
473 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
474 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
475 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
476 SD_MODE_UHS_SDR12)) {
477 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
478 }
479}
480
481static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
482{
483 int err;
484 unsigned int timing = 0;
485
486 switch (card->sd_bus_speed) {
487 case UHS_SDR104_BUS_SPEED:
488 timing = MMC_TIMING_UHS_SDR104;
489 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
490 break;
491 case UHS_DDR50_BUS_SPEED:
492 timing = MMC_TIMING_UHS_DDR50;
493 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
494 break;
495 case UHS_SDR50_BUS_SPEED:
496 timing = MMC_TIMING_UHS_SDR50;
497 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
498 break;
499 case UHS_SDR25_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR25;
501 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
502 break;
503 case UHS_SDR12_BUS_SPEED:
504 timing = MMC_TIMING_UHS_SDR12;
505 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
506 break;
507 default:
508 return 0;
509 }
510
511 err = mmc_sd_switch(card, SD_SWITCH_SET, 0, card->sd_bus_speed, status);
512 if (err)
513 return err;
514
515 if ((status[16] & 0xF) != card->sd_bus_speed)
516 pr_warn("%s: Problem setting bus speed mode!\n",
517 mmc_hostname(card->host));
518 else {
519 mmc_set_timing(card->host, timing);
520 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
521 }
522
523 return 0;
524}
525
526/* Get host's max current setting at its current voltage */
527static u32 sd_get_host_max_current(struct mmc_host *host)
528{
529 u32 voltage, max_current;
530
531 voltage = 1 << host->ios.vdd;
532 switch (voltage) {
533 case MMC_VDD_165_195:
534 max_current = host->max_current_180;
535 break;
536 case MMC_VDD_29_30:
537 case MMC_VDD_30_31:
538 max_current = host->max_current_300;
539 break;
540 case MMC_VDD_32_33:
541 case MMC_VDD_33_34:
542 max_current = host->max_current_330;
543 break;
544 default:
545 max_current = 0;
546 }
547
548 return max_current;
549}
550
551static int sd_set_current_limit(struct mmc_card *card, u8 *status)
552{
553 int current_limit = SD_SET_CURRENT_NO_CHANGE;
554 int err;
555 u32 max_current;
556
557 /*
558 * Current limit switch is only defined for SDR50, SDR104, and DDR50
559 * bus speed modes. For other bus speed modes, we do not change the
560 * current limit.
561 */
562 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
563 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
564 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
565 return 0;
566
567 /*
568 * Host has different current capabilities when operating at
569 * different voltages, so find out its max current first.
570 */
571 max_current = sd_get_host_max_current(card->host);
572
573 /*
574 * We only check host's capability here, if we set a limit that is
575 * higher than the card's maximum current, the card will be using its
576 * maximum current, e.g. if the card's maximum current is 300ma, and
577 * when we set current limit to 200ma, the card will draw 200ma, and
578 * when we set current limit to 400/600/800ma, the card will draw its
579 * maximum 300ma from the host.
580 *
581 * The above is incorrect: if we try to set a current limit that is
582 * not supported by the card, the card can rightfully error out the
583 * attempt, and remain at the default current limit. This results
584 * in a 300mA card being limited to 200mA even though the host
585 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
586 * an iMX6 host. --rmk
587 */
588 if (max_current >= 800 &&
589 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
590 current_limit = SD_SET_CURRENT_LIMIT_800;
591 else if (max_current >= 600 &&
592 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
593 current_limit = SD_SET_CURRENT_LIMIT_600;
594 else if (max_current >= 400 &&
595 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
596 current_limit = SD_SET_CURRENT_LIMIT_400;
597 else if (max_current >= 200 &&
598 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
599 current_limit = SD_SET_CURRENT_LIMIT_200;
600
601 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
602 err = mmc_sd_switch(card, SD_SWITCH_SET, 3,
603 current_limit, status);
604 if (err)
605 return err;
606
607 if (((status[15] >> 4) & 0x0F) != current_limit)
608 pr_warn("%s: Problem setting current limit!\n",
609 mmc_hostname(card->host));
610
611 }
612
613 return 0;
614}
615
616/*
617 * UHS-I specific initialization procedure
618 */
619static int mmc_sd_init_uhs_card(struct mmc_card *card)
620{
621 int err;
622 u8 *status;
623
624 if (!(card->csd.cmdclass & CCC_SWITCH))
625 return 0;
626
627 status = kmalloc(64, GFP_KERNEL);
628 if (!status)
629 return -ENOMEM;
630
631 /* Set 4-bit bus width */
632 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
633 if (err)
634 goto out;
635
636 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
637
638 /*
639 * Select the bus speed mode depending on host
640 * and card capability.
641 */
642 sd_update_bus_speed_mode(card);
643
644 /* Set the driver strength for the card */
645 err = sd_select_driver_type(card, status);
646 if (err)
647 goto out;
648
649 /* Set current limit for the card */
650 err = sd_set_current_limit(card, status);
651 if (err)
652 goto out;
653
654 /* Set bus speed mode of the card */
655 err = sd_set_bus_speed_mode(card, status);
656 if (err)
657 goto out;
658
659 /*
660 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
661 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
662 */
663 if (!mmc_host_is_spi(card->host) &&
664 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
665 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
666 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
667 err = mmc_execute_tuning(card);
668
669 /*
670 * As SD Specifications Part1 Physical Layer Specification
671 * Version 3.01 says, CMD19 tuning is available for unlocked
672 * cards in transfer state of 1.8V signaling mode. The small
673 * difference between v3.00 and 3.01 spec means that CMD19
674 * tuning is also available for DDR50 mode.
675 */
676 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
677 pr_warn("%s: ddr50 tuning failed\n",
678 mmc_hostname(card->host));
679 err = 0;
680 }
681 }
682
683out:
684 kfree(status);
685
686 return err;
687}
688
689MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
690 card->raw_cid[2], card->raw_cid[3]);
691MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
692 card->raw_csd[2], card->raw_csd[3]);
693MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
694MMC_DEV_ATTR(ssr,
695 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
696 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
697 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
698 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
699 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
700 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
701 card->raw_ssr[15]);
702MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
703MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
704MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
705MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
706MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
707MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
708MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
709MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
710MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
711MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
712MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
713
714
715static ssize_t mmc_dsr_show(struct device *dev, struct device_attribute *attr,
716 char *buf)
717{
718 struct mmc_card *card = mmc_dev_to_card(dev);
719 struct mmc_host *host = card->host;
720
721 if (card->csd.dsr_imp && host->dsr_req)
722 return sysfs_emit(buf, "0x%x\n", host->dsr);
723 /* return default DSR value */
724 return sysfs_emit(buf, "0x%x\n", 0x404);
725}
726
727static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
728
729MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
730MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
731MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
732
733#define sdio_info_attr(num) \
734static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
735{ \
736 struct mmc_card *card = mmc_dev_to_card(dev); \
737 \
738 if (num > card->num_info) \
739 return -ENODATA; \
740 if (!card->info[num - 1][0]) \
741 return 0; \
742 return sysfs_emit(buf, "%s\n", card->info[num - 1]); \
743} \
744static DEVICE_ATTR_RO(info##num)
745
746sdio_info_attr(1);
747sdio_info_attr(2);
748sdio_info_attr(3);
749sdio_info_attr(4);
750
751static struct attribute *sd_std_attrs[] = {
752 &dev_attr_vendor.attr,
753 &dev_attr_device.attr,
754 &dev_attr_revision.attr,
755 &dev_attr_info1.attr,
756 &dev_attr_info2.attr,
757 &dev_attr_info3.attr,
758 &dev_attr_info4.attr,
759 &dev_attr_cid.attr,
760 &dev_attr_csd.attr,
761 &dev_attr_scr.attr,
762 &dev_attr_ssr.attr,
763 &dev_attr_date.attr,
764 &dev_attr_erase_size.attr,
765 &dev_attr_preferred_erase_size.attr,
766 &dev_attr_fwrev.attr,
767 &dev_attr_hwrev.attr,
768 &dev_attr_manfid.attr,
769 &dev_attr_name.attr,
770 &dev_attr_oemid.attr,
771 &dev_attr_serial.attr,
772 &dev_attr_ocr.attr,
773 &dev_attr_rca.attr,
774 &dev_attr_dsr.attr,
775 NULL,
776};
777
778static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
779 int index)
780{
781 struct device *dev = kobj_to_dev(kobj);
782 struct mmc_card *card = mmc_dev_to_card(dev);
783
784 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
785 if ((attr == &dev_attr_vendor.attr ||
786 attr == &dev_attr_device.attr ||
787 attr == &dev_attr_revision.attr ||
788 attr == &dev_attr_info1.attr ||
789 attr == &dev_attr_info2.attr ||
790 attr == &dev_attr_info3.attr ||
791 attr == &dev_attr_info4.attr
792 ) &&!mmc_card_sd_combo(card))
793 return 0;
794
795 return attr->mode;
796}
797
798static const struct attribute_group sd_std_group = {
799 .attrs = sd_std_attrs,
800 .is_visible = sd_std_is_visible,
801};
802__ATTRIBUTE_GROUPS(sd_std);
803
804const struct device_type sd_type = {
805 .groups = sd_std_groups,
806};
807
808/*
809 * Fetch CID from card.
