Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * EMIF driver
   4 *
   5 * Copyright (C) 2012 Texas Instruments, Inc.
   6 *
   7 * Aneesh V <aneesh@ti.com>
   8 * Santosh Shilimkar <santosh.shilimkar@ti.com>
   9 */
  10#include <linux/cleanup.h>
  11#include <linux/err.h>
  12#include <linux/kernel.h>
  13#include <linux/reboot.h>
  14#include <linux/platform_data/emif_plat.h>
  15#include <linux/io.h>
  16#include <linux/device.h>
  17#include <linux/platform_device.h>
  18#include <linux/interrupt.h>
  19#include <linux/slab.h>
  20#include <linux/of.h>
  21#include <linux/debugfs.h>
  22#include <linux/seq_file.h>
  23#include <linux/module.h>
  24#include <linux/list.h>
  25#include <linux/spinlock.h>
  26#include <linux/pm.h>
  27
  28#include "emif.h"
  29#include "jedec_ddr.h"
  30#include "of_memory.h"
  31
  32/**
  33 * struct emif_data - Per device static data for driver's use
  34 * @duplicate:			Whether the DDR devices attached to this EMIF
  35 *				instance are exactly same as that on EMIF1. In
  36 *				this case we can save some memory and processing
  37 * @temperature_level:		Maximum temperature of LPDDR2 devices attached
  38 *				to this EMIF - read from MR4 register. If there
  39 *				are two devices attached to this EMIF, this
  40 *				value is the maximum of the two temperature
  41 *				levels.
  42 * @node:			node in the device list
  43 * @base:			base address of memory-mapped IO registers.
  44 * @dev:			device pointer.
  45 * @regs_cache:			An array of 'struct emif_regs' that stores
  46 *				calculated register values for different
  47 *				frequencies, to avoid re-calculating them on
  48 *				each DVFS transition.
  49 * @curr_regs:			The set of register values used in the last
  50 *				frequency change (i.e. corresponding to the
  51 *				frequency in effect at the moment)
  52 * @plat_data:			Pointer to saved platform data.
  53 * @debugfs_root:		dentry to the root folder for EMIF in debugfs
  54 * @np_ddr:			Pointer to ddr device tree node
  55 */
  56struct emif_data {
  57	u8				duplicate;
  58	u8				temperature_level;
  59	u8				lpmode;
  60	struct list_head		node;
  61	void __iomem			*base;
  62	struct device			*dev;
  63	struct emif_regs		*regs_cache[EMIF_MAX_NUM_FREQUENCIES];
  64	struct emif_regs		*curr_regs;
  65	struct emif_platform_data	*plat_data;
  66	struct dentry			*debugfs_root;
  67	struct device_node		*np_ddr;
  68};
  69
  70static struct emif_data *emif1;
  71static DEFINE_SPINLOCK(emif_lock);
  72static LIST_HEAD(device_list);
  73
  74static void do_emif_regdump_show(struct seq_file *s, struct emif_data *emif,
  75	struct emif_regs *regs)
  76{
  77	u32 type = emif->plat_data->device_info->type;
  78	u32 ip_rev = emif->plat_data->ip_rev;
  79
  80	seq_printf(s, "EMIF register cache dump for %dMHz\n",
  81		regs->freq/1000000);
  82
  83	seq_printf(s, "ref_ctrl_shdw\t: 0x%08x\n", regs->ref_ctrl_shdw);
  84	seq_printf(s, "sdram_tim1_shdw\t: 0x%08x\n", regs->sdram_tim1_shdw);
  85	seq_printf(s, "sdram_tim2_shdw\t: 0x%08x\n", regs->sdram_tim2_shdw);
  86	seq_printf(s, "sdram_tim3_shdw\t: 0x%08x\n", regs->sdram_tim3_shdw);
  87
  88	if (ip_rev == EMIF_4D) {
  89		seq_printf(s, "read_idle_ctrl_shdw_normal\t: 0x%08x\n",
  90			regs->read_idle_ctrl_shdw_normal);
  91		seq_printf(s, "read_idle_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  92			regs->read_idle_ctrl_shdw_volt_ramp);
  93	} else if (ip_rev == EMIF_4D5) {
  94		seq_printf(s, "dll_calib_ctrl_shdw_normal\t: 0x%08x\n",
  95			regs->dll_calib_ctrl_shdw_normal);
  96		seq_printf(s, "dll_calib_ctrl_shdw_volt_ramp\t: 0x%08x\n",
  97			regs->dll_calib_ctrl_shdw_volt_ramp);
  98	}
  99
 100	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
 101		seq_printf(s, "ref_ctrl_shdw_derated\t: 0x%08x\n",
 102			regs->ref_ctrl_shdw_derated);
 103		seq_printf(s, "sdram_tim1_shdw_derated\t: 0x%08x\n",
 104			regs->sdram_tim1_shdw_derated);
 105		seq_printf(s, "sdram_tim3_shdw_derated\t: 0x%08x\n",
 106			regs->sdram_tim3_shdw_derated);
 107	}
 108}
 109
 110static int emif_regdump_show(struct seq_file *s, void *unused)
 111{
 112	struct emif_data	*emif	= s->private;
 113	struct emif_regs	**regs_cache;
 114	int			i;
 115
 116	if (emif->duplicate)
 117		regs_cache = emif1->regs_cache;
 118	else
 119		regs_cache = emif->regs_cache;
 120
 121	for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
 122		do_emif_regdump_show(s, emif, regs_cache[i]);
 123		seq_putc(s, '\n');
 124	}
 125
 126	return 0;
 127}
 128
 129DEFINE_SHOW_ATTRIBUTE(emif_regdump);
 130
 131static int emif_mr4_show(struct seq_file *s, void *unused)
 132{
 133	struct emif_data *emif = s->private;
 134
 135	seq_printf(s, "MR4=%d\n", emif->temperature_level);
 136	return 0;
 137}
 138
 139DEFINE_SHOW_ATTRIBUTE(emif_mr4);
 140
 141static void emif_debugfs_init(struct emif_data *emif)
 142{
 143	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
 144		emif->debugfs_root = debugfs_create_dir(dev_name(emif->dev), NULL);
 145		debugfs_create_file("regcache_dump", S_IRUGO, emif->debugfs_root, emif,
 146				    &emif_regdump_fops);
 147		debugfs_create_file("mr4", S_IRUGO, emif->debugfs_root, emif,
 148				    &emif_mr4_fops);
 149	}
 150}
 151
 152static void emif_debugfs_exit(struct emif_data *emif)
 153{
 154	if (IS_ENABLED(CONFIG_DEBUG_FS)) {
 155		debugfs_remove_recursive(emif->debugfs_root);
 156		emif->debugfs_root = NULL;
 157	}
 158}
 159
 160/*
 161 * Get bus width used by EMIF. Note that this may be different from the
 162 * bus width of the DDR devices used. For instance two 16-bit DDR devices
 163 * may be connected to a given CS of EMIF. In this case bus width as far
 164 * as EMIF is concerned is 32, where as the DDR bus width is 16 bits.
