Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1/* SPDX-License-Identifier: GPL-2.0-only */
   2/*
   3 * Copyright © 2006-2015, Intel Corporation.
   4 *
   5 * Authors: Ashok Raj <ashok.raj@intel.com>
   6 *          Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
   7 *          David Woodhouse <David.Woodhouse@intel.com>
   8 */
   9
  10#ifndef _INTEL_IOMMU_H_
  11#define _INTEL_IOMMU_H_
  12
  13#include <linux/types.h>
  14#include <linux/iova.h>
  15#include <linux/io.h>
  16#include <linux/idr.h>
  17#include <linux/mmu_notifier.h>
  18#include <linux/list.h>
  19#include <linux/iommu.h>
  20#include <linux/io-64-nonatomic-lo-hi.h>
  21#include <linux/dmar.h>
  22#include <linux/bitfield.h>
  23#include <linux/xarray.h>
  24#include <linux/perf_event.h>
  25#include <linux/pci.h>
  26
  27#include <asm/cacheflush.h>
  28#include <asm/iommu.h>
  29#include <uapi/linux/iommufd.h>
  30
  31/*
  32 * VT-d hardware uses 4KiB page size regardless of host page size.
  33 */
  34#define VTD_PAGE_SHIFT		(12)
  35#define VTD_PAGE_SIZE		(1UL << VTD_PAGE_SHIFT)
  36#define VTD_PAGE_MASK		(((u64)-1) << VTD_PAGE_SHIFT)
  37#define VTD_PAGE_ALIGN(addr)	(((addr) + VTD_PAGE_SIZE - 1) & VTD_PAGE_MASK)
  38
  39#define IOVA_PFN(addr)		((addr) >> PAGE_SHIFT)
  40
  41#define VTD_STRIDE_SHIFT        (9)
  42#define VTD_STRIDE_MASK         (((u64)-1) << VTD_STRIDE_SHIFT)
  43
  44#define DMA_PTE_READ		BIT_ULL(0)
  45#define DMA_PTE_WRITE		BIT_ULL(1)
  46#define DMA_PTE_LARGE_PAGE	BIT_ULL(7)
  47#define DMA_PTE_SNP		BIT_ULL(11)
  48
  49#define DMA_FL_PTE_PRESENT	BIT_ULL(0)
  50#define DMA_FL_PTE_US		BIT_ULL(2)
  51#define DMA_FL_PTE_ACCESS	BIT_ULL(5)
  52#define DMA_FL_PTE_DIRTY	BIT_ULL(6)
  53
  54#define DMA_SL_PTE_DIRTY_BIT	9
  55#define DMA_SL_PTE_DIRTY	BIT_ULL(DMA_SL_PTE_DIRTY_BIT)
  56
  57#define ADDR_WIDTH_5LEVEL	(57)
  58#define ADDR_WIDTH_4LEVEL	(48)
  59
  60#define CONTEXT_TT_MULTI_LEVEL	0
  61#define CONTEXT_TT_DEV_IOTLB	1
  62#define CONTEXT_TT_PASS_THROUGH 2
  63#define CONTEXT_PASIDE		BIT_ULL(3)
  64
  65/*
  66 * Intel IOMMU register specification per version 1.0 public spec.
  67 */
  68#define	DMAR_VER_REG	0x0	/* Arch version supported by this IOMMU */
  69#define	DMAR_CAP_REG	0x8	/* Hardware supported capabilities */
  70#define	DMAR_ECAP_REG	0x10	/* Extended capabilities supported */
  71#define	DMAR_GCMD_REG	0x18	/* Global command register */
  72#define	DMAR_GSTS_REG	0x1c	/* Global status register */
  73#define	DMAR_RTADDR_REG	0x20	/* Root entry table */
  74#define	DMAR_CCMD_REG	0x28	/* Context command reg */
  75#define	DMAR_FSTS_REG	0x34	/* Fault Status register */
  76#define	DMAR_FECTL_REG	0x38	/* Fault control register */
  77#define	DMAR_FEDATA_REG	0x3c	/* Fault event interrupt data register */
  78#define	DMAR_FEADDR_REG	0x40	/* Fault event interrupt addr register */
  79#define	DMAR_FEUADDR_REG 0x44	/* Upper address register */
  80#define	DMAR_AFLOG_REG	0x58	/* Advanced Fault control */
  81#define	DMAR_PMEN_REG	0x64	/* Enable Protected Memory Region */
  82#define	DMAR_PLMBASE_REG 0x68	/* PMRR Low addr */
  83#define	DMAR_PLMLIMIT_REG 0x6c	/* PMRR low limit */
  84#define	DMAR_PHMBASE_REG 0x70	/* pmrr high base addr */
  85#define	DMAR_PHMLIMIT_REG 0x78	/* pmrr high limit */
  86#define DMAR_IQH_REG	0x80	/* Invalidation queue head register */
  87#define DMAR_IQT_REG	0x88	/* Invalidation queue tail register */
  88#define DMAR_IQ_SHIFT	4	/* Invalidation queue head/tail shift */
  89#define DMAR_IQA_REG	0x90	/* Invalidation queue addr register */
  90#define DMAR_ICS_REG	0x9c	/* Invalidation complete status register */
  91#define DMAR_IQER_REG	0xb0	/* Invalidation queue error record register */
  92#define DMAR_IRTA_REG	0xb8    /* Interrupt remapping table addr register */
  93#define DMAR_PQH_REG	0xc0	/* Page request queue head register */
  94#define DMAR_PQT_REG	0xc8	/* Page request queue tail register */
  95#define DMAR_PQA_REG	0xd0	/* Page request queue address register */
  96#define DMAR_PRS_REG	0xdc	/* Page request status register */
  97#define DMAR_PECTL_REG	0xe0	/* Page request event control register */
  98#define	DMAR_PEDATA_REG	0xe4	/* Page request event interrupt data register */
  99#define	DMAR_PEADDR_REG	0xe8	/* Page request event interrupt addr register */
 100#define	DMAR_PEUADDR_REG 0xec	/* Page request event Upper address register */
 101#define DMAR_MTRRCAP_REG 0x100	/* MTRR capability register */
 102#define DMAR_MTRRDEF_REG 0x108	/* MTRR default type register */
 103#define DMAR_MTRR_FIX64K_00000_REG 0x120 /* MTRR Fixed range registers */
 104#define DMAR_MTRR_FIX16K_80000_REG 0x128
 105#define DMAR_MTRR_FIX16K_A0000_REG 0x130
 106#define DMAR_MTRR_FIX4K_C0000_REG 0x138
 107#define DMAR_MTRR_FIX4K_C8000_REG 0x140
 108#define DMAR_MTRR_FIX4K_D0000_REG 0x148
 109#define DMAR_MTRR_FIX4K_D8000_REG 0x150
 110#define DMAR_MTRR_FIX4K_E0000_REG 0x158
 111#define DMAR_MTRR_FIX4K_E8000_REG 0x160
 112#define DMAR_MTRR_FIX4K_F0000_REG 0x168
 113#define DMAR_MTRR_FIX4K_F8000_REG 0x170
 114#define DMAR_MTRR_PHYSBASE0_REG 0x180 /* MTRR Variable range registers */
 115#define DMAR_MTRR_PHYSMASK0_REG 0x188
 116#define DMAR_MTRR_PHYSBASE1_REG 0x190
 117#define DMAR_MTRR_PHYSMASK1_REG 0x198
 118#define DMAR_MTRR_PHYSBASE2_REG 0x1a0
 119#define DMAR_MTRR_PHYSMASK2_REG 0x1a8
 120#define DMAR_MTRR_PHYSBASE3_REG 0x1b0
 121#define DMAR_MTRR_PHYSMASK3_REG 0x1b8
 122#define DMAR_MTRR_PHYSBASE4_REG 0x1c0
 123#define DMAR_MTRR_PHYSMASK4_REG 0x1c8
 124#define DMAR_MTRR_PHYSBASE5_REG 0x1d0
 125#define DMAR_MTRR_PHYSMASK5_REG 0x1d8
 126#define DMAR_MTRR_PHYSBASE6_REG 0x1e0
