Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * raid5.c : Multiple Devices driver for Linux
4 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5 * Copyright (C) 1999, 2000 Ingo Molnar
6 * Copyright (C) 2002, 2003 H. Peter Anvin
7 *
8 * RAID-4/5/6 management functions.
9 * Thanks to Penguin Computing for making the RAID-6 development possible
10 * by donating a test server!
11 */
12
13/*
14 * BITMAP UNPLUGGING:
15 *
16 * The sequencing for updating the bitmap reliably is a little
17 * subtle (and I got it wrong the first time) so it deserves some
18 * explanation.
19 *
20 * We group bitmap updates into batches. Each batch has a number.
21 * We may write out several batches at once, but that isn't very important.
22 * conf->seq_write is the number of the last batch successfully written.
23 * conf->seq_flush is the number of the last batch that was closed to
24 * new additions.
25 * When we discover that we will need to write to any block in a stripe
26 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27 * the number of the batch it will be in. This is seq_flush+1.
28 * When we are ready to do a write, if that batch hasn't been written yet,
29 * we plug the array and queue the stripe for later.
30 * When an unplug happens, we increment bm_flush, thus closing the current
31 * batch.
32 * When we notice that bm_flush > bm_write, we write out all pending updates
33 * to the bitmap, and advance bm_write to where bm_flush was.
34 * This may occasionally write a bit out twice, but is sure never to
35 * miss any bits.
36 */
37
38#include <linux/blkdev.h>
39#include <linux/kthread.h>
40#include <linux/raid/pq.h>
41#include <linux/async_tx.h>
42#include <linux/module.h>
43#include <linux/async.h>
44#include <linux/seq_file.h>
45#include <linux/cpu.h>
46#include <linux/slab.h>
47#include <linux/ratelimit.h>
48#include <linux/nodemask.h>
49
50#include <trace/events/block.h>
51#include <linux/list_sort.h>
52
53#include "md.h"
54#include "raid5.h"
55#include "raid0.h"
56#include "md-bitmap.h"
57#include "raid5-log.h"
58
59#define UNSUPPORTED_MDDEV_FLAGS (1L << MD_FAILFAST_SUPPORTED)
60
61#define cpu_to_group(cpu) cpu_to_node(cpu)
62#define ANY_GROUP NUMA_NO_NODE
63
64#define RAID5_MAX_REQ_STRIPES 256
65
66static bool devices_handle_discard_safely = false;
67module_param(devices_handle_discard_safely, bool, 0644);
68MODULE_PARM_DESC(devices_handle_discard_safely,
69 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
70static struct workqueue_struct *raid5_wq;
71
72static void raid5_quiesce(struct mddev *mddev, int quiesce);
73
74static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
75{
76 int hash = (sect >> RAID5_STRIPE_SHIFT(conf)) & HASH_MASK;
77 return &conf->stripe_hashtbl[hash];
78}
79
80static inline int stripe_hash_locks_hash(struct r5conf *conf, sector_t sect)
81{
82 return (sect >> RAID5_STRIPE_SHIFT(conf)) & STRIPE_HASH_LOCKS_MASK;
83}
84
85static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
86 __acquires(&conf->device_lock)
87{
88 spin_lock_irq(conf->hash_locks + hash);
89 spin_lock(&conf->device_lock);
90}
91
92static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
93 __releases(&conf->device_lock)
94{
95 spin_unlock(&conf->device_lock);
96 spin_unlock_irq(conf->hash_locks + hash);
97}
98
99static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
100 __acquires(&conf->device_lock)
101{
102 int i;
103 spin_lock_irq(conf->hash_locks);
104 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
105 spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
106 spin_lock(&conf->device_lock);
107}
108
109static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
110 __releases(&conf->device_lock)
111{
112 int i;
113 spin_unlock(&conf->device_lock);
114 for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
115 spin_unlock(conf->hash_locks + i);
116 spin_unlock_irq(conf->hash_locks);
117}
118
119/* Find first data disk in a raid6 stripe */
120static inline int raid6_d0(struct stripe_head *sh)
121{
122 if (sh->ddf_layout)
123 /* ddf always start from first device */
124 return 0;
125 /* md starts just after Q block */
126 if (sh->qd_idx == sh->disks - 1)
127 return 0;
128 else
129 return sh->qd_idx + 1;
130}
131static inline int raid6_next_disk(int disk, int raid_disks)
132{
133 disk++;
134 return (disk < raid_disks) ? disk : 0;
135}
136
137/* When walking through the disks in a raid5, starting at raid6_d0,
138 * We need to map each disk to a 'slot', where the data disks are slot
139 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
140 * is raid_disks-1. This help does that mapping.
141 */
142static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
143 int *count, int syndrome_disks)
144{
145 int slot = *count;
146
147 if (sh->ddf_layout)
148 (*count)++;
149 if (idx == sh->pd_idx)
150 return syndrome_disks;
151 if (idx == sh->qd_idx)
152 return syndrome_disks + 1;
153 if (!sh->ddf_layout)
154 (*count)++;
155 return slot;
156}
157
158static void print_raid5_conf(struct r5conf *conf);
159
160static int stripe_operations_active(struct stripe_head *sh)
161{
162 return sh->check_state || sh->reconstruct_state ||
163 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
164 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
165}
166
167static bool stripe_is_lowprio(struct stripe_head *sh)
168{
169 return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
170 test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
171 !test_bit(STRIPE_R5C_CACHING, &sh->state);
172}
173
174static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
175 __must_hold(&sh->raid_conf->device_lock)
176{
177 struct r5conf *conf = sh->raid_conf;
178 struct r5worker_group *group;
179 int thread_cnt;
180 int i, cpu = sh->cpu;
181
182 if (!cpu_online(cpu)) {
183 cpu = cpumask_any(cpu_online_mask);
184 sh->cpu = cpu;
185 }
186
187 if (list_empty(&sh->lru)) {
188 struct r5worker_group *group;
189 group = conf->worker_groups + cpu_to_group(cpu);
190 if (stripe_is_lowprio(sh))
191 list_add_tail(&sh->lru, &group->loprio_list);
192 else
193 list_add_tail(&sh->lru, &group->handle_list);
194 group->stripes_cnt++;
195 sh->group = group;
196 }
197
198 if (conf->worker_cnt_per_group == 0) {
199 md_wakeup_thread(conf->mddev->thread);
200 return;
201 }
202
203 group = conf->worker_groups + cpu_to_group(sh->cpu);
204
205 group->workers[0].working = true;
206 /* at least one worker should run to avoid race */
207 queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
208
209 thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
210 /* wakeup more workers */
211 for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
212 if (group->workers[i].working == false) {
213 group->workers[i].working = true;
214 queue_work_on(sh->cpu, raid5_wq,
215 &group->workers[i].work);
216 thread_cnt--;
217 }
218 }
219}
220
221static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
222 struct list_head *temp_inactive_list)
223 __must_hold(&conf->device_lock)
224{
225 int i;
226 int injournal = 0; /* number of date pages with R5_InJournal */
227
228 BUG_ON(!list_empty(&sh->lru));
229 BUG_ON(atomic_read(&conf->active_stripes)==0);
230
231 if (r5c_is_writeback(conf->log))
232 for (i = sh->disks; i--; )
233 if (test_bit(R5_InJournal, &sh->dev[i].flags))
234 injournal++;
235 /*
236 * In the following cases, the stripe cannot be released to cached
237 * lists. Therefore, we make the stripe write out and set
238 * STRIPE_HANDLE:
239 * 1. when quiesce in r5c write back;
240 * 2. when resync is requested fot the stripe.
241 */
242 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
243 (conf->quiesce && r5c_is_writeback(conf->log) &&
244 !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
245 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
246 r5c_make_stripe_write_out(sh);
247 set_bit(STRIPE_HANDLE, &sh->state);
248 }
249
250 if (test_bit(STRIPE_HANDLE, &sh->state)) {
251 if (test_bit(STRIPE_DELAYED, &sh->state) &&
252 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
253 list_add_tail(&sh->lru, &conf->delayed_list);
254 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
255 sh->bm_seq - conf->seq_write > 0)
256 list_add_tail(&sh->lru, &conf->bitmap_list);
257 else {
258 clear_bit(STRIPE_DELAYED, &sh->state);
259 clear_bit(STRIPE_BIT_DELAY, &sh->state);
260 if (conf->worker_cnt_per_group == 0) {
261 if (stripe_is_lowprio(sh))
262 list_add_tail(&sh->lru,
263 &conf->loprio_list);
264 else
265 list_add_tail(&sh->lru,
266 &conf->handle_list);
267 } else {
268 raid5_wakeup_stripe_thread(sh);
269 return;
270 }
271 }
272 md_wakeup_thread(conf->mddev->thread);
273 } else {
274 BUG_ON(stripe_operations_active(sh));
275 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
276 if (atomic_dec_return(&conf->preread_active_stripes)
277 < IO_THRESHOLD)
278 md_wakeup_thread(conf->mddev->thread);
279 atomic_dec(&conf->active_stripes);
280 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
281 if (!r5c_is_writeback(conf->log))
282 list_add_tail(&sh->lru, temp_inactive_list);
283 else {
284 WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
285 if (injournal == 0)
286 list_add_tail(&sh->lru, temp_inactive_list);
287 else if (injournal == conf->raid_disks - conf->max_degraded) {
288 /* full stripe */
289 if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
290 atomic_inc(&conf->r5c_cached_full_stripes);
291 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
292 atomic_dec(&conf->r5c_cached_partial_stripes);
293 list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
294 r5c_check_cached_full_stripe(conf);
295 } else
296 /*
297 * STRIPE_R5C_PARTIAL_STRIPE is set in
298 * r5c_try_caching_write(). No need to
299 * set it again.
300 */
301 list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
302 }
303 }
304 }
305}
306
307static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
308 struct list_head *temp_inactive_list)
309 __must_hold(&conf->device_lock)
310{
311 if (atomic_dec_and_test(&sh->count))
312 do_release_stripe(conf, sh, temp_inactive_list);
313}
314
315/*
316 * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
317 *
318 * Be careful: Only one task can add/delete stripes from temp_inactive_list at
319 * given time. Adding stripes only takes device lock, while deleting stripes
320 * only takes hash lock.
321 */
322static void release_inactive_stripe_list(struct r5conf *conf,
323 struct list_head *temp_inactive_list,
324 int hash)
325{
326 int size;
327 bool do_wakeup = false;
328 unsigned long flags;
329
330 if (hash == NR_STRIPE_HASH_LOCKS) {
331 size = NR_STRIPE_HASH_LOCKS;
332 hash = NR_STRIPE_HASH_LOCKS - 1;
333 } else
334 size = 1;
335 while (size) {
336 struct list_head *list = &temp_inactive_list[size - 1];
337
338 /*
339 * We don't hold any lock here yet, raid5_get_active_stripe() might
340 * remove stripes from the list
341 */
342 if (!list_empty_careful(list)) {
343 spin_lock_irqsave(conf->hash_locks + hash, flags);
344 if (list_empty(conf->inactive_list + hash) &&
345 !list_empty(list))
346 atomic_dec(&conf->empty_inactive_list_nr);
347 list_splice_tail_init(list, conf->inactive_list + hash);
348 do_wakeup = true;
349 spin_unlock_irqrestore(conf->hash_locks + hash, flags);
350 }
351 size--;
352 hash--;
353 }
354
355 if (do_wakeup) {
356 wake_up(&conf->wait_for_stripe);
357 if (atomic_read(&conf->active_stripes) == 0)
358 wake_up(&conf->wait_for_quiescent);
359 if (conf->retry_read_aligned)
360 md_wakeup_thread(conf->mddev->thread);
361 }
362}
363
364static int release_stripe_list(struct r5conf *conf,
365 struct list_head *temp_inactive_list)
366 __must_hold(&conf->device_lock)
367{
368 struct stripe_head *sh, *t;
369 int count = 0;
370 struct llist_node *head;
371
372 head = llist_del_all(&conf->released_stripes);
373 head = llist_reverse_order(head);
374 llist_for_each_entry_safe(sh, t, head, release_list) {
375 int hash;
376
377 /* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
378 smp_mb();
379 clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
380 /*
381 * Don't worry the bit is set here, because if the bit is set
382 * again, the count is always > 1. This is true for
383 * STRIPE_ON_UNPLUG_LIST bit too.
384 */
385 hash = sh->hash_lock_index;
386 __release_stripe(conf, sh, &temp_inactive_list[hash]);
387 count++;
388 }
389
390 return count;
391}
392
393void raid5_release_stripe(struct stripe_head *sh)
394{
395 struct r5conf *conf = sh->raid_conf;
396 unsigned long flags;
397 struct list_head list;
398 int hash;
399 bool wakeup;
400
401 /* Avoid release_list until the last reference.
402 */
403 if (atomic_add_unless(&sh->count, -1, 1))
404 return;
405
406 if (unlikely(!conf->mddev->thread) ||
407 test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
408 goto slow_path;
409 wakeup = llist_add(&sh->release_list, &conf->released_stripes);
410 if (wakeup)
411 md_wakeup_thread(conf->mddev->thread);
412 return;
413slow_path:
414 /* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
415 if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
416 INIT_LIST_HEAD(&list);
417 hash = sh->hash_lock_index;
418 do_release_stripe(conf, sh, &list);
419 spin_unlock_irqrestore(&conf->device_lock, flags);
420 release_inactive_stripe_list(conf, &list, hash);
421 }
422}
423
424static inline void remove_hash(struct stripe_head *sh)
425{
426 pr_debug("remove_hash(), stripe %llu\n",
427 (unsigned long long)sh->sector);
428
429 hlist_del_init(&sh->hash);
430}
431
432static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
433{
434 struct hlist_head *hp = stripe_hash(conf, sh->sector);
435
436 pr_debug("insert_hash(), stripe %llu\n",
437 (unsigned long long)sh->sector);
438
439 hlist_add_head(&sh->hash, hp);
440}
441
442/* find an idle stripe, make sure it is unhashed, and return it. */
443static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
444{
445 struct stripe_head *sh = NULL;
446 struct list_head *first;
447
448 if (list_empty(conf->inactive_list + hash))
449 goto out;
450 first = (conf->inactive_list + hash)->next;
451 sh = list_entry(first, struct stripe_head, lru);
452 list_del_init(first);
453 remove_hash(sh);
454 atomic_inc(&conf->active_stripes);
455 BUG_ON(hash != sh->hash_lock_index);
456 if (list_empty(conf->inactive_list + hash))
457 atomic_inc(&conf->empty_inactive_list_nr);
458out:
459 return sh;
460}
461
462#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
463static void free_stripe_pages(struct stripe_head *sh)
464{
465 int i;
466 struct page *p;
467
468 /* Have not allocate page pool */
469 if (!sh->pages)
470 return;
471
472 for (i = 0; i < sh->nr_pages; i++) {
473 p = sh->pages[i];
474 if (p)
475 put_page(p);
476 sh->pages[i] = NULL;
477 }
478}
479
480static int alloc_stripe_pages(struct stripe_head *sh, gfp_t gfp)
481{
482 int i;
483 struct page *p;
484
485 for (i = 0; i < sh->nr_pages; i++) {
486 /* The page have allocated. */
487 if (sh->pages[i])
488 continue;
489
490 p = alloc_page(gfp);
491 if (!p) {
492 free_stripe_pages(sh);
493 return -ENOMEM;
494 }
495 sh->pages[i] = p;
496 }
497 return 0;
498}
499
500static int
501init_stripe_shared_pages(struct stripe_head *sh, struct r5conf *conf, int disks)
502{
503 int nr_pages, cnt;
504
505 if (sh->pages)
506 return 0;
507
508 /* Each of the sh->dev[i] need one conf->stripe_size */
509 cnt = PAGE_SIZE / conf->stripe_size;
510 nr_pages = (disks + cnt - 1) / cnt;
511
512 sh->pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL);
513 if (!sh->pages)
514 return -ENOMEM;
515 sh->nr_pages = nr_pages;
516 sh->stripes_per_page = cnt;
517 return 0;
518}
519#endif
520
521static void shrink_buffers(struct stripe_head *sh)
522{
523 int i;
524 int num = sh->raid_conf->pool_size;
525
526#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
527 for (i = 0; i < num ; i++) {
528 struct page *p;
529
530 WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
531 p = sh->dev[i].page;
532 if (!p)
533 continue;
534 sh->dev[i].page = NULL;
535 put_page(p);
536 }
537#else
538 for (i = 0; i < num; i++)
539 sh->dev[i].page = NULL;
540 free_stripe_pages(sh); /* Free pages */
541#endif
542}
543
544static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
545{
546 int i;
547 int num = sh->raid_conf->pool_size;
548
549#if PAGE_SIZE == DEFAULT_STRIPE_SIZE
550 for (i = 0; i < num; i++) {
551 struct page *page;
552
553 if (!(page = alloc_page(gfp))) {
554 return 1;
555 }
556 sh->dev[i].page = page;
557 sh->dev[i].orig_page = page;
558 sh->dev[i].offset = 0;
559 }
560#else
561 if (alloc_stripe_pages(sh, gfp))
562 return -ENOMEM;
563
564 for (i = 0; i < num; i++) {
565 sh->dev[i].page = raid5_get_dev_page(sh, i);
566 sh->dev[i].orig_page = sh->dev[i].page;
567 sh->dev[i].offset = raid5_get_page_offset(sh, i);
568 }
569#endif
570 return 0;
571}
572
573static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
574 struct stripe_head *sh);
575
576static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
577{
578 struct r5conf *conf = sh->raid_conf;
579 int i, seq;
580
581 BUG_ON(atomic_read(&sh->count) != 0);
582 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
583 BUG_ON(stripe_operations_active(sh));
584 BUG_ON(sh->batch_head);
585
586 pr_debug("init_stripe called, stripe %llu\n",
587 (unsigned long long)sector);
588retry:
589 seq = read_seqcount_begin(&conf->gen_lock);
590 sh->generation = conf->generation - previous;
591 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
592 sh->sector = sector;
593 stripe_set_idx(sector, conf, previous, sh);
594 sh->state = 0;
595
596 for (i = sh->disks; i--; ) {
597 struct r5dev *dev = &sh->dev[i];
598
599 if (dev->toread || dev->read || dev->towrite || dev->written ||
600 test_bit(R5_LOCKED, &dev->flags)) {
601 pr_err("sector=%llx i=%d %p %p %p %p %d\n",
602 (unsigned long long)sh->sector, i, dev->toread,
603 dev->read, dev->towrite, dev->written,
604 test_bit(R5_LOCKED, &dev->flags));
605 WARN_ON(1);
606 }
607 dev->flags = 0;
608 dev->sector = raid5_compute_blocknr(sh, i, previous);
609 }
610 if (read_seqcount_retry(&conf->gen_lock, seq))
611 goto retry;
612 sh->overwrite_disks = 0;
613 insert_hash(conf, sh);
614 sh->cpu = smp_processor_id();
615 set_bit(STRIPE_BATCH_READY, &sh->state);
616}
617
618static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
619 short generation)
620{
621 struct stripe_head *sh;
622
623 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
624 hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
625 if (sh->sector == sector && sh->generation == generation)
626 return sh;
627 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
628 return NULL;
629}
630
631static struct stripe_head *find_get_stripe(struct r5conf *conf,
632 sector_t sector, short generation, int hash)
633{
634 int inc_empty_inactive_list_flag;
635 struct stripe_head *sh;
636
637 sh = __find_stripe(conf, sector, generation);
638 if (!sh)
639 return NULL;
640
641 if (atomic_inc_not_zero(&sh->count))
642 return sh;
643
644 /*
645 * Slow path. The reference count is zero which means the stripe must
646 * be on a list (sh->lru). Must remove the stripe from the list that
647 * references it with the device_lock held.
648 */
649
650 spin_lock(&conf->device_lock);
651 if (!atomic_read(&sh->count)) {
652 if (!test_bit(STRIPE_HANDLE, &sh->state))
653 atomic_inc(&conf->active_stripes);
654 BUG_ON(list_empty(&sh->lru) &&
655 !test_bit(STRIPE_EXPANDING, &sh->state));
656 inc_empty_inactive_list_flag = 0;
657 if (!list_empty(conf->inactive_list + hash))
658 inc_empty_inactive_list_flag = 1;
659 list_del_init(&sh->lru);
660 if (list_empty(conf->inactive_list + hash) &&
661 inc_empty_inactive_list_flag)
662 atomic_inc(&conf->empty_inactive_list_nr);
663 if (sh->group) {
664 sh->group->stripes_cnt--;
665 sh->group = NULL;
666 }
667 }
668 atomic_inc(&sh->count);
669 spin_unlock(&conf->device_lock);
670
671 return sh;
672}
673
674/*
675 * Need to check if array has failed when deciding whether to:
676 * - start an array
677 * - remove non-faulty devices
678 * - add a spare
679 * - allow a reshape
680 * This determination is simple when no reshape is happening.
681 * However if there is a reshape, we need to carefully check
682 * both the before and after sections.
683 * This is because some failed devices may only affect one
684 * of the two sections, and some non-in_sync devices may
685 * be insync in the section most affected by failed devices.
686 *
687 * Most calls to this function hold &conf->device_lock. Calls
688 * in raid5_run() do not require the lock as no other threads
689 * have been started yet.
690 */
691int raid5_calc_degraded(struct r5conf *conf)
692{
693 int degraded, degraded2;
694 int i;
695
696 degraded = 0;
697 for (i = 0; i < conf->previous_raid_disks; i++) {
698 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
699
700 if (rdev && test_bit(Faulty, &rdev->flags))
701 rdev = READ_ONCE(conf->disks[i].replacement);
702 if (!rdev || test_bit(Faulty, &rdev->flags))
703 degraded++;
704 else if (test_bit(In_sync, &rdev->flags))
705 ;
706 else
707 /* not in-sync or faulty.
708 * If the reshape increases the number of devices,
709 * this is being recovered by the reshape, so
710 * this 'previous' section is not in_sync.
711 * If the number of devices is being reduced however,
712 * the device can only be part of the array if
713 * we are reverting a reshape, so this section will
714 * be in-sync.
715 */
716 if (conf->raid_disks >= conf->previous_raid_disks)
717 degraded++;
718 }
719 if (conf->raid_disks == conf->previous_raid_disks)
720 return degraded;
721 degraded2 = 0;
722 for (i = 0; i < conf->raid_disks; i++) {
723 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
724
725 if (rdev && test_bit(Faulty, &rdev->flags))
726 rdev = READ_ONCE(conf->disks[i].replacement);
727 if (!rdev || test_bit(Faulty, &rdev->flags))
728 degraded2++;
729 else if (test_bit(In_sync, &rdev->flags))
730 ;
731 else
732 /* not in-sync or faulty.
733 * If reshape increases the number of devices, this
734 * section has already been recovered, else it
735 * almost certainly hasn't.
736 */
737 if (conf->raid_disks <= conf->previous_raid_disks)
738 degraded2++;
739 }
740 if (degraded2 > degraded)
741 return degraded2;
742 return degraded;
743}
744
745static bool has_failed(struct r5conf *conf)
746{
747 int degraded = conf->mddev->degraded;
748
749 if (test_bit(MD_BROKEN, &conf->mddev->flags))
750 return true;
751
752 if (conf->mddev->reshape_position != MaxSector)
753 degraded = raid5_calc_degraded(conf);
754
755 return degraded > conf->max_degraded;
756}
757
758enum stripe_result {
759 STRIPE_SUCCESS = 0,
760 STRIPE_RETRY,
761 STRIPE_SCHEDULE_AND_RETRY,
762 STRIPE_FAIL,
763 STRIPE_WAIT_RESHAPE,
764};
765
766struct stripe_request_ctx {
767 /* a reference to the last stripe_head for batching */
768 struct stripe_head *batch_last;
769
770 /* first sector in the request */
771 sector_t first_sector;
772
773 /* last sector in the request */
774 sector_t last_sector;
775
776 /*
777 * bitmap to track stripe sectors that have been added to stripes
778 * add one to account for unaligned requests
779 */
780 DECLARE_BITMAP(sectors_to_do, RAID5_MAX_REQ_STRIPES + 1);
781
782 /* the request had REQ_PREFLUSH, cleared after the first stripe_head */
783 bool do_flush;
784};
785
786/*
787 * Block until another thread clears R5_INACTIVE_BLOCKED or
788 * there are fewer than 3/4 the maximum number of active stripes
789 * and there is an inactive stripe available.
790 */
791static bool is_inactive_blocked(struct r5conf *conf, int hash)
792{
793 if (list_empty(conf->inactive_list + hash))
794 return false;
795
796 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
797 return true;
798
799 return (atomic_read(&conf->active_stripes) <
800 (conf->max_nr_stripes * 3 / 4));
801}
802
803struct stripe_head *raid5_get_active_stripe(struct r5conf *conf,
804 struct stripe_request_ctx *ctx, sector_t sector,
805 unsigned int flags)
806{
807 struct stripe_head *sh;
808 int hash = stripe_hash_locks_hash(conf, sector);
809 int previous = !!(flags & R5_GAS_PREVIOUS);
810
811 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
812
813 spin_lock_irq(conf->hash_locks + hash);
814
815 for (;;) {
816 if (!(flags & R5_GAS_NOQUIESCE) && conf->quiesce) {
817 /*
818 * Must release the reference to batch_last before
819 * waiting, on quiesce, otherwise the batch_last will
820 * hold a reference to a stripe and raid5_quiesce()
821 * will deadlock waiting for active_stripes to go to
822 * zero.
823 */
824 if (ctx && ctx->batch_last) {
825 raid5_release_stripe(ctx->batch_last);
826 ctx->batch_last = NULL;
827 }
828
829 wait_event_lock_irq(conf->wait_for_quiescent,
830 !conf->quiesce,
831 *(conf->hash_locks + hash));
832 }
833
834 sh = find_get_stripe(conf, sector, conf->generation - previous,
835 hash);
836 if (sh)
837 break;
838
839 if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
840 sh = get_free_stripe(conf, hash);
841 if (sh) {
842 r5c_check_stripe_cache_usage(conf);
843 init_stripe(sh, sector, previous);
844 atomic_inc(&sh->count);
845 break;
846 }
847
848 if (!test_bit(R5_DID_ALLOC, &conf->cache_state))
849 set_bit(R5_ALLOC_MORE, &conf->cache_state);
850 }
851
852 if (flags & R5_GAS_NOBLOCK)
853 break;
854
855 set_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
856 r5l_wake_reclaim(conf->log, 0);
857
858 /* release batch_last before wait to avoid risk of deadlock */
859 if (ctx && ctx->batch_last) {
860 raid5_release_stripe(ctx->batch_last);
861 ctx->batch_last = NULL;
862 }
863
864 wait_event_lock_irq(conf->wait_for_stripe,
865 is_inactive_blocked(conf, hash),
866 *(conf->hash_locks + hash));
867 clear_bit(R5_INACTIVE_BLOCKED, &conf->cache_state);
868 }
869
870 spin_unlock_irq(conf->hash_locks + hash);
871 return sh;
872}
873
874static bool is_full_stripe_write(struct stripe_head *sh)
875{
876 BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
877 return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
878}
879
880static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
881 __acquires(&sh1->stripe_lock)
882 __acquires(&sh2->stripe_lock)
883{
884 if (sh1 > sh2) {
885 spin_lock_irq(&sh2->stripe_lock);
886 spin_lock_nested(&sh1->stripe_lock, 1);
887 } else {
888 spin_lock_irq(&sh1->stripe_lock);
889 spin_lock_nested(&sh2->stripe_lock, 1);
890 }
891}
892
893static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
894 __releases(&sh1->stripe_lock)
895 __releases(&sh2->stripe_lock)
896{
897 spin_unlock(&sh1->stripe_lock);
898 spin_unlock_irq(&sh2->stripe_lock);
899}
900
901/* Only freshly new full stripe normal write stripe can be added to a batch list */
902static bool stripe_can_batch(struct stripe_head *sh)
903{
904 struct r5conf *conf = sh->raid_conf;
905
906 if (raid5_has_log(conf) || raid5_has_ppl(conf))
907 return false;
908 return test_bit(STRIPE_BATCH_READY, &sh->state) &&
909 is_full_stripe_write(sh);
910}
911
912/* we only do back search */
913static void stripe_add_to_batch_list(struct r5conf *conf,
914 struct stripe_head *sh, struct stripe_head *last_sh)
915{
916 struct stripe_head *head;
917 sector_t head_sector, tmp_sec;
918 int hash;
919 int dd_idx;
920
921 /* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
922 tmp_sec = sh->sector;
923 if (!sector_div(tmp_sec, conf->chunk_sectors))
924 return;
925 head_sector = sh->sector - RAID5_STRIPE_SECTORS(conf);
926
927 if (last_sh && head_sector == last_sh->sector) {
928 head = last_sh;
929 atomic_inc(&head->count);
930 } else {
931 hash = stripe_hash_locks_hash(conf, head_sector);
932 spin_lock_irq(conf->hash_locks + hash);
933 head = find_get_stripe(conf, head_sector, conf->generation,
934 hash);
935 spin_unlock_irq(conf->hash_locks + hash);
936 if (!head)
937 return;
938 if (!stripe_can_batch(head))
939 goto out;
940 }
941
942 lock_two_stripes(head, sh);
943 /* clear_batch_ready clear the flag */
944 if (!stripe_can_batch(head) || !stripe_can_batch(sh))
945 goto unlock_out;
946
947 if (sh->batch_head)
948 goto unlock_out;
949
950 dd_idx = 0;
951 while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
952 dd_idx++;
953 if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
954 bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
955 goto unlock_out;
956
957 if (head->batch_head) {
958 spin_lock(&head->batch_head->batch_lock);
959 /* This batch list is already running */
960 if (!stripe_can_batch(head)) {
961 spin_unlock(&head->batch_head->batch_lock);
962 goto unlock_out;
963 }
964 /*
965 * We must assign batch_head of this stripe within the
966 * batch_lock, otherwise clear_batch_ready of batch head
967 * stripe could clear BATCH_READY bit of this stripe and
968 * this stripe->batch_head doesn't get assigned, which
969 * could confuse clear_batch_ready for this stripe
970 */
971 sh->batch_head = head->batch_head;
972
973 /*
974 * at this point, head's BATCH_READY could be cleared, but we
975 * can still add the stripe to batch list
976 */
977 list_add(&sh->batch_list, &head->batch_list);
978 spin_unlock(&head->batch_head->batch_lock);
979 } else {
980 head->batch_head = head;
981 sh->batch_head = head->batch_head;
982 spin_lock(&head->batch_lock);
983 list_add_tail(&sh->batch_list, &head->batch_list);
984 spin_unlock(&head->batch_lock);
985 }
986
987 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
988 if (atomic_dec_return(&conf->preread_active_stripes)
989 < IO_THRESHOLD)
990 md_wakeup_thread(conf->mddev->thread);
991
992 if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
993 int seq = sh->bm_seq;
994 if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
995 sh->batch_head->bm_seq > seq)
996 seq = sh->batch_head->bm_seq;
997 set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
998 sh->batch_head->bm_seq = seq;
999 }
1000
1001 atomic_inc(&sh->count);
1002unlock_out:
1003 unlock_two_stripes(head, sh);
1004out:
1005 raid5_release_stripe(head);
1006}
1007
1008/* Determine if 'data_offset' or 'new_data_offset' should be used
1009 * in this stripe_head.
1010 */
1011static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
1012{
1013 sector_t progress = conf->reshape_progress;
1014 /* Need a memory barrier to make sure we see the value
1015 * of conf->generation, or ->data_offset that was set before
1016 * reshape_progress was updated.
1017 */
1018 smp_rmb();
1019 if (progress == MaxSector)
1020 return 0;
1021 if (sh->generation == conf->generation - 1)
1022 return 0;
1023 /* We are in a reshape, and this is a new-generation stripe,
1024 * so use new_data_offset.
1025 */
1026 return 1;
1027}
1028
1029static void dispatch_bio_list(struct bio_list *tmp)
1030{
1031 struct bio *bio;
1032
1033 while ((bio = bio_list_pop(tmp)))
1034 submit_bio_noacct(bio);
1035}
1036
1037static int cmp_stripe(void *priv, const struct list_head *a,
1038 const struct list_head *b)
1039{
1040 const struct r5pending_data *da = list_entry(a,
1041 struct r5pending_data, sibling);
1042 const struct r5pending_data *db = list_entry(b,
1043 struct r5pending_data, sibling);
1044 if (da->sector > db->sector)
1045 return 1;
1046 if (da->sector < db->sector)
1047 return -1;
1048 return 0;
1049}
1050
1051static void dispatch_defer_bios(struct r5conf *conf, int target,
1052 struct bio_list *list)
1053{
1054 struct r5pending_data *data;
1055 struct list_head *first, *next = NULL;
1056 int cnt = 0;
1057
1058 if (conf->pending_data_cnt == 0)
1059 return;
1060
1061 list_sort(NULL, &conf->pending_list, cmp_stripe);
1062
1063 first = conf->pending_list.next;
1064
1065 /* temporarily move the head */
1066 if (conf->next_pending_data)
1067 list_move_tail(&conf->pending_list,
1068 &conf->next_pending_data->sibling);
1069
1070 while (!list_empty(&conf->pending_list)) {
1071 data = list_first_entry(&conf->pending_list,
1072 struct r5pending_data, sibling);
1073 if (&data->sibling == first)
1074 first = data->sibling.next;
1075 next = data->sibling.next;
1076
1077 bio_list_merge(list, &data->bios);
1078 list_move(&data->sibling, &conf->free_list);
1079 cnt++;
1080 if (cnt >= target)
1081 break;
1082 }
1083 conf->pending_data_cnt -= cnt;
1084 BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
1085
1086 if (next != &conf->pending_list)
1087 conf->next_pending_data = list_entry(next,
1088 struct r5pending_data, sibling);
1089 else
1090 conf->next_pending_data = NULL;
1091 /* list isn't empty */
1092 if (first != &conf->pending_list)
1093 list_move_tail(&conf->pending_list, first);
1094}
1095
1096static void flush_deferred_bios(struct r5conf *conf)
1097{
1098 struct bio_list tmp = BIO_EMPTY_LIST;
1099
1100 if (conf->pending_data_cnt == 0)
1101 return;
1102
1103 spin_lock(&conf->pending_bios_lock);
1104 dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
1105 BUG_ON(conf->pending_data_cnt != 0);
1106 spin_unlock(&conf->pending_bios_lock);
1107
1108 dispatch_bio_list(&tmp);
1109}
1110
1111static void defer_issue_bios(struct r5conf *conf, sector_t sector,
1112 struct bio_list *bios)
1113{
1114 struct bio_list tmp = BIO_EMPTY_LIST;
1115 struct r5pending_data *ent;
1116
1117 spin_lock(&conf->pending_bios_lock);
1118 ent = list_first_entry(&conf->free_list, struct r5pending_data,
1119 sibling);
1120 list_move_tail(&ent->sibling, &conf->pending_list);
1121 ent->sector = sector;
1122 bio_list_init(&ent->bios);
1123 bio_list_merge(&ent->bios, bios);
1124 conf->pending_data_cnt++;
1125 if (conf->pending_data_cnt >= PENDING_IO_MAX)
1126 dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
1127
1128 spin_unlock(&conf->pending_bios_lock);
1129
1130 dispatch_bio_list(&tmp);
1131}
1132
1133static void
1134raid5_end_read_request(struct bio *bi);
1135static void
1136raid5_end_write_request(struct bio *bi);
1137
1138static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
1139{
1140 struct r5conf *conf = sh->raid_conf;
1141 int i, disks = sh->disks;
1142 struct stripe_head *head_sh = sh;
1143 struct bio_list pending_bios = BIO_EMPTY_LIST;
1144 struct r5dev *dev;
1145 bool should_defer;
1146
1147 might_sleep();
1148
1149 if (log_stripe(sh, s) == 0)
1150 return;
1151
1152 should_defer = conf->batch_bio_dispatch && conf->group_cnt;
1153
1154 for (i = disks; i--; ) {
1155 enum req_op op;
1156 blk_opf_t op_flags = 0;
1157 int replace_only = 0;
1158 struct bio *bi, *rbi;
1159 struct md_rdev *rdev, *rrdev = NULL;
1160
1161 sh = head_sh;
1162 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1163 op = REQ_OP_WRITE;
1164 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1165 op_flags = REQ_FUA;
1166 if (test_bit(R5_Discard, &sh->dev[i].flags))
1167 op = REQ_OP_DISCARD;
1168 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1169 op = REQ_OP_READ;
1170 else if (test_and_clear_bit(R5_WantReplace,
1171 &sh->dev[i].flags)) {
1172 op = REQ_OP_WRITE;
1173 replace_only = 1;
1174 } else
1175 continue;
1176 if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1177 op_flags |= REQ_SYNC;
1178
1179again:
1180 dev = &sh->dev[i];
1181 bi = &dev->req;
1182 rbi = &dev->rreq; /* For writing to replacement */
1183
1184 rdev = conf->disks[i].rdev;
1185 rrdev = conf->disks[i].replacement;
1186 if (op_is_write(op)) {
1187 if (replace_only)
1188 rdev = NULL;
1189 if (rdev == rrdev)
1190 /* We raced and saw duplicates */
1191 rrdev = NULL;
1192 } else {
1193 if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1194 rdev = rrdev;
1195 rrdev = NULL;
1196 }
1197
1198 if (rdev && test_bit(Faulty, &rdev->flags))
1199 rdev = NULL;
1200 if (rdev)
1201 atomic_inc(&rdev->nr_pending);
1202 if (rrdev && test_bit(Faulty, &rrdev->flags))
1203 rrdev = NULL;
1204 if (rrdev)
1205 atomic_inc(&rrdev->nr_pending);
1206
1207 /* We have already checked bad blocks for reads. Now
1208 * need to check for writes. We never accept write errors
1209 * on the replacement, so we don't to check rrdev.
1210 */
1211 while (op_is_write(op) && rdev &&
1212 test_bit(WriteErrorSeen, &rdev->flags)) {
1213 int bad = rdev_has_badblock(rdev, sh->sector,
1214 RAID5_STRIPE_SECTORS(conf));
1215 if (!bad)
1216 break;
1217
1218 if (bad < 0) {
1219 set_bit(BlockedBadBlocks, &rdev->flags);
1220 if (!conf->mddev->external &&
1221 conf->mddev->sb_flags) {
1222 /* It is very unlikely, but we might
1223 * still need to write out the
1224 * bad block log - better give it
1225 * a chance*/
1226 md_check_recovery(conf->mddev);
1227 }
1228 /*
1229 * Because md_wait_for_blocked_rdev
1230 * will dec nr_pending, we must
1231 * increment it first.
1232 */
1233 atomic_inc(&rdev->nr_pending);
1234 md_wait_for_blocked_rdev(rdev, conf->mddev);
1235 } else {
1236 /* Acknowledged bad block - skip the write */
1237 rdev_dec_pending(rdev, conf->mddev);
1238 rdev = NULL;
1239 }
1240 }
1241
1242 if (rdev) {
1243 if (s->syncing || s->expanding || s->expanded
1244 || s->replacing)
1245 md_sync_acct(rdev->bdev, RAID5_STRIPE_SECTORS(conf));
1246
1247 set_bit(STRIPE_IO_STARTED, &sh->state);
1248
1249 bio_init(bi, rdev->bdev, &dev->vec, 1, op | op_flags);
1250 bi->bi_end_io = op_is_write(op)
1251 ? raid5_end_write_request
1252 : raid5_end_read_request;
1253 bi->bi_private = sh;
1254
1255 pr_debug("%s: for %llu schedule op %d on disc %d\n",
1256 __func__, (unsigned long long)sh->sector,
1257 bi->bi_opf, i);
1258 atomic_inc(&sh->count);
1259 if (sh != head_sh)
1260 atomic_inc(&head_sh->count);
1261 if (use_new_offset(conf, sh))
1262 bi->bi_iter.bi_sector = (sh->sector
1263 + rdev->new_data_offset);
1264 else
1265 bi->bi_iter.bi_sector = (sh->sector
1266 + rdev->data_offset);
1267 if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1268 bi->bi_opf |= REQ_NOMERGE;
1269
1270 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1271 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1272
1273 if (!op_is_write(op) &&
1274 test_bit(R5_InJournal, &sh->dev[i].flags))
1275 /*
1276 * issuing read for a page in journal, this
1277 * must be preparing for prexor in rmw; read
1278 * the data into orig_page
1279 */
1280 sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1281 else
1282 sh->dev[i].vec.bv_page = sh->dev[i].page;
1283 bi->bi_vcnt = 1;
1284 bi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1285 bi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1286 bi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1287 /*
1288 * If this is discard request, set bi_vcnt 0. We don't
1289 * want to confuse SCSI because SCSI will replace payload
1290 */
1291 if (op == REQ_OP_DISCARD)
1292 bi->bi_vcnt = 0;
1293 if (rrdev)
1294 set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1295
1296 mddev_trace_remap(conf->mddev, bi, sh->dev[i].sector);
1297 if (should_defer && op_is_write(op))
1298 bio_list_add(&pending_bios, bi);
1299 else
1300 submit_bio_noacct(bi);
1301 }
1302 if (rrdev) {
1303 if (s->syncing || s->expanding || s->expanded
1304 || s->replacing)
1305 md_sync_acct(rrdev->bdev, RAID5_STRIPE_SECTORS(conf));
1306
1307 set_bit(STRIPE_IO_STARTED, &sh->state);
1308
1309 bio_init(rbi, rrdev->bdev, &dev->rvec, 1, op | op_flags);
1310 BUG_ON(!op_is_write(op));
1311 rbi->bi_end_io = raid5_end_write_request;
1312 rbi->bi_private = sh;
1313
1314 pr_debug("%s: for %llu schedule op %d on "
1315 "replacement disc %d\n",
1316 __func__, (unsigned long long)sh->sector,
1317 rbi->bi_opf, i);
1318 atomic_inc(&sh->count);
1319 if (sh != head_sh)
1320 atomic_inc(&head_sh->count);
1321 if (use_new_offset(conf, sh))
1322 rbi->bi_iter.bi_sector = (sh->sector
1323 + rrdev->new_data_offset);
1324 else
1325 rbi->bi_iter.bi_sector = (sh->sector
1326 + rrdev->data_offset);
1327 if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1328 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1329 sh->dev[i].rvec.bv_page = sh->dev[i].page;
1330 rbi->bi_vcnt = 1;
1331 rbi->bi_io_vec[0].bv_len = RAID5_STRIPE_SIZE(conf);
1332 rbi->bi_io_vec[0].bv_offset = sh->dev[i].offset;
1333 rbi->bi_iter.bi_size = RAID5_STRIPE_SIZE(conf);
1334 /*
1335 * If this is discard request, set bi_vcnt 0. We don't
1336 * want to confuse SCSI because SCSI will replace payload
1337 */
1338 if (op == REQ_OP_DISCARD)
1339 rbi->bi_vcnt = 0;
1340 mddev_trace_remap(conf->mddev, rbi, sh->dev[i].sector);
1341 if (should_defer && op_is_write(op))
1342 bio_list_add(&pending_bios, rbi);
1343 else
1344 submit_bio_noacct(rbi);
1345 }
1346 if (!rdev && !rrdev) {
1347 pr_debug("skip op %d on disc %d for sector %llu\n",
1348 bi->bi_opf, i, (unsigned long long)sh->sector);
1349 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1350 set_bit(STRIPE_HANDLE, &sh->state);
1351 }
1352
1353 if (!head_sh->batch_head)
1354 continue;
1355 sh = list_first_entry(&sh->batch_list, struct stripe_head,
1356 batch_list);
1357 if (sh != head_sh)
1358 goto again;
1359 }
1360
1361 if (should_defer && !bio_list_empty(&pending_bios))
1362 defer_issue_bios(conf, head_sh->sector, &pending_bios);
1363}
1364
1365static struct dma_async_tx_descriptor *
1366async_copy_data(int frombio, struct bio *bio, struct page **page,
1367 unsigned int poff, sector_t sector, struct dma_async_tx_descriptor *tx,
1368 struct stripe_head *sh, int no_skipcopy)
1369{
1370 struct bio_vec bvl;
1371 struct bvec_iter iter;
1372 struct page *bio_page;
1373 int page_offset;
1374 struct async_submit_ctl submit;
1375 enum async_tx_flags flags = 0;
1376 struct r5conf *conf = sh->raid_conf;
1377
1378 if (bio->bi_iter.bi_sector >= sector)
1379 page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1380 else
1381 page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1382
1383 if (frombio)
1384 flags |= ASYNC_TX_FENCE;
1385 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1386
1387 bio_for_each_segment(bvl, bio, iter) {
1388 int len = bvl.bv_len;
1389 int clen;
1390 int b_offset = 0;
1391
1392 if (page_offset < 0) {
1393 b_offset = -page_offset;
1394 page_offset += b_offset;
1395 len -= b_offset;
1396 }
1397
1398 if (len > 0 && page_offset + len > RAID5_STRIPE_SIZE(conf))
1399 clen = RAID5_STRIPE_SIZE(conf) - page_offset;
1400 else
1401 clen = len;
1402
1403 if (clen > 0) {
1404 b_offset += bvl.bv_offset;
1405 bio_page = bvl.bv_page;
1406 if (frombio) {
1407 if (conf->skip_copy &&
1408 b_offset == 0 && page_offset == 0 &&
1409 clen == RAID5_STRIPE_SIZE(conf) &&
1410 !no_skipcopy)
1411 *page = bio_page;
1412 else
1413 tx = async_memcpy(*page, bio_page, page_offset + poff,
1414 b_offset, clen, &submit);
1415 } else
1416 tx = async_memcpy(bio_page, *page, b_offset,
1417 page_offset + poff, clen, &submit);
1418 }
1419 /* chain the operations */
1420 submit.depend_tx = tx;
1421
1422 if (clen < len) /* hit end of page */
1423 break;
1424 page_offset += len;
1425 }
1426
1427 return tx;
1428}
1429
1430static void ops_complete_biofill(void *stripe_head_ref)
1431{
1432 struct stripe_head *sh = stripe_head_ref;
1433 int i;
1434 struct r5conf *conf = sh->raid_conf;
1435
1436 pr_debug("%s: stripe %llu\n", __func__,
1437 (unsigned long long)sh->sector);
1438
1439 /* clear completed biofills */
1440 for (i = sh->disks; i--; ) {
1441 struct r5dev *dev = &sh->dev[i];
1442
1443 /* acknowledge completion of a biofill operation */
1444 /* and check if we need to reply to a read request,
1445 * new R5_Wantfill requests are held off until
1446 * !STRIPE_BIOFILL_RUN
1447 */
1448 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1449 struct bio *rbi, *rbi2;
1450
1451 BUG_ON(!dev->read);
1452 rbi = dev->read;
1453 dev->read = NULL;
1454 while (rbi && rbi->bi_iter.bi_sector <
1455 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1456 rbi2 = r5_next_bio(conf, rbi, dev->sector);
1457 bio_endio(rbi);
1458 rbi = rbi2;
1459 }
1460 }
1461 }
1462 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1463
1464 set_bit(STRIPE_HANDLE, &sh->state);
1465 raid5_release_stripe(sh);
1466}
1467
1468static void ops_run_biofill(struct stripe_head *sh)
1469{
1470 struct dma_async_tx_descriptor *tx = NULL;
1471 struct async_submit_ctl submit;
1472 int i;
1473 struct r5conf *conf = sh->raid_conf;
1474
1475 BUG_ON(sh->batch_head);
1476 pr_debug("%s: stripe %llu\n", __func__,
1477 (unsigned long long)sh->sector);
1478
1479 for (i = sh->disks; i--; ) {
1480 struct r5dev *dev = &sh->dev[i];
1481 if (test_bit(R5_Wantfill, &dev->flags)) {
1482 struct bio *rbi;
1483 spin_lock_irq(&sh->stripe_lock);
1484 dev->read = rbi = dev->toread;
1485 dev->toread = NULL;
1486 spin_unlock_irq(&sh->stripe_lock);
1487 while (rbi && rbi->bi_iter.bi_sector <
1488 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1489 tx = async_copy_data(0, rbi, &dev->page,
1490 dev->offset,
1491 dev->sector, tx, sh, 0);
1492 rbi = r5_next_bio(conf, rbi, dev->sector);
1493 }
1494 }
1495 }
1496
1497 atomic_inc(&sh->count);
1498 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1499 async_trigger_callback(&submit);
1500}
1501
1502static void mark_target_uptodate(struct stripe_head *sh, int target)
1503{
1504 struct r5dev *tgt;
1505
1506 if (target < 0)
1507 return;
1508
1509 tgt = &sh->dev[target];
1510 set_bit(R5_UPTODATE, &tgt->flags);
1511 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1512 clear_bit(R5_Wantcompute, &tgt->flags);
1513}
1514
1515static void ops_complete_compute(void *stripe_head_ref)
1516{
1517 struct stripe_head *sh = stripe_head_ref;
1518
1519 pr_debug("%s: stripe %llu\n", __func__,
1520 (unsigned long long)sh->sector);
1521
1522 /* mark the computed target(s) as uptodate */
1523 mark_target_uptodate(sh, sh->ops.target);
1524 mark_target_uptodate(sh, sh->ops.target2);
1525
1526 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1527 if (sh->check_state == check_state_compute_run)
1528 sh->check_state = check_state_compute_result;
1529 set_bit(STRIPE_HANDLE, &sh->state);
1530 raid5_release_stripe(sh);
1531}
1532
1533/* return a pointer to the address conversion region of the scribble buffer */
1534static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1535{
1536 return percpu->scribble + i * percpu->scribble_obj_size;
1537}
1538
1539/* return a pointer to the address conversion region of the scribble buffer */
1540static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1541 struct raid5_percpu *percpu, int i)
1542{
1543 return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1544}
1545
1546/*
1547 * Return a pointer to record offset address.
1548 */
1549static unsigned int *
1550to_addr_offs(struct stripe_head *sh, struct raid5_percpu *percpu)
1551{
1552 return (unsigned int *) (to_addr_conv(sh, percpu, 0) + sh->disks + 2);
1553}
1554
1555static struct dma_async_tx_descriptor *
1556ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1557{
1558 int disks = sh->disks;
1559 struct page **xor_srcs = to_addr_page(percpu, 0);
1560 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1561 int target = sh->ops.target;
1562 struct r5dev *tgt = &sh->dev[target];
1563 struct page *xor_dest = tgt->page;
1564 unsigned int off_dest = tgt->offset;
1565 int count = 0;
1566 struct dma_async_tx_descriptor *tx;
1567 struct async_submit_ctl submit;
1568 int i;
1569
1570 BUG_ON(sh->batch_head);
1571
1572 pr_debug("%s: stripe %llu block: %d\n",
1573 __func__, (unsigned long long)sh->sector, target);
1574 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1575
1576 for (i = disks; i--; ) {
1577 if (i != target) {
1578 off_srcs[count] = sh->dev[i].offset;
1579 xor_srcs[count++] = sh->dev[i].page;
1580 }
1581 }
1582
1583 atomic_inc(&sh->count);
1584
1585 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1586 ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1587 if (unlikely(count == 1))
1588 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
1589 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1590 else
1591 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1592 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1593
1594 return tx;
1595}
1596
1597/* set_syndrome_sources - populate source buffers for gen_syndrome
1598 * @srcs - (struct page *) array of size sh->disks
1599 * @offs - (unsigned int) array of offset for each page
1600 * @sh - stripe_head to parse
1601 *
1602 * Populates srcs in proper layout order for the stripe and returns the
1603 * 'count' of sources to be used in a call to async_gen_syndrome. The P
1604 * destination buffer is recorded in srcs[count] and the Q destination
1605 * is recorded in srcs[count+1]].
1606 */
1607static int set_syndrome_sources(struct page **srcs,
1608 unsigned int *offs,
1609 struct stripe_head *sh,
1610 int srctype)
1611{
1612 int disks = sh->disks;
1613 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1614 int d0_idx = raid6_d0(sh);
1615 int count;
1616 int i;
1617
1618 for (i = 0; i < disks; i++)
1619 srcs[i] = NULL;
1620
1621 count = 0;
1622 i = d0_idx;
1623 do {
1624 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1625 struct r5dev *dev = &sh->dev[i];
1626
1627 if (i == sh->qd_idx || i == sh->pd_idx ||
1628 (srctype == SYNDROME_SRC_ALL) ||
1629 (srctype == SYNDROME_SRC_WANT_DRAIN &&
1630 (test_bit(R5_Wantdrain, &dev->flags) ||
1631 test_bit(R5_InJournal, &dev->flags))) ||
1632 (srctype == SYNDROME_SRC_WRITTEN &&
1633 (dev->written ||
1634 test_bit(R5_InJournal, &dev->flags)))) {
1635 if (test_bit(R5_InJournal, &dev->flags))
1636 srcs[slot] = sh->dev[i].orig_page;
1637 else
1638 srcs[slot] = sh->dev[i].page;
1639 /*
1640 * For R5_InJournal, PAGE_SIZE must be 4KB and will
1641 * not shared page. In that case, dev[i].offset
1642 * is 0.
1643 */
1644 offs[slot] = sh->dev[i].offset;
1645 }
1646 i = raid6_next_disk(i, disks);
1647 } while (i != d0_idx);
1648
1649 return syndrome_disks;
1650}
1651
1652static struct dma_async_tx_descriptor *
1653ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1654{
1655 int disks = sh->disks;
1656 struct page **blocks = to_addr_page(percpu, 0);
1657 unsigned int *offs = to_addr_offs(sh, percpu);
1658 int target;
1659 int qd_idx = sh->qd_idx;
1660 struct dma_async_tx_descriptor *tx;
1661 struct async_submit_ctl submit;
1662 struct r5dev *tgt;
1663 struct page *dest;
1664 unsigned int dest_off;
1665 int i;
1666 int count;
1667
1668 BUG_ON(sh->batch_head);
1669 if (sh->ops.target < 0)
1670 target = sh->ops.target2;
1671 else if (sh->ops.target2 < 0)
1672 target = sh->ops.target;
1673 else
1674 /* we should only have one valid target */
1675 BUG();
1676 BUG_ON(target < 0);
1677 pr_debug("%s: stripe %llu block: %d\n",
1678 __func__, (unsigned long long)sh->sector, target);
1679
1680 tgt = &sh->dev[target];
1681 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1682 dest = tgt->page;
1683 dest_off = tgt->offset;
1684
1685 atomic_inc(&sh->count);
1686
1687 if (target == qd_idx) {
1688 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1689 blocks[count] = NULL; /* regenerating p is not necessary */
1690 BUG_ON(blocks[count+1] != dest); /* q should already be set */
1691 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1692 ops_complete_compute, sh,
1693 to_addr_conv(sh, percpu, 0));
1694 tx = async_gen_syndrome(blocks, offs, count+2,
1695 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1696 } else {
1697 /* Compute any data- or p-drive using XOR */
1698 count = 0;
1699 for (i = disks; i-- ; ) {
1700 if (i == target || i == qd_idx)
1701 continue;
1702 offs[count] = sh->dev[i].offset;
1703 blocks[count++] = sh->dev[i].page;
1704 }
1705
1706 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1707 NULL, ops_complete_compute, sh,
1708 to_addr_conv(sh, percpu, 0));
1709 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1710 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1711 }
1712
1713 return tx;
1714}
1715
1716static struct dma_async_tx_descriptor *
1717ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1718{
1719 int i, count, disks = sh->disks;
1720 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1721 int d0_idx = raid6_d0(sh);
1722 int faila = -1, failb = -1;
1723 int target = sh->ops.target;
1724 int target2 = sh->ops.target2;
1725 struct r5dev *tgt = &sh->dev[target];
1726 struct r5dev *tgt2 = &sh->dev[target2];
1727 struct dma_async_tx_descriptor *tx;
1728 struct page **blocks = to_addr_page(percpu, 0);
1729 unsigned int *offs = to_addr_offs(sh, percpu);
1730 struct async_submit_ctl submit;
1731
1732 BUG_ON(sh->batch_head);
1733 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1734 __func__, (unsigned long long)sh->sector, target, target2);
1735 BUG_ON(target < 0 || target2 < 0);
1736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1737 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1738
1739 /* we need to open-code set_syndrome_sources to handle the
1740 * slot number conversion for 'faila' and 'failb'
1741 */
1742 for (i = 0; i < disks ; i++) {
1743 offs[i] = 0;
1744 blocks[i] = NULL;
1745 }
1746 count = 0;
1747 i = d0_idx;
1748 do {
1749 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1750
1751 offs[slot] = sh->dev[i].offset;
1752 blocks[slot] = sh->dev[i].page;
1753
1754 if (i == target)
1755 faila = slot;
1756 if (i == target2)
1757 failb = slot;
1758 i = raid6_next_disk(i, disks);
1759 } while (i != d0_idx);
1760
1761 BUG_ON(faila == failb);
1762 if (failb < faila)
1763 swap(faila, failb);
1764 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1765 __func__, (unsigned long long)sh->sector, faila, failb);
1766
1767 atomic_inc(&sh->count);
1768
1769 if (failb == syndrome_disks+1) {
1770 /* Q disk is one of the missing disks */
1771 if (faila == syndrome_disks) {
1772 /* Missing P+Q, just recompute */
1773 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1774 ops_complete_compute, sh,
1775 to_addr_conv(sh, percpu, 0));
1776 return async_gen_syndrome(blocks, offs, syndrome_disks+2,
1777 RAID5_STRIPE_SIZE(sh->raid_conf),
1778 &submit);
1779 } else {
1780 struct page *dest;
1781 unsigned int dest_off;
1782 int data_target;
1783 int qd_idx = sh->qd_idx;
1784
1785 /* Missing D+Q: recompute D from P, then recompute Q */
1786 if (target == qd_idx)
1787 data_target = target2;
1788 else
1789 data_target = target;
1790
1791 count = 0;
1792 for (i = disks; i-- ; ) {
1793 if (i == data_target || i == qd_idx)
1794 continue;
1795 offs[count] = sh->dev[i].offset;
1796 blocks[count++] = sh->dev[i].page;
1797 }
1798 dest = sh->dev[data_target].page;
1799 dest_off = sh->dev[data_target].offset;
1800 init_async_submit(&submit,
1801 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1802 NULL, NULL, NULL,
1803 to_addr_conv(sh, percpu, 0));
1804 tx = async_xor_offs(dest, dest_off, blocks, offs, count,
1805 RAID5_STRIPE_SIZE(sh->raid_conf),
1806 &submit);
1807
1808 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_ALL);
1809 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1810 ops_complete_compute, sh,
1811 to_addr_conv(sh, percpu, 0));
1812 return async_gen_syndrome(blocks, offs, count+2,
1813 RAID5_STRIPE_SIZE(sh->raid_conf),
1814 &submit);
1815 }
1816 } else {
1817 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1818 ops_complete_compute, sh,
1819 to_addr_conv(sh, percpu, 0));
1820 if (failb == syndrome_disks) {
1821 /* We're missing D+P. */
1822 return async_raid6_datap_recov(syndrome_disks+2,
1823 RAID5_STRIPE_SIZE(sh->raid_conf),
1824 faila,
1825 blocks, offs, &submit);
1826 } else {
1827 /* We're missing D+D. */
1828 return async_raid6_2data_recov(syndrome_disks+2,
1829 RAID5_STRIPE_SIZE(sh->raid_conf),
1830 faila, failb,
1831 blocks, offs, &submit);
1832 }
1833 }
1834}
1835
1836static void ops_complete_prexor(void *stripe_head_ref)
1837{
1838 struct stripe_head *sh = stripe_head_ref;
1839
1840 pr_debug("%s: stripe %llu\n", __func__,
1841 (unsigned long long)sh->sector);
1842
1843 if (r5c_is_writeback(sh->raid_conf->log))
1844 /*
1845 * raid5-cache write back uses orig_page during prexor.
1846 * After prexor, it is time to free orig_page
1847 */
1848 r5c_release_extra_page(sh);
1849}
1850
1851static struct dma_async_tx_descriptor *
1852ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1853 struct dma_async_tx_descriptor *tx)
1854{
1855 int disks = sh->disks;
1856 struct page **xor_srcs = to_addr_page(percpu, 0);
1857 unsigned int *off_srcs = to_addr_offs(sh, percpu);
1858 int count = 0, pd_idx = sh->pd_idx, i;
1859 struct async_submit_ctl submit;
1860
1861 /* existing parity data subtracted */
1862 unsigned int off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
1863 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1864
1865 BUG_ON(sh->batch_head);
1866 pr_debug("%s: stripe %llu\n", __func__,
1867 (unsigned long long)sh->sector);
1868
1869 for (i = disks; i--; ) {
1870 struct r5dev *dev = &sh->dev[i];
1871 /* Only process blocks that are known to be uptodate */
1872 if (test_bit(R5_InJournal, &dev->flags)) {
1873 /*
1874 * For this case, PAGE_SIZE must be equal to 4KB and
1875 * page offset is zero.
