Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Windfarm PowerMac thermal control.
4 * Control loops for machines with SMU and PPC970MP processors.
5 *
6 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
7 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
8 */
9#include <linux/types.h>
10#include <linux/errno.h>
11#include <linux/kernel.h>
12#include <linux/device.h>
13#include <linux/platform_device.h>
14#include <linux/reboot.h>
15#include <linux/of.h>
16#include <linux/slab.h>
17
18#include <asm/smu.h>
19
20#include "windfarm.h"
21#include "windfarm_pid.h"
22
23#define VERSION "0.2"
24
25#define DEBUG
26#undef LOTSA_DEBUG
27
28#ifdef DEBUG
29#define DBG(args...) printk(args)
30#else
31#define DBG(args...) do { } while(0)
32#endif
33
34#ifdef LOTSA_DEBUG
35#define DBG_LOTS(args...) printk(args)
36#else
37#define DBG_LOTS(args...) do { } while(0)
38#endif
39
40/* define this to force CPU overtemp to 60 degree, useful for testing
41 * the overtemp code
42 */
43#undef HACKED_OVERTEMP
44
45/* We currently only handle 2 chips, 4 cores... */
46#define NR_CHIPS 2
47#define NR_CORES 4
48#define NR_CPU_FANS 3 * NR_CHIPS
49
50/* Controls and sensors */
51static struct wf_sensor *sens_cpu_temp[NR_CORES];
52static struct wf_sensor *sens_cpu_power[NR_CORES];
53static struct wf_sensor *hd_temp;
54static struct wf_sensor *slots_power;
55static struct wf_sensor *u4_temp;
56
57static struct wf_control *cpu_fans[NR_CPU_FANS];
58static char *cpu_fan_names[NR_CPU_FANS] = {
59 "cpu-rear-fan-0",
60 "cpu-rear-fan-1",
61 "cpu-front-fan-0",
62 "cpu-front-fan-1",
63 "cpu-pump-0",
64 "cpu-pump-1",
65};
66static struct wf_control *cpufreq_clamp;
67
68/* Second pump isn't required (and isn't actually present) */
69#define CPU_FANS_REQD (NR_CPU_FANS - 2)
70#define FIRST_PUMP 4
71#define LAST_PUMP 5
72
73/* We keep a temperature history for average calculation of 180s */
74#define CPU_TEMP_HIST_SIZE 180
75
76/* Scale factor for fan speed, *100 */
77static int cpu_fan_scale[NR_CPU_FANS] = {
78 100,
79 100,
80 97, /* inlet fans run at 97% of exhaust fan */
81 97,
82 100, /* updated later */
83 100, /* updated later */
84};
85
86static struct wf_control *backside_fan;
87static struct wf_control *slots_fan;
88static struct wf_control *drive_bay_fan;
89
90/* PID loop state */
91static struct wf_cpu_pid_state cpu_pid[NR_CORES];
92static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
93static int cpu_thist_pt;
94static s64 cpu_thist_total;
95static s32 cpu_all_tmax = 100 << 16;
96static int cpu_last_target;
97static struct wf_pid_state backside_pid;
98static int backside_tick;
99static struct wf_pid_state slots_pid;
100static bool slots_started;
101static struct wf_pid_state drive_bay_pid;
102static int drive_bay_tick;
103
104static int nr_cores;
105static int have_all_controls;
106static int have_all_sensors;
107static bool started;
108
109static int failure_state;
110#define FAILURE_SENSOR 1
111#define FAILURE_FAN 2
112#define FAILURE_PERM 4
113#define FAILURE_LOW_OVERTEMP 8
114#define FAILURE_HIGH_OVERTEMP 16
115
116/* Overtemp values */
117#define LOW_OVER_AVERAGE 0
118#define LOW_OVER_IMMEDIATE (10 << 16)
119#define LOW_OVER_CLEAR ((-10) << 16)
120#define HIGH_OVER_IMMEDIATE (14 << 16)
121#define HIGH_OVER_AVERAGE (10 << 16)
122#define HIGH_OVER_IMMEDIATE (14 << 16)
123
124
125/* Implementation... */
126static int create_cpu_loop(int cpu)
127{
128 int chip = cpu / 2;
129 int core = cpu & 1;
130 struct smu_sdbp_header *hdr;
131 struct smu_sdbp_cpupiddata *piddata;
132 struct wf_cpu_pid_param pid;
133 struct wf_control *main_fan = cpu_fans[0];
134 s32 tmax;
135 int fmin;
136
137 /* Get FVT params to get Tmax; if not found, assume default */
138 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
139 if (hdr) {
140 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
141 tmax = fvt->maxtemp << 16;
142 } else
143 tmax = 95 << 16; /* default to 95 degrees C */
144
145 /* We keep a global tmax for overtemp calculations */
146 if (tmax < cpu_all_tmax)
147 cpu_all_tmax = tmax;
148
149 kfree(hdr);
150
151 /* Get PID params from the appropriate SAT */
152 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
153 if (hdr == NULL) {
154 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
155 return -EINVAL;
156 }
157 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
158
159 /*
160 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
161 * 515 for the 2-way. That appears to be overkill, so for now,
162 * impose a minimum of 750 or 515.
