Loading...
Note: File does not exist in v3.1.
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
4 * Author: Joerg Roedel <jroedel@suse.de>
5 * Leo Duran <leo.duran@amd.com>
6 */
7
8#define pr_fmt(fmt) "AMD-Vi: " fmt
9#define dev_fmt(fmt) pr_fmt(fmt)
10
11#include <linux/ratelimit.h>
12#include <linux/pci.h>
13#include <linux/acpi.h>
14#include <linux/pci-ats.h>
15#include <linux/bitmap.h>
16#include <linux/slab.h>
17#include <linux/debugfs.h>
18#include <linux/scatterlist.h>
19#include <linux/dma-map-ops.h>
20#include <linux/dma-direct.h>
21#include <linux/idr.h>
22#include <linux/iommu-helper.h>
23#include <linux/delay.h>
24#include <linux/amd-iommu.h>
25#include <linux/notifier.h>
26#include <linux/export.h>
27#include <linux/irq.h>
28#include <linux/msi.h>
29#include <linux/irqdomain.h>
30#include <linux/percpu.h>
31#include <linux/io-pgtable.h>
32#include <linux/cc_platform.h>
33#include <asm/irq_remapping.h>
34#include <asm/io_apic.h>
35#include <asm/apic.h>
36#include <asm/hw_irq.h>
37#include <asm/proto.h>
38#include <asm/iommu.h>
39#include <asm/gart.h>
40#include <asm/dma.h>
41#include <uapi/linux/iommufd.h>
42
43#include "amd_iommu.h"
44#include "../dma-iommu.h"
45#include "../irq_remapping.h"
46#include "../iommu-pages.h"
47
48#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
49
50/* Reserved IOVA ranges */
51#define MSI_RANGE_START (0xfee00000)
52#define MSI_RANGE_END (0xfeefffff)
53#define HT_RANGE_START (0xfd00000000ULL)
54#define HT_RANGE_END (0xffffffffffULL)
55
56LIST_HEAD(ioapic_map);
57LIST_HEAD(hpet_map);
58LIST_HEAD(acpihid_map);
59
60const struct iommu_ops amd_iommu_ops;
61static const struct iommu_dirty_ops amd_dirty_ops;
62
63int amd_iommu_max_glx_val = -1;
64
65/*
66 * general struct to manage commands send to an IOMMU
67 */
68struct iommu_cmd {
69 u32 data[4];
70};
71
72/*
73 * AMD IOMMU allows up to 2^16 different protection domains. This is a bitmap
74 * to know which ones are already in use.
75 */
76DEFINE_IDA(pdom_ids);
77
78struct kmem_cache *amd_iommu_irq_cache;
79
80static int amd_iommu_attach_device(struct iommu_domain *dom,
81 struct device *dev);
82
83static void set_dte_entry(struct amd_iommu *iommu,
84 struct iommu_dev_data *dev_data);
85
86/****************************************************************************
87 *
88 * Helper functions
89 *
90 ****************************************************************************/
91
92static inline bool pdom_is_v2_pgtbl_mode(struct protection_domain *pdom)
93{
94 return (pdom && (pdom->pd_mode == PD_MODE_V2));
95}
96
97static inline bool pdom_is_in_pt_mode(struct protection_domain *pdom)
98{
99 return (pdom->domain.type == IOMMU_DOMAIN_IDENTITY);
100}
101
102/*
103 * We cannot support PASID w/ existing v1 page table in the same domain
104 * since it will be nested. However, existing domain w/ v2 page table
105 * or passthrough mode can be used for PASID.