 165 */
 166static u32 get_emif_bus_width(struct emif_data *emif)
 167{
 168	u32		width;
 169	void __iomem	*base = emif->base;
 170
 171	width = (readl(base + EMIF_SDRAM_CONFIG) & NARROW_MODE_MASK)
 172			>> NARROW_MODE_SHIFT;
 173	width = width == 0 ? 32 : 16;
 174
 175	return width;
 176}
 177
 178static void set_lpmode(struct emif_data *emif, u8 lpmode)
 179{
 180	u32 temp;
 181	void __iomem *base = emif->base;
 182
 183	/*
 184	 * Workaround for errata i743 - LPDDR2 Power-Down State is Not
 185	 * Efficient
 186	 *
 187	 * i743 DESCRIPTION:
 188	 * The EMIF supports power-down state for low power. The EMIF
 189	 * automatically puts the SDRAM into power-down after the memory is
 190	 * not accessed for a defined number of cycles and the
 191	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set to 0x4.
 192	 * As the EMIF supports automatic output impedance calibration, a ZQ
 193	 * calibration long command is issued every time it exits active
 194	 * power-down and precharge power-down modes. The EMIF waits and
 195	 * blocks any other command during this calibration.
 196	 * The EMIF does not allow selective disabling of ZQ calibration upon
 197	 * exit of power-down mode. Due to very short periods of power-down
 198	 * cycles, ZQ calibration overhead creates bandwidth issues and
 199	 * increases overall system power consumption. On the other hand,
 200	 * issuing ZQ calibration long commands when exiting self-refresh is
 201	 * still required.
 202	 *
 203	 * WORKAROUND
 204	 * Because there is no power consumption benefit of the power-down due
 205	 * to the calibration and there is a performance risk, the guideline
 206	 * is to not allow power-down state and, therefore, to not have set
 207	 * the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field to 0x4.
 208	 */
 209	if ((emif->plat_data->ip_rev == EMIF_4D) &&
 210	    (lpmode == EMIF_LP_MODE_PWR_DN)) {
 211		WARN_ONCE(1,
 212			  "REG_LP_MODE = LP_MODE_PWR_DN(4) is prohibited by erratum i743 switch to LP_MODE_SELF_REFRESH(2)\n");
 213		/* rollback LP_MODE to Self-refresh mode */
 214		lpmode = EMIF_LP_MODE_SELF_REFRESH;
 215	}
 216
 217	temp = readl(base + EMIF_POWER_MANAGEMENT_CONTROL);
 218	temp &= ~LP_MODE_MASK;
 219	temp |= (lpmode << LP_MODE_SHIFT);
 220	writel(temp, base + EMIF_POWER_MANAGEMENT_CONTROL);
 221}
 222
 223static void do_freq_update(void)
 224{
 225	struct emif_data *emif;
 226
 227	/*
 228	 * Workaround for errata i728: Disable LPMODE during FREQ_UPDATE
 229	 *
 230	 * i728 DESCRIPTION:
 231	 * The EMIF automatically puts the SDRAM into self-refresh mode
 232	 * after the EMIF has not performed accesses during
 233	 * EMIF_PWR_MGMT_CTRL[7:4] REG_SR_TIM number of DDR clock cycles
 234	 * and the EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE bit field is set
 235	 * to 0x2. If during a small window the following three events
 236	 * occur:
 237	 * - The SR_TIMING counter expires
 238	 * - And frequency change is requested
 239	 * - And OCP access is requested
 240	 * Then it causes instable clock on the DDR interface.
 241	 *
 242	 * WORKAROUND
 243	 * To avoid the occurrence of the three events, the workaround
 244	 * is to disable the self-refresh when requesting a frequency
 245	 * change. Before requesting a frequency change the software must
 246	 * program EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x0. When the
 247	 * frequency change has been done, the software can reprogram
 248	 * EMIF_PWR_MGMT_CTRL[10:8] REG_LP_MODE to 0x2
 249	 */
 250	list_for_each_entry(emif, &device_list, node) {
 251		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 252			set_lpmode(emif, EMIF_LP_MODE_DISABLE);
 253	}
 254
 255	/*
 256	 * TODO: Do FREQ_UPDATE here when an API
 257	 * is available for this as part of the new
 258	 * clock framework
 259	 */
 260
 261	list_for_each_entry(emif, &device_list, node) {
 262		if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
 263			set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
 264	}
 265}
 266
 267/* Find addressing table entry based on the device's type and density */
 268static const struct lpddr2_addressing *get_addressing_table(
 269	const struct ddr_device_info *device_info)
 270{
 271	u32		index, type, density;
 272
 273	type = device_info->type;
 274	density = device_info->density;
 275
 276	switch (type) {
 277	case DDR_TYPE_LPDDR2_S4:
 278		index = density - 1;
 279		break;
 280	case DDR_TYPE_LPDDR2_S2:
 281		switch (density) {
 282		case DDR_DENSITY_1Gb:
 283		case DDR_DENSITY_2Gb:
 284			index = density + 3;
 285			break;
 286		default:
 287			index = density - 1;
 288		}
 289		break;
 290	default:
 291		return NULL;
 292	}
 293
 294	return &lpddr2_jedec_addressing_table[index];
 295}
 296
 297static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
 298		bool cs1_used, bool cal_resistors_per_cs)