810 */
811int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
812{
813 int err;
814 u32 max_current;
815 int retries = 10;
816 u32 pocr = ocr;
817
818try_again:
819 if (!retries) {
820 ocr &= ~SD_OCR_S18R;
821 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
822 }
823
824 /*
825 * Since we're changing the OCR value, we seem to
826 * need to tell some cards to go back to the idle
827 * state. We wait 1ms to give cards time to
828 * respond.
829 */
830 mmc_go_idle(host);
831
832 /*
833 * If SD_SEND_IF_COND indicates an SD 2.0
834 * compliant card and we should set bit 30
835 * of the ocr to indicate that we can handle
836 * block-addressed SDHC cards.
837 */
838 err = mmc_send_if_cond(host, ocr);
839 if (!err) {
840 ocr |= SD_OCR_CCS;
841 /* Set HO2T as well - SDUC card won't respond otherwise */
842 ocr |= SD_OCR_2T;
843 }
844
845 /*
846 * If the host supports one of UHS-I modes, request the card
847 * to switch to 1.8V signaling level. If the card has failed
848 * repeatedly to switch however, skip this.
849 */
850 if (retries && mmc_host_uhs(host))
851 ocr |= SD_OCR_S18R;
852
853 /*
854 * If the host can supply more than 150mA at current voltage,
855 * XPC should be set to 1.
856 */
857 max_current = sd_get_host_max_current(host);
858 if (max_current > 150)
859 ocr |= SD_OCR_XPC;
860
861 err = mmc_send_app_op_cond(host, ocr, rocr);
862 if (err)
863 return err;
864
865 /*
866 * In case the S18A bit is set in the response, let's start the signal
867 * voltage switch procedure. SPI mode doesn't support CMD11.
868 * Note that, according to the spec, the S18A bit is not valid unless
869 * the CCS bit is set as well. We deliberately deviate from the spec in
870 * regards to this, which allows UHS-I to be supported for SDSC cards.
871 */
872 if (!mmc_host_is_spi(host) && (ocr & SD_OCR_S18R) &&
873 rocr && (*rocr & SD_ROCR_S18A)) {
874 err = mmc_set_uhs_voltage(host, pocr);
875 if (err == -EAGAIN) {
876 retries--;
877 goto try_again;
878 } else if (err) {
879 retries = 0;
880 goto try_again;
881 }
882 }
883
884 err = mmc_send_cid(host, cid);
885 return err;
886}
887
888int mmc_sd_get_csd(struct mmc_card *card, bool is_sduc)
889{
890 int err;
891
892 /*
893 * Fetch CSD from card.
894 */
895 err = mmc_send_csd(card, card->raw_csd);
896 if (err)
897 return err;
898
899 err = mmc_decode_csd(card, is_sduc);
900 if (err)
901 return err;
902
903 return 0;
904}
905
906int mmc_sd_get_ro(struct mmc_host *host)
907{
908 int ro;
909
910 /*
911 * Some systems don't feature a write-protect pin and don't need one.
912 * E.g. because they only have micro-SD card slot. For those systems
913 * assume that the SD card is always read-write.
914 */
915 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
916 return 0;
917
918 if (!host->ops->get_ro)
919 return -1;
920
921 ro = host->ops->get_ro(host);
922
923 return ro;
924}
925
926int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
927 bool reinit)
928{
929 int err;
930
931 if (!reinit) {
932 /*
933 * Fetch SCR from card.
934 */
935 err = mmc_app_send_scr(card);
936 if (err)
937 return err;
938
939 err = mmc_decode_scr(card);
940 if (err)
941 return err;
942
943 /*
944 * Fetch and process SD Status register.
945 */
946 err = mmc_read_ssr(card);
947 if (err)
948 return err;
949
950 /* Erase init depends on CSD and SSR */
951 mmc_init_erase(card);
952 }
953
954 /*
955 * Fetch switch information from card. Note, sd3_bus_mode can change if
956 * voltage switch outcome changes, so do this always.
957 */
958 err = mmc_read_switch(card);
959 if (err)
960 return err;
961
962 /*
963 * For SPI, enable CRC as appropriate.
964 * This CRC enable is located AFTER the reading of the
965 * card registers because some SDHC cards are not able
966 * to provide valid CRCs for non-512-byte blocks.
967 */
968 if (mmc_host_is_spi(host)) {
969 err = mmc_spi_set_crc(host, use_spi_crc);
970 if (err)
971 return err;
972 }
973
974 /*
975 * Check if read-only switch is active.
976 */
977 if (!reinit) {
978 int ro = mmc_sd_get_ro(host);
979
980 if (ro < 0) {
981 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
982 mmc_hostname(host));
983 } else if (ro > 0) {
984 mmc_card_set_readonly(card);
985 }
986 }
987
988 return 0;
989}
990
991unsigned mmc_sd_get_max_clock(struct mmc_card *card)
992{
993 unsigned max_dtr = (unsigned int)-1;
994
995 if (mmc_card_hs(card)) {
996 if (max_dtr > card->sw_caps.hs_max_dtr)
997 max_dtr = card->sw_caps.hs_max_dtr;
998 } else if (max_dtr > card->csd.max_dtr) {
999 max_dtr = card->csd.max_dtr;
1000 }
1001
1002 return max_dtr;
1003}
1004
1005static bool mmc_sd_card_using_v18(struct mmc_card *card)
1006{
1007 /*
1008 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1009 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1010 * they can be used to determine if the card has already switched to
1011 * 1.8V signaling.
1012 */
1013 return card->sw_caps.sd3_bus_mode &
1014 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1015}
1016
1017static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1018 u8 reg_data)
1019{
1020 struct mmc_host *host = card->host;
1021 struct mmc_request mrq = {};
1022 struct mmc_command cmd = {};
1023 struct mmc_data data = {};
1024 struct scatterlist sg;
1025 u8 *reg_buf;
1026
1027 reg_buf = kzalloc(512, GFP_KERNEL);
1028 if (!reg_buf)
1029 return -ENOMEM;
1030
1031 mrq.cmd = &cmd;
1032 mrq.data = &data;
1033
1034 /*
1035 * Arguments of CMD49:
1036 * [31:31] MIO (0 = memory).
1037 * [30:27] FNO (function number).
1038 * [26:26] MW - mask write mode (0 = disable).
1039 * [25:18] page number.
1040 * [17:9] offset address.
1041 * [8:0] length (0 = 1 byte).
1042 */
1043 cmd.arg = fno << 27 | page << 18 | offset << 9;
1044
1045 /* The first byte in the buffer is the data to be written. */
1046 reg_buf[0] = reg_data;
1047
1048 data.flags = MMC_DATA_WRITE;
1049 data.blksz = 512;
1050 data.blocks = 1;
1051 data.sg = &sg;
1052 data.sg_len = 1;
1053 sg_init_one(&sg, reg_buf, 512);
1054
1055 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1056 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1057
1058 mmc_set_data_timeout(&data, card);
1059 mmc_wait_for_req(host, &mrq);
1060
1061 kfree(reg_buf);
1062
1063 /*
1064 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1065 * after the CMD49. Although, let's leave this to be managed by the
1066 * caller.
1067 */
1068
1069 if (cmd.error)
1070 return cmd.error;
1071 if (data.error)
1072 return data.error;
1073
1074 return 0;
1075}
1076
1077static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1078 u16 offset, u16 len, u8 *reg_buf)
1079{
1080 u32 cmd_args;
1081
1082 /*
1083 * Command arguments of CMD48:
1084 * [31:31] MIO (0 = memory).
1085 * [30:27] FNO (function number).
1086 * [26:26] reserved (0).
1087 * [25:18] page number.
1088 * [17:9] offset address.
1089 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1090 */
1091 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1092
1093 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1094 cmd_args, reg_buf, 512);
1095}
1096
1097static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1098 u16 offset)
1099{
1100 int err;
1101 u8 *reg_buf;
1102
1103 reg_buf = kzalloc(512, GFP_KERNEL);
1104 if (!reg_buf)
1105 return -ENOMEM;
1106
1107 /* Read the extension register for power management function. */
1108 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1109 if (err) {
1110 pr_warn("%s: error %d reading PM func of ext reg\n",
1111 mmc_hostname(card->host), err);
1112 goto out;
1113 }
1114
1115 /* PM revision consists of 4 bits. */
1116 card->ext_power.rev = reg_buf[0] & 0xf;
1117
1118 /* Power Off Notification support at bit 4. */
1119 if ((reg_buf[1] & BIT(4)) && !mmc_card_broken_sd_poweroff_notify(card))
1120 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1121
1122 /* Power Sustenance support at bit 5. */
1123 if (reg_buf[1] & BIT(5))
1124 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1125
1126 /* Power Down Mode support at bit 6. */
1127 if (reg_buf[1] & BIT(6))
1128 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1129
1130 card->ext_power.fno = fno;
1131 card->ext_power.page = page;
1132 card->ext_power.offset = offset;
1133
1134out:
1135 kfree(reg_buf);
1136 return err;
1137}
1138
1139static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1140 u16 offset)
1141{
1142 int err;
1143 u8 *reg_buf;
1144
1145 reg_buf = kzalloc(512, GFP_KERNEL);
1146 if (!reg_buf)
1147 return -ENOMEM;
1148
1149 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1150 if (err) {
1151 pr_warn("%s: error %d reading PERF func of ext reg\n",
1152 mmc_hostname(card->host), err);
1153 goto out;
1154 }
1155
1156 /* PERF revision. */
1157 card->ext_perf.rev = reg_buf[0];
1158
1159 /* FX_EVENT support at bit 0. */
1160 if (reg_buf[1] & BIT(0))
1161 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1162
1163 /* Card initiated self-maintenance support at bit 0. */
1164 if (reg_buf[2] & BIT(0))
1165 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1166
1167 /* Host initiated self-maintenance support at bit 1. */
1168 if (reg_buf[2] & BIT(1))
1169 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1170
1171 /* Cache support at bit 0. */
1172 if ((reg_buf[4] & BIT(0)) && !mmc_card_broken_sd_cache(card))
1173 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1174
1175 /* Command queue support indicated via queue depth bits (0 to 4). */
1176 if (reg_buf[6] & 0x1f)
1177 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1178
1179 card->ext_perf.fno = fno;
1180 card->ext_perf.page = page;
1181 card->ext_perf.offset = offset;
1182
1183out:
1184 kfree(reg_buf);
1185 return err;
1186}
1187
1188static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1189 u16 *next_ext_addr)
1190{
1191 u8 num_regs, fno, page;
1192 u16 sfc, offset, ext = *next_ext_addr;
1193 u32 reg_addr;
1194
1195 /*
1196 * Parse only one register set per extension, as that is sufficient to
1197 * support the standard functions. This means another 48 bytes in the
1198 * buffer must be available.