163 */
164 fmin = (nr_cores > 2) ? 750 : 515;
165
166 /* Initialize PID loop */
167 pid.interval = 1; /* seconds */
168 pid.history_len = piddata->history_len;
169 pid.gd = piddata->gd;
170 pid.gp = piddata->gp;
171 pid.gr = piddata->gr / piddata->history_len;
172 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
173 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
174 pid.tmax = tmax;
175 pid.min = main_fan->ops->get_min(main_fan);
176 pid.max = main_fan->ops->get_max(main_fan);
177 if (pid.min < fmin)
178 pid.min = fmin;
179
180 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
181
182 kfree(hdr);
183
184 return 0;
185}
186
187static void cpu_max_all_fans(void)
188{
189 int i;
190
191 /* We max all CPU fans in case of a sensor error. We also do the
192 * cpufreq clamping now, even if it's supposedly done later by the
193 * generic code anyway, we do it earlier here to react faster
194 */
195 if (cpufreq_clamp)
196 wf_control_set_max(cpufreq_clamp);
197 for (i = 0; i < NR_CPU_FANS; ++i)
198 if (cpu_fans[i])
199 wf_control_set_max(cpu_fans[i]);
200}
201
202static int cpu_check_overtemp(s32 temp)
203{
204 int new_state = 0;
205 s32 t_avg, t_old;
206
207 /* First check for immediate overtemps */
208 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
209 new_state |= FAILURE_LOW_OVERTEMP;
210 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
211 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
212 " temperature !\n");
213 }
214 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
215 new_state |= FAILURE_HIGH_OVERTEMP;
216 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
217 printk(KERN_ERR "windfarm: Critical overtemp due to"
218 " immediate CPU temperature !\n");
219 }
220
221 /* We calculate a history of max temperatures and use that for the
222 * overtemp management
223 */
224 t_old = cpu_thist[cpu_thist_pt];
225 cpu_thist[cpu_thist_pt] = temp;
226 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
227 cpu_thist_total -= t_old;
228 cpu_thist_total += temp;
229 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
230
231 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
232 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
233
234 /* Now check for average overtemps */
235 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
236 new_state |= FAILURE_LOW_OVERTEMP;
237 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
238 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
239 " temperature !\n");
240 }
241 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
242 new_state |= FAILURE_HIGH_OVERTEMP;
243 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
244 printk(KERN_ERR "windfarm: Critical overtemp due to"
245 " average CPU temperature !\n");
246 }
247
248 /* Now handle overtemp conditions. We don't currently use the windfarm
249 * overtemp handling core as it's not fully suited to the needs of those
250 * new machine. This will be fixed later.
251 */
252 if (new_state) {
253 /* High overtemp -> immediate shutdown */
254 if (new_state & FAILURE_HIGH_OVERTEMP)
255 machine_power_off();
256 if ((failure_state & new_state) != new_state)
257 cpu_max_all_fans();
258 failure_state |= new_state;
259 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
260 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
261 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
262 failure_state &= ~FAILURE_LOW_OVERTEMP;
263 }
264
265 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
266}
267
268static void cpu_fans_tick(void)
269{
270 int err, cpu;
271 s32 greatest_delta = 0;
272 s32 temp, power, t_max = 0;
273 int i, t, target = 0;
274 struct wf_sensor *sr;
275 struct wf_control *ct;
276 struct wf_cpu_pid_state *sp;
277
278 DBG_LOTS(KERN_DEBUG);
279 for (cpu = 0; cpu < nr_cores; ++cpu) {
280 /* Get CPU core temperature */
281 sr = sens_cpu_temp[cpu];
282 err = sr->ops->get_value(sr, &temp);
283 if (err) {
284 DBG("\n");
285 printk(KERN_WARNING "windfarm: CPU %d temperature "
286 "sensor error %d\n", cpu, err);
287 failure_state |= FAILURE_SENSOR;
288 cpu_max_all_fans();
289 return;
290 }
291
292 /* Keep track of highest temp */
293 t_max = max(t_max, temp);
294
295 /* Get CPU power */
296 sr = sens_cpu_power[cpu];
297 err = sr->ops->get_value(sr, &power);
298 if (err) {
299 DBG("\n");
300 printk(KERN_WARNING "windfarm: CPU %d power "
301 "sensor error %d\n", cpu, err);
302 failure_state |= FAILURE_SENSOR;
303 cpu_max_all_fans();
304 return;
305 }
306
307 /* Run PID */
308 sp = &cpu_pid[cpu];
309 t = wf_cpu_pid_run(sp, power, temp);
310
311 if (cpu == 0 || sp->last_delta > greatest_delta) {
312 greatest_delta = sp->last_delta;
313 target = t;
314 }
315 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
316 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
317 }
318 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
319
320 /* Darwin limits decrease to 20 per iteration */
321 if (target < (cpu_last_target - 20))
322 target = cpu_last_target - 20;
323 cpu_last_target = target;
324 for (cpu = 0; cpu < nr_cores; ++cpu)
325 cpu_pid[cpu].target = target;
326
327 /* Handle possible overtemps */
328 if (cpu_check_overtemp(t_max))
329 return;
330
331 /* Set fans */
332 for (i = 0; i < NR_CPU_FANS; ++i) {
333 ct = cpu_fans[i];
334 if (ct == NULL)
335 continue;
336 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
337 if (err) {
338 printk(KERN_WARNING "windfarm: fan %s reports "
339 "error %d\n", ct->name, err);
340 failure_state |= FAILURE_FAN;
341 break;
342 }
343 }
344}
345
346/* Backside/U4 fan */
347static struct wf_pid_param backside_param = {
348 .interval = 5,
349 .history_len = 2,
350 .gd = 48 << 20,
351 .gp = 5 << 20,
352 .gr = 0,
353 .itarget = 64 << 16,