 299{
 300	u32 zq = 0, val = 0;
 301
 302	val = EMIF_ZQCS_INTERVAL_US * 1000 / addressing->tREFI_ns;
 303	zq |= val << ZQ_REFINTERVAL_SHIFT;
 304
 305	val = DIV_ROUND_UP(T_ZQCL_DEFAULT_NS, T_ZQCS_DEFAULT_NS) - 1;
 306	zq |= val << ZQ_ZQCL_MULT_SHIFT;
 307
 308	val = DIV_ROUND_UP(T_ZQINIT_DEFAULT_NS, T_ZQCL_DEFAULT_NS) - 1;
 309	zq |= val << ZQ_ZQINIT_MULT_SHIFT;
 310
 311	zq |= ZQ_SFEXITEN_ENABLE << ZQ_SFEXITEN_SHIFT;
 312
 313	if (cal_resistors_per_cs)
 314		zq |= ZQ_DUALCALEN_ENABLE << ZQ_DUALCALEN_SHIFT;
 315	else
 316		zq |= ZQ_DUALCALEN_DISABLE << ZQ_DUALCALEN_SHIFT;
 317
 318	zq |= ZQ_CS0EN_MASK; /* CS0 is used for sure */
 319
 320	val = cs1_used ? 1 : 0;
 321	zq |= val << ZQ_CS1EN_SHIFT;
 322
 323	return zq;
 324}
 325
 326static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
 327		const struct emif_custom_configs *custom_configs, bool cs1_used,
 328		u32 sdram_io_width, u32 emif_bus_width)
 329{
 330	u32 alert = 0, interval, devcnt;
 331
 332	if (custom_configs && (custom_configs->mask &
 333				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL))
 334		interval = custom_configs->temp_alert_poll_interval_ms;
 335	else
 336		interval = TEMP_ALERT_POLL_INTERVAL_DEFAULT_MS;
 337
 338	interval *= 1000000;			/* Convert to ns */
 339	interval /= addressing->tREFI_ns;	/* Convert to refresh cycles */
 340	alert |= (interval << TA_REFINTERVAL_SHIFT);
 341
 342	/*
 343	 * sdram_io_width is in 'log2(x) - 1' form. Convert emif_bus_width
 344	 * also to this form and subtract to get TA_DEVCNT, which is
 345	 * in log2(x) form.
 346	 */
 347	emif_bus_width = __fls(emif_bus_width) - 1;
 348	devcnt = emif_bus_width - sdram_io_width;
 349	alert |= devcnt << TA_DEVCNT_SHIFT;
 350
 351	/* DEVWDT is in 'log2(x) - 3' form */
 352	alert |= (sdram_io_width - 2) << TA_DEVWDT_SHIFT;
 353
 354	alert |= 1 << TA_SFEXITEN_SHIFT;
 355	alert |= 1 << TA_CS0EN_SHIFT;
 356	alert |= (cs1_used ? 1 : 0) << TA_CS1EN_SHIFT;
 357
 358	return alert;
 359}
 360
 361static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
 362{
 363	u32 pwr_mgmt_ctrl	= 0, timeout;
 364	u32 lpmode		= EMIF_LP_MODE_SELF_REFRESH;
 365	u32 timeout_perf	= EMIF_LP_MODE_TIMEOUT_PERFORMANCE;
 366	u32 timeout_pwr		= EMIF_LP_MODE_TIMEOUT_POWER;
 367	u32 freq_threshold	= EMIF_LP_MODE_FREQ_THRESHOLD;
 368	u32 mask;
 369	u8 shift;
 370
 371	struct emif_custom_configs *cust_cfgs = emif->plat_data->custom_configs;
 372
 373	if (cust_cfgs && (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE)) {
 374		lpmode		= cust_cfgs->lpmode;
 375		timeout_perf	= cust_cfgs->lpmode_timeout_performance;
 376		timeout_pwr	= cust_cfgs->lpmode_timeout_power;
 377		freq_threshold  = cust_cfgs->lpmode_freq_threshold;
 378	}
 379
 380	/* Timeout based on DDR frequency */
 381	timeout = freq >= freq_threshold ? timeout_perf : timeout_pwr;
 382
 383	/*
 384	 * The value to be set in register is "log2(timeout) - 3"
 385	 * if timeout < 16 load 0 in register
 386	 * if timeout is not a power of 2, round to next highest power of 2
 387	 */
 388	if (timeout < 16) {
 389		timeout = 0;
 390	} else {
 391		if (timeout & (timeout - 1))
 392			timeout <<= 1;
 393		timeout = __fls(timeout) - 3;
 394	}
 395
 396	switch (lpmode) {
 397	case EMIF_LP_MODE_CLOCK_STOP:
 398		shift = CS_TIM_SHIFT;
 399		mask = CS_TIM_MASK;
 400		break;
 401	case EMIF_LP_MODE_SELF_REFRESH:
 402		/* Workaround for errata i735 */
 403		if (timeout < 6)
 404			timeout = 6;
 405
 406		shift = SR_TIM_SHIFT;
 407		mask = SR_TIM_MASK;
 408		break;
 409	case EMIF_LP_MODE_PWR_DN:
 410		shift = PD_TIM_SHIFT;
 411		mask = PD_TIM_MASK;
 412		break;
 413	case EMIF_LP_MODE_DISABLE:
 414	default:
 415		mask = 0;
 416		shift = 0;
 417		break;
 418	}
 419	/* Round to maximum in case of overflow, BUT warn! */
 420	if (lpmode != EMIF_LP_MODE_DISABLE && timeout > mask >> shift) {
 421		pr_err("TIMEOUT Overflow - lpmode=%d perf=%d pwr=%d freq=%d\n",
 422		       lpmode,
 423		       timeout_perf,
 424		       timeout_pwr,
 425		       freq_threshold);
 426		WARN(1, "timeout=0x%02x greater than 0x%02x. Using max\n",
 427		     timeout, mask >> shift);
 428		timeout = mask >> shift;
 429	}
 430
 431	/* Setup required timing */
 432	pwr_mgmt_ctrl = (timeout << shift) & mask;
 433	/* setup a default mask for rest of the modes */
 434	pwr_mgmt_ctrl |= (SR_TIM_MASK | CS_TIM_MASK | PD_TIM_MASK) &
 435			  ~mask;
 436
 437	/* No CS_TIM in EMIF_4D5 */
 438	if (ip_rev == EMIF_4D5)
 439		pwr_mgmt_ctrl &= ~CS_TIM_MASK;
 440
 441	pwr_mgmt_ctrl |= lpmode << LP_MODE_SHIFT;
 442
 443	return pwr_mgmt_ctrl;
 444}
 445
 446/*
 447 * Get the temperature level of the EMIF instance:
 448 * Reads the MR4 register of attached SDRAM parts to find out the temperature
 449 * level. If there are two parts attached(one on each CS), then the temperature
 450 * level for the EMIF instance is the higher of the two temperatures.