1199 */
1200 if (ext + 48 > 512)
1201 return -EFAULT;
1202
1203 /* Standard Function Code */
1204 memcpy(&sfc, &gen_info_buf[ext], 2);
1205
1206 /* Address to the next extension. */
1207 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1208
1209 /* Number of registers for this extension. */
1210 num_regs = gen_info_buf[ext + 42];
1211
1212 /* We support only one register per extension. */
1213 if (num_regs != 1)
1214 return 0;
1215
1216 /* Extension register address. */
1217 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1218
1219 /* 9 bits (0 to 8) contains the offset address. */
1220 offset = reg_addr & 0x1ff;
1221
1222 /* 8 bits (9 to 16) contains the page number. */
1223 page = reg_addr >> 9 & 0xff ;
1224
1225 /* 4 bits (18 to 21) contains the function number. */
1226 fno = reg_addr >> 18 & 0xf;
1227
1228 /* Standard Function Code for power management. */
1229 if (sfc == 0x1)
1230 return sd_parse_ext_reg_power(card, fno, page, offset);
1231
1232 /* Standard Function Code for performance enhancement. */
1233 if (sfc == 0x2)
1234 return sd_parse_ext_reg_perf(card, fno, page, offset);
1235
1236 return 0;
1237}
1238
1239static int sd_read_ext_regs(struct mmc_card *card)
1240{
1241 int err, i;
1242 u8 num_ext, *gen_info_buf;
1243 u16 rev, len, next_ext_addr;
1244
1245 if (mmc_host_is_spi(card->host))
1246 return 0;
1247
1248 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1249 return 0;
1250
1251 gen_info_buf = kzalloc(512, GFP_KERNEL);
1252 if (!gen_info_buf)
1253 return -ENOMEM;
1254
1255 /*
1256 * Read 512 bytes of general info, which is found at function number 0,
1257 * at page 0 and with no offset.
1258 */
1259 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1260 if (err) {
1261 pr_err("%s: error %d reading general info of SD ext reg\n",
1262 mmc_hostname(card->host), err);
1263 goto out;
1264 }
1265
1266 /* General info structure revision. */
1267 memcpy(&rev, &gen_info_buf[0], 2);
1268
1269 /* Length of general info in bytes. */
1270 memcpy(&len, &gen_info_buf[2], 2);
1271
1272 /* Number of extensions to be find. */
1273 num_ext = gen_info_buf[4];
1274
1275 /*
1276 * We only support revision 0 and limit it to 512 bytes for simplicity.
1277 * No matter what, let's return zero to allow us to continue using the
1278 * card, even if we can't support the features from the SD function
1279 * extensions registers.
1280 */
1281 if (rev != 0 || len > 512) {
1282 pr_warn("%s: non-supported SD ext reg layout\n",
1283 mmc_hostname(card->host));
1284 goto out;
1285 }
1286
1287 /*
1288 * Parse the extension registers. The first extension should start
1289 * immediately after the general info header (16 bytes).
1290 */
1291 next_ext_addr = 16;
1292 for (i = 0; i < num_ext; i++) {
1293 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1294 if (err) {
1295 pr_err("%s: error %d parsing SD ext reg\n",
1296 mmc_hostname(card->host), err);
1297 goto out;
1298 }
1299 }
1300
1301out:
1302 kfree(gen_info_buf);
1303 return err;
1304}
1305
1306static bool sd_cache_enabled(struct mmc_host *host)
1307{
1308 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1309}
1310
1311static int sd_flush_cache(struct mmc_host *host)
1312{
1313 struct mmc_card *card = host->card;
1314 u8 *reg_buf, fno, page;
1315 u16 offset;
1316 int err;
1317
1318 if (!sd_cache_enabled(host))
1319 return 0;
1320
1321 reg_buf = kzalloc(512, GFP_KERNEL);
1322 if (!reg_buf)
1323 return -ENOMEM;
1324
1325 /*
1326 * Set Flush Cache at bit 0 in the performance enhancement register at
1327 * 261 bytes offset.
1328 */
1329 fno = card->ext_perf.fno;
1330 page = card->ext_perf.page;
1331 offset = card->ext_perf.offset + 261;
1332
1333 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1334 if (err) {
1335 pr_warn("%s: error %d writing Cache Flush bit\n",
1336 mmc_hostname(host), err);
1337 goto out;
1338 }
1339
1340 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1341 MMC_BUSY_EXTR_SINGLE);
1342 if (err)
1343 goto out;
1344
1345 /*
1346 * Read the Flush Cache bit. The card shall reset it, to confirm that
1347 * it's has completed the flushing of the cache.
1348 */
1349 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1350 if (err) {
1351 pr_warn("%s: error %d reading Cache Flush bit\n",
1352 mmc_hostname(host), err);
1353 goto out;
1354 }
1355
1356 if (reg_buf[0] & BIT(0))
1357 err = -ETIMEDOUT;
1358out:
1359 kfree(reg_buf);
1360 return err;
1361}
1362
1363static int sd_enable_cache(struct mmc_card *card)
1364{
1365 u8 *reg_buf;
1366 int err;
1367
1368 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1369
1370 reg_buf = kzalloc(512, GFP_KERNEL);
1371 if (!reg_buf)
1372 return -ENOMEM;
1373
1374 /*
1375 * Set Cache Enable at bit 0 in the performance enhancement register at
1376 * 260 bytes offset.
1377 */
1378 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1379 card->ext_perf.offset + 260, BIT(0));
1380 if (err) {
1381 pr_warn("%s: error %d writing Cache Enable bit\n",
1382 mmc_hostname(card->host), err);
1383 goto out;
1384 }
1385
1386 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1387 MMC_BUSY_EXTR_SINGLE);
1388 if (!err)
1389 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1390
1391out:
1392 kfree(reg_buf);
1393 return err;
1394}
1395
1396/*
1397 * Handle the detection and initialisation of a card.
1398 *
1399 * In the case of a resume, "oldcard" will contain the card
1400 * we're trying to reinitialise.
1401 */
1402static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1403 struct mmc_card *oldcard)
1404{
1405 struct mmc_card *card;
1406 int err;
1407 u32 cid[4];
1408 u32 rocr = 0;
1409 bool v18_fixup_failed = false;
1410
1411 WARN_ON(!host->claimed);
1412retry:
1413 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1414 if (err)
1415 return err;
1416
1417 if (oldcard) {
1418 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1419 pr_debug("%s: Perhaps the card was replaced\n",
1420 mmc_hostname(host));
1421 return -ENOENT;
1422 }
1423
1424 card = oldcard;
1425 } else {
1426 /*
1427 * Allocate card structure.
1428 */
1429 card = mmc_alloc_card(host, &sd_type);
1430 if (IS_ERR(card))
1431 return PTR_ERR(card);
1432
1433 card->ocr = ocr;
1434 card->type = MMC_TYPE_SD;
1435 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1436 }
1437
1438 /*
1439 * Call the optional HC's init_card function to handle quirks.
1440 */
1441 if (host->ops->init_card)
1442 host->ops->init_card(host, card);
1443
1444 /*
1445 * For native busses: get card RCA and quit open drain mode.
1446 */
1447 if (!mmc_host_is_spi(host)) {
1448 err = mmc_send_relative_addr(host, &card->rca);
1449 if (err)
1450 goto free_card;
1451 }
1452
1453 if (!oldcard) {
1454 u32 sduc_arg = SD_OCR_CCS | SD_OCR_2T;
1455 bool is_sduc = (rocr & sduc_arg) == sduc_arg;
1456
1457 err = mmc_sd_get_csd(card, is_sduc);
1458 if (err)
1459 goto free_card;
1460
1461 mmc_decode_cid(card);
1462 }
1463
1464 /*
1465 * handling only for cards supporting DSR and hosts requesting
1466 * DSR configuration
1467 */
1468 if (card->csd.dsr_imp && host->dsr_req)
1469 mmc_set_dsr(host);
1470
1471 /*
1472 * Select card, as all following commands rely on that.