354 .additive = 1,
355};
356
357static void backside_fan_tick(void)
358{
359 s32 temp;
360 int speed;
361 int err;
362
363 if (!backside_fan || !u4_temp)
364 return;
365 if (!backside_tick) {
366 /* first time; initialize things */
367 printk(KERN_INFO "windfarm: Backside control loop started.\n");
368 backside_param.min = backside_fan->ops->get_min(backside_fan);
369 backside_param.max = backside_fan->ops->get_max(backside_fan);
370 wf_pid_init(&backside_pid, &backside_param);
371 backside_tick = 1;
372 }
373 if (--backside_tick > 0)
374 return;
375 backside_tick = backside_pid.param.interval;
376
377 err = u4_temp->ops->get_value(u4_temp, &temp);
378 if (err) {
379 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
380 err);
381 failure_state |= FAILURE_SENSOR;
382 wf_control_set_max(backside_fan);
383 return;
384 }
385 speed = wf_pid_run(&backside_pid, temp);
386 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
387 FIX32TOPRINT(temp), speed);
388
389 err = backside_fan->ops->set_value(backside_fan, speed);
390 if (err) {
391 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
392 failure_state |= FAILURE_FAN;
393 }
394}
395
396/* Drive bay fan */
397static struct wf_pid_param drive_bay_prm = {
398 .interval = 5,
399 .history_len = 2,
400 .gd = 30 << 20,
401 .gp = 5 << 20,
402 .gr = 0,
403 .itarget = 40 << 16,
404 .additive = 1,
405};
406
407static void drive_bay_fan_tick(void)
408{
409 s32 temp;
410 int speed;
411 int err;
412
413 if (!drive_bay_fan || !hd_temp)
414 return;
415 if (!drive_bay_tick) {
416 /* first time; initialize things */
417 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
418 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
419 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
420 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
421 drive_bay_tick = 1;
422 }
423 if (--drive_bay_tick > 0)
424 return;
425 drive_bay_tick = drive_bay_pid.param.interval;
426
427 err = hd_temp->ops->get_value(hd_temp, &temp);
428 if (err) {
429 printk(KERN_WARNING "windfarm: drive bay temp sensor "
430 "error %d\n", err);
431 failure_state |= FAILURE_SENSOR;
432 wf_control_set_max(drive_bay_fan);
433 return;
434 }
435 speed = wf_pid_run(&drive_bay_pid, temp);
436 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
437 FIX32TOPRINT(temp), speed);
438
439 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
440 if (err) {
441 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
442 failure_state |= FAILURE_FAN;
443 }
444}
445
446/* PCI slots area fan */
447/* This makes the fan speed proportional to the power consumed */
448static struct wf_pid_param slots_param = {
449 .interval = 1,
450 .history_len = 2,
451 .gd = 0,
452 .gp = 0,
453 .gr = 0x1277952,
454 .itarget = 0,
455 .min = 1560,
456 .max = 3510,
457};
458
459static void slots_fan_tick(void)
460{
461 s32 power;
462 int speed;
463 int err;
464
465 if (!slots_fan || !slots_power)
466 return;
467 if (!slots_started) {
468 /* first time; initialize things */
469 printk(KERN_INFO "windfarm: Slots control loop started.\n");
470 wf_pid_init(&slots_pid, &slots_param);
471 slots_started = true;
472 }
473
474 err = slots_power->ops->get_value(slots_power, &power);
475 if (err) {
476 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
477 err);
478 failure_state |= FAILURE_SENSOR;
479 wf_control_set_max(slots_fan);
480 return;
481 }
482 speed = wf_pid_run(&slots_pid, power);
483 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
484 FIX32TOPRINT(power), speed);
485
486 err = slots_fan->ops->set_value(slots_fan, speed);
487 if (err) {
488 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
489 failure_state |= FAILURE_FAN;
490 }
491}
492
493static void set_fail_state(void)
494{
495 int i;
496
497 if (cpufreq_clamp)
498 wf_control_set_max(cpufreq_clamp);
499 for (i = 0; i < NR_CPU_FANS; ++i)
500 if (cpu_fans[i])
501 wf_control_set_max(cpu_fans[i]);
502 if (backside_fan)
503 wf_control_set_max(backside_fan);
504 if (slots_fan)
505 wf_control_set_max(slots_fan);
506 if (drive_bay_fan)
507 wf_control_set_max(drive_bay_fan);
508}
509
510static void pm112_tick(void)
511{
512 int i, last_failure;
513
514 if (!started) {
515 started = true;
516 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
517 for (i = 0; i < nr_cores; ++i) {
518 if (create_cpu_loop(i) < 0) {
519 failure_state = FAILURE_PERM;
520 set_fail_state();
521 break;
522 }
523 }
524 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
525
526#ifdef HACKED_OVERTEMP
527 cpu_all_tmax = 60 << 16;
528#endif
529 }
530
531 /* Permanent failure, bail out */
532 if (failure_state & FAILURE_PERM)
533 return;
534 /* Clear all failure bits except low overtemp which will be eventually
535 * cleared by the control loop itself
536 */
537 last_failure = failure_state;
538 failure_state &= FAILURE_LOW_OVERTEMP;
539 cpu_fans_tick();
540 backside_fan_tick();
541 slots_fan_tick();
542 drive_bay_fan_tick();
543
544 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
545 last_failure, failure_state);
546
547 /* Check for failures. Any failure causes cpufreq clamping */
548 if (failure_state && last_failure == 0 && cpufreq_clamp)
549 wf_control_set_max(cpufreq_clamp);
550 if (failure_state == 0 && last_failure && cpufreq_clamp)
551 wf_control_set_min(cpufreq_clamp);
552
553 /* That's it for now, we might want to deal with other failures
554 * differently in the future though
555 */
556}
557
558static void pm112_new_control(struct wf_control *ct)
559{
560 int i, max_exhaust;
561
562 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
563 if (wf_get_control(ct) == 0)
564 cpufreq_clamp = ct;
565 }
566
567 for (i = 0; i < NR_CPU_FANS; ++i) {
568 if (!strcmp(ct->name, cpu_fan_names[i])) {