 127#define DMAR_MTRR_PHYSMASK6_REG 0x1e8
 128#define DMAR_MTRR_PHYSBASE7_REG 0x1f0
 129#define DMAR_MTRR_PHYSMASK7_REG 0x1f8
 130#define DMAR_MTRR_PHYSBASE8_REG 0x200
 131#define DMAR_MTRR_PHYSMASK8_REG 0x208
 132#define DMAR_MTRR_PHYSBASE9_REG 0x210
 133#define DMAR_MTRR_PHYSMASK9_REG 0x218
 134#define DMAR_PERFCAP_REG	0x300
 135#define DMAR_PERFCFGOFF_REG	0x310
 136#define DMAR_PERFOVFOFF_REG	0x318
 137#define DMAR_PERFCNTROFF_REG	0x31c
 138#define DMAR_PERFINTRSTS_REG	0x324
 139#define DMAR_PERFINTRCTL_REG	0x328
 140#define DMAR_PERFEVNTCAP_REG	0x380
 141#define DMAR_ECMD_REG		0x400
 142#define DMAR_ECEO_REG		0x408
 143#define DMAR_ECRSP_REG		0x410
 144#define DMAR_ECCAP_REG		0x430
 145
 146#define DMAR_IQER_REG_IQEI(reg)		FIELD_GET(GENMASK_ULL(3, 0), reg)
 147#define DMAR_IQER_REG_ITESID(reg)	FIELD_GET(GENMASK_ULL(47, 32), reg)
 148#define DMAR_IQER_REG_ICESID(reg)	FIELD_GET(GENMASK_ULL(63, 48), reg)
 149
 150#define OFFSET_STRIDE		(9)
 151
 152#define dmar_readq(a) readq(a)
 153#define dmar_writeq(a,v) writeq(v,a)
 154#define dmar_readl(a) readl(a)
 155#define dmar_writel(a, v) writel(v, a)
 156
 157#define DMAR_VER_MAJOR(v)		(((v) & 0xf0) >> 4)
 158#define DMAR_VER_MINOR(v)		((v) & 0x0f)
 159
 160/*
 161 * Decoding Capability Register
 162 */
 163#define cap_esrtps(c)		(((c) >> 63) & 1)
 164#define cap_esirtps(c)		(((c) >> 62) & 1)
 165#define cap_ecmds(c)		(((c) >> 61) & 1)
 166#define cap_fl5lp_support(c)	(((c) >> 60) & 1)
 167#define cap_pi_support(c)	(((c) >> 59) & 1)
 168#define cap_fl1gp_support(c)	(((c) >> 56) & 1)
 169#define cap_read_drain(c)	(((c) >> 55) & 1)
 170#define cap_write_drain(c)	(((c) >> 54) & 1)
 171#define cap_max_amask_val(c)	(((c) >> 48) & 0x3f)
 172#define cap_num_fault_regs(c)	((((c) >> 40) & 0xff) + 1)
 173#define cap_pgsel_inv(c)	(((c) >> 39) & 1)
 174
 175#define cap_super_page_val(c)	(((c) >> 34) & 0xf)
 176#define cap_super_offset(c)	(((find_first_bit(&cap_super_page_val(c), 4)) \
 177					* OFFSET_STRIDE) + 21)
 178
 179#define cap_fault_reg_offset(c)	((((c) >> 24) & 0x3ff) * 16)
 180#define cap_max_fault_reg_offset(c) \
 181	(cap_fault_reg_offset(c) + cap_num_fault_regs(c) * 16)
 182
 183#define cap_zlr(c)		(((c) >> 22) & 1)
 184#define cap_isoch(c)		(((c) >> 23) & 1)
 185#define cap_mgaw(c)		((((c) >> 16) & 0x3f) + 1)
 186#define cap_sagaw(c)		(((c) >> 8) & 0x1f)
 187#define cap_caching_mode(c)	(((c) >> 7) & 1)
 188#define cap_phmr(c)		(((c) >> 6) & 1)
 189#define cap_plmr(c)		(((c) >> 5) & 1)
 190#define cap_rwbf(c)		(((c) >> 4) & 1)
 191#define cap_afl(c)		(((c) >> 3) & 1)
 192#define cap_ndoms(c)		(((unsigned long)1) << (4 + 2 * ((c) & 0x7)))
 193/*
 194 * Extended Capability Register
 195 */
 196
 197#define ecap_pms(e)		(((e) >> 51) & 0x1)
 198#define ecap_rps(e)		(((e) >> 49) & 0x1)
 199#define ecap_smpwc(e)		(((e) >> 48) & 0x1)
 200#define ecap_flts(e)		(((e) >> 47) & 0x1)
 201#define ecap_slts(e)		(((e) >> 46) & 0x1)
 202#define ecap_slads(e)		(((e) >> 45) & 0x1)
 203#define ecap_smts(e)		(((e) >> 43) & 0x1)
 204#define ecap_dit(e)		(((e) >> 41) & 0x1)
 205#define ecap_pds(e)		(((e) >> 42) & 0x1)
 206#define ecap_pasid(e)		(((e) >> 40) & 0x1)
 207#define ecap_pss(e)		(((e) >> 35) & 0x1f)
 208#define ecap_eafs(e)		(((e) >> 34) & 0x1)
 209#define ecap_nwfs(e)		(((e) >> 33) & 0x1)
 210#define ecap_srs(e)		(((e) >> 31) & 0x1)
 211#define ecap_ers(e)		(((e) >> 30) & 0x1)
 212#define ecap_prs(e)		(((e) >> 29) & 0x1)
 213#define ecap_broken_pasid(e)	(((e) >> 28) & 0x1)
 214#define ecap_dis(e)		(((e) >> 27) & 0x1)
 215#define ecap_nest(e)		(((e) >> 26) & 0x1)
 216#define ecap_mts(e)		(((e) >> 25) & 0x1)
 217#define ecap_iotlb_offset(e) 	((((e) >> 8) & 0x3ff) * 16)
 218#define ecap_max_iotlb_offset(e) (ecap_iotlb_offset(e) + 16)
 219#define ecap_coherent(e)	((e) & 0x1)
 220#define ecap_qis(e)		((e) & 0x2)
 221#define ecap_pass_through(e)	(((e) >> 6) & 0x1)
 222#define ecap_eim_support(e)	(((e) >> 4) & 0x1)
 223#define ecap_ir_support(e)	(((e) >> 3) & 0x1)
 224#define ecap_dev_iotlb_support(e)	(((e) >> 2) & 0x1)
 225#define ecap_max_handle_mask(e) (((e) >> 20) & 0xf)
 226#define ecap_sc_support(e)	(((e) >> 7) & 0x1) /* Snooping Control */
 227
 228/*
 229 * Decoding Perf Capability Register
 230 */
 231#define pcap_num_cntr(p)	((p) & 0xffff)
 232#define pcap_cntr_width(p)	(((p) >> 16) & 0x7f)
 233#define pcap_num_event_group(p)	(((p) >> 24) & 0x1f)
 234#define pcap_filters_mask(p)	(((p) >> 32) & 0x1f)
 235#define pcap_interrupt(p)	(((p) >> 50) & 0x1)
 236/* The counter stride is calculated as 2 ^ (x+10) bytes */
 237#define pcap_cntr_stride(p)	(1ULL << ((((p) >> 52) & 0x7) + 10))
 238
 239/*
 240 * Decoding Perf Event Capability Register
 241 */
 242#define pecap_es(p)		((p) & 0xfffffff)
 243
 244/* Virtual command interface capability */
 245#define vccap_pasid(v)		(((v) & DMA_VCS_PAS)) /* PASID allocation */
 246
 247/* IOTLB_REG */
 248#define DMA_TLB_FLUSH_GRANU_OFFSET  60
 249#define DMA_TLB_GLOBAL_FLUSH (((u64)1) << 60)
 250#define DMA_TLB_DSI_FLUSH (((u64)2) << 60)
 251#define DMA_TLB_PSI_FLUSH (((u64)3) << 60)
 252#define DMA_TLB_IIRG(type) ((type >> 60) & 3)
 253#define DMA_TLB_IAIG(val) (((val) >> 57) & 3)
 254#define DMA_TLB_READ_DRAIN (((u64)1) << 49)
 255#define DMA_TLB_WRITE_DRAIN (((u64)1) << 48)
 256#define DMA_TLB_DID(id)	(((u64)((id) & 0xffff)) << 32)
 257#define DMA_TLB_IVT (((u64)1) << 63)
 258#define DMA_TLB_IH_NONLEAF (((u64)1) << 6)
 259#define DMA_TLB_MAX_SIZE (0x3f)
 260
 261/* INVALID_DESC */
 262#define DMA_CCMD_INVL_GRANU_OFFSET  61
 263#define DMA_ID_TLB_GLOBAL_FLUSH	(((u64)1) << 4)
 264#define DMA_ID_TLB_DSI_FLUSH	(((u64)2) << 4)
