Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#define pr_fmt(fmt)     "DMAR-IR: " fmt
   4
   5#include <linux/interrupt.h>
   6#include <linux/dmar.h>
   7#include <linux/spinlock.h>
   8#include <linux/slab.h>
   9#include <linux/jiffies.h>
  10#include <linux/hpet.h>
  11#include <linux/pci.h>
  12#include <linux/irq.h>
  13#include <linux/acpi.h>
  14#include <linux/irqdomain.h>
  15#include <linux/crash_dump.h>
  16#include <asm/io_apic.h>
  17#include <asm/apic.h>
  18#include <asm/smp.h>
  19#include <asm/cpu.h>
  20#include <asm/irq_remapping.h>
  21#include <asm/pci-direct.h>
  22#include <asm/posted_intr.h>
  23
  24#include "iommu.h"
  25#include "../irq_remapping.h"
  26#include "../iommu-pages.h"
  27#include "cap_audit.h"
  28
  29enum irq_mode {
  30	IRQ_REMAPPING,
  31	IRQ_POSTING,
  32};
  33
  34struct ioapic_scope {
  35	struct intel_iommu *iommu;
  36	unsigned int id;
  37	unsigned int bus;	/* PCI bus number */
  38	unsigned int devfn;	/* PCI devfn number */
  39};
  40
  41struct hpet_scope {
  42	struct intel_iommu *iommu;
  43	u8 id;
  44	unsigned int bus;
  45	unsigned int devfn;
  46};
  47
  48struct irq_2_iommu {
  49	struct intel_iommu *iommu;
  50	u16 irte_index;
  51	u16 sub_handle;
  52	u8  irte_mask;
  53	enum irq_mode mode;
  54	bool posted_msi;
  55};
  56
  57struct intel_ir_data {
  58	struct irq_2_iommu			irq_2_iommu;
  59	struct irte				irte_entry;
  60	union {
  61		struct msi_msg			msi_entry;
  62	};
  63};
  64
  65#define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0)
  66#define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8)
  67
  68static int __read_mostly eim_mode;
  69static struct ioapic_scope ir_ioapic[MAX_IO_APICS];
  70static struct hpet_scope ir_hpet[MAX_HPET_TBS];
  71
  72/*
  73 * Lock ordering:
  74 * ->dmar_global_lock
  75 *	->irq_2_ir_lock
  76 *		->qi->q_lock
  77 *	->iommu->register_lock
  78 * Note:
  79 * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called
  80 * in single-threaded environment with interrupt disabled, so no need to tabke
  81 * the dmar_global_lock.
  82 */
  83DEFINE_RAW_SPINLOCK(irq_2_ir_lock);
  84static const struct irq_domain_ops intel_ir_domain_ops;
  85
  86static void iommu_disable_irq_remapping(struct intel_iommu *iommu);
  87static int __init parse_ioapics_under_ir(void);
  88static const struct msi_parent_ops dmar_msi_parent_ops;
  89
  90static bool ir_pre_enabled(struct intel_iommu *iommu)
  91{
  92	return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED);
  93}
  94
  95static void clear_ir_pre_enabled(struct intel_iommu *iommu)
  96{
  97	iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
  98}
  99
 100static void init_ir_status(struct intel_iommu *iommu)
 101{
 102	u32 gsts;
 103
 104	gsts = readl(iommu->reg + DMAR_GSTS_REG);
 105	if (gsts & DMA_GSTS_IRES)
 106		iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED;
 107}
 108
 109static int alloc_irte(struct intel_iommu *iommu,
 110		      struct irq_2_iommu *irq_iommu, u16 count)
 111{
 112	struct ir_table *table = iommu->ir_table;
 113	unsigned int mask = 0;
 114	unsigned long flags;
 115	int index;
 116
 117	if (!count || !irq_iommu)
 118		return -1;
 119
 120	if (count > 1) {
 121		count = __roundup_pow_of_two(count);
 122		mask = ilog2(count);
 123	}
 124
 125	if (mask > ecap_max_handle_mask(iommu->ecap)) {
 126		pr_err("Requested mask %x exceeds the max invalidation handle"
 127		       " mask value %Lx\n", mask,
 128		       ecap_max_handle_mask(iommu->ecap));
 129		return -1;
 130	}
 131
 132	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 133	index = bitmap_find_free_region(table->bitmap,
 134					INTR_REMAP_TABLE_ENTRIES, mask);
 135	if (index < 0) {
 136		pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id);
 137	} else {
 138		irq_iommu->iommu = iommu;
 139		irq_iommu->irte_index =  index;
 140		irq_iommu->sub_handle = 0;
 141		irq_iommu->irte_mask = mask;
 142		irq_iommu->mode = IRQ_REMAPPING;
 143	}
 144	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 145
 146	return index;
 147}
 148
 149static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask)
 150{
 151	struct qi_desc desc;
 152
 153	desc.qw0 = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask)
 154		   | QI_IEC_SELECTIVE;
 155	desc.qw1 = 0;
 156	desc.qw2 = 0;
 157	desc.qw3 = 0;
 158
 159	return qi_submit_sync(iommu, &desc, 1, 0);
 160}
 161
 162static int modify_irte(struct irq_2_iommu *irq_iommu,
 163		       struct irte *irte_modified)
 164{
 165	struct intel_iommu *iommu;
 166	unsigned long flags;
 167	struct irte *irte;
 168	int rc, index;
 169
 170	if (!irq_iommu)
 171		return -1;
 172
 173	raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
 174
 175	iommu = irq_iommu->iommu;
 176
 177	index = irq_iommu->irte_index + irq_iommu->sub_handle;
 178	irte = &iommu->ir_table->base[index];
 179
 180	if ((irte->pst == 1) || (irte_modified->pst == 1)) {
 181		/*
 182		 * We use cmpxchg16 to atomically update the 128-bit IRTE,
 183		 * and it cannot be updated by the hardware or other processors
 184		 * behind us, so the return value of cmpxchg16 should be the
 185		 * same as the old value.