106 */
107static inline bool pdom_is_sva_capable(struct protection_domain *pdom)
108{
109 return pdom_is_v2_pgtbl_mode(pdom) || pdom_is_in_pt_mode(pdom);
110}
111
112static inline int get_acpihid_device_id(struct device *dev,
113 struct acpihid_map_entry **entry)
114{
115 struct acpi_device *adev = ACPI_COMPANION(dev);
116 struct acpihid_map_entry *p;
117
118 if (!adev)
119 return -ENODEV;
120
121 list_for_each_entry(p, &acpihid_map, list) {
122 if (acpi_dev_hid_uid_match(adev, p->hid,
123 p->uid[0] ? p->uid : NULL)) {
124 if (entry)
125 *entry = p;
126 return p->devid;
127 }
128 }
129 return -EINVAL;
130}
131
132static inline int get_device_sbdf_id(struct device *dev)
133{
134 int sbdf;
135
136 if (dev_is_pci(dev))
137 sbdf = get_pci_sbdf_id(to_pci_dev(dev));
138 else
139 sbdf = get_acpihid_device_id(dev, NULL);
140
141 return sbdf;
142}
143
144struct dev_table_entry *get_dev_table(struct amd_iommu *iommu)
145{
146 struct dev_table_entry *dev_table;
147 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
148
149 BUG_ON(pci_seg == NULL);
150 dev_table = pci_seg->dev_table;
151 BUG_ON(dev_table == NULL);
152
153 return dev_table;
154}
155
156static inline u16 get_device_segment(struct device *dev)
157{
158 u16 seg;
159
160 if (dev_is_pci(dev)) {
161 struct pci_dev *pdev = to_pci_dev(dev);
162
163 seg = pci_domain_nr(pdev->bus);
164 } else {
165 u32 devid = get_acpihid_device_id(dev, NULL);
166
167 seg = PCI_SBDF_TO_SEGID(devid);
168 }
169
170 return seg;
171}
172
173/* Writes the specific IOMMU for a device into the PCI segment rlookup table */
174void amd_iommu_set_rlookup_table(struct amd_iommu *iommu, u16 devid)
175{
176 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
177
178 pci_seg->rlookup_table[devid] = iommu;
179}
180
181static struct amd_iommu *__rlookup_amd_iommu(u16 seg, u16 devid)
182{
183 struct amd_iommu_pci_seg *pci_seg;
184
185 for_each_pci_segment(pci_seg) {
186 if (pci_seg->id == seg)
187 return pci_seg->rlookup_table[devid];
188 }
189 return NULL;
190}
191
192static struct amd_iommu *rlookup_amd_iommu(struct device *dev)
193{
194 u16 seg = get_device_segment(dev);
195 int devid = get_device_sbdf_id(dev);
196
197 if (devid < 0)
198 return NULL;
199 return __rlookup_amd_iommu(seg, PCI_SBDF_TO_DEVID(devid));
200}
201
202static struct iommu_dev_data *alloc_dev_data(struct amd_iommu *iommu, u16 devid)
203{
204 struct iommu_dev_data *dev_data;
205 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
206
207 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
208 if (!dev_data)
209 return NULL;
210
211 mutex_init(&dev_data->mutex);
212 dev_data->devid = devid;
213 ratelimit_default_init(&dev_data->rs);
214
215 llist_add(&dev_data->dev_data_list, &pci_seg->dev_data_list);
216 return dev_data;
217}
218
219static struct iommu_dev_data *search_dev_data(struct amd_iommu *iommu, u16 devid)
220{
221 struct iommu_dev_data *dev_data;
222 struct llist_node *node;
223 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
224
225 if (llist_empty(&pci_seg->dev_data_list))
226 return NULL;
227
228 node = pci_seg->dev_data_list.first;
229 llist_for_each_entry(dev_data, node, dev_data_list) {
230 if (dev_data->devid == devid)
231 return dev_data;
232 }
233
234 return NULL;
235}
236
237static int clone_alias(struct pci_dev *pdev, u16 alias, void *data)
238{
239 struct amd_iommu *iommu;
240 struct dev_table_entry *dev_table;
241 u16 devid = pci_dev_id(pdev);
242
243 if (devid == alias)
244 return 0;
245
246 iommu = rlookup_amd_iommu(&pdev->dev);
247 if (!iommu)
248 return 0;
249
250 amd_iommu_set_rlookup_table(iommu, alias);
251 dev_table = get_dev_table(iommu);
252 memcpy(dev_table[alias].data,
253 dev_table[devid].data,
254 sizeof(dev_table[alias].data));
255
256 return 0;
257}
258
259static void clone_aliases(struct amd_iommu *iommu, struct device *dev)
260{
261 struct pci_dev *pdev;
262
263 if (!dev_is_pci(dev))
264 return;
265 pdev = to_pci_dev(dev);
266
267 /*
268 * The IVRS alias stored in the alias table may not be
269 * part of the PCI DMA aliases if it's bus differs
270 * from the original device.