 451 */
 452static void get_temperature_level(struct emif_data *emif)
 453{
 454	u32		temp, temperature_level;
 455	void __iomem	*base;
 456
 457	base = emif->base;
 458
 459	/* Read mode register 4 */
 460	writel(DDR_MR4, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 461	temperature_level = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 462	temperature_level = (temperature_level & MR4_SDRAM_REF_RATE_MASK) >>
 463				MR4_SDRAM_REF_RATE_SHIFT;
 464
 465	if (emif->plat_data->device_info->cs1_used) {
 466		writel(DDR_MR4 | CS_MASK, base + EMIF_LPDDR2_MODE_REG_CONFIG);
 467		temp = readl(base + EMIF_LPDDR2_MODE_REG_DATA);
 468		temp = (temp & MR4_SDRAM_REF_RATE_MASK)
 469				>> MR4_SDRAM_REF_RATE_SHIFT;
 470		temperature_level = max(temp, temperature_level);
 471	}
 472
 473	/* treat everything less than nominal(3) in MR4 as nominal */
 474	if (unlikely(temperature_level < SDRAM_TEMP_NOMINAL))
 475		temperature_level = SDRAM_TEMP_NOMINAL;
 476
 477	/* if we get reserved value in MR4 persist with the existing value */
 478	if (likely(temperature_level != SDRAM_TEMP_RESERVED_4))
 479		emif->temperature_level = temperature_level;
 480}
 481
 482/*
 483 * setup_temperature_sensitive_regs() - set the timings for temperature
 484 * sensitive registers. This happens once at initialisation time based
 485 * on the temperature at boot time and subsequently based on the temperature
 486 * alert interrupt. Temperature alert can happen when the temperature
 487 * increases or drops. So this function can have the effect of either
 488 * derating the timings or going back to nominal values.
 489 */
 490static void setup_temperature_sensitive_regs(struct emif_data *emif,
 491		struct emif_regs *regs)
 492{
 493	u32		tim1, tim3, ref_ctrl, type;
 494	void __iomem	*base = emif->base;
 495	u32		temperature;
 496
 497	type = emif->plat_data->device_info->type;
 498
 499	tim1 = regs->sdram_tim1_shdw;
 500	tim3 = regs->sdram_tim3_shdw;
 501	ref_ctrl = regs->ref_ctrl_shdw;
 502
 503	/* No de-rating for non-lpddr2 devices */
 504	if (type != DDR_TYPE_LPDDR2_S2 && type != DDR_TYPE_LPDDR2_S4)
 505		goto out;
 506
 507	temperature = emif->temperature_level;
 508	if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 509		ref_ctrl = regs->ref_ctrl_shdw_derated;
 510	} else if (temperature == SDRAM_TEMP_HIGH_DERATE_REFRESH_AND_TIMINGS) {
 511		tim1 = regs->sdram_tim1_shdw_derated;
 512		tim3 = regs->sdram_tim3_shdw_derated;
 513		ref_ctrl = regs->ref_ctrl_shdw_derated;
 514	}
 515
 516out:
 517	writel(tim1, base + EMIF_SDRAM_TIMING_1_SHDW);
 518	writel(tim3, base + EMIF_SDRAM_TIMING_3_SHDW);
 519	writel(ref_ctrl, base + EMIF_SDRAM_REFRESH_CTRL_SHDW);
 520}
 521
 522static irqreturn_t handle_temp_alert(void __iomem *base, struct emif_data *emif)
 523{
 524	u32		old_temp_level;
 525	irqreturn_t	ret;
 526	struct emif_custom_configs *custom_configs;
 527
 528	guard(spinlock_irqsave)(&emif_lock);
 529	old_temp_level = emif->temperature_level;
 530	get_temperature_level(emif);
 531
 532	if (unlikely(emif->temperature_level == old_temp_level)) {
 533		return IRQ_HANDLED;
 534	} else if (!emif->curr_regs) {
 535		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 536		return IRQ_HANDLED;
 537	}
 538
 539	custom_configs = emif->plat_data->custom_configs;
 540
 541	/*
 542	 * IF we detect higher than "nominal rating" from DDR sensor
 543	 * on an unsupported DDR part, shutdown system
 544	 */
 545	if (custom_configs && !(custom_configs->mask &
 546				EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART)) {
 547		if (emif->temperature_level >= SDRAM_TEMP_HIGH_DERATE_REFRESH) {
 548			dev_err(emif->dev,
 549				"%s:NOT Extended temperature capable memory. Converting MR4=0x%02x as shutdown event\n",
 550				__func__, emif->temperature_level);
 551			/*
 552			 * Temperature far too high - do kernel_power_off()
 553			 * from thread context
 554			 */
 555			emif->temperature_level = SDRAM_TEMP_VERY_HIGH_SHUTDOWN;
 556			return IRQ_WAKE_THREAD;
 557		}
 558	}
 559
 560	if (emif->temperature_level < old_temp_level ||
 561		emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 562		/*
 563		 * Temperature coming down - defer handling to thread OR
 564		 * Temperature far too high - do kernel_power_off() from
 565		 * thread context
 566		 */
 567		ret = IRQ_WAKE_THREAD;
 568	} else {
 569		/* Temperature is going up - handle immediately */
 570		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 571		do_freq_update();
 572		ret = IRQ_HANDLED;
 573	}
 574
 575	return ret;
 576}
 577
 578static irqreturn_t emif_interrupt_handler(int irq, void *dev_id)
 579{
 580	u32			interrupts;
 581	struct emif_data	*emif = dev_id;
 582	void __iomem		*base = emif->base;
 583	struct device		*dev = emif->dev;
 584	irqreturn_t		ret = IRQ_HANDLED;
 585
 586	/* Save the status and clear it */
 587	interrupts = readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 588	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 589
 590	/*
 591	 * Handle temperature alert