1473 */
1474 if (!mmc_host_is_spi(host)) {
1475 err = mmc_select_card(card);
1476 if (err)
1477 goto free_card;
1478 }
1479
1480 /* Apply quirks prior to card setup */
1481 mmc_fixup_device(card, mmc_sd_fixups);
1482
1483 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1484 if (err)
1485 goto free_card;
1486
1487 /*
1488 * If the card has not been power cycled, it may still be using 1.8V
1489 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1490 * transfer mode.
1491 */
1492 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1493 mmc_sd_card_using_v18(card) &&
1494 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1495 if (mmc_host_set_uhs_voltage(host) ||
1496 mmc_sd_init_uhs_card(card)) {
1497 v18_fixup_failed = true;
1498 mmc_power_cycle(host, ocr);
1499 if (!oldcard)
1500 mmc_remove_card(card);
1501 goto retry;
1502 }
1503 goto cont;
1504 }
1505
1506 /* Initialization sequence for UHS-I cards */
1507 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1508 err = mmc_sd_init_uhs_card(card);
1509 if (err)
1510 goto free_card;
1511 } else {
1512 /*
1513 * Attempt to change to high-speed (if supported)
1514 */
1515 err = mmc_sd_switch_hs(card);
1516 if (err > 0)
1517 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1518 else if (err)
1519 goto free_card;
1520
1521 /*
1522 * Set bus speed.
1523 */
1524 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1525
1526 if (host->ios.timing == MMC_TIMING_SD_HS &&
1527 host->ops->prepare_sd_hs_tuning) {
1528 err = host->ops->prepare_sd_hs_tuning(host, card);
1529 if (err)
1530 goto free_card;
1531 }
1532
1533 /*
1534 * Switch to wider bus (if supported).
1535 */
1536 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1537 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1538 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1539 if (err)
1540 goto free_card;
1541
1542 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1543 }
1544
1545 if (host->ios.timing == MMC_TIMING_SD_HS &&
1546 host->ops->execute_sd_hs_tuning) {
1547 err = host->ops->execute_sd_hs_tuning(host, card);
1548 if (err)
1549 goto free_card;
1550 }
1551 }
1552cont:
1553 if (!oldcard) {
1554 /* Read/parse the extension registers. */
1555 err = sd_read_ext_regs(card);
1556 if (err)
1557 goto free_card;
1558 }
1559
1560 /* Enable internal SD cache if supported. */
1561 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1562 err = sd_enable_cache(card);
1563 if (err)
1564 goto free_card;
1565 }
1566
1567 if (!mmc_card_ult_capacity(card) && host->cqe_ops && !host->cqe_enabled) {
1568 err = host->cqe_ops->cqe_enable(host, card);
1569 if (!err) {
1570 host->cqe_enabled = true;
1571 host->hsq_enabled = true;
1572 pr_info("%s: Host Software Queue enabled\n",
1573 mmc_hostname(host));
1574 }
1575 }
1576
1577 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1578 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1579 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1580 mmc_hostname(host));
1581 err = -EINVAL;
1582 goto free_card;
1583 }
1584
1585 host->card = card;
1586 return 0;
1587
1588free_card:
1589 if (!oldcard)
1590 mmc_remove_card(card);
1591
1592 return err;
1593}
1594
1595/*
1596 * Host is being removed. Free up the current card.
1597 */
1598static void mmc_sd_remove(struct mmc_host *host)
1599{
1600 mmc_remove_card(host->card);
1601 host->card = NULL;
1602}
1603
1604/*
1605 * Card detection - card is alive.
1606 */
1607static int mmc_sd_alive(struct mmc_host *host)
1608{
1609 return mmc_send_status(host->card, NULL);
1610}
1611
1612/*
1613 * Card detection callback from host.
1614 */
1615static void mmc_sd_detect(struct mmc_host *host)
1616{
1617 int err;
1618
1619 mmc_get_card(host->card, NULL);
1620
1621 /*
1622 * Just check if our card has been removed.
1623 */
1624 err = _mmc_detect_card_removed(host);
1625
1626 mmc_put_card(host->card, NULL);
1627
1628 if (err) {
1629 mmc_sd_remove(host);
1630
1631 mmc_claim_host(host);
1632 mmc_detach_bus(host);
1633 mmc_power_off(host);
1634 mmc_release_host(host);
1635 }
1636}
1637
1638static int sd_can_poweroff_notify(struct mmc_card *card)
1639{
1640 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1641}
1642
1643static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1644{
1645 struct sd_busy_data *data = cb_data;
1646 struct mmc_card *card = data->card;
1647 int err;
1648
1649 /*
1650 * Read the status register for the power management function. It's at
1651 * one byte offset and is one byte long. The Power Off Notification
1652 * Ready is bit 0.
1653 */
1654 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1655 card->ext_power.offset + 1, 1, data->reg_buf);
1656 if (err) {
1657 pr_warn("%s: error %d reading status reg of PM func\n",
1658 mmc_hostname(card->host), err);
1659 return err;
1660 }
1661
1662 *busy = !(data->reg_buf[0] & BIT(0));
1663 return 0;
1664}
1665
1666static int sd_poweroff_notify(struct mmc_card *card)
1667{
1668 struct sd_busy_data cb_data;
1669 u8 *reg_buf;
1670 int err;
1671
1672 reg_buf = kzalloc(512, GFP_KERNEL);
1673 if (!reg_buf)
1674 return -ENOMEM;
1675
1676 /*
1677 * Set the Power Off Notification bit in the power management settings
1678 * register at 2 bytes offset.
1679 */
1680 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1681 card->ext_power.offset + 2, BIT(0));
1682 if (err) {
1683 pr_warn("%s: error %d writing Power Off Notify bit\n",
1684 mmc_hostname(card->host), err);
1685 goto out;
1686 }
1687
1688 /* Find out when the command is completed. */
1689 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1690 MMC_BUSY_EXTR_SINGLE);
1691 if (err)
1692 goto out;
1693
1694 cb_data.card = card;
1695 cb_data.reg_buf = reg_buf;
1696 err = __mmc_poll_for_busy(card->host, 0, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1697 &sd_busy_poweroff_notify_cb, &cb_data);
1698
1699out:
1700 kfree(reg_buf);
1701 return err;
1702}
1703
1704static int _mmc_sd_suspend(struct mmc_host *host)
1705{
1706 struct mmc_card *card = host->card;
1707 int err = 0;
1708
1709 mmc_claim_host(host);
1710
1711 if (mmc_card_suspended(card))
1712 goto out;
1713
1714 if (sd_can_poweroff_notify(card))
1715 err = sd_poweroff_notify(card);
1716 else if (!mmc_host_is_spi(host))
1717 err = mmc_deselect_cards(host);
1718
1719 if (!err) {
1720 mmc_power_off(host);
1721 mmc_card_set_suspended(card);
1722 }
1723
1724out:
1725 mmc_release_host(host);
1726 return err;
1727}
1728
1729/*
1730 * Callback for suspend
1731 */
1732static int mmc_sd_suspend(struct mmc_host *host)
1733{
1734 int err;
1735
1736 err = _mmc_sd_suspend(host);
1737 if (!err) {
1738 pm_runtime_disable(&host->card->dev);
1739 pm_runtime_set_suspended(&host->card->dev);
1740 }
1741
1742 return err;
1743}
1744
1745/*
1746 * This function tries to determine if the same card is still present
1747 * and, if so, restore all state to it.
1748 */
1749static int _mmc_sd_resume(struct mmc_host *host)
1750{
1751 int err = 0;
1752
1753 mmc_claim_host(host);
1754
1755 if (!mmc_card_suspended(host->card))
1756 goto out;
1757
1758 mmc_power_up(host, host->card->ocr);
1759 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1760 mmc_card_clr_suspended(host->card);
1761
1762out:
1763 mmc_release_host(host);
1764 return err;
1765}
1766
1767/*
1768 * Callback for resume
1769 */
1770static int mmc_sd_resume(struct mmc_host *host)
1771{
1772 pm_runtime_enable(&host->card->dev);
1773 return 0;
1774}
1775
1776/*
1777 * Callback for runtime_suspend.
1778 */
1779static int mmc_sd_runtime_suspend(struct mmc_host *host)
1780{
1781 int err;
1782
1783 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1784 return 0;
1785
1786 err = _mmc_sd_suspend(host);
1787 if (err)
1788 pr_err("%s: error %d doing aggressive suspend\n",
1789 mmc_hostname(host), err);
1790
1791 return err;
1792}
1793
1794/*
1795 * Callback for runtime_resume.