1876 */
1877 off_srcs[count] = dev->offset;
1878 xor_srcs[count++] = dev->orig_page;
1879 } else if (test_bit(R5_Wantdrain, &dev->flags)) {
1880 off_srcs[count] = dev->offset;
1881 xor_srcs[count++] = dev->page;
1882 }
1883 }
1884
1885 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1886 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1887 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
1888 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1889
1890 return tx;
1891}
1892
1893static struct dma_async_tx_descriptor *
1894ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1895 struct dma_async_tx_descriptor *tx)
1896{
1897 struct page **blocks = to_addr_page(percpu, 0);
1898 unsigned int *offs = to_addr_offs(sh, percpu);
1899 int count;
1900 struct async_submit_ctl submit;
1901
1902 pr_debug("%s: stripe %llu\n", __func__,
1903 (unsigned long long)sh->sector);
1904
1905 count = set_syndrome_sources(blocks, offs, sh, SYNDROME_SRC_WANT_DRAIN);
1906
1907 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1908 ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1909 tx = async_gen_syndrome(blocks, offs, count+2,
1910 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
1911
1912 return tx;
1913}
1914
1915static struct dma_async_tx_descriptor *
1916ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1917{
1918 struct r5conf *conf = sh->raid_conf;
1919 int disks = sh->disks;
1920 int i;
1921 struct stripe_head *head_sh = sh;
1922
1923 pr_debug("%s: stripe %llu\n", __func__,
1924 (unsigned long long)sh->sector);
1925
1926 for (i = disks; i--; ) {
1927 struct r5dev *dev;
1928 struct bio *chosen;
1929
1930 sh = head_sh;
1931 if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1932 struct bio *wbi;
1933
1934again:
1935 dev = &sh->dev[i];
1936 /*
1937 * clear R5_InJournal, so when rewriting a page in
1938 * journal, it is not skipped by r5l_log_stripe()
1939 */
1940 clear_bit(R5_InJournal, &dev->flags);
1941 spin_lock_irq(&sh->stripe_lock);
1942 chosen = dev->towrite;
1943 dev->towrite = NULL;
1944 sh->overwrite_disks = 0;
1945 BUG_ON(dev->written);
1946 wbi = dev->written = chosen;
1947 spin_unlock_irq(&sh->stripe_lock);
1948 WARN_ON(dev->page != dev->orig_page);
1949
1950 while (wbi && wbi->bi_iter.bi_sector <
1951 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
1952 if (wbi->bi_opf & REQ_FUA)
1953 set_bit(R5_WantFUA, &dev->flags);
1954 if (wbi->bi_opf & REQ_SYNC)
1955 set_bit(R5_SyncIO, &dev->flags);
1956 if (bio_op(wbi) == REQ_OP_DISCARD)
1957 set_bit(R5_Discard, &dev->flags);
1958 else {
1959 tx = async_copy_data(1, wbi, &dev->page,
1960 dev->offset,
1961 dev->sector, tx, sh,
1962 r5c_is_writeback(conf->log));
1963 if (dev->page != dev->orig_page &&
1964 !r5c_is_writeback(conf->log)) {
1965 set_bit(R5_SkipCopy, &dev->flags);
1966 clear_bit(R5_UPTODATE, &dev->flags);
1967 clear_bit(R5_OVERWRITE, &dev->flags);
1968 }
1969 }
1970 wbi = r5_next_bio(conf, wbi, dev->sector);
1971 }
1972
1973 if (head_sh->batch_head) {
1974 sh = list_first_entry(&sh->batch_list,
1975 struct stripe_head,
1976 batch_list);
1977 if (sh == head_sh)
1978 continue;
1979 goto again;
1980 }
1981 }
1982 }
1983
1984 return tx;
1985}
1986
1987static void ops_complete_reconstruct(void *stripe_head_ref)
1988{
1989 struct stripe_head *sh = stripe_head_ref;
1990 int disks = sh->disks;
1991 int pd_idx = sh->pd_idx;
1992 int qd_idx = sh->qd_idx;
1993 int i;
1994 bool fua = false, sync = false, discard = false;
1995
1996 pr_debug("%s: stripe %llu\n", __func__,
1997 (unsigned long long)sh->sector);
1998
1999 for (i = disks; i--; ) {
2000 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
2001 sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
2002 discard |= test_bit(R5_Discard, &sh->dev[i].flags);
2003 }
2004
2005 for (i = disks; i--; ) {
2006 struct r5dev *dev = &sh->dev[i];
2007
2008 if (dev->written || i == pd_idx || i == qd_idx) {
2009 if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
2010 set_bit(R5_UPTODATE, &dev->flags);
2011 if (test_bit(STRIPE_EXPAND_READY, &sh->state))
2012 set_bit(R5_Expanded, &dev->flags);
2013 }
2014 if (fua)
2015 set_bit(R5_WantFUA, &dev->flags);
2016 if (sync)
2017 set_bit(R5_SyncIO, &dev->flags);
2018 }
2019 }
2020
2021 if (sh->reconstruct_state == reconstruct_state_drain_run)
2022 sh->reconstruct_state = reconstruct_state_drain_result;
2023 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
2024 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
2025 else {
2026 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
2027 sh->reconstruct_state = reconstruct_state_result;
2028 }
2029
2030 set_bit(STRIPE_HANDLE, &sh->state);
2031 raid5_release_stripe(sh);
2032}
2033
2034static void
2035ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
2036 struct dma_async_tx_descriptor *tx)
2037{
2038 int disks = sh->disks;
2039 struct page **xor_srcs;
2040 unsigned int *off_srcs;
2041 struct async_submit_ctl submit;
2042 int count, pd_idx = sh->pd_idx, i;
2043 struct page *xor_dest;
2044 unsigned int off_dest;
2045 int prexor = 0;
2046 unsigned long flags;
2047 int j = 0;
2048 struct stripe_head *head_sh = sh;
2049 int last_stripe;
2050
2051 pr_debug("%s: stripe %llu\n", __func__,
2052 (unsigned long long)sh->sector);
2053
2054 for (i = 0; i < sh->disks; i++) {
2055 if (pd_idx == i)
2056 continue;
2057 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2058 break;
2059 }
2060 if (i >= sh->disks) {
2061 atomic_inc(&sh->count);
2062 set_bit(R5_Discard, &sh->dev[pd_idx].flags);
2063 ops_complete_reconstruct(sh);
2064 return;
2065 }
2066again:
2067 count = 0;
2068 xor_srcs = to_addr_page(percpu, j);
2069 off_srcs = to_addr_offs(sh, percpu);
2070 /* check if prexor is active which means only process blocks
2071 * that are part of a read-modify-write (written)
2072 */
2073 if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2074 prexor = 1;
2075 off_dest = off_srcs[count] = sh->dev[pd_idx].offset;
2076 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
2077 for (i = disks; i--; ) {
2078 struct r5dev *dev = &sh->dev[i];
2079 if (head_sh->dev[i].written ||
2080 test_bit(R5_InJournal, &head_sh->dev[i].flags)) {
2081 off_srcs[count] = dev->offset;
2082 xor_srcs[count++] = dev->page;
2083 }
2084 }
2085 } else {
2086 xor_dest = sh->dev[pd_idx].page;
2087 off_dest = sh->dev[pd_idx].offset;
2088 for (i = disks; i--; ) {
2089 struct r5dev *dev = &sh->dev[i];
2090 if (i != pd_idx) {
2091 off_srcs[count] = dev->offset;
2092 xor_srcs[count++] = dev->page;
2093 }
2094 }
2095 }
2096
2097 /* 1/ if we prexor'd then the dest is reused as a source
2098 * 2/ if we did not prexor then we are redoing the parity
2099 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
2100 * for the synchronous xor case
2101 */
2102 last_stripe = !head_sh->batch_head ||
2103 list_first_entry(&sh->batch_list,
2104 struct stripe_head, batch_list) == head_sh;
2105 if (last_stripe) {
2106 flags = ASYNC_TX_ACK |
2107 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
2108
2109 atomic_inc(&head_sh->count);
2110 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
2111 to_addr_conv(sh, percpu, j));
2112 } else {
2113 flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
2114 init_async_submit(&submit, flags, tx, NULL, NULL,
2115 to_addr_conv(sh, percpu, j));
2116 }
2117
2118 if (unlikely(count == 1))
2119 tx = async_memcpy(xor_dest, xor_srcs[0], off_dest, off_srcs[0],
2120 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2121 else
2122 tx = async_xor_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2123 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2124 if (!last_stripe) {
2125 j++;
2126 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2127 batch_list);
2128 goto again;
2129 }
2130}
2131
2132static void
2133ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
2134 struct dma_async_tx_descriptor *tx)
2135{
2136 struct async_submit_ctl submit;
2137 struct page **blocks;
2138 unsigned int *offs;
2139 int count, i, j = 0;
2140 struct stripe_head *head_sh = sh;
2141 int last_stripe;
2142 int synflags;
2143 unsigned long txflags;
2144
2145 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
2146
2147 for (i = 0; i < sh->disks; i++) {
2148 if (sh->pd_idx == i || sh->qd_idx == i)
2149 continue;
2150 if (!test_bit(R5_Discard, &sh->dev[i].flags))
2151 break;
2152 }
2153 if (i >= sh->disks) {
2154 atomic_inc(&sh->count);
2155 set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
2156 set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
2157 ops_complete_reconstruct(sh);
2158 return;
2159 }
2160
2161again:
2162 blocks = to_addr_page(percpu, j);
2163 offs = to_addr_offs(sh, percpu);
2164
2165 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
2166 synflags = SYNDROME_SRC_WRITTEN;
2167 txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
2168 } else {
2169 synflags = SYNDROME_SRC_ALL;
2170 txflags = ASYNC_TX_ACK;
2171 }
2172
2173 count = set_syndrome_sources(blocks, offs, sh, synflags);
2174 last_stripe = !head_sh->batch_head ||
2175 list_first_entry(&sh->batch_list,
2176 struct stripe_head, batch_list) == head_sh;
2177
2178 if (last_stripe) {
2179 atomic_inc(&head_sh->count);
2180 init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
2181 head_sh, to_addr_conv(sh, percpu, j));
2182 } else
2183 init_async_submit(&submit, 0, tx, NULL, NULL,
2184 to_addr_conv(sh, percpu, j));
2185 tx = async_gen_syndrome(blocks, offs, count+2,
2186 RAID5_STRIPE_SIZE(sh->raid_conf), &submit);
2187 if (!last_stripe) {
2188 j++;
2189 sh = list_first_entry(&sh->batch_list, struct stripe_head,
2190 batch_list);
2191 goto again;
2192 }
2193}
2194
2195static void ops_complete_check(void *stripe_head_ref)
2196{
2197 struct stripe_head *sh = stripe_head_ref;
2198
2199 pr_debug("%s: stripe %llu\n", __func__,
2200 (unsigned long long)sh->sector);
2201
2202 sh->check_state = check_state_check_result;
2203 set_bit(STRIPE_HANDLE, &sh->state);
2204 raid5_release_stripe(sh);
2205}
2206
2207static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
2208{
2209 int disks = sh->disks;
2210 int pd_idx = sh->pd_idx;
2211 int qd_idx = sh->qd_idx;
2212 struct page *xor_dest;
2213 unsigned int off_dest;
2214 struct page **xor_srcs = to_addr_page(percpu, 0);
2215 unsigned int *off_srcs = to_addr_offs(sh, percpu);
2216 struct dma_async_tx_descriptor *tx;
2217 struct async_submit_ctl submit;
2218 int count;
2219 int i;
2220
2221 pr_debug("%s: stripe %llu\n", __func__,
2222 (unsigned long long)sh->sector);
2223
2224 BUG_ON(sh->batch_head);
2225 count = 0;
2226 xor_dest = sh->dev[pd_idx].page;
2227 off_dest = sh->dev[pd_idx].offset;
2228 off_srcs[count] = off_dest;
2229 xor_srcs[count++] = xor_dest;
2230 for (i = disks; i--; ) {
2231 if (i == pd_idx || i == qd_idx)
2232 continue;
2233 off_srcs[count] = sh->dev[i].offset;
2234 xor_srcs[count++] = sh->dev[i].page;
2235 }
2236
2237 init_async_submit(&submit, 0, NULL, NULL, NULL,
2238 to_addr_conv(sh, percpu, 0));
2239 tx = async_xor_val_offs(xor_dest, off_dest, xor_srcs, off_srcs, count,
2240 RAID5_STRIPE_SIZE(sh->raid_conf),
2241 &sh->ops.zero_sum_result, &submit);
2242
2243 atomic_inc(&sh->count);
2244 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2245 tx = async_trigger_callback(&submit);
2246}
2247
2248static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2249{
2250 struct page **srcs = to_addr_page(percpu, 0);
2251 unsigned int *offs = to_addr_offs(sh, percpu);
2252 struct async_submit_ctl submit;
2253 int count;
2254
2255 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2256 (unsigned long long)sh->sector, checkp);
2257
2258 BUG_ON(sh->batch_head);
2259 count = set_syndrome_sources(srcs, offs, sh, SYNDROME_SRC_ALL);
2260 if (!checkp)
2261 srcs[count] = NULL;
2262
2263 atomic_inc(&sh->count);
2264 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2265 sh, to_addr_conv(sh, percpu, 0));
2266 async_syndrome_val(srcs, offs, count+2,
2267 RAID5_STRIPE_SIZE(sh->raid_conf),
2268 &sh->ops.zero_sum_result, percpu->spare_page, 0, &submit);
2269}
2270
2271static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2272{
2273 int overlap_clear = 0, i, disks = sh->disks;
2274 struct dma_async_tx_descriptor *tx = NULL;
2275 struct r5conf *conf = sh->raid_conf;
2276 int level = conf->level;
2277 struct raid5_percpu *percpu;
2278
2279 local_lock(&conf->percpu->lock);
2280 percpu = this_cpu_ptr(conf->percpu);
2281 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2282 ops_run_biofill(sh);
2283 overlap_clear++;
2284 }
2285
2286 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2287 if (level < 6)
2288 tx = ops_run_compute5(sh, percpu);
2289 else {
2290 if (sh->ops.target2 < 0 || sh->ops.target < 0)
2291 tx = ops_run_compute6_1(sh, percpu);
2292 else
2293 tx = ops_run_compute6_2(sh, percpu);
2294 }
2295 /* terminate the chain if reconstruct is not set to be run */
2296 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2297 async_tx_ack(tx);
2298 }
2299
2300 if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2301 if (level < 6)
2302 tx = ops_run_prexor5(sh, percpu, tx);
2303 else
2304 tx = ops_run_prexor6(sh, percpu, tx);
2305 }
2306
2307 if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2308 tx = ops_run_partial_parity(sh, percpu, tx);
2309
2310 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2311 tx = ops_run_biodrain(sh, tx);
2312 overlap_clear++;
2313 }
2314
2315 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2316 if (level < 6)
2317 ops_run_reconstruct5(sh, percpu, tx);
2318 else
2319 ops_run_reconstruct6(sh, percpu, tx);
2320 }
2321
2322 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2323 if (sh->check_state == check_state_run)
2324 ops_run_check_p(sh, percpu);
2325 else if (sh->check_state == check_state_run_q)
2326 ops_run_check_pq(sh, percpu, 0);
2327 else if (sh->check_state == check_state_run_pq)
2328 ops_run_check_pq(sh, percpu, 1);
2329 else
2330 BUG();
2331 }
2332
2333 if (overlap_clear && !sh->batch_head) {
2334 for (i = disks; i--; ) {
2335 struct r5dev *dev = &sh->dev[i];
2336 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2337 wake_up_bit(&dev->flags, R5_Overlap);
2338 }
2339 }
2340 local_unlock(&conf->percpu->lock);
2341}
2342
2343static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2344{
2345#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2346 kfree(sh->pages);
2347#endif
2348 if (sh->ppl_page)
2349 __free_page(sh->ppl_page);
2350 kmem_cache_free(sc, sh);
2351}
2352
2353static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2354 int disks, struct r5conf *conf)
2355{
2356 struct stripe_head *sh;
2357
2358 sh = kmem_cache_zalloc(sc, gfp);
2359 if (sh) {
2360 spin_lock_init(&sh->stripe_lock);
2361 spin_lock_init(&sh->batch_lock);
2362 INIT_LIST_HEAD(&sh->batch_list);
2363 INIT_LIST_HEAD(&sh->lru);
2364 INIT_LIST_HEAD(&sh->r5c);
2365 INIT_LIST_HEAD(&sh->log_list);
2366 atomic_set(&sh->count, 1);
2367 sh->raid_conf = conf;
2368 sh->log_start = MaxSector;
2369
2370 if (raid5_has_ppl(conf)) {
2371 sh->ppl_page = alloc_page(gfp);
2372 if (!sh->ppl_page) {
2373 free_stripe(sc, sh);
2374 return NULL;
2375 }
2376 }
2377#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2378 if (init_stripe_shared_pages(sh, conf, disks)) {
2379 free_stripe(sc, sh);
2380 return NULL;
2381 }
2382#endif
2383 }
2384 return sh;
2385}
2386static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2387{
2388 struct stripe_head *sh;
2389
2390 sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2391 if (!sh)
2392 return 0;
2393
2394 if (grow_buffers(sh, gfp)) {
2395 shrink_buffers(sh);
2396 free_stripe(conf->slab_cache, sh);
2397 return 0;
2398 }
2399 sh->hash_lock_index =
2400 conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2401 /* we just created an active stripe so... */
2402 atomic_inc(&conf->active_stripes);
2403
2404 raid5_release_stripe(sh);
2405 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes + 1);
2406 return 1;
2407}
2408
2409static int grow_stripes(struct r5conf *conf, int num)
2410{
2411 struct kmem_cache *sc;
2412 size_t namelen = sizeof(conf->cache_name[0]);
2413 int devs = max(conf->raid_disks, conf->previous_raid_disks);
2414
2415 if (mddev_is_dm(conf->mddev))
2416 snprintf(conf->cache_name[0], namelen,
2417 "raid%d-%p", conf->level, conf->mddev);
2418 else
2419 snprintf(conf->cache_name[0], namelen,
2420 "raid%d-%s", conf->level, mdname(conf->mddev));
2421 snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2422
2423 conf->active_name = 0;
2424 sc = kmem_cache_create(conf->cache_name[conf->active_name],
2425 struct_size_t(struct stripe_head, dev, devs),
2426 0, 0, NULL);
2427 if (!sc)
2428 return 1;
2429 conf->slab_cache = sc;
2430 conf->pool_size = devs;
2431 while (num--)
2432 if (!grow_one_stripe(conf, GFP_KERNEL))
2433 return 1;
2434
2435 return 0;
2436}
2437
2438/**
2439 * scribble_alloc - allocate percpu scribble buffer for required size
2440 * of the scribble region
2441 * @percpu: from for_each_present_cpu() of the caller
2442 * @num: total number of disks in the array
2443 * @cnt: scribble objs count for required size of the scribble region
2444 *
2445 * The scribble buffer size must be enough to contain:
2446 * 1/ a struct page pointer for each device in the array +2
2447 * 2/ room to convert each entry in (1) to its corresponding dma
2448 * (dma_map_page()) or page (page_address()) address.
2449 *
2450 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2451 * calculate over all devices (not just the data blocks), using zeros in place
2452 * of the P and Q blocks.
2453 */
2454static int scribble_alloc(struct raid5_percpu *percpu,
2455 int num, int cnt)
2456{
2457 size_t obj_size =
2458 sizeof(struct page *) * (num + 2) +
2459 sizeof(addr_conv_t) * (num + 2) +
2460 sizeof(unsigned int) * (num + 2);
2461 void *scribble;
2462
2463 /*
2464 * If here is in raid array suspend context, it is in memalloc noio
2465 * context as well, there is no potential recursive memory reclaim
2466 * I/Os with the GFP_KERNEL flag.
2467 */
2468 scribble = kvmalloc_array(cnt, obj_size, GFP_KERNEL);
2469 if (!scribble)
2470 return -ENOMEM;
2471
2472 kvfree(percpu->scribble);
2473
2474 percpu->scribble = scribble;
2475 percpu->scribble_obj_size = obj_size;
2476 return 0;
2477}
2478
2479static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2480{
2481 unsigned long cpu;
2482 int err = 0;
2483
2484 /* Never shrink. */
2485 if (conf->scribble_disks >= new_disks &&
2486 conf->scribble_sectors >= new_sectors)
2487 return 0;
2488
2489 raid5_quiesce(conf->mddev, true);
2490 cpus_read_lock();
2491
2492 for_each_present_cpu(cpu) {
2493 struct raid5_percpu *percpu;
2494
2495 percpu = per_cpu_ptr(conf->percpu, cpu);
2496 err = scribble_alloc(percpu, new_disks,
2497 new_sectors / RAID5_STRIPE_SECTORS(conf));
2498 if (err)
2499 break;
2500 }
2501
2502 cpus_read_unlock();
2503 raid5_quiesce(conf->mddev, false);
2504
2505 if (!err) {
2506 conf->scribble_disks = new_disks;
2507 conf->scribble_sectors = new_sectors;
2508 }
2509 return err;
2510}
2511
2512static int resize_stripes(struct r5conf *conf, int newsize)
2513{
2514 /* Make all the stripes able to hold 'newsize' devices.
2515 * New slots in each stripe get 'page' set to a new page.
2516 *
2517 * This happens in stages:
2518 * 1/ create a new kmem_cache and allocate the required number of
2519 * stripe_heads.
2520 * 2/ gather all the old stripe_heads and transfer the pages across
2521 * to the new stripe_heads. This will have the side effect of
2522 * freezing the array as once all stripe_heads have been collected,
2523 * no IO will be possible. Old stripe heads are freed once their
2524 * pages have been transferred over, and the old kmem_cache is
2525 * freed when all stripes are done.
2526 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
2527 * we simple return a failure status - no need to clean anything up.
2528 * 4/ allocate new pages for the new slots in the new stripe_heads.
2529 * If this fails, we don't bother trying the shrink the
2530 * stripe_heads down again, we just leave them as they are.
2531 * As each stripe_head is processed the new one is released into
2532 * active service.
2533 *
2534 * Once step2 is started, we cannot afford to wait for a write,
2535 * so we use GFP_NOIO allocations.
2536 */
2537 struct stripe_head *osh, *nsh;
2538 LIST_HEAD(newstripes);
2539 struct disk_info *ndisks;
2540 int err = 0;
2541 struct kmem_cache *sc;
2542 int i;
2543 int hash, cnt;
2544
2545 md_allow_write(conf->mddev);
2546
2547 /* Step 1 */
2548 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2549 struct_size_t(struct stripe_head, dev, newsize),
2550 0, 0, NULL);
2551 if (!sc)
2552 return -ENOMEM;
2553
2554 /* Need to ensure auto-resizing doesn't interfere */
2555 mutex_lock(&conf->cache_size_mutex);
2556
2557 for (i = conf->max_nr_stripes; i; i--) {
2558 nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2559 if (!nsh)
2560 break;
2561
2562 list_add(&nsh->lru, &newstripes);
2563 }
2564 if (i) {
2565 /* didn't get enough, give up */
2566 while (!list_empty(&newstripes)) {
2567 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2568 list_del(&nsh->lru);
2569 free_stripe(sc, nsh);
2570 }
2571 kmem_cache_destroy(sc);
2572 mutex_unlock(&conf->cache_size_mutex);
2573 return -ENOMEM;
2574 }
2575 /* Step 2 - Must use GFP_NOIO now.
2576 * OK, we have enough stripes, start collecting inactive
2577 * stripes and copying them over
2578 */
2579 hash = 0;
2580 cnt = 0;
2581 list_for_each_entry(nsh, &newstripes, lru) {
2582 lock_device_hash_lock(conf, hash);
2583 wait_event_cmd(conf->wait_for_stripe,
2584 !list_empty(conf->inactive_list + hash),
2585 unlock_device_hash_lock(conf, hash),
2586 lock_device_hash_lock(conf, hash));
2587 osh = get_free_stripe(conf, hash);
2588 unlock_device_hash_lock(conf, hash);
2589
2590#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2591 for (i = 0; i < osh->nr_pages; i++) {
2592 nsh->pages[i] = osh->pages[i];
2593 osh->pages[i] = NULL;
2594 }
2595#endif
2596 for(i=0; i<conf->pool_size; i++) {
2597 nsh->dev[i].page = osh->dev[i].page;
2598 nsh->dev[i].orig_page = osh->dev[i].page;
2599 nsh->dev[i].offset = osh->dev[i].offset;
2600 }
2601 nsh->hash_lock_index = hash;
2602 free_stripe(conf->slab_cache, osh);
2603 cnt++;
2604 if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2605 !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2606 hash++;
2607 cnt = 0;
2608 }
2609 }
2610 kmem_cache_destroy(conf->slab_cache);
2611
2612 /* Step 3.
2613 * At this point, we are holding all the stripes so the array
2614 * is completely stalled, so now is a good time to resize
2615 * conf->disks and the scribble region
2616 */
2617 ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2618 if (ndisks) {
2619 for (i = 0; i < conf->pool_size; i++)
2620 ndisks[i] = conf->disks[i];
2621
2622 for (i = conf->pool_size; i < newsize; i++) {
2623 ndisks[i].extra_page = alloc_page(GFP_NOIO);
2624 if (!ndisks[i].extra_page)
2625 err = -ENOMEM;
2626 }
2627
2628 if (err) {
2629 for (i = conf->pool_size; i < newsize; i++)
2630 if (ndisks[i].extra_page)
2631 put_page(ndisks[i].extra_page);
2632 kfree(ndisks);
2633 } else {
2634 kfree(conf->disks);
2635 conf->disks = ndisks;
2636 }
2637 } else
2638 err = -ENOMEM;
2639
2640 conf->slab_cache = sc;
2641 conf->active_name = 1-conf->active_name;
2642
2643 /* Step 4, return new stripes to service */
2644 while(!list_empty(&newstripes)) {
2645 nsh = list_entry(newstripes.next, struct stripe_head, lru);
2646 list_del_init(&nsh->lru);
2647
2648#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
2649 for (i = 0; i < nsh->nr_pages; i++) {
2650 if (nsh->pages[i])
2651 continue;
2652 nsh->pages[i] = alloc_page(GFP_NOIO);
2653 if (!nsh->pages[i])
2654 err = -ENOMEM;
2655 }
2656
2657 for (i = conf->raid_disks; i < newsize; i++) {
2658 if (nsh->dev[i].page)
2659 continue;
2660 nsh->dev[i].page = raid5_get_dev_page(nsh, i);
2661 nsh->dev[i].orig_page = nsh->dev[i].page;
2662 nsh->dev[i].offset = raid5_get_page_offset(nsh, i);
2663 }
2664#else
2665 for (i=conf->raid_disks; i < newsize; i++)
2666 if (nsh->dev[i].page == NULL) {
2667 struct page *p = alloc_page(GFP_NOIO);
2668 nsh->dev[i].page = p;
2669 nsh->dev[i].orig_page = p;
2670 nsh->dev[i].offset = 0;
2671 if (!p)
2672 err = -ENOMEM;
2673 }
2674#endif
2675 raid5_release_stripe(nsh);
2676 }
2677 /* critical section pass, GFP_NOIO no longer needed */
2678
2679 if (!err)
2680 conf->pool_size = newsize;
2681 mutex_unlock(&conf->cache_size_mutex);
2682
2683 return err;
2684}
2685
2686static int drop_one_stripe(struct r5conf *conf)
2687{
2688 struct stripe_head *sh;
2689 int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2690
2691 spin_lock_irq(conf->hash_locks + hash);
2692 sh = get_free_stripe(conf, hash);
2693 spin_unlock_irq(conf->hash_locks + hash);
2694 if (!sh)
2695 return 0;
2696 BUG_ON(atomic_read(&sh->count));
2697 shrink_buffers(sh);
2698 free_stripe(conf->slab_cache, sh);
2699 atomic_dec(&conf->active_stripes);
2700 WRITE_ONCE(conf->max_nr_stripes, conf->max_nr_stripes - 1);
2701 return 1;
2702}
2703
2704static void shrink_stripes(struct r5conf *conf)
2705{
2706 while (conf->max_nr_stripes &&
2707 drop_one_stripe(conf))
2708 ;
2709
2710 kmem_cache_destroy(conf->slab_cache);
2711 conf->slab_cache = NULL;
2712}
2713
2714static void raid5_end_read_request(struct bio * bi)
2715{
2716 struct stripe_head *sh = bi->bi_private;
2717 struct r5conf *conf = sh->raid_conf;
2718 int disks = sh->disks, i;
2719 struct md_rdev *rdev = NULL;
2720 sector_t s;
2721
2722 for (i=0 ; i<disks; i++)
2723 if (bi == &sh->dev[i].req)
2724 break;
2725
2726 pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2727 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2728 bi->bi_status);
2729 if (i == disks) {
2730 BUG();
2731 return;
2732 }
2733 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2734 /* If replacement finished while this request was outstanding,
2735 * 'replacement' might be NULL already.
2736 * In that case it moved down to 'rdev'.
2737 * rdev is not removed until all requests are finished.
2738 */
2739 rdev = conf->disks[i].replacement;
2740 if (!rdev)
2741 rdev = conf->disks[i].rdev;
2742
2743 if (use_new_offset(conf, sh))
2744 s = sh->sector + rdev->new_data_offset;
2745 else
2746 s = sh->sector + rdev->data_offset;
2747 if (!bi->bi_status) {
2748 set_bit(R5_UPTODATE, &sh->dev[i].flags);
2749 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2750 /* Note that this cannot happen on a
2751 * replacement device. We just fail those on
2752 * any error
2753 */
2754 pr_info_ratelimited(
2755 "md/raid:%s: read error corrected (%lu sectors at %llu on %pg)\n",
2756 mdname(conf->mddev), RAID5_STRIPE_SECTORS(conf),
2757 (unsigned long long)s,
2758 rdev->bdev);
2759 atomic_add(RAID5_STRIPE_SECTORS(conf), &rdev->corrected_errors);
2760 clear_bit(R5_ReadError, &sh->dev[i].flags);
2761 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2762 } else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2763 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2764
2765 if (test_bit(R5_InJournal, &sh->dev[i].flags))
2766 /*
2767 * end read for a page in journal, this
2768 * must be preparing for prexor in rmw
2769 */
2770 set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2771
2772 if (atomic_read(&rdev->read_errors))
2773 atomic_set(&rdev->read_errors, 0);
2774 } else {
2775 int retry = 0;
2776 int set_bad = 0;
2777
2778 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2779 if (!(bi->bi_status == BLK_STS_PROTECTION))
2780 atomic_inc(&rdev->read_errors);
2781 if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2782 pr_warn_ratelimited(
2783 "md/raid:%s: read error on replacement device (sector %llu on %pg).\n",
2784 mdname(conf->mddev),
2785 (unsigned long long)s,
2786 rdev->bdev);
2787 else if (conf->mddev->degraded >= conf->max_degraded) {
2788 set_bad = 1;
2789 pr_warn_ratelimited(
2790 "md/raid:%s: read error not correctable (sector %llu on %pg).\n",
2791 mdname(conf->mddev),
2792 (unsigned long long)s,
2793 rdev->bdev);
2794 } else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2795 /* Oh, no!!! */
2796 set_bad = 1;
2797 pr_warn_ratelimited(
2798 "md/raid:%s: read error NOT corrected!! (sector %llu on %pg).\n",
2799 mdname(conf->mddev),
2800 (unsigned long long)s,
2801 rdev->bdev);
2802 } else if (atomic_read(&rdev->read_errors)
2803 > conf->max_nr_stripes) {
2804 if (!test_bit(Faulty, &rdev->flags)) {
2805 pr_warn("md/raid:%s: %d read_errors > %d stripes\n",
2806 mdname(conf->mddev),
2807 atomic_read(&rdev->read_errors),
2808 conf->max_nr_stripes);
2809 pr_warn("md/raid:%s: Too many read errors, failing device %pg.\n",
2810 mdname(conf->mddev), rdev->bdev);
2811 }
2812 } else
2813 retry = 1;
2814 if (set_bad && test_bit(In_sync, &rdev->flags)
2815 && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2816 retry = 1;
2817 if (retry)
2818 if (sh->qd_idx >= 0 && sh->pd_idx == i)
2819 set_bit(R5_ReadError, &sh->dev[i].flags);
2820 else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2821 set_bit(R5_ReadError, &sh->dev[i].flags);
2822 clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2823 } else
2824 set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2825 else {
2826 clear_bit(R5_ReadError, &sh->dev[i].flags);
2827 clear_bit(R5_ReWrite, &sh->dev[i].flags);
2828 if (!(set_bad
2829 && test_bit(In_sync, &rdev->flags)
2830 && rdev_set_badblocks(
2831 rdev, sh->sector, RAID5_STRIPE_SECTORS(conf), 0)))
2832 md_error(conf->mddev, rdev);
2833 }
2834 }
2835 rdev_dec_pending(rdev, conf->mddev);
2836 bio_uninit(bi);
2837 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2838 set_bit(STRIPE_HANDLE, &sh->state);
2839 raid5_release_stripe(sh);
2840}
2841
2842static void raid5_end_write_request(struct bio *bi)
2843{
2844 struct stripe_head *sh = bi->bi_private;
2845 struct r5conf *conf = sh->raid_conf;
2846 int disks = sh->disks, i;
2847 struct md_rdev *rdev;
2848 int replacement = 0;
2849
2850 for (i = 0 ; i < disks; i++) {
2851 if (bi == &sh->dev[i].req) {
2852 rdev = conf->disks[i].rdev;
2853 break;
2854 }
2855 if (bi == &sh->dev[i].rreq) {
2856 rdev = conf->disks[i].replacement;
2857 if (rdev)
2858 replacement = 1;
2859 else
2860 /* rdev was removed and 'replacement'
2861 * replaced it. rdev is not removed
2862 * until all requests are finished.
2863 */
2864 rdev = conf->disks[i].rdev;
2865 break;
2866 }
2867 }
2868 pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2869 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
2870 bi->bi_status);
2871 if (i == disks) {
2872 BUG();
2873 return;
2874 }
2875
2876 if (replacement) {
2877 if (bi->bi_status)
2878 md_error(conf->mddev, rdev);
2879 else if (rdev_has_badblock(rdev, sh->sector,
2880 RAID5_STRIPE_SECTORS(conf)))
2881 set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2882 } else {
2883 if (bi->bi_status) {
2884 set_bit(WriteErrorSeen, &rdev->flags);
2885 set_bit(R5_WriteError, &sh->dev[i].flags);
2886 if (!test_and_set_bit(WantReplacement, &rdev->flags))
2887 set_bit(MD_RECOVERY_NEEDED,
2888 &rdev->mddev->recovery);
2889 } else if (rdev_has_badblock(rdev, sh->sector,
2890 RAID5_STRIPE_SECTORS(conf))) {
2891 set_bit(R5_MadeGood, &sh->dev[i].flags);
2892 if (test_bit(R5_ReadError, &sh->dev[i].flags))
2893 /* That was a successful write so make
2894 * sure it looks like we already did
2895 * a re-write.
2896 */
2897 set_bit(R5_ReWrite, &sh->dev[i].flags);
2898 }
2899 }
2900 rdev_dec_pending(rdev, conf->mddev);
2901
2902 if (sh->batch_head && bi->bi_status && !replacement)
2903 set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2904
2905 bio_uninit(bi);
2906 if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2907 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2908 set_bit(STRIPE_HANDLE, &sh->state);
2909
2910 if (sh->batch_head && sh != sh->batch_head)
2911 raid5_release_stripe(sh->batch_head);
2912 raid5_release_stripe(sh);
2913}
2914
2915static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2916{
2917 struct r5conf *conf = mddev->private;
2918 unsigned long flags;
2919 pr_debug("raid456: error called\n");
2920
2921 pr_crit("md/raid:%s: Disk failure on %pg, disabling device.\n",
2922 mdname(mddev), rdev->bdev);
2923
2924 spin_lock_irqsave(&conf->device_lock, flags);
2925 set_bit(Faulty, &rdev->flags);
2926 clear_bit(In_sync, &rdev->flags);
2927 mddev->degraded = raid5_calc_degraded(conf);
2928
2929 if (has_failed(conf)) {
2930 set_bit(MD_BROKEN, &conf->mddev->flags);
2931 conf->recovery_disabled = mddev->recovery_disabled;
2932
2933 pr_crit("md/raid:%s: Cannot continue operation (%d/%d failed).\n",
2934 mdname(mddev), mddev->degraded, conf->raid_disks);
2935 } else {
2936 pr_crit("md/raid:%s: Operation continuing on %d devices.\n",
2937 mdname(mddev), conf->raid_disks - mddev->degraded);
2938 }
2939
2940 spin_unlock_irqrestore(&conf->device_lock, flags);
2941 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2942
2943 set_bit(Blocked, &rdev->flags);
2944 set_mask_bits(&mddev->sb_flags, 0,
2945 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2946 r5c_update_on_rdev_error(mddev, rdev);
2947}
2948
2949/*
2950 * Input: a 'big' sector number,
2951 * Output: index of the data and parity disk, and the sector # in them.
2952 */
2953sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2954 int previous, int *dd_idx,
2955 struct stripe_head *sh)
2956{
2957 sector_t stripe, stripe2;
2958 sector_t chunk_number;
2959 unsigned int chunk_offset;
2960 int pd_idx, qd_idx;
2961 int ddf_layout = 0;
2962 sector_t new_sector;
2963 int algorithm = previous ? conf->prev_algo
2964 : conf->algorithm;
2965 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2966 : conf->chunk_sectors;
2967 int raid_disks = previous ? conf->previous_raid_disks
2968 : conf->raid_disks;
2969 int data_disks = raid_disks - conf->max_degraded;
2970
2971 /* First compute the information on this sector */
2972
2973 /*
2974 * Compute the chunk number and the sector offset inside the chunk
2975 */
2976 chunk_offset = sector_div(r_sector, sectors_per_chunk);
2977 chunk_number = r_sector;
2978
2979 /*
2980 * Compute the stripe number
2981 */
2982 stripe = chunk_number;
2983 *dd_idx = sector_div(stripe, data_disks);
2984 stripe2 = stripe;
2985 /*
2986 * Select the parity disk based on the user selected algorithm.
2987 */
2988 pd_idx = qd_idx = -1;
2989 switch(conf->level) {
2990 case 4:
2991 pd_idx = data_disks;
2992 break;
2993 case 5:
2994 switch (algorithm) {
2995 case ALGORITHM_LEFT_ASYMMETRIC:
2996 pd_idx = data_disks - sector_div(stripe2, raid_disks);
2997 if (*dd_idx >= pd_idx)
2998 (*dd_idx)++;
2999 break;
3000 case ALGORITHM_RIGHT_ASYMMETRIC:
3001 pd_idx = sector_div(stripe2, raid_disks);
3002 if (*dd_idx >= pd_idx)
3003 (*dd_idx)++;
3004 break;
3005 case ALGORITHM_LEFT_SYMMETRIC:
3006 pd_idx = data_disks - sector_div(stripe2, raid_disks);
3007 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3008 break;
3009 case ALGORITHM_RIGHT_SYMMETRIC:
3010 pd_idx = sector_div(stripe2, raid_disks);
3011 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3012 break;
3013 case ALGORITHM_PARITY_0:
3014 pd_idx = 0;
3015 (*dd_idx)++;
3016 break;
3017 case ALGORITHM_PARITY_N:
3018 pd_idx = data_disks;
3019 break;
3020 default:
3021 BUG();
3022 }
3023 break;
3024 case 6:
3025
3026 switch (algorithm) {
3027 case ALGORITHM_LEFT_ASYMMETRIC:
3028 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3029 qd_idx = pd_idx + 1;
3030 if (pd_idx == raid_disks-1) {
3031 (*dd_idx)++; /* Q D D D P */
3032 qd_idx = 0;
3033 } else if (*dd_idx >= pd_idx)
3034 (*dd_idx) += 2; /* D D P Q D */
3035 break;
3036 case ALGORITHM_RIGHT_ASYMMETRIC:
3037 pd_idx = sector_div(stripe2, raid_disks);
3038 qd_idx = pd_idx + 1;
3039 if (pd_idx == raid_disks-1) {
3040 (*dd_idx)++; /* Q D D D P */
3041 qd_idx = 0;
3042 } else if (*dd_idx >= pd_idx)
3043 (*dd_idx) += 2; /* D D P Q D */
3044 break;
3045 case ALGORITHM_LEFT_SYMMETRIC:
3046 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3047 qd_idx = (pd_idx + 1) % raid_disks;
3048 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3049 break;
3050 case ALGORITHM_RIGHT_SYMMETRIC:
3051 pd_idx = sector_div(stripe2, raid_disks);
3052 qd_idx = (pd_idx + 1) % raid_disks;
3053 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
3054 break;
3055
3056 case ALGORITHM_PARITY_0:
3057 pd_idx = 0;
3058 qd_idx = 1;
3059 (*dd_idx) += 2;
3060 break;
3061 case ALGORITHM_PARITY_N:
3062 pd_idx = data_disks;
3063 qd_idx = data_disks + 1;
3064 break;
3065
3066 case ALGORITHM_ROTATING_ZERO_RESTART:
3067 /* Exactly the same as RIGHT_ASYMMETRIC, but or
3068 * of blocks for computing Q is different.
3069 */
3070 pd_idx = sector_div(stripe2, raid_disks);
3071 qd_idx = pd_idx + 1;
3072 if (pd_idx == raid_disks-1) {
3073 (*dd_idx)++; /* Q D D D P */
3074 qd_idx = 0;
3075 } else if (*dd_idx >= pd_idx)
3076 (*dd_idx) += 2; /* D D P Q D */
3077 ddf_layout = 1;
3078 break;
3079
3080 case ALGORITHM_ROTATING_N_RESTART:
3081 /* Same a left_asymmetric, by first stripe is
3082 * D D D P Q rather than
3083 * Q D D D P
3084 */
3085 stripe2 += 1;
3086 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3087 qd_idx = pd_idx + 1;
3088 if (pd_idx == raid_disks-1) {
3089 (*dd_idx)++; /* Q D D D P */
3090 qd_idx = 0;
3091 } else if (*dd_idx >= pd_idx)
3092 (*dd_idx) += 2; /* D D P Q D */
3093 ddf_layout = 1;
3094 break;
3095
3096 case ALGORITHM_ROTATING_N_CONTINUE:
3097 /* Same as left_symmetric but Q is before P */
3098 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
3099 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
3100 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
3101 ddf_layout = 1;
3102 break;
3103
3104 case ALGORITHM_LEFT_ASYMMETRIC_6:
3105 /* RAID5 left_asymmetric, with Q on last device */
3106 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3107 if (*dd_idx >= pd_idx)
3108 (*dd_idx)++;
3109 qd_idx = raid_disks - 1;
3110 break;
3111
3112 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3113 pd_idx = sector_div(stripe2, raid_disks-1);
3114 if (*dd_idx >= pd_idx)
3115 (*dd_idx)++;
3116 qd_idx = raid_disks - 1;
3117 break;
3118
3119 case ALGORITHM_LEFT_SYMMETRIC_6:
3120 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
3121 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3122 qd_idx = raid_disks - 1;
3123 break;
3124
3125 case ALGORITHM_RIGHT_SYMMETRIC_6:
3126 pd_idx = sector_div(stripe2, raid_disks-1);
3127 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
3128 qd_idx = raid_disks - 1;
3129 break;
3130
3131 case ALGORITHM_PARITY_0_6:
3132 pd_idx = 0;
3133 (*dd_idx)++;
3134 qd_idx = raid_disks - 1;
3135 break;
3136
3137 default:
3138 BUG();
3139 }
3140 break;
3141 }
3142
3143 if (sh) {
3144 sh->pd_idx = pd_idx;
3145 sh->qd_idx = qd_idx;
3146 sh->ddf_layout = ddf_layout;
3147 }
3148 /*
3149 * Finally, compute the new sector number
3150 */
3151 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
3152 return new_sector;
3153}
3154
3155sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
3156{
3157 struct r5conf *conf = sh->raid_conf;
3158 int raid_disks = sh->disks;
3159 int data_disks = raid_disks - conf->max_degraded;
3160 sector_t new_sector = sh->sector, check;
3161 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
3162 : conf->chunk_sectors;
3163 int algorithm = previous ? conf->prev_algo
3164 : conf->algorithm;
3165 sector_t stripe;
3166 int chunk_offset;
3167 sector_t chunk_number;
3168 int dummy1, dd_idx = i;
3169 sector_t r_sector;
3170 struct stripe_head sh2;
3171
3172 chunk_offset = sector_div(new_sector, sectors_per_chunk);
3173 stripe = new_sector;
3174
3175 if (i == sh->pd_idx)
3176 return 0;
3177 switch(conf->level) {
3178 case 4: break;
3179 case 5:
3180 switch (algorithm) {
3181 case ALGORITHM_LEFT_ASYMMETRIC:
3182 case ALGORITHM_RIGHT_ASYMMETRIC:
3183 if (i > sh->pd_idx)
3184 i--;
3185 break;
3186 case ALGORITHM_LEFT_SYMMETRIC:
3187 case ALGORITHM_RIGHT_SYMMETRIC:
3188 if (i < sh->pd_idx)
3189 i += raid_disks;
3190 i -= (sh->pd_idx + 1);
3191 break;
3192 case ALGORITHM_PARITY_0:
3193 i -= 1;
3194 break;
3195 case ALGORITHM_PARITY_N:
3196 break;
3197 default:
3198 BUG();
3199 }
3200 break;
3201 case 6:
3202 if (i == sh->qd_idx)
3203 return 0; /* It is the Q disk */
3204 switch (algorithm) {
3205 case ALGORITHM_LEFT_ASYMMETRIC:
3206 case ALGORITHM_RIGHT_ASYMMETRIC:
3207 case ALGORITHM_ROTATING_ZERO_RESTART:
3208 case ALGORITHM_ROTATING_N_RESTART:
3209 if (sh->pd_idx == raid_disks-1)
3210 i--; /* Q D D D P */
3211 else if (i > sh->pd_idx)
3212 i -= 2; /* D D P Q D */
3213 break;
3214 case ALGORITHM_LEFT_SYMMETRIC:
3215 case ALGORITHM_RIGHT_SYMMETRIC:
3216 if (sh->pd_idx == raid_disks-1)
3217 i--; /* Q D D D P */
3218 else {
3219 /* D D P Q D */
3220 if (i < sh->pd_idx)
3221 i += raid_disks;
3222 i -= (sh->pd_idx + 2);
3223 }
3224 break;
3225 case ALGORITHM_PARITY_0:
3226 i -= 2;
3227 break;
3228 case ALGORITHM_PARITY_N:
3229 break;
3230 case ALGORITHM_ROTATING_N_CONTINUE:
3231 /* Like left_symmetric, but P is before Q */
3232 if (sh->pd_idx == 0)
3233 i--; /* P D D D Q */
3234 else {
3235 /* D D Q P D */
3236 if (i < sh->pd_idx)
3237 i += raid_disks;
3238 i -= (sh->pd_idx + 1);
3239 }
3240 break;
3241 case ALGORITHM_LEFT_ASYMMETRIC_6:
3242 case ALGORITHM_RIGHT_ASYMMETRIC_6:
3243 if (i > sh->pd_idx)
3244 i--;
3245 break;
3246 case ALGORITHM_LEFT_SYMMETRIC_6:
3247 case ALGORITHM_RIGHT_SYMMETRIC_6:
3248 if (i < sh->pd_idx)
3249 i += data_disks + 1;
3250 i -= (sh->pd_idx + 1);
3251 break;
3252 case ALGORITHM_PARITY_0_6:
3253 i -= 1;
3254 break;
3255 default:
3256 BUG();
3257 }
3258 break;
3259 }
3260
3261 chunk_number = stripe * data_disks + i;
3262 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3263
3264 check = raid5_compute_sector(conf, r_sector,
3265 previous, &dummy1, &sh2);
3266 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3267 || sh2.qd_idx != sh->qd_idx) {
3268 pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3269 mdname(conf->mddev));
3270 return 0;
3271 }
3272 return r_sector;
3273}
3274
3275/*
3276 * There are cases where we want handle_stripe_dirtying() and
3277 * schedule_reconstruction() to delay towrite to some dev of a stripe.
3278 *
3279 * This function checks whether we want to delay the towrite. Specifically,
3280 * we delay the towrite when:
3281 *
3282 * 1. degraded stripe has a non-overwrite to the missing dev, AND this
3283 * stripe has data in journal (for other devices).
3284 *
3285 * In this case, when reading data for the non-overwrite dev, it is
3286 * necessary to handle complex rmw of write back cache (prexor with
3287 * orig_page, and xor with page). To keep read path simple, we would
3288 * like to flush data in journal to RAID disks first, so complex rmw
3289 * is handled in the write patch (handle_stripe_dirtying).
3290 *
3291 * 2. when journal space is critical (R5C_LOG_CRITICAL=1)
3292 *
3293 * It is important to be able to flush all stripes in raid5-cache.
3294 * Therefore, we need reserve some space on the journal device for
3295 * these flushes. If flush operation includes pending writes to the
3296 * stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3297 * for the flush out. If we exclude these pending writes from flush
3298 * operation, we only need (conf->max_degraded + 1) pages per stripe.
3299 * Therefore, excluding pending writes in these cases enables more
3300 * efficient use of the journal device.
3301 *
3302 * Note: To make sure the stripe makes progress, we only delay
3303 * towrite for stripes with data already in journal (injournal > 0).
3304 * When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3305 * no_space_stripes list.
3306 *
3307 * 3. during journal failure
3308 * In journal failure, we try to flush all cached data to raid disks
3309 * based on data in stripe cache. The array is read-only to upper
3310 * layers, so we would skip all pending writes.
3311 *
3312 */
3313static inline bool delay_towrite(struct r5conf *conf,
3314 struct r5dev *dev,
3315 struct stripe_head_state *s)
3316{
3317 /* case 1 above */
3318 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3319 !test_bit(R5_Insync, &dev->flags) && s->injournal)
3320 return true;
3321 /* case 2 above */
3322 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3323 s->injournal > 0)
3324 return true;
3325 /* case 3 above */
3326 if (s->log_failed && s->injournal)
3327 return true;
3328 return false;
3329}
3330
3331static void
3332schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3333 int rcw, int expand)
3334{
3335 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3336 struct r5conf *conf = sh->raid_conf;
3337 int level = conf->level;
3338
3339 if (rcw) {
3340 /*
3341 * In some cases, handle_stripe_dirtying initially decided to
3342 * run rmw and allocates extra page for prexor. However, rcw is
3343 * cheaper later on. We need to free the extra page now,
3344 * because we won't be able to do that in ops_complete_prexor().
3345 */
3346 r5c_release_extra_page(sh);
3347
3348 for (i = disks; i--; ) {
3349 struct r5dev *dev = &sh->dev[i];
3350
3351 if (dev->towrite && !delay_towrite(conf, dev, s)) {
3352 set_bit(R5_LOCKED, &dev->flags);
3353 set_bit(R5_Wantdrain, &dev->flags);
3354 if (!expand)
3355 clear_bit(R5_UPTODATE, &dev->flags);
3356 s->locked++;
3357 } else if (test_bit(R5_InJournal, &dev->flags)) {
3358 set_bit(R5_LOCKED, &dev->flags);
3359 s->locked++;
3360 }
3361 }
3362 /* if we are not expanding this is a proper write request, and
3363 * there will be bios with new data to be drained into the
3364 * stripe cache
3365 */
3366 if (!expand) {
3367 if (!s->locked)
3368 /* False alarm, nothing to do */
3369 return;
3370 sh->reconstruct_state = reconstruct_state_drain_run;
3371 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3372 } else
3373 sh->reconstruct_state = reconstruct_state_run;
3374
3375 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3376
3377 if (s->locked + conf->max_degraded == disks)
3378 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3379 atomic_inc(&conf->pending_full_writes);
3380 } else {
3381 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3382 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3383 BUG_ON(level == 6 &&
3384 (!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3385 test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3386
3387 for (i = disks; i--; ) {
3388 struct r5dev *dev = &sh->dev[i];
3389 if (i == pd_idx || i == qd_idx)
3390 continue;
3391
3392 if (dev->towrite &&
3393 (test_bit(R5_UPTODATE, &dev->flags) ||
3394 test_bit(R5_Wantcompute, &dev->flags))) {
3395 set_bit(R5_Wantdrain, &dev->flags);
3396 set_bit(R5_LOCKED, &dev->flags);
3397 clear_bit(R5_UPTODATE, &dev->flags);
3398 s->locked++;
3399 } else if (test_bit(R5_InJournal, &dev->flags)) {
3400 set_bit(R5_LOCKED, &dev->flags);
3401 s->locked++;
3402 }
3403 }
3404 if (!s->locked)
3405 /* False alarm - nothing to do */
3406 return;
3407 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3408 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3409 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3410 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3411 }
3412
3413 /* keep the parity disk(s) locked while asynchronous operations
3414 * are in flight
3415 */
3416 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3417 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3418 s->locked++;
3419
3420 if (level == 6) {
3421 int qd_idx = sh->qd_idx;
3422 struct r5dev *dev = &sh->dev[qd_idx];
3423
3424 set_bit(R5_LOCKED, &dev->flags);
3425 clear_bit(R5_UPTODATE, &dev->flags);
3426 s->locked++;
3427 }
3428
3429 if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3430 test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3431 !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3432 test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3433 set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3434
3435 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3436 __func__, (unsigned long long)sh->sector,
3437 s->locked, s->ops_request);
3438}
3439
3440static bool stripe_bio_overlaps(struct stripe_head *sh, struct bio *bi,
3441 int dd_idx, int forwrite)
3442{
3443 struct r5conf *conf = sh->raid_conf;
3444 struct bio **bip;
3445
3446 pr_debug("checking bi b#%llu to stripe s#%llu\n",
3447 bi->bi_iter.bi_sector, sh->sector);
3448
3449 /* Don't allow new IO added to stripes in batch list */
3450 if (sh->batch_head)
3451 return true;
3452
3453 if (forwrite)
3454 bip = &sh->dev[dd_idx].towrite;
3455 else
3456 bip = &sh->dev[dd_idx].toread;
3457
3458 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3459 if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3460 return true;
3461 bip = &(*bip)->bi_next;
3462 }
3463
3464 if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3465 return true;
3466
3467 if (forwrite && raid5_has_ppl(conf)) {
3468 /*
3469 * With PPL only writes to consecutive data chunks within a
3470 * stripe are allowed because for a single stripe_head we can
3471 * only have one PPL entry at a time, which describes one data
3472 * range. Not really an overlap, but R5_Overlap can be
3473 * used to handle this.
3474 */
3475 sector_t sector;
3476 sector_t first = 0;
3477 sector_t last = 0;
3478 int count = 0;
3479 int i;
3480
3481 for (i = 0; i < sh->disks; i++) {
3482 if (i != sh->pd_idx &&
3483 (i == dd_idx || sh->dev[i].towrite)) {
3484 sector = sh->dev[i].sector;
3485 if (count == 0 || sector < first)
3486 first = sector;
3487 if (sector > last)
3488 last = sector;
3489 count++;
3490 }
3491 }
3492
3493 if (first + conf->chunk_sectors * (count - 1) != last)
3494 return true;
3495 }
3496
3497 return false;
3498}
3499
3500static void __add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3501 int dd_idx, int forwrite, int previous)
3502{
3503 struct r5conf *conf = sh->raid_conf;
3504 struct bio **bip;
3505 int firstwrite = 0;
3506
3507 if (forwrite) {
3508 bip = &sh->dev[dd_idx].towrite;
3509 if (!*bip)
3510 firstwrite = 1;
3511 } else {
3512 bip = &sh->dev[dd_idx].toread;
3513 }
3514
3515 while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector)
3516 bip = &(*bip)->bi_next;
3517
3518 if (!forwrite || previous)
3519 clear_bit(STRIPE_BATCH_READY, &sh->state);
3520
3521 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3522 if (*bip)
3523 bi->bi_next = *bip;
3524 *bip = bi;
3525 bio_inc_remaining(bi);
3526 md_write_inc(conf->mddev, bi);
3527
3528 if (forwrite) {
3529 /* check if page is covered */
3530 sector_t sector = sh->dev[dd_idx].sector;
3531 for (bi=sh->dev[dd_idx].towrite;
3532 sector < sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf) &&
3533 bi && bi->bi_iter.bi_sector <= sector;
3534 bi = r5_next_bio(conf, bi, sh->dev[dd_idx].sector)) {
3535 if (bio_end_sector(bi) >= sector)
3536 sector = bio_end_sector(bi);
3537 }
3538 if (sector >= sh->dev[dd_idx].sector + RAID5_STRIPE_SECTORS(conf))
3539 if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3540 sh->overwrite_disks++;
3541 }
3542
3543 pr_debug("added bi b#%llu to stripe s#%llu, disk %d, logical %llu\n",
3544 (*bip)->bi_iter.bi_sector, sh->sector, dd_idx,
3545 sh->dev[dd_idx].sector);
3546
3547 if (conf->mddev->bitmap && firstwrite && !sh->batch_head) {
3548 sh->bm_seq = conf->seq_flush+1;
3549 set_bit(STRIPE_BIT_DELAY, &sh->state);
3550 }
3551}
3552
3553/*
3554 * Each stripe/dev can have one or more bios attached.
3555 * toread/towrite point to the first in a chain.
3556 * The bi_next chain must be in order.
3557 */
3558static bool add_stripe_bio(struct stripe_head *sh, struct bio *bi,
3559 int dd_idx, int forwrite, int previous)
3560{
3561 spin_lock_irq(&sh->stripe_lock);
3562
3563 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
3564 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3565 spin_unlock_irq(&sh->stripe_lock);
3566 return false;
3567 }
3568
3569 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
3570 spin_unlock_irq(&sh->stripe_lock);
3571 return true;
3572}
3573
3574static void end_reshape(struct r5conf *conf);
3575
3576static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3577 struct stripe_head *sh)
3578{
3579 int sectors_per_chunk =
3580 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3581 int dd_idx;
3582 int chunk_offset = sector_div(stripe, sectors_per_chunk);
3583 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3584
3585 raid5_compute_sector(conf,
3586 stripe * (disks - conf->max_degraded)
3587 *sectors_per_chunk + chunk_offset,
3588 previous,
3589 &dd_idx, sh);
3590}
3591
3592static void
3593handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3594 struct stripe_head_state *s, int disks)
3595{
3596 int i;
3597 BUG_ON(sh->batch_head);
3598 for (i = disks; i--; ) {
3599 struct bio *bi;
3600
3601 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3602 struct md_rdev *rdev = conf->disks[i].rdev;
3603
3604 if (rdev && test_bit(In_sync, &rdev->flags) &&
3605 !test_bit(Faulty, &rdev->flags))
3606 atomic_inc(&rdev->nr_pending);
3607 else
3608 rdev = NULL;
3609 if (rdev) {
3610 if (!rdev_set_badblocks(
3611 rdev,
3612 sh->sector,
3613 RAID5_STRIPE_SECTORS(conf), 0))
3614 md_error(conf->mddev, rdev);
3615 rdev_dec_pending(rdev, conf->mddev);
3616 }
3617 }
3618 spin_lock_irq(&sh->stripe_lock);
3619 /* fail all writes first */
3620 bi = sh->dev[i].towrite;
3621 sh->dev[i].towrite = NULL;
3622 sh->overwrite_disks = 0;
3623 spin_unlock_irq(&sh->stripe_lock);
3624
3625 log_stripe_write_finished(sh);
3626
3627 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3628 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3629
3630 while (bi && bi->bi_iter.bi_sector <
3631 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3632 struct bio *nextbi = r5_next_bio(conf, bi, sh->dev[i].sector);
3633
3634 md_write_end(conf->mddev);
3635 bio_io_error(bi);
3636 bi = nextbi;
3637 }
3638 /* and fail all 'written' */
3639 bi = sh->dev[i].written;
3640 sh->dev[i].written = NULL;
3641 if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3642 WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3643 sh->dev[i].page = sh->dev[i].orig_page;
3644 }
3645
3646 while (bi && bi->bi_iter.bi_sector <
3647 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3648 struct bio *bi2 = r5_next_bio(conf, bi, sh->dev[i].sector);
3649
3650 md_write_end(conf->mddev);
3651 bio_io_error(bi);
3652 bi = bi2;
3653 }
3654
3655 /* fail any reads if this device is non-operational and
3656 * the data has not reached the cache yet.
3657 */
3658 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3659 s->failed > conf->max_degraded &&
3660 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3661 test_bit(R5_ReadError, &sh->dev[i].flags))) {
3662 spin_lock_irq(&sh->stripe_lock);
3663 bi = sh->dev[i].toread;
3664 sh->dev[i].toread = NULL;
3665 spin_unlock_irq(&sh->stripe_lock);
3666 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3667 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
3668 if (bi)
3669 s->to_read--;
3670 while (bi && bi->bi_iter.bi_sector <
3671 sh->dev[i].sector + RAID5_STRIPE_SECTORS(conf)) {
3672 struct bio *nextbi =
3673 r5_next_bio(conf, bi, sh->dev[i].sector);
3674
3675 bio_io_error(bi);
3676 bi = nextbi;
3677 }
3678 }
3679 /* If we were in the middle of a write the parity block might
3680 * still be locked - so just clear all R5_LOCKED flags
3681 */
3682 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3683 }
3684 s->to_write = 0;
3685 s->written = 0;
3686
3687 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3688 if (atomic_dec_and_test(&conf->pending_full_writes))
3689 md_wakeup_thread(conf->mddev->thread);
3690}
3691
3692static void
3693handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3694 struct stripe_head_state *s)
3695{
3696 int abort = 0;
3697 int i;
3698
3699 BUG_ON(sh->batch_head);
3700 clear_bit(STRIPE_SYNCING, &sh->state);
3701 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3702 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
3703 s->syncing = 0;
3704 s->replacing = 0;
3705 /* There is nothing more to do for sync/check/repair.
3706 * Don't even need to abort as that is handled elsewhere
3707 * if needed, and not always wanted e.g. if there is a known
3708 * bad block here.
3709 * For recover/replace we need to record a bad block on all
3710 * non-sync devices, or abort the recovery
3711 */
3712 if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3713 /* During recovery devices cannot be removed, so
3714 * locking and refcounting of rdevs is not needed
3715 */
3716 for (i = 0; i < conf->raid_disks; i++) {
3717 struct md_rdev *rdev = conf->disks[i].rdev;
3718
3719 if (rdev
3720 && !test_bit(Faulty, &rdev->flags)
3721 && !test_bit(In_sync, &rdev->flags)
3722 && !rdev_set_badblocks(rdev, sh->sector,
3723 RAID5_STRIPE_SECTORS(conf), 0))
3724 abort = 1;
3725 rdev = conf->disks[i].replacement;
3726
3727 if (rdev
3728 && !test_bit(Faulty, &rdev->flags)
3729 && !test_bit(In_sync, &rdev->flags)
3730 && !rdev_set_badblocks(rdev, sh->sector,
3731 RAID5_STRIPE_SECTORS(conf), 0))
3732 abort = 1;
3733 }
3734 if (abort)
3735 conf->recovery_disabled =
3736 conf->mddev->recovery_disabled;
3737 }
3738 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), !abort);
3739}
3740
3741static int want_replace(struct stripe_head *sh, int disk_idx)
3742{
3743 struct md_rdev *rdev;
3744 int rv = 0;
3745
3746 rdev = sh->raid_conf->disks[disk_idx].replacement;
3747 if (rdev
3748 && !test_bit(Faulty, &rdev->flags)
3749 && !test_bit(In_sync, &rdev->flags)
3750 && (rdev->recovery_offset <= sh->sector
3751 || rdev->mddev->recovery_cp <= sh->sector))
3752 rv = 1;
3753 return rv;
3754}
3755
3756static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3757 int disk_idx, int disks)
3758{
3759 struct r5dev *dev = &sh->dev[disk_idx];
3760 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3761 &sh->dev[s->failed_num[1]] };
3762 int i;
3763 bool force_rcw = (sh->raid_conf->rmw_level == PARITY_DISABLE_RMW);
3764
3765
3766 if (test_bit(R5_LOCKED, &dev->flags) ||
3767 test_bit(R5_UPTODATE, &dev->flags))
3768 /* No point reading this as we already have it or have
3769 * decided to get it.