 186		 */
 187		u128 old = irte->irte;
 188		WARN_ON(!try_cmpxchg128(&irte->irte, &old, irte_modified->irte));
 189	} else {
 190		WRITE_ONCE(irte->low, irte_modified->low);
 191		WRITE_ONCE(irte->high, irte_modified->high);
 192	}
 193	__iommu_flush_cache(iommu, irte, sizeof(*irte));
 194
 195	rc = qi_flush_iec(iommu, index, 0);
 196
 197	/* Update iommu mode according to the IRTE mode */
 198	irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING;
 199	raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
 200
 201	return rc;
 202}
 203
 204static struct intel_iommu *map_hpet_to_iommu(u8 hpet_id)
 205{
 206	int i;
 207
 208	for (i = 0; i < MAX_HPET_TBS; i++) {
 209		if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu)
 210			return ir_hpet[i].iommu;
 211	}
 212	return NULL;
 213}
 214
 215static struct intel_iommu *map_ioapic_to_iommu(int apic)
 216{
 217	int i;
 218
 219	for (i = 0; i < MAX_IO_APICS; i++) {
 220		if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu)
 221			return ir_ioapic[i].iommu;
 222	}
 223	return NULL;
 224}
 225
 226static struct irq_domain *map_dev_to_ir(struct pci_dev *dev)
 227{
 228	struct dmar_drhd_unit *drhd = dmar_find_matched_drhd_unit(dev);
 229
 230	return drhd ? drhd->iommu->ir_domain : NULL;
 231}
 232
 233static int clear_entries(struct irq_2_iommu *irq_iommu)
 234{
 235	struct irte *start, *entry, *end;
 236	struct intel_iommu *iommu;
 237	int index;
 238
 239	if (irq_iommu->sub_handle)
 240		return 0;
 241
 242	iommu = irq_iommu->iommu;
 243	index = irq_iommu->irte_index;
 244
 245	start = iommu->ir_table->base + index;
 246	end = start + (1 << irq_iommu->irte_mask);
 247
 248	for (entry = start; entry < end; entry++) {
 249		WRITE_ONCE(entry->low, 0);
 250		WRITE_ONCE(entry->high, 0);
 251	}
 252	bitmap_release_region(iommu->ir_table->bitmap, index,
 253			      irq_iommu->irte_mask);
 254
 255	return qi_flush_iec(iommu, index, irq_iommu->irte_mask);
 256}
 257
 258/*
 259 * source validation type
 260 */
 261#define SVT_NO_VERIFY		0x0  /* no verification is required */
 262#define SVT_VERIFY_SID_SQ	0x1  /* verify using SID and SQ fields */
 263#define SVT_VERIFY_BUS		0x2  /* verify bus of request-id */
 264
 265/*
 266 * source-id qualifier
 267 */
 268#define SQ_ALL_16	0x0  /* verify all 16 bits of request-id */
 269#define SQ_13_IGNORE_1	0x1  /* verify most significant 13 bits, ignore
 270			      * the third least significant bit
 271			      */
 272#define SQ_13_IGNORE_2	0x2  /* verify most significant 13 bits, ignore
 273			      * the second and third least significant bits
 274			      */
 275#define SQ_13_IGNORE_3	0x3  /* verify most significant 13 bits, ignore
 276			      * the least three significant bits
 277			      */
 278
 279/*
 280 * set SVT, SQ and SID fields of irte to verify
 281 * source ids of interrupt requests
 282 */
 283static void set_irte_sid(struct irte *irte, unsigned int svt,
 284			 unsigned int sq, unsigned int sid)
 285{
 286	if (disable_sourceid_checking)
 287		svt = SVT_NO_VERIFY;
 288	irte->svt = svt;
 289	irte->sq = sq;
 290	irte->sid = sid;
 291}
 292
 293/*
 294 * Set an IRTE to match only the bus number. Interrupt requests that reference
 295 * this IRTE must have a requester-id whose bus number is between or equal
 296 * to the start_bus and end_bus arguments.
 297 */
 298static void set_irte_verify_bus(struct irte *irte, unsigned int start_bus,
 299				unsigned int end_bus)
 300{
 301	set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16,
 302		     (start_bus << 8) | end_bus);
 303}
 304
 305static int set_ioapic_sid(struct irte *irte, int apic)
 306{
 307	int i;
 308	u16 sid = 0;
 309
 310	if (!irte)
 311		return -1;
 312
 313	for (i = 0; i < MAX_IO_APICS; i++) {
 314		if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) {
 315			sid = PCI_DEVID(ir_ioapic[i].bus, ir_ioapic[i].devfn);
 316			break;
 317		}
 318	}
 319
 320	if (sid == 0) {
 321		pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic);
 322		return -1;
 323	}
 324
 325	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid);
 326
 327	return 0;
 328}
 329
 330static int set_hpet_sid(struct irte *irte, u8 id)
 331{
 332	int i;
 333	u16 sid = 0;
 334
 335	if (!irte)
 336		return -1;
 337
 338	for (i = 0; i < MAX_HPET_TBS; i++) {
 339		if (ir_hpet[i].iommu && ir_hpet[i].id == id) {
 340			sid = PCI_DEVID(ir_hpet[i].bus, ir_hpet[i].devfn);
 341			break;
 342		}
 343	}
 344
 345	if (sid == 0) {
 346		pr_warn("Failed to set source-id of HPET block (%d)\n", id);
 347		return -1;
 348	}
 349
 350	/*
 351	 * Should really use SQ_ALL_16. Some platforms are broken.
 352	 * While we figure out the right quirks for these broken platforms, use
 353	 * SQ_13_IGNORE_3 for now.
 354	 */
 355	set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid);
 356
 357	return 0;
 358}
 359
 360struct set_msi_sid_data {
 361	struct pci_dev *pdev;
 362	u16 alias;
 363	int count;
 364	int busmatch_count;
 365};
 366
 367static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque)
 368{
 369	struct set_msi_sid_data *data = opaque;
 370
 371	if (data->count == 0 || PCI_BUS_NUM(alias) == PCI_BUS_NUM(data->alias))
 372		data->busmatch_count++;
 373
 374	data->pdev = pdev;
 375	data->alias = alias;
 376	data->count++;
 377
 378	return 0;
 379}
 380
 381static int set_msi_sid(struct irte *irte, struct pci_dev *dev)
 382{
 383	struct set_msi_sid_data data;
 384
 385	if (!irte || !dev)
 386		return -1;
 387
 388	data.count = 0;
 389	data.busmatch_count = 0;
 390	pci_for_each_dma_alias(dev, set_msi_sid_cb, &data);
 391
 392	/*
 393	 * DMA alias provides us with a PCI device and alias.  The only case
 394	 * where the it will return an alias on a different bus than the
 395	 * device is the case of a PCIe-to-PCI bridge, where the alias is for
 396	 * the subordinate bus.  In this case we can only verify the bus.
 397	 *
 398	 * If there are multiple aliases, all with the same bus number,
 399	 * then all we can do is verify the bus. This is typical in NTB
 400	 * hardware which use proxy IDs where the device will generate traffic
 401	 * from multiple devfn numbers on the same bus.
 402	 *
 403	 * If the alias device is on a different bus than our source device
 404	 * then we have a topology based alias, use it.
 405	 *
 406	 * Otherwise, the alias is for a device DMA quirk and we cannot
 407	 * assume that MSI uses the same requester ID.  Therefore use the
 408	 * original device.