1796 */
1797static int mmc_sd_runtime_resume(struct mmc_host *host)
1798{
1799 int err;
1800
1801 err = _mmc_sd_resume(host);
1802 if (err && err != -ENOMEDIUM)
1803 pr_err("%s: error %d doing runtime resume\n",
1804 mmc_hostname(host), err);
1805
1806 return 0;
1807}
1808
1809static int mmc_sd_hw_reset(struct mmc_host *host)
1810{
1811 mmc_power_cycle(host, host->card->ocr);
1812 return mmc_sd_init_card(host, host->card->ocr, host->card);
1813}
1814
1815static const struct mmc_bus_ops mmc_sd_ops = {
1816 .remove = mmc_sd_remove,
1817 .detect = mmc_sd_detect,
1818 .runtime_suspend = mmc_sd_runtime_suspend,
1819 .runtime_resume = mmc_sd_runtime_resume,
1820 .suspend = mmc_sd_suspend,
1821 .resume = mmc_sd_resume,
1822 .alive = mmc_sd_alive,
1823 .shutdown = mmc_sd_suspend,
1824 .hw_reset = mmc_sd_hw_reset,
1825 .cache_enabled = sd_cache_enabled,
1826 .flush_cache = sd_flush_cache,
1827};
1828
1829/*
1830 * Starting point for SD card init.
1831 */
1832int mmc_attach_sd(struct mmc_host *host)
1833{
1834 int err;
1835 u32 ocr, rocr;
1836
1837 WARN_ON(!host->claimed);
1838
1839 err = mmc_send_app_op_cond(host, 0, &ocr);
1840 if (err)
1841 return err;
1842
1843 mmc_attach_bus(host, &mmc_sd_ops);
1844 if (host->ocr_avail_sd)
1845 host->ocr_avail = host->ocr_avail_sd;
1846
1847 /*
1848 * We need to get OCR a different way for SPI.
1849 */
1850 if (mmc_host_is_spi(host)) {
1851 mmc_go_idle(host);
1852
1853 err = mmc_spi_read_ocr(host, 0, &ocr);
1854 if (err)
1855 goto err;
1856 }
1857
1858 /*
1859 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1860 * these bits as being in-valid and especially also bit7.
1861 */
1862 ocr &= ~0x7FFF;
1863
1864 rocr = mmc_select_voltage(host, ocr);
1865
1866 /*
1867 * Can we support the voltage(s) of the card(s)?
1868 */
1869 if (!rocr) {
1870 err = -EINVAL;
1871 goto err;
1872 }
1873
1874 /*
1875 * Detect and init the card.
1876 */
1877 err = mmc_sd_init_card(host, rocr, NULL);
1878 if (err)
1879 goto err;
1880
1881 mmc_release_host(host);
1882 err = mmc_add_card(host->card);
1883 if (err)
1884 goto remove_card;
1885
1886 mmc_claim_host(host);
1887 return 0;
1888
1889remove_card:
1890 mmc_remove_card(host->card);
1891 host->card = NULL;
1892 mmc_claim_host(host);
1893err:
1894 mmc_detach_bus(host);
1895
1896 pr_err("%s: error %d whilst initialising SD card\n",
1897 mmc_hostname(host), err);
1898
1899 return err;
1900}
1/*
2 * linux/drivers/mmc/core/sd.c
3 *
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#include <linux/err.h>
14#include <linux/slab.h>
15
16#include <linux/mmc/host.h>
17#include <linux/mmc/card.h>
18#include <linux/mmc/mmc.h>
19#include <linux/mmc/sd.h>
20
21#include "core.h"
22#include "bus.h"
23#include "mmc_ops.h"
24#include "sd.h"
25#include "sd_ops.h"
26
27static const unsigned int tran_exp[] = {
28 10000, 100000, 1000000, 10000000,
29 0, 0, 0, 0
30};
31
32static const unsigned char tran_mant[] = {
33 0, 10, 12, 13, 15, 20, 25, 30,
34 35, 40, 45, 50, 55, 60, 70, 80,
35};
36
37static const unsigned int tacc_exp[] = {
38 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
39};
40
41static const unsigned int tacc_mant[] = {
42 0, 10, 12, 13, 15, 20, 25, 30,
43 35, 40, 45, 50, 55, 60, 70, 80,
44};
45
46#define UNSTUFF_BITS(resp,start,size) \
47 ({ \
48 const int __size = size; \
49 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
50 const int __off = 3 - ((start) / 32); \
51 const int __shft = (start) & 31; \
52 u32 __res; \
53 \
54 __res = resp[__off] >> __shft; \
55 if (__size + __shft > 32) \
56 __res |= resp[__off-1] << ((32 - __shft) % 32); \
57 __res & __mask; \
58 })
59
60/*
61 * Given the decoded CSD structure, decode the raw CID to our CID structure.
62 */
63void mmc_decode_cid(struct mmc_card *card)
64{
65 u32 *resp = card->raw_cid;
66
67 memset(&card->cid, 0, sizeof(struct mmc_cid));
68
69 /*
70 * SD doesn't currently have a version field so we will
71 * have to assume we can parse this.
72 */
73 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
74 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
75 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
76 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
77 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
78 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
79 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
80 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
81 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
82 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
83 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
84 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
85
86 card->cid.year += 2000; /* SD cards year offset */
87}
88
89/*
90 * Given a 128-bit response, decode to our card CSD structure.
91 */
92static int mmc_decode_csd(struct mmc_card *card)
93{
94 struct mmc_csd *csd = &card->csd;
95 unsigned int e, m, csd_struct;
96 u32 *resp = card->raw_csd;
97
98 csd_struct = UNSTUFF_BITS(resp, 126, 2);
99
100 switch (csd_struct) {
101 case 0:
102 m = UNSTUFF_BITS(resp, 115, 4);
103 e = UNSTUFF_BITS(resp, 112, 3);
104 csd->tacc_ns = (tacc_exp[e] * tacc_mant[m] + 9) / 10;
105 csd->tacc_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
106
107 m = UNSTUFF_BITS(resp, 99, 4);
108 e = UNSTUFF_BITS(resp, 96, 3);
109 csd->max_dtr = tran_exp[e] * tran_mant[m];
110 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
111
112 e = UNSTUFF_BITS(resp, 47, 3);
113 m = UNSTUFF_BITS(resp, 62, 12);
114 csd->capacity = (1 + m) << (e + 2);
115
116 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
117 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
118 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
119 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
120 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
121 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
122 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
123
124 if (UNSTUFF_BITS(resp, 46, 1)) {
125 csd->erase_size = 1;
126 } else if (csd->write_blkbits >= 9) {
127 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
128 csd->erase_size <<= csd->write_blkbits - 9;
129 }
130 break;
131 case 1:
132 /*
133 * This is a block-addressed SDHC or SDXC card. Most
134 * interesting fields are unused and have fixed
135 * values. To avoid getting tripped by buggy cards,
136 * we assume those fixed values ourselves.
137 */
138 mmc_card_set_blockaddr(card);
139
140 csd->tacc_ns = 0; /* Unused */
141 csd->tacc_clks = 0; /* Unused */
142
143 m = UNSTUFF_BITS(resp, 99, 4);
144 e = UNSTUFF_BITS(resp, 96, 3);
145 csd->max_dtr = tran_exp[e] * tran_mant[m];
146 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
147 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
148
149 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
150 if (csd->c_size >= 0xFFFF)
151 mmc_card_set_ext_capacity(card);
152
153 m = UNSTUFF_BITS(resp, 48, 22);
154 csd->capacity = (1 + m) << 10;
155
156 csd->read_blkbits = 9;
157 csd->read_partial = 0;
158 csd->write_misalign = 0;
159 csd->read_misalign = 0;
160 csd->r2w_factor = 4; /* Unused */
161 csd->write_blkbits = 9;
162 csd->write_partial = 0;
163 csd->erase_size = 1;
164 break;
165 default:
166 printk(KERN_ERR "%s: unrecognised CSD structure version %d\n",
167 mmc_hostname(card->host), csd_struct);
168 return -EINVAL;
169 }
170
171 card->erase_size = csd->erase_size;
172
173 return 0;
174}
175
176/*
177 * Given a 64-bit response, decode to our card SCR structure.
178 */
179static int mmc_decode_scr(struct mmc_card *card)
180{
181 struct sd_scr *scr = &card->scr;
182 unsigned int scr_struct;
183 u32 resp[4];
184
185 resp[3] = card->raw_scr[1];
186 resp[2] = card->raw_scr[0];
187
188 scr_struct = UNSTUFF_BITS(resp, 60, 4);
189 if (scr_struct != 0) {
190 printk(KERN_ERR "%s: unrecognised SCR structure version %d\n",
191 mmc_hostname(card->host), scr_struct);
192 return -EINVAL;
193 }
194
195 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
196 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
197 if (scr->sda_vsn == SCR_SPEC_VER_2)
198 /* Check if Physical Layer Spec v3.0 is supported */
199 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
200
201 if (UNSTUFF_BITS(resp, 55, 1))
202 card->erased_byte = 0xFF;
203 else
204 card->erased_byte = 0x0;
205
206 if (scr->sda_spec3)
207 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
208 return 0;
209}
210
211/*
212 * Fetch and process SD Status register.
213 */
214static int mmc_read_ssr(struct mmc_card *card)
215{
216 unsigned int au, es, et, eo;
217 int err, i;
218 u32 *ssr;
219
220 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
221 printk(KERN_WARNING "%s: card lacks mandatory SD Status "
222 "function.\n", mmc_hostname(card->host));
223 return 0;
224 }
225
226 ssr = kmalloc(64, GFP_KERNEL);
227 if (!ssr)
228 return -ENOMEM;
229
230 err = mmc_app_sd_status(card, ssr);
231 if (err) {
232 printk(KERN_WARNING "%s: problem reading SD Status "
233 "register.\n", mmc_hostname(card->host));
234 err = 0;
235 goto out;
236 }
237
238 for (i = 0; i < 16; i++)
239 ssr[i] = be32_to_cpu(ssr[i]);
240
241 /*
242 * UNSTUFF_BITS only works with four u32s so we have to offset the
243 * bitfield positions accordingly.