3770 */
3771 return 0;
3772
3773 if (dev->toread ||
3774 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3775 /* We need this block to directly satisfy a request */
3776 return 1;
3777
3778 if (s->syncing || s->expanding ||
3779 (s->replacing && want_replace(sh, disk_idx)))
3780 /* When syncing, or expanding we read everything.
3781 * When replacing, we need the replaced block.
3782 */
3783 return 1;
3784
3785 if ((s->failed >= 1 && fdev[0]->toread) ||
3786 (s->failed >= 2 && fdev[1]->toread))
3787 /* If we want to read from a failed device, then
3788 * we need to actually read every other device.
3789 */
3790 return 1;
3791
3792 /* Sometimes neither read-modify-write nor reconstruct-write
3793 * cycles can work. In those cases we read every block we
3794 * can. Then the parity-update is certain to have enough to
3795 * work with.
3796 * This can only be a problem when we need to write something,
3797 * and some device has failed. If either of those tests
3798 * fail we need look no further.
3799 */
3800 if (!s->failed || !s->to_write)
3801 return 0;
3802
3803 if (test_bit(R5_Insync, &dev->flags) &&
3804 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3805 /* Pre-reads at not permitted until after short delay
3806 * to gather multiple requests. However if this
3807 * device is no Insync, the block could only be computed
3808 * and there is no need to delay that.
3809 */
3810 return 0;
3811
3812 for (i = 0; i < s->failed && i < 2; i++) {
3813 if (fdev[i]->towrite &&
3814 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3815 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3816 /* If we have a partial write to a failed
3817 * device, then we will need to reconstruct
3818 * the content of that device, so all other
3819 * devices must be read.
3820 */
3821 return 1;
3822
3823 if (s->failed >= 2 &&
3824 (fdev[i]->towrite ||
3825 s->failed_num[i] == sh->pd_idx ||
3826 s->failed_num[i] == sh->qd_idx) &&
3827 !test_bit(R5_UPTODATE, &fdev[i]->flags))
3828 /* In max degraded raid6, If the failed disk is P, Q,
3829 * or we want to read the failed disk, we need to do
3830 * reconstruct-write.
3831 */
3832 force_rcw = true;
3833 }
3834
3835 /* If we are forced to do a reconstruct-write, because parity
3836 * cannot be trusted and we are currently recovering it, there
3837 * is extra need to be careful.
3838 * If one of the devices that we would need to read, because
3839 * it is not being overwritten (and maybe not written at all)
3840 * is missing/faulty, then we need to read everything we can.
3841 */
3842 if (!force_rcw &&
3843 sh->sector < sh->raid_conf->mddev->recovery_cp)
3844 /* reconstruct-write isn't being forced */
3845 return 0;
3846 for (i = 0; i < s->failed && i < 2; i++) {
3847 if (s->failed_num[i] != sh->pd_idx &&
3848 s->failed_num[i] != sh->qd_idx &&
3849 !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3850 !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3851 return 1;
3852 }
3853
3854 return 0;
3855}
3856
3857/* fetch_block - checks the given member device to see if its data needs
3858 * to be read or computed to satisfy a request.
3859 *
3860 * Returns 1 when no more member devices need to be checked, otherwise returns
3861 * 0 to tell the loop in handle_stripe_fill to continue
3862 */
3863static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3864 int disk_idx, int disks)
3865{
3866 struct r5dev *dev = &sh->dev[disk_idx];
3867
3868 /* is the data in this block needed, and can we get it? */
3869 if (need_this_block(sh, s, disk_idx, disks)) {
3870 /* we would like to get this block, possibly by computing it,
3871 * otherwise read it if the backing disk is insync
3872 */
3873 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3874 BUG_ON(test_bit(R5_Wantread, &dev->flags));
3875 BUG_ON(sh->batch_head);
3876
3877 /*
3878 * In the raid6 case if the only non-uptodate disk is P
3879 * then we already trusted P to compute the other failed
3880 * drives. It is safe to compute rather than re-read P.
3881 * In other cases we only compute blocks from failed
3882 * devices, otherwise check/repair might fail to detect
3883 * a real inconsistency.
3884 */
3885
3886 if ((s->uptodate == disks - 1) &&
3887 ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3888 (s->failed && (disk_idx == s->failed_num[0] ||
3889 disk_idx == s->failed_num[1])))) {
3890 /* have disk failed, and we're requested to fetch it;
3891 * do compute it
3892 */
3893 pr_debug("Computing stripe %llu block %d\n",
3894 (unsigned long long)sh->sector, disk_idx);
3895 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3896 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3897 set_bit(R5_Wantcompute, &dev->flags);
3898 sh->ops.target = disk_idx;
3899 sh->ops.target2 = -1; /* no 2nd target */
3900 s->req_compute = 1;
3901 /* Careful: from this point on 'uptodate' is in the eye
3902 * of raid_run_ops which services 'compute' operations
3903 * before writes. R5_Wantcompute flags a block that will
3904 * be R5_UPTODATE by the time it is needed for a
3905 * subsequent operation.
3906 */
3907 s->uptodate++;
3908 return 1;
3909 } else if (s->uptodate == disks-2 && s->failed >= 2) {
3910 /* Computing 2-failure is *very* expensive; only
3911 * do it if failed >= 2
3912 */
3913 int other;
3914 for (other = disks; other--; ) {
3915 if (other == disk_idx)
3916 continue;
3917 if (!test_bit(R5_UPTODATE,
3918 &sh->dev[other].flags))
3919 break;
3920 }
3921 BUG_ON(other < 0);
3922 pr_debug("Computing stripe %llu blocks %d,%d\n",
3923 (unsigned long long)sh->sector,
3924 disk_idx, other);
3925 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3926 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3927 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3928 set_bit(R5_Wantcompute, &sh->dev[other].flags);
3929 sh->ops.target = disk_idx;
3930 sh->ops.target2 = other;
3931 s->uptodate += 2;
3932 s->req_compute = 1;
3933 return 1;
3934 } else if (test_bit(R5_Insync, &dev->flags)) {
3935 set_bit(R5_LOCKED, &dev->flags);
3936 set_bit(R5_Wantread, &dev->flags);
3937 s->locked++;
3938 pr_debug("Reading block %d (sync=%d)\n",
3939 disk_idx, s->syncing);
3940 }
3941 }
3942
3943 return 0;
3944}
3945
3946/*
3947 * handle_stripe_fill - read or compute data to satisfy pending requests.
3948 */
3949static void handle_stripe_fill(struct stripe_head *sh,
3950 struct stripe_head_state *s,
3951 int disks)
3952{
3953 int i;
3954
3955 /* look for blocks to read/compute, skip this if a compute
3956 * is already in flight, or if the stripe contents are in the
3957 * midst of changing due to a write
3958 */
3959 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3960 !sh->reconstruct_state) {
3961
3962 /*
3963 * For degraded stripe with data in journal, do not handle
3964 * read requests yet, instead, flush the stripe to raid
3965 * disks first, this avoids handling complex rmw of write
3966 * back cache (prexor with orig_page, and then xor with
3967 * page) in the read path
3968 */
3969 if (s->to_read && s->injournal && s->failed) {
3970 if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3971 r5c_make_stripe_write_out(sh);
3972 goto out;
3973 }
3974
3975 for (i = disks; i--; )
3976 if (fetch_block(sh, s, i, disks))
3977 break;
3978 }
3979out:
3980 set_bit(STRIPE_HANDLE, &sh->state);
3981}
3982
3983static void break_stripe_batch_list(struct stripe_head *head_sh,
3984 unsigned long handle_flags);
3985/* handle_stripe_clean_event
3986 * any written block on an uptodate or failed drive can be returned.
3987 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3988 * never LOCKED, so we don't need to test 'failed' directly.
3989 */
3990static void handle_stripe_clean_event(struct r5conf *conf,
3991 struct stripe_head *sh, int disks)
3992{
3993 int i;
3994 struct r5dev *dev;
3995 int discard_pending = 0;
3996 struct stripe_head *head_sh = sh;
3997 bool do_endio = false;
3998
3999 for (i = disks; i--; )
4000 if (sh->dev[i].written) {
4001 dev = &sh->dev[i];
4002 if (!test_bit(R5_LOCKED, &dev->flags) &&
4003 (test_bit(R5_UPTODATE, &dev->flags) ||
4004 test_bit(R5_Discard, &dev->flags) ||
4005 test_bit(R5_SkipCopy, &dev->flags))) {
4006 /* We can return any write requests */
4007 struct bio *wbi, *wbi2;
4008 pr_debug("Return write for disc %d\n", i);
4009 if (test_and_clear_bit(R5_Discard, &dev->flags))
4010 clear_bit(R5_UPTODATE, &dev->flags);
4011 if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
4012 WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
4013 }
4014 do_endio = true;
4015
4016returnbi:
4017 dev->page = dev->orig_page;
4018 wbi = dev->written;
4019 dev->written = NULL;
4020 while (wbi && wbi->bi_iter.bi_sector <
4021 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
4022 wbi2 = r5_next_bio(conf, wbi, dev->sector);
4023 md_write_end(conf->mddev);
4024 bio_endio(wbi);
4025 wbi = wbi2;
4026 }
4027
4028 if (head_sh->batch_head) {
4029 sh = list_first_entry(&sh->batch_list,
4030 struct stripe_head,
4031 batch_list);
4032 if (sh != head_sh) {
4033 dev = &sh->dev[i];
4034 goto returnbi;
4035 }
4036 }
4037 sh = head_sh;
4038 dev = &sh->dev[i];
4039 } else if (test_bit(R5_Discard, &dev->flags))
4040 discard_pending = 1;
4041 }
4042
4043 log_stripe_write_finished(sh);
4044
4045 if (!discard_pending &&
4046 test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
4047 int hash;
4048 clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
4049 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4050 if (sh->qd_idx >= 0) {
4051 clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
4052 clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
4053 }
4054 /* now that discard is done we can proceed with any sync */
4055 clear_bit(STRIPE_DISCARD, &sh->state);
4056 /*
4057 * SCSI discard will change some bio fields and the stripe has
4058 * no updated data, so remove it from hash list and the stripe
4059 * will be reinitialized
4060 */
4061unhash:
4062 hash = sh->hash_lock_index;
4063 spin_lock_irq(conf->hash_locks + hash);
4064 remove_hash(sh);
4065 spin_unlock_irq(conf->hash_locks + hash);
4066 if (head_sh->batch_head) {
4067 sh = list_first_entry(&sh->batch_list,
4068 struct stripe_head, batch_list);
4069 if (sh != head_sh)
4070 goto unhash;
4071 }
4072 sh = head_sh;
4073
4074 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
4075 set_bit(STRIPE_HANDLE, &sh->state);
4076
4077 }
4078
4079 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
4080 if (atomic_dec_and_test(&conf->pending_full_writes))
4081 md_wakeup_thread(conf->mddev->thread);
4082
4083 if (head_sh->batch_head && do_endio)
4084 break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
4085}
4086
4087/*
4088 * For RMW in write back cache, we need extra page in prexor to store the
4089 * old data. This page is stored in dev->orig_page.
4090 *
4091 * This function checks whether we have data for prexor. The exact logic
4092 * is:
4093 * R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
4094 */
4095static inline bool uptodate_for_rmw(struct r5dev *dev)
4096{
4097 return (test_bit(R5_UPTODATE, &dev->flags)) &&
4098 (!test_bit(R5_InJournal, &dev->flags) ||
4099 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
4100}
4101
4102static int handle_stripe_dirtying(struct r5conf *conf,
4103 struct stripe_head *sh,
4104 struct stripe_head_state *s,
4105 int disks)
4106{
4107 int rmw = 0, rcw = 0, i;
4108 sector_t recovery_cp = conf->mddev->recovery_cp;
4109
4110 /* Check whether resync is now happening or should start.
4111 * If yes, then the array is dirty (after unclean shutdown or
4112 * initial creation), so parity in some stripes might be inconsistent.
4113 * In this case, we need to always do reconstruct-write, to ensure
4114 * that in case of drive failure or read-error correction, we
4115 * generate correct data from the parity.
4116 */
4117 if (conf->rmw_level == PARITY_DISABLE_RMW ||
4118 (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
4119 s->failed == 0)) {
4120 /* Calculate the real rcw later - for now make it
4121 * look like rcw is cheaper
4122 */
4123 rcw = 1; rmw = 2;
4124 pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
4125 conf->rmw_level, (unsigned long long)recovery_cp,
4126 (unsigned long long)sh->sector);
4127 } else for (i = disks; i--; ) {
4128 /* would I have to read this buffer for read_modify_write */
4129 struct r5dev *dev = &sh->dev[i];
4130 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4131 i == sh->pd_idx || i == sh->qd_idx ||
4132 test_bit(R5_InJournal, &dev->flags)) &&
4133 !test_bit(R5_LOCKED, &dev->flags) &&
4134 !(uptodate_for_rmw(dev) ||
4135 test_bit(R5_Wantcompute, &dev->flags))) {
4136 if (test_bit(R5_Insync, &dev->flags))
4137 rmw++;
4138 else
4139 rmw += 2*disks; /* cannot read it */
4140 }
4141 /* Would I have to read this buffer for reconstruct_write */
4142 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4143 i != sh->pd_idx && i != sh->qd_idx &&
4144 !test_bit(R5_LOCKED, &dev->flags) &&
4145 !(test_bit(R5_UPTODATE, &dev->flags) ||
4146 test_bit(R5_Wantcompute, &dev->flags))) {
4147 if (test_bit(R5_Insync, &dev->flags))
4148 rcw++;
4149 else
4150 rcw += 2*disks;
4151 }
4152 }
4153
4154 pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
4155 (unsigned long long)sh->sector, sh->state, rmw, rcw);
4156 set_bit(STRIPE_HANDLE, &sh->state);
4157 if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
4158 /* prefer read-modify-write, but need to get some data */
4159 mddev_add_trace_msg(conf->mddev, "raid5 rmw %llu %d",
4160 sh->sector, rmw);
4161
4162 for (i = disks; i--; ) {
4163 struct r5dev *dev = &sh->dev[i];
4164 if (test_bit(R5_InJournal, &dev->flags) &&
4165 dev->page == dev->orig_page &&
4166 !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
4167 /* alloc page for prexor */
4168 struct page *p = alloc_page(GFP_NOIO);
4169
4170 if (p) {
4171 dev->orig_page = p;
4172 continue;
4173 }
4174
4175 /*
4176 * alloc_page() failed, try use
4177 * disk_info->extra_page
4178 */
4179 if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
4180 &conf->cache_state)) {
4181 r5c_use_extra_page(sh);
4182 break;
4183 }
4184
4185 /* extra_page in use, add to delayed_list */
4186 set_bit(STRIPE_DELAYED, &sh->state);
4187 s->waiting_extra_page = 1;
4188 return -EAGAIN;
4189 }
4190 }
4191
4192 for (i = disks; i--; ) {
4193 struct r5dev *dev = &sh->dev[i];
4194 if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
4195 i == sh->pd_idx || i == sh->qd_idx ||
4196 test_bit(R5_InJournal, &dev->flags)) &&
4197 !test_bit(R5_LOCKED, &dev->flags) &&
4198 !(uptodate_for_rmw(dev) ||
4199 test_bit(R5_Wantcompute, &dev->flags)) &&
4200 test_bit(R5_Insync, &dev->flags)) {
4201 if (test_bit(STRIPE_PREREAD_ACTIVE,
4202 &sh->state)) {
4203 pr_debug("Read_old block %d for r-m-w\n",
4204 i);
4205 set_bit(R5_LOCKED, &dev->flags);
4206 set_bit(R5_Wantread, &dev->flags);
4207 s->locked++;
4208 } else
4209 set_bit(STRIPE_DELAYED, &sh->state);
4210 }
4211 }
4212 }
4213 if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
4214 /* want reconstruct write, but need to get some data */
4215 int qread =0;
4216 rcw = 0;
4217 for (i = disks; i--; ) {
4218 struct r5dev *dev = &sh->dev[i];
4219 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
4220 i != sh->pd_idx && i != sh->qd_idx &&
4221 !test_bit(R5_LOCKED, &dev->flags) &&
4222 !(test_bit(R5_UPTODATE, &dev->flags) ||
4223 test_bit(R5_Wantcompute, &dev->flags))) {
4224 rcw++;
4225 if (test_bit(R5_Insync, &dev->flags) &&
4226 test_bit(STRIPE_PREREAD_ACTIVE,
4227 &sh->state)) {
4228 pr_debug("Read_old block "
4229 "%d for Reconstruct\n", i);
4230 set_bit(R5_LOCKED, &dev->flags);
4231 set_bit(R5_Wantread, &dev->flags);
4232 s->locked++;
4233 qread++;
4234 } else
4235 set_bit(STRIPE_DELAYED, &sh->state);
4236 }
4237 }
4238 if (rcw && !mddev_is_dm(conf->mddev))
4239 blk_add_trace_msg(conf->mddev->gendisk->queue,
4240 "raid5 rcw %llu %d %d %d",
4241 (unsigned long long)sh->sector, rcw, qread,
4242 test_bit(STRIPE_DELAYED, &sh->state));
4243 }
4244
4245 if (rcw > disks && rmw > disks &&
4246 !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4247 set_bit(STRIPE_DELAYED, &sh->state);
4248
4249 /* now if nothing is locked, and if we have enough data,
4250 * we can start a write request
4251 */
4252 /* since handle_stripe can be called at any time we need to handle the
4253 * case where a compute block operation has been submitted and then a
4254 * subsequent call wants to start a write request. raid_run_ops only
4255 * handles the case where compute block and reconstruct are requested
4256 * simultaneously. If this is not the case then new writes need to be
4257 * held off until the compute completes.
4258 */
4259 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4260 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4261 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4262 schedule_reconstruction(sh, s, rcw == 0, 0);
4263 return 0;
4264}
4265
4266static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4267 struct stripe_head_state *s, int disks)
4268{
4269 struct r5dev *dev = NULL;
4270
4271 BUG_ON(sh->batch_head);
4272 set_bit(STRIPE_HANDLE, &sh->state);
4273
4274 switch (sh->check_state) {
4275 case check_state_idle:
4276 /* start a new check operation if there are no failures */
4277 if (s->failed == 0) {
4278 BUG_ON(s->uptodate != disks);
4279 sh->check_state = check_state_run;
4280 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4281 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4282 s->uptodate--;
4283 break;
4284 }
4285 dev = &sh->dev[s->failed_num[0]];
4286 fallthrough;
4287 case check_state_compute_result:
4288 sh->check_state = check_state_idle;
4289 if (!dev)
4290 dev = &sh->dev[sh->pd_idx];
4291
4292 /* check that a write has not made the stripe insync */
4293 if (test_bit(STRIPE_INSYNC, &sh->state))
4294 break;
4295
4296 /* either failed parity check, or recovery is happening */
4297 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4298 BUG_ON(s->uptodate != disks);
4299
4300 set_bit(R5_LOCKED, &dev->flags);
4301 s->locked++;
4302 set_bit(R5_Wantwrite, &dev->flags);
4303
4304 set_bit(STRIPE_INSYNC, &sh->state);
4305 break;
4306 case check_state_run:
4307 break; /* we will be called again upon completion */
4308 case check_state_check_result:
4309 sh->check_state = check_state_idle;
4310
4311 /* if a failure occurred during the check operation, leave
4312 * STRIPE_INSYNC not set and let the stripe be handled again
4313 */
4314 if (s->failed)
4315 break;
4316
4317 /* handle a successful check operation, if parity is correct
4318 * we are done. Otherwise update the mismatch count and repair
4319 * parity if !MD_RECOVERY_CHECK
4320 */
4321 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4322 /* parity is correct (on disc,
4323 * not in buffer any more)
4324 */
4325 set_bit(STRIPE_INSYNC, &sh->state);
4326 else {
4327 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4328 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4329 /* don't try to repair!! */
4330 set_bit(STRIPE_INSYNC, &sh->state);
4331 pr_warn_ratelimited("%s: mismatch sector in range "
4332 "%llu-%llu\n", mdname(conf->mddev),
4333 (unsigned long long) sh->sector,
4334 (unsigned long long) sh->sector +
4335 RAID5_STRIPE_SECTORS(conf));
4336 } else {
4337 sh->check_state = check_state_compute_run;
4338 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4339 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4340 set_bit(R5_Wantcompute,
4341 &sh->dev[sh->pd_idx].flags);
4342 sh->ops.target = sh->pd_idx;
4343 sh->ops.target2 = -1;
4344 s->uptodate++;
4345 }
4346 }
4347 break;
4348 case check_state_compute_run:
4349 break;
4350 default:
4351 pr_err("%s: unknown check_state: %d sector: %llu\n",
4352 __func__, sh->check_state,
4353 (unsigned long long) sh->sector);
4354 BUG();
4355 }
4356}
4357
4358static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4359 struct stripe_head_state *s,
4360 int disks)
4361{
4362 int pd_idx = sh->pd_idx;
4363 int qd_idx = sh->qd_idx;
4364 struct r5dev *dev;
4365
4366 BUG_ON(sh->batch_head);
4367 set_bit(STRIPE_HANDLE, &sh->state);
4368
4369 BUG_ON(s->failed > 2);
4370
4371 /* Want to check and possibly repair P and Q.
4372 * However there could be one 'failed' device, in which
4373 * case we can only check one of them, possibly using the
4374 * other to generate missing data
4375 */
4376
4377 switch (sh->check_state) {
4378 case check_state_idle:
4379 /* start a new check operation if there are < 2 failures */
4380 if (s->failed == s->q_failed) {
4381 /* The only possible failed device holds Q, so it
4382 * makes sense to check P (If anything else were failed,
4383 * we would have used P to recreate it).
4384 */
4385 sh->check_state = check_state_run;
4386 }
4387 if (!s->q_failed && s->failed < 2) {
4388 /* Q is not failed, and we didn't use it to generate
4389 * anything, so it makes sense to check it
4390 */
4391 if (sh->check_state == check_state_run)
4392 sh->check_state = check_state_run_pq;
4393 else
4394 sh->check_state = check_state_run_q;
4395 }
4396
4397 /* discard potentially stale zero_sum_result */
4398 sh->ops.zero_sum_result = 0;
4399
4400 if (sh->check_state == check_state_run) {
4401 /* async_xor_zero_sum destroys the contents of P */
4402 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4403 s->uptodate--;
4404 }
4405 if (sh->check_state >= check_state_run &&
4406 sh->check_state <= check_state_run_pq) {
4407 /* async_syndrome_zero_sum preserves P and Q, so
4408 * no need to mark them !uptodate here
4409 */
4410 set_bit(STRIPE_OP_CHECK, &s->ops_request);
4411 break;
4412 }
4413
4414 /* we have 2-disk failure */
4415 BUG_ON(s->failed != 2);
4416 fallthrough;
4417 case check_state_compute_result:
4418 sh->check_state = check_state_idle;
4419
4420 /* check that a write has not made the stripe insync */
4421 if (test_bit(STRIPE_INSYNC, &sh->state))
4422 break;
4423
4424 /* now write out any block on a failed drive,
4425 * or P or Q if they were recomputed
4426 */
4427 dev = NULL;
4428 if (s->failed == 2) {
4429 dev = &sh->dev[s->failed_num[1]];
4430 s->locked++;
4431 set_bit(R5_LOCKED, &dev->flags);
4432 set_bit(R5_Wantwrite, &dev->flags);
4433 }
4434 if (s->failed >= 1) {
4435 dev = &sh->dev[s->failed_num[0]];
4436 s->locked++;
4437 set_bit(R5_LOCKED, &dev->flags);
4438 set_bit(R5_Wantwrite, &dev->flags);
4439 }
4440 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4441 dev = &sh->dev[pd_idx];
4442 s->locked++;
4443 set_bit(R5_LOCKED, &dev->flags);
4444 set_bit(R5_Wantwrite, &dev->flags);
4445 }
4446 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4447 dev = &sh->dev[qd_idx];
4448 s->locked++;
4449 set_bit(R5_LOCKED, &dev->flags);
4450 set_bit(R5_Wantwrite, &dev->flags);
4451 }
4452 if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4453 "%s: disk%td not up to date\n",
4454 mdname(conf->mddev),
4455 dev - (struct r5dev *) &sh->dev)) {
4456 clear_bit(R5_LOCKED, &dev->flags);
4457 clear_bit(R5_Wantwrite, &dev->flags);
4458 s->locked--;
4459 }
4460
4461 set_bit(STRIPE_INSYNC, &sh->state);
4462 break;
4463 case check_state_run:
4464 case check_state_run_q:
4465 case check_state_run_pq:
4466 break; /* we will be called again upon completion */
4467 case check_state_check_result:
4468 sh->check_state = check_state_idle;
4469
4470 /* handle a successful check operation, if parity is correct
4471 * we are done. Otherwise update the mismatch count and repair
4472 * parity if !MD_RECOVERY_CHECK
4473 */
4474 if (sh->ops.zero_sum_result == 0) {
4475 /* both parities are correct */
4476 if (!s->failed)
4477 set_bit(STRIPE_INSYNC, &sh->state);
4478 else {
4479 /* in contrast to the raid5 case we can validate
4480 * parity, but still have a failure to write
4481 * back
4482 */
4483 sh->check_state = check_state_compute_result;
4484 /* Returning at this point means that we may go
4485 * off and bring p and/or q uptodate again so
4486 * we make sure to check zero_sum_result again
4487 * to verify if p or q need writeback
4488 */
4489 }
4490 } else {
4491 atomic64_add(RAID5_STRIPE_SECTORS(conf), &conf->mddev->resync_mismatches);
4492 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4493 /* don't try to repair!! */
4494 set_bit(STRIPE_INSYNC, &sh->state);
4495 pr_warn_ratelimited("%s: mismatch sector in range "
4496 "%llu-%llu\n", mdname(conf->mddev),
4497 (unsigned long long) sh->sector,
4498 (unsigned long long) sh->sector +
4499 RAID5_STRIPE_SECTORS(conf));
4500 } else {
4501 int *target = &sh->ops.target;
4502
4503 sh->ops.target = -1;
4504 sh->ops.target2 = -1;
4505 sh->check_state = check_state_compute_run;
4506 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4507 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4508 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4509 set_bit(R5_Wantcompute,
4510 &sh->dev[pd_idx].flags);
4511 *target = pd_idx;
4512 target = &sh->ops.target2;
4513 s->uptodate++;
4514 }
4515 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4516 set_bit(R5_Wantcompute,
4517 &sh->dev[qd_idx].flags);
4518 *target = qd_idx;
4519 s->uptodate++;
4520 }
4521 }
4522 }
4523 break;
4524 case check_state_compute_run:
4525 break;
4526 default:
4527 pr_warn("%s: unknown check_state: %d sector: %llu\n",
4528 __func__, sh->check_state,
4529 (unsigned long long) sh->sector);
4530 BUG();
4531 }
4532}
4533
4534static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4535{
4536 int i;
4537
4538 /* We have read all the blocks in this stripe and now we need to
4539 * copy some of them into a target stripe for expand.
4540 */
4541 struct dma_async_tx_descriptor *tx = NULL;
4542 BUG_ON(sh->batch_head);
4543 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4544 for (i = 0; i < sh->disks; i++)
4545 if (i != sh->pd_idx && i != sh->qd_idx) {
4546 int dd_idx, j;
4547 struct stripe_head *sh2;
4548 struct async_submit_ctl submit;
4549
4550 sector_t bn = raid5_compute_blocknr(sh, i, 1);
4551 sector_t s = raid5_compute_sector(conf, bn, 0,
4552 &dd_idx, NULL);
4553 sh2 = raid5_get_active_stripe(conf, NULL, s,
4554 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
4555 if (sh2 == NULL)
4556 /* so far only the early blocks of this stripe
4557 * have been requested. When later blocks
4558 * get requested, we will try again
4559 */
4560 continue;
4561 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4562 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4563 /* must have already done this block */
4564 raid5_release_stripe(sh2);
4565 continue;
4566 }
4567
4568 /* place all the copies on one channel */
4569 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4570 tx = async_memcpy(sh2->dev[dd_idx].page,
4571 sh->dev[i].page, sh2->dev[dd_idx].offset,
4572 sh->dev[i].offset, RAID5_STRIPE_SIZE(conf),
4573 &submit);
4574
4575 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4576 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4577 for (j = 0; j < conf->raid_disks; j++)
4578 if (j != sh2->pd_idx &&
4579 j != sh2->qd_idx &&
4580 !test_bit(R5_Expanded, &sh2->dev[j].flags))
4581 break;
4582 if (j == conf->raid_disks) {
4583 set_bit(STRIPE_EXPAND_READY, &sh2->state);
4584 set_bit(STRIPE_HANDLE, &sh2->state);
4585 }
4586 raid5_release_stripe(sh2);
4587
4588 }
4589 /* done submitting copies, wait for them to complete */
4590 async_tx_quiesce(&tx);
4591}
4592
4593/*
4594 * handle_stripe - do things to a stripe.
4595 *
4596 * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4597 * state of various bits to see what needs to be done.
4598 * Possible results:
4599 * return some read requests which now have data
4600 * return some write requests which are safely on storage
4601 * schedule a read on some buffers
4602 * schedule a write of some buffers
4603 * return confirmation of parity correctness
4604 *
4605 */
4606
4607static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4608{
4609 struct r5conf *conf = sh->raid_conf;
4610 int disks = sh->disks;
4611 struct r5dev *dev;
4612 int i;
4613 int do_recovery = 0;
4614
4615 memset(s, 0, sizeof(*s));
4616
4617 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4618 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4619 s->failed_num[0] = -1;
4620 s->failed_num[1] = -1;
4621 s->log_failed = r5l_log_disk_error(conf);
4622
4623 /* Now to look around and see what can be done */
4624 for (i=disks; i--; ) {
4625 struct md_rdev *rdev;
4626 int is_bad = 0;
4627
4628 dev = &sh->dev[i];
4629
4630 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4631 i, dev->flags,
4632 dev->toread, dev->towrite, dev->written);
4633 /* maybe we can reply to a read
4634 *
4635 * new wantfill requests are only permitted while
4636 * ops_complete_biofill is guaranteed to be inactive
4637 */
4638 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4639 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4640 set_bit(R5_Wantfill, &dev->flags);
4641
4642 /* now count some things */
4643 if (test_bit(R5_LOCKED, &dev->flags))
4644 s->locked++;
4645 if (test_bit(R5_UPTODATE, &dev->flags))
4646 s->uptodate++;
4647 if (test_bit(R5_Wantcompute, &dev->flags)) {
4648 s->compute++;
4649 BUG_ON(s->compute > 2);
4650 }
4651
4652 if (test_bit(R5_Wantfill, &dev->flags))
4653 s->to_fill++;
4654 else if (dev->toread)
4655 s->to_read++;
4656 if (dev->towrite) {
4657 s->to_write++;
4658 if (!test_bit(R5_OVERWRITE, &dev->flags))
4659 s->non_overwrite++;
4660 }
4661 if (dev->written)
4662 s->written++;
4663 /* Prefer to use the replacement for reads, but only
4664 * if it is recovered enough and has no bad blocks.
4665 */
4666 rdev = conf->disks[i].replacement;
4667 if (rdev && !test_bit(Faulty, &rdev->flags) &&
4668 rdev->recovery_offset >= sh->sector + RAID5_STRIPE_SECTORS(conf) &&
4669 !rdev_has_badblock(rdev, sh->sector,
4670 RAID5_STRIPE_SECTORS(conf)))
4671 set_bit(R5_ReadRepl, &dev->flags);
4672 else {
4673 if (rdev && !test_bit(Faulty, &rdev->flags))
4674 set_bit(R5_NeedReplace, &dev->flags);
4675 else
4676 clear_bit(R5_NeedReplace, &dev->flags);
4677 rdev = conf->disks[i].rdev;
4678 clear_bit(R5_ReadRepl, &dev->flags);
4679 }
4680 if (rdev && test_bit(Faulty, &rdev->flags))
4681 rdev = NULL;
4682 if (rdev) {
4683 is_bad = rdev_has_badblock(rdev, sh->sector,
4684 RAID5_STRIPE_SECTORS(conf));
4685 if (s->blocked_rdev == NULL) {
4686 if (is_bad < 0)
4687 set_bit(BlockedBadBlocks, &rdev->flags);
4688 if (rdev_blocked(rdev)) {
4689 s->blocked_rdev = rdev;
4690 atomic_inc(&rdev->nr_pending);
4691 }
4692 }
4693 }
4694 clear_bit(R5_Insync, &dev->flags);
4695 if (!rdev)
4696 /* Not in-sync */;
4697 else if (is_bad) {
4698 /* also not in-sync */
4699 if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4700 test_bit(R5_UPTODATE, &dev->flags)) {
4701 /* treat as in-sync, but with a read error
4702 * which we can now try to correct
4703 */
4704 set_bit(R5_Insync, &dev->flags);
4705 set_bit(R5_ReadError, &dev->flags);
4706 }
4707 } else if (test_bit(In_sync, &rdev->flags))
4708 set_bit(R5_Insync, &dev->flags);
4709 else if (sh->sector + RAID5_STRIPE_SECTORS(conf) <= rdev->recovery_offset)
4710 /* in sync if before recovery_offset */
4711 set_bit(R5_Insync, &dev->flags);
4712 else if (test_bit(R5_UPTODATE, &dev->flags) &&
4713 test_bit(R5_Expanded, &dev->flags))
4714 /* If we've reshaped into here, we assume it is Insync.
4715 * We will shortly update recovery_offset to make
4716 * it official.
4717 */
4718 set_bit(R5_Insync, &dev->flags);
4719
4720 if (test_bit(R5_WriteError, &dev->flags)) {
4721 /* This flag does not apply to '.replacement'
4722 * only to .rdev, so make sure to check that*/
4723 struct md_rdev *rdev2 = conf->disks[i].rdev;
4724
4725 if (rdev2 == rdev)
4726 clear_bit(R5_Insync, &dev->flags);
4727 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4728 s->handle_bad_blocks = 1;
4729 atomic_inc(&rdev2->nr_pending);
4730 } else
4731 clear_bit(R5_WriteError, &dev->flags);
4732 }
4733 if (test_bit(R5_MadeGood, &dev->flags)) {
4734 /* This flag does not apply to '.replacement'
4735 * only to .rdev, so make sure to check that*/
4736 struct md_rdev *rdev2 = conf->disks[i].rdev;
4737
4738 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4739 s->handle_bad_blocks = 1;
4740 atomic_inc(&rdev2->nr_pending);
4741 } else
4742 clear_bit(R5_MadeGood, &dev->flags);
4743 }
4744 if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4745 struct md_rdev *rdev2 = conf->disks[i].replacement;
4746
4747 if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4748 s->handle_bad_blocks = 1;
4749 atomic_inc(&rdev2->nr_pending);
4750 } else
4751 clear_bit(R5_MadeGoodRepl, &dev->flags);
4752 }
4753 if (!test_bit(R5_Insync, &dev->flags)) {
4754 /* The ReadError flag will just be confusing now */
4755 clear_bit(R5_ReadError, &dev->flags);
4756 clear_bit(R5_ReWrite, &dev->flags);
4757 }
4758 if (test_bit(R5_ReadError, &dev->flags))
4759 clear_bit(R5_Insync, &dev->flags);
4760 if (!test_bit(R5_Insync, &dev->flags)) {
4761 if (s->failed < 2)
4762 s->failed_num[s->failed] = i;
4763 s->failed++;
4764 if (rdev && !test_bit(Faulty, &rdev->flags))
4765 do_recovery = 1;
4766 else if (!rdev) {
4767 rdev = conf->disks[i].replacement;
4768 if (rdev && !test_bit(Faulty, &rdev->flags))
4769 do_recovery = 1;
4770 }
4771 }
4772
4773 if (test_bit(R5_InJournal, &dev->flags))
4774 s->injournal++;
4775 if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4776 s->just_cached++;
4777 }
4778 if (test_bit(STRIPE_SYNCING, &sh->state)) {
4779 /* If there is a failed device being replaced,
4780 * we must be recovering.
4781 * else if we are after recovery_cp, we must be syncing
4782 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4783 * else we can only be replacing
4784 * sync and recovery both need to read all devices, and so
4785 * use the same flag.
4786 */
4787 if (do_recovery ||
4788 sh->sector >= conf->mddev->recovery_cp ||
4789 test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4790 s->syncing = 1;
4791 else
4792 s->replacing = 1;
4793 }
4794}
4795
4796/*
4797 * Return '1' if this is a member of batch, or '0' if it is a lone stripe or
4798 * a head which can now be handled.
4799 */
4800static int clear_batch_ready(struct stripe_head *sh)
4801{
4802 struct stripe_head *tmp;
4803 if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4804 return (sh->batch_head && sh->batch_head != sh);
4805 spin_lock(&sh->stripe_lock);
4806 if (!sh->batch_head) {
4807 spin_unlock(&sh->stripe_lock);
4808 return 0;
4809 }
4810
4811 /*
4812 * this stripe could be added to a batch list before we check
4813 * BATCH_READY, skips it
4814 */
4815 if (sh->batch_head != sh) {
4816 spin_unlock(&sh->stripe_lock);
4817 return 1;
4818 }
4819 spin_lock(&sh->batch_lock);
4820 list_for_each_entry(tmp, &sh->batch_list, batch_list)
4821 clear_bit(STRIPE_BATCH_READY, &tmp->state);
4822 spin_unlock(&sh->batch_lock);
4823 spin_unlock(&sh->stripe_lock);
4824
4825 /*
4826 * BATCH_READY is cleared, no new stripes can be added.
4827 * batch_list can be accessed without lock
4828 */
4829 return 0;
4830}
4831
4832static void break_stripe_batch_list(struct stripe_head *head_sh,
4833 unsigned long handle_flags)
4834{
4835 struct stripe_head *sh, *next;
4836 int i;
4837
4838 list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4839
4840 list_del_init(&sh->batch_list);
4841
4842 WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4843 (1 << STRIPE_SYNCING) |
4844 (1 << STRIPE_REPLACED) |
4845 (1 << STRIPE_DELAYED) |
4846 (1 << STRIPE_BIT_DELAY) |
4847 (1 << STRIPE_FULL_WRITE) |
4848 (1 << STRIPE_BIOFILL_RUN) |
4849 (1 << STRIPE_COMPUTE_RUN) |
4850 (1 << STRIPE_DISCARD) |
4851 (1 << STRIPE_BATCH_READY) |
4852 (1 << STRIPE_BATCH_ERR)),
4853 "stripe state: %lx\n", sh->state);
4854 WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4855 (1 << STRIPE_REPLACED)),
4856 "head stripe state: %lx\n", head_sh->state);
4857
4858 set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4859 (1 << STRIPE_PREREAD_ACTIVE) |
4860 (1 << STRIPE_ON_UNPLUG_LIST)),
4861 head_sh->state & (1 << STRIPE_INSYNC));
4862
4863 sh->check_state = head_sh->check_state;
4864 sh->reconstruct_state = head_sh->reconstruct_state;
4865 spin_lock_irq(&sh->stripe_lock);
4866 sh->batch_head = NULL;
4867 spin_unlock_irq(&sh->stripe_lock);
4868 for (i = 0; i < sh->disks; i++) {
4869 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4870 wake_up_bit(&sh->dev[i].flags, R5_Overlap);
4871 sh->dev[i].flags = head_sh->dev[i].flags &
4872 (~((1 << R5_WriteError) | (1 << R5_Overlap)));
4873 }
4874 if (handle_flags == 0 ||
4875 sh->state & handle_flags)
4876 set_bit(STRIPE_HANDLE, &sh->state);
4877 raid5_release_stripe(sh);
4878 }
4879 spin_lock_irq(&head_sh->stripe_lock);
4880 head_sh->batch_head = NULL;
4881 spin_unlock_irq(&head_sh->stripe_lock);
4882 for (i = 0; i < head_sh->disks; i++)
4883 if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4884 wake_up_bit(&head_sh->dev[i].flags, R5_Overlap);
4885 if (head_sh->state & handle_flags)
4886 set_bit(STRIPE_HANDLE, &head_sh->state);
4887}
4888
4889static void handle_stripe(struct stripe_head *sh)
4890{
4891 struct stripe_head_state s;
4892 struct r5conf *conf = sh->raid_conf;
4893 int i;
4894 int prexor;
4895 int disks = sh->disks;
4896 struct r5dev *pdev, *qdev;
4897
4898 clear_bit(STRIPE_HANDLE, &sh->state);
4899
4900 /*
4901 * handle_stripe should not continue handle the batched stripe, only
4902 * the head of batch list or lone stripe can continue. Otherwise we
4903 * could see break_stripe_batch_list warns about the STRIPE_ACTIVE
4904 * is set for the batched stripe.
4905 */
4906 if (clear_batch_ready(sh))
4907 return;
4908
4909 if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4910 /* already being handled, ensure it gets handled
4911 * again when current action finishes */
4912 set_bit(STRIPE_HANDLE, &sh->state);
4913 return;
4914 }
4915
4916 if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4917 break_stripe_batch_list(sh, 0);
4918
4919 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4920 spin_lock(&sh->stripe_lock);
4921 /*
4922 * Cannot process 'sync' concurrently with 'discard'.
4923 * Flush data in r5cache before 'sync'.
4924 */
4925 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4926 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4927 !test_bit(STRIPE_DISCARD, &sh->state) &&
4928 test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4929 set_bit(STRIPE_SYNCING, &sh->state);
4930 clear_bit(STRIPE_INSYNC, &sh->state);
4931 clear_bit(STRIPE_REPLACED, &sh->state);
4932 }
4933 spin_unlock(&sh->stripe_lock);
4934 }
4935 clear_bit(STRIPE_DELAYED, &sh->state);
4936
4937 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4938 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4939 (unsigned long long)sh->sector, sh->state,
4940 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4941 sh->check_state, sh->reconstruct_state);
4942
4943 analyse_stripe(sh, &s);
4944
4945 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4946 goto finish;
4947
4948 if (s.handle_bad_blocks ||
4949 test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4950 set_bit(STRIPE_HANDLE, &sh->state);
4951 goto finish;
4952 }
4953
4954 if (unlikely(s.blocked_rdev)) {
4955 if (s.syncing || s.expanding || s.expanded ||
4956 s.replacing || s.to_write || s.written) {
4957 set_bit(STRIPE_HANDLE, &sh->state);
4958 goto finish;
4959 }
4960 /* There is nothing for the blocked_rdev to block */
4961 rdev_dec_pending(s.blocked_rdev, conf->mddev);
4962 s.blocked_rdev = NULL;
4963 }
4964
4965 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4966 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4967 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4968 }
4969
4970 pr_debug("locked=%d uptodate=%d to_read=%d"
4971 " to_write=%d failed=%d failed_num=%d,%d\n",
4972 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4973 s.failed_num[0], s.failed_num[1]);
4974 /*
4975 * check if the array has lost more than max_degraded devices and,
4976 * if so, some requests might need to be failed.
4977 *
4978 * When journal device failed (log_failed), we will only process
4979 * the stripe if there is data need write to raid disks
4980 */
4981 if (s.failed > conf->max_degraded ||
4982 (s.log_failed && s.injournal == 0)) {
4983 sh->check_state = 0;
4984 sh->reconstruct_state = 0;
4985 break_stripe_batch_list(sh, 0);
4986 if (s.to_read+s.to_write+s.written)
4987 handle_failed_stripe(conf, sh, &s, disks);
4988 if (s.syncing + s.replacing)
4989 handle_failed_sync(conf, sh, &s);
4990 }
4991
4992 /* Now we check to see if any write operations have recently
4993 * completed
4994 */
4995 prexor = 0;
4996 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4997 prexor = 1;
4998 if (sh->reconstruct_state == reconstruct_state_drain_result ||
4999 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
5000 sh->reconstruct_state = reconstruct_state_idle;
5001
5002 /* All the 'written' buffers and the parity block are ready to
5003 * be written back to disk
5004 */
5005 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
5006 !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
5007 BUG_ON(sh->qd_idx >= 0 &&
5008 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
5009 !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
5010 for (i = disks; i--; ) {
5011 struct r5dev *dev = &sh->dev[i];
5012 if (test_bit(R5_LOCKED, &dev->flags) &&
5013 (i == sh->pd_idx || i == sh->qd_idx ||
5014 dev->written || test_bit(R5_InJournal,
5015 &dev->flags))) {
5016 pr_debug("Writing block %d\n", i);
5017 set_bit(R5_Wantwrite, &dev->flags);
5018 if (prexor)
5019 continue;
5020 if (s.failed > 1)
5021 continue;
5022 if (!test_bit(R5_Insync, &dev->flags) ||
5023 ((i == sh->pd_idx || i == sh->qd_idx) &&
5024 s.failed == 0))
5025 set_bit(STRIPE_INSYNC, &sh->state);
5026 }
5027 }
5028 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5029 s.dec_preread_active = 1;
5030 }
5031
5032 /*
5033 * might be able to return some write requests if the parity blocks
5034 * are safe, or on a failed drive
5035 */
5036 pdev = &sh->dev[sh->pd_idx];
5037 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
5038 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
5039 qdev = &sh->dev[sh->qd_idx];
5040 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
5041 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
5042 || conf->level < 6;
5043
5044 if (s.written &&
5045 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
5046 && !test_bit(R5_LOCKED, &pdev->flags)
5047 && (test_bit(R5_UPTODATE, &pdev->flags) ||
5048 test_bit(R5_Discard, &pdev->flags))))) &&
5049 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
5050 && !test_bit(R5_LOCKED, &qdev->flags)
5051 && (test_bit(R5_UPTODATE, &qdev->flags) ||
5052 test_bit(R5_Discard, &qdev->flags))))))
5053 handle_stripe_clean_event(conf, sh, disks);
5054
5055 if (s.just_cached)
5056 r5c_handle_cached_data_endio(conf, sh, disks);
5057 log_stripe_write_finished(sh);
5058
5059 /* Now we might consider reading some blocks, either to check/generate
5060 * parity, or to satisfy requests
5061 * or to load a block that is being partially written.
5062 */
5063 if (s.to_read || s.non_overwrite
5064 || (s.to_write && s.failed)
5065 || (s.syncing && (s.uptodate + s.compute < disks))
5066 || s.replacing
5067 || s.expanding)
5068 handle_stripe_fill(sh, &s, disks);
5069
5070 /*
5071 * When the stripe finishes full journal write cycle (write to journal
5072 * and raid disk), this is the clean up procedure so it is ready for
5073 * next operation.
5074 */
5075 r5c_finish_stripe_write_out(conf, sh, &s);
5076
5077 /*
5078 * Now to consider new write requests, cache write back and what else,
5079 * if anything should be read. We do not handle new writes when:
5080 * 1/ A 'write' operation (copy+xor) is already in flight.
5081 * 2/ A 'check' operation is in flight, as it may clobber the parity
5082 * block.
5083 * 3/ A r5c cache log write is in flight.
5084 */
5085
5086 if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
5087 if (!r5c_is_writeback(conf->log)) {
5088 if (s.to_write)
5089 handle_stripe_dirtying(conf, sh, &s, disks);
5090 } else { /* write back cache */
5091 int ret = 0;
5092
5093 /* First, try handle writes in caching phase */
5094 if (s.to_write)
5095 ret = r5c_try_caching_write(conf, sh, &s,
5096 disks);
5097 /*
5098 * If caching phase failed: ret == -EAGAIN
5099 * OR
5100 * stripe under reclaim: !caching && injournal
5101 *
5102 * fall back to handle_stripe_dirtying()
5103 */
5104 if (ret == -EAGAIN ||
5105 /* stripe under reclaim: !caching && injournal */
5106 (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
5107 s.injournal > 0)) {
5108 ret = handle_stripe_dirtying(conf, sh, &s,
5109 disks);
5110 if (ret == -EAGAIN)
5111 goto finish;
5112 }
5113 }
5114 }
5115
5116 /* maybe we need to check and possibly fix the parity for this stripe
5117 * Any reads will already have been scheduled, so we just see if enough
5118 * data is available. The parity check is held off while parity
5119 * dependent operations are in flight.
5120 */
5121 if (sh->check_state ||
5122 (s.syncing && s.locked == 0 &&
5123 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5124 !test_bit(STRIPE_INSYNC, &sh->state))) {
5125 if (conf->level == 6)
5126 handle_parity_checks6(conf, sh, &s, disks);
5127 else
5128 handle_parity_checks5(conf, sh, &s, disks);
5129 }
5130
5131 if ((s.replacing || s.syncing) && s.locked == 0
5132 && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
5133 && !test_bit(STRIPE_REPLACED, &sh->state)) {
5134 /* Write out to replacement devices where possible */
5135 for (i = 0; i < conf->raid_disks; i++)
5136 if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
5137 WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
5138 set_bit(R5_WantReplace, &sh->dev[i].flags);
5139 set_bit(R5_LOCKED, &sh->dev[i].flags);
5140 s.locked++;
5141 }
5142 if (s.replacing)
5143 set_bit(STRIPE_INSYNC, &sh->state);
5144 set_bit(STRIPE_REPLACED, &sh->state);
5145 }
5146 if ((s.syncing || s.replacing) && s.locked == 0 &&
5147 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
5148 test_bit(STRIPE_INSYNC, &sh->state)) {
5149 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5150 clear_bit(STRIPE_SYNCING, &sh->state);
5151 if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
5152 wake_up_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap);
5153 }
5154
5155 /* If the failed drives are just a ReadError, then we might need
5156 * to progress the repair/check process
5157 */
5158 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
5159 for (i = 0; i < s.failed; i++) {
5160 struct r5dev *dev = &sh->dev[s.failed_num[i]];
5161 if (test_bit(R5_ReadError, &dev->flags)
5162 && !test_bit(R5_LOCKED, &dev->flags)
5163 && test_bit(R5_UPTODATE, &dev->flags)
5164 ) {
5165 if (!test_bit(R5_ReWrite, &dev->flags)) {
5166 set_bit(R5_Wantwrite, &dev->flags);
5167 set_bit(R5_ReWrite, &dev->flags);
5168 } else
5169 /* let's read it back */
5170 set_bit(R5_Wantread, &dev->flags);
5171 set_bit(R5_LOCKED, &dev->flags);
5172 s.locked++;
5173 }
5174 }
5175
5176 /* Finish reconstruct operations initiated by the expansion process */
5177 if (sh->reconstruct_state == reconstruct_state_result) {
5178 struct stripe_head *sh_src
5179 = raid5_get_active_stripe(conf, NULL, sh->sector,
5180 R5_GAS_PREVIOUS | R5_GAS_NOBLOCK |
5181 R5_GAS_NOQUIESCE);
5182 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
5183 /* sh cannot be written until sh_src has been read.
5184 * so arrange for sh to be delayed a little
5185 */
5186 set_bit(STRIPE_DELAYED, &sh->state);
5187 set_bit(STRIPE_HANDLE, &sh->state);
5188 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
5189 &sh_src->state))
5190 atomic_inc(&conf->preread_active_stripes);
5191 raid5_release_stripe(sh_src);
5192 goto finish;
5193 }
5194 if (sh_src)
5195 raid5_release_stripe(sh_src);
5196
5197 sh->reconstruct_state = reconstruct_state_idle;
5198 clear_bit(STRIPE_EXPANDING, &sh->state);
5199 for (i = conf->raid_disks; i--; ) {
5200 set_bit(R5_Wantwrite, &sh->dev[i].flags);
5201 set_bit(R5_LOCKED, &sh->dev[i].flags);
5202 s.locked++;
5203 }
5204 }
5205
5206 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
5207 !sh->reconstruct_state) {
5208 /* Need to write out all blocks after computing parity */
5209 sh->disks = conf->raid_disks;
5210 stripe_set_idx(sh->sector, conf, 0, sh);
5211 schedule_reconstruction(sh, &s, 1, 1);
5212 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
5213 clear_bit(STRIPE_EXPAND_READY, &sh->state);
5214 atomic_dec(&conf->reshape_stripes);
5215 wake_up(&conf->wait_for_reshape);
5216 md_done_sync(conf->mddev, RAID5_STRIPE_SECTORS(conf), 1);
5217 }
5218
5219 if (s.expanding && s.locked == 0 &&
5220 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
5221 handle_stripe_expansion(conf, sh);
5222
5223finish:
5224 /* wait for this device to become unblocked */
5225 if (unlikely(s.blocked_rdev)) {
5226 if (conf->mddev->external)
5227 md_wait_for_blocked_rdev(s.blocked_rdev,
5228 conf->mddev);
5229 else
5230 /* Internal metadata will immediately
5231 * be written by raid5d, so we don't
5232 * need to wait here.
5233 */
5234 rdev_dec_pending(s.blocked_rdev,
5235 conf->mddev);
5236 }
5237
5238 if (s.handle_bad_blocks)
5239 for (i = disks; i--; ) {
5240 struct md_rdev *rdev;
5241 struct r5dev *dev = &sh->dev[i];
5242 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5243 /* We own a safe reference to the rdev */
5244 rdev = conf->disks[i].rdev;
5245 if (!rdev_set_badblocks(rdev, sh->sector,
5246 RAID5_STRIPE_SECTORS(conf), 0))
5247 md_error(conf->mddev, rdev);
5248 rdev_dec_pending(rdev, conf->mddev);
5249 }
5250 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5251 rdev = conf->disks[i].rdev;
5252 rdev_clear_badblocks(rdev, sh->sector,
5253 RAID5_STRIPE_SECTORS(conf), 0);
5254 rdev_dec_pending(rdev, conf->mddev);
5255 }
5256 if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5257 rdev = conf->disks[i].replacement;
5258 if (!rdev)
5259 /* rdev have been moved down */
5260 rdev = conf->disks[i].rdev;
5261 rdev_clear_badblocks(rdev, sh->sector,
5262 RAID5_STRIPE_SECTORS(conf), 0);
5263 rdev_dec_pending(rdev, conf->mddev);
5264 }
5265 }
5266
5267 if (s.ops_request)
5268 raid_run_ops(sh, s.ops_request);
5269
5270 ops_run_io(sh, &s);
5271
5272 if (s.dec_preread_active) {
5273 /* We delay this until after ops_run_io so that if make_request
5274 * is waiting on a flush, it won't continue until the writes
5275 * have actually been submitted.
5276 */
5277 atomic_dec(&conf->preread_active_stripes);
5278 if (atomic_read(&conf->preread_active_stripes) <
5279 IO_THRESHOLD)
5280 md_wakeup_thread(conf->mddev->thread);
5281 }
5282
5283 clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5284}
5285
5286static void raid5_activate_delayed(struct r5conf *conf)
5287 __must_hold(&conf->device_lock)
5288{
5289 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5290 while (!list_empty(&conf->delayed_list)) {
5291 struct list_head *l = conf->delayed_list.next;
5292 struct stripe_head *sh;
5293 sh = list_entry(l, struct stripe_head, lru);
5294 list_del_init(l);
5295 clear_bit(STRIPE_DELAYED, &sh->state);
5296 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5297 atomic_inc(&conf->preread_active_stripes);
5298 list_add_tail(&sh->lru, &conf->hold_list);
5299 raid5_wakeup_stripe_thread(sh);
5300 }
5301 }
5302}
5303
5304static void activate_bit_delay(struct r5conf *conf,
5305 struct list_head *temp_inactive_list)
5306 __must_hold(&conf->device_lock)
5307{
5308 struct list_head head;
5309 list_add(&head, &conf->bitmap_list);
5310 list_del_init(&conf->bitmap_list);
5311 while (!list_empty(&head)) {
5312 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5313 int hash;
5314 list_del_init(&sh->lru);
5315 atomic_inc(&sh->count);
5316 hash = sh->hash_lock_index;
5317 __release_stripe(conf, sh, &temp_inactive_list[hash]);
5318 }
5319}
5320
5321static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5322{
5323 struct r5conf *conf = mddev->private;
5324 sector_t sector = bio->bi_iter.bi_sector;
5325 unsigned int chunk_sectors;
5326 unsigned int bio_sectors = bio_sectors(bio);
5327
5328 chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5329 return chunk_sectors >=
5330 ((sector & (chunk_sectors - 1)) + bio_sectors);
5331}
5332
5333/*
5334 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
5335 * later sampled by raid5d.
5336 */
5337static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5338{
5339 unsigned long flags;
5340
5341 spin_lock_irqsave(&conf->device_lock, flags);
5342
5343 bi->bi_next = conf->retry_read_aligned_list;
5344 conf->retry_read_aligned_list = bi;
5345
5346 spin_unlock_irqrestore(&conf->device_lock, flags);
5347 md_wakeup_thread(conf->mddev->thread);
5348}
5349
5350static struct bio *remove_bio_from_retry(struct r5conf *conf,
5351 unsigned int *offset)
5352{
5353 struct bio *bi;
5354
5355 bi = conf->retry_read_aligned;
5356 if (bi) {
5357 *offset = conf->retry_read_offset;
5358 conf->retry_read_aligned = NULL;
5359 return bi;
5360 }
5361 bi = conf->retry_read_aligned_list;
5362 if(bi) {
5363 conf->retry_read_aligned_list = bi->bi_next;
5364 bi->bi_next = NULL;
5365 *offset = 0;
5366 }
5367
5368 return bi;
5369}
5370
5371/*
5372 * The "raid5_align_endio" should check if the read succeeded and if it
5373 * did, call bio_endio on the original bio (having bio_put the new bio
5374 * first).
5375 * If the read failed..
5376 */
5377static void raid5_align_endio(struct bio *bi)
5378{
5379 struct bio *raid_bi = bi->bi_private;
5380 struct md_rdev *rdev = (void *)raid_bi->bi_next;
5381 struct mddev *mddev = rdev->mddev;
5382 struct r5conf *conf = mddev->private;
5383 blk_status_t error = bi->bi_status;
5384
5385 bio_put(bi);
5386 raid_bi->bi_next = NULL;
5387 rdev_dec_pending(rdev, conf->mddev);
5388
5389 if (!error) {
5390 bio_endio(raid_bi);
5391 if (atomic_dec_and_test(&conf->active_aligned_reads))
5392 wake_up(&conf->wait_for_quiescent);
5393 return;
5394 }
5395
5396 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5397
5398 add_bio_to_retry(raid_bi, conf);
5399}
5400
5401static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5402{
5403 struct r5conf *conf = mddev->private;
5404 struct bio *align_bio;
5405 struct md_rdev *rdev;
5406 sector_t sector, end_sector;
5407 int dd_idx;
5408 bool did_inc;
5409
5410 if (!in_chunk_boundary(mddev, raid_bio)) {
5411 pr_debug("%s: non aligned\n", __func__);
5412 return 0;
5413 }
5414
5415 sector = raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector, 0,
5416 &dd_idx, NULL);
5417 end_sector = sector + bio_sectors(raid_bio);
5418
5419 if (r5c_big_stripe_cached(conf, sector))
5420 return 0;
5421
5422 rdev = conf->disks[dd_idx].replacement;
5423 if (!rdev || test_bit(Faulty, &rdev->flags) ||
5424 rdev->recovery_offset < end_sector) {
5425 rdev = conf->disks[dd_idx].rdev;
5426 if (!rdev)
5427 return 0;
5428 if (test_bit(Faulty, &rdev->flags) ||
5429 !(test_bit(In_sync, &rdev->flags) ||
5430 rdev->recovery_offset >= end_sector))
5431 return 0;
5432 }
5433
5434 atomic_inc(&rdev->nr_pending);
5435
5436 if (rdev_has_badblock(rdev, sector, bio_sectors(raid_bio))) {
5437 rdev_dec_pending(rdev, mddev);
5438 return 0;
5439 }
5440
5441 md_account_bio(mddev, &raid_bio);
5442 raid_bio->bi_next = (void *)rdev;
5443
5444 align_bio = bio_alloc_clone(rdev->bdev, raid_bio, GFP_NOIO,
5445 &mddev->bio_set);
5446 align_bio->bi_end_io = raid5_align_endio;
5447 align_bio->bi_private = raid_bio;
5448 align_bio->bi_iter.bi_sector = sector;
5449
5450 /* No reshape active, so we can trust rdev->data_offset */
5451 align_bio->bi_iter.bi_sector += rdev->data_offset;
5452
5453 did_inc = false;
5454 if (conf->quiesce == 0) {
5455 atomic_inc(&conf->active_aligned_reads);
5456 did_inc = true;
5457 }
5458 /* need a memory barrier to detect the race with raid5_quiesce() */
5459 if (!did_inc || smp_load_acquire(&conf->quiesce) != 0) {
5460 /* quiesce is in progress, so we need to undo io activation and wait
5461 * for it to finish
5462 */
5463 if (did_inc && atomic_dec_and_test(&conf->active_aligned_reads))
5464 wake_up(&conf->wait_for_quiescent);
5465 spin_lock_irq(&conf->device_lock);
5466 wait_event_lock_irq(conf->wait_for_quiescent, conf->quiesce == 0,
5467 conf->device_lock);
5468 atomic_inc(&conf->active_aligned_reads);
5469 spin_unlock_irq(&conf->device_lock);
5470 }
5471
5472 mddev_trace_remap(mddev, align_bio, raid_bio->bi_iter.bi_sector);
5473 submit_bio_noacct(align_bio);
5474 return 1;
5475}
5476
5477static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5478{
5479 struct bio *split;
5480 sector_t sector = raid_bio->bi_iter.bi_sector;
5481 unsigned chunk_sects = mddev->chunk_sectors;
5482 unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5483
5484 if (sectors < bio_sectors(raid_bio)) {
5485 struct r5conf *conf = mddev->private;
5486 split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5487 bio_chain(split, raid_bio);
5488 submit_bio_noacct(raid_bio);
5489 raid_bio = split;
5490 }
5491
5492 if (!raid5_read_one_chunk(mddev, raid_bio))
5493 return raid_bio;
5494
5495 return NULL;
5496}
5497
5498/* __get_priority_stripe - get the next stripe to process
5499 *
5500 * Full stripe writes are allowed to pass preread active stripes up until
5501 * the bypass_threshold is exceeded. In general the bypass_count
5502 * increments when the handle_list is handled before the hold_list; however, it
5503 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5504 * stripe with in flight i/o. The bypass_count will be reset when the
5505 * head of the hold_list has changed, i.e. the head was promoted to the
5506 * handle_list.