271 */
272 clone_alias(pdev, iommu->pci_seg->alias_table[pci_dev_id(pdev)], NULL);
273
274 pci_for_each_dma_alias(pdev, clone_alias, NULL);
275}
276
277static void setup_aliases(struct amd_iommu *iommu, struct device *dev)
278{
279 struct pci_dev *pdev = to_pci_dev(dev);
280 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
281 u16 ivrs_alias;
282
283 /* For ACPI HID devices, there are no aliases */
284 if (!dev_is_pci(dev))
285 return;
286
287 /*
288 * Add the IVRS alias to the pci aliases if it is on the same
289 * bus. The IVRS table may know about a quirk that we don't.
290 */
291 ivrs_alias = pci_seg->alias_table[pci_dev_id(pdev)];
292 if (ivrs_alias != pci_dev_id(pdev) &&
293 PCI_BUS_NUM(ivrs_alias) == pdev->bus->number)
294 pci_add_dma_alias(pdev, ivrs_alias & 0xff, 1);
295
296 clone_aliases(iommu, dev);
297}
298
299static struct iommu_dev_data *find_dev_data(struct amd_iommu *iommu, u16 devid)
300{
301 struct iommu_dev_data *dev_data;
302
303 dev_data = search_dev_data(iommu, devid);
304
305 if (dev_data == NULL) {
306 dev_data = alloc_dev_data(iommu, devid);
307 if (!dev_data)
308 return NULL;
309
310 if (translation_pre_enabled(iommu))
311 dev_data->defer_attach = true;
312 }
313
314 return dev_data;
315}
316
317/*
318* Find or create an IOMMU group for a acpihid device.
319*/
320static struct iommu_group *acpihid_device_group(struct device *dev)
321{
322 struct acpihid_map_entry *p, *entry = NULL;
323 int devid;
324
325 devid = get_acpihid_device_id(dev, &entry);
326 if (devid < 0)
327 return ERR_PTR(devid);
328
329 list_for_each_entry(p, &acpihid_map, list) {
330 if ((devid == p->devid) && p->group)
331 entry->group = p->group;
332 }
333
334 if (!entry->group)
335 entry->group = generic_device_group(dev);
336 else
337 iommu_group_ref_get(entry->group);
338
339 return entry->group;
340}
341
342static inline bool pdev_pasid_supported(struct iommu_dev_data *dev_data)
343{
344 return (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP);
345}
346
347static u32 pdev_get_caps(struct pci_dev *pdev)
348{
349 int features;
350 u32 flags = 0;
351
352 if (pci_ats_supported(pdev))
353 flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
354
355 if (pci_pri_supported(pdev))
356 flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
357
358 features = pci_pasid_features(pdev);
359 if (features >= 0) {
360 flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
361
362 if (features & PCI_PASID_CAP_EXEC)
363 flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
364
365 if (features & PCI_PASID_CAP_PRIV)
366 flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
367 }
368
369 return flags;
370}
371
372static inline int pdev_enable_cap_ats(struct pci_dev *pdev)
373{
374 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
375 int ret = -EINVAL;
376
377 if (dev_data->ats_enabled)
378 return 0;
379
380 if (amd_iommu_iotlb_sup &&
381 (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_ATS_SUP)) {
382 ret = pci_enable_ats(pdev, PAGE_SHIFT);
383 if (!ret) {
384 dev_data->ats_enabled = 1;
385 dev_data->ats_qdep = pci_ats_queue_depth(pdev);
386 }
387 }
388
389 return ret;
390}
391
392static inline void pdev_disable_cap_ats(struct pci_dev *pdev)
393{
394 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
395
396 if (dev_data->ats_enabled) {
397 pci_disable_ats(pdev);
398 dev_data->ats_enabled = 0;
399 }
400}
401
402static inline int pdev_enable_cap_pri(struct pci_dev *pdev)
403{
404 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
405 int ret = -EINVAL;
406
407 if (dev_data->pri_enabled)
408 return 0;
409
410 if (!dev_data->ats_enabled)
411 return 0;
412
413 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PRI_SUP) {
414 /*
415 * First reset the PRI state of the device.