 592	 * Temperature alert should be same for all ports
 593	 * So, it's enough to process it only for one of the ports
 594	 */
 595	if (interrupts & TA_SYS_MASK)
 596		ret = handle_temp_alert(base, emif);
 597
 598	if (interrupts & ERR_SYS_MASK)
 599		dev_err(dev, "Access error from SYS port - %x\n", interrupts);
 600
 601	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 602		/* Save the status and clear it */
 603		interrupts = readl(base + EMIF_LL_OCP_INTERRUPT_STATUS);
 604		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_STATUS);
 605
 606		if (interrupts & ERR_LL_MASK)
 607			dev_err(dev, "Access error from LL port - %x\n",
 608				interrupts);
 609	}
 610
 611	return ret;
 612}
 613
 614static irqreturn_t emif_threaded_isr(int irq, void *dev_id)
 615{
 616	struct emif_data	*emif = dev_id;
 617	unsigned long		irq_state;
 618
 619	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN) {
 620		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 621
 622		/* If we have Power OFF ability, use it, else try restarting */
 623		if (kernel_can_power_off()) {
 624			kernel_power_off();
 625		} else {
 626			WARN(1, "FIXME: NO pm_power_off!!! trying restart\n");
 627			kernel_restart("SDRAM Over-temp Emergency restart");
 628		}
 629		return IRQ_HANDLED;
 630	}
 631
 632	spin_lock_irqsave(&emif_lock, irq_state);
 633
 634	if (emif->curr_regs) {
 635		setup_temperature_sensitive_regs(emif, emif->curr_regs);
 636		do_freq_update();
 637	} else {
 638		dev_err(emif->dev, "temperature alert before registers are calculated, not de-rating timings\n");
 639	}
 640
 641	spin_unlock_irqrestore(&emif_lock, irq_state);
 642
 643	return IRQ_HANDLED;
 644}
 645
 646static void clear_all_interrupts(struct emif_data *emif)
 647{
 648	void __iomem	*base = emif->base;
 649
 650	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS),
 651		base + EMIF_SYSTEM_OCP_INTERRUPT_STATUS);
 652	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 653		writel(readl(base + EMIF_LL_OCP_INTERRUPT_STATUS),
 654			base + EMIF_LL_OCP_INTERRUPT_STATUS);
 655}
 656
 657static void disable_and_clear_all_interrupts(struct emif_data *emif)
 658{
 659	void __iomem		*base = emif->base;
 660
 661	/* Disable all interrupts */
 662	writel(readl(base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET),
 663		base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_CLEAR);
 664	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE)
 665		writel(readl(base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET),
 666			base + EMIF_LL_OCP_INTERRUPT_ENABLE_CLEAR);
 667
 668	/* Clear all interrupts */
 669	clear_all_interrupts(emif);
 670}
 671
 672static int setup_interrupts(struct emif_data *emif, u32 irq)
 673{
 674	u32		interrupts, type;
 675	void __iomem	*base = emif->base;
 676
 677	type = emif->plat_data->device_info->type;
 678
 679	clear_all_interrupts(emif);
 680
 681	/* Enable interrupts for SYS interface */
 682	interrupts = EN_ERR_SYS_MASK;
 683	if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4)
 684		interrupts |= EN_TA_SYS_MASK;
 685	writel(interrupts, base + EMIF_SYSTEM_OCP_INTERRUPT_ENABLE_SET);
 686
 687	/* Enable interrupts for LL interface */
 688	if (emif->plat_data->hw_caps & EMIF_HW_CAPS_LL_INTERFACE) {
 689		/* TA need not be enabled for LL */
 690		interrupts = EN_ERR_LL_MASK;
 691		writel(interrupts, base + EMIF_LL_OCP_INTERRUPT_ENABLE_SET);
 692	}
 693
 694	/* setup IRQ handlers */
 695	return devm_request_threaded_irq(emif->dev, irq,
 696				    emif_interrupt_handler,
 697				    emif_threaded_isr,
 698				    0, dev_name(emif->dev),
 699				    emif);
 700
 701}
 702
 703static void emif_onetime_settings(struct emif_data *emif)
 704{
 705	u32				pwr_mgmt_ctrl, zq, temp_alert_cfg;
 706	void __iomem			*base = emif->base;
 707	const struct lpddr2_addressing	*addressing;
 708	const struct ddr_device_info	*device_info;
 709
 710	device_info = emif->plat_data->device_info;
 711	addressing = get_addressing_table(device_info);
 712
 713	/*
 714	 * Init power management settings
 715	 * We don't know the frequency yet. Use a high frequency
 716	 * value for a conservative timeout setting
 717	 */
 718	pwr_mgmt_ctrl = get_pwr_mgmt_ctrl(1000000000, emif,
 719			emif->plat_data->ip_rev);
 720	emif->lpmode = (pwr_mgmt_ctrl & LP_MODE_MASK) >> LP_MODE_SHIFT;
 721	writel(pwr_mgmt_ctrl, base + EMIF_POWER_MANAGEMENT_CONTROL);
 722
 723	/* Init ZQ calibration settings */
 724	zq = get_zq_config_reg(addressing, device_info->cs1_used,
 725		device_info->cal_resistors_per_cs);
 726	writel(zq, base + EMIF_SDRAM_OUTPUT_IMPEDANCE_CALIBRATION_CONFIG);
 727
 728	/* Check temperature level temperature level*/
 729	get_temperature_level(emif);
 730	if (emif->temperature_level == SDRAM_TEMP_VERY_HIGH_SHUTDOWN)
 731		dev_emerg(emif->dev, "SDRAM temperature exceeds operating limit.. Needs shut down!!!\n");
 732
 733	/* Init temperature polling */
 734	temp_alert_cfg = get_temp_alert_config(addressing,
 735		emif->plat_data->custom_configs, device_info->cs1_used,