569 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
570 cpu_fans[i] = ct;
571 break;
572 }
573 }
574 if (i >= NR_CPU_FANS) {
575 /* not a CPU fan, try the others */
576 if (!strcmp(ct->name, "backside-fan")) {
577 if (backside_fan == NULL && wf_get_control(ct) == 0)
578 backside_fan = ct;
579 } else if (!strcmp(ct->name, "slots-fan")) {
580 if (slots_fan == NULL && wf_get_control(ct) == 0)
581 slots_fan = ct;
582 } else if (!strcmp(ct->name, "drive-bay-fan")) {
583 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
584 drive_bay_fan = ct;
585 }
586 return;
587 }
588
589 for (i = 0; i < CPU_FANS_REQD; ++i)
590 if (cpu_fans[i] == NULL)
591 return;
592
593 /* work out pump scaling factors */
594 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
595 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
596 if ((ct = cpu_fans[i]) != NULL)
597 cpu_fan_scale[i] =
598 ct->ops->get_max(ct) * 100 / max_exhaust;
599
600 have_all_controls = 1;
601}
602
603static void pm112_new_sensor(struct wf_sensor *sr)
604{
605 unsigned int i;
606
607 if (!strncmp(sr->name, "cpu-temp-", 9)) {
608 i = sr->name[9] - '0';
609 if (sr->name[10] == 0 && i < NR_CORES &&
610 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
611 sens_cpu_temp[i] = sr;
612
613 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
614 i = sr->name[10] - '0';
615 if (sr->name[11] == 0 && i < NR_CORES &&
616 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
617 sens_cpu_power[i] = sr;
618 } else if (!strcmp(sr->name, "hd-temp")) {
619 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
620 hd_temp = sr;
621 } else if (!strcmp(sr->name, "slots-power")) {
622 if (slots_power == NULL && wf_get_sensor(sr) == 0)
623 slots_power = sr;
624 } else if (!strcmp(sr->name, "backside-temp")) {
625 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
626 u4_temp = sr;
627 } else
628 return;
629
630 /* check if we have all the sensors we need */
631 for (i = 0; i < nr_cores; ++i)
632 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
633 return;
634
635 have_all_sensors = 1;
636}
637
638static int pm112_wf_notify(struct notifier_block *self,
639 unsigned long event, void *data)
640{
641 switch (event) {
642 case WF_EVENT_NEW_SENSOR:
643 pm112_new_sensor(data);
644 break;
645 case WF_EVENT_NEW_CONTROL:
646 pm112_new_control(data);
647 break;
648 case WF_EVENT_TICK:
649 if (have_all_controls && have_all_sensors)
650 pm112_tick();
651 }
652 return 0;
653}
654
655static struct notifier_block pm112_events = {
656 .notifier_call = pm112_wf_notify,
657};
658
659static int wf_pm112_probe(struct platform_device *dev)
660{
661 wf_register_client(&pm112_events);
662 return 0;
663}
664
665static void wf_pm112_remove(struct platform_device *dev)
666{
667 wf_unregister_client(&pm112_events);
668}
669
670static struct platform_driver wf_pm112_driver = {
671 .probe = wf_pm112_probe,
672 .remove = wf_pm112_remove,
673 .driver = {
674 .name = "windfarm",
675 },
676};
677
678static int __init wf_pm112_init(void)
679{
680 struct device_node *cpu;
681
682 if (!of_machine_is_compatible("PowerMac11,2"))
683 return -ENODEV;
684
685 /* Count the number of CPU cores */
686 nr_cores = 0;
687 for_each_node_by_type(cpu, "cpu")
688 ++nr_cores;
689
690 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
691
692#ifdef MODULE
693 request_module("windfarm_smu_controls");
694 request_module("windfarm_smu_sensors");
695 request_module("windfarm_smu_sat");
696 request_module("windfarm_lm75_sensor");
697 request_module("windfarm_max6690_sensor");
698 request_module("windfarm_cpufreq_clamp");
699
700#endif /* MODULE */
701
702 platform_driver_register(&wf_pm112_driver);
703 return 0;
704}
705
706static void __exit wf_pm112_exit(void)
707{
708 platform_driver_unregister(&wf_pm112_driver);
709}
710
711module_init(wf_pm112_init);
712module_exit(wf_pm112_exit);
713
714MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
715MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
716MODULE_LICENSE("GPL");
717MODULE_ALIAS("platform:windfarm");
1/*
2 * Windfarm PowerMac thermal control.
3 * Control loops for machines with SMU and PPC970MP processors.
4 *
5 * Copyright (C) 2005 Paul Mackerras, IBM Corp. <paulus@samba.org>
6 * Copyright (C) 2006 Benjamin Herrenschmidt, IBM Corp.
7 *
8 * Use and redistribute under the terms of the GNU GPL v2.
9 */
10#include <linux/types.h>
11#include <linux/errno.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/platform_device.h>
15#include <linux/reboot.h>
16#include <asm/prom.h>
17#include <asm/smu.h>
18
19#include "windfarm.h"
20#include "windfarm_pid.h"
21
22#define VERSION "0.2"
23
24#define DEBUG
25#undef LOTSA_DEBUG
26
27#ifdef DEBUG
28#define DBG(args...) printk(args)
29#else
30#define DBG(args...) do { } while(0)
31#endif
32
33#ifdef LOTSA_DEBUG
34#define DBG_LOTS(args...) printk(args)
35#else
36#define DBG_LOTS(args...) do { } while(0)
37#endif
38
39/* define this to force CPU overtemp to 60 degree, useful for testing
40 * the overtemp code
41 */
42#undef HACKED_OVERTEMP
43
44/* We currently only handle 2 chips, 4 cores... */
45#define NR_CHIPS 2
46#define NR_CORES 4
47#define NR_CPU_FANS 3 * NR_CHIPS
48
49/* Controls and sensors */
50static struct wf_sensor *sens_cpu_temp[NR_CORES];
51static struct wf_sensor *sens_cpu_power[NR_CORES];
52static struct wf_sensor *hd_temp;
53static struct wf_sensor *slots_power;
54static struct wf_sensor *u4_temp;
55
56static struct wf_control *cpu_fans[NR_CPU_FANS];
57static char *cpu_fan_names[NR_CPU_FANS] = {
58 "cpu-rear-fan-0",
59 "cpu-rear-fan-1",
60 "cpu-front-fan-0",
61 "cpu-front-fan-1",
62 "cpu-pump-0",
63 "cpu-pump-1",
64};
65static struct wf_control *cpufreq_clamp;
66
67/* Second pump isn't required (and isn't actually present) */