 265#define DMA_ID_TLB_PSI_FLUSH	(((u64)3) << 4)
 266#define DMA_ID_TLB_READ_DRAIN	(((u64)1) << 7)
 267#define DMA_ID_TLB_WRITE_DRAIN	(((u64)1) << 6)
 268#define DMA_ID_TLB_DID(id)	(((u64)((id & 0xffff) << 16)))
 269#define DMA_ID_TLB_IH_NONLEAF	(((u64)1) << 6)
 270#define DMA_ID_TLB_ADDR(addr)	(addr)
 271#define DMA_ID_TLB_ADDR_MASK(mask)	(mask)
 272
 273/* PMEN_REG */
 274#define DMA_PMEN_EPM (((u32)1)<<31)
 275#define DMA_PMEN_PRS (((u32)1)<<0)
 276
 277/* GCMD_REG */
 278#define DMA_GCMD_TE (((u32)1) << 31)
 279#define DMA_GCMD_SRTP (((u32)1) << 30)
 280#define DMA_GCMD_SFL (((u32)1) << 29)
 281#define DMA_GCMD_EAFL (((u32)1) << 28)
 282#define DMA_GCMD_WBF (((u32)1) << 27)
 283#define DMA_GCMD_QIE (((u32)1) << 26)
 284#define DMA_GCMD_SIRTP (((u32)1) << 24)
 285#define DMA_GCMD_IRE (((u32) 1) << 25)
 286#define DMA_GCMD_CFI (((u32) 1) << 23)
 287
 288/* GSTS_REG */
 289#define DMA_GSTS_TES (((u32)1) << 31)
 290#define DMA_GSTS_RTPS (((u32)1) << 30)
 291#define DMA_GSTS_FLS (((u32)1) << 29)
 292#define DMA_GSTS_AFLS (((u32)1) << 28)
 293#define DMA_GSTS_WBFS (((u32)1) << 27)
 294#define DMA_GSTS_QIES (((u32)1) << 26)
 295#define DMA_GSTS_IRTPS (((u32)1) << 24)
 296#define DMA_GSTS_IRES (((u32)1) << 25)
 297#define DMA_GSTS_CFIS (((u32)1) << 23)
 298
 299/* DMA_RTADDR_REG */
 300#define DMA_RTADDR_SMT (((u64)1) << 10)
 301
 302/* CCMD_REG */
 303#define DMA_CCMD_ICC (((u64)1) << 63)
 304#define DMA_CCMD_GLOBAL_INVL (((u64)1) << 61)
 305#define DMA_CCMD_DOMAIN_INVL (((u64)2) << 61)
 306#define DMA_CCMD_DEVICE_INVL (((u64)3) << 61)
 307#define DMA_CCMD_FM(m) (((u64)((m) & 0x3)) << 32)
 308#define DMA_CCMD_MASK_NOBIT 0
 309#define DMA_CCMD_MASK_1BIT 1
 310#define DMA_CCMD_MASK_2BIT 2
 311#define DMA_CCMD_MASK_3BIT 3
 312#define DMA_CCMD_SID(s) (((u64)((s) & 0xffff)) << 16)
 313#define DMA_CCMD_DID(d) ((u64)((d) & 0xffff))
 314
 315/* ECMD_REG */
 316#define DMA_MAX_NUM_ECMD		256
 317#define DMA_MAX_NUM_ECMDCAP		(DMA_MAX_NUM_ECMD / 64)
 318#define DMA_ECMD_REG_STEP		8
 319#define DMA_ECMD_ENABLE			0xf0
 320#define DMA_ECMD_DISABLE		0xf1
 321#define DMA_ECMD_FREEZE			0xf4
 322#define DMA_ECMD_UNFREEZE		0xf5
 323#define DMA_ECMD_OA_SHIFT		16
 324#define DMA_ECMD_ECRSP_IP		0x1
 325#define DMA_ECMD_ECCAP3			3
 326#define DMA_ECMD_ECCAP3_ECNTS		BIT_ULL(48)
 327#define DMA_ECMD_ECCAP3_DCNTS		BIT_ULL(49)
 328#define DMA_ECMD_ECCAP3_FCNTS		BIT_ULL(52)
 329#define DMA_ECMD_ECCAP3_UFCNTS		BIT_ULL(53)
 330#define DMA_ECMD_ECCAP3_ESSENTIAL	(DMA_ECMD_ECCAP3_ECNTS |	\
 331					 DMA_ECMD_ECCAP3_DCNTS |	\
 332					 DMA_ECMD_ECCAP3_FCNTS |	\
 333					 DMA_ECMD_ECCAP3_UFCNTS)
 334
 335/* FECTL_REG */
 336#define DMA_FECTL_IM (((u32)1) << 31)
 337
 338/* FSTS_REG */
 339#define DMA_FSTS_PFO (1 << 0) /* Primary Fault Overflow */
 340#define DMA_FSTS_PPF (1 << 1) /* Primary Pending Fault */
 341#define DMA_FSTS_IQE (1 << 4) /* Invalidation Queue Error */
 342#define DMA_FSTS_ICE (1 << 5) /* Invalidation Completion Error */
 343#define DMA_FSTS_ITE (1 << 6) /* Invalidation Time-out Error */
 344#define DMA_FSTS_PRO (1 << 7) /* Page Request Overflow */
 345#define dma_fsts_fault_record_index(s) (((s) >> 8) & 0xff)
 346
 347/* FRCD_REG, 32 bits access */
 348#define DMA_FRCD_F (((u32)1) << 31)
 349#define dma_frcd_type(d) ((d >> 30) & 1)
 350#define dma_frcd_fault_reason(c) (c & 0xff)
 351#define dma_frcd_source_id(c) (c & 0xffff)
 352#define dma_frcd_pasid_value(c) (((c) >> 8) & 0xfffff)
 353#define dma_frcd_pasid_present(c) (((c) >> 31) & 1)
 354/* low 64 bit */
 355#define dma_frcd_page_addr(d) (d & (((u64)-1) << PAGE_SHIFT))
 356
 357/* PRS_REG */
 358#define DMA_PRS_PPR	((u32)1)
 359#define DMA_PRS_PRO	((u32)2)
 360
 361#define DMA_VCS_PAS	((u64)1)
 362
 363/* PERFINTRSTS_REG */
 364#define DMA_PERFINTRSTS_PIS	((u32)1)
 365
 366#define IOMMU_WAIT_OP(iommu, offset, op, cond, sts)			\
 367do {									\
 368	cycles_t start_time = get_cycles();				\
 369	while (1) {							\
 370		sts = op(iommu->reg + offset);				\
 371		if (cond)						\
 372			break;						\
 373		if (DMAR_OPERATION_TIMEOUT < (get_cycles() - start_time))\
 374			panic("DMAR hardware is malfunctioning\n");	\
 375		cpu_relax();						\
 376	}								\
 377} while (0)
 378
 379#define QI_LENGTH	256	/* queue length */
 380
 381enum {
 382	QI_FREE,
 383	QI_IN_USE,
 384	QI_DONE,
 385	QI_ABORT
 386};
 387
 388#define QI_CC_TYPE		0x1
 389#define QI_IOTLB_TYPE		0x2
 390#define QI_DIOTLB_TYPE		0x3
 391#define QI_IEC_TYPE		0x4
 392#define QI_IWD_TYPE		0x5
 393#define QI_EIOTLB_TYPE		0x6
 394#define QI_PC_TYPE		0x7
 395#define QI_DEIOTLB_TYPE		0x8
 396#define QI_PGRP_RESP_TYPE	0x9
 397#define QI_PSTRM_RESP_TYPE	0xa
 398
 399#define QI_IEC_SELECTIVE	(((u64)1) << 4)
 400#define QI_IEC_IIDEX(idx)	(((u64)(idx & 0xffff) << 32))
 401#define QI_IEC_IM(m)		(((u64)(m & 0x1f) << 27))
 402
 403#define QI_IWD_STATUS_DATA(d)	(((u64)d) << 32)
 404#define QI_IWD_STATUS_WRITE	(((u64)1) << 5)
 405#define QI_IWD_FENCE		(((u64)1) << 6)
 406#define QI_IWD_PRQ_DRAIN	(((u64)1) << 7)
 407
 408#define QI_IOTLB_DID(did) 	(((u64)did) << 16)
 409#define QI_IOTLB_DR(dr) 	(((u64)dr) << 7)
 410#define QI_IOTLB_DW(dw) 	(((u64)dw) << 6)
 411#define QI_IOTLB_GRAN(gran) 	(((u64)gran) >> (DMA_TLB_FLUSH_GRANU_OFFSET-4))
 412#define QI_IOTLB_ADDR(addr)	(((u64)addr) & VTD_PAGE_MASK)
 413#define QI_IOTLB_IH(ih)		(((u64)ih) << 6)
 414#define QI_IOTLB_AM(am)		(((u8)am) & 0x3f)
 415
 416#define QI_CC_FM(fm)		(((u64)fm) << 48)
 417#define QI_CC_SID(sid)		(((u64)sid) << 32)
 418#define QI_CC_DID(did)		(((u64)did) << 16)
 419#define QI_CC_GRAN(gran)	(((u64)gran) >> (DMA_CCMD_INVL_GRANU_OFFSET-4))