5507 */
5508static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5509 __must_hold(&conf->device_lock)
5510{
5511 struct stripe_head *sh, *tmp;
5512 struct list_head *handle_list = NULL;
5513 struct r5worker_group *wg;
5514 bool second_try = !r5c_is_writeback(conf->log) &&
5515 !r5l_log_disk_error(conf);
5516 bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5517 r5l_log_disk_error(conf);
5518
5519again:
5520 wg = NULL;
5521 sh = NULL;
5522 if (conf->worker_cnt_per_group == 0) {
5523 handle_list = try_loprio ? &conf->loprio_list :
5524 &conf->handle_list;
5525 } else if (group != ANY_GROUP) {
5526 handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5527 &conf->worker_groups[group].handle_list;
5528 wg = &conf->worker_groups[group];
5529 } else {
5530 int i;
5531 for (i = 0; i < conf->group_cnt; i++) {
5532 handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5533 &conf->worker_groups[i].handle_list;
5534 wg = &conf->worker_groups[i];
5535 if (!list_empty(handle_list))
5536 break;
5537 }
5538 }
5539
5540 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5541 __func__,
5542 list_empty(handle_list) ? "empty" : "busy",
5543 list_empty(&conf->hold_list) ? "empty" : "busy",
5544 atomic_read(&conf->pending_full_writes), conf->bypass_count);
5545
5546 if (!list_empty(handle_list)) {
5547 sh = list_entry(handle_list->next, typeof(*sh), lru);
5548
5549 if (list_empty(&conf->hold_list))
5550 conf->bypass_count = 0;
5551 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5552 if (conf->hold_list.next == conf->last_hold)
5553 conf->bypass_count++;
5554 else {
5555 conf->last_hold = conf->hold_list.next;
5556 conf->bypass_count -= conf->bypass_threshold;
5557 if (conf->bypass_count < 0)
5558 conf->bypass_count = 0;
5559 }
5560 }
5561 } else if (!list_empty(&conf->hold_list) &&
5562 ((conf->bypass_threshold &&
5563 conf->bypass_count > conf->bypass_threshold) ||
5564 atomic_read(&conf->pending_full_writes) == 0)) {
5565
5566 list_for_each_entry(tmp, &conf->hold_list, lru) {
5567 if (conf->worker_cnt_per_group == 0 ||
5568 group == ANY_GROUP ||
5569 !cpu_online(tmp->cpu) ||
5570 cpu_to_group(tmp->cpu) == group) {
5571 sh = tmp;
5572 break;
5573 }
5574 }
5575
5576 if (sh) {
5577 conf->bypass_count -= conf->bypass_threshold;
5578 if (conf->bypass_count < 0)
5579 conf->bypass_count = 0;
5580 }
5581 wg = NULL;
5582 }
5583
5584 if (!sh) {
5585 if (second_try)
5586 return NULL;
5587 second_try = true;
5588 try_loprio = !try_loprio;
5589 goto again;
5590 }
5591
5592 if (wg) {
5593 wg->stripes_cnt--;
5594 sh->group = NULL;
5595 }
5596 list_del_init(&sh->lru);
5597 BUG_ON(atomic_inc_return(&sh->count) != 1);
5598 return sh;
5599}
5600
5601struct raid5_plug_cb {
5602 struct blk_plug_cb cb;
5603 struct list_head list;
5604 struct list_head temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5605};
5606
5607static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5608{
5609 struct raid5_plug_cb *cb = container_of(
5610 blk_cb, struct raid5_plug_cb, cb);
5611 struct stripe_head *sh;
5612 struct mddev *mddev = cb->cb.data;
5613 struct r5conf *conf = mddev->private;
5614 int cnt = 0;
5615 int hash;
5616
5617 if (cb->list.next && !list_empty(&cb->list)) {
5618 spin_lock_irq(&conf->device_lock);
5619 while (!list_empty(&cb->list)) {
5620 sh = list_first_entry(&cb->list, struct stripe_head, lru);
5621 list_del_init(&sh->lru);
5622 /*
5623 * avoid race release_stripe_plug() sees
5624 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5625 * is still in our list
5626 */
5627 smp_mb__before_atomic();
5628 clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5629 /*
5630 * STRIPE_ON_RELEASE_LIST could be set here. In that
5631 * case, the count is always > 1 here
5632 */
5633 hash = sh->hash_lock_index;
5634 __release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5635 cnt++;
5636 }
5637 spin_unlock_irq(&conf->device_lock);
5638 }
5639 release_inactive_stripe_list(conf, cb->temp_inactive_list,
5640 NR_STRIPE_HASH_LOCKS);
5641 if (!mddev_is_dm(mddev))
5642 trace_block_unplug(mddev->gendisk->queue, cnt, !from_schedule);
5643 kfree(cb);
5644}
5645
5646static void release_stripe_plug(struct mddev *mddev,
5647 struct stripe_head *sh)
5648{
5649 struct blk_plug_cb *blk_cb = blk_check_plugged(
5650 raid5_unplug, mddev,
5651 sizeof(struct raid5_plug_cb));
5652 struct raid5_plug_cb *cb;
5653
5654 if (!blk_cb) {
5655 raid5_release_stripe(sh);
5656 return;
5657 }
5658
5659 cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5660
5661 if (cb->list.next == NULL) {
5662 int i;
5663 INIT_LIST_HEAD(&cb->list);
5664 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5665 INIT_LIST_HEAD(cb->temp_inactive_list + i);
5666 }
5667
5668 if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5669 list_add_tail(&sh->lru, &cb->list);
5670 else
5671 raid5_release_stripe(sh);
5672}
5673
5674static void make_discard_request(struct mddev *mddev, struct bio *bi)
5675{
5676 struct r5conf *conf = mddev->private;
5677 sector_t logical_sector, last_sector;
5678 struct stripe_head *sh;
5679 int stripe_sectors;
5680
5681 /* We need to handle this when io_uring supports discard/trim */
5682 if (WARN_ON_ONCE(bi->bi_opf & REQ_NOWAIT))
5683 return;
5684
5685 if (mddev->reshape_position != MaxSector)
5686 /* Skip discard while reshape is happening */
5687 return;
5688
5689 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
5690 last_sector = bio_end_sector(bi);
5691
5692 bi->bi_next = NULL;
5693
5694 stripe_sectors = conf->chunk_sectors *
5695 (conf->raid_disks - conf->max_degraded);
5696 logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5697 stripe_sectors);
5698 sector_div(last_sector, stripe_sectors);
5699
5700 logical_sector *= conf->chunk_sectors;
5701 last_sector *= conf->chunk_sectors;
5702
5703 for (; logical_sector < last_sector;
5704 logical_sector += RAID5_STRIPE_SECTORS(conf)) {
5705 DEFINE_WAIT(w);
5706 int d;
5707 again:
5708 sh = raid5_get_active_stripe(conf, NULL, logical_sector, 0);
5709 set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5710 if (test_bit(STRIPE_SYNCING, &sh->state)) {
5711 raid5_release_stripe(sh);
5712 wait_on_bit(&sh->dev[sh->pd_idx].flags, R5_Overlap,
5713 TASK_UNINTERRUPTIBLE);
5714 goto again;
5715 }
5716 clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5717 spin_lock_irq(&sh->stripe_lock);
5718 for (d = 0; d < conf->raid_disks; d++) {
5719 if (d == sh->pd_idx || d == sh->qd_idx)
5720 continue;
5721 if (sh->dev[d].towrite || sh->dev[d].toread) {
5722 set_bit(R5_Overlap, &sh->dev[d].flags);
5723 spin_unlock_irq(&sh->stripe_lock);
5724 raid5_release_stripe(sh);
5725 wait_on_bit(&sh->dev[d].flags, R5_Overlap,
5726 TASK_UNINTERRUPTIBLE);
5727 goto again;
5728 }
5729 }
5730 set_bit(STRIPE_DISCARD, &sh->state);
5731 sh->overwrite_disks = 0;
5732 for (d = 0; d < conf->raid_disks; d++) {
5733 if (d == sh->pd_idx || d == sh->qd_idx)
5734 continue;
5735 sh->dev[d].towrite = bi;
5736 set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5737 bio_inc_remaining(bi);
5738 md_write_inc(mddev, bi);
5739 sh->overwrite_disks++;
5740 }
5741 spin_unlock_irq(&sh->stripe_lock);
5742 if (conf->mddev->bitmap) {
5743 sh->bm_seq = conf->seq_flush + 1;
5744 set_bit(STRIPE_BIT_DELAY, &sh->state);
5745 }
5746
5747 set_bit(STRIPE_HANDLE, &sh->state);
5748 clear_bit(STRIPE_DELAYED, &sh->state);
5749 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5750 atomic_inc(&conf->preread_active_stripes);
5751 release_stripe_plug(mddev, sh);
5752 }
5753
5754 bio_endio(bi);
5755}
5756
5757static bool ahead_of_reshape(struct mddev *mddev, sector_t sector,
5758 sector_t reshape_sector)
5759{
5760 return mddev->reshape_backwards ? sector < reshape_sector :
5761 sector >= reshape_sector;
5762}
5763
5764static bool range_ahead_of_reshape(struct mddev *mddev, sector_t min,
5765 sector_t max, sector_t reshape_sector)
5766{
5767 return mddev->reshape_backwards ? max < reshape_sector :
5768 min >= reshape_sector;
5769}
5770
5771static bool stripe_ahead_of_reshape(struct mddev *mddev, struct r5conf *conf,
5772 struct stripe_head *sh)
5773{
5774 sector_t max_sector = 0, min_sector = MaxSector;
5775 bool ret = false;
5776 int dd_idx;
5777
5778 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5779 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5780 continue;
5781
5782 min_sector = min(min_sector, sh->dev[dd_idx].sector);
5783 max_sector = max(max_sector, sh->dev[dd_idx].sector);
5784 }
5785
5786 spin_lock_irq(&conf->device_lock);
5787
5788 if (!range_ahead_of_reshape(mddev, min_sector, max_sector,
5789 conf->reshape_progress))
5790 /* mismatch, need to try again */
5791 ret = true;
5792
5793 spin_unlock_irq(&conf->device_lock);
5794
5795 return ret;
5796}
5797
5798static int add_all_stripe_bios(struct r5conf *conf,
5799 struct stripe_request_ctx *ctx, struct stripe_head *sh,
5800 struct bio *bi, int forwrite, int previous)
5801{
5802 int dd_idx;
5803
5804 spin_lock_irq(&sh->stripe_lock);
5805
5806 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5807 struct r5dev *dev = &sh->dev[dd_idx];
5808
5809 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5810 continue;
5811
5812 if (dev->sector < ctx->first_sector ||
5813 dev->sector >= ctx->last_sector)
5814 continue;
5815
5816 if (stripe_bio_overlaps(sh, bi, dd_idx, forwrite)) {
5817 set_bit(R5_Overlap, &dev->flags);
5818 spin_unlock_irq(&sh->stripe_lock);
5819 raid5_release_stripe(sh);
5820 /* release batch_last before wait to avoid risk of deadlock */
5821 if (ctx->batch_last) {
5822 raid5_release_stripe(ctx->batch_last);
5823 ctx->batch_last = NULL;
5824 }
5825 md_wakeup_thread(conf->mddev->thread);
5826 wait_on_bit(&dev->flags, R5_Overlap, TASK_UNINTERRUPTIBLE);
5827 return 0;
5828 }
5829 }
5830
5831 for (dd_idx = 0; dd_idx < sh->disks; dd_idx++) {
5832 struct r5dev *dev = &sh->dev[dd_idx];
5833
5834 if (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
5835 continue;
5836
5837 if (dev->sector < ctx->first_sector ||
5838 dev->sector >= ctx->last_sector)
5839 continue;
5840
5841 __add_stripe_bio(sh, bi, dd_idx, forwrite, previous);
5842 clear_bit((dev->sector - ctx->first_sector) >>
5843 RAID5_STRIPE_SHIFT(conf), ctx->sectors_to_do);
5844 }
5845
5846 spin_unlock_irq(&sh->stripe_lock);
5847 return 1;
5848}
5849
5850enum reshape_loc {
5851 LOC_NO_RESHAPE,
5852 LOC_AHEAD_OF_RESHAPE,
5853 LOC_INSIDE_RESHAPE,
5854 LOC_BEHIND_RESHAPE,
5855};
5856
5857static enum reshape_loc get_reshape_loc(struct mddev *mddev,
5858 struct r5conf *conf, sector_t logical_sector)
5859{
5860 sector_t reshape_progress, reshape_safe;
5861 /*
5862 * Spinlock is needed as reshape_progress may be
5863 * 64bit on a 32bit platform, and so it might be
5864 * possible to see a half-updated value
5865 * Of course reshape_progress could change after
5866 * the lock is dropped, so once we get a reference
5867 * to the stripe that we think it is, we will have
5868 * to check again.
5869 */
5870 spin_lock_irq(&conf->device_lock);
5871 reshape_progress = conf->reshape_progress;
5872 reshape_safe = conf->reshape_safe;
5873 spin_unlock_irq(&conf->device_lock);
5874 if (reshape_progress == MaxSector)
5875 return LOC_NO_RESHAPE;
5876 if (ahead_of_reshape(mddev, logical_sector, reshape_progress))
5877 return LOC_AHEAD_OF_RESHAPE;
5878 if (ahead_of_reshape(mddev, logical_sector, reshape_safe))
5879 return LOC_INSIDE_RESHAPE;
5880 return LOC_BEHIND_RESHAPE;
5881}
5882
5883static void raid5_bitmap_sector(struct mddev *mddev, sector_t *offset,
5884 unsigned long *sectors)
5885{
5886 struct r5conf *conf = mddev->private;
5887 sector_t start = *offset;
5888 sector_t end = start + *sectors;
5889 sector_t prev_start = start;
5890 sector_t prev_end = end;
5891 int sectors_per_chunk;
5892 enum reshape_loc loc;
5893 int dd_idx;
5894
5895 sectors_per_chunk = conf->chunk_sectors *
5896 (conf->raid_disks - conf->max_degraded);
5897 start = round_down(start, sectors_per_chunk);
5898 end = round_up(end, sectors_per_chunk);
5899
5900 start = raid5_compute_sector(conf, start, 0, &dd_idx, NULL);
5901 end = raid5_compute_sector(conf, end, 0, &dd_idx, NULL);
5902
5903 /*
5904 * For LOC_INSIDE_RESHAPE, this IO will wait for reshape to make
5905 * progress, hence it's the same as LOC_BEHIND_RESHAPE.
5906 */
5907 loc = get_reshape_loc(mddev, conf, prev_start);
5908 if (likely(loc != LOC_AHEAD_OF_RESHAPE)) {
5909 *offset = start;
5910 *sectors = end - start;
5911 return;
5912 }
5913
5914 sectors_per_chunk = conf->prev_chunk_sectors *
5915 (conf->previous_raid_disks - conf->max_degraded);
5916 prev_start = round_down(prev_start, sectors_per_chunk);
5917 prev_end = round_down(prev_end, sectors_per_chunk);
5918
5919 prev_start = raid5_compute_sector(conf, prev_start, 1, &dd_idx, NULL);
5920 prev_end = raid5_compute_sector(conf, prev_end, 1, &dd_idx, NULL);
5921
5922 /*
5923 * for LOC_AHEAD_OF_RESHAPE, reshape can make progress before this IO
5924 * is handled in make_stripe_request(), we can't know this here hence
5925 * we set bits for both.
5926 */
5927 *offset = min(start, prev_start);
5928 *sectors = max(end, prev_end) - *offset;
5929}
5930
5931static enum stripe_result make_stripe_request(struct mddev *mddev,
5932 struct r5conf *conf, struct stripe_request_ctx *ctx,
5933 sector_t logical_sector, struct bio *bi)
5934{
5935 const int rw = bio_data_dir(bi);
5936 enum stripe_result ret;
5937 struct stripe_head *sh;
5938 sector_t new_sector;
5939 int previous = 0, flags = 0;
5940 int seq, dd_idx;
5941
5942 seq = read_seqcount_begin(&conf->gen_lock);
5943
5944 if (unlikely(conf->reshape_progress != MaxSector)) {
5945 enum reshape_loc loc = get_reshape_loc(mddev, conf,
5946 logical_sector);
5947 if (loc == LOC_INSIDE_RESHAPE) {
5948 ret = STRIPE_SCHEDULE_AND_RETRY;
5949 goto out;
5950 }
5951 if (loc == LOC_AHEAD_OF_RESHAPE)
5952 previous = 1;
5953 }
5954
5955 new_sector = raid5_compute_sector(conf, logical_sector, previous,
5956 &dd_idx, NULL);
5957 pr_debug("raid456: %s, sector %llu logical %llu\n", __func__,
5958 new_sector, logical_sector);
5959
5960 if (previous)
5961 flags |= R5_GAS_PREVIOUS;
5962 if (bi->bi_opf & REQ_RAHEAD)
5963 flags |= R5_GAS_NOBLOCK;
5964 sh = raid5_get_active_stripe(conf, ctx, new_sector, flags);
5965 if (unlikely(!sh)) {
5966 /* cannot get stripe, just give-up */
5967 bi->bi_status = BLK_STS_IOERR;
5968 return STRIPE_FAIL;
5969 }
5970
5971 if (unlikely(previous) &&
5972 stripe_ahead_of_reshape(mddev, conf, sh)) {
5973 /*
5974 * Expansion moved on while waiting for a stripe.
5975 * Expansion could still move past after this
5976 * test, but as we are holding a reference to
5977 * 'sh', we know that if that happens,
5978 * STRIPE_EXPANDING will get set and the expansion
5979 * won't proceed until we finish with the stripe.
5980 */
5981 ret = STRIPE_SCHEDULE_AND_RETRY;
5982 goto out_release;
5983 }
5984
5985 if (read_seqcount_retry(&conf->gen_lock, seq)) {
5986 /* Might have got the wrong stripe_head by accident */
5987 ret = STRIPE_RETRY;
5988 goto out_release;
5989 }
5990
5991 if (test_bit(STRIPE_EXPANDING, &sh->state)) {
5992 md_wakeup_thread(mddev->thread);
5993 ret = STRIPE_SCHEDULE_AND_RETRY;
5994 goto out_release;
5995 }
5996
5997 if (!add_all_stripe_bios(conf, ctx, sh, bi, rw, previous)) {
5998 ret = STRIPE_RETRY;
5999 goto out;
6000 }
6001
6002 if (stripe_can_batch(sh)) {
6003 stripe_add_to_batch_list(conf, sh, ctx->batch_last);
6004 if (ctx->batch_last)
6005 raid5_release_stripe(ctx->batch_last);
6006 atomic_inc(&sh->count);
6007 ctx->batch_last = sh;
6008 }
6009
6010 if (ctx->do_flush) {
6011 set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
6012 /* we only need flush for one stripe */
6013 ctx->do_flush = false;
6014 }
6015
6016 set_bit(STRIPE_HANDLE, &sh->state);
6017 clear_bit(STRIPE_DELAYED, &sh->state);
6018 if ((!sh->batch_head || sh == sh->batch_head) &&
6019 (bi->bi_opf & REQ_SYNC) &&
6020 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
6021 atomic_inc(&conf->preread_active_stripes);
6022
6023 release_stripe_plug(mddev, sh);
6024 return STRIPE_SUCCESS;
6025
6026out_release:
6027 raid5_release_stripe(sh);
6028out:
6029 if (ret == STRIPE_SCHEDULE_AND_RETRY && reshape_interrupted(mddev)) {
6030 bi->bi_status = BLK_STS_RESOURCE;
6031 ret = STRIPE_WAIT_RESHAPE;
6032 pr_err_ratelimited("dm-raid456: io across reshape position while reshape can't make progress");
6033 }
6034 return ret;
6035}
6036
6037/*
6038 * If the bio covers multiple data disks, find sector within the bio that has
6039 * the lowest chunk offset in the first chunk.
6040 */
6041static sector_t raid5_bio_lowest_chunk_sector(struct r5conf *conf,
6042 struct bio *bi)
6043{
6044 int sectors_per_chunk = conf->chunk_sectors;
6045 int raid_disks = conf->raid_disks;
6046 int dd_idx;
6047 struct stripe_head sh;
6048 unsigned int chunk_offset;
6049 sector_t r_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6050 sector_t sector;
6051
6052 /* We pass in fake stripe_head to get back parity disk numbers */
6053 sector = raid5_compute_sector(conf, r_sector, 0, &dd_idx, &sh);
6054 chunk_offset = sector_div(sector, sectors_per_chunk);
6055 if (sectors_per_chunk - chunk_offset >= bio_sectors(bi))
6056 return r_sector;
6057 /*
6058 * Bio crosses to the next data disk. Check whether it's in the same
6059 * chunk.
6060 */
6061 dd_idx++;
6062 while (dd_idx == sh.pd_idx || dd_idx == sh.qd_idx)
6063 dd_idx++;
6064 if (dd_idx >= raid_disks)
6065 return r_sector;
6066 return r_sector + sectors_per_chunk - chunk_offset;
6067}
6068
6069static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
6070{
6071 DEFINE_WAIT_FUNC(wait, woken_wake_function);
6072 bool on_wq;
6073 struct r5conf *conf = mddev->private;
6074 sector_t logical_sector;
6075 struct stripe_request_ctx ctx = {};
6076 const int rw = bio_data_dir(bi);
6077 enum stripe_result res;
6078 int s, stripe_cnt;
6079
6080 if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
6081 int ret = log_handle_flush_request(conf, bi);
6082
6083 if (ret == 0)
6084 return true;
6085 if (ret == -ENODEV) {
6086 if (md_flush_request(mddev, bi))
6087 return true;
6088 }
6089 /* ret == -EAGAIN, fallback */
6090 /*
6091 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
6092 * we need to flush journal device
6093 */
6094 ctx.do_flush = bi->bi_opf & REQ_PREFLUSH;
6095 }
6096
6097 md_write_start(mddev, bi);
6098 /*
6099 * If array is degraded, better not do chunk aligned read because
6100 * later we might have to read it again in order to reconstruct
6101 * data on failed drives.
6102 */
6103 if (rw == READ && mddev->degraded == 0 &&
6104 mddev->reshape_position == MaxSector) {
6105 bi = chunk_aligned_read(mddev, bi);
6106 if (!bi)
6107 return true;
6108 }
6109
6110 if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
6111 make_discard_request(mddev, bi);
6112 md_write_end(mddev);
6113 return true;
6114 }
6115
6116 logical_sector = bi->bi_iter.bi_sector & ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6117 ctx.first_sector = logical_sector;
6118 ctx.last_sector = bio_end_sector(bi);
6119 bi->bi_next = NULL;
6120
6121 stripe_cnt = DIV_ROUND_UP_SECTOR_T(ctx.last_sector - logical_sector,
6122 RAID5_STRIPE_SECTORS(conf));
6123 bitmap_set(ctx.sectors_to_do, 0, stripe_cnt);
6124
6125 pr_debug("raid456: %s, logical %llu to %llu\n", __func__,
6126 bi->bi_iter.bi_sector, ctx.last_sector);
6127
6128 /* Bail out if conflicts with reshape and REQ_NOWAIT is set */
6129 if ((bi->bi_opf & REQ_NOWAIT) &&
6130 (conf->reshape_progress != MaxSector) &&
6131 get_reshape_loc(mddev, conf, logical_sector) == LOC_INSIDE_RESHAPE) {
6132 bio_wouldblock_error(bi);
6133 if (rw == WRITE)
6134 md_write_end(mddev);
6135 return true;
6136 }
6137 md_account_bio(mddev, &bi);
6138
6139 /*
6140 * Lets start with the stripe with the lowest chunk offset in the first
6141 * chunk. That has the best chances of creating IOs adjacent to
6142 * previous IOs in case of sequential IO and thus creates the most
6143 * sequential IO pattern. We don't bother with the optimization when
6144 * reshaping as the performance benefit is not worth the complexity.
6145 */
6146 if (likely(conf->reshape_progress == MaxSector)) {
6147 logical_sector = raid5_bio_lowest_chunk_sector(conf, bi);
6148 on_wq = false;
6149 } else {
6150 add_wait_queue(&conf->wait_for_reshape, &wait);
6151 on_wq = true;
6152 }
6153 s = (logical_sector - ctx.first_sector) >> RAID5_STRIPE_SHIFT(conf);
6154
6155 while (1) {
6156 res = make_stripe_request(mddev, conf, &ctx, logical_sector,
6157 bi);
6158 if (res == STRIPE_FAIL || res == STRIPE_WAIT_RESHAPE)
6159 break;
6160
6161 if (res == STRIPE_RETRY)
6162 continue;
6163
6164 if (res == STRIPE_SCHEDULE_AND_RETRY) {
6165 WARN_ON_ONCE(!on_wq);
6166 /*
6167 * Must release the reference to batch_last before
6168 * scheduling and waiting for work to be done,
6169 * otherwise the batch_last stripe head could prevent
6170 * raid5_activate_delayed() from making progress
6171 * and thus deadlocking.
6172 */
6173 if (ctx.batch_last) {
6174 raid5_release_stripe(ctx.batch_last);
6175 ctx.batch_last = NULL;
6176 }
6177
6178 wait_woken(&wait, TASK_UNINTERRUPTIBLE,
6179 MAX_SCHEDULE_TIMEOUT);
6180 continue;
6181 }
6182
6183 s = find_next_bit_wrap(ctx.sectors_to_do, stripe_cnt, s);
6184 if (s == stripe_cnt)
6185 break;
6186
6187 logical_sector = ctx.first_sector +
6188 (s << RAID5_STRIPE_SHIFT(conf));
6189 }
6190 if (unlikely(on_wq))
6191 remove_wait_queue(&conf->wait_for_reshape, &wait);
6192
6193 if (ctx.batch_last)
6194 raid5_release_stripe(ctx.batch_last);
6195
6196 if (rw == WRITE)
6197 md_write_end(mddev);
6198 if (res == STRIPE_WAIT_RESHAPE) {
6199 md_free_cloned_bio(bi);
6200 return false;
6201 }
6202
6203 bio_endio(bi);
6204 return true;
6205}
6206
6207static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
6208
6209static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
6210{
6211 /* reshaping is quite different to recovery/resync so it is
6212 * handled quite separately ... here.
6213 *
6214 * On each call to sync_request, we gather one chunk worth of
6215 * destination stripes and flag them as expanding.
6216 * Then we find all the source stripes and request reads.
6217 * As the reads complete, handle_stripe will copy the data
6218 * into the destination stripe and release that stripe.
6219 */
6220 struct r5conf *conf = mddev->private;
6221 struct stripe_head *sh;
6222 struct md_rdev *rdev;
6223 sector_t first_sector, last_sector;
6224 int raid_disks = conf->previous_raid_disks;
6225 int data_disks = raid_disks - conf->max_degraded;
6226 int new_data_disks = conf->raid_disks - conf->max_degraded;
6227 int i;
6228 int dd_idx;
6229 sector_t writepos, readpos, safepos;
6230 sector_t stripe_addr;
6231 int reshape_sectors;
6232 struct list_head stripes;
6233 sector_t retn;
6234
6235 if (sector_nr == 0) {
6236 /* If restarting in the middle, skip the initial sectors */
6237 if (mddev->reshape_backwards &&
6238 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
6239 sector_nr = raid5_size(mddev, 0, 0)
6240 - conf->reshape_progress;
6241 } else if (mddev->reshape_backwards &&
6242 conf->reshape_progress == MaxSector) {
6243 /* shouldn't happen, but just in case, finish up.*/
6244 sector_nr = MaxSector;
6245 } else if (!mddev->reshape_backwards &&
6246 conf->reshape_progress > 0)
6247 sector_nr = conf->reshape_progress;
6248 sector_div(sector_nr, new_data_disks);
6249 if (sector_nr) {
6250 mddev->curr_resync_completed = sector_nr;
6251 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6252 *skipped = 1;
6253 retn = sector_nr;
6254 goto finish;
6255 }
6256 }
6257
6258 /* We need to process a full chunk at a time.
6259 * If old and new chunk sizes differ, we need to process the
6260 * largest of these
6261 */
6262
6263 reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
6264
6265 /* We update the metadata at least every 10 seconds, or when
6266 * the data about to be copied would over-write the source of
6267 * the data at the front of the range. i.e. one new_stripe
6268 * along from reshape_progress new_maps to after where
6269 * reshape_safe old_maps to
6270 */
6271 writepos = conf->reshape_progress;
6272 sector_div(writepos, new_data_disks);
6273 readpos = conf->reshape_progress;
6274 sector_div(readpos, data_disks);
6275 safepos = conf->reshape_safe;
6276 sector_div(safepos, data_disks);
6277 if (mddev->reshape_backwards) {
6278 if (WARN_ON(writepos < reshape_sectors))
6279 return MaxSector;
6280
6281 writepos -= reshape_sectors;
6282 readpos += reshape_sectors;
6283 safepos += reshape_sectors;
6284 } else {
6285 writepos += reshape_sectors;
6286 /* readpos and safepos are worst-case calculations.
6287 * A negative number is overly pessimistic, and causes
6288 * obvious problems for unsigned storage. So clip to 0.
6289 */
6290 readpos -= min_t(sector_t, reshape_sectors, readpos);
6291 safepos -= min_t(sector_t, reshape_sectors, safepos);
6292 }
6293
6294 /* Having calculated the 'writepos' possibly use it
6295 * to set 'stripe_addr' which is where we will write to.
6296 */
6297 if (mddev->reshape_backwards) {
6298 if (WARN_ON(conf->reshape_progress == 0))
6299 return MaxSector;
6300
6301 stripe_addr = writepos;
6302 if (WARN_ON((mddev->dev_sectors &
6303 ~((sector_t)reshape_sectors - 1)) -
6304 reshape_sectors - stripe_addr != sector_nr))
6305 return MaxSector;
6306 } else {
6307 if (WARN_ON(writepos != sector_nr + reshape_sectors))
6308 return MaxSector;
6309
6310 stripe_addr = sector_nr;
6311 }
6312
6313 /* 'writepos' is the most advanced device address we might write.
6314 * 'readpos' is the least advanced device address we might read.
6315 * 'safepos' is the least address recorded in the metadata as having
6316 * been reshaped.
6317 * If there is a min_offset_diff, these are adjusted either by
6318 * increasing the safepos/readpos if diff is negative, or
6319 * increasing writepos if diff is positive.
6320 * If 'readpos' is then behind 'writepos', there is no way that we can
6321 * ensure safety in the face of a crash - that must be done by userspace
6322 * making a backup of the data. So in that case there is no particular
6323 * rush to update metadata.
6324 * Otherwise if 'safepos' is behind 'writepos', then we really need to
6325 * update the metadata to advance 'safepos' to match 'readpos' so that
6326 * we can be safe in the event of a crash.
6327 * So we insist on updating metadata if safepos is behind writepos and
6328 * readpos is beyond writepos.
6329 * In any case, update the metadata every 10 seconds.
6330 * Maybe that number should be configurable, but I'm not sure it is
6331 * worth it.... maybe it could be a multiple of safemode_delay???
6332 */
6333 if (conf->min_offset_diff < 0) {
6334 safepos += -conf->min_offset_diff;
6335 readpos += -conf->min_offset_diff;
6336 } else
6337 writepos += conf->min_offset_diff;
6338
6339 if ((mddev->reshape_backwards
6340 ? (safepos > writepos && readpos < writepos)
6341 : (safepos < writepos && readpos > writepos)) ||
6342 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
6343 /* Cannot proceed until we've updated the superblock... */
6344 wait_event(conf->wait_for_reshape,
6345 atomic_read(&conf->reshape_stripes)==0
6346 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6347 if (atomic_read(&conf->reshape_stripes) != 0)
6348 return 0;
6349 mddev->reshape_position = conf->reshape_progress;
6350 mddev->curr_resync_completed = sector_nr;
6351 if (!mddev->reshape_backwards)
6352 /* Can update recovery_offset */
6353 rdev_for_each(rdev, mddev)
6354 if (rdev->raid_disk >= 0 &&
6355 !test_bit(Journal, &rdev->flags) &&
6356 !test_bit(In_sync, &rdev->flags) &&
6357 rdev->recovery_offset < sector_nr)
6358 rdev->recovery_offset = sector_nr;
6359
6360 conf->reshape_checkpoint = jiffies;
6361 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6362 md_wakeup_thread(mddev->thread);
6363 wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
6364 test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6365 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6366 return 0;
6367 spin_lock_irq(&conf->device_lock);
6368 conf->reshape_safe = mddev->reshape_position;
6369 spin_unlock_irq(&conf->device_lock);
6370 wake_up(&conf->wait_for_reshape);
6371 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6372 }
6373
6374 INIT_LIST_HEAD(&stripes);
6375 for (i = 0; i < reshape_sectors; i += RAID5_STRIPE_SECTORS(conf)) {
6376 int j;
6377 int skipped_disk = 0;
6378 sh = raid5_get_active_stripe(conf, NULL, stripe_addr+i,
6379 R5_GAS_NOQUIESCE);
6380 set_bit(STRIPE_EXPANDING, &sh->state);
6381 atomic_inc(&conf->reshape_stripes);
6382 /* If any of this stripe is beyond the end of the old
6383 * array, then we need to zero those blocks
6384 */
6385 for (j=sh->disks; j--;) {
6386 sector_t s;
6387 if (j == sh->pd_idx)
6388 continue;
6389 if (conf->level == 6 &&
6390 j == sh->qd_idx)
6391 continue;
6392 s = raid5_compute_blocknr(sh, j, 0);
6393 if (s < raid5_size(mddev, 0, 0)) {
6394 skipped_disk = 1;
6395 continue;
6396 }
6397 memset(page_address(sh->dev[j].page), 0, RAID5_STRIPE_SIZE(conf));
6398 set_bit(R5_Expanded, &sh->dev[j].flags);
6399 set_bit(R5_UPTODATE, &sh->dev[j].flags);
6400 }
6401 if (!skipped_disk) {
6402 set_bit(STRIPE_EXPAND_READY, &sh->state);
6403 set_bit(STRIPE_HANDLE, &sh->state);
6404 }
6405 list_add(&sh->lru, &stripes);
6406 }
6407 spin_lock_irq(&conf->device_lock);
6408 if (mddev->reshape_backwards)
6409 conf->reshape_progress -= reshape_sectors * new_data_disks;
6410 else
6411 conf->reshape_progress += reshape_sectors * new_data_disks;
6412 spin_unlock_irq(&conf->device_lock);
6413 /* Ok, those stripe are ready. We can start scheduling
6414 * reads on the source stripes.
6415 * The source stripes are determined by mapping the first and last
6416 * block on the destination stripes.
6417 */
6418 first_sector =
6419 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
6420 1, &dd_idx, NULL);
6421 last_sector =
6422 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
6423 * new_data_disks - 1),
6424 1, &dd_idx, NULL);
6425 if (last_sector >= mddev->dev_sectors)
6426 last_sector = mddev->dev_sectors - 1;
6427 while (first_sector <= last_sector) {
6428 sh = raid5_get_active_stripe(conf, NULL, first_sector,
6429 R5_GAS_PREVIOUS | R5_GAS_NOQUIESCE);
6430 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
6431 set_bit(STRIPE_HANDLE, &sh->state);
6432 raid5_release_stripe(sh);
6433 first_sector += RAID5_STRIPE_SECTORS(conf);
6434 }
6435 /* Now that the sources are clearly marked, we can release
6436 * the destination stripes
6437 */
6438 while (!list_empty(&stripes)) {
6439 sh = list_entry(stripes.next, struct stripe_head, lru);
6440 list_del_init(&sh->lru);
6441 raid5_release_stripe(sh);
6442 }
6443 /* If this takes us to the resync_max point where we have to pause,
6444 * then we need to write out the superblock.
6445 */
6446 sector_nr += reshape_sectors;
6447 retn = reshape_sectors;
6448finish:
6449 if (mddev->curr_resync_completed > mddev->resync_max ||
6450 (sector_nr - mddev->curr_resync_completed) * 2
6451 >= mddev->resync_max - mddev->curr_resync_completed) {
6452 /* Cannot proceed until we've updated the superblock... */
6453 wait_event(conf->wait_for_reshape,
6454 atomic_read(&conf->reshape_stripes) == 0
6455 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6456 if (atomic_read(&conf->reshape_stripes) != 0)
6457 goto ret;
6458 mddev->reshape_position = conf->reshape_progress;
6459 mddev->curr_resync_completed = sector_nr;
6460 if (!mddev->reshape_backwards)
6461 /* Can update recovery_offset */
6462 rdev_for_each(rdev, mddev)
6463 if (rdev->raid_disk >= 0 &&
6464 !test_bit(Journal, &rdev->flags) &&
6465 !test_bit(In_sync, &rdev->flags) &&
6466 rdev->recovery_offset < sector_nr)
6467 rdev->recovery_offset = sector_nr;
6468 conf->reshape_checkpoint = jiffies;
6469 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
6470 md_wakeup_thread(mddev->thread);
6471 wait_event(mddev->sb_wait,
6472 !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6473 || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6474 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6475 goto ret;
6476 spin_lock_irq(&conf->device_lock);
6477 conf->reshape_safe = mddev->reshape_position;
6478 spin_unlock_irq(&conf->device_lock);
6479 wake_up(&conf->wait_for_reshape);
6480 sysfs_notify_dirent_safe(mddev->sysfs_completed);
6481 }
6482ret:
6483 return retn;
6484}
6485
6486static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6487 sector_t max_sector, int *skipped)
6488{
6489 struct r5conf *conf = mddev->private;
6490 struct stripe_head *sh;
6491 sector_t sync_blocks;
6492 bool still_degraded = false;
6493 int i;
6494
6495 if (sector_nr >= max_sector) {
6496 /* just being told to finish up .. nothing much to do */
6497
6498 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6499 end_reshape(conf);
6500 return 0;
6501 }
6502
6503 if (mddev->curr_resync < max_sector) /* aborted */
6504 mddev->bitmap_ops->end_sync(mddev, mddev->curr_resync,
6505 &sync_blocks);
6506 else /* completed sync */
6507 conf->fullsync = 0;
6508 mddev->bitmap_ops->close_sync(mddev);
6509
6510 return 0;
6511 }
6512
6513 /* Allow raid5_quiesce to complete */
6514 wait_event(conf->wait_for_reshape, conf->quiesce != 2);
6515
6516 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6517 return reshape_request(mddev, sector_nr, skipped);
6518
6519 /* No need to check resync_max as we never do more than one
6520 * stripe, and as resync_max will always be on a chunk boundary,
6521 * if the check in md_do_sync didn't fire, there is no chance
6522 * of overstepping resync_max here
6523 */
6524
6525 /* if there is too many failed drives and we are trying
6526 * to resync, then assert that we are finished, because there is
6527 * nothing we can do.
6528 */
6529 if (mddev->degraded >= conf->max_degraded &&
6530 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6531 sector_t rv = mddev->dev_sectors - sector_nr;
6532 *skipped = 1;
6533 return rv;
6534 }
6535 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6536 !conf->fullsync &&
6537 !mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6538 true) &&
6539 sync_blocks >= RAID5_STRIPE_SECTORS(conf)) {
6540 /* we can skip this block, and probably more */
6541 do_div(sync_blocks, RAID5_STRIPE_SECTORS(conf));
6542 *skipped = 1;
6543 /* keep things rounded to whole stripes */
6544 return sync_blocks * RAID5_STRIPE_SECTORS(conf);
6545 }
6546
6547 mddev->bitmap_ops->cond_end_sync(mddev, sector_nr, false);
6548
6549 sh = raid5_get_active_stripe(conf, NULL, sector_nr,
6550 R5_GAS_NOBLOCK);
6551 if (sh == NULL) {
6552 sh = raid5_get_active_stripe(conf, NULL, sector_nr, 0);
6553 /* make sure we don't swamp the stripe cache if someone else
6554 * is trying to get access
6555 */
6556 schedule_timeout_uninterruptible(1);
6557 }
6558 /* Need to check if array will still be degraded after recovery/resync
6559 * Note in case of > 1 drive failures it's possible we're rebuilding
6560 * one drive while leaving another faulty drive in array.
6561 */
6562 for (i = 0; i < conf->raid_disks; i++) {
6563 struct md_rdev *rdev = conf->disks[i].rdev;
6564
6565 if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6566 still_degraded = true;
6567 }
6568
6569 mddev->bitmap_ops->start_sync(mddev, sector_nr, &sync_blocks,
6570 still_degraded);
6571
6572 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6573 set_bit(STRIPE_HANDLE, &sh->state);
6574
6575 raid5_release_stripe(sh);
6576
6577 return RAID5_STRIPE_SECTORS(conf);
6578}
6579
6580static int retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6581 unsigned int offset)
6582{
6583 /* We may not be able to submit a whole bio at once as there
6584 * may not be enough stripe_heads available.
6585 * We cannot pre-allocate enough stripe_heads as we may need
6586 * more than exist in the cache (if we allow ever large chunks).
6587 * So we do one stripe head at a time and record in
6588 * ->bi_hw_segments how many have been done.
6589 *
6590 * We *know* that this entire raid_bio is in one chunk, so
6591 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6592 */
6593 struct stripe_head *sh;
6594 int dd_idx;
6595 sector_t sector, logical_sector, last_sector;
6596 int scnt = 0;
6597 int handled = 0;
6598
6599 logical_sector = raid_bio->bi_iter.bi_sector &
6600 ~((sector_t)RAID5_STRIPE_SECTORS(conf)-1);
6601 sector = raid5_compute_sector(conf, logical_sector,
6602 0, &dd_idx, NULL);
6603 last_sector = bio_end_sector(raid_bio);
6604
6605 for (; logical_sector < last_sector;
6606 logical_sector += RAID5_STRIPE_SECTORS(conf),
6607 sector += RAID5_STRIPE_SECTORS(conf),
6608 scnt++) {
6609
6610 if (scnt < offset)
6611 /* already done this stripe */
6612 continue;
6613
6614 sh = raid5_get_active_stripe(conf, NULL, sector,
6615 R5_GAS_NOBLOCK | R5_GAS_NOQUIESCE);
6616 if (!sh) {
6617 /* failed to get a stripe - must wait */
6618 conf->retry_read_aligned = raid_bio;
6619 conf->retry_read_offset = scnt;
6620 return handled;
6621 }
6622
6623 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6624 raid5_release_stripe(sh);
6625 conf->retry_read_aligned = raid_bio;
6626 conf->retry_read_offset = scnt;
6627 return handled;
6628 }
6629
6630 set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6631 handle_stripe(sh);
6632 raid5_release_stripe(sh);
6633 handled++;
6634 }
6635
6636 bio_endio(raid_bio);
6637
6638 if (atomic_dec_and_test(&conf->active_aligned_reads))
6639 wake_up(&conf->wait_for_quiescent);
6640 return handled;
6641}
6642
6643static int handle_active_stripes(struct r5conf *conf, int group,
6644 struct r5worker *worker,
6645 struct list_head *temp_inactive_list)
6646 __must_hold(&conf->device_lock)
6647{
6648 struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6649 int i, batch_size = 0, hash;
6650 bool release_inactive = false;
6651
6652 while (batch_size < MAX_STRIPE_BATCH &&
6653 (sh = __get_priority_stripe(conf, group)) != NULL)
6654 batch[batch_size++] = sh;
6655
6656 if (batch_size == 0) {
6657 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6658 if (!list_empty(temp_inactive_list + i))
6659 break;
6660 if (i == NR_STRIPE_HASH_LOCKS) {
6661 spin_unlock_irq(&conf->device_lock);
6662 log_flush_stripe_to_raid(conf);
6663 spin_lock_irq(&conf->device_lock);
6664 return batch_size;
6665 }
6666 release_inactive = true;
6667 }
6668 spin_unlock_irq(&conf->device_lock);
6669
6670 release_inactive_stripe_list(conf, temp_inactive_list,
6671 NR_STRIPE_HASH_LOCKS);
6672
6673 r5l_flush_stripe_to_raid(conf->log);
6674 if (release_inactive) {
6675 spin_lock_irq(&conf->device_lock);
6676 return 0;
6677 }
6678
6679 for (i = 0; i < batch_size; i++)
6680 handle_stripe(batch[i]);
6681 log_write_stripe_run(conf);
6682
6683 cond_resched();
6684
6685 spin_lock_irq(&conf->device_lock);
6686 for (i = 0; i < batch_size; i++) {
6687 hash = batch[i]->hash_lock_index;
6688 __release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6689 }
6690 return batch_size;
6691}
6692
6693static void raid5_do_work(struct work_struct *work)
6694{
6695 struct r5worker *worker = container_of(work, struct r5worker, work);
6696 struct r5worker_group *group = worker->group;
6697 struct r5conf *conf = group->conf;
6698 struct mddev *mddev = conf->mddev;
6699 int group_id = group - conf->worker_groups;
6700 int handled;
6701 struct blk_plug plug;
6702
6703 pr_debug("+++ raid5worker active\n");
6704
6705 blk_start_plug(&plug);
6706 handled = 0;
6707 spin_lock_irq(&conf->device_lock);
6708 while (1) {
6709 int batch_size, released;
6710
6711 released = release_stripe_list(conf, worker->temp_inactive_list);
6712
6713 batch_size = handle_active_stripes(conf, group_id, worker,
6714 worker->temp_inactive_list);
6715 worker->working = false;
6716 if (!batch_size && !released)
6717 break;
6718 handled += batch_size;
6719 wait_event_lock_irq(mddev->sb_wait,
6720 !test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6721 conf->device_lock);
6722 }
6723 pr_debug("%d stripes handled\n", handled);
6724
6725 spin_unlock_irq(&conf->device_lock);
6726
6727 flush_deferred_bios(conf);
6728
6729 r5l_flush_stripe_to_raid(conf->log);
6730
6731 async_tx_issue_pending_all();
6732 blk_finish_plug(&plug);
6733
6734 pr_debug("--- raid5worker inactive\n");
6735}
6736
6737/*
6738 * This is our raid5 kernel thread.
6739 *
6740 * We scan the hash table for stripes which can be handled now.
6741 * During the scan, completed stripes are saved for us by the interrupt
6742 * handler, so that they will not have to wait for our next wakeup.
6743 */
6744static void raid5d(struct md_thread *thread)
6745{
6746 struct mddev *mddev = thread->mddev;
6747 struct r5conf *conf = mddev->private;
6748 int handled;
6749 struct blk_plug plug;
6750
6751 pr_debug("+++ raid5d active\n");
6752
6753 md_check_recovery(mddev);
6754
6755 blk_start_plug(&plug);
6756 handled = 0;
6757 spin_lock_irq(&conf->device_lock);
6758 while (1) {
6759 struct bio *bio;
6760 int batch_size, released;
6761 unsigned int offset;
6762
6763 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags))
6764 break;
6765
6766 released = release_stripe_list(conf, conf->temp_inactive_list);
6767 if (released)
6768 clear_bit(R5_DID_ALLOC, &conf->cache_state);
6769
6770 if (
6771 !list_empty(&conf->bitmap_list)) {
6772 /* Now is a good time to flush some bitmap updates */
6773 conf->seq_flush++;
6774 spin_unlock_irq(&conf->device_lock);
6775 mddev->bitmap_ops->unplug(mddev, true);
6776 spin_lock_irq(&conf->device_lock);
6777 conf->seq_write = conf->seq_flush;
6778 activate_bit_delay(conf, conf->temp_inactive_list);
6779 }
6780 raid5_activate_delayed(conf);
6781
6782 while ((bio = remove_bio_from_retry(conf, &offset))) {
6783 int ok;
6784 spin_unlock_irq(&conf->device_lock);
6785 ok = retry_aligned_read(conf, bio, offset);
6786 spin_lock_irq(&conf->device_lock);
6787 if (!ok)
6788 break;
6789 handled++;
6790 }
6791
6792 batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6793 conf->temp_inactive_list);
6794 if (!batch_size && !released)
6795 break;
6796 handled += batch_size;
6797
6798 if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6799 spin_unlock_irq(&conf->device_lock);
6800 md_check_recovery(mddev);
6801 spin_lock_irq(&conf->device_lock);
6802 }
6803 }
6804 pr_debug("%d stripes handled\n", handled);
6805
6806 spin_unlock_irq(&conf->device_lock);
6807 if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6808 mutex_trylock(&conf->cache_size_mutex)) {
6809 grow_one_stripe(conf, __GFP_NOWARN);
6810 /* Set flag even if allocation failed. This helps
6811 * slow down allocation requests when mem is short
6812 */
6813 set_bit(R5_DID_ALLOC, &conf->cache_state);
6814 mutex_unlock(&conf->cache_size_mutex);
6815 }
6816
6817 flush_deferred_bios(conf);
6818
6819 r5l_flush_stripe_to_raid(conf->log);
6820
6821 async_tx_issue_pending_all();
6822 blk_finish_plug(&plug);
6823
6824 pr_debug("--- raid5d inactive\n");
6825}
6826
6827static ssize_t
6828raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6829{
6830 struct r5conf *conf;
6831 int ret = 0;
6832 spin_lock(&mddev->lock);
6833 conf = mddev->private;
6834 if (conf)
6835 ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6836 spin_unlock(&mddev->lock);
6837 return ret;
6838}
6839
6840int
6841raid5_set_cache_size(struct mddev *mddev, int size)
6842{
6843 int result = 0;
6844 struct r5conf *conf = mddev->private;
6845
6846 if (size <= 16 || size > 32768)
6847 return -EINVAL;
6848
6849 WRITE_ONCE(conf->min_nr_stripes, size);
6850 mutex_lock(&conf->cache_size_mutex);
6851 while (size < conf->max_nr_stripes &&
6852 drop_one_stripe(conf))
6853 ;
6854 mutex_unlock(&conf->cache_size_mutex);
6855
6856 md_allow_write(mddev);
6857
6858 mutex_lock(&conf->cache_size_mutex);
6859 while (size > conf->max_nr_stripes)
6860 if (!grow_one_stripe(conf, GFP_KERNEL)) {
6861 WRITE_ONCE(conf->min_nr_stripes, conf->max_nr_stripes);
6862 result = -ENOMEM;
6863 break;
6864 }
6865 mutex_unlock(&conf->cache_size_mutex);
6866
6867 return result;
6868}
6869EXPORT_SYMBOL(raid5_set_cache_size);
6870
6871static ssize_t
6872raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6873{
6874 struct r5conf *conf;
6875 unsigned long new;
6876 int err;
6877
6878 if (len >= PAGE_SIZE)
6879 return -EINVAL;
6880 if (kstrtoul(page, 10, &new))
6881 return -EINVAL;
6882 err = mddev_lock(mddev);
6883 if (err)
6884 return err;
6885 conf = mddev->private;
6886 if (!conf)
6887 err = -ENODEV;
6888 else
6889 err = raid5_set_cache_size(mddev, new);
6890 mddev_unlock(mddev);
6891
6892 return err ?: len;
6893}
6894
6895static struct md_sysfs_entry
6896raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6897 raid5_show_stripe_cache_size,
6898 raid5_store_stripe_cache_size);
6899
6900static ssize_t
6901raid5_show_rmw_level(struct mddev *mddev, char *page)
6902{
6903 struct r5conf *conf = mddev->private;
6904 if (conf)
6905 return sprintf(page, "%d\n", conf->rmw_level);
6906 else
6907 return 0;
6908}
6909
6910static ssize_t
6911raid5_store_rmw_level(struct mddev *mddev, const char *page, size_t len)
6912{
6913 struct r5conf *conf = mddev->private;
6914 unsigned long new;
6915
6916 if (!conf)
6917 return -ENODEV;
6918
6919 if (len >= PAGE_SIZE)
6920 return -EINVAL;
6921
6922 if (kstrtoul(page, 10, &new))
6923 return -EINVAL;
6924
6925 if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6926 return -EINVAL;
6927
6928 if (new != PARITY_DISABLE_RMW &&
6929 new != PARITY_ENABLE_RMW &&
6930 new != PARITY_PREFER_RMW)
6931 return -EINVAL;
6932
6933 conf->rmw_level = new;
6934 return len;
6935}
6936
6937static struct md_sysfs_entry
6938raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6939 raid5_show_rmw_level,
6940 raid5_store_rmw_level);
6941
6942static ssize_t
6943raid5_show_stripe_size(struct mddev *mddev, char *page)
6944{
6945 struct r5conf *conf;
6946 int ret = 0;
6947
6948 spin_lock(&mddev->lock);
6949 conf = mddev->private;
6950 if (conf)
6951 ret = sprintf(page, "%lu\n", RAID5_STRIPE_SIZE(conf));
6952 spin_unlock(&mddev->lock);
6953 return ret;
6954}
6955
6956#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
6957static ssize_t
6958raid5_store_stripe_size(struct mddev *mddev, const char *page, size_t len)
6959{
6960 struct r5conf *conf;
6961 unsigned long new;
6962 int err;
6963 int size;
6964
6965 if (len >= PAGE_SIZE)
6966 return -EINVAL;
6967 if (kstrtoul(page, 10, &new))
6968 return -EINVAL;
6969
6970 /*
6971 * The value should not be bigger than PAGE_SIZE. It requires to
6972 * be multiple of DEFAULT_STRIPE_SIZE and the value should be power
6973 * of two.