68#define CPU_FANS_REQD (NR_CPU_FANS - 2)
69#define FIRST_PUMP 4
70#define LAST_PUMP 5
71
72/* We keep a temperature history for average calculation of 180s */
73#define CPU_TEMP_HIST_SIZE 180
74
75/* Scale factor for fan speed, *100 */
76static int cpu_fan_scale[NR_CPU_FANS] = {
77 100,
78 100,
79 97, /* inlet fans run at 97% of exhaust fan */
80 97,
81 100, /* updated later */
82 100, /* updated later */
83};
84
85static struct wf_control *backside_fan;
86static struct wf_control *slots_fan;
87static struct wf_control *drive_bay_fan;
88
89/* PID loop state */
90static struct wf_cpu_pid_state cpu_pid[NR_CORES];
91static u32 cpu_thist[CPU_TEMP_HIST_SIZE];
92static int cpu_thist_pt;
93static s64 cpu_thist_total;
94static s32 cpu_all_tmax = 100 << 16;
95static int cpu_last_target;
96static struct wf_pid_state backside_pid;
97static int backside_tick;
98static struct wf_pid_state slots_pid;
99static int slots_started;
100static struct wf_pid_state drive_bay_pid;
101static int drive_bay_tick;
102
103static int nr_cores;
104static int have_all_controls;
105static int have_all_sensors;
106static int started;
107
108static int failure_state;
109#define FAILURE_SENSOR 1
110#define FAILURE_FAN 2
111#define FAILURE_PERM 4
112#define FAILURE_LOW_OVERTEMP 8
113#define FAILURE_HIGH_OVERTEMP 16
114
115/* Overtemp values */
116#define LOW_OVER_AVERAGE 0
117#define LOW_OVER_IMMEDIATE (10 << 16)
118#define LOW_OVER_CLEAR ((-10) << 16)
119#define HIGH_OVER_IMMEDIATE (14 << 16)
120#define HIGH_OVER_AVERAGE (10 << 16)
121#define HIGH_OVER_IMMEDIATE (14 << 16)
122
123
124/* Implementation... */
125static int create_cpu_loop(int cpu)
126{
127 int chip = cpu / 2;
128 int core = cpu & 1;
129 struct smu_sdbp_header *hdr;
130 struct smu_sdbp_cpupiddata *piddata;
131 struct wf_cpu_pid_param pid;
132 struct wf_control *main_fan = cpu_fans[0];
133 s32 tmax;
134 int fmin;
135
136 /* Get PID params from the appropriate SAT */
137 hdr = smu_sat_get_sdb_partition(chip, 0xC8 + core, NULL);
138 if (hdr == NULL) {
139 printk(KERN_WARNING"windfarm: can't get CPU PID fan config\n");
140 return -EINVAL;
141 }
142 piddata = (struct smu_sdbp_cpupiddata *)&hdr[1];
143
144 /* Get FVT params to get Tmax; if not found, assume default */
145 hdr = smu_sat_get_sdb_partition(chip, 0xC4 + core, NULL);
146 if (hdr) {
147 struct smu_sdbp_fvt *fvt = (struct smu_sdbp_fvt *)&hdr[1];
148 tmax = fvt->maxtemp << 16;
149 } else
150 tmax = 95 << 16; /* default to 95 degrees C */
151
152 /* We keep a global tmax for overtemp calculations */
153 if (tmax < cpu_all_tmax)
154 cpu_all_tmax = tmax;
155
156 /*
157 * Darwin has a minimum fan speed of 1000 rpm for the 4-way and
158 * 515 for the 2-way. That appears to be overkill, so for now,
159 * impose a minimum of 750 or 515.
160 */
161 fmin = (nr_cores > 2) ? 750 : 515;
162
163 /* Initialize PID loop */
164 pid.interval = 1; /* seconds */
165 pid.history_len = piddata->history_len;
166 pid.gd = piddata->gd;
167 pid.gp = piddata->gp;
168 pid.gr = piddata->gr / piddata->history_len;
169 pid.pmaxadj = (piddata->max_power << 16) - (piddata->power_adj << 8);
170 pid.ttarget = tmax - (piddata->target_temp_delta << 16);
171 pid.tmax = tmax;
172 pid.min = main_fan->ops->get_min(main_fan);
173 pid.max = main_fan->ops->get_max(main_fan);
174 if (pid.min < fmin)
175 pid.min = fmin;
176
177 wf_cpu_pid_init(&cpu_pid[cpu], &pid);
178 return 0;
179}
180
181static void cpu_max_all_fans(void)
182{
183 int i;
184
185 /* We max all CPU fans in case of a sensor error. We also do the
186 * cpufreq clamping now, even if it's supposedly done later by the
187 * generic code anyway, we do it earlier here to react faster
188 */
189 if (cpufreq_clamp)
190 wf_control_set_max(cpufreq_clamp);
191 for (i = 0; i < NR_CPU_FANS; ++i)
192 if (cpu_fans[i])
193 wf_control_set_max(cpu_fans[i]);
194}
195
196static int cpu_check_overtemp(s32 temp)
197{
198 int new_state = 0;
199 s32 t_avg, t_old;
200
201 /* First check for immediate overtemps */
202 if (temp >= (cpu_all_tmax + LOW_OVER_IMMEDIATE)) {
203 new_state |= FAILURE_LOW_OVERTEMP;
204 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
205 printk(KERN_ERR "windfarm: Overtemp due to immediate CPU"
206 " temperature !\n");
207 }
208 if (temp >= (cpu_all_tmax + HIGH_OVER_IMMEDIATE)) {
209 new_state |= FAILURE_HIGH_OVERTEMP;
210 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
211 printk(KERN_ERR "windfarm: Critical overtemp due to"
212 " immediate CPU temperature !\n");
213 }
214
215 /* We calculate a history of max temperatures and use that for the
216 * overtemp management
217 */
218 t_old = cpu_thist[cpu_thist_pt];
219 cpu_thist[cpu_thist_pt] = temp;
220 cpu_thist_pt = (cpu_thist_pt + 1) % CPU_TEMP_HIST_SIZE;
221 cpu_thist_total -= t_old;
222 cpu_thist_total += temp;
223 t_avg = cpu_thist_total / CPU_TEMP_HIST_SIZE;
224
225 DBG_LOTS("t_avg = %d.%03d (out: %d.%03d, in: %d.%03d)\n",
226 FIX32TOPRINT(t_avg), FIX32TOPRINT(t_old), FIX32TOPRINT(temp));
227
228 /* Now check for average overtemps */
229 if (t_avg >= (cpu_all_tmax + LOW_OVER_AVERAGE)) {
230 new_state |= FAILURE_LOW_OVERTEMP;
231 if ((failure_state & FAILURE_LOW_OVERTEMP) == 0)
232 printk(KERN_ERR "windfarm: Overtemp due to average CPU"
233 " temperature !\n");
234 }
235 if (t_avg >= (cpu_all_tmax + HIGH_OVER_AVERAGE)) {
236 new_state |= FAILURE_HIGH_OVERTEMP;
237 if ((failure_state & FAILURE_HIGH_OVERTEMP) == 0)
238 printk(KERN_ERR "windfarm: Critical overtemp due to"
239 " average CPU temperature !\n");
240 }
241
242 /* Now handle overtemp conditions. We don't currently use the windfarm
243 * overtemp handling core as it's not fully suited to the needs of those
244 * new machine. This will be fixed later.