 420
 421#define QI_DEV_IOTLB_SID(sid)	((u64)((sid) & 0xffff) << 32)
 422#define QI_DEV_IOTLB_QDEP(qdep)	(((qdep) & 0x1f) << 16)
 423#define QI_DEV_IOTLB_ADDR(addr)	((u64)(addr) & VTD_PAGE_MASK)
 424#define QI_DEV_IOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
 425				   ((u64)((pfsid >> 4) & 0xfff) << 52))
 426#define QI_DEV_IOTLB_SIZE	1
 427#define QI_DEV_IOTLB_MAX_INVS	32
 428
 429#define QI_PC_PASID(pasid)	(((u64)pasid) << 32)
 430#define QI_PC_DID(did)		(((u64)did) << 16)
 431#define QI_PC_GRAN(gran)	(((u64)gran) << 4)
 432
 433/* PASID cache invalidation granu */
 434#define QI_PC_ALL_PASIDS	0
 435#define QI_PC_PASID_SEL		1
 436#define QI_PC_GLOBAL		3
 437
 438#define QI_EIOTLB_ADDR(addr)	((u64)(addr) & VTD_PAGE_MASK)
 439#define QI_EIOTLB_IH(ih)	(((u64)ih) << 6)
 440#define QI_EIOTLB_AM(am)	(((u64)am) & 0x3f)
 441#define QI_EIOTLB_PASID(pasid) 	(((u64)pasid) << 32)
 442#define QI_EIOTLB_DID(did)	(((u64)did) << 16)
 443#define QI_EIOTLB_GRAN(gran) 	(((u64)gran) << 4)
 444
 445/* QI Dev-IOTLB inv granu */
 446#define QI_DEV_IOTLB_GRAN_ALL		1
 447#define QI_DEV_IOTLB_GRAN_PASID_SEL	0
 448
 449#define QI_DEV_EIOTLB_ADDR(a)	((u64)(a) & VTD_PAGE_MASK)
 450#define QI_DEV_EIOTLB_SIZE	(((u64)1) << 11)
 451#define QI_DEV_EIOTLB_PASID(p)	((u64)((p) & 0xfffff) << 32)
 452#define QI_DEV_EIOTLB_SID(sid)	((u64)((sid) & 0xffff) << 16)
 453#define QI_DEV_EIOTLB_QDEP(qd)	((u64)((qd) & 0x1f) << 4)
 454#define QI_DEV_EIOTLB_PFSID(pfsid) (((u64)(pfsid & 0xf) << 12) | \
 455				    ((u64)((pfsid >> 4) & 0xfff) << 52))
 456#define QI_DEV_EIOTLB_MAX_INVS	32
 457
 458/* Page group response descriptor QW0 */
 459#define QI_PGRP_PASID_P(p)	(((u64)(p)) << 4)
 460#define QI_PGRP_RESP_CODE(res)	(((u64)(res)) << 12)
 461#define QI_PGRP_DID(rid)	(((u64)(rid)) << 16)
 462#define QI_PGRP_PASID(pasid)	(((u64)(pasid)) << 32)
 463
 464/* Page group response descriptor QW1 */
 465#define QI_PGRP_LPIG(x)		(((u64)(x)) << 2)
 466#define QI_PGRP_IDX(idx)	(((u64)(idx)) << 3)
 467
 468
 469#define QI_RESP_SUCCESS		0x0
 470#define QI_RESP_INVALID		0x1
 471#define QI_RESP_FAILURE		0xf
 472
 473#define QI_GRAN_NONG_PASID		2
 474#define QI_GRAN_PSI_PASID		3
 475
 476#define qi_shift(iommu)		(DMAR_IQ_SHIFT + !!ecap_smts((iommu)->ecap))
 477
 478struct qi_desc {
 479	u64 qw0;
 480	u64 qw1;
 481	u64 qw2;
 482	u64 qw3;
 483};
 484
 485struct q_inval {
 486	raw_spinlock_t  q_lock;
 487	void		*desc;          /* invalidation queue */
 488	int             *desc_status;   /* desc status */
 489	int             free_head;      /* first free entry */
 490	int             free_tail;      /* last free entry */
 491	int             free_cnt;
 492};
 493
 494/* Page Request Queue depth */
 495#define PRQ_ORDER	4
 496#define PRQ_RING_MASK	((0x1000 << PRQ_ORDER) - 0x20)
 497#define PRQ_DEPTH	((0x1000 << PRQ_ORDER) >> 5)
 498
 499struct dmar_pci_notify_info;
 500
 501#ifdef CONFIG_IRQ_REMAP
 502/* 1MB - maximum possible interrupt remapping table size */
 503#define INTR_REMAP_PAGE_ORDER	8
 504#define INTR_REMAP_TABLE_REG_SIZE	0xf
 505#define INTR_REMAP_TABLE_REG_SIZE_MASK  0xf
 506
 507#define INTR_REMAP_TABLE_ENTRIES	65536
 508
 509struct irq_domain;
 510
 511struct ir_table {
 512	struct irte *base;
 513	unsigned long *bitmap;
 514};
 515
 516void intel_irq_remap_add_device(struct dmar_pci_notify_info *info);
 517#else
 518static inline void
 519intel_irq_remap_add_device(struct dmar_pci_notify_info *info) { }
 520#endif
 521
 522struct iommu_flush {
 523	void (*flush_context)(struct intel_iommu *iommu, u16 did, u16 sid,
 524			      u8 fm, u64 type);
 525	void (*flush_iotlb)(struct intel_iommu *iommu, u16 did, u64 addr,
 526			    unsigned int size_order, u64 type);
 527};
 528
 529enum {
 530	SR_DMAR_FECTL_REG,
 531	SR_DMAR_FEDATA_REG,
 532	SR_DMAR_FEADDR_REG,
 533	SR_DMAR_FEUADDR_REG,
 534	MAX_SR_DMAR_REGS
 535};
 536
 537#define VTD_FLAG_TRANS_PRE_ENABLED	(1 << 0)
 538#define VTD_FLAG_IRQ_REMAP_PRE_ENABLED	(1 << 1)
 539#define VTD_FLAG_SVM_CAPABLE		(1 << 2)
 540
 541#define sm_supported(iommu)	(intel_iommu_sm && ecap_smts((iommu)->ecap))
 542#define pasid_supported(iommu)	(sm_supported(iommu) &&			\
 543				 ecap_pasid((iommu)->ecap))
 544#define ssads_supported(iommu) (sm_supported(iommu) &&                 \
 545				ecap_slads((iommu)->ecap))
 546#define nested_supported(iommu)	(sm_supported(iommu) &&			\
 547				 ecap_nest((iommu)->ecap))
 548
 549struct pasid_entry;
 550struct pasid_state_entry;
 551struct page_req_dsc;
 552
 553/*
 554 * 0: Present
 555 * 1-11: Reserved
 556 * 12-63: Context Ptr (12 - (haw-1))
 557 * 64-127: Reserved
 558 */
 559struct root_entry {
 560	u64     lo;
 561	u64     hi;
 562};
 563
 564/*
 565 * low 64 bits:
 566 * 0: present
 567 * 1: fault processing disable
 568 * 2-3: translation type
 569 * 12-63: address space root
 570 * high 64 bits:
 571 * 0-2: address width
 572 * 3-6: aval
 573 * 8-23: domain id
 574 */
 575struct context_entry {
 576	u64 lo;
 577	u64 hi;
 578};
 579
 580struct iommu_domain_info {
 581	struct intel_iommu *iommu;
 582	unsigned int refcnt;		/* Refcount of devices per iommu */
 583	u16 did;			/* Domain ids per IOMMU. Use u16 since
 584					 * domain ids are 16 bit wide according
 585					 * to VT-d spec, section 9.3 */
 586};
 587
 588/*
 589 * We start simply by using a fixed size for the batched descriptors. This
 590 * size is currently sufficient for our needs. Future improvements could
 591 * involve dynamically allocating the batch buffer based on actual demand,
 592 * allowing us to adjust the batch size for optimal performance in different
 593 * scenarios.