6974 */
6975 if (new % DEFAULT_STRIPE_SIZE != 0 ||
6976 new > PAGE_SIZE || new == 0 ||
6977 new != roundup_pow_of_two(new))
6978 return -EINVAL;
6979
6980 err = mddev_suspend_and_lock(mddev);
6981 if (err)
6982 return err;
6983
6984 conf = mddev->private;
6985 if (!conf) {
6986 err = -ENODEV;
6987 goto out_unlock;
6988 }
6989
6990 if (new == conf->stripe_size)
6991 goto out_unlock;
6992
6993 pr_debug("md/raid: change stripe_size from %lu to %lu\n",
6994 conf->stripe_size, new);
6995
6996 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
6997 mddev->reshape_position != MaxSector || mddev->sysfs_active) {
6998 err = -EBUSY;
6999 goto out_unlock;
7000 }
7001
7002 mutex_lock(&conf->cache_size_mutex);
7003 size = conf->max_nr_stripes;
7004
7005 shrink_stripes(conf);
7006
7007 conf->stripe_size = new;
7008 conf->stripe_shift = ilog2(new) - 9;
7009 conf->stripe_sectors = new >> 9;
7010 if (grow_stripes(conf, size)) {
7011 pr_warn("md/raid:%s: couldn't allocate buffers\n",
7012 mdname(mddev));
7013 err = -ENOMEM;
7014 }
7015 mutex_unlock(&conf->cache_size_mutex);
7016
7017out_unlock:
7018 mddev_unlock_and_resume(mddev);
7019 return err ?: len;
7020}
7021
7022static struct md_sysfs_entry
7023raid5_stripe_size = __ATTR(stripe_size, 0644,
7024 raid5_show_stripe_size,
7025 raid5_store_stripe_size);
7026#else
7027static struct md_sysfs_entry
7028raid5_stripe_size = __ATTR(stripe_size, 0444,
7029 raid5_show_stripe_size,
7030 NULL);
7031#endif
7032
7033static ssize_t
7034raid5_show_preread_threshold(struct mddev *mddev, char *page)
7035{
7036 struct r5conf *conf;
7037 int ret = 0;
7038 spin_lock(&mddev->lock);
7039 conf = mddev->private;
7040 if (conf)
7041 ret = sprintf(page, "%d\n", conf->bypass_threshold);
7042 spin_unlock(&mddev->lock);
7043 return ret;
7044}
7045
7046static ssize_t
7047raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
7048{
7049 struct r5conf *conf;
7050 unsigned long new;
7051 int err;
7052
7053 if (len >= PAGE_SIZE)
7054 return -EINVAL;
7055 if (kstrtoul(page, 10, &new))
7056 return -EINVAL;
7057
7058 err = mddev_lock(mddev);
7059 if (err)
7060 return err;
7061 conf = mddev->private;
7062 if (!conf)
7063 err = -ENODEV;
7064 else if (new > conf->min_nr_stripes)
7065 err = -EINVAL;
7066 else
7067 conf->bypass_threshold = new;
7068 mddev_unlock(mddev);
7069 return err ?: len;
7070}
7071
7072static struct md_sysfs_entry
7073raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
7074 S_IRUGO | S_IWUSR,
7075 raid5_show_preread_threshold,
7076 raid5_store_preread_threshold);
7077
7078static ssize_t
7079raid5_show_skip_copy(struct mddev *mddev, char *page)
7080{
7081 struct r5conf *conf;
7082 int ret = 0;
7083 spin_lock(&mddev->lock);
7084 conf = mddev->private;
7085 if (conf)
7086 ret = sprintf(page, "%d\n", conf->skip_copy);
7087 spin_unlock(&mddev->lock);
7088 return ret;
7089}
7090
7091static ssize_t
7092raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
7093{
7094 struct r5conf *conf;
7095 unsigned long new;
7096 int err;
7097
7098 if (len >= PAGE_SIZE)
7099 return -EINVAL;
7100 if (kstrtoul(page, 10, &new))
7101 return -EINVAL;
7102 new = !!new;
7103
7104 err = mddev_suspend_and_lock(mddev);
7105 if (err)
7106 return err;
7107 conf = mddev->private;
7108 if (!conf)
7109 err = -ENODEV;
7110 else if (new != conf->skip_copy) {
7111 struct request_queue *q = mddev->gendisk->queue;
7112 struct queue_limits lim = queue_limits_start_update(q);
7113
7114 conf->skip_copy = new;
7115 if (new)
7116 lim.features |= BLK_FEAT_STABLE_WRITES;
7117 else
7118 lim.features &= ~BLK_FEAT_STABLE_WRITES;
7119 err = queue_limits_commit_update(q, &lim);
7120 }
7121 mddev_unlock_and_resume(mddev);
7122 return err ?: len;
7123}
7124
7125static struct md_sysfs_entry
7126raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
7127 raid5_show_skip_copy,
7128 raid5_store_skip_copy);
7129
7130static ssize_t
7131stripe_cache_active_show(struct mddev *mddev, char *page)
7132{
7133 struct r5conf *conf = mddev->private;
7134 if (conf)
7135 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
7136 else
7137 return 0;
7138}
7139
7140static struct md_sysfs_entry
7141raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
7142
7143static ssize_t
7144raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
7145{
7146 struct r5conf *conf;
7147 int ret = 0;
7148 spin_lock(&mddev->lock);
7149 conf = mddev->private;
7150 if (conf)
7151 ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
7152 spin_unlock(&mddev->lock);
7153 return ret;
7154}
7155
7156static int alloc_thread_groups(struct r5conf *conf, int cnt,
7157 int *group_cnt,
7158 struct r5worker_group **worker_groups);
7159static ssize_t
7160raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
7161{
7162 struct r5conf *conf;
7163 unsigned int new;
7164 int err;
7165 struct r5worker_group *new_groups, *old_groups;
7166 int group_cnt;
7167
7168 if (len >= PAGE_SIZE)
7169 return -EINVAL;
7170 if (kstrtouint(page, 10, &new))
7171 return -EINVAL;
7172 /* 8192 should be big enough */
7173 if (new > 8192)
7174 return -EINVAL;
7175
7176 err = mddev_suspend_and_lock(mddev);
7177 if (err)
7178 return err;
7179 raid5_quiesce(mddev, true);
7180
7181 conf = mddev->private;
7182 if (!conf)
7183 err = -ENODEV;
7184 else if (new != conf->worker_cnt_per_group) {
7185 old_groups = conf->worker_groups;
7186 if (old_groups)
7187 flush_workqueue(raid5_wq);
7188
7189 err = alloc_thread_groups(conf, new, &group_cnt, &new_groups);
7190 if (!err) {
7191 spin_lock_irq(&conf->device_lock);
7192 conf->group_cnt = group_cnt;
7193 conf->worker_cnt_per_group = new;
7194 conf->worker_groups = new_groups;
7195 spin_unlock_irq(&conf->device_lock);
7196
7197 if (old_groups)
7198 kfree(old_groups[0].workers);
7199 kfree(old_groups);
7200 }
7201 }
7202
7203 raid5_quiesce(mddev, false);
7204 mddev_unlock_and_resume(mddev);
7205
7206 return err ?: len;
7207}
7208
7209static struct md_sysfs_entry
7210raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
7211 raid5_show_group_thread_cnt,
7212 raid5_store_group_thread_cnt);
7213
7214static struct attribute *raid5_attrs[] = {
7215 &raid5_stripecache_size.attr,
7216 &raid5_stripecache_active.attr,
7217 &raid5_preread_bypass_threshold.attr,
7218 &raid5_group_thread_cnt.attr,
7219 &raid5_skip_copy.attr,
7220 &raid5_rmw_level.attr,
7221 &raid5_stripe_size.attr,
7222 &r5c_journal_mode.attr,
7223 &ppl_write_hint.attr,
7224 NULL,
7225};
7226static const struct attribute_group raid5_attrs_group = {
7227 .name = NULL,
7228 .attrs = raid5_attrs,
7229};
7230
7231static int alloc_thread_groups(struct r5conf *conf, int cnt, int *group_cnt,
7232 struct r5worker_group **worker_groups)
7233{
7234 int i, j, k;
7235 ssize_t size;
7236 struct r5worker *workers;
7237
7238 if (cnt == 0) {
7239 *group_cnt = 0;
7240 *worker_groups = NULL;
7241 return 0;
7242 }
7243 *group_cnt = num_possible_nodes();
7244 size = sizeof(struct r5worker) * cnt;
7245 workers = kcalloc(size, *group_cnt, GFP_NOIO);
7246 *worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
7247 GFP_NOIO);
7248 if (!*worker_groups || !workers) {
7249 kfree(workers);
7250 kfree(*worker_groups);
7251 return -ENOMEM;
7252 }
7253
7254 for (i = 0; i < *group_cnt; i++) {
7255 struct r5worker_group *group;
7256
7257 group = &(*worker_groups)[i];
7258 INIT_LIST_HEAD(&group->handle_list);
7259 INIT_LIST_HEAD(&group->loprio_list);
7260 group->conf = conf;
7261 group->workers = workers + i * cnt;
7262
7263 for (j = 0; j < cnt; j++) {
7264 struct r5worker *worker = group->workers + j;
7265 worker->group = group;
7266 INIT_WORK(&worker->work, raid5_do_work);
7267
7268 for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
7269 INIT_LIST_HEAD(worker->temp_inactive_list + k);
7270 }
7271 }
7272
7273 return 0;
7274}
7275
7276static void free_thread_groups(struct r5conf *conf)
7277{
7278 if (conf->worker_groups)
7279 kfree(conf->worker_groups[0].workers);
7280 kfree(conf->worker_groups);
7281 conf->worker_groups = NULL;
7282}
7283
7284static sector_t
7285raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
7286{
7287 struct r5conf *conf = mddev->private;
7288
7289 if (!sectors)
7290 sectors = mddev->dev_sectors;
7291 if (!raid_disks)
7292 /* size is defined by the smallest of previous and new size */
7293 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
7294
7295 sectors &= ~((sector_t)conf->chunk_sectors - 1);
7296 sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
7297 return sectors * (raid_disks - conf->max_degraded);
7298}
7299
7300static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7301{
7302 safe_put_page(percpu->spare_page);
7303 percpu->spare_page = NULL;
7304 kvfree(percpu->scribble);
7305 percpu->scribble = NULL;
7306}
7307
7308static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
7309{
7310 if (conf->level == 6 && !percpu->spare_page) {
7311 percpu->spare_page = alloc_page(GFP_KERNEL);
7312 if (!percpu->spare_page)
7313 return -ENOMEM;
7314 }
7315
7316 if (scribble_alloc(percpu,
7317 max(conf->raid_disks,
7318 conf->previous_raid_disks),
7319 max(conf->chunk_sectors,
7320 conf->prev_chunk_sectors)
7321 / RAID5_STRIPE_SECTORS(conf))) {
7322 free_scratch_buffer(conf, percpu);
7323 return -ENOMEM;
7324 }
7325
7326 local_lock_init(&percpu->lock);
7327 return 0;
7328}
7329
7330static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
7331{
7332 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7333
7334 free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
7335 return 0;
7336}
7337
7338static void raid5_free_percpu(struct r5conf *conf)
7339{
7340 if (!conf->percpu)
7341 return;
7342
7343 cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7344 free_percpu(conf->percpu);
7345}
7346
7347static void free_conf(struct r5conf *conf)
7348{
7349 int i;
7350
7351 log_exit(conf);
7352
7353 shrinker_free(conf->shrinker);
7354 free_thread_groups(conf);
7355 shrink_stripes(conf);
7356 raid5_free_percpu(conf);
7357 for (i = 0; i < conf->pool_size; i++)
7358 if (conf->disks[i].extra_page)
7359 put_page(conf->disks[i].extra_page);
7360 kfree(conf->disks);
7361 bioset_exit(&conf->bio_split);
7362 kfree(conf->stripe_hashtbl);
7363 kfree(conf->pending_data);
7364 kfree(conf);
7365}
7366
7367static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
7368{
7369 struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
7370 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
7371
7372 if (alloc_scratch_buffer(conf, percpu)) {
7373 pr_warn("%s: failed memory allocation for cpu%u\n",
7374 __func__, cpu);
7375 return -ENOMEM;
7376 }
7377 return 0;
7378}
7379
7380static int raid5_alloc_percpu(struct r5conf *conf)
7381{
7382 int err = 0;
7383
7384 conf->percpu = alloc_percpu(struct raid5_percpu);
7385 if (!conf->percpu)
7386 return -ENOMEM;
7387
7388 err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
7389 if (!err) {
7390 conf->scribble_disks = max(conf->raid_disks,
7391 conf->previous_raid_disks);
7392 conf->scribble_sectors = max(conf->chunk_sectors,
7393 conf->prev_chunk_sectors);
7394 }
7395 return err;
7396}
7397
7398static unsigned long raid5_cache_scan(struct shrinker *shrink,
7399 struct shrink_control *sc)
7400{
7401 struct r5conf *conf = shrink->private_data;
7402 unsigned long ret = SHRINK_STOP;
7403
7404 if (mutex_trylock(&conf->cache_size_mutex)) {
7405 ret= 0;
7406 while (ret < sc->nr_to_scan &&
7407 conf->max_nr_stripes > conf->min_nr_stripes) {
7408 if (drop_one_stripe(conf) == 0) {
7409 ret = SHRINK_STOP;
7410 break;
7411 }
7412 ret++;
7413 }
7414 mutex_unlock(&conf->cache_size_mutex);
7415 }
7416 return ret;
7417}
7418
7419static unsigned long raid5_cache_count(struct shrinker *shrink,
7420 struct shrink_control *sc)
7421{
7422 struct r5conf *conf = shrink->private_data;
7423 int max_stripes = READ_ONCE(conf->max_nr_stripes);
7424 int min_stripes = READ_ONCE(conf->min_nr_stripes);
7425
7426 if (max_stripes < min_stripes)
7427 /* unlikely, but not impossible */
7428 return 0;
7429 return max_stripes - min_stripes;
7430}
7431
7432static struct r5conf *setup_conf(struct mddev *mddev)
7433{
7434 struct r5conf *conf;
7435 int raid_disk, memory, max_disks;
7436 struct md_rdev *rdev;
7437 struct disk_info *disk;
7438 char pers_name[6];
7439 int i;
7440 int group_cnt;
7441 struct r5worker_group *new_group;
7442 int ret = -ENOMEM;
7443
7444 if (mddev->new_level != 5
7445 && mddev->new_level != 4
7446 && mddev->new_level != 6) {
7447 pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
7448 mdname(mddev), mddev->new_level);
7449 return ERR_PTR(-EIO);
7450 }
7451 if ((mddev->new_level == 5
7452 && !algorithm_valid_raid5(mddev->new_layout)) ||
7453 (mddev->new_level == 6
7454 && !algorithm_valid_raid6(mddev->new_layout))) {
7455 pr_warn("md/raid:%s: layout %d not supported\n",
7456 mdname(mddev), mddev->new_layout);
7457 return ERR_PTR(-EIO);
7458 }
7459 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
7460 pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
7461 mdname(mddev), mddev->raid_disks);
7462 return ERR_PTR(-EINVAL);
7463 }
7464
7465 if (!mddev->new_chunk_sectors ||
7466 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
7467 !is_power_of_2(mddev->new_chunk_sectors)) {
7468 pr_warn("md/raid:%s: invalid chunk size %d\n",
7469 mdname(mddev), mddev->new_chunk_sectors << 9);
7470 return ERR_PTR(-EINVAL);
7471 }
7472
7473 conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
7474 if (conf == NULL)
7475 goto abort;
7476
7477#if PAGE_SIZE != DEFAULT_STRIPE_SIZE
7478 conf->stripe_size = DEFAULT_STRIPE_SIZE;
7479 conf->stripe_shift = ilog2(DEFAULT_STRIPE_SIZE) - 9;
7480 conf->stripe_sectors = DEFAULT_STRIPE_SIZE >> 9;
7481#endif
7482 INIT_LIST_HEAD(&conf->free_list);
7483 INIT_LIST_HEAD(&conf->pending_list);
7484 conf->pending_data = kcalloc(PENDING_IO_MAX,
7485 sizeof(struct r5pending_data),
7486 GFP_KERNEL);
7487 if (!conf->pending_data)
7488 goto abort;
7489 for (i = 0; i < PENDING_IO_MAX; i++)
7490 list_add(&conf->pending_data[i].sibling, &conf->free_list);
7491 /* Don't enable multi-threading by default*/
7492 if (!alloc_thread_groups(conf, 0, &group_cnt, &new_group)) {
7493 conf->group_cnt = group_cnt;
7494 conf->worker_cnt_per_group = 0;
7495 conf->worker_groups = new_group;
7496 } else
7497 goto abort;
7498 spin_lock_init(&conf->device_lock);
7499 seqcount_spinlock_init(&conf->gen_lock, &conf->device_lock);
7500 mutex_init(&conf->cache_size_mutex);
7501
7502 init_waitqueue_head(&conf->wait_for_quiescent);
7503 init_waitqueue_head(&conf->wait_for_stripe);
7504 init_waitqueue_head(&conf->wait_for_reshape);
7505 INIT_LIST_HEAD(&conf->handle_list);
7506 INIT_LIST_HEAD(&conf->loprio_list);
7507 INIT_LIST_HEAD(&conf->hold_list);
7508 INIT_LIST_HEAD(&conf->delayed_list);
7509 INIT_LIST_HEAD(&conf->bitmap_list);
7510 init_llist_head(&conf->released_stripes);
7511 atomic_set(&conf->active_stripes, 0);
7512 atomic_set(&conf->preread_active_stripes, 0);
7513 atomic_set(&conf->active_aligned_reads, 0);
7514 spin_lock_init(&conf->pending_bios_lock);
7515 conf->batch_bio_dispatch = true;
7516 rdev_for_each(rdev, mddev) {
7517 if (test_bit(Journal, &rdev->flags))
7518 continue;
7519 if (bdev_nonrot(rdev->bdev)) {
7520 conf->batch_bio_dispatch = false;
7521 break;
7522 }
7523 }
7524
7525 conf->bypass_threshold = BYPASS_THRESHOLD;
7526 conf->recovery_disabled = mddev->recovery_disabled - 1;
7527
7528 conf->raid_disks = mddev->raid_disks;
7529 if (mddev->reshape_position == MaxSector)
7530 conf->previous_raid_disks = mddev->raid_disks;
7531 else
7532 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
7533 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
7534
7535 conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
7536 GFP_KERNEL);
7537
7538 if (!conf->disks)
7539 goto abort;
7540
7541 for (i = 0; i < max_disks; i++) {
7542 conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
7543 if (!conf->disks[i].extra_page)
7544 goto abort;
7545 }
7546
7547 ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
7548 if (ret)
7549 goto abort;
7550 conf->mddev = mddev;
7551
7552 ret = -ENOMEM;
7553 conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL);
7554 if (!conf->stripe_hashtbl)
7555 goto abort;
7556
7557 /* We init hash_locks[0] separately to that it can be used
7558 * as the reference lock in the spin_lock_nest_lock() call
7559 * in lock_all_device_hash_locks_irq in order to convince
7560 * lockdep that we know what we are doing.
7561 */
7562 spin_lock_init(conf->hash_locks);
7563 for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
7564 spin_lock_init(conf->hash_locks + i);
7565
7566 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7567 INIT_LIST_HEAD(conf->inactive_list + i);
7568
7569 for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
7570 INIT_LIST_HEAD(conf->temp_inactive_list + i);
7571
7572 atomic_set(&conf->r5c_cached_full_stripes, 0);
7573 INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7574 atomic_set(&conf->r5c_cached_partial_stripes, 0);
7575 INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7576 atomic_set(&conf->r5c_flushing_full_stripes, 0);
7577 atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7578
7579 conf->level = mddev->new_level;
7580 conf->chunk_sectors = mddev->new_chunk_sectors;
7581 ret = raid5_alloc_percpu(conf);
7582 if (ret)
7583 goto abort;
7584
7585 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7586
7587 ret = -EIO;
7588 rdev_for_each(rdev, mddev) {
7589 raid_disk = rdev->raid_disk;
7590 if (raid_disk >= max_disks
7591 || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7592 continue;
7593 disk = conf->disks + raid_disk;
7594
7595 if (test_bit(Replacement, &rdev->flags)) {
7596 if (disk->replacement)
7597 goto abort;
7598 disk->replacement = rdev;
7599 } else {
7600 if (disk->rdev)
7601 goto abort;
7602 disk->rdev = rdev;
7603 }
7604
7605 if (test_bit(In_sync, &rdev->flags)) {
7606 pr_info("md/raid:%s: device %pg operational as raid disk %d\n",
7607 mdname(mddev), rdev->bdev, raid_disk);
7608 } else if (rdev->saved_raid_disk != raid_disk)
7609 /* Cannot rely on bitmap to complete recovery */
7610 conf->fullsync = 1;
7611 }
7612
7613 conf->level = mddev->new_level;
7614 if (conf->level == 6) {
7615 conf->max_degraded = 2;
7616 if (raid6_call.xor_syndrome)
7617 conf->rmw_level = PARITY_ENABLE_RMW;
7618 else
7619 conf->rmw_level = PARITY_DISABLE_RMW;
7620 } else {
7621 conf->max_degraded = 1;
7622 conf->rmw_level = PARITY_ENABLE_RMW;
7623 }
7624 conf->algorithm = mddev->new_layout;
7625 conf->reshape_progress = mddev->reshape_position;
7626 if (conf->reshape_progress != MaxSector) {
7627 conf->prev_chunk_sectors = mddev->chunk_sectors;
7628 conf->prev_algo = mddev->layout;
7629 } else {
7630 conf->prev_chunk_sectors = conf->chunk_sectors;
7631 conf->prev_algo = conf->algorithm;
7632 }
7633
7634 conf->min_nr_stripes = NR_STRIPES;
7635 if (mddev->reshape_position != MaxSector) {
7636 int stripes = max_t(int,
7637 ((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4,
7638 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4);
7639 conf->min_nr_stripes = max(NR_STRIPES, stripes);
7640 if (conf->min_nr_stripes != NR_STRIPES)
7641 pr_info("md/raid:%s: force stripe size %d for reshape\n",
7642 mdname(mddev), conf->min_nr_stripes);
7643 }
7644 memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7645 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7646 atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7647 if (grow_stripes(conf, conf->min_nr_stripes)) {
7648 pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7649 mdname(mddev), memory);
7650 ret = -ENOMEM;
7651 goto abort;
7652 } else
7653 pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7654 /*
7655 * Losing a stripe head costs more than the time to refill it,
7656 * it reduces the queue depth and so can hurt throughput.
7657 * So set it rather large, scaled by number of devices.
7658 */
7659 conf->shrinker = shrinker_alloc(0, "md-raid5:%s", mdname(mddev));
7660 if (!conf->shrinker) {
7661 ret = -ENOMEM;
7662 pr_warn("md/raid:%s: couldn't allocate shrinker.\n",
7663 mdname(mddev));
7664 goto abort;
7665 }
7666
7667 conf->shrinker->seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7668 conf->shrinker->scan_objects = raid5_cache_scan;
7669 conf->shrinker->count_objects = raid5_cache_count;
7670 conf->shrinker->batch = 128;
7671 conf->shrinker->private_data = conf;
7672
7673 shrinker_register(conf->shrinker);
7674
7675 sprintf(pers_name, "raid%d", mddev->new_level);
7676 rcu_assign_pointer(conf->thread,
7677 md_register_thread(raid5d, mddev, pers_name));
7678 if (!conf->thread) {
7679 pr_warn("md/raid:%s: couldn't allocate thread.\n",
7680 mdname(mddev));
7681 ret = -ENOMEM;
7682 goto abort;
7683 }
7684
7685 return conf;
7686
7687 abort:
7688 if (conf)
7689 free_conf(conf);
7690 return ERR_PTR(ret);
7691}
7692
7693static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7694{
7695 switch (algo) {
7696 case ALGORITHM_PARITY_0:
7697 if (raid_disk < max_degraded)
7698 return 1;
7699 break;
7700 case ALGORITHM_PARITY_N:
7701 if (raid_disk >= raid_disks - max_degraded)
7702 return 1;
7703 break;
7704 case ALGORITHM_PARITY_0_6:
7705 if (raid_disk == 0 ||
7706 raid_disk == raid_disks - 1)
7707 return 1;
7708 break;
7709 case ALGORITHM_LEFT_ASYMMETRIC_6:
7710 case ALGORITHM_RIGHT_ASYMMETRIC_6:
7711 case ALGORITHM_LEFT_SYMMETRIC_6:
7712 case ALGORITHM_RIGHT_SYMMETRIC_6:
7713 if (raid_disk == raid_disks - 1)
7714 return 1;
7715 }
7716 return 0;
7717}
7718
7719static int raid5_set_limits(struct mddev *mddev)
7720{
7721 struct r5conf *conf = mddev->private;
7722 struct queue_limits lim;
7723 int data_disks, stripe;
7724 struct md_rdev *rdev;
7725
7726 /*
7727 * The read-ahead size must cover two whole stripes, which is
7728 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices.
7729 */
7730 data_disks = conf->previous_raid_disks - conf->max_degraded;
7731
7732 /*
7733 * We can only discard a whole stripe. It doesn't make sense to
7734 * discard data disk but write parity disk
7735 */
7736 stripe = roundup_pow_of_two(data_disks * (mddev->chunk_sectors << 9));
7737
7738 md_init_stacking_limits(&lim);
7739 lim.io_min = mddev->chunk_sectors << 9;
7740 lim.io_opt = lim.io_min * (conf->raid_disks - conf->max_degraded);
7741 lim.features |= BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE;
7742 lim.discard_granularity = stripe;
7743 lim.max_write_zeroes_sectors = 0;
7744 mddev_stack_rdev_limits(mddev, &lim, 0);
7745 rdev_for_each(rdev, mddev)
7746 queue_limits_stack_bdev(&lim, rdev->bdev, rdev->new_data_offset,
7747 mddev->gendisk->disk_name);
7748
7749 /*
7750 * Zeroing is required for discard, otherwise data could be lost.
7751 *
7752 * Consider a scenario: discard a stripe (the stripe could be
7753 * inconsistent if discard_zeroes_data is 0); write one disk of the
7754 * stripe (the stripe could be inconsistent again depending on which
7755 * disks are used to calculate parity); the disk is broken; The stripe
7756 * data of this disk is lost.
7757 *
7758 * We only allow DISCARD if the sysadmin has confirmed that only safe
7759 * devices are in use by setting a module parameter. A better idea
7760 * might be to turn DISCARD into WRITE_ZEROES requests, as that is
7761 * required to be safe.
7762 */
7763 if (!devices_handle_discard_safely ||
7764 lim.max_discard_sectors < (stripe >> 9) ||
7765 lim.discard_granularity < stripe)
7766 lim.max_hw_discard_sectors = 0;
7767
7768 /*
7769 * Requests require having a bitmap for each stripe.
7770 * Limit the max sectors based on this.
7771 */
7772 lim.max_hw_sectors = RAID5_MAX_REQ_STRIPES << RAID5_STRIPE_SHIFT(conf);
7773
7774 /* No restrictions on the number of segments in the request */
7775 lim.max_segments = USHRT_MAX;
7776
7777 return queue_limits_set(mddev->gendisk->queue, &lim);
7778}
7779
7780static int raid5_run(struct mddev *mddev)
7781{
7782 struct r5conf *conf;
7783 int dirty_parity_disks = 0;
7784 struct md_rdev *rdev;
7785 struct md_rdev *journal_dev = NULL;
7786 sector_t reshape_offset = 0;
7787 int i;
7788 long long min_offset_diff = 0;
7789 int first = 1;
7790 int ret = -EIO;
7791
7792 if (mddev->recovery_cp != MaxSector)
7793 pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7794 mdname(mddev));
7795
7796 rdev_for_each(rdev, mddev) {
7797 long long diff;
7798
7799 if (test_bit(Journal, &rdev->flags)) {
7800 journal_dev = rdev;
7801 continue;
7802 }
7803 if (rdev->raid_disk < 0)
7804 continue;
7805 diff = (rdev->new_data_offset - rdev->data_offset);
7806 if (first) {
7807 min_offset_diff = diff;
7808 first = 0;
7809 } else if (mddev->reshape_backwards &&
7810 diff < min_offset_diff)
7811 min_offset_diff = diff;
7812 else if (!mddev->reshape_backwards &&
7813 diff > min_offset_diff)
7814 min_offset_diff = diff;
7815 }
7816
7817 if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7818 (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7819 pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7820 mdname(mddev));
7821 return -EINVAL;
7822 }
7823
7824 if (mddev->reshape_position != MaxSector) {
7825 /* Check that we can continue the reshape.
7826 * Difficulties arise if the stripe we would write to
7827 * next is at or after the stripe we would read from next.
7828 * For a reshape that changes the number of devices, this
7829 * is only possible for a very short time, and mdadm makes
7830 * sure that time appears to have past before assembling
7831 * the array. So we fail if that time hasn't passed.
7832 * For a reshape that keeps the number of devices the same
7833 * mdadm must be monitoring the reshape can keeping the
7834 * critical areas read-only and backed up. It will start
7835 * the array in read-only mode, so we check for that.
7836 */
7837 sector_t here_new, here_old;
7838 int old_disks;
7839 int max_degraded = (mddev->level == 6 ? 2 : 1);
7840 int chunk_sectors;
7841 int new_data_disks;
7842
7843 if (journal_dev) {
7844 pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7845 mdname(mddev));
7846 return -EINVAL;
7847 }
7848
7849 if (mddev->new_level != mddev->level) {
7850 pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7851 mdname(mddev));
7852 return -EINVAL;
7853 }
7854 old_disks = mddev->raid_disks - mddev->delta_disks;
7855 /* reshape_position must be on a new-stripe boundary, and one
7856 * further up in new geometry must map after here in old
7857 * geometry.
7858 * If the chunk sizes are different, then as we perform reshape
7859 * in units of the largest of the two, reshape_position needs
7860 * be a multiple of the largest chunk size times new data disks.
7861 */
7862 here_new = mddev->reshape_position;
7863 chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7864 new_data_disks = mddev->raid_disks - max_degraded;
7865 if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7866 pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7867 mdname(mddev));
7868 return -EINVAL;
7869 }
7870 reshape_offset = here_new * chunk_sectors;
7871 /* here_new is the stripe we will write to */
7872 here_old = mddev->reshape_position;
7873 sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7874 /* here_old is the first stripe that we might need to read
7875 * from */
7876 if (mddev->delta_disks == 0) {
7877 /* We cannot be sure it is safe to start an in-place
7878 * reshape. It is only safe if user-space is monitoring
7879 * and taking constant backups.
7880 * mdadm always starts a situation like this in
7881 * readonly mode so it can take control before
7882 * allowing any writes. So just check for that.
7883 */
7884 if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7885 abs(min_offset_diff) >= mddev->new_chunk_sectors)
7886 /* not really in-place - so OK */;
7887 else if (mddev->ro == 0) {
7888 pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7889 mdname(mddev));
7890 return -EINVAL;
7891 }
7892 } else if (mddev->reshape_backwards
7893 ? (here_new * chunk_sectors + min_offset_diff <=
7894 here_old * chunk_sectors)
7895 : (here_new * chunk_sectors >=
7896 here_old * chunk_sectors + (-min_offset_diff))) {
7897 /* Reading from the same stripe as writing to - bad */
7898 pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7899 mdname(mddev));
7900 return -EINVAL;
7901 }
7902 pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7903 /* OK, we should be able to continue; */
7904 } else {
7905 BUG_ON(mddev->level != mddev->new_level);
7906 BUG_ON(mddev->layout != mddev->new_layout);
7907 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7908 BUG_ON(mddev->delta_disks != 0);
7909 }
7910
7911 if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7912 test_bit(MD_HAS_PPL, &mddev->flags)) {
7913 pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7914 mdname(mddev));
7915 clear_bit(MD_HAS_PPL, &mddev->flags);
7916 clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7917 }
7918
7919 if (mddev->private == NULL)
7920 conf = setup_conf(mddev);
7921 else
7922 conf = mddev->private;
7923
7924 if (IS_ERR(conf))
7925 return PTR_ERR(conf);
7926
7927 if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7928 if (!journal_dev) {
7929 pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7930 mdname(mddev));
7931 mddev->ro = 1;
7932 set_disk_ro(mddev->gendisk, 1);
7933 } else if (mddev->recovery_cp == MaxSector)
7934 set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7935 }
7936
7937 conf->min_offset_diff = min_offset_diff;
7938 rcu_assign_pointer(mddev->thread, conf->thread);
7939 rcu_assign_pointer(conf->thread, NULL);
7940 mddev->private = conf;
7941
7942 for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7943 i++) {
7944 rdev = conf->disks[i].rdev;
7945 if (!rdev)
7946 continue;
7947 if (conf->disks[i].replacement &&
7948 conf->reshape_progress != MaxSector) {
7949 /* replacements and reshape simply do not mix. */
7950 pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7951 goto abort;
7952 }
7953 if (test_bit(In_sync, &rdev->flags))
7954 continue;
7955 /* This disc is not fully in-sync. However if it
7956 * just stored parity (beyond the recovery_offset),
7957 * when we don't need to be concerned about the
7958 * array being dirty.
7959 * When reshape goes 'backwards', we never have
7960 * partially completed devices, so we only need
7961 * to worry about reshape going forwards.
7962 */
7963 /* Hack because v0.91 doesn't store recovery_offset properly. */
7964 if (mddev->major_version == 0 &&
7965 mddev->minor_version > 90)
7966 rdev->recovery_offset = reshape_offset;
7967
7968 if (rdev->recovery_offset < reshape_offset) {
7969 /* We need to check old and new layout */
7970 if (!only_parity(rdev->raid_disk,
7971 conf->algorithm,
7972 conf->raid_disks,
7973 conf->max_degraded))
7974 continue;
7975 }
7976 if (!only_parity(rdev->raid_disk,
7977 conf->prev_algo,
7978 conf->previous_raid_disks,
7979 conf->max_degraded))
7980 continue;
7981 dirty_parity_disks++;
7982 }
7983
7984 /*
7985 * 0 for a fully functional array, 1 or 2 for a degraded array.
7986 */
7987 mddev->degraded = raid5_calc_degraded(conf);
7988
7989 if (has_failed(conf)) {
7990 pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7991 mdname(mddev), mddev->degraded, conf->raid_disks);
7992 goto abort;
7993 }
7994
7995 /* device size must be a multiple of chunk size */
7996 mddev->dev_sectors &= ~((sector_t)mddev->chunk_sectors - 1);
7997 mddev->resync_max_sectors = mddev->dev_sectors;
7998
7999 if (mddev->degraded > dirty_parity_disks &&
8000 mddev->recovery_cp != MaxSector) {
8001 if (test_bit(MD_HAS_PPL, &mddev->flags))
8002 pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
8003 mdname(mddev));
8004 else if (mddev->ok_start_degraded)
8005 pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
8006 mdname(mddev));
8007 else {
8008 pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
8009 mdname(mddev));
8010 goto abort;
8011 }
8012 }
8013
8014 pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
8015 mdname(mddev), conf->level,
8016 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
8017 mddev->new_layout);
8018
8019 print_raid5_conf(conf);
8020
8021 if (conf->reshape_progress != MaxSector) {
8022 conf->reshape_safe = conf->reshape_progress;
8023 atomic_set(&conf->reshape_stripes, 0);
8024 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8025 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8026 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8027 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8028 }
8029
8030 /* Ok, everything is just fine now */
8031 if (mddev->to_remove == &raid5_attrs_group)
8032 mddev->to_remove = NULL;
8033 else if (mddev->kobj.sd &&
8034 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
8035 pr_warn("raid5: failed to create sysfs attributes for %s\n",
8036 mdname(mddev));
8037 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
8038
8039 if (!mddev_is_dm(mddev)) {
8040 ret = raid5_set_limits(mddev);
8041 if (ret)
8042 goto abort;
8043 }
8044
8045 if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
8046 goto abort;
8047
8048 return 0;
8049abort:
8050 md_unregister_thread(mddev, &mddev->thread);
8051 print_raid5_conf(conf);
8052 free_conf(conf);
8053 mddev->private = NULL;
8054 pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
8055 return ret;
8056}
8057
8058static void raid5_free(struct mddev *mddev, void *priv)
8059{
8060 struct r5conf *conf = priv;
8061
8062 free_conf(conf);
8063 mddev->to_remove = &raid5_attrs_group;
8064}
8065
8066static void raid5_status(struct seq_file *seq, struct mddev *mddev)
8067{
8068 struct r5conf *conf = mddev->private;
8069 int i;
8070
8071 lockdep_assert_held(&mddev->lock);
8072
8073 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
8074 conf->chunk_sectors / 2, mddev->layout);
8075 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
8076 for (i = 0; i < conf->raid_disks; i++) {
8077 struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
8078
8079 seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
8080 }
8081 seq_printf (seq, "]");
8082}
8083
8084static void print_raid5_conf(struct r5conf *conf)
8085{
8086 struct md_rdev *rdev;
8087 int i;
8088
8089 pr_debug("RAID conf printout:\n");
8090 if (!conf) {
8091 pr_debug("(conf==NULL)\n");
8092 return;
8093 }
8094 pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
8095 conf->raid_disks,
8096 conf->raid_disks - conf->mddev->degraded);
8097
8098 for (i = 0; i < conf->raid_disks; i++) {
8099 rdev = conf->disks[i].rdev;
8100 if (rdev)
8101 pr_debug(" disk %d, o:%d, dev:%pg\n",
8102 i, !test_bit(Faulty, &rdev->flags),
8103 rdev->bdev);
8104 }
8105}
8106
8107static int raid5_spare_active(struct mddev *mddev)
8108{
8109 int i;
8110 struct r5conf *conf = mddev->private;
8111 struct md_rdev *rdev, *replacement;
8112 int count = 0;
8113 unsigned long flags;
8114
8115 for (i = 0; i < conf->raid_disks; i++) {
8116 rdev = conf->disks[i].rdev;
8117 replacement = conf->disks[i].replacement;
8118 if (replacement
8119 && replacement->recovery_offset == MaxSector
8120 && !test_bit(Faulty, &replacement->flags)
8121 && !test_and_set_bit(In_sync, &replacement->flags)) {
8122 /* Replacement has just become active. */
8123 if (!rdev
8124 || !test_and_clear_bit(In_sync, &rdev->flags))
8125 count++;
8126 if (rdev) {
8127 /* Replaced device not technically faulty,
8128 * but we need to be sure it gets removed
8129 * and never re-added.
8130 */
8131 set_bit(Faulty, &rdev->flags);
8132 sysfs_notify_dirent_safe(
8133 rdev->sysfs_state);
8134 }
8135 sysfs_notify_dirent_safe(replacement->sysfs_state);
8136 } else if (rdev
8137 && rdev->recovery_offset == MaxSector
8138 && !test_bit(Faulty, &rdev->flags)
8139 && !test_and_set_bit(In_sync, &rdev->flags)) {
8140 count++;
8141 sysfs_notify_dirent_safe(rdev->sysfs_state);
8142 }
8143 }
8144 spin_lock_irqsave(&conf->device_lock, flags);
8145 mddev->degraded = raid5_calc_degraded(conf);
8146 spin_unlock_irqrestore(&conf->device_lock, flags);
8147 print_raid5_conf(conf);
8148 return count;
8149}
8150
8151static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
8152{
8153 struct r5conf *conf = mddev->private;
8154 int err = 0;
8155 int number = rdev->raid_disk;
8156 struct md_rdev **rdevp;
8157 struct disk_info *p;
8158 struct md_rdev *tmp;
8159
8160 print_raid5_conf(conf);
8161 if (test_bit(Journal, &rdev->flags) && conf->log) {
8162 /*
8163 * we can't wait pending write here, as this is called in
8164 * raid5d, wait will deadlock.
8165 * neilb: there is no locking about new writes here,
8166 * so this cannot be safe.
8167 */
8168 if (atomic_read(&conf->active_stripes) ||
8169 atomic_read(&conf->r5c_cached_full_stripes) ||
8170 atomic_read(&conf->r5c_cached_partial_stripes)) {
8171 return -EBUSY;
8172 }
8173 log_exit(conf);
8174 return 0;
8175 }
8176 if (unlikely(number >= conf->pool_size))
8177 return 0;
8178 p = conf->disks + number;
8179 if (rdev == p->rdev)
8180 rdevp = &p->rdev;
8181 else if (rdev == p->replacement)
8182 rdevp = &p->replacement;
8183 else
8184 return 0;
8185
8186 if (number >= conf->raid_disks &&
8187 conf->reshape_progress == MaxSector)
8188 clear_bit(In_sync, &rdev->flags);
8189
8190 if (test_bit(In_sync, &rdev->flags) ||
8191 atomic_read(&rdev->nr_pending)) {
8192 err = -EBUSY;
8193 goto abort;
8194 }
8195 /* Only remove non-faulty devices if recovery
8196 * isn't possible.
8197 */
8198 if (!test_bit(Faulty, &rdev->flags) &&
8199 mddev->recovery_disabled != conf->recovery_disabled &&
8200 !has_failed(conf) &&
8201 (!p->replacement || p->replacement == rdev) &&
8202 number < conf->raid_disks) {
8203 err = -EBUSY;
8204 goto abort;
8205 }
8206 WRITE_ONCE(*rdevp, NULL);
8207 if (!err) {
8208 err = log_modify(conf, rdev, false);
8209 if (err)
8210 goto abort;
8211 }
8212
8213 tmp = p->replacement;
8214 if (tmp) {
8215 /* We must have just cleared 'rdev' */
8216 WRITE_ONCE(p->rdev, tmp);
8217 clear_bit(Replacement, &tmp->flags);
8218 WRITE_ONCE(p->replacement, NULL);
8219
8220 if (!err)
8221 err = log_modify(conf, tmp, true);
8222 }
8223
8224 clear_bit(WantReplacement, &rdev->flags);
8225abort:
8226
8227 print_raid5_conf(conf);
8228 return err;
8229}
8230
8231static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
8232{
8233 struct r5conf *conf = mddev->private;
8234 int ret, err = -EEXIST;
8235 int disk;
8236 struct disk_info *p;
8237 struct md_rdev *tmp;
8238 int first = 0;
8239 int last = conf->raid_disks - 1;
8240
8241 if (test_bit(Journal, &rdev->flags)) {
8242 if (conf->log)
8243 return -EBUSY;
8244
8245 rdev->raid_disk = 0;
8246 /*
8247 * The array is in readonly mode if journal is missing, so no
8248 * write requests running. We should be safe
8249 */
8250 ret = log_init(conf, rdev, false);
8251 if (ret)
8252 return ret;
8253
8254 ret = r5l_start(conf->log);
8255 if (ret)
8256 return ret;
8257
8258 return 0;
8259 }
8260 if (mddev->recovery_disabled == conf->recovery_disabled)
8261 return -EBUSY;
8262
8263 if (rdev->saved_raid_disk < 0 && has_failed(conf))
8264 /* no point adding a device */
8265 return -EINVAL;
8266
8267 if (rdev->raid_disk >= 0)
8268 first = last = rdev->raid_disk;
8269
8270 /*
8271 * find the disk ... but prefer rdev->saved_raid_disk
8272 * if possible.
8273 */
8274 if (rdev->saved_raid_disk >= first &&
8275 rdev->saved_raid_disk <= last &&
8276 conf->disks[rdev->saved_raid_disk].rdev == NULL)
8277 first = rdev->saved_raid_disk;
8278
8279 for (disk = first; disk <= last; disk++) {
8280 p = conf->disks + disk;
8281 if (p->rdev == NULL) {
8282 clear_bit(In_sync, &rdev->flags);
8283 rdev->raid_disk = disk;
8284 if (rdev->saved_raid_disk != disk)
8285 conf->fullsync = 1;
8286 WRITE_ONCE(p->rdev, rdev);
8287
8288 err = log_modify(conf, rdev, true);
8289
8290 goto out;
8291 }
8292 }
8293 for (disk = first; disk <= last; disk++) {
8294 p = conf->disks + disk;
8295 tmp = p->rdev;
8296 if (test_bit(WantReplacement, &tmp->flags) &&
8297 mddev->reshape_position == MaxSector &&
8298 p->replacement == NULL) {
8299 clear_bit(In_sync, &rdev->flags);
8300 set_bit(Replacement, &rdev->flags);
8301 rdev->raid_disk = disk;
8302 err = 0;
8303 conf->fullsync = 1;
8304 WRITE_ONCE(p->replacement, rdev);
8305 break;
8306 }
8307 }
8308out:
8309 print_raid5_conf(conf);
8310 return err;
8311}
8312
8313static int raid5_resize(struct mddev *mddev, sector_t sectors)
8314{
8315 /* no resync is happening, and there is enough space
8316 * on all devices, so we can resize.
8317 * We need to make sure resync covers any new space.
8318 * If the array is shrinking we should possibly wait until
8319 * any io in the removed space completes, but it hardly seems
8320 * worth it.
8321 */
8322 sector_t newsize;
8323 struct r5conf *conf = mddev->private;
8324 int ret;
8325
8326 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8327 return -EINVAL;
8328 sectors &= ~((sector_t)conf->chunk_sectors - 1);
8329 newsize = raid5_size(mddev, sectors, mddev->raid_disks);
8330 if (mddev->external_size &&
8331 mddev->array_sectors > newsize)
8332 return -EINVAL;
8333
8334 ret = mddev->bitmap_ops->resize(mddev, sectors, 0, false);
8335 if (ret)
8336 return ret;
8337
8338 md_set_array_sectors(mddev, newsize);
8339 if (sectors > mddev->dev_sectors &&
8340 mddev->recovery_cp > mddev->dev_sectors) {
8341 mddev->recovery_cp = mddev->dev_sectors;
8342 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8343 }
8344 mddev->dev_sectors = sectors;
8345 mddev->resync_max_sectors = sectors;
8346 return 0;
8347}
8348
8349static int check_stripe_cache(struct mddev *mddev)
8350{
8351 /* Can only proceed if there are plenty of stripe_heads.
8352 * We need a minimum of one full stripe,, and for sensible progress
8353 * it is best to have about 4 times that.
8354 * If we require 4 times, then the default 256 4K stripe_heads will
8355 * allow for chunk sizes up to 256K, which is probably OK.
8356 * If the chunk size is greater, user-space should request more
8357 * stripe_heads first.
8358 */
8359 struct r5conf *conf = mddev->private;
8360 if (((mddev->chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8361 > conf->min_nr_stripes ||
8362 ((mddev->new_chunk_sectors << 9) / RAID5_STRIPE_SIZE(conf)) * 4
8363 > conf->min_nr_stripes) {
8364 pr_warn("md/raid:%s: reshape: not enough stripes. Needed %lu\n",
8365 mdname(mddev),
8366 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
8367 / RAID5_STRIPE_SIZE(conf))*4);
8368 return 0;
8369 }
8370 return 1;
8371}
8372
8373static int check_reshape(struct mddev *mddev)
8374{
8375 struct r5conf *conf = mddev->private;
8376
8377 if (raid5_has_log(conf) || raid5_has_ppl(conf))
8378 return -EINVAL;
8379 if (mddev->delta_disks == 0 &&
8380 mddev->new_layout == mddev->layout &&
8381 mddev->new_chunk_sectors == mddev->chunk_sectors)
8382 return 0; /* nothing to do */
8383 if (has_failed(conf))
8384 return -EINVAL;
8385 if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
8386 /* We might be able to shrink, but the devices must
8387 * be made bigger first.
8388 * For raid6, 4 is the minimum size.
8389 * Otherwise 2 is the minimum
8390 */
8391 int min = 2;
8392 if (mddev->level == 6)
8393 min = 4;
8394 if (mddev->raid_disks + mddev->delta_disks < min)
8395 return -EINVAL;
8396 }
8397
8398 if (!check_stripe_cache(mddev))
8399 return -ENOSPC;
8400
8401 if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
8402 mddev->delta_disks > 0)
8403 if (resize_chunks(conf,
8404 conf->previous_raid_disks
8405 + max(0, mddev->delta_disks),
8406 max(mddev->new_chunk_sectors,
8407 mddev->chunk_sectors)
8408 ) < 0)
8409 return -ENOMEM;
8410
8411 if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
8412 return 0; /* never bother to shrink */
8413 return resize_stripes(conf, (conf->previous_raid_disks
8414 + mddev->delta_disks));
8415}
8416
8417static int raid5_start_reshape(struct mddev *mddev)
8418{
8419 struct r5conf *conf = mddev->private;
8420 struct md_rdev *rdev;
8421 int spares = 0;
8422 int i;
8423 unsigned long flags;
8424
8425 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
8426 return -EBUSY;
8427
8428 if (!check_stripe_cache(mddev))
8429 return -ENOSPC;
8430
8431 if (has_failed(conf))
8432 return -EINVAL;
8433
8434 /* raid5 can't handle concurrent reshape and recovery */
8435 if (mddev->recovery_cp < MaxSector)
8436 return -EBUSY;
8437 for (i = 0; i < conf->raid_disks; i++)
8438 if (conf->disks[i].replacement)
8439 return -EBUSY;
8440
8441 rdev_for_each(rdev, mddev) {
8442 if (!test_bit(In_sync, &rdev->flags)
8443 && !test_bit(Faulty, &rdev->flags))
8444 spares++;
8445 }
8446
8447 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
8448 /* Not enough devices even to make a degraded array
8449 * of that size
8450 */
8451 return -EINVAL;
8452
8453 /* Refuse to reduce size of the array. Any reductions in
8454 * array size must be through explicit setting of array_size
8455 * attribute.
8456 */
8457 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
8458 < mddev->array_sectors) {
8459 pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
8460 mdname(mddev));
8461 return -EINVAL;
8462 }
8463
8464 atomic_set(&conf->reshape_stripes, 0);
8465 spin_lock_irq(&conf->device_lock);
8466 write_seqcount_begin(&conf->gen_lock);
8467 conf->previous_raid_disks = conf->raid_disks;
8468 conf->raid_disks += mddev->delta_disks;
8469 conf->prev_chunk_sectors = conf->chunk_sectors;
8470 conf->chunk_sectors = mddev->new_chunk_sectors;
8471 conf->prev_algo = conf->algorithm;
8472 conf->algorithm = mddev->new_layout;
8473 conf->generation++;
8474 /* Code that selects data_offset needs to see the generation update
8475 * if reshape_progress has been set - so a memory barrier needed.
8476 */
8477 smp_mb();
8478 if (mddev->reshape_backwards)
8479 conf->reshape_progress = raid5_size(mddev, 0, 0);
8480 else
8481 conf->reshape_progress = 0;
8482 conf->reshape_safe = conf->reshape_progress;
8483 write_seqcount_end(&conf->gen_lock);
8484 spin_unlock_irq(&conf->device_lock);
8485
8486 /* Now make sure any requests that proceeded on the assumption
8487 * the reshape wasn't running - like Discard or Read - have
8488 * completed.
8489 */
8490 raid5_quiesce(mddev, true);
8491 raid5_quiesce(mddev, false);
8492
8493 /* Add some new drives, as many as will fit.
8494 * We know there are enough to make the newly sized array work.
8495 * Don't add devices if we are reducing the number of
8496 * devices in the array. This is because it is not possible
8497 * to correctly record the "partially reconstructed" state of
8498 * such devices during the reshape and confusion could result.
8499 */
8500 if (mddev->delta_disks >= 0) {
8501 rdev_for_each(rdev, mddev)
8502 if (rdev->raid_disk < 0 &&
8503 !test_bit(Faulty, &rdev->flags)) {
8504 if (raid5_add_disk(mddev, rdev) == 0) {
8505 if (rdev->raid_disk
8506 >= conf->previous_raid_disks)
8507 set_bit(In_sync, &rdev->flags);
8508 else
8509 rdev->recovery_offset = 0;
8510
8511 /* Failure here is OK */
8512 sysfs_link_rdev(mddev, rdev);
8513 }
8514 } else if (rdev->raid_disk >= conf->previous_raid_disks
8515 && !test_bit(Faulty, &rdev->flags)) {
8516 /* This is a spare that was manually added */
8517 set_bit(In_sync, &rdev->flags);
8518 }
8519
8520 /* When a reshape changes the number of devices,
8521 * ->degraded is measured against the larger of the
8522 * pre and post number of devices.
8523 */
8524 spin_lock_irqsave(&conf->device_lock, flags);
8525 mddev->degraded = raid5_calc_degraded(conf);
8526 spin_unlock_irqrestore(&conf->device_lock, flags);
8527 }
8528 mddev->raid_disks = conf->raid_disks;
8529 mddev->reshape_position = conf->reshape_progress;
8530 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8531
8532 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
8533 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
8534 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
8535 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
8536 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
8537 conf->reshape_checkpoint = jiffies;
8538 md_new_event();
8539 return 0;
8540}
8541
8542/* This is called from the reshape thread and should make any
8543 * changes needed in 'conf'
8544 */
8545static void end_reshape(struct r5conf *conf)
8546{
8547
8548 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
8549 struct md_rdev *rdev;
8550
8551 spin_lock_irq(&conf->device_lock);
8552 conf->previous_raid_disks = conf->raid_disks;
8553 md_finish_reshape(conf->mddev);
8554 smp_wmb();
8555 conf->reshape_progress = MaxSector;
8556 conf->mddev->reshape_position = MaxSector;
8557 rdev_for_each(rdev, conf->mddev)
8558 if (rdev->raid_disk >= 0 &&
8559 !test_bit(Journal, &rdev->flags) &&
8560 !test_bit(In_sync, &rdev->flags))
8561 rdev->recovery_offset = MaxSector;
8562 spin_unlock_irq(&conf->device_lock);
8563 wake_up(&conf->wait_for_reshape);
8564
8565 mddev_update_io_opt(conf->mddev,
8566 conf->raid_disks - conf->max_degraded);
8567 }
8568}
8569
8570/* This is called from the raid5d thread with mddev_lock held.
8571 * It makes config changes to the device.
8572 */
8573static void raid5_finish_reshape(struct mddev *mddev)
8574{
8575 struct r5conf *conf = mddev->private;
8576 struct md_rdev *rdev;
8577
8578 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8579
8580 if (mddev->delta_disks <= 0) {
8581 int d;
8582 spin_lock_irq(&conf->device_lock);
8583 mddev->degraded = raid5_calc_degraded(conf);
8584 spin_unlock_irq(&conf->device_lock);
8585 for (d = conf->raid_disks ;
8586 d < conf->raid_disks - mddev->delta_disks;
8587 d++) {
8588 rdev = conf->disks[d].rdev;
8589 if (rdev)
8590 clear_bit(In_sync, &rdev->flags);
8591 rdev = conf->disks[d].replacement;
8592 if (rdev)
8593 clear_bit(In_sync, &rdev->flags);
8594 }
8595 }
8596 mddev->layout = conf->algorithm;
8597 mddev->chunk_sectors = conf->chunk_sectors;
8598 mddev->reshape_position = MaxSector;
8599 mddev->delta_disks = 0;
8600 mddev->reshape_backwards = 0;
8601 }
8602}
8603
8604static void raid5_quiesce(struct mddev *mddev, int quiesce)
8605{
8606 struct r5conf *conf = mddev->private;
8607
8608 if (quiesce) {
8609 /* stop all writes */
8610 lock_all_device_hash_locks_irq(conf);
8611 /* '2' tells resync/reshape to pause so that all
8612 * active stripes can drain
8613 */
8614 r5c_flush_cache(conf, INT_MAX);
8615 /* need a memory barrier to make sure read_one_chunk() sees
8616 * quiesce started and reverts to slow (locked) path.
8617 */
8618 smp_store_release(&conf->quiesce, 2);
8619 wait_event_cmd(conf->wait_for_quiescent,
8620 atomic_read(&conf->active_stripes) == 0 &&
8621 atomic_read(&conf->active_aligned_reads) == 0,
8622 unlock_all_device_hash_locks_irq(conf),
8623 lock_all_device_hash_locks_irq(conf));
8624 conf->quiesce = 1;
8625 unlock_all_device_hash_locks_irq(conf);
8626 /* allow reshape to continue */
8627 wake_up(&conf->wait_for_reshape);
8628 } else {
8629 /* re-enable writes */
8630 lock_all_device_hash_locks_irq(conf);
8631 conf->quiesce = 0;
8632 wake_up(&conf->wait_for_quiescent);
8633 wake_up(&conf->wait_for_reshape);
8634 unlock_all_device_hash_locks_irq(conf);
8635 }
8636 log_quiesce(conf, quiesce);
8637}
8638
8639static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8640{
8641 struct r0conf *raid0_conf = mddev->private;
8642 sector_t sectors;
8643
8644 /* for raid0 takeover only one zone is supported */
8645 if (raid0_conf->nr_strip_zones > 1) {
8646 pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8647 mdname(mddev));
8648 return ERR_PTR(-EINVAL);
8649 }
8650
8651 sectors = raid0_conf->strip_zone[0].zone_end;
8652 sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8653 mddev->dev_sectors = sectors;
8654 mddev->new_level = level;
8655 mddev->new_layout = ALGORITHM_PARITY_N;
8656 mddev->new_chunk_sectors = mddev->chunk_sectors;
8657 mddev->raid_disks += 1;
8658 mddev->delta_disks = 1;
8659 /* make sure it will be not marked as dirty */
8660 mddev->recovery_cp = MaxSector;
8661
8662 return setup_conf(mddev);
8663}
8664
8665static void *raid5_takeover_raid1(struct mddev *mddev)
8666{
8667 int chunksect;
8668 void *ret;
8669
8670 if (mddev->raid_disks != 2 ||
8671 mddev->degraded > 1)
8672 return ERR_PTR(-EINVAL);
8673
8674 /* Should check if there are write-behind devices? */
8675
8676 chunksect = 64*2; /* 64K by default */
8677
8678 /* The array must be an exact multiple of chunksize */
8679 while (chunksect && (mddev->array_sectors & (chunksect-1)))
8680 chunksect >>= 1;
8681
8682 if ((chunksect<<9) < RAID5_STRIPE_SIZE((struct r5conf *)mddev->private))
8683 /* array size does not allow a suitable chunk size */
8684 return ERR_PTR(-EINVAL);
8685
8686 mddev->new_level = 5;
8687 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8688 mddev->new_chunk_sectors = chunksect;
8689
8690 ret = setup_conf(mddev);
8691 if (!IS_ERR(ret))
8692 mddev_clear_unsupported_flags(mddev,
8693 UNSUPPORTED_MDDEV_FLAGS);
8694 return ret;
8695}
8696
8697static void *raid5_takeover_raid6(struct mddev *mddev)
8698{
8699 int new_layout;
8700
8701 switch (mddev->layout) {
8702 case ALGORITHM_LEFT_ASYMMETRIC_6:
8703 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8704 break;
8705 case ALGORITHM_RIGHT_ASYMMETRIC_6:
8706 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8707 break;
8708 case ALGORITHM_LEFT_SYMMETRIC_6:
8709 new_layout = ALGORITHM_LEFT_SYMMETRIC;
8710 break;
8711 case ALGORITHM_RIGHT_SYMMETRIC_6:
8712 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8713 break;
8714 case ALGORITHM_PARITY_0_6:
8715 new_layout = ALGORITHM_PARITY_0;
8716 break;
8717 case ALGORITHM_PARITY_N:
8718 new_layout = ALGORITHM_PARITY_N;
8719 break;
8720 default:
8721 return ERR_PTR(-EINVAL);
8722 }
8723 mddev->new_level = 5;
8724 mddev->new_layout = new_layout;
8725 mddev->delta_disks = -1;
8726 mddev->raid_disks -= 1;
8727 return setup_conf(mddev);
8728}
8729
8730static int raid5_check_reshape(struct mddev *mddev)
8731{
8732 /* For a 2-drive array, the layout and chunk size can be changed
8733 * immediately as not restriping is needed.
8734 * For larger arrays we record the new value - after validation
8735 * to be used by a reshape pass.
8736 */
8737 struct r5conf *conf = mddev->private;
8738 int new_chunk = mddev->new_chunk_sectors;
8739
8740 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8741 return -EINVAL;
8742 if (new_chunk > 0) {
8743 if (!is_power_of_2(new_chunk))
8744 return -EINVAL;
8745 if (new_chunk < (PAGE_SIZE>>9))
8746 return -EINVAL;
8747 if (mddev->array_sectors & (new_chunk-1))
8748 /* not factor of array size */
8749 return -EINVAL;
8750 }
8751
8752 /* They look valid */
8753
8754 if (mddev->raid_disks == 2) {
8755 /* can make the change immediately */
8756 if (mddev->new_layout >= 0) {
8757 conf->algorithm = mddev->new_layout;
8758 mddev->layout = mddev->new_layout;
8759 }
8760 if (new_chunk > 0) {
8761 conf->chunk_sectors = new_chunk ;
8762 mddev->chunk_sectors = new_chunk;
8763 }
8764 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8765 md_wakeup_thread(mddev->thread);
8766 }
8767 return check_reshape(mddev);
8768}
8769
8770static int raid6_check_reshape(struct mddev *mddev)
8771{
8772 int new_chunk = mddev->new_chunk_sectors;
8773
8774 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8775 return -EINVAL;
8776 if (new_chunk > 0) {
8777 if (!is_power_of_2(new_chunk))
8778 return -EINVAL;
8779 if (new_chunk < (PAGE_SIZE >> 9))
8780 return -EINVAL;
8781 if (mddev->array_sectors & (new_chunk-1))
8782 /* not factor of array size */
8783 return -EINVAL;
8784 }
8785
8786 /* They look valid */
8787 return check_reshape(mddev);
8788}
8789
8790static void *raid5_takeover(struct mddev *mddev)
8791{
8792 /* raid5 can take over:
8793 * raid0 - if there is only one strip zone - make it a raid4 layout
8794 * raid1 - if there are two drives. We need to know the chunk size
8795 * raid4 - trivial - just use a raid4 layout.
8796 * raid6 - Providing it is a *_6 layout
8797 */
8798 if (mddev->level == 0)
8799 return raid45_takeover_raid0(mddev, 5);
8800 if (mddev->level == 1)
8801 return raid5_takeover_raid1(mddev);
8802 if (mddev->level == 4) {
8803 mddev->new_layout = ALGORITHM_PARITY_N;
8804 mddev->new_level = 5;
8805 return setup_conf(mddev);
8806 }
8807 if (mddev->level == 6)
8808 return raid5_takeover_raid6(mddev);
8809
8810 return ERR_PTR(-EINVAL);
8811}
8812
8813static void *raid4_takeover(struct mddev *mddev)
8814{
8815 /* raid4 can take over:
8816 * raid0 - if there is only one strip zone
8817 * raid5 - if layout is right
8818 */
8819 if (mddev->level == 0)
8820 return raid45_takeover_raid0(mddev, 4);
8821 if (mddev->level == 5 &&
8822 mddev->layout == ALGORITHM_PARITY_N) {
8823 mddev->new_layout = 0;
8824 mddev->new_level = 4;
8825 return setup_conf(mddev);
8826 }
8827 return ERR_PTR(-EINVAL);
8828}
8829
8830static struct md_personality raid5_personality;
8831
8832static void *raid6_takeover(struct mddev *mddev)
8833{
8834 /* Currently can only take over a raid5. We map the
8835 * personality to an equivalent raid6 personality
8836 * with the Q block at the end.
8837 */
8838 int new_layout;
8839
8840 if (mddev->pers != &raid5_personality)
8841 return ERR_PTR(-EINVAL);
8842 if (mddev->degraded > 1)
8843 return ERR_PTR(-EINVAL);
8844 if (mddev->raid_disks > 253)
8845 return ERR_PTR(-EINVAL);
8846 if (mddev->raid_disks < 3)
8847 return ERR_PTR(-EINVAL);
8848
8849 switch (mddev->layout) {
8850 case ALGORITHM_LEFT_ASYMMETRIC:
8851 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8852 break;
8853 case ALGORITHM_RIGHT_ASYMMETRIC:
8854 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8855 break;
8856 case ALGORITHM_LEFT_SYMMETRIC:
8857 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8858 break;
8859 case ALGORITHM_RIGHT_SYMMETRIC:
8860 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8861 break;
8862 case ALGORITHM_PARITY_0:
8863 new_layout = ALGORITHM_PARITY_0_6;
8864 break;
8865 case ALGORITHM_PARITY_N:
8866 new_layout = ALGORITHM_PARITY_N;
8867 break;
8868 default:
8869 return ERR_PTR(-EINVAL);
8870 }
8871 mddev->new_level = 6;
8872 mddev->new_layout = new_layout;
8873 mddev->delta_disks = 1;
8874 mddev->raid_disks += 1;
8875 return setup_conf(mddev);
8876}
8877
8878static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8879{
8880 struct r5conf *conf;
8881 int err;
8882
8883 err = mddev_suspend_and_lock(mddev);
8884 if (err)
8885 return err;
8886 conf = mddev->private;
8887 if (!conf) {
8888 mddev_unlock_and_resume(mddev);
8889 return -ENODEV;
8890 }
8891
8892 if (strncmp(buf, "ppl", 3) == 0) {
8893 /* ppl only works with RAID 5 */
8894 if (!raid5_has_ppl(conf) && conf->level == 5) {
8895 err = log_init(conf, NULL, true);
8896 if (!err) {
8897 err = resize_stripes(conf, conf->pool_size);
8898 if (err)
8899 log_exit(conf);
8900 }
8901 } else
8902 err = -EINVAL;
8903 } else if (strncmp(buf, "resync", 6) == 0) {
8904 if (raid5_has_ppl(conf)) {
8905 log_exit(conf);
8906 err = resize_stripes(conf, conf->pool_size);
8907 } else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8908 r5l_log_disk_error(conf)) {
8909 bool journal_dev_exists = false;
8910 struct md_rdev *rdev;
8911
8912 rdev_for_each(rdev, mddev)
8913 if (test_bit(Journal, &rdev->flags)) {
8914 journal_dev_exists = true;
8915 break;
8916 }
8917
8918 if (!journal_dev_exists)
8919 clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8920 else /* need remove journal device first */
8921 err = -EBUSY;
8922 } else
8923 err = -EINVAL;
8924 } else {
8925 err = -EINVAL;
8926 }
8927
8928 if (!err)
8929 md_update_sb(mddev, 1);
8930
8931 mddev_unlock_and_resume(mddev);
8932
8933 return err;
8934}
8935
8936static int raid5_start(struct mddev *mddev)
8937{
8938 struct r5conf *conf = mddev->private;
8939
8940 return r5l_start(conf->log);
8941}
8942
8943/*
8944 * This is only used for dm-raid456, caller already frozen sync_thread, hence
8945 * if rehsape is still in progress, io that is waiting for reshape can never be
8946 * done now, hence wake up and handle those IO.
8947 */
8948static void raid5_prepare_suspend(struct mddev *mddev)
8949{
8950 struct r5conf *conf = mddev->private;
8951
8952 wake_up(&conf->wait_for_reshape);
8953}
8954
8955static struct md_personality raid6_personality =
8956{
8957 .name = "raid6",
8958 .level = 6,
8959 .owner = THIS_MODULE,
8960 .make_request = raid5_make_request,
8961 .run = raid5_run,
8962 .start = raid5_start,
8963 .free = raid5_free,
8964 .status = raid5_status,
8965 .error_handler = raid5_error,
8966 .hot_add_disk = raid5_add_disk,
8967 .hot_remove_disk= raid5_remove_disk,
8968 .spare_active = raid5_spare_active,
8969 .sync_request = raid5_sync_request,
8970 .resize = raid5_resize,
8971 .size = raid5_size,
8972 .check_reshape = raid6_check_reshape,
8973 .start_reshape = raid5_start_reshape,
8974 .finish_reshape = raid5_finish_reshape,
8975 .quiesce = raid5_quiesce,
8976 .takeover = raid6_takeover,
8977 .change_consistency_policy = raid5_change_consistency_policy,
8978 .prepare_suspend = raid5_prepare_suspend,
8979 .bitmap_sector = raid5_bitmap_sector,
8980};
8981static struct md_personality raid5_personality =
8982{
8983 .name = "raid5",
8984 .level = 5,
8985 .owner = THIS_MODULE,
8986 .make_request = raid5_make_request,
8987 .run = raid5_run,
8988 .start = raid5_start,
8989 .free = raid5_free,
8990 .status = raid5_status,
8991 .error_handler = raid5_error,
8992 .hot_add_disk = raid5_add_disk,
8993 .hot_remove_disk= raid5_remove_disk,
8994 .spare_active = raid5_spare_active,
8995 .sync_request = raid5_sync_request,
8996 .resize = raid5_resize,
8997 .size = raid5_size,
8998 .check_reshape = raid5_check_reshape,
8999 .start_reshape = raid5_start_reshape,
9000 .finish_reshape = raid5_finish_reshape,
9001 .quiesce = raid5_quiesce,
9002 .takeover = raid5_takeover,
9003 .change_consistency_policy = raid5_change_consistency_policy,
9004 .prepare_suspend = raid5_prepare_suspend,
9005 .bitmap_sector = raid5_bitmap_sector,
9006};
9007
9008static struct md_personality raid4_personality =
9009{
9010 .name = "raid4",
9011 .level = 4,
9012 .owner = THIS_MODULE,
9013 .make_request = raid5_make_request,
9014 .run = raid5_run,
9015 .start = raid5_start,
9016 .free = raid5_free,
9017 .status = raid5_status,
9018 .error_handler = raid5_error,
9019 .hot_add_disk = raid5_add_disk,
9020 .hot_remove_disk= raid5_remove_disk,
9021 .spare_active = raid5_spare_active,
9022 .sync_request = raid5_sync_request,
9023 .resize = raid5_resize,
9024 .size = raid5_size,
9025 .check_reshape = raid5_check_reshape,
9026 .start_reshape = raid5_start_reshape,
9027 .finish_reshape = raid5_finish_reshape,
9028 .quiesce = raid5_quiesce,
9029 .takeover = raid4_takeover,
9030 .change_consistency_policy = raid5_change_consistency_policy,
9031 .prepare_suspend = raid5_prepare_suspend,
9032 .bitmap_sector = raid5_bitmap_sector,
9033};
9034
9035static int __init raid5_init(void)
9036{
9037 int ret;
9038
9039 raid5_wq = alloc_workqueue("raid5wq",
9040 WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
9041 if (!raid5_wq)
9042 return -ENOMEM;
9043
9044 ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
9045 "md/raid5:prepare",
9046 raid456_cpu_up_prepare,
9047 raid456_cpu_dead);
9048 if (ret) {
9049 destroy_workqueue(raid5_wq);
9050 return ret;
9051 }
9052 register_md_personality(&raid6_personality);
9053 register_md_personality(&raid5_personality);
9054 register_md_personality(&raid4_personality);
9055 return 0;
9056}
9057
9058static void raid5_exit(void)
9059{
9060 unregister_md_personality(&raid6_personality);
9061 unregister_md_personality(&raid5_personality);
9062 unregister_md_personality(&raid4_personality);
9063 cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
9064 destroy_workqueue(raid5_wq);
9065}
9066
9067module_init(raid5_init);
9068module_exit(raid5_exit);
9069MODULE_LICENSE("GPL");
9070MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
9071MODULE_ALIAS("md-personality-4"); /* RAID5 */
9072MODULE_ALIAS("md-raid5");
9073MODULE_ALIAS("md-raid4");
9074MODULE_ALIAS("md-level-5");
9075MODULE_ALIAS("md-level-4");
9076MODULE_ALIAS("md-personality-8"); /* RAID6 */
9077MODULE_ALIAS("md-raid6");
9078MODULE_ALIAS("md-level-6");
9079
9080/* This used to be two separate modules, they were: */
9081MODULE_ALIAS("raid5");
9082MODULE_ALIAS("raid6");
1/*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
6 *
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
15 *
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 */
20
21/*
22 * BITMAP UNPLUGGING:
23 *
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
27 *
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
44 */
45
46#include <linux/blkdev.h>
47#include <linux/kthread.h>
48#include <linux/raid/pq.h>
49#include <linux/async_tx.h>
50#include <linux/async.h>
51#include <linux/seq_file.h>
52#include <linux/cpu.h>
53#include <linux/slab.h>
54#include <linux/ratelimit.h>
55#include "md.h"
56#include "raid5.h"
57#include "raid0.h"
58#include "bitmap.h"
59
60/*
61 * Stripe cache
62 */
63
64#define NR_STRIPES 256
65#define STRIPE_SIZE PAGE_SIZE
66#define STRIPE_SHIFT (PAGE_SHIFT - 9)
67#define STRIPE_SECTORS (STRIPE_SIZE>>9)
68#define IO_THRESHOLD 1
69#define BYPASS_THRESHOLD 1
70#define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71#define HASH_MASK (NR_HASH - 1)
72
73#define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74
75/* bio's attached to a stripe+device for I/O are linked together in bi_sector
76 * order without overlap. There may be several bio's per stripe+device, and
77 * a bio could span several devices.