416 * FIXME: Hardcode number of outstanding requests for now
417 */
418 if (!pci_reset_pri(pdev) && !pci_enable_pri(pdev, 32)) {
419 dev_data->pri_enabled = 1;
420 dev_data->pri_tlp = pci_prg_resp_pasid_required(pdev);
421
422 ret = 0;
423 }
424 }
425
426 return ret;
427}
428
429static inline void pdev_disable_cap_pri(struct pci_dev *pdev)
430{
431 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
432
433 if (dev_data->pri_enabled) {
434 pci_disable_pri(pdev);
435 dev_data->pri_enabled = 0;
436 }
437}
438
439static inline int pdev_enable_cap_pasid(struct pci_dev *pdev)
440{
441 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
442 int ret = -EINVAL;
443
444 if (dev_data->pasid_enabled)
445 return 0;
446
447 if (dev_data->flags & AMD_IOMMU_DEVICE_FLAG_PASID_SUP) {
448 /* Only allow access to user-accessible pages */
449 ret = pci_enable_pasid(pdev, 0);
450 if (!ret)
451 dev_data->pasid_enabled = 1;
452 }
453
454 return ret;
455}
456
457static inline void pdev_disable_cap_pasid(struct pci_dev *pdev)
458{
459 struct iommu_dev_data *dev_data = dev_iommu_priv_get(&pdev->dev);
460
461 if (dev_data->pasid_enabled) {
462 pci_disable_pasid(pdev);
463 dev_data->pasid_enabled = 0;
464 }
465}
466
467static void pdev_enable_caps(struct pci_dev *pdev)
468{
469 pdev_enable_cap_ats(pdev);
470 pdev_enable_cap_pasid(pdev);
471 pdev_enable_cap_pri(pdev);
472}
473
474static void pdev_disable_caps(struct pci_dev *pdev)
475{
476 pdev_disable_cap_ats(pdev);
477 pdev_disable_cap_pasid(pdev);
478 pdev_disable_cap_pri(pdev);
479}
480
481/*
482 * This function checks if the driver got a valid device from the caller to
483 * avoid dereferencing invalid pointers.
484 */
485static bool check_device(struct device *dev)
486{
487 struct amd_iommu_pci_seg *pci_seg;
488 struct amd_iommu *iommu;
489 int devid, sbdf;
490
491 if (!dev)
492 return false;
493
494 sbdf = get_device_sbdf_id(dev);
495 if (sbdf < 0)
496 return false;
497 devid = PCI_SBDF_TO_DEVID(sbdf);
498
499 iommu = rlookup_amd_iommu(dev);
500 if (!iommu)
501 return false;
502
503 /* Out of our scope? */
504 pci_seg = iommu->pci_seg;
505 if (devid > pci_seg->last_bdf)
506 return false;
507
508 return true;
509}
510
511static int iommu_init_device(struct amd_iommu *iommu, struct device *dev)
512{
513 struct iommu_dev_data *dev_data;
514 int devid, sbdf;
515
516 if (dev_iommu_priv_get(dev))
517 return 0;
518
519 sbdf = get_device_sbdf_id(dev);
520 if (sbdf < 0)
521 return sbdf;
522
523 devid = PCI_SBDF_TO_DEVID(sbdf);
524 dev_data = find_dev_data(iommu, devid);
525 if (!dev_data)
526 return -ENOMEM;
527
528 dev_data->dev = dev;
529 setup_aliases(iommu, dev);
530
531 /*
532 * By default we use passthrough mode for IOMMUv2 capable device.
533 * But if amd_iommu=force_isolation is set (e.g. to debug DMA to
534 * invalid address), we ignore the capability for the device so
535 * it'll be forced to go into translation mode.