 409	 */
 410	if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number)
 411		set_irte_verify_bus(irte, PCI_BUS_NUM(data.alias),
 412				    dev->bus->number);
 413	else if (data.count >= 2 && data.busmatch_count == data.count)
 414		set_irte_verify_bus(irte, dev->bus->number, dev->bus->number);
 415	else if (data.pdev->bus->number != dev->bus->number)
 416		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias);
 417	else
 418		set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16,
 419			     pci_dev_id(dev));
 420
 421	return 0;
 422}
 423
 424static int iommu_load_old_irte(struct intel_iommu *iommu)
 425{
 426	struct irte *old_ir_table;
 427	phys_addr_t irt_phys;
 428	unsigned int i;
 429	size_t size;
 430	u64 irta;
 431
 432	/* Check whether the old ir-table has the same size as ours */
 433	irta = dmar_readq(iommu->reg + DMAR_IRTA_REG);
 434	if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK)
 435	     != INTR_REMAP_TABLE_REG_SIZE)
 436		return -EINVAL;
 437
 438	irt_phys = irta & VTD_PAGE_MASK;
 439	size     = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte);
 440
 441	/* Map the old IR table */
 442	old_ir_table = memremap(irt_phys, size, MEMREMAP_WB);
 443	if (!old_ir_table)
 444		return -ENOMEM;
 445
 446	/* Copy data over */
 447	memcpy(iommu->ir_table->base, old_ir_table, size);
 448
 449	__iommu_flush_cache(iommu, iommu->ir_table->base, size);
 450
 451	/*
 452	 * Now check the table for used entries and mark those as
 453	 * allocated in the bitmap
 454	 */
 455	for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) {
 456		if (iommu->ir_table->base[i].present)
 457			bitmap_set(iommu->ir_table->bitmap, i, 1);
 458	}
 459
 460	memunmap(old_ir_table);
 461
 462	return 0;
 463}
 464
 465
 466static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode)
 467{
 468	unsigned long flags;
 469	u64 addr;
 470	u32 sts;
 471
 472	addr = virt_to_phys((void *)iommu->ir_table->base);
 473
 474	raw_spin_lock_irqsave(&iommu->register_lock, flags);
 475
 476	dmar_writeq(iommu->reg + DMAR_IRTA_REG,
 477		    (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE);
 478
 479	/* Set interrupt-remapping table pointer */
 480	writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG);
 481
 482	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 483		      readl, (sts & DMA_GSTS_IRTPS), sts);
 484	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 485
 486	/*
 487	 * Global invalidation of interrupt entry cache to make sure the
 488	 * hardware uses the new irq remapping table.
 489	 */
 490	if (!cap_esirtps(iommu->cap))
 491		qi_global_iec(iommu);
 492}
 493
 494static void iommu_enable_irq_remapping(struct intel_iommu *iommu)
 495{
 496	unsigned long flags;
 497	u32 sts;
 498
 499	raw_spin_lock_irqsave(&iommu->register_lock, flags);
 500
 501	/* Enable interrupt-remapping */
 502	iommu->gcmd |= DMA_GCMD_IRE;
 503	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 504	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 505		      readl, (sts & DMA_GSTS_IRES), sts);
 506
 507	/* Block compatibility-format MSIs */
 508	if (sts & DMA_GSTS_CFIS) {
 509		iommu->gcmd &= ~DMA_GCMD_CFI;
 510		writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 511		IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 512			      readl, !(sts & DMA_GSTS_CFIS), sts);
 513	}
 514
 515	/*
 516	 * With CFI clear in the Global Command register, we should be
 517	 * protected from dangerous (i.e. compatibility) interrupts
 518	 * regardless of x2apic status.  Check just to be sure.
 519	 */
 520	if (sts & DMA_GSTS_CFIS)
 521		WARN(1, KERN_WARNING
 522			"Compatibility-format IRQs enabled despite intr remapping;\n"
 523			"you are vulnerable to IRQ injection.\n");
 524
 525	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 526}
 527
 528static int intel_setup_irq_remapping(struct intel_iommu *iommu)
 529{
 530	struct ir_table *ir_table;
 531	struct fwnode_handle *fn;
 532	unsigned long *bitmap;
 533	void *ir_table_base;
 534
 535	if (iommu->ir_table)
 536		return 0;
 537
 538	ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL);
 539	if (!ir_table)
 540		return -ENOMEM;
 541
 542	ir_table_base = iommu_alloc_pages_node(iommu->node, GFP_KERNEL,
 543					       INTR_REMAP_PAGE_ORDER);
 544	if (!ir_table_base) {
 545		pr_err("IR%d: failed to allocate pages of order %d\n",
 546		       iommu->seq_id, INTR_REMAP_PAGE_ORDER);
 547		goto out_free_table;
 548	}
 549
 550	bitmap = bitmap_zalloc(INTR_REMAP_TABLE_ENTRIES, GFP_KERNEL);
 551	if (bitmap == NULL) {
 552		pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id);
 553		goto out_free_pages;
 554	}
 555
 556	fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id);
 557	if (!fn)
 558		goto out_free_bitmap;
 559
 560	iommu->ir_domain =
 561		irq_domain_create_hierarchy(arch_get_ir_parent_domain(),
 562					    0, INTR_REMAP_TABLE_ENTRIES,
 563					    fn, &intel_ir_domain_ops,
 564					    iommu);
 565	if (!iommu->ir_domain) {
 566		pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id);
 567		goto out_free_fwnode;
 568	}
 569
 570	irq_domain_update_bus_token(iommu->ir_domain,  DOMAIN_BUS_DMAR);
 571	iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
 572				   IRQ_DOMAIN_FLAG_ISOLATED_MSI;
 573	iommu->ir_domain->msi_parent_ops = &dmar_msi_parent_ops;
 574
 575	ir_table->base = ir_table_base;
 576	ir_table->bitmap = bitmap;
 577	iommu->ir_table = ir_table;
 578
 579	/*
 580	 * If the queued invalidation is already initialized,
 581	 * shouldn't disable it.
 582	 */
 583	if (!iommu->qi) {
 584		/*
 585		 * Clear previous faults.