244 */
245 au = UNSTUFF_BITS(ssr, 428 - 384, 4);
246 if (au > 0 || au <= 9) {
247 card->ssr.au = 1 << (au + 4);
248 es = UNSTUFF_BITS(ssr, 408 - 384, 16);
249 et = UNSTUFF_BITS(ssr, 402 - 384, 6);
250 eo = UNSTUFF_BITS(ssr, 400 - 384, 2);
251 if (es && et) {
252 card->ssr.erase_timeout = (et * 1000) / es;
253 card->ssr.erase_offset = eo * 1000;
254 }
255 } else {
256 printk(KERN_WARNING "%s: SD Status: Invalid Allocation Unit "
257 "size.\n", mmc_hostname(card->host));
258 }
259out:
260 kfree(ssr);
261 return err;
262}
263
264/*
265 * Fetches and decodes switch information
266 */
267static int mmc_read_switch(struct mmc_card *card)
268{
269 int err;
270 u8 *status;
271
272 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
273 return 0;
274
275 if (!(card->csd.cmdclass & CCC_SWITCH)) {
276 printk(KERN_WARNING "%s: card lacks mandatory switch "
277 "function, performance might suffer.\n",
278 mmc_hostname(card->host));
279 return 0;
280 }
281
282 err = -EIO;
283
284 status = kmalloc(64, GFP_KERNEL);
285 if (!status) {
286 printk(KERN_ERR "%s: could not allocate a buffer for "
287 "switch capabilities.\n",
288 mmc_hostname(card->host));
289 return -ENOMEM;
290 }
291
292 /* Find out the supported Bus Speed Modes. */
293 err = mmc_sd_switch(card, 0, 0, 1, status);
294 if (err) {
295 /*
296 * If the host or the card can't do the switch,
297 * fail more gracefully.
298 */
299 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
300 goto out;
301
302 printk(KERN_WARNING "%s: problem reading Bus Speed modes.\n",
303 mmc_hostname(card->host));
304 err = 0;
305
306 goto out;
307 }
308
309 if (card->scr.sda_spec3) {
310 card->sw_caps.sd3_bus_mode = status[13];
311
312 /* Find out Driver Strengths supported by the card */
313 err = mmc_sd_switch(card, 0, 2, 1, status);
314 if (err) {
315 /*
316 * If the host or the card can't do the switch,
317 * fail more gracefully.
318 */
319 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
320 goto out;
321
322 printk(KERN_WARNING "%s: problem reading "
323 "Driver Strength.\n",
324 mmc_hostname(card->host));
325 err = 0;
326
327 goto out;
328 }
329
330 card->sw_caps.sd3_drv_type = status[9];
331
332 /* Find out Current Limits supported by the card */
333 err = mmc_sd_switch(card, 0, 3, 1, status);
334 if (err) {
335 /*
336 * If the host or the card can't do the switch,
337 * fail more gracefully.
338 */
339 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
340 goto out;
341
342 printk(KERN_WARNING "%s: problem reading "
343 "Current Limit.\n",
344 mmc_hostname(card->host));
345 err = 0;
346
347 goto out;
348 }
349
350 card->sw_caps.sd3_curr_limit = status[7];
351 } else {
352 if (status[13] & 0x02)
353 card->sw_caps.hs_max_dtr = 50000000;
354 }
355
356out:
357 kfree(status);
358
359 return err;
360}
361
362/*
363 * Test if the card supports high-speed mode and, if so, switch to it.
364 */
365int mmc_sd_switch_hs(struct mmc_card *card)
366{
367 int err;
368 u8 *status;
369
370 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
371 return 0;
372
373 if (!(card->csd.cmdclass & CCC_SWITCH))
374 return 0;
375
376 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
377 return 0;
378
379 if (card->sw_caps.hs_max_dtr == 0)
380 return 0;
381
382 err = -EIO;
383
384 status = kmalloc(64, GFP_KERNEL);
385 if (!status) {
386 printk(KERN_ERR "%s: could not allocate a buffer for "
387 "switch capabilities.\n", mmc_hostname(card->host));
388 return -ENOMEM;
389 }
390
391 err = mmc_sd_switch(card, 1, 0, 1, status);
392 if (err)
393 goto out;
394
395 if ((status[16] & 0xF) != 1) {
396 printk(KERN_WARNING "%s: Problem switching card "
397 "into high-speed mode!\n",
398 mmc_hostname(card->host));
399 err = 0;
400 } else {
401 err = 1;
402 }
403
404out:
405 kfree(status);
406
407 return err;
408}
409
410static int sd_select_driver_type(struct mmc_card *card, u8 *status)
411{
412 int host_drv_type = SD_DRIVER_TYPE_B;
413 int card_drv_type = SD_DRIVER_TYPE_B;
414 int drive_strength;
415 int err;
416
417 /*
418 * If the host doesn't support any of the Driver Types A,C or D,
419 * or there is no board specific handler then default Driver
420 * Type B is used.
421 */
422 if (!(card->host->caps & (MMC_CAP_DRIVER_TYPE_A | MMC_CAP_DRIVER_TYPE_C
423 | MMC_CAP_DRIVER_TYPE_D)))
424 return 0;
425
426 if (!card->host->ops->select_drive_strength)
427 return 0;
428
429 if (card->host->caps & MMC_CAP_DRIVER_TYPE_A)
430 host_drv_type |= SD_DRIVER_TYPE_A;
431
432 if (card->host->caps & MMC_CAP_DRIVER_TYPE_C)
433 host_drv_type |= SD_DRIVER_TYPE_C;
434
435 if (card->host->caps & MMC_CAP_DRIVER_TYPE_D)
436 host_drv_type |= SD_DRIVER_TYPE_D;
437
438 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_A)
439 card_drv_type |= SD_DRIVER_TYPE_A;
440
441 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_C)
442 card_drv_type |= SD_DRIVER_TYPE_C;
443
444 if (card->sw_caps.sd3_drv_type & SD_DRIVER_TYPE_D)
445 card_drv_type |= SD_DRIVER_TYPE_D;
446
447 /*
448 * The drive strength that the hardware can support
449 * depends on the board design. Pass the appropriate
450 * information and let the hardware specific code
451 * return what is possible given the options
452 */
453 drive_strength = card->host->ops->select_drive_strength(
454 card->sw_caps.uhs_max_dtr,
455 host_drv_type, card_drv_type);
456
457 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
458 if (err)
459 return err;
460
461 if ((status[15] & 0xF) != drive_strength) {
462 printk(KERN_WARNING "%s: Problem setting drive strength!\n",
463 mmc_hostname(card->host));
464 return 0;
465 }
466
467 mmc_set_driver_type(card->host, drive_strength);
468
469 return 0;
470}
471
472static void sd_update_bus_speed_mode(struct mmc_card *card)
473{
474 /*
475 * If the host doesn't support any of the UHS-I modes, fallback on
476 * default speed.
477 */
478 if (!(card->host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
479 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))) {
480 card->sd_bus_speed = 0;
481 return;
482 }
483
484 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
485 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
486 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
487 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
488 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
489 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
490 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
491 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
492 SD_MODE_UHS_SDR50)) {
493 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
494 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
495 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
496 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
497 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
498 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
499 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
500 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
501 SD_MODE_UHS_SDR12)) {
502 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
503 }
504}
505
506static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
507{
508 int err;
509 unsigned int timing = 0;
510
511 switch (card->sd_bus_speed) {
512 case UHS_SDR104_BUS_SPEED:
513 timing = MMC_TIMING_UHS_SDR104;
514 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
515 break;
516 case UHS_DDR50_BUS_SPEED:
517 timing = MMC_TIMING_UHS_DDR50;
518 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
519 break;
520 case UHS_SDR50_BUS_SPEED:
521 timing = MMC_TIMING_UHS_SDR50;
522 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
523 break;
524 case UHS_SDR25_BUS_SPEED:
525 timing = MMC_TIMING_UHS_SDR25;
526 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
527 break;
528 case UHS_SDR12_BUS_SPEED:
529 timing = MMC_TIMING_UHS_SDR12;
530 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
531 break;
532 default:
533 return 0;
534 }
535
536 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
537 if (err)
538 return err;
539
540 if ((status[16] & 0xF) != card->sd_bus_speed)
541 printk(KERN_WARNING "%s: Problem setting bus speed mode!\n",
542 mmc_hostname(card->host));
543 else {
544 mmc_set_timing(card->host, timing);
545 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
546 }
547
548 return 0;
549}
550
551static int sd_set_current_limit(struct mmc_card *card, u8 *status)
552{
553 int current_limit = 0;
554 int err;
555
556 /*
557 * Current limit switch is only defined for SDR50, SDR104, and DDR50
558 * bus speed modes. For other bus speed modes, we set the default
559 * current limit of 200mA.