536 */
537 if ((iommu_default_passthrough() || !amd_iommu_force_isolation) &&
538 dev_is_pci(dev) && amd_iommu_gt_ppr_supported()) {
539 dev_data->flags = pdev_get_caps(to_pci_dev(dev));
540 }
541
542 dev_iommu_priv_set(dev, dev_data);
543
544 return 0;
545}
546
547static void iommu_ignore_device(struct amd_iommu *iommu, struct device *dev)
548{
549 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
550 struct dev_table_entry *dev_table = get_dev_table(iommu);
551 int devid, sbdf;
552
553 sbdf = get_device_sbdf_id(dev);
554 if (sbdf < 0)
555 return;
556
557 devid = PCI_SBDF_TO_DEVID(sbdf);
558 pci_seg->rlookup_table[devid] = NULL;
559 memset(&dev_table[devid], 0, sizeof(struct dev_table_entry));
560
561 setup_aliases(iommu, dev);
562}
563
564
565/****************************************************************************
566 *
567 * Interrupt handling functions
568 *
569 ****************************************************************************/
570
571static void dump_dte_entry(struct amd_iommu *iommu, u16 devid)
572{
573 int i;
574 struct dev_table_entry *dev_table = get_dev_table(iommu);
575
576 for (i = 0; i < 4; ++i)
577 pr_err("DTE[%d]: %016llx\n", i, dev_table[devid].data[i]);
578}
579
580static void dump_command(unsigned long phys_addr)
581{
582 struct iommu_cmd *cmd = iommu_phys_to_virt(phys_addr);
583 int i;
584
585 for (i = 0; i < 4; ++i)
586 pr_err("CMD[%d]: %08x\n", i, cmd->data[i]);
587}
588
589static void amd_iommu_report_rmp_hw_error(struct amd_iommu *iommu, volatile u32 *event)
590{
591 struct iommu_dev_data *dev_data = NULL;
592 int devid, vmg_tag, flags;
593 struct pci_dev *pdev;
594 u64 spa;
595
596 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
597 vmg_tag = (event[1]) & 0xFFFF;
598 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
599 spa = ((u64)event[3] << 32) | (event[2] & 0xFFFFFFF8);
600
601 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
602 devid & 0xff);
603 if (pdev)
604 dev_data = dev_iommu_priv_get(&pdev->dev);
605
606 if (dev_data) {
607 if (__ratelimit(&dev_data->rs)) {
608 pci_err(pdev, "Event logged [RMP_HW_ERROR vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
609 vmg_tag, spa, flags);
610 }
611 } else {
612 pr_err_ratelimited("Event logged [RMP_HW_ERROR device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, spa=0x%llx, flags=0x%04x]\n",
613 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
614 vmg_tag, spa, flags);
615 }
616
617 if (pdev)
618 pci_dev_put(pdev);
619}
620
621static void amd_iommu_report_rmp_fault(struct amd_iommu *iommu, volatile u32 *event)
622{
623 struct iommu_dev_data *dev_data = NULL;
624 int devid, flags_rmp, vmg_tag, flags;
625 struct pci_dev *pdev;
626 u64 gpa;
627
628 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
629 flags_rmp = (event[0] >> EVENT_FLAGS_SHIFT) & 0xFF;
630 vmg_tag = (event[1]) & 0xFFFF;
631 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
632 gpa = ((u64)event[3] << 32) | event[2];
633
634 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
635 devid & 0xff);
636 if (pdev)
637 dev_data = dev_iommu_priv_get(&pdev->dev);
638
639 if (dev_data) {
640 if (__ratelimit(&dev_data->rs)) {
641 pci_err(pdev, "Event logged [RMP_PAGE_FAULT vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
642 vmg_tag, gpa, flags_rmp, flags);
643 }
644 } else {
645 pr_err_ratelimited("Event logged [RMP_PAGE_FAULT device=%04x:%02x:%02x.%x, vmg_tag=0x%04x, gpa=0x%llx, flags_rmp=0x%04x, flags=0x%04x]\n",
646 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
647 vmg_tag, gpa, flags_rmp, flags);
648 }
649
650 if (pdev)
651 pci_dev_put(pdev);
652}
653
654#define IS_IOMMU_MEM_TRANSACTION(flags) \
655 (((flags) & EVENT_FLAG_I) == 0)
656
657#define IS_WRITE_REQUEST(flags) \
658 ((flags) & EVENT_FLAG_RW)
659
660static void amd_iommu_report_page_fault(struct amd_iommu *iommu,
661 u16 devid, u16 domain_id,
662 u64 address, int flags)
663{
664 struct iommu_dev_data *dev_data = NULL;
665 struct pci_dev *pdev;
666
667 pdev = pci_get_domain_bus_and_slot(iommu->pci_seg->id, PCI_BUS_NUM(devid),
668 devid & 0xff);
669 if (pdev)
670 dev_data = dev_iommu_priv_get(&pdev->dev);
671
672 if (dev_data) {
673 /*
674 * If this is a DMA fault (for which the I(nterrupt)
675 * bit will be unset), allow report_iommu_fault() to
676 * prevent logging it.