 586		 */
 587		dmar_fault(-1, iommu);
 588		dmar_disable_qi(iommu);
 589
 590		if (dmar_enable_qi(iommu)) {
 591			pr_err("Failed to enable queued invalidation\n");
 592			goto out_free_ir_domain;
 593		}
 594	}
 595
 596	init_ir_status(iommu);
 597
 598	if (ir_pre_enabled(iommu)) {
 599		if (!is_kdump_kernel()) {
 600			pr_info_once("IRQ remapping was enabled on %s but we are not in kdump mode\n",
 601				     iommu->name);
 602			clear_ir_pre_enabled(iommu);
 603			iommu_disable_irq_remapping(iommu);
 604		} else if (iommu_load_old_irte(iommu))
 605			pr_err("Failed to copy IR table for %s from previous kernel\n",
 606			       iommu->name);
 607		else
 608			pr_info("Copied IR table for %s from previous kernel\n",
 609				iommu->name);
 610	}
 611
 612	iommu_set_irq_remapping(iommu, eim_mode);
 613
 614	return 0;
 615
 616out_free_ir_domain:
 617	irq_domain_remove(iommu->ir_domain);
 618	iommu->ir_domain = NULL;
 619out_free_fwnode:
 620	irq_domain_free_fwnode(fn);
 621out_free_bitmap:
 622	bitmap_free(bitmap);
 623out_free_pages:
 624	iommu_free_pages(ir_table_base, INTR_REMAP_PAGE_ORDER);
 625out_free_table:
 626	kfree(ir_table);
 627
 628	iommu->ir_table  = NULL;
 629
 630	return -ENOMEM;
 631}
 632
 633static void intel_teardown_irq_remapping(struct intel_iommu *iommu)
 634{
 635	struct fwnode_handle *fn;
 636
 637	if (iommu && iommu->ir_table) {
 638		if (iommu->ir_domain) {
 639			fn = iommu->ir_domain->fwnode;
 640
 641			irq_domain_remove(iommu->ir_domain);
 642			irq_domain_free_fwnode(fn);
 643			iommu->ir_domain = NULL;
 644		}
 645		iommu_free_pages(iommu->ir_table->base, INTR_REMAP_PAGE_ORDER);
 646		bitmap_free(iommu->ir_table->bitmap);
 647		kfree(iommu->ir_table);
 648		iommu->ir_table = NULL;
 649	}
 650}
 651
 652/*
 653 * Disable Interrupt Remapping.
 654 */
 655static void iommu_disable_irq_remapping(struct intel_iommu *iommu)
 656{
 657	unsigned long flags;
 658	u32 sts;
 659
 660	if (!ecap_ir_support(iommu->ecap))
 661		return;
 662
 663	/*
 664	 * global invalidation of interrupt entry cache before disabling
 665	 * interrupt-remapping.
 666	 */
 667	if (!cap_esirtps(iommu->cap))
 668		qi_global_iec(iommu);
 669
 670	raw_spin_lock_irqsave(&iommu->register_lock, flags);
 671
 672	sts = readl(iommu->reg + DMAR_GSTS_REG);
 673	if (!(sts & DMA_GSTS_IRES))
 674		goto end;
 675
 676	iommu->gcmd &= ~DMA_GCMD_IRE;
 677	writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG);
 678
 679	IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG,
 680		      readl, !(sts & DMA_GSTS_IRES), sts);
 681
 682end:
 683	raw_spin_unlock_irqrestore(&iommu->register_lock, flags);
 684}
 685
 686static int __init dmar_x2apic_optout(void)
 687{
 688	struct acpi_table_dmar *dmar;
 689	dmar = (struct acpi_table_dmar *)dmar_tbl;
 690	if (!dmar || no_x2apic_optout)
 691		return 0;
 692	return dmar->flags & DMAR_X2APIC_OPT_OUT;
 693}
 694
 695static void __init intel_cleanup_irq_remapping(void)
 696{
 697	struct dmar_drhd_unit *drhd;
 698	struct intel_iommu *iommu;
 699
 700	for_each_iommu(iommu, drhd) {
 701		if (ecap_ir_support(iommu->ecap)) {
 702			iommu_disable_irq_remapping(iommu);
 703			intel_teardown_irq_remapping(iommu);
 704		}
 705	}
 706
 707	if (x2apic_supported())
 708		pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n");
 709}
 710
 711static int __init intel_prepare_irq_remapping(void)
 712{
 713	struct dmar_drhd_unit *drhd;
 714	struct intel_iommu *iommu;
 715	int eim = 0;
 716
 717	if (irq_remap_broken) {
 718		pr_warn("This system BIOS has enabled interrupt remapping\n"
 719			"on a chipset that contains an erratum making that\n"
 720			"feature unstable.  To maintain system stability\n"
 721			"interrupt remapping is being disabled.  Please\n"
 722			"contact your BIOS vendor for an update\n");
 723		add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK);
 724		return -ENODEV;
 725	}
 726
 727	if (dmar_table_init() < 0)
 728		return -ENODEV;
 729
 730	if (intel_cap_audit(CAP_AUDIT_STATIC_IRQR, NULL))
 731		return -ENODEV;
 732
 733	if (!dmar_ir_support())
 734		return -ENODEV;
 735
 736	if (parse_ioapics_under_ir()) {
 737		pr_info("Not enabling interrupt remapping\n");
 738		goto error;
 739	}
 740
 741	/* First make sure all IOMMUs support IRQ remapping */
 742	for_each_iommu(iommu, drhd)
 743		if (!ecap_ir_support(iommu->ecap))
 744			goto error;
 745
 746	/* Detect remapping mode: lapic or x2apic */
 747	if (x2apic_supported()) {
 748		eim = !dmar_x2apic_optout();
 749		if (!eim) {
 750			pr_info("x2apic is disabled because BIOS sets x2apic opt out bit.");
 751			pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n");
 752		}
 753	}
 754
 755	for_each_iommu(iommu, drhd) {
 756		if (eim && !ecap_eim_support(iommu->ecap)) {
 757			pr_info("%s does not support EIM\n", iommu->name);
 758			eim = 0;
 759		}
 760	}
 761
 762	eim_mode = eim;
 763	if (eim)
 764		pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n");
 765
 766	/* Do the initializations early */
 767	for_each_iommu(iommu, drhd) {
 768		if (intel_setup_irq_remapping(iommu)) {
 769			pr_err("Failed to setup irq remapping for %s\n",
 770			       iommu->name);
 771			goto error;
 772		}
 773	}
 774
 775	return 0;
 776
 777error:
 778	intel_cleanup_irq_remapping();
 779	return -ENODEV;
 780}
 781
 782/*
 783 * Set Posted-Interrupts capability.
 784 */
 785static inline void set_irq_posting_cap(void)
 786{
 787	struct dmar_drhd_unit *drhd;
 788	struct intel_iommu *iommu;
 789
 790	if (!disable_irq_post) {
 791		/*
 792		 * If IRTE is in posted format, the 'pda' field goes across the
 793		 * 64-bit boundary, we need use cmpxchg16b to atomically update
 794		 * it. We only expose posted-interrupt when X86_FEATURE_CX16
 795		 * is supported. Actually, hardware platforms supporting PI
 796		 * should have X86_FEATURE_CX16 support, this has been confirmed
 797		 * with Intel hardware guys.
 798		 */
 799		if (boot_cpu_has(X86_FEATURE_CX16))
 800			intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP;
 801
 802		for_each_iommu(iommu, drhd)
 803			if (!cap_pi_support(iommu->cap)) {
 804				intel_irq_remap_ops.capability &=
 805						~(1 << IRQ_POSTING_CAP);
 806				break;
 807			}
 808	}
 809}
 810
 811static int __init intel_enable_irq_remapping(void)
 812{
 813	struct dmar_drhd_unit *drhd;
 814	struct intel_iommu *iommu;
 815	bool setup = false;
 816
 817	/*
 818	 * Setup Interrupt-remapping for all the DRHD's now.