245 */
246 if (new_state) {
247 /* High overtemp -> immediate shutdown */
248 if (new_state & FAILURE_HIGH_OVERTEMP)
249 machine_power_off();
250 if ((failure_state & new_state) != new_state)
251 cpu_max_all_fans();
252 failure_state |= new_state;
253 } else if ((failure_state & FAILURE_LOW_OVERTEMP) &&
254 (temp < (cpu_all_tmax + LOW_OVER_CLEAR))) {
255 printk(KERN_ERR "windfarm: Overtemp condition cleared !\n");
256 failure_state &= ~FAILURE_LOW_OVERTEMP;
257 }
258
259 return failure_state & (FAILURE_LOW_OVERTEMP | FAILURE_HIGH_OVERTEMP);
260}
261
262static void cpu_fans_tick(void)
263{
264 int err, cpu;
265 s32 greatest_delta = 0;
266 s32 temp, power, t_max = 0;
267 int i, t, target = 0;
268 struct wf_sensor *sr;
269 struct wf_control *ct;
270 struct wf_cpu_pid_state *sp;
271
272 DBG_LOTS(KERN_DEBUG);
273 for (cpu = 0; cpu < nr_cores; ++cpu) {
274 /* Get CPU core temperature */
275 sr = sens_cpu_temp[cpu];
276 err = sr->ops->get_value(sr, &temp);
277 if (err) {
278 DBG("\n");
279 printk(KERN_WARNING "windfarm: CPU %d temperature "
280 "sensor error %d\n", cpu, err);
281 failure_state |= FAILURE_SENSOR;
282 cpu_max_all_fans();
283 return;
284 }
285
286 /* Keep track of highest temp */
287 t_max = max(t_max, temp);
288
289 /* Get CPU power */
290 sr = sens_cpu_power[cpu];
291 err = sr->ops->get_value(sr, &power);
292 if (err) {
293 DBG("\n");
294 printk(KERN_WARNING "windfarm: CPU %d power "
295 "sensor error %d\n", cpu, err);
296 failure_state |= FAILURE_SENSOR;
297 cpu_max_all_fans();
298 return;
299 }
300
301 /* Run PID */
302 sp = &cpu_pid[cpu];
303 t = wf_cpu_pid_run(sp, power, temp);
304
305 if (cpu == 0 || sp->last_delta > greatest_delta) {
306 greatest_delta = sp->last_delta;
307 target = t;
308 }
309 DBG_LOTS("[%d] P=%d.%.3d T=%d.%.3d ",
310 cpu, FIX32TOPRINT(power), FIX32TOPRINT(temp));
311 }
312 DBG_LOTS("fans = %d, t_max = %d.%03d\n", target, FIX32TOPRINT(t_max));
313
314 /* Darwin limits decrease to 20 per iteration */
315 if (target < (cpu_last_target - 20))
316 target = cpu_last_target - 20;
317 cpu_last_target = target;
318 for (cpu = 0; cpu < nr_cores; ++cpu)
319 cpu_pid[cpu].target = target;
320
321 /* Handle possible overtemps */
322 if (cpu_check_overtemp(t_max))
323 return;
324
325 /* Set fans */
326 for (i = 0; i < NR_CPU_FANS; ++i) {
327 ct = cpu_fans[i];
328 if (ct == NULL)
329 continue;
330 err = ct->ops->set_value(ct, target * cpu_fan_scale[i] / 100);
331 if (err) {
332 printk(KERN_WARNING "windfarm: fan %s reports "
333 "error %d\n", ct->name, err);
334 failure_state |= FAILURE_FAN;
335 break;
336 }
337 }
338}
339
340/* Backside/U4 fan */
341static struct wf_pid_param backside_param = {
342 .interval = 5,
343 .history_len = 2,
344 .gd = 48 << 20,
345 .gp = 5 << 20,
346 .gr = 0,
347 .itarget = 64 << 16,
348 .additive = 1,
349};
350
351static void backside_fan_tick(void)
352{
353 s32 temp;
354 int speed;
355 int err;
356
357 if (!backside_fan || !u4_temp)
358 return;
359 if (!backside_tick) {
360 /* first time; initialize things */
361 printk(KERN_INFO "windfarm: Backside control loop started.\n");
362 backside_param.min = backside_fan->ops->get_min(backside_fan);
363 backside_param.max = backside_fan->ops->get_max(backside_fan);
364 wf_pid_init(&backside_pid, &backside_param);
365 backside_tick = 1;
366 }
367 if (--backside_tick > 0)
368 return;
369 backside_tick = backside_pid.param.interval;
370
371 err = u4_temp->ops->get_value(u4_temp, &temp);
372 if (err) {
373 printk(KERN_WARNING "windfarm: U4 temp sensor error %d\n",
374 err);
375 failure_state |= FAILURE_SENSOR;
376 wf_control_set_max(backside_fan);
377 return;
378 }
379 speed = wf_pid_run(&backside_pid, temp);
380 DBG_LOTS("backside PID temp=%d.%.3d speed=%d\n",
381 FIX32TOPRINT(temp), speed);
382
383 err = backside_fan->ops->set_value(backside_fan, speed);
384 if (err) {
385 printk(KERN_WARNING "windfarm: backside fan error %d\n", err);
386 failure_state |= FAILURE_FAN;
387 }
388}
389
390/* Drive bay fan */
391static struct wf_pid_param drive_bay_prm = {
392 .interval = 5,
393 .history_len = 2,
394 .gd = 30 << 20,
395 .gp = 5 << 20,
396 .gr = 0,
397 .itarget = 40 << 16,
398 .additive = 1,
399};
400
401static void drive_bay_fan_tick(void)
402{
403 s32 temp;
404 int speed;
405 int err;