560 */
561 if ((card->sd_bus_speed == UHS_SDR50_BUS_SPEED) ||
562 (card->sd_bus_speed == UHS_SDR104_BUS_SPEED) ||
563 (card->sd_bus_speed == UHS_DDR50_BUS_SPEED)) {
564 if (card->host->caps & MMC_CAP_MAX_CURRENT_800) {
565 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
566 current_limit = SD_SET_CURRENT_LIMIT_800;
567 else if (card->sw_caps.sd3_curr_limit &
568 SD_MAX_CURRENT_600)
569 current_limit = SD_SET_CURRENT_LIMIT_600;
570 else if (card->sw_caps.sd3_curr_limit &
571 SD_MAX_CURRENT_400)
572 current_limit = SD_SET_CURRENT_LIMIT_400;
573 else if (card->sw_caps.sd3_curr_limit &
574 SD_MAX_CURRENT_200)
575 current_limit = SD_SET_CURRENT_LIMIT_200;
576 } else if (card->host->caps & MMC_CAP_MAX_CURRENT_600) {
577 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
578 current_limit = SD_SET_CURRENT_LIMIT_600;
579 else if (card->sw_caps.sd3_curr_limit &
580 SD_MAX_CURRENT_400)
581 current_limit = SD_SET_CURRENT_LIMIT_400;
582 else if (card->sw_caps.sd3_curr_limit &
583 SD_MAX_CURRENT_200)
584 current_limit = SD_SET_CURRENT_LIMIT_200;
585 } else if (card->host->caps & MMC_CAP_MAX_CURRENT_400) {
586 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
587 current_limit = SD_SET_CURRENT_LIMIT_400;
588 else if (card->sw_caps.sd3_curr_limit &
589 SD_MAX_CURRENT_200)
590 current_limit = SD_SET_CURRENT_LIMIT_200;
591 } else if (card->host->caps & MMC_CAP_MAX_CURRENT_200) {
592 if (card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
593 current_limit = SD_SET_CURRENT_LIMIT_200;
594 }
595 } else
596 current_limit = SD_SET_CURRENT_LIMIT_200;
597
598 err = mmc_sd_switch(card, 1, 3, current_limit, status);
599 if (err)
600 return err;
601
602 if (((status[15] >> 4) & 0x0F) != current_limit)
603 printk(KERN_WARNING "%s: Problem setting current limit!\n",
604 mmc_hostname(card->host));
605
606 return 0;
607}
608
609/*
610 * UHS-I specific initialization procedure
611 */
612static int mmc_sd_init_uhs_card(struct mmc_card *card)
613{
614 int err;
615 u8 *status;
616
617 if (!card->scr.sda_spec3)
618 return 0;
619
620 if (!(card->csd.cmdclass & CCC_SWITCH))
621 return 0;
622
623 status = kmalloc(64, GFP_KERNEL);
624 if (!status) {
625 printk(KERN_ERR "%s: could not allocate a buffer for "
626 "switch capabilities.\n", mmc_hostname(card->host));
627 return -ENOMEM;
628 }
629
630 /* Set 4-bit bus width */
631 if ((card->host->caps & MMC_CAP_4_BIT_DATA) &&
632 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
633 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
634 if (err)
635 goto out;
636
637 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
638 }
639
640 /*
641 * Select the bus speed mode depending on host
642 * and card capability.
643 */
644 sd_update_bus_speed_mode(card);
645
646 /* Set the driver strength for the card */
647 err = sd_select_driver_type(card, status);
648 if (err)
649 goto out;
650
651 /* Set current limit for the card */
652 err = sd_set_current_limit(card, status);
653 if (err)
654 goto out;
655
656 /* Set bus speed mode of the card */
657 err = sd_set_bus_speed_mode(card, status);
658 if (err)
659 goto out;
660
661 /* SPI mode doesn't define CMD19 */
662 if (!mmc_host_is_spi(card->host) && card->host->ops->execute_tuning)
663 err = card->host->ops->execute_tuning(card->host);
664
665out:
666 kfree(status);
667
668 return err;
669}
670
671MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
672 card->raw_cid[2], card->raw_cid[3]);
673MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
674 card->raw_csd[2], card->raw_csd[3]);
675MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
676MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
677MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
678MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
679MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
680MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
681MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
682MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
683MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
684MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
685
686
687static struct attribute *sd_std_attrs[] = {
688 &dev_attr_cid.attr,
689 &dev_attr_csd.attr,
690 &dev_attr_scr.attr,
691 &dev_attr_date.attr,
692 &dev_attr_erase_size.attr,
693 &dev_attr_preferred_erase_size.attr,
694 &dev_attr_fwrev.attr,
695 &dev_attr_hwrev.attr,
696 &dev_attr_manfid.attr,
697 &dev_attr_name.attr,
698 &dev_attr_oemid.attr,
699 &dev_attr_serial.attr,
700 NULL,
701};
702
703static struct attribute_group sd_std_attr_group = {
704 .attrs = sd_std_attrs,
705};
706
707static const struct attribute_group *sd_attr_groups[] = {
708 &sd_std_attr_group,
709 NULL,
710};
711
712struct device_type sd_type = {
713 .groups = sd_attr_groups,
714};
715
716/*
717 * Fetch CID from card.
718 */
719int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
720{
721 int err;
722
723 /*
724 * Since we're changing the OCR value, we seem to
725 * need to tell some cards to go back to the idle
726 * state. We wait 1ms to give cards time to
727 * respond.
728 */
729 mmc_go_idle(host);
730
731 /*
732 * If SD_SEND_IF_COND indicates an SD 2.0
733 * compliant card and we should set bit 30
734 * of the ocr to indicate that we can handle
735 * block-addressed SDHC cards.
736 */
737 err = mmc_send_if_cond(host, ocr);
738 if (!err)
739 ocr |= SD_OCR_CCS;
740
741 /*
742 * If the host supports one of UHS-I modes, request the card
743 * to switch to 1.8V signaling level.
744 */
745 if (host->caps & (MMC_CAP_UHS_SDR12 | MMC_CAP_UHS_SDR25 |
746 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR104 | MMC_CAP_UHS_DDR50))
747 ocr |= SD_OCR_S18R;
748
749 /* If the host can supply more than 150mA, XPC should be set to 1. */
750 if (host->caps & (MMC_CAP_SET_XPC_330 | MMC_CAP_SET_XPC_300 |
751 MMC_CAP_SET_XPC_180))
752 ocr |= SD_OCR_XPC;
753
754try_again:
755 err = mmc_send_app_op_cond(host, ocr, rocr);
756 if (err)
757 return err;
758
759 /*
760 * In case CCS and S18A in the response is set, start Signal Voltage
761 * Switch procedure. SPI mode doesn't support CMD11.
762 */
763 if (!mmc_host_is_spi(host) && rocr &&
764 ((*rocr & 0x41000000) == 0x41000000)) {
765 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180, true);
766 if (err) {
767 ocr &= ~SD_OCR_S18R;
768 goto try_again;
769 }
770 }
771
772 if (mmc_host_is_spi(host))
773 err = mmc_send_cid(host, cid);
774 else
775 err = mmc_all_send_cid(host, cid);
776
777 return err;
778}
779
780int mmc_sd_get_csd(struct mmc_host *host, struct mmc_card *card)
781{
782 int err;
783
784 /*
785 * Fetch CSD from card.
786 */
787 err = mmc_send_csd(card, card->raw_csd);
788 if (err)
789 return err;
790
791 err = mmc_decode_csd(card);
792 if (err)
793 return err;
794
795 return 0;
796}
797
798int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
799 bool reinit)
800{
801 int err;
802
803 if (!reinit) {
804 /*
805 * Fetch SCR from card.
806 */
807 err = mmc_app_send_scr(card, card->raw_scr);
808 if (err)
809 return err;
810
811 err = mmc_decode_scr(card);
812 if (err)
813 return err;
814
815 /*
816 * Fetch and process SD Status register.
817 */
818 err = mmc_read_ssr(card);
819 if (err)
820 return err;
821
822 /* Erase init depends on CSD and SSR */
823 mmc_init_erase(card);
824
825 /*
826 * Fetch switch information from card.
827 */
828 err = mmc_read_switch(card);
829 if (err)
830 return err;
831 }
832
833 /*
834 * For SPI, enable CRC as appropriate.
835 * This CRC enable is located AFTER the reading of the
836 * card registers because some SDHC cards are not able
837 * to provide valid CRCs for non-512-byte blocks.
838 */
839 if (mmc_host_is_spi(host)) {
840 err = mmc_spi_set_crc(host, use_spi_crc);
841 if (err)
842 return err;
843 }
844
845 /*
846 * Check if read-only switch is active.
847 */
848 if (!reinit) {
849 int ro = -1;
850
851 if (host->ops->get_ro)
852 ro = host->ops->get_ro(host);
853
854 if (ro < 0) {
855 printk(KERN_WARNING "%s: host does not "
856 "support reading read-only "
857 "switch. assuming write-enable.\n",
858 mmc_hostname(host));
859 } else if (ro > 0) {
860 mmc_card_set_readonly(card);
861 }
862 }
863
864 return 0;
865}
866
867unsigned mmc_sd_get_max_clock(struct mmc_card *card)
868{
869 unsigned max_dtr = (unsigned int)-1;
870
871 if (mmc_card_highspeed(card)) {
872 if (max_dtr > card->sw_caps.hs_max_dtr)
873 max_dtr = card->sw_caps.hs_max_dtr;
874 } else if (max_dtr > card->csd.max_dtr) {
875 max_dtr = card->csd.max_dtr;
876 }
877
878 return max_dtr;
879}
880
881void mmc_sd_go_highspeed(struct mmc_card *card)
882{
883 mmc_card_set_highspeed(card);
884 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
885}
886
887/*
888 * Handle the detection and initialisation of a card.