 819	 */
 820	for_each_iommu(iommu, drhd) {
 821		if (!ir_pre_enabled(iommu))
 822			iommu_enable_irq_remapping(iommu);
 823		setup = true;
 824	}
 825
 826	if (!setup)
 827		goto error;
 828
 829	irq_remapping_enabled = 1;
 830
 831	set_irq_posting_cap();
 832
 833	pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic");
 834
 835	return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE;
 836
 837error:
 838	intel_cleanup_irq_remapping();
 839	return -1;
 840}
 841
 842static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope,
 843				   struct intel_iommu *iommu,
 844				   struct acpi_dmar_hardware_unit *drhd)
 845{
 846	struct acpi_dmar_pci_path *path;
 847	u8 bus;
 848	int count, free = -1;
 849
 850	bus = scope->bus;
 851	path = (struct acpi_dmar_pci_path *)(scope + 1);
 852	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 853		/ sizeof(struct acpi_dmar_pci_path);
 854
 855	while (--count > 0) {
 856		/*
 857		 * Access PCI directly due to the PCI
 858		 * subsystem isn't initialized yet.
 859		 */
 860		bus = read_pci_config_byte(bus, path->device, path->function,
 861					   PCI_SECONDARY_BUS);
 862		path++;
 863	}
 864
 865	for (count = 0; count < MAX_HPET_TBS; count++) {
 866		if (ir_hpet[count].iommu == iommu &&
 867		    ir_hpet[count].id == scope->enumeration_id)
 868			return 0;
 869		else if (ir_hpet[count].iommu == NULL && free == -1)
 870			free = count;
 871	}
 872	if (free == -1) {
 873		pr_warn("Exceeded Max HPET blocks\n");
 874		return -ENOSPC;
 875	}
 876
 877	ir_hpet[free].iommu = iommu;
 878	ir_hpet[free].id    = scope->enumeration_id;
 879	ir_hpet[free].bus   = bus;
 880	ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function);
 881	pr_info("HPET id %d under DRHD base 0x%Lx\n",
 882		scope->enumeration_id, drhd->address);
 883
 884	return 0;
 885}
 886
 887static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope,
 888				     struct intel_iommu *iommu,
 889				     struct acpi_dmar_hardware_unit *drhd)
 890{
 891	struct acpi_dmar_pci_path *path;
 892	u8 bus;
 893	int count, free = -1;
 894
 895	bus = scope->bus;
 896	path = (struct acpi_dmar_pci_path *)(scope + 1);
 897	count = (scope->length - sizeof(struct acpi_dmar_device_scope))
 898		/ sizeof(struct acpi_dmar_pci_path);
 899
 900	while (--count > 0) {
 901		/*
 902		 * Access PCI directly due to the PCI
 903		 * subsystem isn't initialized yet.
 904		 */
 905		bus = read_pci_config_byte(bus, path->device, path->function,
 906					   PCI_SECONDARY_BUS);
 907		path++;
 908	}
 909
 910	for (count = 0; count < MAX_IO_APICS; count++) {
 911		if (ir_ioapic[count].iommu == iommu &&
 912		    ir_ioapic[count].id == scope->enumeration_id)
 913			return 0;
 914		else if (ir_ioapic[count].iommu == NULL && free == -1)
 915			free = count;
 916	}
 917	if (free == -1) {
 918		pr_warn("Exceeded Max IO APICS\n");
 919		return -ENOSPC;
 920	}
 921
 922	ir_ioapic[free].bus   = bus;
 923	ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function);
 924	ir_ioapic[free].iommu = iommu;
 925	ir_ioapic[free].id    = scope->enumeration_id;
 926	pr_info("IOAPIC id %d under DRHD base  0x%Lx IOMMU %d\n",
 927		scope->enumeration_id, drhd->address, iommu->seq_id);
 928
 929	return 0;
 930}
 931
 932static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header,
 933				      struct intel_iommu *iommu)
 934{
 935	int ret = 0;
 936	struct acpi_dmar_hardware_unit *drhd;
 937	struct acpi_dmar_device_scope *scope;
 938	void *start, *end;
 939
 940	drhd = (struct acpi_dmar_hardware_unit *)header;
 941	start = (void *)(drhd + 1);
 942	end = ((void *)drhd) + header->length;
 943
 944	while (start < end && ret == 0) {
 945		scope = start;
 946		if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC)
 947			ret = ir_parse_one_ioapic_scope(scope, iommu, drhd);
 948		else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET)
 949			ret = ir_parse_one_hpet_scope(scope, iommu, drhd);
 950		start += scope->length;
 951	}
 952
 953	return ret;
 954}
 955
 956static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu)
 957{
 958	int i;
 959
 960	for (i = 0; i < MAX_HPET_TBS; i++)
 961		if (ir_hpet[i].iommu == iommu)
 962			ir_hpet[i].iommu = NULL;
 963
 964	for (i = 0; i < MAX_IO_APICS; i++)
 965		if (ir_ioapic[i].iommu == iommu)
 966			ir_ioapic[i].iommu = NULL;
 967}
 968
 969/*
 970 * Finds the assocaition between IOAPIC's and its Interrupt-remapping
 971 * hardware unit.
 972 */
 973static int __init parse_ioapics_under_ir(void)
 974{
 975	struct dmar_drhd_unit *drhd;
 976	struct intel_iommu *iommu;
 977	bool ir_supported = false;
 978	int ioapic_idx;
 979
 980	for_each_iommu(iommu, drhd) {
 981		int ret;
 982
 983		if (!ecap_ir_support(iommu->ecap))
 984			continue;
 985
 986		ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu);
 987		if (ret)
 988			return ret;
 989
 990		ir_supported = true;
 991	}
 992
 993	if (!ir_supported)
 994		return -ENODEV;
 995
 996	for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) {
 997		int ioapic_id = mpc_ioapic_id(ioapic_idx);
 998		if (!map_ioapic_to_iommu(ioapic_id)) {
 999			pr_err(FW_BUG "ioapic %d has no mapping iommu, "
1000			       "interrupt remapping will be disabled\n",
1001			       ioapic_id);
1002			return -1;
1003		}
1004	}
1005
1006	return 0;
1007}
1008
1009static int __init ir_dev_scope_init(void)
1010{
1011	int ret;
1012
1013	if (!irq_remapping_enabled)
1014		return 0;
1015
1016	down_write(&dmar_global_lock);
1017	ret = dmar_dev_scope_init();
1018	up_write(&dmar_global_lock);
1019
1020	return ret;
1021}
1022rootfs_initcall(ir_dev_scope_init);
1023
1024static void disable_irq_remapping(void)
1025{
1026	struct dmar_drhd_unit *drhd;
1027	struct intel_iommu *iommu = NULL;
1028
1029	/*
1030	 * Disable Interrupt-remapping for all the DRHD's now.
1031	 */
1032	for_each_iommu(iommu, drhd) {
1033		if (!ecap_ir_support(iommu->ecap))
1034			continue;
1035
1036		iommu_disable_irq_remapping(iommu);
1037	}
1038
1039	/*
1040	 * Clear Posted-Interrupts capability.