 736		device_info->io_width, get_emif_bus_width(emif));
 737	writel(temp_alert_cfg, base + EMIF_TEMPERATURE_ALERT_CONFIG);
 738
 739	/*
 740	 * Program external PHY control registers that are not frequency
 741	 * dependent
 742	 */
 743	if (emif->plat_data->phy_type != EMIF_PHY_TYPE_INTELLIPHY)
 744		return;
 745	writel(EMIF_EXT_PHY_CTRL_1_VAL, base + EMIF_EXT_PHY_CTRL_1_SHDW);
 746	writel(EMIF_EXT_PHY_CTRL_5_VAL, base + EMIF_EXT_PHY_CTRL_5_SHDW);
 747	writel(EMIF_EXT_PHY_CTRL_6_VAL, base + EMIF_EXT_PHY_CTRL_6_SHDW);
 748	writel(EMIF_EXT_PHY_CTRL_7_VAL, base + EMIF_EXT_PHY_CTRL_7_SHDW);
 749	writel(EMIF_EXT_PHY_CTRL_8_VAL, base + EMIF_EXT_PHY_CTRL_8_SHDW);
 750	writel(EMIF_EXT_PHY_CTRL_9_VAL, base + EMIF_EXT_PHY_CTRL_9_SHDW);
 751	writel(EMIF_EXT_PHY_CTRL_10_VAL, base + EMIF_EXT_PHY_CTRL_10_SHDW);
 752	writel(EMIF_EXT_PHY_CTRL_11_VAL, base + EMIF_EXT_PHY_CTRL_11_SHDW);
 753	writel(EMIF_EXT_PHY_CTRL_12_VAL, base + EMIF_EXT_PHY_CTRL_12_SHDW);
 754	writel(EMIF_EXT_PHY_CTRL_13_VAL, base + EMIF_EXT_PHY_CTRL_13_SHDW);
 755	writel(EMIF_EXT_PHY_CTRL_14_VAL, base + EMIF_EXT_PHY_CTRL_14_SHDW);
 756	writel(EMIF_EXT_PHY_CTRL_15_VAL, base + EMIF_EXT_PHY_CTRL_15_SHDW);
 757	writel(EMIF_EXT_PHY_CTRL_16_VAL, base + EMIF_EXT_PHY_CTRL_16_SHDW);
 758	writel(EMIF_EXT_PHY_CTRL_17_VAL, base + EMIF_EXT_PHY_CTRL_17_SHDW);
 759	writel(EMIF_EXT_PHY_CTRL_18_VAL, base + EMIF_EXT_PHY_CTRL_18_SHDW);
 760	writel(EMIF_EXT_PHY_CTRL_19_VAL, base + EMIF_EXT_PHY_CTRL_19_SHDW);
 761	writel(EMIF_EXT_PHY_CTRL_20_VAL, base + EMIF_EXT_PHY_CTRL_20_SHDW);
 762	writel(EMIF_EXT_PHY_CTRL_21_VAL, base + EMIF_EXT_PHY_CTRL_21_SHDW);
 763	writel(EMIF_EXT_PHY_CTRL_22_VAL, base + EMIF_EXT_PHY_CTRL_22_SHDW);
 764	writel(EMIF_EXT_PHY_CTRL_23_VAL, base + EMIF_EXT_PHY_CTRL_23_SHDW);
 765	writel(EMIF_EXT_PHY_CTRL_24_VAL, base + EMIF_EXT_PHY_CTRL_24_SHDW);
 766}
 767
 768static void get_default_timings(struct emif_data *emif)
 769{
 770	struct emif_platform_data *pd = emif->plat_data;
 771
 772	pd->timings		= lpddr2_jedec_timings;
 773	pd->timings_arr_size	= ARRAY_SIZE(lpddr2_jedec_timings);
 774
 775	dev_warn(emif->dev, "%s: using default timings\n", __func__);
 776}
 777
 778static int is_dev_data_valid(u32 type, u32 density, u32 io_width, u32 phy_type,
 779		u32 ip_rev, struct device *dev)
 780{
 781	int valid;
 782
 783	valid = (type == DDR_TYPE_LPDDR2_S4 ||
 784			type == DDR_TYPE_LPDDR2_S2)
 785		&& (density >= DDR_DENSITY_64Mb
 786			&& density <= DDR_DENSITY_8Gb)
 787		&& (io_width >= DDR_IO_WIDTH_8
 788			&& io_width <= DDR_IO_WIDTH_32);
 789
 790	/* Combinations of EMIF and PHY revisions that we support today */
 791	switch (ip_rev) {
 792	case EMIF_4D:
 793		valid = valid && (phy_type == EMIF_PHY_TYPE_ATTILAPHY);
 794		break;
 795	case EMIF_4D5:
 796		valid = valid && (phy_type == EMIF_PHY_TYPE_INTELLIPHY);
 797		break;
 798	default:
 799		valid = 0;
 800	}
 801
 802	if (!valid)
 803		dev_err(dev, "%s: invalid DDR details\n", __func__);
 804	return valid;
 805}
 806
 807static int is_custom_config_valid(struct emif_custom_configs *cust_cfgs,
 808		struct device *dev)
 809{
 810	int valid = 1;
 811
 812	if ((cust_cfgs->mask & EMIF_CUSTOM_CONFIG_LPMODE) &&
 813		(cust_cfgs->lpmode != EMIF_LP_MODE_DISABLE))
 814		valid = cust_cfgs->lpmode_freq_threshold &&
 815			cust_cfgs->lpmode_timeout_performance &&
 816			cust_cfgs->lpmode_timeout_power;
 817
 818	if (cust_cfgs->mask & EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL)
 819		valid = valid && cust_cfgs->temp_alert_poll_interval_ms;
 820
 821	if (!valid)
 822		dev_warn(dev, "%s: invalid custom configs\n", __func__);
 823
 824	return valid;
 825}
 826
 827static void of_get_custom_configs(struct device_node *np_emif,
 828		struct emif_data *emif)
 829{
 830	struct emif_custom_configs	*cust_cfgs = NULL;
 831	int				len;
 832	const __be32			*lpmode, *poll_intvl;
 833
 834	lpmode = of_get_property(np_emif, "low-power-mode", &len);
 835	poll_intvl = of_get_property(np_emif, "temp-alert-poll-interval", &len);
 836
 837	if (lpmode || poll_intvl)
 838		cust_cfgs = devm_kzalloc(emif->dev, sizeof(*cust_cfgs),
 839			GFP_KERNEL);
 840
 841	if (!cust_cfgs)
 842		return;
 843
 844	if (lpmode) {
 845		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_LPMODE;
 846		cust_cfgs->lpmode = be32_to_cpup(lpmode);
 847		of_property_read_u32(np_emif,
 848				"low-power-mode-timeout-performance",
 849				&cust_cfgs->lpmode_timeout_performance);
 850		of_property_read_u32(np_emif,
 851				"low-power-mode-timeout-power",
 852				&cust_cfgs->lpmode_timeout_power);
 853		of_property_read_u32(np_emif,
 854				"low-power-mode-freq-threshold",
 855				&cust_cfgs->lpmode_freq_threshold);
 856	}
 857
 858	if (poll_intvl) {
 859		cust_cfgs->mask |=
 860				EMIF_CUSTOM_CONFIG_TEMP_ALERT_POLL_INTERVAL;
 861		cust_cfgs->temp_alert_poll_interval_ms =
 862						be32_to_cpup(poll_intvl);
 863	}
 864
 865	if (of_property_read_bool(np_emif, "extended-temp-part"))
 866		cust_cfgs->mask |= EMIF_CUSTOM_CONFIG_EXTENDED_TEMP_PART;
 867
 868	if (!is_custom_config_valid(cust_cfgs, emif->dev)) {