677 */
678 if (IS_IOMMU_MEM_TRANSACTION(flags)) {
679 /* Device not attached to domain properly */
680 if (dev_data->domain == NULL) {
681 pr_err_ratelimited("Event logged [Device not attached to domain properly]\n");
682 pr_err_ratelimited(" device=%04x:%02x:%02x.%x domain=0x%04x\n",
683 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid),
684 PCI_FUNC(devid), domain_id);
685 goto out;
686 }
687
688 if (!report_iommu_fault(&dev_data->domain->domain,
689 &pdev->dev, address,
690 IS_WRITE_REQUEST(flags) ?
691 IOMMU_FAULT_WRITE :
692 IOMMU_FAULT_READ))
693 goto out;
694 }
695
696 if (__ratelimit(&dev_data->rs)) {
697 pci_err(pdev, "Event logged [IO_PAGE_FAULT domain=0x%04x address=0x%llx flags=0x%04x]\n",
698 domain_id, address, flags);
699 }
700 } else {
701 pr_err_ratelimited("Event logged [IO_PAGE_FAULT device=%04x:%02x:%02x.%x domain=0x%04x address=0x%llx flags=0x%04x]\n",
702 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
703 domain_id, address, flags);
704 }
705
706out:
707 if (pdev)
708 pci_dev_put(pdev);
709}
710
711static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
712{
713 struct device *dev = iommu->iommu.dev;
714 int type, devid, flags, tag;
715 volatile u32 *event = __evt;
716 int count = 0;
717 u64 address;
718 u32 pasid;
719
720retry:
721 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
722 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
723 pasid = (event[0] & EVENT_DOMID_MASK_HI) |
724 (event[1] & EVENT_DOMID_MASK_LO);
725 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
726 address = (u64)(((u64)event[3]) << 32) | event[2];
727
728 if (type == 0) {
729 /* Did we hit the erratum? */
730 if (++count == LOOP_TIMEOUT) {
731 pr_err("No event written to event log\n");
732 return;
733 }
734 udelay(1);
735 goto retry;
736 }
737
738 if (type == EVENT_TYPE_IO_FAULT) {
739 amd_iommu_report_page_fault(iommu, devid, pasid, address, flags);
740 return;
741 }
742
743 switch (type) {
744 case EVENT_TYPE_ILL_DEV:
745 dev_err(dev, "Event logged [ILLEGAL_DEV_TABLE_ENTRY device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
746 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
747 pasid, address, flags);
748 dump_dte_entry(iommu, devid);
749 break;
750 case EVENT_TYPE_DEV_TAB_ERR:
751 dev_err(dev, "Event logged [DEV_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x "
752 "address=0x%llx flags=0x%04x]\n",
753 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
754 address, flags);
755 break;
756 case EVENT_TYPE_PAGE_TAB_ERR:
757 dev_err(dev, "Event logged [PAGE_TAB_HARDWARE_ERROR device=%04x:%02x:%02x.%x pasid=0x%04x address=0x%llx flags=0x%04x]\n",
758 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
759 pasid, address, flags);
760 break;
761 case EVENT_TYPE_ILL_CMD:
762 dev_err(dev, "Event logged [ILLEGAL_COMMAND_ERROR address=0x%llx]\n", address);
763 dump_command(address);
764 break;
765 case EVENT_TYPE_CMD_HARD_ERR:
766 dev_err(dev, "Event logged [COMMAND_HARDWARE_ERROR address=0x%llx flags=0x%04x]\n",
767 address, flags);
768 break;
769 case EVENT_TYPE_IOTLB_INV_TO:
770 dev_err(dev, "Event logged [IOTLB_INV_TIMEOUT device=%04x:%02x:%02x.%x address=0x%llx]\n",
771 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
772 address);
773 break;
774 case EVENT_TYPE_INV_DEV_REQ:
775 dev_err(dev, "Event logged [INVALID_DEVICE_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x]\n",
776 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
777 pasid, address, flags);
778 break;
779 case EVENT_TYPE_RMP_FAULT:
780 amd_iommu_report_rmp_fault(iommu, event);
781 break;
782 case EVENT_TYPE_RMP_HW_ERR:
783 amd_iommu_report_rmp_hw_error(iommu, event);
784 break;
785 case EVENT_TYPE_INV_PPR_REQ:
786 pasid = PPR_PASID(*((u64 *)__evt));
787 tag = event[1] & 0x03FF;