1041	 */
1042	if (!disable_irq_post)
1043		intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP);
1044}
1045
1046static int reenable_irq_remapping(int eim)
1047{
1048	struct dmar_drhd_unit *drhd;
1049	bool setup = false;
1050	struct intel_iommu *iommu = NULL;
1051
1052	for_each_iommu(iommu, drhd)
1053		if (iommu->qi)
1054			dmar_reenable_qi(iommu);
1055
1056	/*
1057	 * Setup Interrupt-remapping for all the DRHD's now.
1058	 */
1059	for_each_iommu(iommu, drhd) {
1060		if (!ecap_ir_support(iommu->ecap))
1061			continue;
1062
1063		/* Set up interrupt remapping for iommu.*/
1064		iommu_set_irq_remapping(iommu, eim);
1065		iommu_enable_irq_remapping(iommu);
1066		setup = true;
1067	}
1068
1069	if (!setup)
1070		goto error;
1071
1072	set_irq_posting_cap();
1073
1074	return 0;
1075
1076error:
1077	/*
1078	 * handle error condition gracefully here!
1079	 */
1080	return -1;
1081}
1082
1083/*
1084 * Store the MSI remapping domain pointer in the device if enabled.
1085 *
1086 * This is called from dmar_pci_bus_add_dev() so it works even when DMA
1087 * remapping is disabled. Only update the pointer if the device is not
1088 * already handled by a non default PCI/MSI interrupt domain. This protects
1089 * e.g. VMD devices.
1090 */
1091void intel_irq_remap_add_device(struct dmar_pci_notify_info *info)
1092{
1093	if (!irq_remapping_enabled || !pci_dev_has_default_msi_parent_domain(info->dev))
1094		return;
1095
1096	dev_set_msi_domain(&info->dev->dev, map_dev_to_ir(info->dev));
1097}
1098
1099static void prepare_irte(struct irte *irte, int vector, unsigned int dest)
1100{
1101	memset(irte, 0, sizeof(*irte));
1102
1103	irte->present = 1;
1104	irte->dst_mode = apic->dest_mode_logical;
1105	/*
1106	 * Trigger mode in the IRTE will always be edge, and for IO-APIC, the
1107	 * actual level or edge trigger will be setup in the IO-APIC
1108	 * RTE. This will help simplify level triggered irq migration.
1109	 * For more details, see the comments (in io_apic.c) explainig IO-APIC
1110	 * irq migration in the presence of interrupt-remapping.
1111	*/
1112	irte->trigger_mode = 0;
1113	irte->dlvry_mode = APIC_DELIVERY_MODE_FIXED;
1114	irte->vector = vector;
1115	irte->dest_id = IRTE_DEST(dest);
1116	irte->redir_hint = 1;
1117}
1118
1119static void prepare_irte_posted(struct irte *irte)
1120{
1121	memset(irte, 0, sizeof(*irte));
1122
1123	irte->present = 1;
1124	irte->p_pst = 1;
1125}
1126
1127struct irq_remap_ops intel_irq_remap_ops = {
1128	.prepare		= intel_prepare_irq_remapping,
1129	.enable			= intel_enable_irq_remapping,
1130	.disable		= disable_irq_remapping,
1131	.reenable		= reenable_irq_remapping,
1132	.enable_faulting	= enable_drhd_fault_handling,
1133};
1134
1135#ifdef CONFIG_X86_POSTED_MSI
1136
1137static phys_addr_t get_pi_desc_addr(struct irq_data *irqd)
1138{
1139	int cpu = cpumask_first(irq_data_get_effective_affinity_mask(irqd));
1140
1141	if (WARN_ON(cpu >= nr_cpu_ids))
1142		return 0;
1143
1144	return __pa(per_cpu_ptr(&posted_msi_pi_desc, cpu));
1145}
1146
1147static void intel_ir_reconfigure_irte_posted(struct irq_data *irqd)
1148{
1149	struct intel_ir_data *ir_data = irqd->chip_data;
1150	struct irte *irte = &ir_data->irte_entry;
1151	struct irte irte_pi;
1152	u64 pid_addr;
1153
1154	pid_addr = get_pi_desc_addr(irqd);
1155
1156	if (!pid_addr) {
1157		pr_warn("Failed to setup IRQ %d for posted mode", irqd->irq);
1158		return;
1159	}
1160
1161	memset(&irte_pi, 0, sizeof(irte_pi));
1162
1163	/* The shared IRTE already be set up as posted during alloc_irte */
1164	dmar_copy_shared_irte(&irte_pi, irte);
1165
1166	irte_pi.pda_l = (pid_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1167	irte_pi.pda_h = (pid_addr >> 32) & ~(-1UL << PDA_HIGH_BIT);
1168
1169	modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1170}
1171
1172#else
1173static inline void intel_ir_reconfigure_irte_posted(struct irq_data *irqd) {}
1174#endif
1175
1176static void intel_ir_reconfigure_irte(struct irq_data *irqd, bool force)
1177{
1178	struct intel_ir_data *ir_data = irqd->chip_data;
1179	struct irte *irte = &ir_data->irte_entry;
1180	struct irq_cfg *cfg = irqd_cfg(irqd);
1181
1182	/*
1183	 * Atomically updates the IRTE with the new destination, vector
1184	 * and flushes the interrupt entry cache.
1185	 */
1186	irte->vector = cfg->vector;
1187	irte->dest_id = IRTE_DEST(cfg->dest_apicid);
1188
1189	if (ir_data->irq_2_iommu.posted_msi)
1190		intel_ir_reconfigure_irte_posted(irqd);
1191	else if (force || ir_data->irq_2_iommu.mode == IRQ_REMAPPING)
1192		modify_irte(&ir_data->irq_2_iommu, irte);
1193}
1194
1195/*
1196 * Migrate the IO-APIC irq in the presence of intr-remapping.
1197 *
1198 * For both level and edge triggered, irq migration is a simple atomic
1199 * update(of vector and cpu destination) of IRTE and flush the hardware cache.
1200 *
1201 * For level triggered, we eliminate the io-apic RTE modification (with the
1202 * updated vector information), by using a virtual vector (io-apic pin number).
1203 * Real vector that is used for interrupting cpu will be coming from
1204 * the interrupt-remapping table entry.
1205 *
1206 * As the migration is a simple atomic update of IRTE, the same mechanism
1207 * is used to migrate MSI irq's in the presence of interrupt-remapping.
1208 */
1209static int
1210intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask,
1211		      bool force)
1212{
1213	struct irq_data *parent = data->parent_data;
1214	struct irq_cfg *cfg = irqd_cfg(data);
1215	int ret;
1216
1217	ret = parent->chip->irq_set_affinity(parent, mask, force);
1218	if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
1219		return ret;
1220
1221	intel_ir_reconfigure_irte(data, false);
1222	/*
1223	 * After this point, all the interrupts will start arriving
1224	 * at the new destination. So, time to cleanup the previous
1225	 * vector allocation.