 869		devm_kfree(emif->dev, cust_cfgs);
 870		return;
 871	}
 872
 873	emif->plat_data->custom_configs = cust_cfgs;
 874}
 875
 876static void of_get_ddr_info(struct device_node *np_emif,
 877		struct device_node *np_ddr,
 878		struct ddr_device_info *dev_info)
 879{
 880	u32 density = 0, io_width = 0;
 881
 882	dev_info->cs1_used = of_property_read_bool(np_emif, "cs1-used");
 883	dev_info->cal_resistors_per_cs = of_property_read_bool(np_emif, "cal-resistor-per-cs");
 884
 885	if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s4"))
 886		dev_info->type = DDR_TYPE_LPDDR2_S4;
 887	else if (of_device_is_compatible(np_ddr, "jedec,lpddr2-s2"))
 888		dev_info->type = DDR_TYPE_LPDDR2_S2;
 889
 890	of_property_read_u32(np_ddr, "density", &density);
 891	of_property_read_u32(np_ddr, "io-width", &io_width);
 892
 893	/* Convert from density in Mb to the density encoding in jedc_ddr.h */
 894	if (density & (density - 1))
 895		dev_info->density = 0;
 896	else
 897		dev_info->density = __fls(density) - 5;
 898
 899	/* Convert from io_width in bits to io_width encoding in jedc_ddr.h */
 900	if (io_width & (io_width - 1))
 901		dev_info->io_width = 0;
 902	else
 903		dev_info->io_width = __fls(io_width) - 1;
 904}
 905
 906static struct emif_data *of_get_memory_device_details(
 907		struct device_node *np_emif, struct device *dev)
 908{
 909	struct emif_data		*emif = NULL;
 910	struct ddr_device_info		*dev_info = NULL;
 911	struct emif_platform_data	*pd = NULL;
 912	struct device_node		*np_ddr;
 913
 914	np_ddr = of_parse_phandle(np_emif, "device-handle", 0);
 915	if (!np_ddr)
 916		goto error;
 917	emif	= devm_kzalloc(dev, sizeof(struct emif_data), GFP_KERNEL);
 918	pd	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
 919	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
 920
 921	if (!emif || !pd || !dev_info) {
 922		dev_err(dev, "%s: Out of memory!!\n",
 923			__func__);
 924		goto error;
 925	}
 926
 927	emif->plat_data		= pd;
 928	pd->device_info		= dev_info;
 929	emif->dev		= dev;
 930	emif->np_ddr		= np_ddr;
 931	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
 932
 933	if (of_device_is_compatible(np_emif, "ti,emif-4d"))
 934		emif->plat_data->ip_rev = EMIF_4D;
 935	else if (of_device_is_compatible(np_emif, "ti,emif-4d5"))
 936		emif->plat_data->ip_rev = EMIF_4D5;
 937
 938	of_property_read_u32(np_emif, "phy-type", &pd->phy_type);
 939
 940	if (of_property_read_bool(np_emif, "hw-caps-ll-interface"))
 941		pd->hw_caps |= EMIF_HW_CAPS_LL_INTERFACE;
 942
 943	of_get_ddr_info(np_emif, np_ddr, dev_info);
 944	if (!is_dev_data_valid(pd->device_info->type, pd->device_info->density,
 945			pd->device_info->io_width, pd->phy_type, pd->ip_rev,
 946			emif->dev)) {
 947		dev_err(dev, "%s: invalid device data!!\n", __func__);
 948		goto error;
 949	}
 950	/*
 951	 * For EMIF instances other than EMIF1 see if the devices connected
 952	 * are exactly same as on EMIF1(which is typically the case). If so,
 953	 * mark it as a duplicate of EMIF1. This will save some memory and
 954	 * computation.
 955	 */
 956	if (emif1 && emif1->np_ddr == np_ddr) {
 957		emif->duplicate = true;
 958		goto out;
 959	} else if (emif1) {
 960		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
 961			__func__);
 962	}
 963
 964	of_get_custom_configs(np_emif, emif);
 965	emif->plat_data->timings = of_get_ddr_timings(np_ddr, emif->dev,
 966					emif->plat_data->device_info->type,
 967					&emif->plat_data->timings_arr_size);
 968
 969	emif->plat_data->min_tck = of_get_min_tck(np_ddr, emif->dev);
 970	goto out;
 971
 972error:
 973	return NULL;
 974out:
 975	return emif;
 976}
 977
 978static struct emif_data *get_device_details(
 979		struct platform_device *pdev)
 980{
 981	u32				size;
 982	struct emif_data		*emif = NULL;
 983	struct ddr_device_info		*dev_info;
 984	struct emif_custom_configs	*cust_cfgs;
 985	struct emif_platform_data	*pd;
 986	struct device			*dev;
 987	void				*temp;
 988
 989	pd = pdev->dev.platform_data;
 990	dev = &pdev->dev;
 991
 992	if (!(pd && pd->device_info && is_dev_data_valid(pd->device_info->type,
 993			pd->device_info->density, pd->device_info->io_width,
 994			pd->phy_type, pd->ip_rev, dev))) {
 995		dev_err(dev, "%s: invalid device data\n", __func__);
 996		goto error;
 997	}
 998
 999	emif	= devm_kzalloc(dev, sizeof(*emif), GFP_KERNEL);
1000	temp	= devm_kzalloc(dev, sizeof(*pd), GFP_KERNEL);
1001	dev_info = devm_kzalloc(dev, sizeof(*dev_info), GFP_KERNEL);
1002
1003	if (!emif || !temp || !dev_info)
1004		goto error;
1005
1006	memcpy(temp, pd, sizeof(*pd));
1007	pd = temp;
1008	memcpy(dev_info, pd->device_info, sizeof(*dev_info));
1009
1010	pd->device_info		= dev_info;
1011	emif->plat_data		= pd;
1012	emif->dev		= dev;
1013	emif->temperature_level	= SDRAM_TEMP_NOMINAL;
1014
1015	/*
1016	 * For EMIF instances other than EMIF1 see if the devices connected
1017	 * are exactly same as on EMIF1(which is typically the case). If so,
1018	 * mark it as a duplicate of EMIF1 and skip copying timings data.