788 dev_err(dev, "Event logged [INVALID_PPR_REQUEST device=%04x:%02x:%02x.%x pasid=0x%05x address=0x%llx flags=0x%04x tag=0x%03x]\n",
789 iommu->pci_seg->id, PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
790 pasid, address, flags, tag);
791 break;
792 default:
793 dev_err(dev, "Event logged [UNKNOWN event[0]=0x%08x event[1]=0x%08x event[2]=0x%08x event[3]=0x%08x\n",
794 event[0], event[1], event[2], event[3]);
795 }
796
797 /*
798 * To detect the hardware errata 732 we need to clear the
799 * entry back to zero. This issue does not exist on SNP
800 * enabled system. Also this buffer is not writeable on
801 * SNP enabled system.
802 */
803 if (!amd_iommu_snp_en)
804 memset(__evt, 0, 4 * sizeof(u32));
805}
806
807static void iommu_poll_events(struct amd_iommu *iommu)
808{
809 u32 head, tail;
810
811 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
812 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
813
814 while (head != tail) {
815 iommu_print_event(iommu, iommu->evt_buf + head);
816
817 /* Update head pointer of hardware ring-buffer */
818 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
819 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
820 }
821
822}
823
824#ifdef CONFIG_IRQ_REMAP
825static int (*iommu_ga_log_notifier)(u32);
826
827int amd_iommu_register_ga_log_notifier(int (*notifier)(u32))
828{
829 iommu_ga_log_notifier = notifier;
830
831 return 0;
832}
833EXPORT_SYMBOL(amd_iommu_register_ga_log_notifier);
834
835static void iommu_poll_ga_log(struct amd_iommu *iommu)
836{
837 u32 head, tail;
838
839 if (iommu->ga_log == NULL)
840 return;
841
842 head = readl(iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
843 tail = readl(iommu->mmio_base + MMIO_GA_TAIL_OFFSET);
844
845 while (head != tail) {
846 volatile u64 *raw;
847 u64 log_entry;
848
849 raw = (u64 *)(iommu->ga_log + head);
850
851 /* Avoid memcpy function-call overhead */
852 log_entry = *raw;
853
854 /* Update head pointer of hardware ring-buffer */
855 head = (head + GA_ENTRY_SIZE) % GA_LOG_SIZE;
856 writel(head, iommu->mmio_base + MMIO_GA_HEAD_OFFSET);
857
858 /* Handle GA entry */
859 switch (GA_REQ_TYPE(log_entry)) {
860 case GA_GUEST_NR:
861 if (!iommu_ga_log_notifier)
862 break;
863
864 pr_debug("%s: devid=%#x, ga_tag=%#x\n",
865 __func__, GA_DEVID(log_entry),
866 GA_TAG(log_entry));
867
868 if (iommu_ga_log_notifier(GA_TAG(log_entry)) != 0)
869 pr_err("GA log notifier failed.\n");
870 break;
871 default:
872 break;
873 }
874 }
875}
876
877static void
878amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu)
879{
880 if (!irq_remapping_enabled || !dev_is_pci(dev) ||
881 !pci_dev_has_default_msi_parent_domain(to_pci_dev(dev)))
882 return;
883
884 dev_set_msi_domain(dev, iommu->ir_domain);
885}
886
887#else /* CONFIG_IRQ_REMAP */
888static inline void
889amd_iommu_set_pci_msi_domain(struct device *dev, struct amd_iommu *iommu) { }
890#endif /* !CONFIG_IRQ_REMAP */
891
892static void amd_iommu_handle_irq(void *data, const char *evt_type,
893 u32 int_mask, u32 overflow_mask,
894 void (*int_handler)(struct amd_iommu *),
895 void (*overflow_handler)(struct amd_iommu *))
896{
897 struct amd_iommu *iommu = (struct amd_iommu *) data;
898 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
899 u32 mask = int_mask | overflow_mask;
900
901 while (status & mask) {
902 /* Enable interrupt sources again */
903 writel(mask, iommu->mmio_base + MMIO_STATUS_OFFSET);
904
905 if (int_handler) {
906 pr_devel("Processing IOMMU (ivhd%d) %s Log\n",
907 iommu->index, evt_type);
908 int_handler(iommu);
909 }
910
911 if ((status & overflow_mask) && overflow_handler)
912 overflow_handler(iommu);
913
914 /*
915 * Hardware bug: ERBT1312
916 * When re-enabling interrupt (by writing 1
917 * to clear the bit), the hardware might also try to set
918 * the interrupt bit in the event status register.