78 * When walking this list for a particular stripe+device, we must never proceed
79 * beyond a bio that extends past this device, as the next bio might no longer
80 * be valid.
81 * This macro is used to determine the 'next' bio in the list, given the sector
82 * of the current stripe+device
83 */
84#define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85/*
86 * The following can be used to debug the driver
87 */
88#define RAID5_PARANOIA 1
89#if RAID5_PARANOIA && defined(CONFIG_SMP)
90# define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
91#else
92# define CHECK_DEVLOCK()
93#endif
94
95#ifdef DEBUG
96#define inline
97#define __inline__
98#endif
99
100/*
101 * We maintain a biased count of active stripes in the bottom 16 bits of
102 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 */
104static inline int raid5_bi_phys_segments(struct bio *bio)
105{
106 return bio->bi_phys_segments & 0xffff;
107}
108
109static inline int raid5_bi_hw_segments(struct bio *bio)
110{
111 return (bio->bi_phys_segments >> 16) & 0xffff;
112}
113
114static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115{
116 --bio->bi_phys_segments;
117 return raid5_bi_phys_segments(bio);
118}
119
120static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121{
122 unsigned short val = raid5_bi_hw_segments(bio);
123
124 --val;
125 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
126 return val;
127}
128
129static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130{
131 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
132}
133
134/* Find first data disk in a raid6 stripe */
135static inline int raid6_d0(struct stripe_head *sh)
136{
137 if (sh->ddf_layout)
138 /* ddf always start from first device */
139 return 0;
140 /* md starts just after Q block */
141 if (sh->qd_idx == sh->disks - 1)
142 return 0;
143 else
144 return sh->qd_idx + 1;
145}
146static inline int raid6_next_disk(int disk, int raid_disks)
147{
148 disk++;
149 return (disk < raid_disks) ? disk : 0;
150}
151
152/* When walking through the disks in a raid5, starting at raid6_d0,
153 * We need to map each disk to a 'slot', where the data disks are slot
154 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
155 * is raid_disks-1. This help does that mapping.
156 */
157static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
158 int *count, int syndrome_disks)
159{
160 int slot = *count;
161
162 if (sh->ddf_layout)
163 (*count)++;
164 if (idx == sh->pd_idx)
165 return syndrome_disks;
166 if (idx == sh->qd_idx)
167 return syndrome_disks + 1;
168 if (!sh->ddf_layout)
169 (*count)++;
170 return slot;
171}
172
173static void return_io(struct bio *return_bi)
174{
175 struct bio *bi = return_bi;
176 while (bi) {
177
178 return_bi = bi->bi_next;
179 bi->bi_next = NULL;
180 bi->bi_size = 0;
181 bio_endio(bi, 0);
182 bi = return_bi;
183 }
184}
185
186static void print_raid5_conf (raid5_conf_t *conf);
187
188static int stripe_operations_active(struct stripe_head *sh)
189{
190 return sh->check_state || sh->reconstruct_state ||
191 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
192 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
193}
194
195static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196{
197 if (atomic_dec_and_test(&sh->count)) {
198 BUG_ON(!list_empty(&sh->lru));
199 BUG_ON(atomic_read(&conf->active_stripes)==0);
200 if (test_bit(STRIPE_HANDLE, &sh->state)) {
201 if (test_bit(STRIPE_DELAYED, &sh->state))
202 list_add_tail(&sh->lru, &conf->delayed_list);
203 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0)
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 else {
207 clear_bit(STRIPE_BIT_DELAY, &sh->state);
208 list_add_tail(&sh->lru, &conf->handle_list);
209 }
210 md_wakeup_thread(conf->mddev->thread);
211 } else {
212 BUG_ON(stripe_operations_active(sh));
213 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
214 atomic_dec(&conf->preread_active_stripes);
215 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
216 md_wakeup_thread(conf->mddev->thread);
217 }
218 atomic_dec(&conf->active_stripes);
219 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
220 list_add_tail(&sh->lru, &conf->inactive_list);
221 wake_up(&conf->wait_for_stripe);
222 if (conf->retry_read_aligned)
223 md_wakeup_thread(conf->mddev->thread);
224 }
225 }
226 }
227}
228
229static void release_stripe(struct stripe_head *sh)
230{
231 raid5_conf_t *conf = sh->raid_conf;
232 unsigned long flags;
233
234 spin_lock_irqsave(&conf->device_lock, flags);
235 __release_stripe(conf, sh);
236 spin_unlock_irqrestore(&conf->device_lock, flags);
237}
238
239static inline void remove_hash(struct stripe_head *sh)
240{
241 pr_debug("remove_hash(), stripe %llu\n",
242 (unsigned long long)sh->sector);
243
244 hlist_del_init(&sh->hash);
245}
246
247static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
248{
249 struct hlist_head *hp = stripe_hash(conf, sh->sector);
250
251 pr_debug("insert_hash(), stripe %llu\n",
252 (unsigned long long)sh->sector);
253
254 CHECK_DEVLOCK();
255 hlist_add_head(&sh->hash, hp);
256}
257
258
259/* find an idle stripe, make sure it is unhashed, and return it. */
260static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
261{
262 struct stripe_head *sh = NULL;
263 struct list_head *first;
264
265 CHECK_DEVLOCK();
266 if (list_empty(&conf->inactive_list))
267 goto out;
268 first = conf->inactive_list.next;
269 sh = list_entry(first, struct stripe_head, lru);
270 list_del_init(first);
271 remove_hash(sh);
272 atomic_inc(&conf->active_stripes);
273out:
274 return sh;
275}
276
277static void shrink_buffers(struct stripe_head *sh)
278{
279 struct page *p;
280 int i;
281 int num = sh->raid_conf->pool_size;
282
283 for (i = 0; i < num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
289 }
290}
291
292static int grow_buffers(struct stripe_head *sh)
293{
294 int i;
295 int num = sh->raid_conf->pool_size;
296
297 for (i = 0; i < num; i++) {
298 struct page *page;
299
300 if (!(page = alloc_page(GFP_KERNEL))) {
301 return 1;
302 }
303 sh->dev[i].page = page;
304 }
305 return 0;
306}
307
308static void raid5_build_block(struct stripe_head *sh, int i, int previous);
309static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
310 struct stripe_head *sh);
311
312static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313{
314 raid5_conf_t *conf = sh->raid_conf;
315 int i;
316
317 BUG_ON(atomic_read(&sh->count) != 0);
318 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
319 BUG_ON(stripe_operations_active(sh));
320
321 CHECK_DEVLOCK();
322 pr_debug("init_stripe called, stripe %llu\n",
323 (unsigned long long)sh->sector);
324
325 remove_hash(sh);
326
327 sh->generation = conf->generation - previous;
328 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
329 sh->sector = sector;
330 stripe_set_idx(sector, conf, previous, sh);
331 sh->state = 0;
332
333
334 for (i = sh->disks; i--; ) {
335 struct r5dev *dev = &sh->dev[i];
336
337 if (dev->toread || dev->read || dev->towrite || dev->written ||
338 test_bit(R5_LOCKED, &dev->flags)) {
339 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
340 (unsigned long long)sh->sector, i, dev->toread,
341 dev->read, dev->towrite, dev->written,
342 test_bit(R5_LOCKED, &dev->flags));
343 WARN_ON(1);
344 }
345 dev->flags = 0;
346 raid5_build_block(sh, i, previous);
347 }
348 insert_hash(conf, sh);
349}
350
351static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
352 short generation)
353{
354 struct stripe_head *sh;
355 struct hlist_node *hn;
356
357 CHECK_DEVLOCK();
358 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
359 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
360 if (sh->sector == sector && sh->generation == generation)
361 return sh;
362 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
363 return NULL;
364}
365
366/*
367 * Need to check if array has failed when deciding whether to:
368 * - start an array
369 * - remove non-faulty devices
370 * - add a spare
371 * - allow a reshape
372 * This determination is simple when no reshape is happening.
373 * However if there is a reshape, we need to carefully check
374 * both the before and after sections.
375 * This is because some failed devices may only affect one
376 * of the two sections, and some non-in_sync devices may
377 * be insync in the section most affected by failed devices.
378 */
379static int has_failed(raid5_conf_t *conf)
380{
381 int degraded;
382 int i;
383 if (conf->mddev->reshape_position == MaxSector)
384 return conf->mddev->degraded > conf->max_degraded;
385
386 rcu_read_lock();
387 degraded = 0;
388 for (i = 0; i < conf->previous_raid_disks; i++) {
389 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
390 if (!rdev || test_bit(Faulty, &rdev->flags))
391 degraded++;
392 else if (test_bit(In_sync, &rdev->flags))
393 ;
394 else
395 /* not in-sync or faulty.
396 * If the reshape increases the number of devices,
397 * this is being recovered by the reshape, so
398 * this 'previous' section is not in_sync.
399 * If the number of devices is being reduced however,
400 * the device can only be part of the array if
401 * we are reverting a reshape, so this section will
402 * be in-sync.
403 */
404 if (conf->raid_disks >= conf->previous_raid_disks)
405 degraded++;
406 }
407 rcu_read_unlock();
408 if (degraded > conf->max_degraded)
409 return 1;
410 rcu_read_lock();
411 degraded = 0;
412 for (i = 0; i < conf->raid_disks; i++) {
413 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
414 if (!rdev || test_bit(Faulty, &rdev->flags))
415 degraded++;
416 else if (test_bit(In_sync, &rdev->flags))
417 ;
418 else
419 /* not in-sync or faulty.
420 * If reshape increases the number of devices, this
421 * section has already been recovered, else it
422 * almost certainly hasn't.
423 */
424 if (conf->raid_disks <= conf->previous_raid_disks)
425 degraded++;
426 }
427 rcu_read_unlock();
428 if (degraded > conf->max_degraded)
429 return 1;
430 return 0;
431}
432
433static struct stripe_head *
434get_active_stripe(raid5_conf_t *conf, sector_t sector,
435 int previous, int noblock, int noquiesce)
436{
437 struct stripe_head *sh;
438
439 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
440
441 spin_lock_irq(&conf->device_lock);
442
443 do {
444 wait_event_lock_irq(conf->wait_for_stripe,
445 conf->quiesce == 0 || noquiesce,
446 conf->device_lock, /* nothing */);
447 sh = __find_stripe(conf, sector, conf->generation - previous);
448 if (!sh) {
449 if (!conf->inactive_blocked)
450 sh = get_free_stripe(conf);
451 if (noblock && sh == NULL)
452 break;
453 if (!sh) {
454 conf->inactive_blocked = 1;
455 wait_event_lock_irq(conf->wait_for_stripe,
456 !list_empty(&conf->inactive_list) &&
457 (atomic_read(&conf->active_stripes)
458 < (conf->max_nr_stripes *3/4)
459 || !conf->inactive_blocked),
460 conf->device_lock,
461 );
462 conf->inactive_blocked = 0;
463 } else
464 init_stripe(sh, sector, previous);
465 } else {
466 if (atomic_read(&sh->count)) {
467 BUG_ON(!list_empty(&sh->lru)
468 && !test_bit(STRIPE_EXPANDING, &sh->state));
469 } else {
470 if (!test_bit(STRIPE_HANDLE, &sh->state))
471 atomic_inc(&conf->active_stripes);
472 if (list_empty(&sh->lru) &&
473 !test_bit(STRIPE_EXPANDING, &sh->state))
474 BUG();
475 list_del_init(&sh->lru);
476 }
477 }
478 } while (sh == NULL);
479
480 if (sh)
481 atomic_inc(&sh->count);
482
483 spin_unlock_irq(&conf->device_lock);
484 return sh;
485}
486
487static void
488raid5_end_read_request(struct bio *bi, int error);
489static void
490raid5_end_write_request(struct bio *bi, int error);
491
492static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
493{
494 raid5_conf_t *conf = sh->raid_conf;
495 int i, disks = sh->disks;
496
497 might_sleep();
498
499 for (i = disks; i--; ) {
500 int rw;
501 struct bio *bi;
502 mdk_rdev_t *rdev;
503 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
504 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
505 rw = WRITE_FUA;
506 else
507 rw = WRITE;
508 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
509 rw = READ;
510 else
511 continue;
512
513 bi = &sh->dev[i].req;
514
515 bi->bi_rw = rw;
516 if (rw & WRITE)
517 bi->bi_end_io = raid5_end_write_request;
518 else
519 bi->bi_end_io = raid5_end_read_request;
520
521 rcu_read_lock();
522 rdev = rcu_dereference(conf->disks[i].rdev);
523 if (rdev && test_bit(Faulty, &rdev->flags))
524 rdev = NULL;
525 if (rdev)
526 atomic_inc(&rdev->nr_pending);
527 rcu_read_unlock();
528
529 /* We have already checked bad blocks for reads. Now
530 * need to check for writes.
531 */
532 while ((rw & WRITE) && rdev &&
533 test_bit(WriteErrorSeen, &rdev->flags)) {
534 sector_t first_bad;
535 int bad_sectors;
536 int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
537 &first_bad, &bad_sectors);
538 if (!bad)
539 break;
540
541 if (bad < 0) {
542 set_bit(BlockedBadBlocks, &rdev->flags);
543 if (!conf->mddev->external &&
544 conf->mddev->flags) {
545 /* It is very unlikely, but we might
546 * still need to write out the
547 * bad block log - better give it
548 * a chance*/
549 md_check_recovery(conf->mddev);
550 }
551 md_wait_for_blocked_rdev(rdev, conf->mddev);
552 } else {
553 /* Acknowledged bad block - skip the write */
554 rdev_dec_pending(rdev, conf->mddev);
555 rdev = NULL;
556 }
557 }
558
559 if (rdev) {
560 if (s->syncing || s->expanding || s->expanded)
561 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
562
563 set_bit(STRIPE_IO_STARTED, &sh->state);
564
565 bi->bi_bdev = rdev->bdev;
566 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
567 __func__, (unsigned long long)sh->sector,
568 bi->bi_rw, i);
569 atomic_inc(&sh->count);
570 bi->bi_sector = sh->sector + rdev->data_offset;
571 bi->bi_flags = 1 << BIO_UPTODATE;
572 bi->bi_vcnt = 1;
573 bi->bi_max_vecs = 1;
574 bi->bi_idx = 0;
575 bi->bi_io_vec = &sh->dev[i].vec;
576 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
577 bi->bi_io_vec[0].bv_offset = 0;
578 bi->bi_size = STRIPE_SIZE;
579 bi->bi_next = NULL;
580 generic_make_request(bi);
581 } else {
582 if (rw & WRITE)
583 set_bit(STRIPE_DEGRADED, &sh->state);
584 pr_debug("skip op %ld on disc %d for sector %llu\n",
585 bi->bi_rw, i, (unsigned long long)sh->sector);
586 clear_bit(R5_LOCKED, &sh->dev[i].flags);
587 set_bit(STRIPE_HANDLE, &sh->state);
588 }
589 }
590}
591
592static struct dma_async_tx_descriptor *
593async_copy_data(int frombio, struct bio *bio, struct page *page,
594 sector_t sector, struct dma_async_tx_descriptor *tx)
595{
596 struct bio_vec *bvl;
597 struct page *bio_page;
598 int i;
599 int page_offset;
600 struct async_submit_ctl submit;
601 enum async_tx_flags flags = 0;
602
603 if (bio->bi_sector >= sector)
604 page_offset = (signed)(bio->bi_sector - sector) * 512;
605 else
606 page_offset = (signed)(sector - bio->bi_sector) * -512;
607
608 if (frombio)
609 flags |= ASYNC_TX_FENCE;
610 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
611
612 bio_for_each_segment(bvl, bio, i) {
613 int len = bvl->bv_len;
614 int clen;
615 int b_offset = 0;
616
617 if (page_offset < 0) {
618 b_offset = -page_offset;
619 page_offset += b_offset;
620 len -= b_offset;
621 }
622
623 if (len > 0 && page_offset + len > STRIPE_SIZE)
624 clen = STRIPE_SIZE - page_offset;
625 else
626 clen = len;
627
628 if (clen > 0) {
629 b_offset += bvl->bv_offset;
630 bio_page = bvl->bv_page;
631 if (frombio)
632 tx = async_memcpy(page, bio_page, page_offset,
633 b_offset, clen, &submit);
634 else
635 tx = async_memcpy(bio_page, page, b_offset,
636 page_offset, clen, &submit);
637 }
638 /* chain the operations */
639 submit.depend_tx = tx;
640
641 if (clen < len) /* hit end of page */
642 break;
643 page_offset += len;
644 }
645
646 return tx;
647}
648
649static void ops_complete_biofill(void *stripe_head_ref)
650{
651 struct stripe_head *sh = stripe_head_ref;
652 struct bio *return_bi = NULL;
653 raid5_conf_t *conf = sh->raid_conf;
654 int i;
655
656 pr_debug("%s: stripe %llu\n", __func__,
657 (unsigned long long)sh->sector);
658
659 /* clear completed biofills */
660 spin_lock_irq(&conf->device_lock);
661 for (i = sh->disks; i--; ) {
662 struct r5dev *dev = &sh->dev[i];
663
664 /* acknowledge completion of a biofill operation */
665 /* and check if we need to reply to a read request,
666 * new R5_Wantfill requests are held off until
667 * !STRIPE_BIOFILL_RUN
668 */
669 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
670 struct bio *rbi, *rbi2;
671
672 BUG_ON(!dev->read);
673 rbi = dev->read;
674 dev->read = NULL;
675 while (rbi && rbi->bi_sector <
676 dev->sector + STRIPE_SECTORS) {
677 rbi2 = r5_next_bio(rbi, dev->sector);
678 if (!raid5_dec_bi_phys_segments(rbi)) {
679 rbi->bi_next = return_bi;
680 return_bi = rbi;
681 }
682 rbi = rbi2;
683 }
684 }
685 }
686 spin_unlock_irq(&conf->device_lock);
687 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
688
689 return_io(return_bi);
690
691 set_bit(STRIPE_HANDLE, &sh->state);
692 release_stripe(sh);
693}
694
695static void ops_run_biofill(struct stripe_head *sh)
696{
697 struct dma_async_tx_descriptor *tx = NULL;
698 raid5_conf_t *conf = sh->raid_conf;
699 struct async_submit_ctl submit;
700 int i;
701
702 pr_debug("%s: stripe %llu\n", __func__,
703 (unsigned long long)sh->sector);
704
705 for (i = sh->disks; i--; ) {
706 struct r5dev *dev = &sh->dev[i];
707 if (test_bit(R5_Wantfill, &dev->flags)) {
708 struct bio *rbi;
709 spin_lock_irq(&conf->device_lock);
710 dev->read = rbi = dev->toread;
711 dev->toread = NULL;
712 spin_unlock_irq(&conf->device_lock);
713 while (rbi && rbi->bi_sector <
714 dev->sector + STRIPE_SECTORS) {
715 tx = async_copy_data(0, rbi, dev->page,
716 dev->sector, tx);
717 rbi = r5_next_bio(rbi, dev->sector);
718 }
719 }
720 }
721
722 atomic_inc(&sh->count);
723 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
724 async_trigger_callback(&submit);
725}
726
727static void mark_target_uptodate(struct stripe_head *sh, int target)
728{
729 struct r5dev *tgt;
730
731 if (target < 0)
732 return;
733
734 tgt = &sh->dev[target];
735 set_bit(R5_UPTODATE, &tgt->flags);
736 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
737 clear_bit(R5_Wantcompute, &tgt->flags);
738}
739
740static void ops_complete_compute(void *stripe_head_ref)
741{
742 struct stripe_head *sh = stripe_head_ref;
743
744 pr_debug("%s: stripe %llu\n", __func__,
745 (unsigned long long)sh->sector);
746
747 /* mark the computed target(s) as uptodate */
748 mark_target_uptodate(sh, sh->ops.target);
749 mark_target_uptodate(sh, sh->ops.target2);
750
751 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
752 if (sh->check_state == check_state_compute_run)
753 sh->check_state = check_state_compute_result;
754 set_bit(STRIPE_HANDLE, &sh->state);
755 release_stripe(sh);
756}
757
758/* return a pointer to the address conversion region of the scribble buffer */
759static addr_conv_t *to_addr_conv(struct stripe_head *sh,
760 struct raid5_percpu *percpu)
761{
762 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
763}
764
765static struct dma_async_tx_descriptor *
766ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
767{
768 int disks = sh->disks;
769 struct page **xor_srcs = percpu->scribble;
770 int target = sh->ops.target;
771 struct r5dev *tgt = &sh->dev[target];
772 struct page *xor_dest = tgt->page;
773 int count = 0;
774 struct dma_async_tx_descriptor *tx;
775 struct async_submit_ctl submit;
776 int i;
777
778 pr_debug("%s: stripe %llu block: %d\n",
779 __func__, (unsigned long long)sh->sector, target);
780 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
781
782 for (i = disks; i--; )
783 if (i != target)
784 xor_srcs[count++] = sh->dev[i].page;
785
786 atomic_inc(&sh->count);
787
788 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
789 ops_complete_compute, sh, to_addr_conv(sh, percpu));
790 if (unlikely(count == 1))
791 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
792 else
793 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
794
795 return tx;
796}
797
798/* set_syndrome_sources - populate source buffers for gen_syndrome
799 * @srcs - (struct page *) array of size sh->disks
800 * @sh - stripe_head to parse
801 *
802 * Populates srcs in proper layout order for the stripe and returns the
803 * 'count' of sources to be used in a call to async_gen_syndrome. The P
804 * destination buffer is recorded in srcs[count] and the Q destination
805 * is recorded in srcs[count+1]].
806 */
807static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
808{
809 int disks = sh->disks;
810 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
811 int d0_idx = raid6_d0(sh);
812 int count;
813 int i;
814
815 for (i = 0; i < disks; i++)
816 srcs[i] = NULL;
817
818 count = 0;
819 i = d0_idx;
820 do {
821 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
822
823 srcs[slot] = sh->dev[i].page;
824 i = raid6_next_disk(i, disks);
825 } while (i != d0_idx);
826
827 return syndrome_disks;
828}
829
830static struct dma_async_tx_descriptor *
831ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
832{
833 int disks = sh->disks;
834 struct page **blocks = percpu->scribble;
835 int target;
836 int qd_idx = sh->qd_idx;
837 struct dma_async_tx_descriptor *tx;
838 struct async_submit_ctl submit;
839 struct r5dev *tgt;
840 struct page *dest;
841 int i;
842 int count;
843
844 if (sh->ops.target < 0)
845 target = sh->ops.target2;
846 else if (sh->ops.target2 < 0)
847 target = sh->ops.target;
848 else
849 /* we should only have one valid target */
850 BUG();
851 BUG_ON(target < 0);
852 pr_debug("%s: stripe %llu block: %d\n",
853 __func__, (unsigned long long)sh->sector, target);
854
855 tgt = &sh->dev[target];
856 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
857 dest = tgt->page;
858
859 atomic_inc(&sh->count);
860
861 if (target == qd_idx) {
862 count = set_syndrome_sources(blocks, sh);
863 blocks[count] = NULL; /* regenerating p is not necessary */
864 BUG_ON(blocks[count+1] != dest); /* q should already be set */
865 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
866 ops_complete_compute, sh,
867 to_addr_conv(sh, percpu));
868 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
869 } else {
870 /* Compute any data- or p-drive using XOR */
871 count = 0;
872 for (i = disks; i-- ; ) {
873 if (i == target || i == qd_idx)
874 continue;
875 blocks[count++] = sh->dev[i].page;
876 }
877
878 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
879 NULL, ops_complete_compute, sh,
880 to_addr_conv(sh, percpu));
881 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
882 }
883
884 return tx;
885}
886
887static struct dma_async_tx_descriptor *
888ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
889{
890 int i, count, disks = sh->disks;
891 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
892 int d0_idx = raid6_d0(sh);
893 int faila = -1, failb = -1;
894 int target = sh->ops.target;
895 int target2 = sh->ops.target2;
896 struct r5dev *tgt = &sh->dev[target];
897 struct r5dev *tgt2 = &sh->dev[target2];
898 struct dma_async_tx_descriptor *tx;
899 struct page **blocks = percpu->scribble;
900 struct async_submit_ctl submit;
901
902 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
903 __func__, (unsigned long long)sh->sector, target, target2);
904 BUG_ON(target < 0 || target2 < 0);
905 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
906 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
907
908 /* we need to open-code set_syndrome_sources to handle the
909 * slot number conversion for 'faila' and 'failb'
910 */
911 for (i = 0; i < disks ; i++)
912 blocks[i] = NULL;
913 count = 0;
914 i = d0_idx;
915 do {
916 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
917
918 blocks[slot] = sh->dev[i].page;
919
920 if (i == target)
921 faila = slot;
922 if (i == target2)
923 failb = slot;
924 i = raid6_next_disk(i, disks);
925 } while (i != d0_idx);
926
927 BUG_ON(faila == failb);
928 if (failb < faila)
929 swap(faila, failb);
930 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
931 __func__, (unsigned long long)sh->sector, faila, failb);
932
933 atomic_inc(&sh->count);
934
935 if (failb == syndrome_disks+1) {
936 /* Q disk is one of the missing disks */
937 if (faila == syndrome_disks) {
938 /* Missing P+Q, just recompute */
939 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
940 ops_complete_compute, sh,
941 to_addr_conv(sh, percpu));
942 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
943 STRIPE_SIZE, &submit);
944 } else {
945 struct page *dest;
946 int data_target;
947 int qd_idx = sh->qd_idx;
948
949 /* Missing D+Q: recompute D from P, then recompute Q */
950 if (target == qd_idx)
951 data_target = target2;
952 else
953 data_target = target;
954
955 count = 0;
956 for (i = disks; i-- ; ) {
957 if (i == data_target || i == qd_idx)
958 continue;
959 blocks[count++] = sh->dev[i].page;
960 }
961 dest = sh->dev[data_target].page;
962 init_async_submit(&submit,
963 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
964 NULL, NULL, NULL,
965 to_addr_conv(sh, percpu));
966 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
967 &submit);
968
969 count = set_syndrome_sources(blocks, sh);
970 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
971 ops_complete_compute, sh,
972 to_addr_conv(sh, percpu));
973 return async_gen_syndrome(blocks, 0, count+2,
974 STRIPE_SIZE, &submit);
975 }
976 } else {
977 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
978 ops_complete_compute, sh,
979 to_addr_conv(sh, percpu));
980 if (failb == syndrome_disks) {
981 /* We're missing D+P. */
982 return async_raid6_datap_recov(syndrome_disks+2,
983 STRIPE_SIZE, faila,
984 blocks, &submit);
985 } else {
986 /* We're missing D+D. */
987 return async_raid6_2data_recov(syndrome_disks+2,
988 STRIPE_SIZE, faila, failb,
989 blocks, &submit);
990 }
991 }
992}
993
994
995static void ops_complete_prexor(void *stripe_head_ref)
996{
997 struct stripe_head *sh = stripe_head_ref;
998
999 pr_debug("%s: stripe %llu\n", __func__,
1000 (unsigned long long)sh->sector);
1001}
1002
1003static struct dma_async_tx_descriptor *
1004ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
1005 struct dma_async_tx_descriptor *tx)
1006{
1007 int disks = sh->disks;
1008 struct page **xor_srcs = percpu->scribble;
1009 int count = 0, pd_idx = sh->pd_idx, i;
1010 struct async_submit_ctl submit;
1011
1012 /* existing parity data subtracted */
1013 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1014
1015 pr_debug("%s: stripe %llu\n", __func__,
1016 (unsigned long long)sh->sector);
1017
1018 for (i = disks; i--; ) {
1019 struct r5dev *dev = &sh->dev[i];
1020 /* Only process blocks that are known to be uptodate */
1021 if (test_bit(R5_Wantdrain, &dev->flags))
1022 xor_srcs[count++] = dev->page;
1023 }
1024
1025 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1026 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1027 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1028
1029 return tx;
1030}
1031
1032static struct dma_async_tx_descriptor *
1033ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1034{
1035 int disks = sh->disks;
1036 int i;
1037
1038 pr_debug("%s: stripe %llu\n", __func__,
1039 (unsigned long long)sh->sector);
1040
1041 for (i = disks; i--; ) {
1042 struct r5dev *dev = &sh->dev[i];
1043 struct bio *chosen;
1044
1045 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1046 struct bio *wbi;
1047
1048 spin_lock_irq(&sh->raid_conf->device_lock);
1049 chosen = dev->towrite;
1050 dev->towrite = NULL;
1051 BUG_ON(dev->written);
1052 wbi = dev->written = chosen;
1053 spin_unlock_irq(&sh->raid_conf->device_lock);
1054
1055 while (wbi && wbi->bi_sector <
1056 dev->sector + STRIPE_SECTORS) {
1057 if (wbi->bi_rw & REQ_FUA)
1058 set_bit(R5_WantFUA, &dev->flags);
1059 tx = async_copy_data(1, wbi, dev->page,
1060 dev->sector, tx);
1061 wbi = r5_next_bio(wbi, dev->sector);
1062 }
1063 }
1064 }
1065
1066 return tx;
1067}
1068
1069static void ops_complete_reconstruct(void *stripe_head_ref)
1070{
1071 struct stripe_head *sh = stripe_head_ref;
1072 int disks = sh->disks;
1073 int pd_idx = sh->pd_idx;
1074 int qd_idx = sh->qd_idx;
1075 int i;
1076 bool fua = false;
1077
1078 pr_debug("%s: stripe %llu\n", __func__,
1079 (unsigned long long)sh->sector);
1080
1081 for (i = disks; i--; )
1082 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1083
1084 for (i = disks; i--; ) {
1085 struct r5dev *dev = &sh->dev[i];
1086
1087 if (dev->written || i == pd_idx || i == qd_idx) {
1088 set_bit(R5_UPTODATE, &dev->flags);
1089 if (fua)
1090 set_bit(R5_WantFUA, &dev->flags);
1091 }
1092 }
1093
1094 if (sh->reconstruct_state == reconstruct_state_drain_run)
1095 sh->reconstruct_state = reconstruct_state_drain_result;
1096 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1097 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1098 else {
1099 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1100 sh->reconstruct_state = reconstruct_state_result;
1101 }
1102
1103 set_bit(STRIPE_HANDLE, &sh->state);
1104 release_stripe(sh);
1105}
1106
1107static void
1108ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1109 struct dma_async_tx_descriptor *tx)
1110{
1111 int disks = sh->disks;
1112 struct page **xor_srcs = percpu->scribble;
1113 struct async_submit_ctl submit;
1114 int count = 0, pd_idx = sh->pd_idx, i;
1115 struct page *xor_dest;
1116 int prexor = 0;
1117 unsigned long flags;
1118
1119 pr_debug("%s: stripe %llu\n", __func__,
1120 (unsigned long long)sh->sector);
1121
1122 /* check if prexor is active which means only process blocks
1123 * that are part of a read-modify-write (written)
1124 */
1125 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1126 prexor = 1;
1127 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1128 for (i = disks; i--; ) {
1129 struct r5dev *dev = &sh->dev[i];
1130 if (dev->written)
1131 xor_srcs[count++] = dev->page;
1132 }
1133 } else {
1134 xor_dest = sh->dev[pd_idx].page;
1135 for (i = disks; i--; ) {
1136 struct r5dev *dev = &sh->dev[i];
1137 if (i != pd_idx)
1138 xor_srcs[count++] = dev->page;
1139 }
1140 }
1141
1142 /* 1/ if we prexor'd then the dest is reused as a source
1143 * 2/ if we did not prexor then we are redoing the parity
1144 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1145 * for the synchronous xor case
1146 */
1147 flags = ASYNC_TX_ACK |
1148 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1149
1150 atomic_inc(&sh->count);
1151
1152 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1153 to_addr_conv(sh, percpu));
1154 if (unlikely(count == 1))
1155 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1156 else
1157 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1158}
1159
1160static void
1161ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1162 struct dma_async_tx_descriptor *tx)
1163{
1164 struct async_submit_ctl submit;
1165 struct page **blocks = percpu->scribble;
1166 int count;
1167
1168 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1169
1170 count = set_syndrome_sources(blocks, sh);
1171
1172 atomic_inc(&sh->count);
1173
1174 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1175 sh, to_addr_conv(sh, percpu));
1176 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1177}
1178
1179static void ops_complete_check(void *stripe_head_ref)
1180{
1181 struct stripe_head *sh = stripe_head_ref;
1182
1183 pr_debug("%s: stripe %llu\n", __func__,
1184 (unsigned long long)sh->sector);
1185
1186 sh->check_state = check_state_check_result;
1187 set_bit(STRIPE_HANDLE, &sh->state);
1188 release_stripe(sh);
1189}
1190
1191static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1192{
1193 int disks = sh->disks;
1194 int pd_idx = sh->pd_idx;
1195 int qd_idx = sh->qd_idx;
1196 struct page *xor_dest;
1197 struct page **xor_srcs = percpu->scribble;
1198 struct dma_async_tx_descriptor *tx;
1199 struct async_submit_ctl submit;
1200 int count;
1201 int i;
1202
1203 pr_debug("%s: stripe %llu\n", __func__,
1204 (unsigned long long)sh->sector);
1205
1206 count = 0;
1207 xor_dest = sh->dev[pd_idx].page;
1208 xor_srcs[count++] = xor_dest;
1209 for (i = disks; i--; ) {
1210 if (i == pd_idx || i == qd_idx)
1211 continue;
1212 xor_srcs[count++] = sh->dev[i].page;
1213 }
1214
1215 init_async_submit(&submit, 0, NULL, NULL, NULL,
1216 to_addr_conv(sh, percpu));
1217 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1218 &sh->ops.zero_sum_result, &submit);
1219
1220 atomic_inc(&sh->count);
1221 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1222 tx = async_trigger_callback(&submit);
1223}
1224
1225static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1226{
1227 struct page **srcs = percpu->scribble;
1228 struct async_submit_ctl submit;
1229 int count;
1230
1231 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1232 (unsigned long long)sh->sector, checkp);
1233
1234 count = set_syndrome_sources(srcs, sh);
1235 if (!checkp)
1236 srcs[count] = NULL;
1237
1238 atomic_inc(&sh->count);
1239 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1240 sh, to_addr_conv(sh, percpu));
1241 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1242 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1243}
1244
1245static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1246{
1247 int overlap_clear = 0, i, disks = sh->disks;
1248 struct dma_async_tx_descriptor *tx = NULL;
1249 raid5_conf_t *conf = sh->raid_conf;
1250 int level = conf->level;
1251 struct raid5_percpu *percpu;
1252 unsigned long cpu;
1253
1254 cpu = get_cpu();
1255 percpu = per_cpu_ptr(conf->percpu, cpu);
1256 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1257 ops_run_biofill(sh);
1258 overlap_clear++;
1259 }
1260
1261 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1262 if (level < 6)
1263 tx = ops_run_compute5(sh, percpu);
1264 else {
1265 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1266 tx = ops_run_compute6_1(sh, percpu);
1267 else
1268 tx = ops_run_compute6_2(sh, percpu);
1269 }
1270 /* terminate the chain if reconstruct is not set to be run */
1271 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1272 async_tx_ack(tx);
1273 }
1274
1275 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1276 tx = ops_run_prexor(sh, percpu, tx);
1277
1278 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1279 tx = ops_run_biodrain(sh, tx);
1280 overlap_clear++;
1281 }
1282
1283 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1284 if (level < 6)
1285 ops_run_reconstruct5(sh, percpu, tx);
1286 else
1287 ops_run_reconstruct6(sh, percpu, tx);
1288 }
1289
1290 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1291 if (sh->check_state == check_state_run)
1292 ops_run_check_p(sh, percpu);
1293 else if (sh->check_state == check_state_run_q)
1294 ops_run_check_pq(sh, percpu, 0);
1295 else if (sh->check_state == check_state_run_pq)
1296 ops_run_check_pq(sh, percpu, 1);
1297 else
1298 BUG();
1299 }
1300
1301 if (overlap_clear)
1302 for (i = disks; i--; ) {
1303 struct r5dev *dev = &sh->dev[i];
1304 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1305 wake_up(&sh->raid_conf->wait_for_overlap);
1306 }
1307 put_cpu();
1308}
1309
1310#ifdef CONFIG_MULTICORE_RAID456
1311static void async_run_ops(void *param, async_cookie_t cookie)
1312{
1313 struct stripe_head *sh = param;
1314 unsigned long ops_request = sh->ops.request;
1315
1316 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1317 wake_up(&sh->ops.wait_for_ops);
1318
1319 __raid_run_ops(sh, ops_request);
1320 release_stripe(sh);
1321}
1322
1323static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1324{
1325 /* since handle_stripe can be called outside of raid5d context
1326 * we need to ensure sh->ops.request is de-staged before another
1327 * request arrives
1328 */
1329 wait_event(sh->ops.wait_for_ops,
1330 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1331 sh->ops.request = ops_request;
1332
1333 atomic_inc(&sh->count);
1334 async_schedule(async_run_ops, sh);
1335}
1336#else
1337#define raid_run_ops __raid_run_ops
1338#endif
1339
1340static int grow_one_stripe(raid5_conf_t *conf)
1341{
1342 struct stripe_head *sh;
1343 sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
1344 if (!sh)
1345 return 0;
1346
1347 sh->raid_conf = conf;
1348 #ifdef CONFIG_MULTICORE_RAID456
1349 init_waitqueue_head(&sh->ops.wait_for_ops);
1350 #endif
1351
1352 if (grow_buffers(sh)) {
1353 shrink_buffers(sh);
1354 kmem_cache_free(conf->slab_cache, sh);
1355 return 0;
1356 }
1357 /* we just created an active stripe so... */
1358 atomic_set(&sh->count, 1);
1359 atomic_inc(&conf->active_stripes);
1360 INIT_LIST_HEAD(&sh->lru);
1361 release_stripe(sh);
1362 return 1;
1363}
1364
1365static int grow_stripes(raid5_conf_t *conf, int num)
1366{
1367 struct kmem_cache *sc;
1368 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1369
1370 if (conf->mddev->gendisk)
1371 sprintf(conf->cache_name[0],
1372 "raid%d-%s", conf->level, mdname(conf->mddev));
1373 else
1374 sprintf(conf->cache_name[0],
1375 "raid%d-%p", conf->level, conf->mddev);
1376 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1377
1378 conf->active_name = 0;
1379 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1380 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1381 0, 0, NULL);
1382 if (!sc)
1383 return 1;
1384 conf->slab_cache = sc;
1385 conf->pool_size = devs;
1386 while (num--)
1387 if (!grow_one_stripe(conf))
1388 return 1;
1389 return 0;
1390}
1391
1392/**
1393 * scribble_len - return the required size of the scribble region
1394 * @num - total number of disks in the array
1395 *
1396 * The size must be enough to contain:
1397 * 1/ a struct page pointer for each device in the array +2
1398 * 2/ room to convert each entry in (1) to its corresponding dma
1399 * (dma_map_page()) or page (page_address()) address.
1400 *
1401 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1402 * calculate over all devices (not just the data blocks), using zeros in place
1403 * of the P and Q blocks.
1404 */
1405static size_t scribble_len(int num)
1406{
1407 size_t len;
1408
1409 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1410
1411 return len;
1412}
1413
1414static int resize_stripes(raid5_conf_t *conf, int newsize)
1415{
1416 /* Make all the stripes able to hold 'newsize' devices.
1417 * New slots in each stripe get 'page' set to a new page.
1418 *
1419 * This happens in stages:
1420 * 1/ create a new kmem_cache and allocate the required number of
1421 * stripe_heads.
1422 * 2/ gather all the old stripe_heads and tranfer the pages across
1423 * to the new stripe_heads. This will have the side effect of
1424 * freezing the array as once all stripe_heads have been collected,
1425 * no IO will be possible. Old stripe heads are freed once their
1426 * pages have been transferred over, and the old kmem_cache is
1427 * freed when all stripes are done.
1428 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1429 * we simple return a failre status - no need to clean anything up.
1430 * 4/ allocate new pages for the new slots in the new stripe_heads.
1431 * If this fails, we don't bother trying the shrink the
1432 * stripe_heads down again, we just leave them as they are.
1433 * As each stripe_head is processed the new one is released into
1434 * active service.
1435 *
1436 * Once step2 is started, we cannot afford to wait for a write,
1437 * so we use GFP_NOIO allocations.
1438 */
1439 struct stripe_head *osh, *nsh;
1440 LIST_HEAD(newstripes);
1441 struct disk_info *ndisks;
1442 unsigned long cpu;
1443 int err;
1444 struct kmem_cache *sc;
1445 int i;
1446
1447 if (newsize <= conf->pool_size)
1448 return 0; /* never bother to shrink */
1449
1450 err = md_allow_write(conf->mddev);
1451 if (err)
1452 return err;
1453
1454 /* Step 1 */
1455 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1456 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1457 0, 0, NULL);
1458 if (!sc)
1459 return -ENOMEM;
1460
1461 for (i = conf->max_nr_stripes; i; i--) {
1462 nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
1463 if (!nsh)
1464 break;
1465
1466 nsh->raid_conf = conf;
1467 #ifdef CONFIG_MULTICORE_RAID456
1468 init_waitqueue_head(&nsh->ops.wait_for_ops);
1469 #endif
1470
1471 list_add(&nsh->lru, &newstripes);
1472 }
1473 if (i) {
1474 /* didn't get enough, give up */
1475 while (!list_empty(&newstripes)) {
1476 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1477 list_del(&nsh->lru);
1478 kmem_cache_free(sc, nsh);
1479 }
1480 kmem_cache_destroy(sc);
1481 return -ENOMEM;
1482 }
1483 /* Step 2 - Must use GFP_NOIO now.
1484 * OK, we have enough stripes, start collecting inactive
1485 * stripes and copying them over
1486 */
1487 list_for_each_entry(nsh, &newstripes, lru) {
1488 spin_lock_irq(&conf->device_lock);
1489 wait_event_lock_irq(conf->wait_for_stripe,
1490 !list_empty(&conf->inactive_list),
1491 conf->device_lock,
1492 );
1493 osh = get_free_stripe(conf);
1494 spin_unlock_irq(&conf->device_lock);
1495 atomic_set(&nsh->count, 1);
1496 for(i=0; i<conf->pool_size; i++)
1497 nsh->dev[i].page = osh->dev[i].page;
1498 for( ; i<newsize; i++)
1499 nsh->dev[i].page = NULL;
1500 kmem_cache_free(conf->slab_cache, osh);
1501 }
1502 kmem_cache_destroy(conf->slab_cache);
1503
1504 /* Step 3.
1505 * At this point, we are holding all the stripes so the array
1506 * is completely stalled, so now is a good time to resize
1507 * conf->disks and the scribble region
1508 */
1509 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1510 if (ndisks) {
1511 for (i=0; i<conf->raid_disks; i++)
1512 ndisks[i] = conf->disks[i];
1513 kfree(conf->disks);
1514 conf->disks = ndisks;
1515 } else
1516 err = -ENOMEM;
1517
1518 get_online_cpus();
1519 conf->scribble_len = scribble_len(newsize);
1520 for_each_present_cpu(cpu) {
1521 struct raid5_percpu *percpu;
1522 void *scribble;
1523
1524 percpu = per_cpu_ptr(conf->percpu, cpu);
1525 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1526
1527 if (scribble) {
1528 kfree(percpu->scribble);
1529 percpu->scribble = scribble;
1530 } else {
1531 err = -ENOMEM;
1532 break;
1533 }
1534 }
1535 put_online_cpus();
1536
1537 /* Step 4, return new stripes to service */
1538 while(!list_empty(&newstripes)) {
1539 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1540 list_del_init(&nsh->lru);
1541
1542 for (i=conf->raid_disks; i < newsize; i++)
1543 if (nsh->dev[i].page == NULL) {
1544 struct page *p = alloc_page(GFP_NOIO);
1545 nsh->dev[i].page = p;
1546 if (!p)
1547 err = -ENOMEM;
1548 }
1549 release_stripe(nsh);
1550 }
1551 /* critical section pass, GFP_NOIO no longer needed */
1552
1553 conf->slab_cache = sc;
1554 conf->active_name = 1-conf->active_name;
1555 conf->pool_size = newsize;
1556 return err;
1557}
1558
1559static int drop_one_stripe(raid5_conf_t *conf)
1560{
1561 struct stripe_head *sh;
1562
1563 spin_lock_irq(&conf->device_lock);
1564 sh = get_free_stripe(conf);
1565 spin_unlock_irq(&conf->device_lock);
1566 if (!sh)
1567 return 0;
1568 BUG_ON(atomic_read(&sh->count));
1569 shrink_buffers(sh);
1570 kmem_cache_free(conf->slab_cache, sh);
1571 atomic_dec(&conf->active_stripes);
1572 return 1;
1573}
1574
1575static void shrink_stripes(raid5_conf_t *conf)
1576{
1577 while (drop_one_stripe(conf))
1578 ;
1579
1580 if (conf->slab_cache)
1581 kmem_cache_destroy(conf->slab_cache);
1582 conf->slab_cache = NULL;
1583}
1584
1585static void raid5_end_read_request(struct bio * bi, int error)
1586{
1587 struct stripe_head *sh = bi->bi_private;
1588 raid5_conf_t *conf = sh->raid_conf;
1589 int disks = sh->disks, i;
1590 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1591 char b[BDEVNAME_SIZE];
1592 mdk_rdev_t *rdev;
1593
1594
1595 for (i=0 ; i<disks; i++)
1596 if (bi == &sh->dev[i].req)
1597 break;
1598
1599 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1600 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1601 uptodate);
1602 if (i == disks) {
1603 BUG();
1604 return;
1605 }
1606
1607 if (uptodate) {
1608 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1609 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1610 rdev = conf->disks[i].rdev;
1611 printk_ratelimited(
1612 KERN_INFO
1613 "md/raid:%s: read error corrected"
1614 " (%lu sectors at %llu on %s)\n",
1615 mdname(conf->mddev), STRIPE_SECTORS,
1616 (unsigned long long)(sh->sector
1617 + rdev->data_offset),
1618 bdevname(rdev->bdev, b));
1619 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
1620 clear_bit(R5_ReadError, &sh->dev[i].flags);
1621 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1622 }
1623 if (atomic_read(&conf->disks[i].rdev->read_errors))
1624 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1625 } else {
1626 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1627 int retry = 0;
1628 rdev = conf->disks[i].rdev;
1629
1630 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1631 atomic_inc(&rdev->read_errors);
1632 if (conf->mddev->degraded >= conf->max_degraded)
1633 printk_ratelimited(
1634 KERN_WARNING
1635 "md/raid:%s: read error not correctable "
1636 "(sector %llu on %s).\n",
1637 mdname(conf->mddev),
1638 (unsigned long long)(sh->sector
1639 + rdev->data_offset),
1640 bdn);
1641 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1642 /* Oh, no!!! */
1643 printk_ratelimited(
1644 KERN_WARNING
1645 "md/raid:%s: read error NOT corrected!! "
1646 "(sector %llu on %s).\n",
1647 mdname(conf->mddev),
1648 (unsigned long long)(sh->sector
1649 + rdev->data_offset),
1650 bdn);
1651 else if (atomic_read(&rdev->read_errors)
1652 > conf->max_nr_stripes)
1653 printk(KERN_WARNING
1654 "md/raid:%s: Too many read errors, failing device %s.\n",
1655 mdname(conf->mddev), bdn);
1656 else
1657 retry = 1;
1658 if (retry)
1659 set_bit(R5_ReadError, &sh->dev[i].flags);
1660 else {
1661 clear_bit(R5_ReadError, &sh->dev[i].flags);
1662 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1663 md_error(conf->mddev, rdev);
1664 }
1665 }
1666 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1667 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1668 set_bit(STRIPE_HANDLE, &sh->state);
1669 release_stripe(sh);
1670}
1671
1672static void raid5_end_write_request(struct bio *bi, int error)
1673{
1674 struct stripe_head *sh = bi->bi_private;
1675 raid5_conf_t *conf = sh->raid_conf;
1676 int disks = sh->disks, i;
1677 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1678 sector_t first_bad;
1679 int bad_sectors;
1680
1681 for (i=0 ; i<disks; i++)
1682 if (bi == &sh->dev[i].req)
1683 break;
1684
1685 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1686 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1687 uptodate);
1688 if (i == disks) {
1689 BUG();
1690 return;
1691 }
1692
1693 if (!uptodate) {
1694 set_bit(WriteErrorSeen, &conf->disks[i].rdev->flags);
1695 set_bit(R5_WriteError, &sh->dev[i].flags);
1696 } else if (is_badblock(conf->disks[i].rdev, sh->sector, STRIPE_SECTORS,
1697 &first_bad, &bad_sectors))
1698 set_bit(R5_MadeGood, &sh->dev[i].flags);
1699
1700 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1701
1702 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1703 set_bit(STRIPE_HANDLE, &sh->state);
1704 release_stripe(sh);
1705}
1706
1707
1708static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1709
1710static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1711{
1712 struct r5dev *dev = &sh->dev[i];
1713
1714 bio_init(&dev->req);
1715 dev->req.bi_io_vec = &dev->vec;
1716 dev->req.bi_vcnt++;
1717 dev->req.bi_max_vecs++;
1718 dev->vec.bv_page = dev->page;
1719 dev->vec.bv_len = STRIPE_SIZE;
1720 dev->vec.bv_offset = 0;
1721
1722 dev->req.bi_sector = sh->sector;
1723 dev->req.bi_private = sh;
1724
1725 dev->flags = 0;
1726 dev->sector = compute_blocknr(sh, i, previous);
1727}
1728
1729static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1730{
1731 char b[BDEVNAME_SIZE];
1732 raid5_conf_t *conf = mddev->private;
1733 pr_debug("raid456: error called\n");
1734
1735 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1736 unsigned long flags;
1737 spin_lock_irqsave(&conf->device_lock, flags);
1738 mddev->degraded++;
1739 spin_unlock_irqrestore(&conf->device_lock, flags);
1740 /*
1741 * if recovery was running, make sure it aborts.
1742 */
1743 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1744 }
1745 set_bit(Blocked, &rdev->flags);
1746 set_bit(Faulty, &rdev->flags);
1747 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1748 printk(KERN_ALERT
1749 "md/raid:%s: Disk failure on %s, disabling device.\n"
1750 "md/raid:%s: Operation continuing on %d devices.\n",
1751 mdname(mddev),
1752 bdevname(rdev->bdev, b),
1753 mdname(mddev),
1754 conf->raid_disks - mddev->degraded);
1755}
1756
1757/*
1758 * Input: a 'big' sector number,
1759 * Output: index of the data and parity disk, and the sector # in them.
1760 */
1761static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1762 int previous, int *dd_idx,
1763 struct stripe_head *sh)
1764{
1765 sector_t stripe, stripe2;
1766 sector_t chunk_number;
1767 unsigned int chunk_offset;
1768 int pd_idx, qd_idx;
1769 int ddf_layout = 0;
1770 sector_t new_sector;
1771 int algorithm = previous ? conf->prev_algo
1772 : conf->algorithm;
1773 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1774 : conf->chunk_sectors;
1775 int raid_disks = previous ? conf->previous_raid_disks
1776 : conf->raid_disks;
1777 int data_disks = raid_disks - conf->max_degraded;
1778
1779 /* First compute the information on this sector */
1780
1781 /*
1782 * Compute the chunk number and the sector offset inside the chunk
1783 */
1784 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1785 chunk_number = r_sector;
1786
1787 /*
1788 * Compute the stripe number
1789 */
1790 stripe = chunk_number;
1791 *dd_idx = sector_div(stripe, data_disks);
1792 stripe2 = stripe;
1793 /*
1794 * Select the parity disk based on the user selected algorithm.
1795 */
1796 pd_idx = qd_idx = -1;
1797 switch(conf->level) {
1798 case 4:
1799 pd_idx = data_disks;
1800 break;
1801 case 5:
1802 switch (algorithm) {
1803 case ALGORITHM_LEFT_ASYMMETRIC:
1804 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1805 if (*dd_idx >= pd_idx)
1806 (*dd_idx)++;
1807 break;
1808 case ALGORITHM_RIGHT_ASYMMETRIC:
1809 pd_idx = sector_div(stripe2, raid_disks);
1810 if (*dd_idx >= pd_idx)
1811 (*dd_idx)++;
1812 break;
1813 case ALGORITHM_LEFT_SYMMETRIC:
1814 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1815 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1816 break;
1817 case ALGORITHM_RIGHT_SYMMETRIC:
1818 pd_idx = sector_div(stripe2, raid_disks);
1819 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1820 break;
1821 case ALGORITHM_PARITY_0:
1822 pd_idx = 0;
1823 (*dd_idx)++;
1824 break;
1825 case ALGORITHM_PARITY_N:
1826 pd_idx = data_disks;
1827 break;
1828 default:
1829 BUG();
1830 }
1831 break;
1832 case 6:
1833
1834 switch (algorithm) {
1835 case ALGORITHM_LEFT_ASYMMETRIC:
1836 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1837 qd_idx = pd_idx + 1;
1838 if (pd_idx == raid_disks-1) {
1839 (*dd_idx)++; /* Q D D D P */
1840 qd_idx = 0;
1841 } else if (*dd_idx >= pd_idx)
1842 (*dd_idx) += 2; /* D D P Q D */
1843 break;
1844 case ALGORITHM_RIGHT_ASYMMETRIC:
1845 pd_idx = sector_div(stripe2, raid_disks);
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
1852 break;
1853 case ALGORITHM_LEFT_SYMMETRIC:
1854 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1855 qd_idx = (pd_idx + 1) % raid_disks;
1856 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1857 break;
1858 case ALGORITHM_RIGHT_SYMMETRIC:
1859 pd_idx = sector_div(stripe2, raid_disks);
1860 qd_idx = (pd_idx + 1) % raid_disks;
1861 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1862 break;
1863
1864 case ALGORITHM_PARITY_0:
1865 pd_idx = 0;
1866 qd_idx = 1;
1867 (*dd_idx) += 2;
1868 break;
1869 case ALGORITHM_PARITY_N:
1870 pd_idx = data_disks;
1871 qd_idx = data_disks + 1;
1872 break;
1873
1874 case ALGORITHM_ROTATING_ZERO_RESTART:
1875 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1876 * of blocks for computing Q is different.
1877 */
1878 pd_idx = sector_div(stripe2, raid_disks);
1879 qd_idx = pd_idx + 1;
1880 if (pd_idx == raid_disks-1) {
1881 (*dd_idx)++; /* Q D D D P */
1882 qd_idx = 0;
1883 } else if (*dd_idx >= pd_idx)
1884 (*dd_idx) += 2; /* D D P Q D */
1885 ddf_layout = 1;
1886 break;
1887
1888 case ALGORITHM_ROTATING_N_RESTART:
1889 /* Same a left_asymmetric, by first stripe is
1890 * D D D P Q rather than
1891 * Q D D D P
1892 */
1893 stripe2 += 1;
1894 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1895 qd_idx = pd_idx + 1;
1896 if (pd_idx == raid_disks-1) {
1897 (*dd_idx)++; /* Q D D D P */
1898 qd_idx = 0;
1899 } else if (*dd_idx >= pd_idx)
1900 (*dd_idx) += 2; /* D D P Q D */
1901 ddf_layout = 1;
1902 break;
1903
1904 case ALGORITHM_ROTATING_N_CONTINUE:
1905 /* Same as left_symmetric but Q is before P */
1906 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1907 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1908 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1909 ddf_layout = 1;
1910 break;
1911
1912 case ALGORITHM_LEFT_ASYMMETRIC_6:
1913 /* RAID5 left_asymmetric, with Q on last device */
1914 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1915 if (*dd_idx >= pd_idx)
1916 (*dd_idx)++;
1917 qd_idx = raid_disks - 1;
1918 break;
1919
1920 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1921 pd_idx = sector_div(stripe2, raid_disks-1);
1922 if (*dd_idx >= pd_idx)
1923 (*dd_idx)++;
1924 qd_idx = raid_disks - 1;
1925 break;
1926
1927 case ALGORITHM_LEFT_SYMMETRIC_6:
1928 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1929 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1930 qd_idx = raid_disks - 1;
1931 break;
1932
1933 case ALGORITHM_RIGHT_SYMMETRIC_6:
1934 pd_idx = sector_div(stripe2, raid_disks-1);
1935 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1936 qd_idx = raid_disks - 1;
1937 break;
1938
1939 case ALGORITHM_PARITY_0_6:
1940 pd_idx = 0;
1941 (*dd_idx)++;
1942 qd_idx = raid_disks - 1;
1943 break;
1944
1945 default:
1946 BUG();
1947 }
1948 break;
1949 }
1950
1951 if (sh) {
1952 sh->pd_idx = pd_idx;
1953 sh->qd_idx = qd_idx;
1954 sh->ddf_layout = ddf_layout;
1955 }
1956 /*
1957 * Finally, compute the new sector number
1958 */
1959 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1960 return new_sector;
1961}
1962
1963
1964static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1965{
1966 raid5_conf_t *conf = sh->raid_conf;
1967 int raid_disks = sh->disks;
1968 int data_disks = raid_disks - conf->max_degraded;
1969 sector_t new_sector = sh->sector, check;
1970 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1971 : conf->chunk_sectors;
1972 int algorithm = previous ? conf->prev_algo
1973 : conf->algorithm;
1974 sector_t stripe;
1975 int chunk_offset;
1976 sector_t chunk_number;
1977 int dummy1, dd_idx = i;
1978 sector_t r_sector;
1979 struct stripe_head sh2;
1980
1981
1982 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1983 stripe = new_sector;
1984
1985 if (i == sh->pd_idx)
1986 return 0;
1987 switch(conf->level) {
1988 case 4: break;
1989 case 5:
1990 switch (algorithm) {
1991 case ALGORITHM_LEFT_ASYMMETRIC:
1992 case ALGORITHM_RIGHT_ASYMMETRIC:
1993 if (i > sh->pd_idx)
1994 i--;
1995 break;
1996 case ALGORITHM_LEFT_SYMMETRIC:
1997 case ALGORITHM_RIGHT_SYMMETRIC:
1998 if (i < sh->pd_idx)
1999 i += raid_disks;
2000 i -= (sh->pd_idx + 1);
2001 break;
2002 case ALGORITHM_PARITY_0:
2003 i -= 1;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 default:
2008 BUG();
2009 }
2010 break;
2011 case 6:
2012 if (i == sh->qd_idx)
2013 return 0; /* It is the Q disk */
2014 switch (algorithm) {
2015 case ALGORITHM_LEFT_ASYMMETRIC:
2016 case ALGORITHM_RIGHT_ASYMMETRIC:
2017 case ALGORITHM_ROTATING_ZERO_RESTART:
2018 case ALGORITHM_ROTATING_N_RESTART:
2019 if (sh->pd_idx == raid_disks-1)
2020 i--; /* Q D D D P */
2021 else if (i > sh->pd_idx)
2022 i -= 2; /* D D P Q D */
2023 break;
2024 case ALGORITHM_LEFT_SYMMETRIC:
2025 case ALGORITHM_RIGHT_SYMMETRIC:
2026 if (sh->pd_idx == raid_disks-1)
2027 i--; /* Q D D D P */
2028 else {
2029 /* D D P Q D */
2030 if (i < sh->pd_idx)
2031 i += raid_disks;
2032 i -= (sh->pd_idx + 2);
2033 }
2034 break;
2035 case ALGORITHM_PARITY_0:
2036 i -= 2;
2037 break;
2038 case ALGORITHM_PARITY_N:
2039 break;
2040 case ALGORITHM_ROTATING_N_CONTINUE:
2041 /* Like left_symmetric, but P is before Q */
2042 if (sh->pd_idx == 0)
2043 i--; /* P D D D Q */
2044 else {
2045 /* D D Q P D */
2046 if (i < sh->pd_idx)
2047 i += raid_disks;
2048 i -= (sh->pd_idx + 1);
2049 }
2050 break;
2051 case ALGORITHM_LEFT_ASYMMETRIC_6:
2052 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2053 if (i > sh->pd_idx)
2054 i--;
2055 break;
2056 case ALGORITHM_LEFT_SYMMETRIC_6:
2057 case ALGORITHM_RIGHT_SYMMETRIC_6:
2058 if (i < sh->pd_idx)
2059 i += data_disks + 1;
2060 i -= (sh->pd_idx + 1);
2061 break;
2062 case ALGORITHM_PARITY_0_6:
2063 i -= 1;
2064 break;
2065 default:
2066 BUG();
2067 }
2068 break;
2069 }
2070
2071 chunk_number = stripe * data_disks + i;
2072 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2073
2074 check = raid5_compute_sector(conf, r_sector,
2075 previous, &dummy1, &sh2);
2076 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2077 || sh2.qd_idx != sh->qd_idx) {
2078 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2079 mdname(conf->mddev));
2080 return 0;
2081 }
2082 return r_sector;
2083}
2084
2085
2086static void
2087schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2088 int rcw, int expand)
2089{
2090 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2091 raid5_conf_t *conf = sh->raid_conf;
2092 int level = conf->level;
2093
2094 if (rcw) {
2095 /* if we are not expanding this is a proper write request, and
2096 * there will be bios with new data to be drained into the
2097 * stripe cache
2098 */
2099 if (!expand) {
2100 sh->reconstruct_state = reconstruct_state_drain_run;
2101 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2102 } else
2103 sh->reconstruct_state = reconstruct_state_run;
2104
2105 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2106
2107 for (i = disks; i--; ) {
2108 struct r5dev *dev = &sh->dev[i];
2109
2110 if (dev->towrite) {
2111 set_bit(R5_LOCKED, &dev->flags);
2112 set_bit(R5_Wantdrain, &dev->flags);
2113 if (!expand)
2114 clear_bit(R5_UPTODATE, &dev->flags);
2115 s->locked++;
2116 }
2117 }
2118 if (s->locked + conf->max_degraded == disks)
2119 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2120 atomic_inc(&conf->pending_full_writes);
2121 } else {
2122 BUG_ON(level == 6);
2123 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2124 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2125
2126 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2127 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2128 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2129 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2130
2131 for (i = disks; i--; ) {
2132 struct r5dev *dev = &sh->dev[i];
2133 if (i == pd_idx)
2134 continue;
2135
2136 if (dev->towrite &&
2137 (test_bit(R5_UPTODATE, &dev->flags) ||
2138 test_bit(R5_Wantcompute, &dev->flags))) {
2139 set_bit(R5_Wantdrain, &dev->flags);
2140 set_bit(R5_LOCKED, &dev->flags);
2141 clear_bit(R5_UPTODATE, &dev->flags);
2142 s->locked++;
2143 }
2144 }
2145 }
2146
2147 /* keep the parity disk(s) locked while asynchronous operations
2148 * are in flight
2149 */
2150 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2151 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2152 s->locked++;
2153
2154 if (level == 6) {
2155 int qd_idx = sh->qd_idx;
2156 struct r5dev *dev = &sh->dev[qd_idx];
2157
2158 set_bit(R5_LOCKED, &dev->flags);
2159 clear_bit(R5_UPTODATE, &dev->flags);
2160 s->locked++;
2161 }
2162
2163 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2164 __func__, (unsigned long long)sh->sector,
2165 s->locked, s->ops_request);
2166}
2167
2168/*
2169 * Each stripe/dev can have one or more bion attached.