1019	 * This will save some memory and some computation later.
1020	 */
1021	emif->duplicate = emif1 && (memcmp(dev_info,
1022		emif1->plat_data->device_info,
1023		sizeof(struct ddr_device_info)) == 0);
1024
1025	if (emif->duplicate) {
1026		pd->timings = NULL;
1027		pd->min_tck = NULL;
1028		goto out;
1029	} else if (emif1) {
1030		dev_warn(emif->dev, "%s: Non-symmetric DDR geometry\n",
1031			__func__);
1032	}
1033
1034	/*
1035	 * Copy custom configs - ignore allocation error, if any, as
1036	 * custom_configs is not very critical
1037	 */
1038	cust_cfgs = pd->custom_configs;
1039	if (cust_cfgs && is_custom_config_valid(cust_cfgs, dev)) {
1040		temp = devm_kzalloc(dev, sizeof(*cust_cfgs), GFP_KERNEL);
1041		if (temp)
1042			memcpy(temp, cust_cfgs, sizeof(*cust_cfgs));
1043		pd->custom_configs = temp;
1044	}
1045
1046	/*
1047	 * Copy timings and min-tck values from platform data. If it is not
1048	 * available or if memory allocation fails, use JEDEC defaults
1049	 */
1050	size = sizeof(struct lpddr2_timings) * pd->timings_arr_size;
1051	if (pd->timings) {
1052		temp = devm_kzalloc(dev, size, GFP_KERNEL);
1053		if (temp) {
1054			memcpy(temp, pd->timings, size);
1055			pd->timings = temp;
1056		} else {
1057			get_default_timings(emif);
1058		}
1059	} else {
1060		get_default_timings(emif);
1061	}
1062
1063	if (pd->min_tck) {
1064		temp = devm_kzalloc(dev, sizeof(*pd->min_tck), GFP_KERNEL);
1065		if (temp) {
1066			memcpy(temp, pd->min_tck, sizeof(*pd->min_tck));
1067			pd->min_tck = temp;
1068		} else {
1069			pd->min_tck = &lpddr2_jedec_min_tck;
1070		}
1071	} else {
1072		pd->min_tck = &lpddr2_jedec_min_tck;
1073	}
1074
1075out:
1076	return emif;
1077
1078error:
1079	return NULL;
1080}
1081
1082static int emif_probe(struct platform_device *pdev)
1083{
1084	struct emif_data	*emif;
1085	int			irq, ret;
1086
1087	if (pdev->dev.of_node)
1088		emif = of_get_memory_device_details(pdev->dev.of_node, &pdev->dev);
1089	else
1090		emif = get_device_details(pdev);
1091
1092	if (!emif) {
1093		pr_err("%s: error getting device data\n", __func__);
1094		goto error;
1095	}
1096
1097	list_add(&emif->node, &device_list);
1098
1099	/* Save pointers to each other in emif and device structures */
1100	emif->dev = &pdev->dev;
1101	platform_set_drvdata(pdev, emif);
1102
1103	emif->base = devm_platform_ioremap_resource(pdev, 0);
1104	if (IS_ERR(emif->base))
1105		goto error;
1106
1107	irq = platform_get_irq(pdev, 0);
1108	if (irq < 0)
1109		goto error;
1110
1111	emif_onetime_settings(emif);
1112	emif_debugfs_init(emif);
1113	disable_and_clear_all_interrupts(emif);
1114	ret = setup_interrupts(emif, irq);
1115	if (ret)
1116		goto error;
1117
1118	/* One-time actions taken on probing the first device */
1119	if (!emif1) {
1120		emif1 = emif;
1121
1122		/*
1123		 * TODO: register notifiers for frequency and voltage
1124		 * change here once the respective frameworks are
1125		 * available
1126		 */
1127	}
1128
1129	dev_info(&pdev->dev, "%s: device configured with addr = %p and IRQ%d\n",
1130		__func__, emif->base, irq);
1131
1132	return 0;
1133error:
1134	return -ENODEV;
1135}
1136
1137static void emif_remove(struct platform_device *pdev)
1138{
1139	struct emif_data *emif = platform_get_drvdata(pdev);
1140
1141	emif_debugfs_exit(emif);
1142}
1143
1144static void emif_shutdown(struct platform_device *pdev)
1145{
1146	struct emif_data	*emif = platform_get_drvdata(pdev);
1147
1148	disable_and_clear_all_interrupts(emif);
1149}
1150
1151#if defined(CONFIG_OF)
1152static const struct of_device_id emif_of_match[] = {
1153		{ .compatible = "ti,emif-4d" },
1154		{ .compatible = "ti,emif-4d5" },
1155		{},
1156};
1157MODULE_DEVICE_TABLE(of, emif_of_match);
1158#endif
1159
1160static struct platform_driver emif_driver = {
1161	.probe		= emif_probe,
1162	.remove		= emif_remove,
1163	.shutdown	= emif_shutdown,
1164	.driver = {
1165		.name = "emif",
1166		.of_match_table = of_match_ptr(emif_of_match),
1167	},
1168};
1169
1170module_platform_driver(emif_driver);
1171
1172MODULE_DESCRIPTION("TI EMIF SDRAM Controller Driver");
1173MODULE_LICENSE("GPL");
1174MODULE_ALIAS("platform:emif");
1175MODULE_AUTHOR("Texas Instruments Inc");