406
407 if (!drive_bay_fan || !hd_temp)
408 return;
409 if (!drive_bay_tick) {
410 /* first time; initialize things */
411 printk(KERN_INFO "windfarm: Drive bay control loop started.\n");
412 drive_bay_prm.min = drive_bay_fan->ops->get_min(drive_bay_fan);
413 drive_bay_prm.max = drive_bay_fan->ops->get_max(drive_bay_fan);
414 wf_pid_init(&drive_bay_pid, &drive_bay_prm);
415 drive_bay_tick = 1;
416 }
417 if (--drive_bay_tick > 0)
418 return;
419 drive_bay_tick = drive_bay_pid.param.interval;
420
421 err = hd_temp->ops->get_value(hd_temp, &temp);
422 if (err) {
423 printk(KERN_WARNING "windfarm: drive bay temp sensor "
424 "error %d\n", err);
425 failure_state |= FAILURE_SENSOR;
426 wf_control_set_max(drive_bay_fan);
427 return;
428 }
429 speed = wf_pid_run(&drive_bay_pid, temp);
430 DBG_LOTS("drive_bay PID temp=%d.%.3d speed=%d\n",
431 FIX32TOPRINT(temp), speed);
432
433 err = drive_bay_fan->ops->set_value(drive_bay_fan, speed);
434 if (err) {
435 printk(KERN_WARNING "windfarm: drive bay fan error %d\n", err);
436 failure_state |= FAILURE_FAN;
437 }
438}
439
440/* PCI slots area fan */
441/* This makes the fan speed proportional to the power consumed */
442static struct wf_pid_param slots_param = {
443 .interval = 1,
444 .history_len = 2,
445 .gd = 0,
446 .gp = 0,
447 .gr = 0x1277952,
448 .itarget = 0,
449 .min = 1560,
450 .max = 3510,
451};
452
453static void slots_fan_tick(void)
454{
455 s32 power;
456 int speed;
457 int err;
458
459 if (!slots_fan || !slots_power)
460 return;
461 if (!slots_started) {
462 /* first time; initialize things */
463 printk(KERN_INFO "windfarm: Slots control loop started.\n");
464 wf_pid_init(&slots_pid, &slots_param);
465 slots_started = 1;
466 }
467
468 err = slots_power->ops->get_value(slots_power, &power);
469 if (err) {
470 printk(KERN_WARNING "windfarm: slots power sensor error %d\n",
471 err);
472 failure_state |= FAILURE_SENSOR;
473 wf_control_set_max(slots_fan);
474 return;
475 }
476 speed = wf_pid_run(&slots_pid, power);
477 DBG_LOTS("slots PID power=%d.%.3d speed=%d\n",
478 FIX32TOPRINT(power), speed);
479
480 err = slots_fan->ops->set_value(slots_fan, speed);
481 if (err) {
482 printk(KERN_WARNING "windfarm: slots fan error %d\n", err);
483 failure_state |= FAILURE_FAN;
484 }
485}
486
487static void set_fail_state(void)
488{
489 int i;
490
491 if (cpufreq_clamp)
492 wf_control_set_max(cpufreq_clamp);
493 for (i = 0; i < NR_CPU_FANS; ++i)
494 if (cpu_fans[i])
495 wf_control_set_max(cpu_fans[i]);
496 if (backside_fan)
497 wf_control_set_max(backside_fan);
498 if (slots_fan)
499 wf_control_set_max(slots_fan);
500 if (drive_bay_fan)
501 wf_control_set_max(drive_bay_fan);
502}
503
504static void pm112_tick(void)
505{
506 int i, last_failure;
507
508 if (!started) {
509 started = 1;
510 printk(KERN_INFO "windfarm: CPUs control loops started.\n");
511 for (i = 0; i < nr_cores; ++i) {
512 if (create_cpu_loop(i) < 0) {
513 failure_state = FAILURE_PERM;
514 set_fail_state();
515 break;
516 }
517 }
518 DBG_LOTS("cpu_all_tmax=%d.%03d\n", FIX32TOPRINT(cpu_all_tmax));
519
520#ifdef HACKED_OVERTEMP
521 cpu_all_tmax = 60 << 16;
522#endif
523 }
524
525 /* Permanent failure, bail out */
526 if (failure_state & FAILURE_PERM)
527 return;
528 /* Clear all failure bits except low overtemp which will be eventually
529 * cleared by the control loop itself
530 */
531 last_failure = failure_state;
532 failure_state &= FAILURE_LOW_OVERTEMP;
533 cpu_fans_tick();
534 backside_fan_tick();
535 slots_fan_tick();
536 drive_bay_fan_tick();
537
538 DBG_LOTS("last_failure: 0x%x, failure_state: %x\n",
539 last_failure, failure_state);
540
541 /* Check for failures. Any failure causes cpufreq clamping */
542 if (failure_state && last_failure == 0 && cpufreq_clamp)
543 wf_control_set_max(cpufreq_clamp);
544 if (failure_state == 0 && last_failure && cpufreq_clamp)
545 wf_control_set_min(cpufreq_clamp);
546
547 /* That's it for now, we might want to deal with other failures
548 * differently in the future though
549 */
550}
551
552static void pm112_new_control(struct wf_control *ct)
553{
554 int i, max_exhaust;
555
556 if (cpufreq_clamp == NULL && !strcmp(ct->name, "cpufreq-clamp")) {
557 if (wf_get_control(ct) == 0)
558 cpufreq_clamp = ct;
559 }
560