2170 * toread/towrite point to the first in a chain.
2171 * The bi_next chain must be in order.
2172 */
2173static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2174{
2175 struct bio **bip;
2176 raid5_conf_t *conf = sh->raid_conf;
2177 int firstwrite=0;
2178
2179 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2180 (unsigned long long)bi->bi_sector,
2181 (unsigned long long)sh->sector);
2182
2183
2184 spin_lock_irq(&conf->device_lock);
2185 if (forwrite) {
2186 bip = &sh->dev[dd_idx].towrite;
2187 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2188 firstwrite = 1;
2189 } else
2190 bip = &sh->dev[dd_idx].toread;
2191 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2192 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2193 goto overlap;
2194 bip = & (*bip)->bi_next;
2195 }
2196 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2197 goto overlap;
2198
2199 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2200 if (*bip)
2201 bi->bi_next = *bip;
2202 *bip = bi;
2203 bi->bi_phys_segments++;
2204
2205 if (forwrite) {
2206 /* check if page is covered */
2207 sector_t sector = sh->dev[dd_idx].sector;
2208 for (bi=sh->dev[dd_idx].towrite;
2209 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2210 bi && bi->bi_sector <= sector;
2211 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2212 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2213 sector = bi->bi_sector + (bi->bi_size>>9);
2214 }
2215 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2216 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2217 }
2218 spin_unlock_irq(&conf->device_lock);
2219
2220 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2221 (unsigned long long)(*bip)->bi_sector,
2222 (unsigned long long)sh->sector, dd_idx);
2223
2224 if (conf->mddev->bitmap && firstwrite) {
2225 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2226 STRIPE_SECTORS, 0);
2227 sh->bm_seq = conf->seq_flush+1;
2228 set_bit(STRIPE_BIT_DELAY, &sh->state);
2229 }
2230 return 1;
2231
2232 overlap:
2233 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2234 spin_unlock_irq(&conf->device_lock);
2235 return 0;
2236}
2237
2238static void end_reshape(raid5_conf_t *conf);
2239
2240static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2241 struct stripe_head *sh)
2242{
2243 int sectors_per_chunk =
2244 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2245 int dd_idx;
2246 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2247 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2248
2249 raid5_compute_sector(conf,
2250 stripe * (disks - conf->max_degraded)
2251 *sectors_per_chunk + chunk_offset,
2252 previous,
2253 &dd_idx, sh);
2254}
2255
2256static void
2257handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2258 struct stripe_head_state *s, int disks,
2259 struct bio **return_bi)
2260{
2261 int i;
2262 for (i = disks; i--; ) {
2263 struct bio *bi;
2264 int bitmap_end = 0;
2265
2266 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2267 mdk_rdev_t *rdev;
2268 rcu_read_lock();
2269 rdev = rcu_dereference(conf->disks[i].rdev);
2270 if (rdev && test_bit(In_sync, &rdev->flags))
2271 atomic_inc(&rdev->nr_pending);
2272 else
2273 rdev = NULL;
2274 rcu_read_unlock();
2275 if (rdev) {
2276 if (!rdev_set_badblocks(
2277 rdev,
2278 sh->sector,
2279 STRIPE_SECTORS, 0))
2280 md_error(conf->mddev, rdev);
2281 rdev_dec_pending(rdev, conf->mddev);
2282 }
2283 }
2284 spin_lock_irq(&conf->device_lock);
2285 /* fail all writes first */
2286 bi = sh->dev[i].towrite;
2287 sh->dev[i].towrite = NULL;
2288 if (bi) {
2289 s->to_write--;
2290 bitmap_end = 1;
2291 }
2292
2293 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2294 wake_up(&conf->wait_for_overlap);
2295
2296 while (bi && bi->bi_sector <
2297 sh->dev[i].sector + STRIPE_SECTORS) {
2298 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 if (!raid5_dec_bi_phys_segments(bi)) {
2301 md_write_end(conf->mddev);
2302 bi->bi_next = *return_bi;
2303 *return_bi = bi;
2304 }
2305 bi = nextbi;
2306 }
2307 /* and fail all 'written' */
2308 bi = sh->dev[i].written;
2309 sh->dev[i].written = NULL;
2310 if (bi) bitmap_end = 1;
2311 while (bi && bi->bi_sector <
2312 sh->dev[i].sector + STRIPE_SECTORS) {
2313 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2314 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2315 if (!raid5_dec_bi_phys_segments(bi)) {
2316 md_write_end(conf->mddev);
2317 bi->bi_next = *return_bi;
2318 *return_bi = bi;
2319 }
2320 bi = bi2;
2321 }
2322
2323 /* fail any reads if this device is non-operational and
2324 * the data has not reached the cache yet.
2325 */
2326 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2327 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2328 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2329 bi = sh->dev[i].toread;
2330 sh->dev[i].toread = NULL;
2331 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2332 wake_up(&conf->wait_for_overlap);
2333 if (bi) s->to_read--;
2334 while (bi && bi->bi_sector <
2335 sh->dev[i].sector + STRIPE_SECTORS) {
2336 struct bio *nextbi =
2337 r5_next_bio(bi, sh->dev[i].sector);
2338 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2339 if (!raid5_dec_bi_phys_segments(bi)) {
2340 bi->bi_next = *return_bi;
2341 *return_bi = bi;
2342 }
2343 bi = nextbi;
2344 }
2345 }
2346 spin_unlock_irq(&conf->device_lock);
2347 if (bitmap_end)
2348 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2349 STRIPE_SECTORS, 0, 0);
2350 /* If we were in the middle of a write the parity block might
2351 * still be locked - so just clear all R5_LOCKED flags
2352 */
2353 clear_bit(R5_LOCKED, &sh->dev[i].flags);
2354 }
2355
2356 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2357 if (atomic_dec_and_test(&conf->pending_full_writes))
2358 md_wakeup_thread(conf->mddev->thread);
2359}
2360
2361static void
2362handle_failed_sync(raid5_conf_t *conf, struct stripe_head *sh,
2363 struct stripe_head_state *s)
2364{
2365 int abort = 0;
2366 int i;
2367
2368 md_done_sync(conf->mddev, STRIPE_SECTORS, 0);
2369 clear_bit(STRIPE_SYNCING, &sh->state);
2370 s->syncing = 0;
2371 /* There is nothing more to do for sync/check/repair.
2372 * For recover we need to record a bad block on all
2373 * non-sync devices, or abort the recovery
2374 */
2375 if (!test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery))
2376 return;
2377 /* During recovery devices cannot be removed, so locking and
2378 * refcounting of rdevs is not needed
2379 */
2380 for (i = 0; i < conf->raid_disks; i++) {
2381 mdk_rdev_t *rdev = conf->disks[i].rdev;
2382 if (!rdev
2383 || test_bit(Faulty, &rdev->flags)
2384 || test_bit(In_sync, &rdev->flags))
2385 continue;
2386 if (!rdev_set_badblocks(rdev, sh->sector,
2387 STRIPE_SECTORS, 0))
2388 abort = 1;
2389 }
2390 if (abort) {
2391 conf->recovery_disabled = conf->mddev->recovery_disabled;
2392 set_bit(MD_RECOVERY_INTR, &conf->mddev->recovery);
2393 }
2394}
2395
2396/* fetch_block - checks the given member device to see if its data needs
2397 * to be read or computed to satisfy a request.
2398 *
2399 * Returns 1 when no more member devices need to be checked, otherwise returns
2400 * 0 to tell the loop in handle_stripe_fill to continue
2401 */
2402static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
2403 int disk_idx, int disks)
2404{
2405 struct r5dev *dev = &sh->dev[disk_idx];
2406 struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
2407 &sh->dev[s->failed_num[1]] };
2408
2409 /* is the data in this block needed, and can we get it? */
2410 if (!test_bit(R5_LOCKED, &dev->flags) &&
2411 !test_bit(R5_UPTODATE, &dev->flags) &&
2412 (dev->toread ||
2413 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2414 s->syncing || s->expanding ||
2415 (s->failed >= 1 && fdev[0]->toread) ||
2416 (s->failed >= 2 && fdev[1]->toread) ||
2417 (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
2418 !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
2419 (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
2420 /* we would like to get this block, possibly by computing it,
2421 * otherwise read it if the backing disk is insync
2422 */
2423 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2424 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2425 if ((s->uptodate == disks - 1) &&
2426 (s->failed && (disk_idx == s->failed_num[0] ||
2427 disk_idx == s->failed_num[1]))) {
2428 /* have disk failed, and we're requested to fetch it;
2429 * do compute it
2430 */
2431 pr_debug("Computing stripe %llu block %d\n",
2432 (unsigned long long)sh->sector, disk_idx);
2433 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2434 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2435 set_bit(R5_Wantcompute, &dev->flags);
2436 sh->ops.target = disk_idx;
2437 sh->ops.target2 = -1; /* no 2nd target */
2438 s->req_compute = 1;
2439 /* Careful: from this point on 'uptodate' is in the eye
2440 * of raid_run_ops which services 'compute' operations
2441 * before writes. R5_Wantcompute flags a block that will
2442 * be R5_UPTODATE by the time it is needed for a
2443 * subsequent operation.
2444 */
2445 s->uptodate++;
2446 return 1;
2447 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2448 /* Computing 2-failure is *very* expensive; only
2449 * do it if failed >= 2
2450 */
2451 int other;
2452 for (other = disks; other--; ) {
2453 if (other == disk_idx)
2454 continue;
2455 if (!test_bit(R5_UPTODATE,
2456 &sh->dev[other].flags))
2457 break;
2458 }
2459 BUG_ON(other < 0);
2460 pr_debug("Computing stripe %llu blocks %d,%d\n",
2461 (unsigned long long)sh->sector,
2462 disk_idx, other);
2463 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2464 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2465 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2466 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2467 sh->ops.target = disk_idx;
2468 sh->ops.target2 = other;
2469 s->uptodate += 2;
2470 s->req_compute = 1;
2471 return 1;
2472 } else if (test_bit(R5_Insync, &dev->flags)) {
2473 set_bit(R5_LOCKED, &dev->flags);
2474 set_bit(R5_Wantread, &dev->flags);
2475 s->locked++;
2476 pr_debug("Reading block %d (sync=%d)\n",
2477 disk_idx, s->syncing);
2478 }
2479 }
2480
2481 return 0;
2482}
2483
2484/**
2485 * handle_stripe_fill - read or compute data to satisfy pending requests.
2486 */
2487static void handle_stripe_fill(struct stripe_head *sh,
2488 struct stripe_head_state *s,
2489 int disks)
2490{
2491 int i;
2492
2493 /* look for blocks to read/compute, skip this if a compute
2494 * is already in flight, or if the stripe contents are in the
2495 * midst of changing due to a write
2496 */
2497 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2498 !sh->reconstruct_state)
2499 for (i = disks; i--; )
2500 if (fetch_block(sh, s, i, disks))
2501 break;
2502 set_bit(STRIPE_HANDLE, &sh->state);
2503}
2504
2505
2506/* handle_stripe_clean_event
2507 * any written block on an uptodate or failed drive can be returned.
2508 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2509 * never LOCKED, so we don't need to test 'failed' directly.
2510 */
2511static void handle_stripe_clean_event(raid5_conf_t *conf,
2512 struct stripe_head *sh, int disks, struct bio **return_bi)
2513{
2514 int i;
2515 struct r5dev *dev;
2516
2517 for (i = disks; i--; )
2518 if (sh->dev[i].written) {
2519 dev = &sh->dev[i];
2520 if (!test_bit(R5_LOCKED, &dev->flags) &&
2521 test_bit(R5_UPTODATE, &dev->flags)) {
2522 /* We can return any write requests */
2523 struct bio *wbi, *wbi2;
2524 int bitmap_end = 0;
2525 pr_debug("Return write for disc %d\n", i);
2526 spin_lock_irq(&conf->device_lock);
2527 wbi = dev->written;
2528 dev->written = NULL;
2529 while (wbi && wbi->bi_sector <
2530 dev->sector + STRIPE_SECTORS) {
2531 wbi2 = r5_next_bio(wbi, dev->sector);
2532 if (!raid5_dec_bi_phys_segments(wbi)) {
2533 md_write_end(conf->mddev);
2534 wbi->bi_next = *return_bi;
2535 *return_bi = wbi;
2536 }
2537 wbi = wbi2;
2538 }
2539 if (dev->towrite == NULL)
2540 bitmap_end = 1;
2541 spin_unlock_irq(&conf->device_lock);
2542 if (bitmap_end)
2543 bitmap_endwrite(conf->mddev->bitmap,
2544 sh->sector,
2545 STRIPE_SECTORS,
2546 !test_bit(STRIPE_DEGRADED, &sh->state),
2547 0);
2548 }
2549 }
2550
2551 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2552 if (atomic_dec_and_test(&conf->pending_full_writes))
2553 md_wakeup_thread(conf->mddev->thread);
2554}
2555
2556static void handle_stripe_dirtying(raid5_conf_t *conf,
2557 struct stripe_head *sh,
2558 struct stripe_head_state *s,
2559 int disks)
2560{
2561 int rmw = 0, rcw = 0, i;
2562 if (conf->max_degraded == 2) {
2563 /* RAID6 requires 'rcw' in current implementation
2564 * Calculate the real rcw later - for now fake it
2565 * look like rcw is cheaper
2566 */
2567 rcw = 1; rmw = 2;
2568 } else for (i = disks; i--; ) {
2569 /* would I have to read this buffer for read_modify_write */
2570 struct r5dev *dev = &sh->dev[i];
2571 if ((dev->towrite || i == sh->pd_idx) &&
2572 !test_bit(R5_LOCKED, &dev->flags) &&
2573 !(test_bit(R5_UPTODATE, &dev->flags) ||
2574 test_bit(R5_Wantcompute, &dev->flags))) {
2575 if (test_bit(R5_Insync, &dev->flags))
2576 rmw++;
2577 else
2578 rmw += 2*disks; /* cannot read it */
2579 }
2580 /* Would I have to read this buffer for reconstruct_write */
2581 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2582 !test_bit(R5_LOCKED, &dev->flags) &&
2583 !(test_bit(R5_UPTODATE, &dev->flags) ||
2584 test_bit(R5_Wantcompute, &dev->flags))) {
2585 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2586 else
2587 rcw += 2*disks;
2588 }
2589 }
2590 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2591 (unsigned long long)sh->sector, rmw, rcw);
2592 set_bit(STRIPE_HANDLE, &sh->state);
2593 if (rmw < rcw && rmw > 0)
2594 /* prefer read-modify-write, but need to get some data */
2595 for (i = disks; i--; ) {
2596 struct r5dev *dev = &sh->dev[i];
2597 if ((dev->towrite || i == sh->pd_idx) &&
2598 !test_bit(R5_LOCKED, &dev->flags) &&
2599 !(test_bit(R5_UPTODATE, &dev->flags) ||
2600 test_bit(R5_Wantcompute, &dev->flags)) &&
2601 test_bit(R5_Insync, &dev->flags)) {
2602 if (
2603 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2604 pr_debug("Read_old block "
2605 "%d for r-m-w\n", i);
2606 set_bit(R5_LOCKED, &dev->flags);
2607 set_bit(R5_Wantread, &dev->flags);
2608 s->locked++;
2609 } else {
2610 set_bit(STRIPE_DELAYED, &sh->state);
2611 set_bit(STRIPE_HANDLE, &sh->state);
2612 }
2613 }
2614 }
2615 if (rcw <= rmw && rcw > 0) {
2616 /* want reconstruct write, but need to get some data */
2617 rcw = 0;
2618 for (i = disks; i--; ) {
2619 struct r5dev *dev = &sh->dev[i];
2620 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2621 i != sh->pd_idx && i != sh->qd_idx &&
2622 !test_bit(R5_LOCKED, &dev->flags) &&
2623 !(test_bit(R5_UPTODATE, &dev->flags) ||
2624 test_bit(R5_Wantcompute, &dev->flags))) {
2625 rcw++;
2626 if (!test_bit(R5_Insync, &dev->flags))
2627 continue; /* it's a failed drive */
2628 if (
2629 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2630 pr_debug("Read_old block "
2631 "%d for Reconstruct\n", i);
2632 set_bit(R5_LOCKED, &dev->flags);
2633 set_bit(R5_Wantread, &dev->flags);
2634 s->locked++;
2635 } else {
2636 set_bit(STRIPE_DELAYED, &sh->state);
2637 set_bit(STRIPE_HANDLE, &sh->state);
2638 }
2639 }
2640 }
2641 }
2642 /* now if nothing is locked, and if we have enough data,
2643 * we can start a write request
2644 */
2645 /* since handle_stripe can be called at any time we need to handle the
2646 * case where a compute block operation has been submitted and then a
2647 * subsequent call wants to start a write request. raid_run_ops only
2648 * handles the case where compute block and reconstruct are requested
2649 * simultaneously. If this is not the case then new writes need to be
2650 * held off until the compute completes.
2651 */
2652 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2653 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2654 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2655 schedule_reconstruction(sh, s, rcw == 0, 0);
2656}
2657
2658static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2659 struct stripe_head_state *s, int disks)
2660{
2661 struct r5dev *dev = NULL;
2662
2663 set_bit(STRIPE_HANDLE, &sh->state);
2664
2665 switch (sh->check_state) {
2666 case check_state_idle:
2667 /* start a new check operation if there are no failures */
2668 if (s->failed == 0) {
2669 BUG_ON(s->uptodate != disks);
2670 sh->check_state = check_state_run;
2671 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2672 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2673 s->uptodate--;
2674 break;
2675 }
2676 dev = &sh->dev[s->failed_num[0]];
2677 /* fall through */
2678 case check_state_compute_result:
2679 sh->check_state = check_state_idle;
2680 if (!dev)
2681 dev = &sh->dev[sh->pd_idx];
2682
2683 /* check that a write has not made the stripe insync */
2684 if (test_bit(STRIPE_INSYNC, &sh->state))
2685 break;
2686
2687 /* either failed parity check, or recovery is happening */
2688 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2689 BUG_ON(s->uptodate != disks);
2690
2691 set_bit(R5_LOCKED, &dev->flags);
2692 s->locked++;
2693 set_bit(R5_Wantwrite, &dev->flags);
2694
2695 clear_bit(STRIPE_DEGRADED, &sh->state);
2696 set_bit(STRIPE_INSYNC, &sh->state);
2697 break;
2698 case check_state_run:
2699 break; /* we will be called again upon completion */
2700 case check_state_check_result:
2701 sh->check_state = check_state_idle;
2702
2703 /* if a failure occurred during the check operation, leave
2704 * STRIPE_INSYNC not set and let the stripe be handled again
2705 */
2706 if (s->failed)
2707 break;
2708
2709 /* handle a successful check operation, if parity is correct
2710 * we are done. Otherwise update the mismatch count and repair
2711 * parity if !MD_RECOVERY_CHECK
2712 */
2713 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2714 /* parity is correct (on disc,
2715 * not in buffer any more)
2716 */
2717 set_bit(STRIPE_INSYNC, &sh->state);
2718 else {
2719 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2720 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2721 /* don't try to repair!! */
2722 set_bit(STRIPE_INSYNC, &sh->state);
2723 else {
2724 sh->check_state = check_state_compute_run;
2725 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2726 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2727 set_bit(R5_Wantcompute,
2728 &sh->dev[sh->pd_idx].flags);
2729 sh->ops.target = sh->pd_idx;
2730 sh->ops.target2 = -1;
2731 s->uptodate++;
2732 }
2733 }
2734 break;
2735 case check_state_compute_run:
2736 break;
2737 default:
2738 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2739 __func__, sh->check_state,
2740 (unsigned long long) sh->sector);
2741 BUG();
2742 }
2743}
2744
2745
2746static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2747 struct stripe_head_state *s,
2748 int disks)
2749{
2750 int pd_idx = sh->pd_idx;
2751 int qd_idx = sh->qd_idx;
2752 struct r5dev *dev;
2753
2754 set_bit(STRIPE_HANDLE, &sh->state);
2755
2756 BUG_ON(s->failed > 2);
2757
2758 /* Want to check and possibly repair P and Q.
2759 * However there could be one 'failed' device, in which
2760 * case we can only check one of them, possibly using the
2761 * other to generate missing data
2762 */
2763
2764 switch (sh->check_state) {
2765 case check_state_idle:
2766 /* start a new check operation if there are < 2 failures */
2767 if (s->failed == s->q_failed) {
2768 /* The only possible failed device holds Q, so it
2769 * makes sense to check P (If anything else were failed,
2770 * we would have used P to recreate it).
2771 */
2772 sh->check_state = check_state_run;
2773 }
2774 if (!s->q_failed && s->failed < 2) {
2775 /* Q is not failed, and we didn't use it to generate
2776 * anything, so it makes sense to check it
2777 */
2778 if (sh->check_state == check_state_run)
2779 sh->check_state = check_state_run_pq;
2780 else
2781 sh->check_state = check_state_run_q;
2782 }
2783
2784 /* discard potentially stale zero_sum_result */
2785 sh->ops.zero_sum_result = 0;
2786
2787 if (sh->check_state == check_state_run) {
2788 /* async_xor_zero_sum destroys the contents of P */
2789 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2790 s->uptodate--;
2791 }
2792 if (sh->check_state >= check_state_run &&
2793 sh->check_state <= check_state_run_pq) {
2794 /* async_syndrome_zero_sum preserves P and Q, so
2795 * no need to mark them !uptodate here
2796 */
2797 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2798 break;
2799 }
2800
2801 /* we have 2-disk failure */
2802 BUG_ON(s->failed != 2);
2803 /* fall through */
2804 case check_state_compute_result:
2805 sh->check_state = check_state_idle;
2806
2807 /* check that a write has not made the stripe insync */
2808 if (test_bit(STRIPE_INSYNC, &sh->state))
2809 break;
2810
2811 /* now write out any block on a failed drive,
2812 * or P or Q if they were recomputed
2813 */
2814 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2815 if (s->failed == 2) {
2816 dev = &sh->dev[s->failed_num[1]];
2817 s->locked++;
2818 set_bit(R5_LOCKED, &dev->flags);
2819 set_bit(R5_Wantwrite, &dev->flags);
2820 }
2821 if (s->failed >= 1) {
2822 dev = &sh->dev[s->failed_num[0]];
2823 s->locked++;
2824 set_bit(R5_LOCKED, &dev->flags);
2825 set_bit(R5_Wantwrite, &dev->flags);
2826 }
2827 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2828 dev = &sh->dev[pd_idx];
2829 s->locked++;
2830 set_bit(R5_LOCKED, &dev->flags);
2831 set_bit(R5_Wantwrite, &dev->flags);
2832 }
2833 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2834 dev = &sh->dev[qd_idx];
2835 s->locked++;
2836 set_bit(R5_LOCKED, &dev->flags);
2837 set_bit(R5_Wantwrite, &dev->flags);
2838 }
2839 clear_bit(STRIPE_DEGRADED, &sh->state);
2840
2841 set_bit(STRIPE_INSYNC, &sh->state);
2842 break;
2843 case check_state_run:
2844 case check_state_run_q:
2845 case check_state_run_pq:
2846 break; /* we will be called again upon completion */
2847 case check_state_check_result:
2848 sh->check_state = check_state_idle;
2849
2850 /* handle a successful check operation, if parity is correct
2851 * we are done. Otherwise update the mismatch count and repair
2852 * parity if !MD_RECOVERY_CHECK
2853 */
2854 if (sh->ops.zero_sum_result == 0) {
2855 /* both parities are correct */
2856 if (!s->failed)
2857 set_bit(STRIPE_INSYNC, &sh->state);
2858 else {
2859 /* in contrast to the raid5 case we can validate
2860 * parity, but still have a failure to write
2861 * back
2862 */
2863 sh->check_state = check_state_compute_result;
2864 /* Returning at this point means that we may go
2865 * off and bring p and/or q uptodate again so
2866 * we make sure to check zero_sum_result again
2867 * to verify if p or q need writeback
2868 */
2869 }
2870 } else {
2871 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2872 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2873 /* don't try to repair!! */
2874 set_bit(STRIPE_INSYNC, &sh->state);
2875 else {
2876 int *target = &sh->ops.target;
2877
2878 sh->ops.target = -1;
2879 sh->ops.target2 = -1;
2880 sh->check_state = check_state_compute_run;
2881 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2882 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2883 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2884 set_bit(R5_Wantcompute,
2885 &sh->dev[pd_idx].flags);
2886 *target = pd_idx;
2887 target = &sh->ops.target2;
2888 s->uptodate++;
2889 }
2890 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2891 set_bit(R5_Wantcompute,
2892 &sh->dev[qd_idx].flags);
2893 *target = qd_idx;
2894 s->uptodate++;
2895 }
2896 }
2897 }
2898 break;
2899 case check_state_compute_run:
2900 break;
2901 default:
2902 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2903 __func__, sh->check_state,
2904 (unsigned long long) sh->sector);
2905 BUG();
2906 }
2907}
2908
2909static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh)
2910{
2911 int i;
2912
2913 /* We have read all the blocks in this stripe and now we need to
2914 * copy some of them into a target stripe for expand.
2915 */
2916 struct dma_async_tx_descriptor *tx = NULL;
2917 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2918 for (i = 0; i < sh->disks; i++)
2919 if (i != sh->pd_idx && i != sh->qd_idx) {
2920 int dd_idx, j;
2921 struct stripe_head *sh2;
2922 struct async_submit_ctl submit;
2923
2924 sector_t bn = compute_blocknr(sh, i, 1);
2925 sector_t s = raid5_compute_sector(conf, bn, 0,
2926 &dd_idx, NULL);
2927 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2928 if (sh2 == NULL)
2929 /* so far only the early blocks of this stripe
2930 * have been requested. When later blocks
2931 * get requested, we will try again
2932 */
2933 continue;
2934 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2935 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2936 /* must have already done this block */
2937 release_stripe(sh2);
2938 continue;
2939 }
2940
2941 /* place all the copies on one channel */
2942 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2943 tx = async_memcpy(sh2->dev[dd_idx].page,
2944 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2945 &submit);
2946
2947 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2948 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2949 for (j = 0; j < conf->raid_disks; j++)
2950 if (j != sh2->pd_idx &&
2951 j != sh2->qd_idx &&
2952 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2953 break;
2954 if (j == conf->raid_disks) {
2955 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2956 set_bit(STRIPE_HANDLE, &sh2->state);
2957 }
2958 release_stripe(sh2);
2959
2960 }
2961 /* done submitting copies, wait for them to complete */
2962 if (tx) {
2963 async_tx_ack(tx);
2964 dma_wait_for_async_tx(tx);
2965 }
2966}
2967
2968
2969/*
2970 * handle_stripe - do things to a stripe.
2971 *
2972 * We lock the stripe and then examine the state of various bits
2973 * to see what needs to be done.
2974 * Possible results:
2975 * return some read request which now have data
2976 * return some write requests which are safely on disc
2977 * schedule a read on some buffers
2978 * schedule a write of some buffers
2979 * return confirmation of parity correctness
2980 *
2981 * buffers are taken off read_list or write_list, and bh_cache buffers
2982 * get BH_Lock set before the stripe lock is released.
2983 *
2984 */
2985
2986static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
2987{
2988 raid5_conf_t *conf = sh->raid_conf;
2989 int disks = sh->disks;
2990 struct r5dev *dev;
2991 int i;
2992
2993 memset(s, 0, sizeof(*s));
2994
2995 s->syncing = test_bit(STRIPE_SYNCING, &sh->state);
2996 s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2997 s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2998 s->failed_num[0] = -1;
2999 s->failed_num[1] = -1;
3000
3001 /* Now to look around and see what can be done */
3002 rcu_read_lock();
3003 spin_lock_irq(&conf->device_lock);
3004 for (i=disks; i--; ) {
3005 mdk_rdev_t *rdev;
3006 sector_t first_bad;
3007 int bad_sectors;
3008 int is_bad = 0;
3009
3010 dev = &sh->dev[i];
3011
3012 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3013 i, dev->flags, dev->toread, dev->towrite, dev->written);
3014 /* maybe we can reply to a read
3015 *
3016 * new wantfill requests are only permitted while
3017 * ops_complete_biofill is guaranteed to be inactive
3018 */
3019 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3020 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3021 set_bit(R5_Wantfill, &dev->flags);
3022
3023 /* now count some things */
3024 if (test_bit(R5_LOCKED, &dev->flags))
3025 s->locked++;
3026 if (test_bit(R5_UPTODATE, &dev->flags))
3027 s->uptodate++;
3028 if (test_bit(R5_Wantcompute, &dev->flags)) {
3029 s->compute++;
3030 BUG_ON(s->compute > 2);
3031 }
3032
3033 if (test_bit(R5_Wantfill, &dev->flags))
3034 s->to_fill++;
3035 else if (dev->toread)
3036 s->to_read++;
3037 if (dev->towrite) {
3038 s->to_write++;
3039 if (!test_bit(R5_OVERWRITE, &dev->flags))
3040 s->non_overwrite++;
3041 }
3042 if (dev->written)
3043 s->written++;
3044 rdev = rcu_dereference(conf->disks[i].rdev);
3045 if (rdev) {
3046 is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
3047 &first_bad, &bad_sectors);
3048 if (s->blocked_rdev == NULL
3049 && (test_bit(Blocked, &rdev->flags)
3050 || is_bad < 0)) {
3051 if (is_bad < 0)
3052 set_bit(BlockedBadBlocks,
3053 &rdev->flags);
3054 s->blocked_rdev = rdev;
3055 atomic_inc(&rdev->nr_pending);
3056 }
3057 }
3058 clear_bit(R5_Insync, &dev->flags);
3059 if (!rdev)
3060 /* Not in-sync */;
3061 else if (is_bad) {
3062 /* also not in-sync */
3063 if (!test_bit(WriteErrorSeen, &rdev->flags)) {
3064 /* treat as in-sync, but with a read error
3065 * which we can now try to correct
3066 */
3067 set_bit(R5_Insync, &dev->flags);
3068 set_bit(R5_ReadError, &dev->flags);
3069 }
3070 } else if (test_bit(In_sync, &rdev->flags))
3071 set_bit(R5_Insync, &dev->flags);
3072 else {
3073 /* in sync if before recovery_offset */
3074 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3075 set_bit(R5_Insync, &dev->flags);
3076 }
3077 if (test_bit(R5_WriteError, &dev->flags)) {
3078 clear_bit(R5_Insync, &dev->flags);
3079 if (!test_bit(Faulty, &rdev->flags)) {
3080 s->handle_bad_blocks = 1;
3081 atomic_inc(&rdev->nr_pending);
3082 } else
3083 clear_bit(R5_WriteError, &dev->flags);
3084 }
3085 if (test_bit(R5_MadeGood, &dev->flags)) {
3086 if (!test_bit(Faulty, &rdev->flags)) {
3087 s->handle_bad_blocks = 1;
3088 atomic_inc(&rdev->nr_pending);
3089 } else
3090 clear_bit(R5_MadeGood, &dev->flags);
3091 }
3092 if (!test_bit(R5_Insync, &dev->flags)) {
3093 /* The ReadError flag will just be confusing now */
3094 clear_bit(R5_ReadError, &dev->flags);
3095 clear_bit(R5_ReWrite, &dev->flags);
3096 }
3097 if (test_bit(R5_ReadError, &dev->flags))
3098 clear_bit(R5_Insync, &dev->flags);
3099 if (!test_bit(R5_Insync, &dev->flags)) {
3100 if (s->failed < 2)
3101 s->failed_num[s->failed] = i;
3102 s->failed++;
3103 }
3104 }
3105 spin_unlock_irq(&conf->device_lock);
3106 rcu_read_unlock();
3107}
3108
3109static void handle_stripe(struct stripe_head *sh)
3110{
3111 struct stripe_head_state s;
3112 raid5_conf_t *conf = sh->raid_conf;
3113 int i;
3114 int prexor;
3115 int disks = sh->disks;
3116 struct r5dev *pdev, *qdev;
3117
3118 clear_bit(STRIPE_HANDLE, &sh->state);
3119 if (test_and_set_bit(STRIPE_ACTIVE, &sh->state)) {
3120 /* already being handled, ensure it gets handled
3121 * again when current action finishes */
3122 set_bit(STRIPE_HANDLE, &sh->state);
3123 return;
3124 }
3125
3126 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
3127 set_bit(STRIPE_SYNCING, &sh->state);
3128 clear_bit(STRIPE_INSYNC, &sh->state);
3129 }
3130 clear_bit(STRIPE_DELAYED, &sh->state);
3131
3132 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3133 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3134 (unsigned long long)sh->sector, sh->state,
3135 atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
3136 sh->check_state, sh->reconstruct_state);
3137
3138 analyse_stripe(sh, &s);
3139
3140 if (s.handle_bad_blocks) {
3141 set_bit(STRIPE_HANDLE, &sh->state);
3142 goto finish;
3143 }
3144
3145 if (unlikely(s.blocked_rdev)) {
3146 if (s.syncing || s.expanding || s.expanded ||
3147 s.to_write || s.written) {
3148 set_bit(STRIPE_HANDLE, &sh->state);
3149 goto finish;
3150 }
3151 /* There is nothing for the blocked_rdev to block */
3152 rdev_dec_pending(s.blocked_rdev, conf->mddev);
3153 s.blocked_rdev = NULL;
3154 }
3155
3156 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3157 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3158 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3159 }
3160
3161 pr_debug("locked=%d uptodate=%d to_read=%d"
3162 " to_write=%d failed=%d failed_num=%d,%d\n",
3163 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3164 s.failed_num[0], s.failed_num[1]);
3165 /* check if the array has lost more than max_degraded devices and,
3166 * if so, some requests might need to be failed.
3167 */
3168 if (s.failed > conf->max_degraded && s.to_read+s.to_write+s.written)
3169 handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
3170 if (s.failed > conf->max_degraded && s.syncing)
3171 handle_failed_sync(conf, sh, &s);
3172
3173 /*
3174 * might be able to return some write requests if the parity blocks
3175 * are safe, or on a failed drive
3176 */
3177 pdev = &sh->dev[sh->pd_idx];
3178 s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
3179 || (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
3180 qdev = &sh->dev[sh->qd_idx];
3181 s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
3182 || (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
3183 || conf->level < 6;
3184
3185 if (s.written &&
3186 (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3187 && !test_bit(R5_LOCKED, &pdev->flags)
3188 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3189 (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3190 && !test_bit(R5_LOCKED, &qdev->flags)
3191 && test_bit(R5_UPTODATE, &qdev->flags)))))
3192 handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
3193
3194 /* Now we might consider reading some blocks, either to check/generate
3195 * parity, or to satisfy requests
3196 * or to load a block that is being partially written.
3197 */
3198 if (s.to_read || s.non_overwrite
3199 || (conf->level == 6 && s.to_write && s.failed)
3200 || (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3201 handle_stripe_fill(sh, &s, disks);
3202
3203 /* Now we check to see if any write operations have recently
3204 * completed
3205 */
3206 prexor = 0;
3207 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3208 prexor = 1;
3209 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3210 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3211 sh->reconstruct_state = reconstruct_state_idle;
3212
3213 /* All the 'written' buffers and the parity block are ready to
3214 * be written back to disk
3215 */
3216 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3217 BUG_ON(sh->qd_idx >= 0 &&
3218 !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
3219 for (i = disks; i--; ) {
3220 struct r5dev *dev = &sh->dev[i];
3221 if (test_bit(R5_LOCKED, &dev->flags) &&
3222 (i == sh->pd_idx || i == sh->qd_idx ||
3223 dev->written)) {
3224 pr_debug("Writing block %d\n", i);
3225 set_bit(R5_Wantwrite, &dev->flags);
3226 if (prexor)
3227 continue;
3228 if (!test_bit(R5_Insync, &dev->flags) ||
3229 ((i == sh->pd_idx || i == sh->qd_idx) &&
3230 s.failed == 0))
3231 set_bit(STRIPE_INSYNC, &sh->state);
3232 }
3233 }
3234 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3235 s.dec_preread_active = 1;
3236 }
3237
3238 /* Now to consider new write requests and what else, if anything
3239 * should be read. We do not handle new writes when:
3240 * 1/ A 'write' operation (copy+xor) is already in flight.
3241 * 2/ A 'check' operation is in flight, as it may clobber the parity
3242 * block.
3243 */
3244 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3245 handle_stripe_dirtying(conf, sh, &s, disks);
3246
3247 /* maybe we need to check and possibly fix the parity for this stripe
3248 * Any reads will already have been scheduled, so we just see if enough
3249 * data is available. The parity check is held off while parity
3250 * dependent operations are in flight.
3251 */
3252 if (sh->check_state ||
3253 (s.syncing && s.locked == 0 &&
3254 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3255 !test_bit(STRIPE_INSYNC, &sh->state))) {
3256 if (conf->level == 6)
3257 handle_parity_checks6(conf, sh, &s, disks);
3258 else
3259 handle_parity_checks5(conf, sh, &s, disks);
3260 }
3261
3262 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3263 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3264 clear_bit(STRIPE_SYNCING, &sh->state);
3265 }
3266
3267 /* If the failed drives are just a ReadError, then we might need
3268 * to progress the repair/check process
3269 */
3270 if (s.failed <= conf->max_degraded && !conf->mddev->ro)
3271 for (i = 0; i < s.failed; i++) {
3272 struct r5dev *dev = &sh->dev[s.failed_num[i]];
3273 if (test_bit(R5_ReadError, &dev->flags)
3274 && !test_bit(R5_LOCKED, &dev->flags)
3275 && test_bit(R5_UPTODATE, &dev->flags)
3276 ) {
3277 if (!test_bit(R5_ReWrite, &dev->flags)) {
3278 set_bit(R5_Wantwrite, &dev->flags);
3279 set_bit(R5_ReWrite, &dev->flags);
3280 set_bit(R5_LOCKED, &dev->flags);
3281 s.locked++;
3282 } else {
3283 /* let's read it back */
3284 set_bit(R5_Wantread, &dev->flags);
3285 set_bit(R5_LOCKED, &dev->flags);
3286 s.locked++;
3287 }
3288 }
3289 }
3290
3291
3292 /* Finish reconstruct operations initiated by the expansion process */
3293 if (sh->reconstruct_state == reconstruct_state_result) {
3294 struct stripe_head *sh_src
3295 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3296 if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
3297 /* sh cannot be written until sh_src has been read.
3298 * so arrange for sh to be delayed a little
3299 */
3300 set_bit(STRIPE_DELAYED, &sh->state);
3301 set_bit(STRIPE_HANDLE, &sh->state);
3302 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3303 &sh_src->state))
3304 atomic_inc(&conf->preread_active_stripes);
3305 release_stripe(sh_src);
3306 goto finish;
3307 }
3308 if (sh_src)
3309 release_stripe(sh_src);
3310
3311 sh->reconstruct_state = reconstruct_state_idle;
3312 clear_bit(STRIPE_EXPANDING, &sh->state);
3313 for (i = conf->raid_disks; i--; ) {
3314 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3315 set_bit(R5_LOCKED, &sh->dev[i].flags);
3316 s.locked++;
3317 }
3318 }
3319
3320 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3321 !sh->reconstruct_state) {
3322 /* Need to write out all blocks after computing parity */
3323 sh->disks = conf->raid_disks;
3324 stripe_set_idx(sh->sector, conf, 0, sh);
3325 schedule_reconstruction(sh, &s, 1, 1);
3326 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3327 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3328 atomic_dec(&conf->reshape_stripes);
3329 wake_up(&conf->wait_for_overlap);
3330 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3331 }
3332
3333 if (s.expanding && s.locked == 0 &&
3334 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3335 handle_stripe_expansion(conf, sh);
3336
3337finish:
3338 /* wait for this device to become unblocked */
3339 if (conf->mddev->external && unlikely(s.blocked_rdev))
3340 md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
3341
3342 if (s.handle_bad_blocks)
3343 for (i = disks; i--; ) {
3344 mdk_rdev_t *rdev;
3345 struct r5dev *dev = &sh->dev[i];
3346 if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
3347 /* We own a safe reference to the rdev */
3348 rdev = conf->disks[i].rdev;
3349 if (!rdev_set_badblocks(rdev, sh->sector,
3350 STRIPE_SECTORS, 0))
3351 md_error(conf->mddev, rdev);
3352 rdev_dec_pending(rdev, conf->mddev);
3353 }
3354 if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
3355 rdev = conf->disks[i].rdev;
3356 rdev_clear_badblocks(rdev, sh->sector,
3357 STRIPE_SECTORS);
3358 rdev_dec_pending(rdev, conf->mddev);
3359 }
3360 }
3361
3362 if (s.ops_request)
3363 raid_run_ops(sh, s.ops_request);
3364
3365 ops_run_io(sh, &s);
3366
3367 if (s.dec_preread_active) {
3368 /* We delay this until after ops_run_io so that if make_request
3369 * is waiting on a flush, it won't continue until the writes
3370 * have actually been submitted.
3371 */
3372 atomic_dec(&conf->preread_active_stripes);
3373 if (atomic_read(&conf->preread_active_stripes) <
3374 IO_THRESHOLD)
3375 md_wakeup_thread(conf->mddev->thread);
3376 }
3377
3378 return_io(s.return_bi);
3379
3380 clear_bit(STRIPE_ACTIVE, &sh->state);
3381}
3382
3383static void raid5_activate_delayed(raid5_conf_t *conf)
3384{
3385 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3386 while (!list_empty(&conf->delayed_list)) {
3387 struct list_head *l = conf->delayed_list.next;
3388 struct stripe_head *sh;
3389 sh = list_entry(l, struct stripe_head, lru);
3390 list_del_init(l);
3391 clear_bit(STRIPE_DELAYED, &sh->state);
3392 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3393 atomic_inc(&conf->preread_active_stripes);
3394 list_add_tail(&sh->lru, &conf->hold_list);
3395 }
3396 }
3397}
3398
3399static void activate_bit_delay(raid5_conf_t *conf)
3400{
3401 /* device_lock is held */
3402 struct list_head head;
3403 list_add(&head, &conf->bitmap_list);
3404 list_del_init(&conf->bitmap_list);
3405 while (!list_empty(&head)) {
3406 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3407 list_del_init(&sh->lru);
3408 atomic_inc(&sh->count);
3409 __release_stripe(conf, sh);
3410 }
3411}
3412
3413int md_raid5_congested(mddev_t *mddev, int bits)
3414{
3415 raid5_conf_t *conf = mddev->private;
3416
3417 /* No difference between reads and writes. Just check
3418 * how busy the stripe_cache is
3419 */
3420
3421 if (conf->inactive_blocked)
3422 return 1;
3423 if (conf->quiesce)
3424 return 1;
3425 if (list_empty_careful(&conf->inactive_list))
3426 return 1;
3427
3428 return 0;
3429}
3430EXPORT_SYMBOL_GPL(md_raid5_congested);
3431
3432static int raid5_congested(void *data, int bits)
3433{
3434 mddev_t *mddev = data;
3435
3436 return mddev_congested(mddev, bits) ||
3437 md_raid5_congested(mddev, bits);
3438}
3439
3440/* We want read requests to align with chunks where possible,
3441 * but write requests don't need to.
3442 */
3443static int raid5_mergeable_bvec(struct request_queue *q,
3444 struct bvec_merge_data *bvm,
3445 struct bio_vec *biovec)
3446{
3447 mddev_t *mddev = q->queuedata;
3448 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3449 int max;
3450 unsigned int chunk_sectors = mddev->chunk_sectors;
3451 unsigned int bio_sectors = bvm->bi_size >> 9;
3452
3453 if ((bvm->bi_rw & 1) == WRITE)
3454 return biovec->bv_len; /* always allow writes to be mergeable */
3455
3456 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3457 chunk_sectors = mddev->new_chunk_sectors;
3458 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3459 if (max < 0) max = 0;
3460 if (max <= biovec->bv_len && bio_sectors == 0)
3461 return biovec->bv_len;
3462 else
3463 return max;
3464}
3465
3466
3467static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3468{
3469 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3470 unsigned int chunk_sectors = mddev->chunk_sectors;
3471 unsigned int bio_sectors = bio->bi_size >> 9;
3472
3473 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3474 chunk_sectors = mddev->new_chunk_sectors;
3475 return chunk_sectors >=
3476 ((sector & (chunk_sectors - 1)) + bio_sectors);
3477}
3478
3479/*
3480 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3481 * later sampled by raid5d.
3482 */
3483static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3484{
3485 unsigned long flags;
3486
3487 spin_lock_irqsave(&conf->device_lock, flags);
3488
3489 bi->bi_next = conf->retry_read_aligned_list;
3490 conf->retry_read_aligned_list = bi;
3491
3492 spin_unlock_irqrestore(&conf->device_lock, flags);
3493 md_wakeup_thread(conf->mddev->thread);
3494}
3495
3496
3497static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3498{
3499 struct bio *bi;
3500
3501 bi = conf->retry_read_aligned;
3502 if (bi) {
3503 conf->retry_read_aligned = NULL;
3504 return bi;
3505 }
3506 bi = conf->retry_read_aligned_list;
3507 if(bi) {
3508 conf->retry_read_aligned_list = bi->bi_next;
3509 bi->bi_next = NULL;
3510 /*
3511 * this sets the active strip count to 1 and the processed
3512 * strip count to zero (upper 8 bits)
3513 */
3514 bi->bi_phys_segments = 1; /* biased count of active stripes */
3515 }
3516
3517 return bi;
3518}
3519
3520
3521/*
3522 * The "raid5_align_endio" should check if the read succeeded and if it
3523 * did, call bio_endio on the original bio (having bio_put the new bio
3524 * first).
3525 * If the read failed..
3526 */
3527static void raid5_align_endio(struct bio *bi, int error)
3528{
3529 struct bio* raid_bi = bi->bi_private;
3530 mddev_t *mddev;
3531 raid5_conf_t *conf;
3532 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3533 mdk_rdev_t *rdev;
3534
3535 bio_put(bi);
3536
3537 rdev = (void*)raid_bi->bi_next;
3538 raid_bi->bi_next = NULL;
3539 mddev = rdev->mddev;
3540 conf = mddev->private;
3541
3542 rdev_dec_pending(rdev, conf->mddev);
3543
3544 if (!error && uptodate) {
3545 bio_endio(raid_bi, 0);
3546 if (atomic_dec_and_test(&conf->active_aligned_reads))
3547 wake_up(&conf->wait_for_stripe);
3548 return;
3549 }
3550
3551
3552 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3553
3554 add_bio_to_retry(raid_bi, conf);
3555}
3556
3557static int bio_fits_rdev(struct bio *bi)
3558{
3559 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3560
3561 if ((bi->bi_size>>9) > queue_max_sectors(q))
3562 return 0;
3563 blk_recount_segments(q, bi);
3564 if (bi->bi_phys_segments > queue_max_segments(q))
3565 return 0;
3566
3567 if (q->merge_bvec_fn)
3568 /* it's too hard to apply the merge_bvec_fn at this stage,
3569 * just just give up
3570 */
3571 return 0;
3572
3573 return 1;
3574}
3575
3576
3577static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3578{
3579 raid5_conf_t *conf = mddev->private;
3580 int dd_idx;
3581 struct bio* align_bi;
3582 mdk_rdev_t *rdev;
3583
3584 if (!in_chunk_boundary(mddev, raid_bio)) {
3585 pr_debug("chunk_aligned_read : non aligned\n");
3586 return 0;
3587 }
3588 /*
3589 * use bio_clone_mddev to make a copy of the bio
3590 */
3591 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3592 if (!align_bi)
3593 return 0;
3594 /*
3595 * set bi_end_io to a new function, and set bi_private to the
3596 * original bio.
3597 */
3598 align_bi->bi_end_io = raid5_align_endio;
3599 align_bi->bi_private = raid_bio;
3600 /*
3601 * compute position
3602 */
3603 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3604 0,
3605 &dd_idx, NULL);
3606
3607 rcu_read_lock();
3608 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3609 if (rdev && test_bit(In_sync, &rdev->flags)) {
3610 sector_t first_bad;
3611 int bad_sectors;
3612
3613 atomic_inc(&rdev->nr_pending);
3614 rcu_read_unlock();
3615 raid_bio->bi_next = (void*)rdev;
3616 align_bi->bi_bdev = rdev->bdev;
3617 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3618 align_bi->bi_sector += rdev->data_offset;
3619
3620 if (!bio_fits_rdev(align_bi) ||
3621 is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
3622 &first_bad, &bad_sectors)) {
3623 /* too big in some way, or has a known bad block */
3624 bio_put(align_bi);
3625 rdev_dec_pending(rdev, mddev);
3626 return 0;
3627 }
3628
3629 spin_lock_irq(&conf->device_lock);
3630 wait_event_lock_irq(conf->wait_for_stripe,
3631 conf->quiesce == 0,
3632 conf->device_lock, /* nothing */);
3633 atomic_inc(&conf->active_aligned_reads);
3634 spin_unlock_irq(&conf->device_lock);
3635
3636 generic_make_request(align_bi);
3637 return 1;
3638 } else {
3639 rcu_read_unlock();
3640 bio_put(align_bi);
3641 return 0;
3642 }
3643}
3644
3645/* __get_priority_stripe - get the next stripe to process
3646 *
3647 * Full stripe writes are allowed to pass preread active stripes up until
3648 * the bypass_threshold is exceeded. In general the bypass_count
3649 * increments when the handle_list is handled before the hold_list; however, it
3650 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3651 * stripe with in flight i/o. The bypass_count will be reset when the
3652 * head of the hold_list has changed, i.e. the head was promoted to the
3653 * handle_list.
3654 */
3655static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3656{
3657 struct stripe_head *sh;
3658
3659 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3660 __func__,
3661 list_empty(&conf->handle_list) ? "empty" : "busy",
3662 list_empty(&conf->hold_list) ? "empty" : "busy",
3663 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3664
3665 if (!list_empty(&conf->handle_list)) {
3666 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3667
3668 if (list_empty(&conf->hold_list))
3669 conf->bypass_count = 0;
3670 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3671 if (conf->hold_list.next == conf->last_hold)
3672 conf->bypass_count++;
3673 else {
3674 conf->last_hold = conf->hold_list.next;
3675 conf->bypass_count -= conf->bypass_threshold;
3676 if (conf->bypass_count < 0)
3677 conf->bypass_count = 0;
3678 }
3679 }
3680 } else if (!list_empty(&conf->hold_list) &&
3681 ((conf->bypass_threshold &&
3682 conf->bypass_count > conf->bypass_threshold) ||
3683 atomic_read(&conf->pending_full_writes) == 0)) {
3684 sh = list_entry(conf->hold_list.next,
3685 typeof(*sh), lru);
3686 conf->bypass_count -= conf->bypass_threshold;
3687 if (conf->bypass_count < 0)
3688 conf->bypass_count = 0;
3689 } else
3690 return NULL;
3691
3692 list_del_init(&sh->lru);
3693 atomic_inc(&sh->count);
3694 BUG_ON(atomic_read(&sh->count) != 1);
3695 return sh;
3696}
3697
3698static int make_request(mddev_t *mddev, struct bio * bi)
3699{
3700 raid5_conf_t *conf = mddev->private;
3701 int dd_idx;
3702 sector_t new_sector;
3703 sector_t logical_sector, last_sector;
3704 struct stripe_head *sh;
3705 const int rw = bio_data_dir(bi);
3706 int remaining;
3707 int plugged;
3708
3709 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3710 md_flush_request(mddev, bi);
3711 return 0;
3712 }
3713
3714 md_write_start(mddev, bi);
3715
3716 if (rw == READ &&
3717 mddev->reshape_position == MaxSector &&
3718 chunk_aligned_read(mddev,bi))
3719 return 0;
3720
3721 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3722 last_sector = bi->bi_sector + (bi->bi_size>>9);
3723 bi->bi_next = NULL;
3724 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3725
3726 plugged = mddev_check_plugged(mddev);
3727 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3728 DEFINE_WAIT(w);
3729 int disks, data_disks;
3730 int previous;
3731
3732 retry:
3733 previous = 0;
3734 disks = conf->raid_disks;
3735 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3736 if (unlikely(conf->reshape_progress != MaxSector)) {
3737 /* spinlock is needed as reshape_progress may be
3738 * 64bit on a 32bit platform, and so it might be
3739 * possible to see a half-updated value
3740 * Of course reshape_progress could change after
3741 * the lock is dropped, so once we get a reference
3742 * to the stripe that we think it is, we will have
3743 * to check again.
3744 */
3745 spin_lock_irq(&conf->device_lock);
3746 if (mddev->delta_disks < 0
3747 ? logical_sector < conf->reshape_progress
3748 : logical_sector >= conf->reshape_progress) {
3749 disks = conf->previous_raid_disks;
3750 previous = 1;
3751 } else {
3752 if (mddev->delta_disks < 0
3753 ? logical_sector < conf->reshape_safe
3754 : logical_sector >= conf->reshape_safe) {
3755 spin_unlock_irq(&conf->device_lock);
3756 schedule();
3757 goto retry;
3758 }
3759 }
3760 spin_unlock_irq(&conf->device_lock);
3761 }
3762 data_disks = disks - conf->max_degraded;
3763
3764 new_sector = raid5_compute_sector(conf, logical_sector,
3765 previous,
3766 &dd_idx, NULL);
3767 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3768 (unsigned long long)new_sector,
3769 (unsigned long long)logical_sector);
3770
3771 sh = get_active_stripe(conf, new_sector, previous,
3772 (bi->bi_rw&RWA_MASK), 0);
3773 if (sh) {
3774 if (unlikely(previous)) {
3775 /* expansion might have moved on while waiting for a
3776 * stripe, so we must do the range check again.
3777 * Expansion could still move past after this
3778 * test, but as we are holding a reference to
3779 * 'sh', we know that if that happens,
3780 * STRIPE_EXPANDING will get set and the expansion
3781 * won't proceed until we finish with the stripe.
3782 */
3783 int must_retry = 0;
3784 spin_lock_irq(&conf->device_lock);
3785 if (mddev->delta_disks < 0
3786 ? logical_sector >= conf->reshape_progress
3787 : logical_sector < conf->reshape_progress)
3788 /* mismatch, need to try again */
3789 must_retry = 1;
3790 spin_unlock_irq(&conf->device_lock);
3791 if (must_retry) {
3792 release_stripe(sh);
3793 schedule();
3794 goto retry;
3795 }
3796 }
3797
3798 if (rw == WRITE &&
3799 logical_sector >= mddev->suspend_lo &&
3800 logical_sector < mddev->suspend_hi) {
3801 release_stripe(sh);
3802 /* As the suspend_* range is controlled by
3803 * userspace, we want an interruptible
3804 * wait.
3805 */
3806 flush_signals(current);
3807 prepare_to_wait(&conf->wait_for_overlap,
3808 &w, TASK_INTERRUPTIBLE);
3809 if (logical_sector >= mddev->suspend_lo &&
3810 logical_sector < mddev->suspend_hi)
3811 schedule();
3812 goto retry;
3813 }
3814
3815 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3816 !add_stripe_bio(sh, bi, dd_idx, rw)) {
3817 /* Stripe is busy expanding or
3818 * add failed due to overlap. Flush everything
3819 * and wait a while
3820 */
3821 md_wakeup_thread(mddev->thread);
3822 release_stripe(sh);
3823 schedule();
3824 goto retry;
3825 }
3826 finish_wait(&conf->wait_for_overlap, &w);
3827 set_bit(STRIPE_HANDLE, &sh->state);
3828 clear_bit(STRIPE_DELAYED, &sh->state);
3829 if ((bi->bi_rw & REQ_SYNC) &&
3830 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3831 atomic_inc(&conf->preread_active_stripes);
3832 release_stripe(sh);
3833 } else {
3834 /* cannot get stripe for read-ahead, just give-up */
3835 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3836 finish_wait(&conf->wait_for_overlap, &w);
3837 break;
3838 }
3839
3840 }
3841 if (!plugged)
3842 md_wakeup_thread(mddev->thread);
3843
3844 spin_lock_irq(&conf->device_lock);
3845 remaining = raid5_dec_bi_phys_segments(bi);
3846 spin_unlock_irq(&conf->device_lock);
3847 if (remaining == 0) {
3848
3849 if ( rw == WRITE )
3850 md_write_end(mddev);
3851
3852 bio_endio(bi, 0);
3853 }
3854
3855 return 0;
3856}
3857
3858static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
3859
3860static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3861{
3862 /* reshaping is quite different to recovery/resync so it is
3863 * handled quite separately ... here.
3864 *
3865 * On each call to sync_request, we gather one chunk worth of
3866 * destination stripes and flag them as expanding.
3867 * Then we find all the source stripes and request reads.
3868 * As the reads complete, handle_stripe will copy the data
3869 * into the destination stripe and release that stripe.
3870 */
3871 raid5_conf_t *conf = mddev->private;
3872 struct stripe_head *sh;
3873 sector_t first_sector, last_sector;
3874 int raid_disks = conf->previous_raid_disks;
3875 int data_disks = raid_disks - conf->max_degraded;
3876 int new_data_disks = conf->raid_disks - conf->max_degraded;
3877 int i;
3878 int dd_idx;
3879 sector_t writepos, readpos, safepos;
3880 sector_t stripe_addr;
3881 int reshape_sectors;
3882 struct list_head stripes;
3883
3884 if (sector_nr == 0) {
3885 /* If restarting in the middle, skip the initial sectors */
3886 if (mddev->delta_disks < 0 &&
3887 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
3888 sector_nr = raid5_size(mddev, 0, 0)
3889 - conf->reshape_progress;
3890 } else if (mddev->delta_disks >= 0 &&
3891 conf->reshape_progress > 0)
3892 sector_nr = conf->reshape_progress;
3893 sector_div(sector_nr, new_data_disks);
3894 if (sector_nr) {
3895 mddev->curr_resync_completed = sector_nr;
3896 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3897 *skipped = 1;
3898 return sector_nr;
3899 }
3900 }
3901
3902 /* We need to process a full chunk at a time.
3903 * If old and new chunk sizes differ, we need to process the
3904 * largest of these
3905 */
3906 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
3907 reshape_sectors = mddev->new_chunk_sectors;
3908 else
3909 reshape_sectors = mddev->chunk_sectors;
3910
3911 /* we update the metadata when there is more than 3Meg
3912 * in the block range (that is rather arbitrary, should
3913 * probably be time based) or when the data about to be
3914 * copied would over-write the source of the data at
3915 * the front of the range.