889 *
890 * In the case of a resume, "oldcard" will contain the card
891 * we're trying to reinitialise.
892 */
893static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
894 struct mmc_card *oldcard)
895{
896 struct mmc_card *card;
897 int err;
898 u32 cid[4];
899 u32 rocr = 0;
900
901 BUG_ON(!host);
902 WARN_ON(!host->claimed);
903
904 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
905 if (err)
906 return err;
907
908 if (oldcard) {
909 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0)
910 return -ENOENT;
911
912 card = oldcard;
913 } else {
914 /*
915 * Allocate card structure.
916 */
917 card = mmc_alloc_card(host, &sd_type);
918 if (IS_ERR(card))
919 return PTR_ERR(card);
920
921 card->type = MMC_TYPE_SD;
922 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
923 }
924
925 /*
926 * For native busses: get card RCA and quit open drain mode.
927 */
928 if (!mmc_host_is_spi(host)) {
929 err = mmc_send_relative_addr(host, &card->rca);
930 if (err)
931 return err;
932
933 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
934 }
935
936 if (!oldcard) {
937 err = mmc_sd_get_csd(host, card);
938 if (err)
939 return err;
940
941 mmc_decode_cid(card);
942 }
943
944 /*
945 * Select card, as all following commands rely on that.
946 */
947 if (!mmc_host_is_spi(host)) {
948 err = mmc_select_card(card);
949 if (err)
950 return err;
951 }
952
953 err = mmc_sd_setup_card(host, card, oldcard != NULL);
954 if (err)
955 goto free_card;
956
957 /* Initialization sequence for UHS-I cards */
958 if (rocr & SD_ROCR_S18A) {
959 err = mmc_sd_init_uhs_card(card);
960 if (err)
961 goto free_card;
962
963 /* Card is an ultra-high-speed card */
964 mmc_sd_card_set_uhs(card);
965
966 /*
967 * Since initialization is now complete, enable preset
968 * value registers for UHS-I cards.
969 */
970 if (host->ops->enable_preset_value)
971 host->ops->enable_preset_value(host, true);
972 } else {
973 /*
974 * Attempt to change to high-speed (if supported)
975 */
976 err = mmc_sd_switch_hs(card);
977 if (err > 0)
978 mmc_sd_go_highspeed(card);
979 else if (err)
980 goto free_card;
981
982 /*
983 * Set bus speed.
984 */
985 mmc_set_clock(host, mmc_sd_get_max_clock(card));
986
987 /*
988 * Switch to wider bus (if supported).
989 */
990 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
991 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
992 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
993 if (err)
994 goto free_card;
995
996 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
997 }
998 }
999
1000 host->card = card;
1001 return 0;
1002
1003free_card:
1004 if (!oldcard)
1005 mmc_remove_card(card);
1006
1007 return err;
1008}
1009
1010/*
1011 * Host is being removed. Free up the current card.
1012 */
1013static void mmc_sd_remove(struct mmc_host *host)
1014{
1015 BUG_ON(!host);
1016 BUG_ON(!host->card);
1017
1018 mmc_remove_card(host->card);
1019 host->card = NULL;
1020}
1021
1022/*
1023 * Card detection callback from host.
1024 */
1025static void mmc_sd_detect(struct mmc_host *host)
1026{
1027 int err;
1028
1029 BUG_ON(!host);
1030 BUG_ON(!host->card);
1031
1032 mmc_claim_host(host);
1033
1034 /*
1035 * Just check if our card has been removed.
1036 */
1037 err = mmc_send_status(host->card, NULL);
1038
1039 mmc_release_host(host);
1040
1041 if (err) {
1042 mmc_sd_remove(host);
1043
1044 mmc_claim_host(host);
1045 mmc_detach_bus(host);
1046 mmc_release_host(host);
1047 }
1048}
1049
1050/*
1051 * Suspend callback from host.
1052 */
1053static int mmc_sd_suspend(struct mmc_host *host)
1054{
1055 BUG_ON(!host);
1056 BUG_ON(!host->card);
1057
1058 mmc_claim_host(host);
1059 if (!mmc_host_is_spi(host))
1060 mmc_deselect_cards(host);
1061 host->card->state &= ~MMC_STATE_HIGHSPEED;
1062 mmc_release_host(host);
1063
1064 return 0;
1065}
1066
1067/*
1068 * Resume callback from host.
1069 *
1070 * This function tries to determine if the same card is still present
1071 * and, if so, restore all state to it.
1072 */
1073static int mmc_sd_resume(struct mmc_host *host)
1074{
1075 int err;
1076
1077 BUG_ON(!host);
1078 BUG_ON(!host->card);
1079
1080 mmc_claim_host(host);
1081 err = mmc_sd_init_card(host, host->ocr, host->card);
1082 mmc_release_host(host);
1083
1084 return err;
1085}
1086
1087static int mmc_sd_power_restore(struct mmc_host *host)
1088{
1089 int ret;
1090
1091 host->card->state &= ~MMC_STATE_HIGHSPEED;
1092 mmc_claim_host(host);
1093 ret = mmc_sd_init_card(host, host->ocr, host->card);
1094 mmc_release_host(host);
1095
1096 return ret;
1097}
1098
1099static const struct mmc_bus_ops mmc_sd_ops = {
1100 .remove = mmc_sd_remove,
1101 .detect = mmc_sd_detect,
1102 .suspend = NULL,
1103 .resume = NULL,
1104 .power_restore = mmc_sd_power_restore,
1105};
1106
1107static const struct mmc_bus_ops mmc_sd_ops_unsafe = {
1108 .remove = mmc_sd_remove,
1109 .detect = mmc_sd_detect,
1110 .suspend = mmc_sd_suspend,
1111 .resume = mmc_sd_resume,
1112 .power_restore = mmc_sd_power_restore,
1113};
1114
1115static void mmc_sd_attach_bus_ops(struct mmc_host *host)
1116{
1117 const struct mmc_bus_ops *bus_ops;
1118
1119 if (!mmc_card_is_removable(host))
1120 bus_ops = &mmc_sd_ops_unsafe;
1121 else
1122 bus_ops = &mmc_sd_ops;
1123 mmc_attach_bus(host, bus_ops);
1124}
1125
1126/*
1127 * Starting point for SD card init.
1128 */
1129int mmc_attach_sd(struct mmc_host *host)
1130{
1131 int err;
1132 u32 ocr;
1133
1134 BUG_ON(!host);
1135 WARN_ON(!host->claimed);
1136
1137 /* Make sure we are at 3.3V signalling voltage */
1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330, false);
1139 if (err)
1140 return err;
1141
1142 /* Disable preset value enable if already set since last time */
1143 if (host->ops->enable_preset_value)
1144 host->ops->enable_preset_value(host, false);
1145
1146 err = mmc_send_app_op_cond(host, 0, &ocr);
1147 if (err)
1148 return err;
1149
1150 mmc_sd_attach_bus_ops(host);
1151 if (host->ocr_avail_sd)
1152 host->ocr_avail = host->ocr_avail_sd;
1153
1154 /*
1155 * We need to get OCR a different way for SPI.
1156 */
1157 if (mmc_host_is_spi(host)) {
1158 mmc_go_idle(host);
1159
1160 err = mmc_spi_read_ocr(host, 0, &ocr);
1161 if (err)
1162 goto err;
1163 }
1164
1165 /*
1166 * Sanity check the voltages that the card claims to
1167 * support.
1168 */
1169 if (ocr & 0x7F) {
1170 printk(KERN_WARNING "%s: card claims to support voltages "
1171 "below the defined range. These will be ignored.\n",
1172 mmc_hostname(host));
1173 ocr &= ~0x7F;
1174 }
1175
1176 if ((ocr & MMC_VDD_165_195) &&
1177 !(host->ocr_avail_sd & MMC_VDD_165_195)) {
1178 printk(KERN_WARNING "%s: SD card claims to support the "
1179 "incompletely defined 'low voltage range'. This "
1180 "will be ignored.\n", mmc_hostname(host));
1181 ocr &= ~MMC_VDD_165_195;
1182 }
1183
1184 host->ocr = mmc_select_voltage(host, ocr);
1185
1186 /*
1187 * Can we support the voltage(s) of the card(s)?
1188 */
1189 if (!host->ocr) {
1190 err = -EINVAL;
1191 goto err;
1192 }
1193
1194 /*
1195 * Detect and init the card.
1196 */
1197 err = mmc_sd_init_card(host, host->ocr, NULL);
1198 if (err)
1199 goto err;
1200
1201 mmc_release_host(host);
1202 err = mmc_add_card(host->card);
1203 mmc_claim_host(host);
1204 if (err)
1205 goto remove_card;
1206
1207 return 0;
1208
1209remove_card:
1210 mmc_release_host(host);
1211 mmc_remove_card(host->card);
1212 host->card = NULL;
1213 mmc_claim_host(host);
1214err:
1215 mmc_detach_bus(host);
1216
1217 printk(KERN_ERR "%s: error %d whilst initialising SD card\n",
1218 mmc_hostname(host), err);
1219
1220 return err;
1221}
1222