 594 */
 595#define QI_MAX_BATCHED_DESC_COUNT 16
 596struct qi_batch {
 597	struct qi_desc descs[QI_MAX_BATCHED_DESC_COUNT];
 598	unsigned int index;
 599};
 600
 601struct dmar_domain {
 602	int	nid;			/* node id */
 603	struct xarray iommu_array;	/* Attached IOMMU array */
 604
 605	u8 iommu_coherency: 1;		/* indicate coherency of iommu access */
 606	u8 force_snooping : 1;		/* Create IOPTEs with snoop control */
 607	u8 set_pte_snp:1;
 608	u8 use_first_level:1;		/* DMA translation for the domain goes
 609					 * through the first level page table,
 610					 * otherwise, goes through the second
 611					 * level.
 612					 */
 613	u8 dirty_tracking:1;		/* Dirty tracking is enabled */
 614	u8 nested_parent:1;		/* Has other domains nested on it */
 615	u8 has_mappings:1;		/* Has mappings configured through
 616					 * iommu_map() interface.
 617					 */
 618
 619	spinlock_t lock;		/* Protect device tracking lists */
 620	struct list_head devices;	/* all devices' list */
 621	struct list_head dev_pasids;	/* all attached pasids */
 622
 623	spinlock_t cache_lock;		/* Protect the cache tag list */
 624	struct list_head cache_tags;	/* Cache tag list */
 625	struct qi_batch *qi_batch;	/* Batched QI descriptors */
 626
 627	int		iommu_superpage;/* Level of superpages supported:
 628					   0 == 4KiB (no superpages), 1 == 2MiB,
 629					   2 == 1GiB, 3 == 512GiB, 4 == 1TiB */
 630	union {
 631		/* DMA remapping domain */
 632		struct {
 633			/* virtual address */
 634			struct dma_pte	*pgd;
 635			/* max guest address width */
 636			int		gaw;
 637			/*
 638			 * adjusted guest address width:
 639			 *   0: level 2 30-bit
 640			 *   1: level 3 39-bit
 641			 *   2: level 4 48-bit
 642			 *   3: level 5 57-bit
 643			 */
 644			int		agaw;
 645			/* maximum mapped address */
 646			u64		max_addr;
 647			/* Protect the s1_domains list */
 648			spinlock_t	s1_lock;
 649			/* Track s1_domains nested on this domain */
 650			struct list_head s1_domains;
 651		};
 652
 653		/* Nested user domain */
 654		struct {
 655			/* parent page table which the user domain is nested on */
 656			struct dmar_domain *s2_domain;
 657			/* page table attributes */
 658			struct iommu_hwpt_vtd_s1 s1_cfg;
 659			/* link to parent domain siblings */
 660			struct list_head s2_link;
 661		};
 662
 663		/* SVA domain */
 664		struct {
 665			struct mmu_notifier notifier;
 666		};
 667	};
 668
 669	struct iommu_domain domain;	/* generic domain data structure for
 670					   iommu core */
 671};
 672
 673/*
 674 * In theory, the VT-d 4.0 spec can support up to 2 ^ 16 counters.
 675 * But in practice, there are only 14 counters for the existing
 676 * platform. Setting the max number of counters to 64 should be good
 677 * enough for a long time. Also, supporting more than 64 counters
 678 * requires more extras, e.g., extra freeze and overflow registers,
 679 * which is not necessary for now.
 680 */
 681#define IOMMU_PMU_IDX_MAX		64
 682
 683struct iommu_pmu {
 684	struct intel_iommu	*iommu;
 685	u32			num_cntr;	/* Number of counters */
 686	u32			num_eg;		/* Number of event group */
 687	u32			cntr_width;	/* Counter width */
 688	u32			cntr_stride;	/* Counter Stride */
 689	u32			filter;		/* Bitmask of filter support */
 690	void __iomem		*base;		/* the PerfMon base address */
 691	void __iomem		*cfg_reg;	/* counter configuration base address */
 692	void __iomem		*cntr_reg;	/* counter 0 address*/
 693	void __iomem		*overflow;	/* overflow status register */
 694
 695	u64			*evcap;		/* Indicates all supported events */
 696	u32			**cntr_evcap;	/* Supported events of each counter. */
 697
 698	struct pmu		pmu;
 699	DECLARE_BITMAP(used_mask, IOMMU_PMU_IDX_MAX);
 700	struct perf_event	*event_list[IOMMU_PMU_IDX_MAX];
 701	unsigned char		irq_name[16];
 702};
 703
 704#define IOMMU_IRQ_ID_OFFSET_PRQ		(DMAR_UNITS_SUPPORTED)
 705#define IOMMU_IRQ_ID_OFFSET_PERF	(2 * DMAR_UNITS_SUPPORTED)
 706
 707struct intel_iommu {
 708	void __iomem	*reg; /* Pointer to hardware regs, virtual addr */
 709	u64 		reg_phys; /* physical address of hw register set */
 710	u64		reg_size; /* size of hw register set */
 711	u64		cap;
 712	u64		ecap;
 713	u64		vccap;
 714	u64		ecmdcap[DMA_MAX_NUM_ECMDCAP];
 715	u32		gcmd; /* Holds TE, EAFL. Don't need SRTP, SFL, WBF */
 716	raw_spinlock_t	register_lock; /* protect register handling */
 717	int		seq_id;	/* sequence id of the iommu */
 718	int		agaw; /* agaw of this iommu */
 719	int		msagaw; /* max sagaw of this iommu */
 720	unsigned int	irq, pr_irq, perf_irq;
 721	u16		segment;     /* PCI segment# */
 722	unsigned char	name[16];    /* Device Name */
 723
 724#ifdef CONFIG_INTEL_IOMMU
 725	unsigned long 	*domain_ids; /* bitmap of domains */
 726	unsigned long	*copied_tables; /* bitmap of copied tables */
 727	spinlock_t	lock; /* protect context, domain ids */
 728	struct root_entry *root_entry; /* virtual address */
 729
 730	struct iommu_flush flush;
 731#endif
 732	struct page_req_dsc *prq;
 733	unsigned char prq_name[16];    /* Name for PRQ interrupt */
 734	unsigned long prq_seq_number;
 735	struct completion prq_complete;
 736	struct iopf_queue *iopf_queue;
 737	unsigned char iopfq_name[16];
 738	/* Synchronization between fault report and iommu device release. */
 739	struct mutex iopf_lock;
 740	struct q_inval  *qi;            /* Queued invalidation info */
 741	u32 iommu_state[MAX_SR_DMAR_REGS]; /* Store iommu states between suspend and resume.*/
 742
 743	/* rb tree for all probed devices */
 744	struct rb_root device_rbtree;
 745	/* protect the device_rbtree */
 746	spinlock_t device_rbtree_lock;
 747
 748#ifdef CONFIG_IRQ_REMAP
 749	struct ir_table *ir_table;	/* Interrupt remapping info */
 750	struct irq_domain *ir_domain;
 751#endif
 752	struct iommu_device iommu;  /* IOMMU core code handle */
 753	int		node;
 754	u32		flags;      /* Software defined flags */
 755
 756	struct dmar_drhd_unit *drhd;
 757	void *perf_statistic;
 758
 759	struct iommu_pmu *pmu;
 760};
 761
 762/* PCI domain-device relationship */
 763struct device_domain_info {
 764	struct list_head link;	/* link to domain siblings */
 765	u32 segment;		/* PCI segment number */
 766	u8 bus;			/* PCI bus number */
 767	u8 devfn;		/* PCI devfn number */
 768	u16 pfsid;		/* SRIOV physical function source ID */
 769	u8 pasid_supported:3;
 770	u8 pasid_enabled:1;
 771	u8 pri_supported:1;
 772	u8 pri_enabled:1;
 773	u8 ats_supported:1;
 774	u8 ats_enabled:1;
 775	u8 dtlb_extra_inval:1;	/* Quirk for devices need extra flush */
 776	u8 ats_qdep;
 777	struct device *dev; /* it's NULL for PCIe-to-PCI bridge */
 778	struct intel_iommu *iommu; /* IOMMU used by this device */
 779	struct dmar_domain *domain; /* pointer to domain */
 780	struct pasid_table *pasid_table; /* pasid table */
 781	/* device tracking node(lookup by PCI RID) */
 782	struct rb_node node;
 783#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
 784	struct dentry *debugfs_dentry; /* pointer to device directory dentry */
 785#endif
 786};
 787
 788struct dev_pasid_info {
 789	struct list_head link_domain;	/* link to domain siblings */
 790	struct device *dev;
 791	ioasid_t pasid;
 792#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
 793	struct dentry *debugfs_dentry; /* pointer to pasid directory dentry */
 794#endif
 795};
 796
 797static inline void __iommu_flush_cache(
 798	struct intel_iommu *iommu, void *addr, int size)
 799{
 800	if (!ecap_coherent(iommu->ecap))
 801		clflush_cache_range(addr, size);
 802}
 803
 804/* Convert generic struct iommu_domain to private struct dmar_domain */
 805static inline struct dmar_domain *to_dmar_domain(struct iommu_domain *dom)
 806{
 807	return container_of(dom, struct dmar_domain, domain);
 808}
 809
 810/*
 811 * Domain ID reserved for pasid entries programmed for first-level
 812 * only and pass-through transfer modes.