1226	 */
1227	vector_schedule_cleanup(cfg);
1228
1229	return IRQ_SET_MASK_OK_DONE;
1230}
1231
1232static void intel_ir_compose_msi_msg(struct irq_data *irq_data,
1233				     struct msi_msg *msg)
1234{
1235	struct intel_ir_data *ir_data = irq_data->chip_data;
1236
1237	*msg = ir_data->msi_entry;
1238}
1239
1240static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info)
1241{
1242	struct intel_ir_data *ir_data = data->chip_data;
1243	struct vcpu_data *vcpu_pi_info = info;
1244
1245	/* stop posting interrupts, back to the default mode */
1246	if (!vcpu_pi_info) {
1247		modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry);
1248	} else {
1249		struct irte irte_pi;
1250
1251		/*
1252		 * We are not caching the posted interrupt entry. We
1253		 * copy the data from the remapped entry and modify
1254		 * the fields which are relevant for posted mode. The
1255		 * cached remapped entry is used for switching back to
1256		 * remapped mode.
1257		 */
1258		memset(&irte_pi, 0, sizeof(irte_pi));
1259		dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry);
1260
1261		/* Update the posted mode fields */
1262		irte_pi.p_pst = 1;
1263		irte_pi.p_urgent = 0;
1264		irte_pi.p_vector = vcpu_pi_info->vector;
1265		irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >>
1266				(32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT);
1267		irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) &
1268				~(-1UL << PDA_HIGH_BIT);
1269
1270		modify_irte(&ir_data->irq_2_iommu, &irte_pi);
1271	}
1272
1273	return 0;
1274}
1275
1276static struct irq_chip intel_ir_chip = {
1277	.name			= "INTEL-IR",
1278	.irq_ack		= apic_ack_irq,
1279	.irq_set_affinity	= intel_ir_set_affinity,
1280	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1281	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1282};
1283
1284/*
1285 * With posted MSIs, all vectors are multiplexed into a single notification
1286 * vector. Devices MSIs are then dispatched in a demux loop where
1287 * EOIs can be coalesced as well.
1288 *
1289 * "INTEL-IR-POST" IRQ chip does not do EOI on ACK, thus the dummy irq_ack()
1290 * function. Instead EOI is performed by the posted interrupt notification
1291 * handler.
1292 *
1293 * For the example below, 3 MSIs are coalesced into one CPU notification. Only
1294 * one apic_eoi() is needed.
1295 *
1296 * __sysvec_posted_msi_notification()
1297 *	irq_enter();
1298 *		handle_edge_irq()
1299 *			irq_chip_ack_parent()
1300 *				dummy(); // No EOI
1301 *			handle_irq_event()
1302 *				driver_handler()
1303 *		handle_edge_irq()
1304 *			irq_chip_ack_parent()
1305 *				dummy(); // No EOI
1306 *			handle_irq_event()
1307 *				driver_handler()
1308 *		handle_edge_irq()
1309 *			irq_chip_ack_parent()
1310 *				dummy(); // No EOI
1311 *			handle_irq_event()
1312 *				driver_handler()
1313 *	apic_eoi()
1314 *	irq_exit()
1315 */
1316
1317static void dummy_ack(struct irq_data *d) { }
1318
1319static struct irq_chip intel_ir_chip_post_msi = {
1320	.name			= "INTEL-IR-POST",
1321	.irq_ack		= dummy_ack,
1322	.irq_set_affinity	= intel_ir_set_affinity,
1323	.irq_compose_msi_msg	= intel_ir_compose_msi_msg,
1324	.irq_set_vcpu_affinity	= intel_ir_set_vcpu_affinity,
1325};
1326
1327static void fill_msi_msg(struct msi_msg *msg, u32 index, u32 subhandle)
1328{
1329	memset(msg, 0, sizeof(*msg));
1330
1331	msg->arch_addr_lo.dmar_base_address = X86_MSI_BASE_ADDRESS_LOW;
1332	msg->arch_addr_lo.dmar_subhandle_valid = true;
1333	msg->arch_addr_lo.dmar_format = true;
1334	msg->arch_addr_lo.dmar_index_0_14 = index & 0x7FFF;
1335	msg->arch_addr_lo.dmar_index_15 = !!(index & 0x8000);
1336
1337	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
1338
1339	msg->arch_data.dmar_subhandle = subhandle;
1340}
1341
1342static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data,
1343					     struct irq_cfg *irq_cfg,
1344					     struct irq_alloc_info *info,
1345					     int index, int sub_handle)
1346{
1347	struct irte *irte = &data->irte_entry;
1348
1349	prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid);
1350
1351	switch (info->type) {
1352	case X86_IRQ_ALLOC_TYPE_IOAPIC:
1353		/* Set source-id of interrupt request */
1354		set_ioapic_sid(irte, info->devid);
1355		apic_pr_verbose("IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n",
1356				info->devid, irte->present, irte->fpd, irte->dst_mode,
1357				irte->redir_hint, irte->trigger_mode, irte->dlvry_mode,
1358				irte->avail, irte->vector, irte->dest_id, irte->sid,
1359				irte->sq, irte->svt);
1360		sub_handle = info->ioapic.pin;
1361		break;
1362	case X86_IRQ_ALLOC_TYPE_HPET:
1363		set_hpet_sid(irte, info->devid);
1364		break;
1365	case X86_IRQ_ALLOC_TYPE_PCI_MSI:
1366	case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
1367		if (posted_msi_supported()) {
1368			prepare_irte_posted(irte);
1369			data->irq_2_iommu.posted_msi = 1;
1370		}
1371
1372		set_msi_sid(irte,
1373			    pci_real_dma_dev(msi_desc_to_pci_dev(info->desc)));
1374		break;
1375	default:
1376		BUG_ON(1);
1377		break;
1378	}
1379	fill_msi_msg(&data->msi_entry, index, sub_handle);
1380}
1381
1382static void intel_free_irq_resources(struct irq_domain *domain,
1383				     unsigned int virq, unsigned int nr_irqs)
1384{
1385	struct irq_data *irq_data;
1386	struct intel_ir_data *data;
1387	struct irq_2_iommu *irq_iommu;
1388	unsigned long flags;
1389	int i;
1390	for (i = 0; i < nr_irqs; i++) {
1391		irq_data = irq_domain_get_irq_data(domain, virq  + i);
1392		if (irq_data && irq_data->chip_data) {
1393			data = irq_data->chip_data;
1394			irq_iommu = &data->irq_2_iommu;
1395			raw_spin_lock_irqsave(&irq_2_ir_lock, flags);
1396			clear_entries(irq_iommu);
1397			raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags);
1398			irq_domain_reset_irq_data(irq_data);
1399			kfree(data);
1400		}
1401	}
1402}