3916 * i.e. one new_stripe along from reshape_progress new_maps
3917 * to after where reshape_safe old_maps to
3918 */
3919 writepos = conf->reshape_progress;
3920 sector_div(writepos, new_data_disks);
3921 readpos = conf->reshape_progress;
3922 sector_div(readpos, data_disks);
3923 safepos = conf->reshape_safe;
3924 sector_div(safepos, data_disks);
3925 if (mddev->delta_disks < 0) {
3926 writepos -= min_t(sector_t, reshape_sectors, writepos);
3927 readpos += reshape_sectors;
3928 safepos += reshape_sectors;
3929 } else {
3930 writepos += reshape_sectors;
3931 readpos -= min_t(sector_t, reshape_sectors, readpos);
3932 safepos -= min_t(sector_t, reshape_sectors, safepos);
3933 }
3934
3935 /* 'writepos' is the most advanced device address we might write.
3936 * 'readpos' is the least advanced device address we might read.
3937 * 'safepos' is the least address recorded in the metadata as having
3938 * been reshaped.
3939 * If 'readpos' is behind 'writepos', then there is no way that we can
3940 * ensure safety in the face of a crash - that must be done by userspace
3941 * making a backup of the data. So in that case there is no particular
3942 * rush to update metadata.
3943 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3944 * update the metadata to advance 'safepos' to match 'readpos' so that
3945 * we can be safe in the event of a crash.
3946 * So we insist on updating metadata if safepos is behind writepos and
3947 * readpos is beyond writepos.
3948 * In any case, update the metadata every 10 seconds.
3949 * Maybe that number should be configurable, but I'm not sure it is
3950 * worth it.... maybe it could be a multiple of safemode_delay???
3951 */
3952 if ((mddev->delta_disks < 0
3953 ? (safepos > writepos && readpos < writepos)
3954 : (safepos < writepos && readpos > writepos)) ||
3955 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
3956 /* Cannot proceed until we've updated the superblock... */
3957 wait_event(conf->wait_for_overlap,
3958 atomic_read(&conf->reshape_stripes)==0);
3959 mddev->reshape_position = conf->reshape_progress;
3960 mddev->curr_resync_completed = sector_nr;
3961 conf->reshape_checkpoint = jiffies;
3962 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3963 md_wakeup_thread(mddev->thread);
3964 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3965 kthread_should_stop());
3966 spin_lock_irq(&conf->device_lock);
3967 conf->reshape_safe = mddev->reshape_position;
3968 spin_unlock_irq(&conf->device_lock);
3969 wake_up(&conf->wait_for_overlap);
3970 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
3971 }
3972
3973 if (mddev->delta_disks < 0) {
3974 BUG_ON(conf->reshape_progress == 0);
3975 stripe_addr = writepos;
3976 BUG_ON((mddev->dev_sectors &
3977 ~((sector_t)reshape_sectors - 1))
3978 - reshape_sectors - stripe_addr
3979 != sector_nr);
3980 } else {
3981 BUG_ON(writepos != sector_nr + reshape_sectors);
3982 stripe_addr = sector_nr;
3983 }
3984 INIT_LIST_HEAD(&stripes);
3985 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
3986 int j;
3987 int skipped_disk = 0;
3988 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
3989 set_bit(STRIPE_EXPANDING, &sh->state);
3990 atomic_inc(&conf->reshape_stripes);
3991 /* If any of this stripe is beyond the end of the old
3992 * array, then we need to zero those blocks
3993 */
3994 for (j=sh->disks; j--;) {
3995 sector_t s;
3996 if (j == sh->pd_idx)
3997 continue;
3998 if (conf->level == 6 &&
3999 j == sh->qd_idx)
4000 continue;
4001 s = compute_blocknr(sh, j, 0);
4002 if (s < raid5_size(mddev, 0, 0)) {
4003 skipped_disk = 1;
4004 continue;
4005 }
4006 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4007 set_bit(R5_Expanded, &sh->dev[j].flags);
4008 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4009 }
4010 if (!skipped_disk) {
4011 set_bit(STRIPE_EXPAND_READY, &sh->state);
4012 set_bit(STRIPE_HANDLE, &sh->state);
4013 }
4014 list_add(&sh->lru, &stripes);
4015 }
4016 spin_lock_irq(&conf->device_lock);
4017 if (mddev->delta_disks < 0)
4018 conf->reshape_progress -= reshape_sectors * new_data_disks;
4019 else
4020 conf->reshape_progress += reshape_sectors * new_data_disks;
4021 spin_unlock_irq(&conf->device_lock);
4022 /* Ok, those stripe are ready. We can start scheduling
4023 * reads on the source stripes.
4024 * The source stripes are determined by mapping the first and last
4025 * block on the destination stripes.
4026 */
4027 first_sector =
4028 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4029 1, &dd_idx, NULL);
4030 last_sector =
4031 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4032 * new_data_disks - 1),
4033 1, &dd_idx, NULL);
4034 if (last_sector >= mddev->dev_sectors)
4035 last_sector = mddev->dev_sectors - 1;
4036 while (first_sector <= last_sector) {
4037 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4038 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4039 set_bit(STRIPE_HANDLE, &sh->state);
4040 release_stripe(sh);
4041 first_sector += STRIPE_SECTORS;
4042 }
4043 /* Now that the sources are clearly marked, we can release
4044 * the destination stripes
4045 */
4046 while (!list_empty(&stripes)) {
4047 sh = list_entry(stripes.next, struct stripe_head, lru);
4048 list_del_init(&sh->lru);
4049 release_stripe(sh);
4050 }
4051 /* If this takes us to the resync_max point where we have to pause,
4052 * then we need to write out the superblock.
4053 */
4054 sector_nr += reshape_sectors;
4055 if ((sector_nr - mddev->curr_resync_completed) * 2
4056 >= mddev->resync_max - mddev->curr_resync_completed) {
4057 /* Cannot proceed until we've updated the superblock... */
4058 wait_event(conf->wait_for_overlap,
4059 atomic_read(&conf->reshape_stripes) == 0);
4060 mddev->reshape_position = conf->reshape_progress;
4061 mddev->curr_resync_completed = sector_nr;
4062 conf->reshape_checkpoint = jiffies;
4063 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4064 md_wakeup_thread(mddev->thread);
4065 wait_event(mddev->sb_wait,
4066 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4067 || kthread_should_stop());
4068 spin_lock_irq(&conf->device_lock);
4069 conf->reshape_safe = mddev->reshape_position;
4070 spin_unlock_irq(&conf->device_lock);
4071 wake_up(&conf->wait_for_overlap);
4072 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4073 }
4074 return reshape_sectors;
4075}
4076
4077/* FIXME go_faster isn't used */
4078static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4079{
4080 raid5_conf_t *conf = mddev->private;
4081 struct stripe_head *sh;
4082 sector_t max_sector = mddev->dev_sectors;
4083 sector_t sync_blocks;
4084 int still_degraded = 0;
4085 int i;
4086
4087 if (sector_nr >= max_sector) {
4088 /* just being told to finish up .. nothing much to do */
4089
4090 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4091 end_reshape(conf);
4092 return 0;
4093 }
4094
4095 if (mddev->curr_resync < max_sector) /* aborted */
4096 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4097 &sync_blocks, 1);
4098 else /* completed sync */
4099 conf->fullsync = 0;
4100 bitmap_close_sync(mddev->bitmap);
4101
4102 return 0;
4103 }
4104
4105 /* Allow raid5_quiesce to complete */
4106 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4107
4108 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4109 return reshape_request(mddev, sector_nr, skipped);
4110
4111 /* No need to check resync_max as we never do more than one
4112 * stripe, and as resync_max will always be on a chunk boundary,
4113 * if the check in md_do_sync didn't fire, there is no chance
4114 * of overstepping resync_max here
4115 */
4116
4117 /* if there is too many failed drives and we are trying
4118 * to resync, then assert that we are finished, because there is
4119 * nothing we can do.
4120 */
4121 if (mddev->degraded >= conf->max_degraded &&
4122 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4123 sector_t rv = mddev->dev_sectors - sector_nr;
4124 *skipped = 1;
4125 return rv;
4126 }
4127 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4128 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4129 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4130 /* we can skip this block, and probably more */
4131 sync_blocks /= STRIPE_SECTORS;
4132 *skipped = 1;
4133 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4134 }
4135
4136
4137 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4138
4139 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4140 if (sh == NULL) {
4141 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4142 /* make sure we don't swamp the stripe cache if someone else
4143 * is trying to get access
4144 */
4145 schedule_timeout_uninterruptible(1);
4146 }
4147 /* Need to check if array will still be degraded after recovery/resync
4148 * We don't need to check the 'failed' flag as when that gets set,
4149 * recovery aborts.
4150 */
4151 for (i = 0; i < conf->raid_disks; i++)
4152 if (conf->disks[i].rdev == NULL)
4153 still_degraded = 1;
4154
4155 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4156
4157 set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
4158
4159 handle_stripe(sh);
4160 release_stripe(sh);
4161
4162 return STRIPE_SECTORS;
4163}
4164
4165static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4166{
4167 /* We may not be able to submit a whole bio at once as there
4168 * may not be enough stripe_heads available.
4169 * We cannot pre-allocate enough stripe_heads as we may need
4170 * more than exist in the cache (if we allow ever large chunks).
4171 * So we do one stripe head at a time and record in
4172 * ->bi_hw_segments how many have been done.
4173 *
4174 * We *know* that this entire raid_bio is in one chunk, so
4175 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4176 */
4177 struct stripe_head *sh;
4178 int dd_idx;
4179 sector_t sector, logical_sector, last_sector;
4180 int scnt = 0;
4181 int remaining;
4182 int handled = 0;
4183
4184 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4185 sector = raid5_compute_sector(conf, logical_sector,
4186 0, &dd_idx, NULL);
4187 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4188
4189 for (; logical_sector < last_sector;
4190 logical_sector += STRIPE_SECTORS,
4191 sector += STRIPE_SECTORS,
4192 scnt++) {
4193
4194 if (scnt < raid5_bi_hw_segments(raid_bio))
4195 /* already done this stripe */
4196 continue;
4197
4198 sh = get_active_stripe(conf, sector, 0, 1, 0);
4199
4200 if (!sh) {
4201 /* failed to get a stripe - must wait */
4202 raid5_set_bi_hw_segments(raid_bio, scnt);
4203 conf->retry_read_aligned = raid_bio;
4204 return handled;
4205 }
4206
4207 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4208 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4209 release_stripe(sh);
4210 raid5_set_bi_hw_segments(raid_bio, scnt);
4211 conf->retry_read_aligned = raid_bio;
4212 return handled;
4213 }
4214
4215 handle_stripe(sh);
4216 release_stripe(sh);
4217 handled++;
4218 }
4219 spin_lock_irq(&conf->device_lock);
4220 remaining = raid5_dec_bi_phys_segments(raid_bio);
4221 spin_unlock_irq(&conf->device_lock);
4222 if (remaining == 0)
4223 bio_endio(raid_bio, 0);
4224 if (atomic_dec_and_test(&conf->active_aligned_reads))
4225 wake_up(&conf->wait_for_stripe);
4226 return handled;
4227}
4228
4229
4230/*
4231 * This is our raid5 kernel thread.
4232 *
4233 * We scan the hash table for stripes which can be handled now.
4234 * During the scan, completed stripes are saved for us by the interrupt
4235 * handler, so that they will not have to wait for our next wakeup.
4236 */
4237static void raid5d(mddev_t *mddev)
4238{
4239 struct stripe_head *sh;
4240 raid5_conf_t *conf = mddev->private;
4241 int handled;
4242 struct blk_plug plug;
4243
4244 pr_debug("+++ raid5d active\n");
4245
4246 md_check_recovery(mddev);
4247
4248 blk_start_plug(&plug);
4249 handled = 0;
4250 spin_lock_irq(&conf->device_lock);
4251 while (1) {
4252 struct bio *bio;
4253
4254 if (atomic_read(&mddev->plug_cnt) == 0 &&
4255 !list_empty(&conf->bitmap_list)) {
4256 /* Now is a good time to flush some bitmap updates */
4257 conf->seq_flush++;
4258 spin_unlock_irq(&conf->device_lock);
4259 bitmap_unplug(mddev->bitmap);
4260 spin_lock_irq(&conf->device_lock);
4261 conf->seq_write = conf->seq_flush;
4262 activate_bit_delay(conf);
4263 }
4264 if (atomic_read(&mddev->plug_cnt) == 0)
4265 raid5_activate_delayed(conf);
4266
4267 while ((bio = remove_bio_from_retry(conf))) {
4268 int ok;
4269 spin_unlock_irq(&conf->device_lock);
4270 ok = retry_aligned_read(conf, bio);
4271 spin_lock_irq(&conf->device_lock);
4272 if (!ok)
4273 break;
4274 handled++;
4275 }
4276
4277 sh = __get_priority_stripe(conf);
4278
4279 if (!sh)
4280 break;
4281 spin_unlock_irq(&conf->device_lock);
4282
4283 handled++;
4284 handle_stripe(sh);
4285 release_stripe(sh);
4286 cond_resched();
4287
4288 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
4289 md_check_recovery(mddev);
4290
4291 spin_lock_irq(&conf->device_lock);
4292 }
4293 pr_debug("%d stripes handled\n", handled);
4294
4295 spin_unlock_irq(&conf->device_lock);
4296
4297 async_tx_issue_pending_all();
4298 blk_finish_plug(&plug);
4299
4300 pr_debug("--- raid5d inactive\n");
4301}
4302
4303static ssize_t
4304raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4305{
4306 raid5_conf_t *conf = mddev->private;
4307 if (conf)
4308 return sprintf(page, "%d\n", conf->max_nr_stripes);
4309 else
4310 return 0;
4311}
4312
4313int
4314raid5_set_cache_size(mddev_t *mddev, int size)
4315{
4316 raid5_conf_t *conf = mddev->private;
4317 int err;
4318
4319 if (size <= 16 || size > 32768)
4320 return -EINVAL;
4321 while (size < conf->max_nr_stripes) {
4322 if (drop_one_stripe(conf))
4323 conf->max_nr_stripes--;
4324 else
4325 break;
4326 }
4327 err = md_allow_write(mddev);
4328 if (err)
4329 return err;
4330 while (size > conf->max_nr_stripes) {
4331 if (grow_one_stripe(conf))
4332 conf->max_nr_stripes++;
4333 else break;
4334 }
4335 return 0;
4336}
4337EXPORT_SYMBOL(raid5_set_cache_size);
4338
4339static ssize_t
4340raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4341{
4342 raid5_conf_t *conf = mddev->private;
4343 unsigned long new;
4344 int err;
4345
4346 if (len >= PAGE_SIZE)
4347 return -EINVAL;
4348 if (!conf)
4349 return -ENODEV;
4350
4351 if (strict_strtoul(page, 10, &new))
4352 return -EINVAL;
4353 err = raid5_set_cache_size(mddev, new);
4354 if (err)
4355 return err;
4356 return len;
4357}
4358
4359static struct md_sysfs_entry
4360raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4361 raid5_show_stripe_cache_size,
4362 raid5_store_stripe_cache_size);
4363
4364static ssize_t
4365raid5_show_preread_threshold(mddev_t *mddev, char *page)
4366{
4367 raid5_conf_t *conf = mddev->private;
4368 if (conf)
4369 return sprintf(page, "%d\n", conf->bypass_threshold);
4370 else
4371 return 0;
4372}
4373
4374static ssize_t
4375raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4376{
4377 raid5_conf_t *conf = mddev->private;
4378 unsigned long new;
4379 if (len >= PAGE_SIZE)
4380 return -EINVAL;
4381 if (!conf)
4382 return -ENODEV;
4383
4384 if (strict_strtoul(page, 10, &new))
4385 return -EINVAL;
4386 if (new > conf->max_nr_stripes)
4387 return -EINVAL;
4388 conf->bypass_threshold = new;
4389 return len;
4390}
4391
4392static struct md_sysfs_entry
4393raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4394 S_IRUGO | S_IWUSR,
4395 raid5_show_preread_threshold,
4396 raid5_store_preread_threshold);
4397
4398static ssize_t
4399stripe_cache_active_show(mddev_t *mddev, char *page)
4400{
4401 raid5_conf_t *conf = mddev->private;
4402 if (conf)
4403 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4404 else
4405 return 0;
4406}
4407
4408static struct md_sysfs_entry
4409raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4410
4411static struct attribute *raid5_attrs[] = {
4412 &raid5_stripecache_size.attr,
4413 &raid5_stripecache_active.attr,
4414 &raid5_preread_bypass_threshold.attr,
4415 NULL,
4416};
4417static struct attribute_group raid5_attrs_group = {
4418 .name = NULL,
4419 .attrs = raid5_attrs,
4420};
4421
4422static sector_t
4423raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4424{
4425 raid5_conf_t *conf = mddev->private;
4426
4427 if (!sectors)
4428 sectors = mddev->dev_sectors;
4429 if (!raid_disks)
4430 /* size is defined by the smallest of previous and new size */
4431 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4432
4433 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4434 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4435 return sectors * (raid_disks - conf->max_degraded);
4436}
4437
4438static void raid5_free_percpu(raid5_conf_t *conf)
4439{
4440 struct raid5_percpu *percpu;
4441 unsigned long cpu;
4442
4443 if (!conf->percpu)
4444 return;
4445
4446 get_online_cpus();
4447 for_each_possible_cpu(cpu) {
4448 percpu = per_cpu_ptr(conf->percpu, cpu);
4449 safe_put_page(percpu->spare_page);
4450 kfree(percpu->scribble);
4451 }
4452#ifdef CONFIG_HOTPLUG_CPU
4453 unregister_cpu_notifier(&conf->cpu_notify);
4454#endif
4455 put_online_cpus();
4456
4457 free_percpu(conf->percpu);
4458}
4459
4460static void free_conf(raid5_conf_t *conf)
4461{
4462 shrink_stripes(conf);
4463 raid5_free_percpu(conf);
4464 kfree(conf->disks);
4465 kfree(conf->stripe_hashtbl);
4466 kfree(conf);
4467}
4468
4469#ifdef CONFIG_HOTPLUG_CPU
4470static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4471 void *hcpu)
4472{
4473 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4474 long cpu = (long)hcpu;
4475 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4476
4477 switch (action) {
4478 case CPU_UP_PREPARE:
4479 case CPU_UP_PREPARE_FROZEN:
4480 if (conf->level == 6 && !percpu->spare_page)
4481 percpu->spare_page = alloc_page(GFP_KERNEL);
4482 if (!percpu->scribble)
4483 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4484
4485 if (!percpu->scribble ||
4486 (conf->level == 6 && !percpu->spare_page)) {
4487 safe_put_page(percpu->spare_page);
4488 kfree(percpu->scribble);
4489 pr_err("%s: failed memory allocation for cpu%ld\n",
4490 __func__, cpu);
4491 return notifier_from_errno(-ENOMEM);
4492 }
4493 break;
4494 case CPU_DEAD:
4495 case CPU_DEAD_FROZEN:
4496 safe_put_page(percpu->spare_page);
4497 kfree(percpu->scribble);
4498 percpu->spare_page = NULL;
4499 percpu->scribble = NULL;
4500 break;
4501 default:
4502 break;
4503 }
4504 return NOTIFY_OK;
4505}
4506#endif
4507
4508static int raid5_alloc_percpu(raid5_conf_t *conf)
4509{
4510 unsigned long cpu;
4511 struct page *spare_page;
4512 struct raid5_percpu __percpu *allcpus;
4513 void *scribble;
4514 int err;
4515
4516 allcpus = alloc_percpu(struct raid5_percpu);
4517 if (!allcpus)
4518 return -ENOMEM;
4519 conf->percpu = allcpus;
4520
4521 get_online_cpus();
4522 err = 0;
4523 for_each_present_cpu(cpu) {
4524 if (conf->level == 6) {
4525 spare_page = alloc_page(GFP_KERNEL);
4526 if (!spare_page) {
4527 err = -ENOMEM;
4528 break;
4529 }
4530 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4531 }
4532 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4533 if (!scribble) {
4534 err = -ENOMEM;
4535 break;
4536 }
4537 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4538 }
4539#ifdef CONFIG_HOTPLUG_CPU
4540 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4541 conf->cpu_notify.priority = 0;
4542 if (err == 0)
4543 err = register_cpu_notifier(&conf->cpu_notify);
4544#endif
4545 put_online_cpus();
4546
4547 return err;
4548}
4549
4550static raid5_conf_t *setup_conf(mddev_t *mddev)
4551{
4552 raid5_conf_t *conf;
4553 int raid_disk, memory, max_disks;
4554 mdk_rdev_t *rdev;
4555 struct disk_info *disk;
4556
4557 if (mddev->new_level != 5
4558 && mddev->new_level != 4
4559 && mddev->new_level != 6) {
4560 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4561 mdname(mddev), mddev->new_level);
4562 return ERR_PTR(-EIO);
4563 }
4564 if ((mddev->new_level == 5
4565 && !algorithm_valid_raid5(mddev->new_layout)) ||
4566 (mddev->new_level == 6
4567 && !algorithm_valid_raid6(mddev->new_layout))) {
4568 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4569 mdname(mddev), mddev->new_layout);
4570 return ERR_PTR(-EIO);
4571 }
4572 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4573 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4574 mdname(mddev), mddev->raid_disks);
4575 return ERR_PTR(-EINVAL);
4576 }
4577
4578 if (!mddev->new_chunk_sectors ||
4579 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4580 !is_power_of_2(mddev->new_chunk_sectors)) {
4581 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4582 mdname(mddev), mddev->new_chunk_sectors << 9);
4583 return ERR_PTR(-EINVAL);
4584 }
4585
4586 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4587 if (conf == NULL)
4588 goto abort;
4589 spin_lock_init(&conf->device_lock);
4590 init_waitqueue_head(&conf->wait_for_stripe);
4591 init_waitqueue_head(&conf->wait_for_overlap);
4592 INIT_LIST_HEAD(&conf->handle_list);
4593 INIT_LIST_HEAD(&conf->hold_list);
4594 INIT_LIST_HEAD(&conf->delayed_list);
4595 INIT_LIST_HEAD(&conf->bitmap_list);
4596 INIT_LIST_HEAD(&conf->inactive_list);
4597 atomic_set(&conf->active_stripes, 0);
4598 atomic_set(&conf->preread_active_stripes, 0);
4599 atomic_set(&conf->active_aligned_reads, 0);
4600 conf->bypass_threshold = BYPASS_THRESHOLD;
4601
4602 conf->raid_disks = mddev->raid_disks;
4603 if (mddev->reshape_position == MaxSector)
4604 conf->previous_raid_disks = mddev->raid_disks;
4605 else
4606 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4607 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4608 conf->scribble_len = scribble_len(max_disks);
4609
4610 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4611 GFP_KERNEL);
4612 if (!conf->disks)
4613 goto abort;
4614
4615 conf->mddev = mddev;
4616
4617 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4618 goto abort;
4619
4620 conf->level = mddev->new_level;
4621 if (raid5_alloc_percpu(conf) != 0)
4622 goto abort;
4623
4624 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4625
4626 list_for_each_entry(rdev, &mddev->disks, same_set) {
4627 raid_disk = rdev->raid_disk;
4628 if (raid_disk >= max_disks
4629 || raid_disk < 0)
4630 continue;
4631 disk = conf->disks + raid_disk;
4632
4633 disk->rdev = rdev;
4634
4635 if (test_bit(In_sync, &rdev->flags)) {
4636 char b[BDEVNAME_SIZE];
4637 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4638 " disk %d\n",
4639 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4640 } else if (rdev->saved_raid_disk != raid_disk)
4641 /* Cannot rely on bitmap to complete recovery */
4642 conf->fullsync = 1;
4643 }
4644
4645 conf->chunk_sectors = mddev->new_chunk_sectors;
4646 conf->level = mddev->new_level;
4647 if (conf->level == 6)
4648 conf->max_degraded = 2;
4649 else
4650 conf->max_degraded = 1;
4651 conf->algorithm = mddev->new_layout;
4652 conf->max_nr_stripes = NR_STRIPES;
4653 conf->reshape_progress = mddev->reshape_position;
4654 if (conf->reshape_progress != MaxSector) {
4655 conf->prev_chunk_sectors = mddev->chunk_sectors;
4656 conf->prev_algo = mddev->layout;
4657 }
4658
4659 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4660 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4661 if (grow_stripes(conf, conf->max_nr_stripes)) {
4662 printk(KERN_ERR
4663 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4664 mdname(mddev), memory);
4665 goto abort;
4666 } else
4667 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4668 mdname(mddev), memory);
4669
4670 conf->thread = md_register_thread(raid5d, mddev, NULL);
4671 if (!conf->thread) {
4672 printk(KERN_ERR
4673 "md/raid:%s: couldn't allocate thread.\n",
4674 mdname(mddev));
4675 goto abort;
4676 }
4677
4678 return conf;
4679
4680 abort:
4681 if (conf) {
4682 free_conf(conf);
4683 return ERR_PTR(-EIO);
4684 } else
4685 return ERR_PTR(-ENOMEM);
4686}
4687
4688
4689static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4690{
4691 switch (algo) {
4692 case ALGORITHM_PARITY_0:
4693 if (raid_disk < max_degraded)
4694 return 1;
4695 break;
4696 case ALGORITHM_PARITY_N:
4697 if (raid_disk >= raid_disks - max_degraded)
4698 return 1;
4699 break;
4700 case ALGORITHM_PARITY_0_6:
4701 if (raid_disk == 0 ||
4702 raid_disk == raid_disks - 1)
4703 return 1;
4704 break;
4705 case ALGORITHM_LEFT_ASYMMETRIC_6:
4706 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4707 case ALGORITHM_LEFT_SYMMETRIC_6:
4708 case ALGORITHM_RIGHT_SYMMETRIC_6:
4709 if (raid_disk == raid_disks - 1)
4710 return 1;
4711 }
4712 return 0;
4713}
4714
4715static int run(mddev_t *mddev)
4716{
4717 raid5_conf_t *conf;
4718 int working_disks = 0;
4719 int dirty_parity_disks = 0;
4720 mdk_rdev_t *rdev;
4721 sector_t reshape_offset = 0;
4722
4723 if (mddev->recovery_cp != MaxSector)
4724 printk(KERN_NOTICE "md/raid:%s: not clean"
4725 " -- starting background reconstruction\n",
4726 mdname(mddev));
4727 if (mddev->reshape_position != MaxSector) {
4728 /* Check that we can continue the reshape.
4729 * Currently only disks can change, it must
4730 * increase, and we must be past the point where
4731 * a stripe over-writes itself
4732 */
4733 sector_t here_new, here_old;
4734 int old_disks;
4735 int max_degraded = (mddev->level == 6 ? 2 : 1);
4736
4737 if (mddev->new_level != mddev->level) {
4738 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4739 "required - aborting.\n",
4740 mdname(mddev));
4741 return -EINVAL;
4742 }
4743 old_disks = mddev->raid_disks - mddev->delta_disks;
4744 /* reshape_position must be on a new-stripe boundary, and one
4745 * further up in new geometry must map after here in old
4746 * geometry.
4747 */
4748 here_new = mddev->reshape_position;
4749 if (sector_div(here_new, mddev->new_chunk_sectors *
4750 (mddev->raid_disks - max_degraded))) {
4751 printk(KERN_ERR "md/raid:%s: reshape_position not "
4752 "on a stripe boundary\n", mdname(mddev));
4753 return -EINVAL;
4754 }
4755 reshape_offset = here_new * mddev->new_chunk_sectors;
4756 /* here_new is the stripe we will write to */
4757 here_old = mddev->reshape_position;
4758 sector_div(here_old, mddev->chunk_sectors *
4759 (old_disks-max_degraded));
4760 /* here_old is the first stripe that we might need to read
4761 * from */
4762 if (mddev->delta_disks == 0) {
4763 /* We cannot be sure it is safe to start an in-place
4764 * reshape. It is only safe if user-space if monitoring
4765 * and taking constant backups.
4766 * mdadm always starts a situation like this in
4767 * readonly mode so it can take control before
4768 * allowing any writes. So just check for that.
4769 */
4770 if ((here_new * mddev->new_chunk_sectors !=
4771 here_old * mddev->chunk_sectors) ||
4772 mddev->ro == 0) {
4773 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
4774 " in read-only mode - aborting\n",
4775 mdname(mddev));
4776 return -EINVAL;
4777 }
4778 } else if (mddev->delta_disks < 0
4779 ? (here_new * mddev->new_chunk_sectors <=
4780 here_old * mddev->chunk_sectors)
4781 : (here_new * mddev->new_chunk_sectors >=
4782 here_old * mddev->chunk_sectors)) {
4783 /* Reading from the same stripe as writing to - bad */
4784 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
4785 "auto-recovery - aborting.\n",
4786 mdname(mddev));
4787 return -EINVAL;
4788 }
4789 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
4790 mdname(mddev));
4791 /* OK, we should be able to continue; */
4792 } else {
4793 BUG_ON(mddev->level != mddev->new_level);
4794 BUG_ON(mddev->layout != mddev->new_layout);
4795 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4796 BUG_ON(mddev->delta_disks != 0);
4797 }
4798
4799 if (mddev->private == NULL)
4800 conf = setup_conf(mddev);
4801 else
4802 conf = mddev->private;
4803
4804 if (IS_ERR(conf))
4805 return PTR_ERR(conf);
4806
4807 mddev->thread = conf->thread;
4808 conf->thread = NULL;
4809 mddev->private = conf;
4810
4811 /*
4812 * 0 for a fully functional array, 1 or 2 for a degraded array.
4813 */
4814 list_for_each_entry(rdev, &mddev->disks, same_set) {
4815 if (rdev->raid_disk < 0)
4816 continue;
4817 if (test_bit(In_sync, &rdev->flags)) {
4818 working_disks++;
4819 continue;
4820 }
4821 /* This disc is not fully in-sync. However if it
4822 * just stored parity (beyond the recovery_offset),
4823 * when we don't need to be concerned about the
4824 * array being dirty.
4825 * When reshape goes 'backwards', we never have
4826 * partially completed devices, so we only need
4827 * to worry about reshape going forwards.
4828 */
4829 /* Hack because v0.91 doesn't store recovery_offset properly. */
4830 if (mddev->major_version == 0 &&
4831 mddev->minor_version > 90)
4832 rdev->recovery_offset = reshape_offset;
4833
4834 if (rdev->recovery_offset < reshape_offset) {
4835 /* We need to check old and new layout */
4836 if (!only_parity(rdev->raid_disk,
4837 conf->algorithm,
4838 conf->raid_disks,
4839 conf->max_degraded))
4840 continue;
4841 }
4842 if (!only_parity(rdev->raid_disk,
4843 conf->prev_algo,
4844 conf->previous_raid_disks,
4845 conf->max_degraded))
4846 continue;
4847 dirty_parity_disks++;
4848 }
4849
4850 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
4851 - working_disks);
4852
4853 if (has_failed(conf)) {
4854 printk(KERN_ERR "md/raid:%s: not enough operational devices"
4855 " (%d/%d failed)\n",
4856 mdname(mddev), mddev->degraded, conf->raid_disks);
4857 goto abort;
4858 }
4859
4860 /* device size must be a multiple of chunk size */
4861 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
4862 mddev->resync_max_sectors = mddev->dev_sectors;
4863
4864 if (mddev->degraded > dirty_parity_disks &&
4865 mddev->recovery_cp != MaxSector) {
4866 if (mddev->ok_start_degraded)
4867 printk(KERN_WARNING
4868 "md/raid:%s: starting dirty degraded array"
4869 " - data corruption possible.\n",
4870 mdname(mddev));
4871 else {
4872 printk(KERN_ERR
4873 "md/raid:%s: cannot start dirty degraded array.\n",
4874 mdname(mddev));
4875 goto abort;
4876 }
4877 }
4878
4879 if (mddev->degraded == 0)
4880 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
4881 " devices, algorithm %d\n", mdname(mddev), conf->level,
4882 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4883 mddev->new_layout);
4884 else
4885 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
4886 " out of %d devices, algorithm %d\n",
4887 mdname(mddev), conf->level,
4888 mddev->raid_disks - mddev->degraded,
4889 mddev->raid_disks, mddev->new_layout);
4890
4891 print_raid5_conf(conf);
4892
4893 if (conf->reshape_progress != MaxSector) {
4894 conf->reshape_safe = conf->reshape_progress;
4895 atomic_set(&conf->reshape_stripes, 0);
4896 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4897 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4898 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4899 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4900 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4901 "reshape");
4902 }
4903
4904
4905 /* Ok, everything is just fine now */
4906 if (mddev->to_remove == &raid5_attrs_group)
4907 mddev->to_remove = NULL;
4908 else if (mddev->kobj.sd &&
4909 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4910 printk(KERN_WARNING
4911 "raid5: failed to create sysfs attributes for %s\n",
4912 mdname(mddev));
4913 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
4914
4915 if (mddev->queue) {
4916 int chunk_size;
4917 /* read-ahead size must cover two whole stripes, which
4918 * is 2 * (datadisks) * chunksize where 'n' is the
4919 * number of raid devices
4920 */
4921 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4922 int stripe = data_disks *
4923 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
4924 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4925 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4926
4927 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4928
4929 mddev->queue->backing_dev_info.congested_data = mddev;
4930 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4931
4932 chunk_size = mddev->chunk_sectors << 9;
4933 blk_queue_io_min(mddev->queue, chunk_size);
4934 blk_queue_io_opt(mddev->queue, chunk_size *
4935 (conf->raid_disks - conf->max_degraded));
4936
4937 list_for_each_entry(rdev, &mddev->disks, same_set)
4938 disk_stack_limits(mddev->gendisk, rdev->bdev,
4939 rdev->data_offset << 9);
4940 }
4941
4942 return 0;
4943abort:
4944 md_unregister_thread(&mddev->thread);
4945 if (conf) {
4946 print_raid5_conf(conf);
4947 free_conf(conf);
4948 }
4949 mddev->private = NULL;
4950 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
4951 return -EIO;
4952}
4953
4954static int stop(mddev_t *mddev)
4955{
4956 raid5_conf_t *conf = mddev->private;
4957
4958 md_unregister_thread(&mddev->thread);
4959 if (mddev->queue)
4960 mddev->queue->backing_dev_info.congested_fn = NULL;
4961 free_conf(conf);
4962 mddev->private = NULL;
4963 mddev->to_remove = &raid5_attrs_group;
4964 return 0;
4965}
4966
4967#ifdef DEBUG
4968static void print_sh(struct seq_file *seq, struct stripe_head *sh)
4969{
4970 int i;
4971
4972 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4973 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4974 seq_printf(seq, "sh %llu, count %d.\n",
4975 (unsigned long long)sh->sector, atomic_read(&sh->count));
4976 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4977 for (i = 0; i < sh->disks; i++) {
4978 seq_printf(seq, "(cache%d: %p %ld) ",
4979 i, sh->dev[i].page, sh->dev[i].flags);
4980 }
4981 seq_printf(seq, "\n");
4982}
4983
4984static void printall(struct seq_file *seq, raid5_conf_t *conf)
4985{
4986 struct stripe_head *sh;
4987 struct hlist_node *hn;
4988 int i;
4989
4990 spin_lock_irq(&conf->device_lock);
4991 for (i = 0; i < NR_HASH; i++) {
4992 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4993 if (sh->raid_conf != conf)
4994 continue;
4995 print_sh(seq, sh);
4996 }
4997 }
4998 spin_unlock_irq(&conf->device_lock);
4999}
5000#endif
5001
5002static void status(struct seq_file *seq, mddev_t *mddev)
5003{
5004 raid5_conf_t *conf = mddev->private;
5005 int i;
5006
5007 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5008 mddev->chunk_sectors / 2, mddev->layout);
5009 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5010 for (i = 0; i < conf->raid_disks; i++)
5011 seq_printf (seq, "%s",
5012 conf->disks[i].rdev &&
5013 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5014 seq_printf (seq, "]");
5015#ifdef DEBUG
5016 seq_printf (seq, "\n");
5017 printall(seq, conf);
5018#endif
5019}
5020
5021static void print_raid5_conf (raid5_conf_t *conf)
5022{
5023 int i;
5024 struct disk_info *tmp;
5025
5026 printk(KERN_DEBUG "RAID conf printout:\n");
5027 if (!conf) {
5028 printk("(conf==NULL)\n");
5029 return;
5030 }
5031 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5032 conf->raid_disks,
5033 conf->raid_disks - conf->mddev->degraded);
5034
5035 for (i = 0; i < conf->raid_disks; i++) {
5036 char b[BDEVNAME_SIZE];
5037 tmp = conf->disks + i;
5038 if (tmp->rdev)
5039 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5040 i, !test_bit(Faulty, &tmp->rdev->flags),
5041 bdevname(tmp->rdev->bdev, b));
5042 }
5043}
5044
5045static int raid5_spare_active(mddev_t *mddev)
5046{
5047 int i;
5048 raid5_conf_t *conf = mddev->private;
5049 struct disk_info *tmp;
5050 int count = 0;
5051 unsigned long flags;
5052
5053 for (i = 0; i < conf->raid_disks; i++) {
5054 tmp = conf->disks + i;
5055 if (tmp->rdev
5056 && tmp->rdev->recovery_offset == MaxSector
5057 && !test_bit(Faulty, &tmp->rdev->flags)
5058 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5059 count++;
5060 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5061 }
5062 }
5063 spin_lock_irqsave(&conf->device_lock, flags);
5064 mddev->degraded -= count;
5065 spin_unlock_irqrestore(&conf->device_lock, flags);
5066 print_raid5_conf(conf);
5067 return count;
5068}
5069
5070static int raid5_remove_disk(mddev_t *mddev, int number)
5071{
5072 raid5_conf_t *conf = mddev->private;
5073 int err = 0;
5074 mdk_rdev_t *rdev;
5075 struct disk_info *p = conf->disks + number;
5076
5077 print_raid5_conf(conf);
5078 rdev = p->rdev;
5079 if (rdev) {
5080 if (number >= conf->raid_disks &&
5081 conf->reshape_progress == MaxSector)
5082 clear_bit(In_sync, &rdev->flags);
5083
5084 if (test_bit(In_sync, &rdev->flags) ||
5085 atomic_read(&rdev->nr_pending)) {
5086 err = -EBUSY;
5087 goto abort;
5088 }
5089 /* Only remove non-faulty devices if recovery
5090 * isn't possible.
5091 */
5092 if (!test_bit(Faulty, &rdev->flags) &&
5093 mddev->recovery_disabled != conf->recovery_disabled &&
5094 !has_failed(conf) &&
5095 number < conf->raid_disks) {
5096 err = -EBUSY;
5097 goto abort;
5098 }
5099 p->rdev = NULL;
5100 synchronize_rcu();
5101 if (atomic_read(&rdev->nr_pending)) {
5102 /* lost the race, try later */
5103 err = -EBUSY;
5104 p->rdev = rdev;
5105 }
5106 }
5107abort:
5108
5109 print_raid5_conf(conf);
5110 return err;
5111}
5112
5113static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5114{
5115 raid5_conf_t *conf = mddev->private;
5116 int err = -EEXIST;
5117 int disk;
5118 struct disk_info *p;
5119 int first = 0;
5120 int last = conf->raid_disks - 1;
5121
5122 if (mddev->recovery_disabled == conf->recovery_disabled)
5123 return -EBUSY;
5124
5125 if (has_failed(conf))
5126 /* no point adding a device */
5127 return -EINVAL;
5128
5129 if (rdev->raid_disk >= 0)
5130 first = last = rdev->raid_disk;
5131
5132 /*
5133 * find the disk ... but prefer rdev->saved_raid_disk
5134 * if possible.
5135 */
5136 if (rdev->saved_raid_disk >= 0 &&
5137 rdev->saved_raid_disk >= first &&
5138 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5139 disk = rdev->saved_raid_disk;
5140 else
5141 disk = first;
5142 for ( ; disk <= last ; disk++)
5143 if ((p=conf->disks + disk)->rdev == NULL) {
5144 clear_bit(In_sync, &rdev->flags);
5145 rdev->raid_disk = disk;
5146 err = 0;
5147 if (rdev->saved_raid_disk != disk)
5148 conf->fullsync = 1;
5149 rcu_assign_pointer(p->rdev, rdev);
5150 break;
5151 }
5152 print_raid5_conf(conf);
5153 return err;
5154}
5155
5156static int raid5_resize(mddev_t *mddev, sector_t sectors)
5157{
5158 /* no resync is happening, and there is enough space
5159 * on all devices, so we can resize.
5160 * We need to make sure resync covers any new space.
5161 * If the array is shrinking we should possibly wait until
5162 * any io in the removed space completes, but it hardly seems
5163 * worth it.
5164 */
5165 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5166 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5167 mddev->raid_disks));
5168 if (mddev->array_sectors >
5169 raid5_size(mddev, sectors, mddev->raid_disks))
5170 return -EINVAL;
5171 set_capacity(mddev->gendisk, mddev->array_sectors);
5172 revalidate_disk(mddev->gendisk);
5173 if (sectors > mddev->dev_sectors &&
5174 mddev->recovery_cp > mddev->dev_sectors) {
5175 mddev->recovery_cp = mddev->dev_sectors;
5176 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5177 }
5178 mddev->dev_sectors = sectors;
5179 mddev->resync_max_sectors = sectors;
5180 return 0;
5181}
5182
5183static int check_stripe_cache(mddev_t *mddev)
5184{
5185 /* Can only proceed if there are plenty of stripe_heads.
5186 * We need a minimum of one full stripe,, and for sensible progress
5187 * it is best to have about 4 times that.
5188 * If we require 4 times, then the default 256 4K stripe_heads will
5189 * allow for chunk sizes up to 256K, which is probably OK.
5190 * If the chunk size is greater, user-space should request more
5191 * stripe_heads first.
5192 */
5193 raid5_conf_t *conf = mddev->private;
5194 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5195 > conf->max_nr_stripes ||
5196 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5197 > conf->max_nr_stripes) {
5198 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5199 mdname(mddev),
5200 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5201 / STRIPE_SIZE)*4);
5202 return 0;
5203 }
5204 return 1;
5205}
5206
5207static int check_reshape(mddev_t *mddev)
5208{
5209 raid5_conf_t *conf = mddev->private;
5210
5211 if (mddev->delta_disks == 0 &&
5212 mddev->new_layout == mddev->layout &&
5213 mddev->new_chunk_sectors == mddev->chunk_sectors)
5214 return 0; /* nothing to do */
5215 if (mddev->bitmap)
5216 /* Cannot grow a bitmap yet */
5217 return -EBUSY;
5218 if (has_failed(conf))
5219 return -EINVAL;
5220 if (mddev->delta_disks < 0) {
5221 /* We might be able to shrink, but the devices must
5222 * be made bigger first.
5223 * For raid6, 4 is the minimum size.
5224 * Otherwise 2 is the minimum
5225 */
5226 int min = 2;
5227 if (mddev->level == 6)
5228 min = 4;
5229 if (mddev->raid_disks + mddev->delta_disks < min)
5230 return -EINVAL;
5231 }
5232
5233 if (!check_stripe_cache(mddev))
5234 return -ENOSPC;
5235
5236 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5237}
5238
5239static int raid5_start_reshape(mddev_t *mddev)
5240{
5241 raid5_conf_t *conf = mddev->private;
5242 mdk_rdev_t *rdev;
5243 int spares = 0;
5244 unsigned long flags;
5245
5246 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5247 return -EBUSY;
5248
5249 if (!check_stripe_cache(mddev))
5250 return -ENOSPC;
5251
5252 list_for_each_entry(rdev, &mddev->disks, same_set)
5253 if (!test_bit(In_sync, &rdev->flags)
5254 && !test_bit(Faulty, &rdev->flags))
5255 spares++;
5256
5257 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5258 /* Not enough devices even to make a degraded array
5259 * of that size
5260 */
5261 return -EINVAL;
5262
5263 /* Refuse to reduce size of the array. Any reductions in
5264 * array size must be through explicit setting of array_size
5265 * attribute.
5266 */
5267 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5268 < mddev->array_sectors) {
5269 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5270 "before number of disks\n", mdname(mddev));
5271 return -EINVAL;
5272 }
5273
5274 atomic_set(&conf->reshape_stripes, 0);
5275 spin_lock_irq(&conf->device_lock);
5276 conf->previous_raid_disks = conf->raid_disks;
5277 conf->raid_disks += mddev->delta_disks;
5278 conf->prev_chunk_sectors = conf->chunk_sectors;
5279 conf->chunk_sectors = mddev->new_chunk_sectors;
5280 conf->prev_algo = conf->algorithm;
5281 conf->algorithm = mddev->new_layout;
5282 if (mddev->delta_disks < 0)
5283 conf->reshape_progress = raid5_size(mddev, 0, 0);
5284 else
5285 conf->reshape_progress = 0;
5286 conf->reshape_safe = conf->reshape_progress;
5287 conf->generation++;
5288 spin_unlock_irq(&conf->device_lock);
5289
5290 /* Add some new drives, as many as will fit.
5291 * We know there are enough to make the newly sized array work.
5292 * Don't add devices if we are reducing the number of
5293 * devices in the array. This is because it is not possible
5294 * to correctly record the "partially reconstructed" state of
5295 * such devices during the reshape and confusion could result.
5296 */
5297 if (mddev->delta_disks >= 0) {
5298 int added_devices = 0;
5299 list_for_each_entry(rdev, &mddev->disks, same_set)
5300 if (rdev->raid_disk < 0 &&
5301 !test_bit(Faulty, &rdev->flags)) {
5302 if (raid5_add_disk(mddev, rdev) == 0) {
5303 if (rdev->raid_disk
5304 >= conf->previous_raid_disks) {
5305 set_bit(In_sync, &rdev->flags);
5306 added_devices++;
5307 } else
5308 rdev->recovery_offset = 0;
5309
5310 if (sysfs_link_rdev(mddev, rdev))
5311 /* Failure here is OK */;
5312 }
5313 } else if (rdev->raid_disk >= conf->previous_raid_disks
5314 && !test_bit(Faulty, &rdev->flags)) {
5315 /* This is a spare that was manually added */
5316 set_bit(In_sync, &rdev->flags);
5317 added_devices++;
5318 }
5319
5320 /* When a reshape changes the number of devices,
5321 * ->degraded is measured against the larger of the
5322 * pre and post number of devices.
5323 */
5324 spin_lock_irqsave(&conf->device_lock, flags);
5325 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5326 - added_devices;
5327 spin_unlock_irqrestore(&conf->device_lock, flags);
5328 }
5329 mddev->raid_disks = conf->raid_disks;
5330 mddev->reshape_position = conf->reshape_progress;
5331 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5332
5333 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5334 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5335 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5336 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5337 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5338 "reshape");
5339 if (!mddev->sync_thread) {
5340 mddev->recovery = 0;
5341 spin_lock_irq(&conf->device_lock);
5342 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5343 conf->reshape_progress = MaxSector;
5344 spin_unlock_irq(&conf->device_lock);
5345 return -EAGAIN;
5346 }
5347 conf->reshape_checkpoint = jiffies;
5348 md_wakeup_thread(mddev->sync_thread);
5349 md_new_event(mddev);
5350 return 0;
5351}
5352
5353/* This is called from the reshape thread and should make any
5354 * changes needed in 'conf'
5355 */
5356static void end_reshape(raid5_conf_t *conf)
5357{
5358
5359 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5360
5361 spin_lock_irq(&conf->device_lock);
5362 conf->previous_raid_disks = conf->raid_disks;
5363 conf->reshape_progress = MaxSector;
5364 spin_unlock_irq(&conf->device_lock);
5365 wake_up(&conf->wait_for_overlap);
5366
5367 /* read-ahead size must cover two whole stripes, which is
5368 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5369 */
5370 if (conf->mddev->queue) {
5371 int data_disks = conf->raid_disks - conf->max_degraded;
5372 int stripe = data_disks * ((conf->chunk_sectors << 9)
5373 / PAGE_SIZE);
5374 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5375 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5376 }
5377 }
5378}
5379
5380/* This is called from the raid5d thread with mddev_lock held.
5381 * It makes config changes to the device.
5382 */
5383static void raid5_finish_reshape(mddev_t *mddev)
5384{
5385 raid5_conf_t *conf = mddev->private;
5386
5387 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5388
5389 if (mddev->delta_disks > 0) {
5390 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5391 set_capacity(mddev->gendisk, mddev->array_sectors);
5392 revalidate_disk(mddev->gendisk);
5393 } else {
5394 int d;
5395 mddev->degraded = conf->raid_disks;
5396 for (d = 0; d < conf->raid_disks ; d++)
5397 if (conf->disks[d].rdev &&
5398 test_bit(In_sync,
5399 &conf->disks[d].rdev->flags))
5400 mddev->degraded--;
5401 for (d = conf->raid_disks ;
5402 d < conf->raid_disks - mddev->delta_disks;
5403 d++) {
5404 mdk_rdev_t *rdev = conf->disks[d].rdev;
5405 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5406 sysfs_unlink_rdev(mddev, rdev);
5407 rdev->raid_disk = -1;
5408 }
5409 }
5410 }
5411 mddev->layout = conf->algorithm;
5412 mddev->chunk_sectors = conf->chunk_sectors;
5413 mddev->reshape_position = MaxSector;
5414 mddev->delta_disks = 0;
5415 }
5416}
5417
5418static void raid5_quiesce(mddev_t *mddev, int state)
5419{
5420 raid5_conf_t *conf = mddev->private;
5421
5422 switch(state) {
5423 case 2: /* resume for a suspend */
5424 wake_up(&conf->wait_for_overlap);
5425 break;
5426
5427 case 1: /* stop all writes */
5428 spin_lock_irq(&conf->device_lock);
5429 /* '2' tells resync/reshape to pause so that all
5430 * active stripes can drain
5431 */
5432 conf->quiesce = 2;
5433 wait_event_lock_irq(conf->wait_for_stripe,
5434 atomic_read(&conf->active_stripes) == 0 &&
5435 atomic_read(&conf->active_aligned_reads) == 0,
5436 conf->device_lock, /* nothing */);
5437 conf->quiesce = 1;
5438 spin_unlock_irq(&conf->device_lock);
5439 /* allow reshape to continue */
5440 wake_up(&conf->wait_for_overlap);
5441 break;
5442
5443 case 0: /* re-enable writes */
5444 spin_lock_irq(&conf->device_lock);
5445 conf->quiesce = 0;
5446 wake_up(&conf->wait_for_stripe);
5447 wake_up(&conf->wait_for_overlap);
5448 spin_unlock_irq(&conf->device_lock);
5449 break;
5450 }
5451}
5452
5453
5454static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5455{
5456 struct raid0_private_data *raid0_priv = mddev->private;
5457 sector_t sectors;
5458
5459 /* for raid0 takeover only one zone is supported */
5460 if (raid0_priv->nr_strip_zones > 1) {
5461 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5462 mdname(mddev));
5463 return ERR_PTR(-EINVAL);
5464 }
5465
5466 sectors = raid0_priv->strip_zone[0].zone_end;
5467 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5468 mddev->dev_sectors = sectors;
5469 mddev->new_level = level;
5470 mddev->new_layout = ALGORITHM_PARITY_N;
5471 mddev->new_chunk_sectors = mddev->chunk_sectors;
5472 mddev->raid_disks += 1;
5473 mddev->delta_disks = 1;
5474 /* make sure it will be not marked as dirty */
5475 mddev->recovery_cp = MaxSector;
5476
5477 return setup_conf(mddev);
5478}
5479
5480
5481static void *raid5_takeover_raid1(mddev_t *mddev)
5482{
5483 int chunksect;
5484
5485 if (mddev->raid_disks != 2 ||
5486 mddev->degraded > 1)
5487 return ERR_PTR(-EINVAL);
5488
5489 /* Should check if there are write-behind devices? */
5490
5491 chunksect = 64*2; /* 64K by default */
5492
5493 /* The array must be an exact multiple of chunksize */
5494 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5495 chunksect >>= 1;
5496
5497 if ((chunksect<<9) < STRIPE_SIZE)
5498 /* array size does not allow a suitable chunk size */
5499 return ERR_PTR(-EINVAL);
5500
5501 mddev->new_level = 5;
5502 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5503 mddev->new_chunk_sectors = chunksect;
5504
5505 return setup_conf(mddev);
5506}
5507
5508static void *raid5_takeover_raid6(mddev_t *mddev)
5509{
5510 int new_layout;
5511
5512 switch (mddev->layout) {
5513 case ALGORITHM_LEFT_ASYMMETRIC_6:
5514 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5515 break;
5516 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5517 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5518 break;
5519 case ALGORITHM_LEFT_SYMMETRIC_6:
5520 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5521 break;
5522 case ALGORITHM_RIGHT_SYMMETRIC_6:
5523 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5524 break;
5525 case ALGORITHM_PARITY_0_6:
5526 new_layout = ALGORITHM_PARITY_0;
5527 break;
5528 case ALGORITHM_PARITY_N:
5529 new_layout = ALGORITHM_PARITY_N;
5530 break;
5531 default:
5532 return ERR_PTR(-EINVAL);
5533 }
5534 mddev->new_level = 5;
5535 mddev->new_layout = new_layout;
5536 mddev->delta_disks = -1;
5537 mddev->raid_disks -= 1;
5538 return setup_conf(mddev);
5539}
5540
5541
5542static int raid5_check_reshape(mddev_t *mddev)
5543{
5544 /* For a 2-drive array, the layout and chunk size can be changed
5545 * immediately as not restriping is needed.
5546 * For larger arrays we record the new value - after validation
5547 * to be used by a reshape pass.
5548 */
5549 raid5_conf_t *conf = mddev->private;
5550 int new_chunk = mddev->new_chunk_sectors;
5551
5552 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5553 return -EINVAL;
5554 if (new_chunk > 0) {
5555 if (!is_power_of_2(new_chunk))
5556 return -EINVAL;
5557 if (new_chunk < (PAGE_SIZE>>9))
5558 return -EINVAL;
5559 if (mddev->array_sectors & (new_chunk-1))
5560 /* not factor of array size */
5561 return -EINVAL;
5562 }
5563
5564 /* They look valid */
5565
5566 if (mddev->raid_disks == 2) {
5567 /* can make the change immediately */
5568 if (mddev->new_layout >= 0) {
5569 conf->algorithm = mddev->new_layout;
5570 mddev->layout = mddev->new_layout;
5571 }
5572 if (new_chunk > 0) {
5573 conf->chunk_sectors = new_chunk ;
5574 mddev->chunk_sectors = new_chunk;
5575 }
5576 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5577 md_wakeup_thread(mddev->thread);
5578 }
5579 return check_reshape(mddev);
5580}
5581
5582static int raid6_check_reshape(mddev_t *mddev)
5583{
5584 int new_chunk = mddev->new_chunk_sectors;
5585
5586 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5587 return -EINVAL;
5588 if (new_chunk > 0) {
5589 if (!is_power_of_2(new_chunk))
5590 return -EINVAL;
5591 if (new_chunk < (PAGE_SIZE >> 9))
5592 return -EINVAL;
5593 if (mddev->array_sectors & (new_chunk-1))
5594 /* not factor of array size */
5595 return -EINVAL;
5596 }
5597
5598 /* They look valid */
5599 return check_reshape(mddev);
5600}
5601
5602static void *raid5_takeover(mddev_t *mddev)
5603{
5604 /* raid5 can take over:
5605 * raid0 - if there is only one strip zone - make it a raid4 layout
5606 * raid1 - if there are two drives. We need to know the chunk size
5607 * raid4 - trivial - just use a raid4 layout.
5608 * raid6 - Providing it is a *_6 layout
5609 */
5610 if (mddev->level == 0)
5611 return raid45_takeover_raid0(mddev, 5);
5612 if (mddev->level == 1)
5613 return raid5_takeover_raid1(mddev);
5614 if (mddev->level == 4) {
5615 mddev->new_layout = ALGORITHM_PARITY_N;
5616 mddev->new_level = 5;
5617 return setup_conf(mddev);
5618 }
5619 if (mddev->level == 6)
5620 return raid5_takeover_raid6(mddev);
5621
5622 return ERR_PTR(-EINVAL);
5623}
5624
5625static void *raid4_takeover(mddev_t *mddev)
5626{
5627 /* raid4 can take over:
5628 * raid0 - if there is only one strip zone
5629 * raid5 - if layout is right
5630 */
5631 if (mddev->level == 0)
5632 return raid45_takeover_raid0(mddev, 4);
5633 if (mddev->level == 5 &&
5634 mddev->layout == ALGORITHM_PARITY_N) {
5635 mddev->new_layout = 0;
5636 mddev->new_level = 4;
5637 return setup_conf(mddev);
5638 }
5639 return ERR_PTR(-EINVAL);
5640}
5641
5642static struct mdk_personality raid5_personality;
5643
5644static void *raid6_takeover(mddev_t *mddev)
5645{
5646 /* Currently can only take over a raid5. We map the
5647 * personality to an equivalent raid6 personality
5648 * with the Q block at the end.
5649 */
5650 int new_layout;
5651
5652 if (mddev->pers != &raid5_personality)
5653 return ERR_PTR(-EINVAL);
5654 if (mddev->degraded > 1)
5655 return ERR_PTR(-EINVAL);
5656 if (mddev->raid_disks > 253)
5657 return ERR_PTR(-EINVAL);
5658 if (mddev->raid_disks < 3)
5659 return ERR_PTR(-EINVAL);
5660
5661 switch (mddev->layout) {
5662 case ALGORITHM_LEFT_ASYMMETRIC:
5663 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5664 break;
5665 case ALGORITHM_RIGHT_ASYMMETRIC:
5666 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5667 break;
5668 case ALGORITHM_LEFT_SYMMETRIC:
5669 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5670 break;
5671 case ALGORITHM_RIGHT_SYMMETRIC:
5672 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5673 break;
5674 case ALGORITHM_PARITY_0:
5675 new_layout = ALGORITHM_PARITY_0_6;
5676 break;
5677 case ALGORITHM_PARITY_N:
5678 new_layout = ALGORITHM_PARITY_N;
5679 break;
5680 default:
5681 return ERR_PTR(-EINVAL);
5682 }
5683 mddev->new_level = 6;
5684 mddev->new_layout = new_layout;
5685 mddev->delta_disks = 1;
5686 mddev->raid_disks += 1;
5687 return setup_conf(mddev);
5688}
5689
5690
5691static struct mdk_personality raid6_personality =
5692{
5693 .name = "raid6",
5694 .level = 6,
5695 .owner = THIS_MODULE,
5696 .make_request = make_request,
5697 .run = run,
5698 .stop = stop,
5699 .status = status,
5700 .error_handler = error,
5701 .hot_add_disk = raid5_add_disk,
5702 .hot_remove_disk= raid5_remove_disk,
5703 .spare_active = raid5_spare_active,
5704 .sync_request = sync_request,
5705 .resize = raid5_resize,
5706 .size = raid5_size,
5707 .check_reshape = raid6_check_reshape,
5708 .start_reshape = raid5_start_reshape,
5709 .finish_reshape = raid5_finish_reshape,
5710 .quiesce = raid5_quiesce,
5711 .takeover = raid6_takeover,
5712};
5713static struct mdk_personality raid5_personality =
5714{
5715 .name = "raid5",
5716 .level = 5,
5717 .owner = THIS_MODULE,
5718 .make_request = make_request,
5719 .run = run,
5720 .stop = stop,
5721 .status = status,
5722 .error_handler = error,
5723 .hot_add_disk = raid5_add_disk,
5724 .hot_remove_disk= raid5_remove_disk,
5725 .spare_active = raid5_spare_active,
5726 .sync_request = sync_request,
5727 .resize = raid5_resize,
5728 .size = raid5_size,
5729 .check_reshape = raid5_check_reshape,
5730 .start_reshape = raid5_start_reshape,
5731 .finish_reshape = raid5_finish_reshape,
5732 .quiesce = raid5_quiesce,
5733 .takeover = raid5_takeover,
5734};
5735
5736static struct mdk_personality raid4_personality =
5737{
5738 .name = "raid4",
5739 .level = 4,
5740 .owner = THIS_MODULE,
5741 .make_request = make_request,
5742 .run = run,
5743 .stop = stop,
5744 .status = status,
5745 .error_handler = error,
5746 .hot_add_disk = raid5_add_disk,
5747 .hot_remove_disk= raid5_remove_disk,
5748 .spare_active = raid5_spare_active,
5749 .sync_request = sync_request,
5750 .resize = raid5_resize,
5751 .size = raid5_size,
5752 .check_reshape = raid5_check_reshape,
5753 .start_reshape = raid5_start_reshape,
5754 .finish_reshape = raid5_finish_reshape,
5755 .quiesce = raid5_quiesce,
5756 .takeover = raid4_takeover,
5757};
5758
5759static int __init raid5_init(void)
5760{
5761 register_md_personality(&raid6_personality);
5762 register_md_personality(&raid5_personality);
5763 register_md_personality(&raid4_personality);
5764 return 0;
5765}
5766
5767static void raid5_exit(void)
5768{
5769 unregister_md_personality(&raid6_personality);
5770 unregister_md_personality(&raid5_personality);
5771 unregister_md_personality(&raid4_personality);
5772}
5773
5774module_init(raid5_init);
5775module_exit(raid5_exit);
5776MODULE_LICENSE("GPL");
5777MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5778MODULE_ALIAS("md-personality-4"); /* RAID5 */
5779MODULE_ALIAS("md-raid5");
5780MODULE_ALIAS("md-raid4");
5781MODULE_ALIAS("md-level-5");
5782MODULE_ALIAS("md-level-4");
5783MODULE_ALIAS("md-personality-8"); /* RAID6 */
5784MODULE_ALIAS("md-raid6");
5785MODULE_ALIAS("md-level-6");
5786
5787/* This used to be two separate modules, they were: */
5788MODULE_ALIAS("raid5");
5789MODULE_ALIAS("raid6");