561 for (i = 0; i < NR_CPU_FANS; ++i) {
562 if (!strcmp(ct->name, cpu_fan_names[i])) {
563 if (cpu_fans[i] == NULL && wf_get_control(ct) == 0)
564 cpu_fans[i] = ct;
565 break;
566 }
567 }
568 if (i >= NR_CPU_FANS) {
569 /* not a CPU fan, try the others */
570 if (!strcmp(ct->name, "backside-fan")) {
571 if (backside_fan == NULL && wf_get_control(ct) == 0)
572 backside_fan = ct;
573 } else if (!strcmp(ct->name, "slots-fan")) {
574 if (slots_fan == NULL && wf_get_control(ct) == 0)
575 slots_fan = ct;
576 } else if (!strcmp(ct->name, "drive-bay-fan")) {
577 if (drive_bay_fan == NULL && wf_get_control(ct) == 0)
578 drive_bay_fan = ct;
579 }
580 return;
581 }
582
583 for (i = 0; i < CPU_FANS_REQD; ++i)
584 if (cpu_fans[i] == NULL)
585 return;
586
587 /* work out pump scaling factors */
588 max_exhaust = cpu_fans[0]->ops->get_max(cpu_fans[0]);
589 for (i = FIRST_PUMP; i <= LAST_PUMP; ++i)
590 if ((ct = cpu_fans[i]) != NULL)
591 cpu_fan_scale[i] =
592 ct->ops->get_max(ct) * 100 / max_exhaust;
593
594 have_all_controls = 1;
595}
596
597static void pm112_new_sensor(struct wf_sensor *sr)
598{
599 unsigned int i;
600
601 if (!strncmp(sr->name, "cpu-temp-", 9)) {
602 i = sr->name[9] - '0';
603 if (sr->name[10] == 0 && i < NR_CORES &&
604 sens_cpu_temp[i] == NULL && wf_get_sensor(sr) == 0)
605 sens_cpu_temp[i] = sr;
606
607 } else if (!strncmp(sr->name, "cpu-power-", 10)) {
608 i = sr->name[10] - '0';
609 if (sr->name[11] == 0 && i < NR_CORES &&
610 sens_cpu_power[i] == NULL && wf_get_sensor(sr) == 0)
611 sens_cpu_power[i] = sr;
612 } else if (!strcmp(sr->name, "hd-temp")) {
613 if (hd_temp == NULL && wf_get_sensor(sr) == 0)
614 hd_temp = sr;
615 } else if (!strcmp(sr->name, "slots-power")) {
616 if (slots_power == NULL && wf_get_sensor(sr) == 0)
617 slots_power = sr;
618 } else if (!strcmp(sr->name, "backside-temp")) {
619 if (u4_temp == NULL && wf_get_sensor(sr) == 0)
620 u4_temp = sr;
621 } else
622 return;
623
624 /* check if we have all the sensors we need */
625 for (i = 0; i < nr_cores; ++i)
626 if (sens_cpu_temp[i] == NULL || sens_cpu_power[i] == NULL)
627 return;
628
629 have_all_sensors = 1;
630}
631
632static int pm112_wf_notify(struct notifier_block *self,
633 unsigned long event, void *data)
634{
635 switch (event) {
636 case WF_EVENT_NEW_SENSOR:
637 pm112_new_sensor(data);
638 break;
639 case WF_EVENT_NEW_CONTROL:
640 pm112_new_control(data);
641 break;
642 case WF_EVENT_TICK:
643 if (have_all_controls && have_all_sensors)
644 pm112_tick();
645 }
646 return 0;
647}
648
649static struct notifier_block pm112_events = {
650 .notifier_call = pm112_wf_notify,
651};
652
653static int wf_pm112_probe(struct platform_device *dev)
654{
655 wf_register_client(&pm112_events);
656 return 0;
657}
658
659static int __devexit wf_pm112_remove(struct platform_device *dev)
660{
661 wf_unregister_client(&pm112_events);
662 /* should release all sensors and controls */
663 return 0;
664}
665
666static struct platform_driver wf_pm112_driver = {
667 .probe = wf_pm112_probe,
668 .remove = __devexit_p(wf_pm112_remove),
669 .driver = {
670 .name = "windfarm",
671 .owner = THIS_MODULE,
672 },
673};
674
675static int __init wf_pm112_init(void)
676{
677 struct device_node *cpu;
678
679 if (!of_machine_is_compatible("PowerMac11,2"))
680 return -ENODEV;
681
682 /* Count the number of CPU cores */
683 nr_cores = 0;
684 for (cpu = NULL; (cpu = of_find_node_by_type(cpu, "cpu")) != NULL; )
685 ++nr_cores;
686
687 printk(KERN_INFO "windfarm: initializing for dual-core desktop G5\n");
688
689#ifdef MODULE
690 request_module("windfarm_smu_controls");
691 request_module("windfarm_smu_sensors");
692 request_module("windfarm_smu_sat");
693 request_module("windfarm_lm75_sensor");
694 request_module("windfarm_max6690_sensor");
695 request_module("windfarm_cpufreq_clamp");
696
697#endif /* MODULE */
698
699 platform_driver_register(&wf_pm112_driver);
700 return 0;
701}
702
703static void __exit wf_pm112_exit(void)
704{
705 platform_driver_unregister(&wf_pm112_driver);
706}
707
708module_init(wf_pm112_init);
709module_exit(wf_pm112_exit);
710
711MODULE_AUTHOR("Paul Mackerras <paulus@samba.org>");
712MODULE_DESCRIPTION("Thermal control for PowerMac11,2");
713MODULE_LICENSE("GPL");
714MODULE_ALIAS("platform:windfarm");