 813 */
 814#define FLPT_DEFAULT_DID		1
 815#define NUM_RESERVED_DID		2
 816
 817/* Retrieve the domain ID which has allocated to the domain */
 818static inline u16
 819domain_id_iommu(struct dmar_domain *domain, struct intel_iommu *iommu)
 820{
 821	struct iommu_domain_info *info =
 822			xa_load(&domain->iommu_array, iommu->seq_id);
 823
 824	return info->did;
 825}
 826
 827static inline u16
 828iommu_domain_did(struct iommu_domain *domain, struct intel_iommu *iommu)
 829{
 830	if (domain->type == IOMMU_DOMAIN_SVA ||
 831	    domain->type == IOMMU_DOMAIN_IDENTITY)
 832		return FLPT_DEFAULT_DID;
 833	return domain_id_iommu(to_dmar_domain(domain), iommu);
 834}
 835
 836static inline bool dev_is_real_dma_subdevice(struct device *dev)
 837{
 838	return dev && dev_is_pci(dev) &&
 839	       pci_real_dma_dev(to_pci_dev(dev)) != to_pci_dev(dev);
 840}
 841
 842/*
 843 * 0: readable
 844 * 1: writable
 845 * 2-6: reserved
 846 * 7: super page
 847 * 8-10: available
 848 * 11: snoop behavior
 849 * 12-63: Host physical address
 850 */
 851struct dma_pte {
 852	u64 val;
 853};
 854
 855static inline void dma_clear_pte(struct dma_pte *pte)
 856{
 857	pte->val = 0;
 858}
 859
 860static inline u64 dma_pte_addr(struct dma_pte *pte)
 861{
 862#ifdef CONFIG_64BIT
 863	return pte->val & VTD_PAGE_MASK;
 864#else
 865	/* Must have a full atomic 64-bit read */
 866	return  __cmpxchg64(&pte->val, 0ULL, 0ULL) & VTD_PAGE_MASK;
 867#endif
 868}
 869
 870static inline bool dma_pte_present(struct dma_pte *pte)
 871{
 872	return (pte->val & 3) != 0;
 873}
 874
 875static inline bool dma_sl_pte_test_and_clear_dirty(struct dma_pte *pte,
 876						   unsigned long flags)
 877{
 878	if (flags & IOMMU_DIRTY_NO_CLEAR)
 879		return (pte->val & DMA_SL_PTE_DIRTY) != 0;
 880
 881	return test_and_clear_bit(DMA_SL_PTE_DIRTY_BIT,
 882				  (unsigned long *)&pte->val);
 883}
 884
 885static inline bool dma_pte_superpage(struct dma_pte *pte)
 886{
 887	return (pte->val & DMA_PTE_LARGE_PAGE);
 888}
 889
 890static inline bool first_pte_in_page(struct dma_pte *pte)
 891{
 892	return IS_ALIGNED((unsigned long)pte, VTD_PAGE_SIZE);
 893}
 894
 895static inline int nr_pte_to_next_page(struct dma_pte *pte)
 896{
 897	return first_pte_in_page(pte) ? BIT_ULL(VTD_STRIDE_SHIFT) :
 898		(struct dma_pte *)ALIGN((unsigned long)pte, VTD_PAGE_SIZE) - pte;
 899}
 900
 901static inline bool context_present(struct context_entry *context)
 902{
 903	return (context->lo & 1);
 904}
 905
 906#define LEVEL_STRIDE		(9)
 907#define LEVEL_MASK		(((u64)1 << LEVEL_STRIDE) - 1)
 908#define MAX_AGAW_WIDTH		(64)
 909#define MAX_AGAW_PFN_WIDTH	(MAX_AGAW_WIDTH - VTD_PAGE_SHIFT)
 910
 911static inline int agaw_to_level(int agaw)
 912{
 913	return agaw + 2;
 914}
 915
 916static inline int agaw_to_width(int agaw)
 917{
 918	return min_t(int, 30 + agaw * LEVEL_STRIDE, MAX_AGAW_WIDTH);
 919}
 920
 921static inline int width_to_agaw(int width)
 922{
 923	return DIV_ROUND_UP(width - 30, LEVEL_STRIDE);
 924}
 925
 926static inline unsigned int level_to_offset_bits(int level)
 927{
 928	return (level - 1) * LEVEL_STRIDE;
 929}
 930
 931static inline int pfn_level_offset(u64 pfn, int level)
 932{
 933	return (pfn >> level_to_offset_bits(level)) & LEVEL_MASK;
 934}
 935
 936static inline u64 level_mask(int level)
 937{
 938	return -1ULL << level_to_offset_bits(level);
 939}
 940
 941static inline u64 level_size(int level)
 942{
 943	return 1ULL << level_to_offset_bits(level);
 944}
 945
 946static inline u64 align_to_level(u64 pfn, int level)
 947{
 948	return (pfn + level_size(level) - 1) & level_mask(level);
 949}
 950
 951static inline unsigned long lvl_to_nr_pages(unsigned int lvl)
 952{
 953	return 1UL << min_t(int, (lvl - 1) * LEVEL_STRIDE, MAX_AGAW_PFN_WIDTH);
 954}
 955
 956/* VT-d pages must always be _smaller_ than MM pages. Otherwise things
 957   are never going to work. */
 958static inline unsigned long mm_to_dma_pfn_start(unsigned long mm_pfn)
 959{
 960	return mm_pfn << (PAGE_SHIFT - VTD_PAGE_SHIFT);
 961}
 962static inline unsigned long mm_to_dma_pfn_end(unsigned long mm_pfn)
 963{
 964	return ((mm_pfn + 1) << (PAGE_SHIFT - VTD_PAGE_SHIFT)) - 1;
 965}
 966static inline unsigned long page_to_dma_pfn(struct page *pg)
 967{
 968	return mm_to_dma_pfn_start(page_to_pfn(pg));
 969}
 970static inline unsigned long virt_to_dma_pfn(void *p)
 971{
 972	return page_to_dma_pfn(virt_to_page(p));
 973}
 974
 975static inline void context_set_present(struct context_entry *context)
 976{
 977	context->lo |= 1;
 978}
 979
 980static inline void context_set_fault_enable(struct context_entry *context)
 981{
 982	context->lo &= (((u64)-1) << 2) | 1;
 983}
 984
 985static inline void context_set_translation_type(struct context_entry *context,
 986						unsigned long value)
 987{
 988	context->lo &= (((u64)-1) << 4) | 3;
 989	context->lo |= (value & 3) << 2;
 990}
 991
 992static inline void context_set_address_root(struct context_entry *context,
 993					    unsigned long value)
 994{
 995	context->lo &= ~VTD_PAGE_MASK;
 996	context->lo |= value & VTD_PAGE_MASK;
 997}
 998
 999static inline void context_set_address_width(struct context_entry *context,
1000					     unsigned long value)
1001{
1002	context->hi |= value & 7;
1003}
1004
1005static inline void context_set_domain_id(struct context_entry *context,
1006					 unsigned long value)
1007{
1008	context->hi |= (value & ((1 << 16) - 1)) << 8;
1009}
1010
1011static inline void context_set_pasid(struct context_entry *context)
1012{
1013	context->lo |= CONTEXT_PASIDE;
1014}
1015
1016static inline int context_domain_id(struct context_entry *c)
1017{
1018	return((c->hi >> 8) & 0xffff);
1019}
1020
1021static inline void context_clear_entry(struct context_entry *context)
1022{
1023	context->lo = 0;
1024	context->hi = 0;
1025}
1026
1027#ifdef CONFIG_INTEL_IOMMU
1028static inline bool context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1029{
1030	if (!iommu->copied_tables)
1031		return false;
1032
1033	return test_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1034}
1035
1036static inline void
1037set_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1038{
1039	set_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1040}
1041
1042static inline void
1043clear_context_copied(struct intel_iommu *iommu, u8 bus, u8 devfn)
1044{
1045	clear_bit(((long)bus << 8) | devfn, iommu->copied_tables);
1046}
1047#endif /* CONFIG_INTEL_IOMMU */
1048
1049/*
1050 * Set the RID_PASID field of a scalable mode context entry. The
1051 * IOMMU hardware will use the PASID value set in this field for
1052 * DMA translations of DMA requests without PASID.