1403
1404static int intel_irq_remapping_alloc(struct irq_domain *domain,
1405				     unsigned int virq, unsigned int nr_irqs,
1406				     void *arg)
1407{
1408	struct intel_iommu *iommu = domain->host_data;
1409	struct irq_alloc_info *info = arg;
1410	struct intel_ir_data *data, *ird;
1411	struct irq_data *irq_data;
1412	struct irq_cfg *irq_cfg;
1413	int i, ret, index;
1414
1415	if (!info || !iommu)
1416		return -EINVAL;
1417	if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
1418		return -EINVAL;
1419
1420	ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
1421	if (ret < 0)
1422		return ret;
1423
1424	ret = -ENOMEM;
1425	data = kzalloc(sizeof(*data), GFP_KERNEL);
1426	if (!data)
1427		goto out_free_parent;
1428
1429	index = alloc_irte(iommu, &data->irq_2_iommu, nr_irqs);
1430	if (index < 0) {
1431		pr_warn("Failed to allocate IRTE\n");
1432		kfree(data);
1433		goto out_free_parent;
1434	}
1435
1436	for (i = 0; i < nr_irqs; i++) {
1437		irq_data = irq_domain_get_irq_data(domain, virq + i);
1438		irq_cfg = irqd_cfg(irq_data);
1439		if (!irq_data || !irq_cfg) {
1440			if (!i)
1441				kfree(data);
1442			ret = -EINVAL;
1443			goto out_free_data;
1444		}
1445
1446		if (i > 0) {
1447			ird = kzalloc(sizeof(*ird), GFP_KERNEL);
1448			if (!ird)
1449				goto out_free_data;
1450			/* Initialize the common data */
1451			ird->irq_2_iommu = data->irq_2_iommu;
1452			ird->irq_2_iommu.sub_handle = i;
1453		} else {
1454			ird = data;
1455		}
1456
1457		irq_data->hwirq = (index << 16) + i;
1458		irq_data->chip_data = ird;
1459		if (posted_msi_supported() &&
1460		    ((info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI) ||
1461		     (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX)))
1462			irq_data->chip = &intel_ir_chip_post_msi;
1463		else
1464			irq_data->chip = &intel_ir_chip;
1465		intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i);
1466		irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
1467	}
1468	return 0;
1469
1470out_free_data:
1471	intel_free_irq_resources(domain, virq, i);
1472out_free_parent:
1473	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1474	return ret;
1475}
1476
1477static void intel_irq_remapping_free(struct irq_domain *domain,
1478				     unsigned int virq, unsigned int nr_irqs)
1479{
1480	intel_free_irq_resources(domain, virq, nr_irqs);
1481	irq_domain_free_irqs_common(domain, virq, nr_irqs);
1482}
1483
1484static int intel_irq_remapping_activate(struct irq_domain *domain,
1485					struct irq_data *irq_data, bool reserve)
1486{
1487	intel_ir_reconfigure_irte(irq_data, true);
1488	return 0;
1489}
1490
1491static void intel_irq_remapping_deactivate(struct irq_domain *domain,
1492					   struct irq_data *irq_data)
1493{
1494	struct intel_ir_data *data = irq_data->chip_data;
1495	struct irte entry;
1496
1497	memset(&entry, 0, sizeof(entry));
1498	modify_irte(&data->irq_2_iommu, &entry);
1499}
1500
1501static int intel_irq_remapping_select(struct irq_domain *d,
1502				      struct irq_fwspec *fwspec,
1503				      enum irq_domain_bus_token bus_token)
1504{
1505	struct intel_iommu *iommu = NULL;
1506
1507	if (x86_fwspec_is_ioapic(fwspec))
1508		iommu = map_ioapic_to_iommu(fwspec->param[0]);
1509	else if (x86_fwspec_is_hpet(fwspec))
1510		iommu = map_hpet_to_iommu(fwspec->param[0]);
1511
1512	return iommu && d == iommu->ir_domain;
1513}
1514
1515static const struct irq_domain_ops intel_ir_domain_ops = {
1516	.select = intel_irq_remapping_select,
1517	.alloc = intel_irq_remapping_alloc,
1518	.free = intel_irq_remapping_free,
1519	.activate = intel_irq_remapping_activate,
1520	.deactivate = intel_irq_remapping_deactivate,
1521};
1522
1523static const struct msi_parent_ops dmar_msi_parent_ops = {
1524	.supported_flags	= X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
1525	.prefix			= "IR-",
1526	.init_dev_msi_info	= msi_parent_init_dev_msi_info,
1527};
1528
1529/*
1530 * Support of Interrupt Remapping Unit Hotplug
1531 */
1532static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu)
1533{
1534	int ret;
1535	int eim = x2apic_enabled();
1536
1537	ret = intel_cap_audit(CAP_AUDIT_HOTPLUG_IRQR, iommu);
1538	if (ret)
1539		return ret;
1540
1541	if (eim && !ecap_eim_support(iommu->ecap)) {
1542		pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n",
1543			iommu->reg_phys, iommu->ecap);
1544		return -ENODEV;
1545	}
1546
1547	if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) {
1548		pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n",
1549			iommu->reg_phys);
1550		return -ENODEV;
1551	}
1552
1553	/* TODO: check all IOAPICs are covered by IOMMU */
1554
1555	/* Setup Interrupt-remapping now. */
1556	ret = intel_setup_irq_remapping(iommu);
1557	if (ret) {
1558		pr_err("Failed to setup irq remapping for %s\n",
1559		       iommu->name);
1560		intel_teardown_irq_remapping(iommu);
1561		ir_remove_ioapic_hpet_scope(iommu);
1562	} else {
1563		iommu_enable_irq_remapping(iommu);
1564	}
1565
1566	return ret;
1567}
1568
1569int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert)
1570{
1571	int ret = 0;
1572	struct intel_iommu *iommu = dmaru->iommu;
1573
1574	if (!irq_remapping_enabled)
1575		return 0;
1576	if (iommu == NULL)
1577		return -EINVAL;
1578	if (!ecap_ir_support(iommu->ecap))
1579		return 0;
1580	if (irq_remapping_cap(IRQ_POSTING_CAP) &&
1581	    !cap_pi_support(iommu->cap))
1582		return -EBUSY;
1583
1584	if (insert) {
1585		if (!iommu->ir_table)
1586			ret = dmar_ir_add(dmaru, iommu);
1587	} else {
1588		if (iommu->ir_table) {
1589			if (!bitmap_empty(iommu->ir_table->bitmap,
1590					  INTR_REMAP_TABLE_ENTRIES)) {
1591				ret = -EBUSY;
1592			} else {
1593				iommu_disable_irq_remapping(iommu);
1594				intel_teardown_irq_remapping(iommu);
1595				ir_remove_ioapic_hpet_scope(iommu);
1596			}
1597		}
1598	}
1599
1600	return ret;
1601}