1053 */
1054static inline void
1055context_set_sm_rid2pasid(struct context_entry *context, unsigned long pasid)
1056{
1057	context->hi |= pasid & ((1 << 20) - 1);
1058}
1059
1060/*
1061 * Set the DTE(Device-TLB Enable) field of a scalable mode context
1062 * entry.
1063 */
1064static inline void context_set_sm_dte(struct context_entry *context)
1065{
1066	context->lo |= BIT_ULL(2);
1067}
1068
1069/*
1070 * Set the PRE(Page Request Enable) field of a scalable mode context
1071 * entry.
1072 */
1073static inline void context_set_sm_pre(struct context_entry *context)
1074{
1075	context->lo |= BIT_ULL(4);
1076}
1077
1078/*
1079 * Clear the PRE(Page Request Enable) field of a scalable mode context
1080 * entry.
1081 */
1082static inline void context_clear_sm_pre(struct context_entry *context)
1083{
1084	context->lo &= ~BIT_ULL(4);
1085}
1086
1087/* Returns a number of VTD pages, but aligned to MM page size */
1088static inline unsigned long aligned_nrpages(unsigned long host_addr, size_t size)
1089{
1090	host_addr &= ~PAGE_MASK;
1091	return PAGE_ALIGN(host_addr + size) >> VTD_PAGE_SHIFT;
1092}
1093
1094/* Return a size from number of VTD pages. */
1095static inline unsigned long nrpages_to_size(unsigned long npages)
1096{
1097	return npages << VTD_PAGE_SHIFT;
1098}
1099
1100static inline void qi_desc_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1101				 unsigned int size_order, u64 type,
1102				 struct qi_desc *desc)
1103{
1104	u8 dw = 0, dr = 0;
1105	int ih = 0;
1106
1107	if (cap_write_drain(iommu->cap))
1108		dw = 1;
1109
1110	if (cap_read_drain(iommu->cap))
1111		dr = 1;
1112
1113	desc->qw0 = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
1114		| QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
1115	desc->qw1 = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
1116		| QI_IOTLB_AM(size_order);
1117	desc->qw2 = 0;
1118	desc->qw3 = 0;
1119}
1120
1121static inline void qi_desc_dev_iotlb(u16 sid, u16 pfsid, u16 qdep, u64 addr,
1122				     unsigned int mask, struct qi_desc *desc)
1123{
1124	if (mask) {
1125		addr |= (1ULL << (VTD_PAGE_SHIFT + mask - 1)) - 1;
1126		desc->qw1 = QI_DEV_IOTLB_ADDR(addr) | QI_DEV_IOTLB_SIZE;
1127	} else {
1128		desc->qw1 = QI_DEV_IOTLB_ADDR(addr);
1129	}
1130
1131	if (qdep >= QI_DEV_IOTLB_MAX_INVS)
1132		qdep = 0;
1133
1134	desc->qw0 = QI_DEV_IOTLB_SID(sid) | QI_DEV_IOTLB_QDEP(qdep) |
1135		   QI_DIOTLB_TYPE | QI_DEV_IOTLB_PFSID(pfsid);
1136	desc->qw2 = 0;
1137	desc->qw3 = 0;
1138}
1139
1140static inline void qi_desc_piotlb(u16 did, u32 pasid, u64 addr,
1141				  unsigned long npages, bool ih,
1142				  struct qi_desc *desc)
1143{
1144	if (npages == -1) {
1145		desc->qw0 = QI_EIOTLB_PASID(pasid) |
1146				QI_EIOTLB_DID(did) |
1147				QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) |
1148				QI_EIOTLB_TYPE;
1149		desc->qw1 = 0;
1150	} else {
1151		int mask = ilog2(__roundup_pow_of_two(npages));
1152		unsigned long align = (1ULL << (VTD_PAGE_SHIFT + mask));
1153
1154		if (WARN_ON_ONCE(!IS_ALIGNED(addr, align)))
1155			addr = ALIGN_DOWN(addr, align);
1156
1157		desc->qw0 = QI_EIOTLB_PASID(pasid) |
1158				QI_EIOTLB_DID(did) |
1159				QI_EIOTLB_GRAN(QI_GRAN_PSI_PASID) |
1160				QI_EIOTLB_TYPE;
1161		desc->qw1 = QI_EIOTLB_ADDR(addr) |
1162				QI_EIOTLB_IH(ih) |
1163				QI_EIOTLB_AM(mask);
1164	}
1165}
1166
1167static inline void qi_desc_dev_iotlb_pasid(u16 sid, u16 pfsid, u32 pasid,
1168					   u16 qdep, u64 addr,
1169					   unsigned int size_order,
1170					   struct qi_desc *desc)
1171{
1172	unsigned long mask = 1UL << (VTD_PAGE_SHIFT + size_order - 1);
1173
1174	desc->qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) |
1175		QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE |
1176		QI_DEV_IOTLB_PFSID(pfsid);
1177
1178	/*
1179	 * If S bit is 0, we only flush a single page. If S bit is set,
1180	 * The least significant zero bit indicates the invalidation address
1181	 * range. VT-d spec 6.5.2.6.
1182	 * e.g. address bit 12[0] indicates 8KB, 13[0] indicates 16KB.
1183	 * size order = 0 is PAGE_SIZE 4KB
1184	 * Max Invs Pending (MIP) is set to 0 for now until we have DIT in
1185	 * ECAP.
1186	 */
1187	if (!IS_ALIGNED(addr, VTD_PAGE_SIZE << size_order))
1188		pr_warn_ratelimited("Invalidate non-aligned address %llx, order %d\n",
1189				    addr, size_order);
1190
1191	/* Take page address */
1192	desc->qw1 = QI_DEV_EIOTLB_ADDR(addr);
1193
1194	if (size_order) {
1195		/*
1196		 * Existing 0s in address below size_order may be the least
1197		 * significant bit, we must set them to 1s to avoid having
1198		 * smaller size than desired.
1199		 */
1200		desc->qw1 |= GENMASK_ULL(size_order + VTD_PAGE_SHIFT - 1,
1201					VTD_PAGE_SHIFT);
1202		/* Clear size_order bit to indicate size */
1203		desc->qw1 &= ~mask;
1204		/* Set the S bit to indicate flushing more than 1 page */
1205		desc->qw1 |= QI_DEV_EIOTLB_SIZE;
1206	}
1207}
1208
1209/* Convert value to context PASID directory size field coding. */
1210#define context_pdts(pds)	(((pds) & 0x7) << 9)
1211
1212struct dmar_drhd_unit *dmar_find_matched_drhd_unit(struct pci_dev *dev);
1213
1214int dmar_enable_qi(struct intel_iommu *iommu);
1215void dmar_disable_qi(struct intel_iommu *iommu);
1216int dmar_reenable_qi(struct intel_iommu *iommu);
1217void qi_global_iec(struct intel_iommu *iommu);
1218
1219void qi_flush_context(struct intel_iommu *iommu, u16 did,
1220		      u16 sid, u8 fm, u64 type);
1221void qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1222		    unsigned int size_order, u64 type);
1223void qi_flush_dev_iotlb(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1224			u16 qdep, u64 addr, unsigned mask);
1225
1226void qi_flush_piotlb(struct intel_iommu *iommu, u16 did, u32 pasid, u64 addr,
1227		     unsigned long npages, bool ih);
1228
1229void qi_flush_dev_iotlb_pasid(struct intel_iommu *iommu, u16 sid, u16 pfsid,
1230			      u32 pasid, u16 qdep, u64 addr,
1231			      unsigned int size_order);
1232void quirk_extra_dev_tlb_flush(struct device_domain_info *info,
1233			       unsigned long address, unsigned long pages,
1234			       u32 pasid, u16 qdep);
1235void qi_flush_pasid_cache(struct intel_iommu *iommu, u16 did, u64 granu,
1236			  u32 pasid);
1237
1238int qi_submit_sync(struct intel_iommu *iommu, struct qi_desc *desc,
1239		   unsigned int count, unsigned long options);
1240
1241void __iommu_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
1242			 unsigned int size_order, u64 type);
1243/*
1244 * Options used in qi_submit_sync:
1245 * QI_OPT_WAIT_DRAIN - Wait for PRQ drain completion, spec 6.5.2.8.
1246 */
1247#define QI_OPT_WAIT_DRAIN		BIT(0)
1248
1249int domain_attach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1250void domain_detach_iommu(struct dmar_domain *domain, struct intel_iommu *iommu);
1251void device_block_translation(struct device *dev);
1252int paging_domain_compatible(struct iommu_domain *domain, struct device *dev);
1253
1254struct dev_pasid_info *
1255domain_add_dev_pasid(struct iommu_domain *domain,
1256		     struct device *dev, ioasid_t pasid);
1257void domain_remove_dev_pasid(struct iommu_domain *domain,
1258			     struct device *dev, ioasid_t pasid);
1259
1260int __domain_setup_first_level(struct intel_iommu *iommu,
1261			       struct device *dev, ioasid_t pasid,
1262			       u16 did, pgd_t *pgd, int flags,
1263			       struct iommu_domain *old);
1264
1265int dmar_ir_support(void);
1266
1267void iommu_flush_write_buffer(struct intel_iommu *iommu);
1268struct iommu_domain *
1269intel_iommu_domain_alloc_nested(struct device *dev, struct iommu_domain *parent,
1270				u32 flags,
1271				const struct iommu_user_data *user_data);
1272struct device *device_rbtree_find(struct intel_iommu *iommu, u16 rid);
1273
1274enum cache_tag_type {
1275	CACHE_TAG_IOTLB,
1276	CACHE_TAG_DEVTLB,
1277	CACHE_TAG_NESTING_IOTLB,
1278	CACHE_TAG_NESTING_DEVTLB,
1279};
1280
1281struct cache_tag {
1282	struct list_head node;
1283	enum cache_tag_type type;
1284	struct intel_iommu *iommu;
1285	/*
1286	 * The @dev field represents the location of the cache. For IOTLB, it
1287	 * resides on the IOMMU hardware. @dev stores the device pointer to
1288	 * the IOMMU hardware. For DevTLB, it locates in the PCIe endpoint.
1289	 * @dev stores the device pointer to that endpoint.
1290	 */
1291	struct device *dev;
1292	u16 domain_id;
1293	ioasid_t pasid;
1294	unsigned int users;
1295};
1296
1297int cache_tag_assign_domain(struct dmar_domain *domain,
1298			    struct device *dev, ioasid_t pasid);
1299void cache_tag_unassign_domain(struct dmar_domain *domain,
1300			       struct device *dev, ioasid_t pasid);
1301void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start,
1302			   unsigned long end, int ih);
1303void cache_tag_flush_all(struct dmar_domain *domain);
1304void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start,
1305			      unsigned long end);
1306
1307void intel_context_flush_present(struct device_domain_info *info,
1308				 struct context_entry *context,
1309				 u16 did, bool affect_domains);
1310
1311int intel_iommu_enable_prq(struct intel_iommu *iommu);
1312int intel_iommu_finish_prq(struct intel_iommu *iommu);
1313void intel_iommu_page_response(struct device *dev, struct iopf_fault *evt,
1314			       struct iommu_page_response *msg);
1315void intel_iommu_drain_pasid_prq(struct device *dev, u32 pasid);
1316
1317#ifdef CONFIG_INTEL_IOMMU_SVM
1318void intel_svm_check(struct intel_iommu *iommu);
1319struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1320					    struct mm_struct *mm);
1321#else
1322static inline void intel_svm_check(struct intel_iommu *iommu) {}
1323static inline struct iommu_domain *intel_svm_domain_alloc(struct device *dev,
1324							  struct mm_struct *mm)
1325{
1326	return ERR_PTR(-ENODEV);
1327}
1328#endif
1329
1330#ifdef CONFIG_INTEL_IOMMU_DEBUGFS
1331void intel_iommu_debugfs_init(void);
1332void intel_iommu_debugfs_create_dev(struct device_domain_info *info);
1333void intel_iommu_debugfs_remove_dev(struct device_domain_info *info);
1334void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid);
1335void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid);
1336#else
1337static inline void intel_iommu_debugfs_init(void) {}
1338static inline void intel_iommu_debugfs_create_dev(struct device_domain_info *info) {}
1339static inline void intel_iommu_debugfs_remove_dev(struct device_domain_info *info) {}
1340static inline void intel_iommu_debugfs_create_dev_pasid(struct dev_pasid_info *dev_pasid) {}
1341static inline void intel_iommu_debugfs_remove_dev_pasid(struct dev_pasid_info *dev_pasid) {}
1342#endif /* CONFIG_INTEL_IOMMU_DEBUGFS */
1343
1344extern const struct attribute_group *intel_iommu_groups[];
1345struct context_entry *iommu_context_addr(struct intel_iommu *iommu, u8 bus,
1346					 u8 devfn, int alloc);
1347
1348extern const struct iommu_ops intel_iommu_ops;
1349
1350#ifdef CONFIG_INTEL_IOMMU
1351extern int intel_iommu_sm;
1352int iommu_calculate_agaw(struct intel_iommu *iommu);
1353int iommu_calculate_max_sagaw(struct intel_iommu *iommu);
1354int ecmd_submit_sync(struct intel_iommu *iommu, u8 ecmd, u64 oa, u64 ob);
1355
1356static inline bool ecmd_has_pmu_essential(struct intel_iommu *iommu)
1357{
1358	return (iommu->ecmdcap[DMA_ECMD_ECCAP3] & DMA_ECMD_ECCAP3_ESSENTIAL) ==
1359		DMA_ECMD_ECCAP3_ESSENTIAL;
1360}
1361
1362extern int dmar_disabled;
1363extern int intel_iommu_enabled;
1364#else
1365static inline int iommu_calculate_agaw(struct intel_iommu *iommu)
1366{
1367	return 0;
1368}
1369static inline int iommu_calculate_max_sagaw(struct intel_iommu *iommu)
1370{
1371	return 0;
1372}
1373#define dmar_disabled	(1)
1374#define intel_iommu_enabled (0)
1375#define intel_iommu_sm (0)
1376#endif
1377
1378static inline const char *decode_prq_descriptor(char *str, size_t size,
1379		u64 dw0, u64 dw1, u64 dw2, u64 dw3)
1380{
1381	char *buf = str;
1382	int bytes;
1383
1384	bytes = snprintf(buf, size,
1385			 "rid=0x%llx addr=0x%llx %c%c%c%c%c pasid=0x%llx index=0x%llx",
1386			 FIELD_GET(GENMASK_ULL(31, 16), dw0),
1387			 FIELD_GET(GENMASK_ULL(63, 12), dw1),
1388			 dw1 & BIT_ULL(0) ? 'r' : '-',
1389			 dw1 & BIT_ULL(1) ? 'w' : '-',
1390			 dw0 & BIT_ULL(52) ? 'x' : '-',
1391			 dw0 & BIT_ULL(53) ? 'p' : '-',
1392			 dw1 & BIT_ULL(2) ? 'l' : '-',
1393			 FIELD_GET(GENMASK_ULL(51, 32), dw0),
1394			 FIELD_GET(GENMASK_ULL(11, 3), dw1));
1395
1396	/* Private Data */
1397	if (dw0 & BIT_ULL(9)) {
1398		size -= bytes;
1399		buf += bytes;
1400		snprintf(buf, size, " private=0x%llx/0x%llx\n", dw2, dw3);
1401	}
1402
1403	return str;
1404}
1405
1406#endif