919 * In this scenario, the bit will be set, and disable
920 * subsequent interrupts.
921 *
922 * Workaround: The IOMMU driver should read back the
923 * status register and check if the interrupt bits are cleared.
924 * If not, driver will need to go through the interrupt handler
925 * again and re-clear the bits
926 */
927 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
928 }
929}
930
931irqreturn_t amd_iommu_int_thread_evtlog(int irq, void *data)
932{
933 amd_iommu_handle_irq(data, "Evt", MMIO_STATUS_EVT_INT_MASK,
934 MMIO_STATUS_EVT_OVERFLOW_MASK,
935 iommu_poll_events, amd_iommu_restart_event_logging);
936
937 return IRQ_HANDLED;
938}
939
940irqreturn_t amd_iommu_int_thread_pprlog(int irq, void *data)
941{
942 amd_iommu_handle_irq(data, "PPR", MMIO_STATUS_PPR_INT_MASK,
943 MMIO_STATUS_PPR_OVERFLOW_MASK,
944 amd_iommu_poll_ppr_log, amd_iommu_restart_ppr_log);
945
946 return IRQ_HANDLED;
947}
948
949irqreturn_t amd_iommu_int_thread_galog(int irq, void *data)
950{
951#ifdef CONFIG_IRQ_REMAP
952 amd_iommu_handle_irq(data, "GA", MMIO_STATUS_GALOG_INT_MASK,
953 MMIO_STATUS_GALOG_OVERFLOW_MASK,
954 iommu_poll_ga_log, amd_iommu_restart_ga_log);
955#endif
956
957 return IRQ_HANDLED;
958}
959
960irqreturn_t amd_iommu_int_thread(int irq, void *data)
961{
962 amd_iommu_int_thread_evtlog(irq, data);
963 amd_iommu_int_thread_pprlog(irq, data);
964 amd_iommu_int_thread_galog(irq, data);
965
966 return IRQ_HANDLED;
967}
968
969irqreturn_t amd_iommu_int_handler(int irq, void *data)
970{
971 return IRQ_WAKE_THREAD;
972}
973
974/****************************************************************************
975 *
976 * IOMMU command queuing functions
977 *
978 ****************************************************************************/
979
980static int wait_on_sem(struct amd_iommu *iommu, u64 data)
981{
982 int i = 0;
983
984 while (*iommu->cmd_sem != data && i < LOOP_TIMEOUT) {
985 udelay(1);
986 i += 1;
987 }
988
989 if (i == LOOP_TIMEOUT) {
990 pr_alert("Completion-Wait loop timed out\n");
991 return -EIO;
992 }
993
994 return 0;
995}
996
997static void copy_cmd_to_buffer(struct amd_iommu *iommu,
998 struct iommu_cmd *cmd)
999{
1000 u8 *target;
1001 u32 tail;
1002
1003 /* Copy command to buffer */
1004 tail = iommu->cmd_buf_tail;
1005 target = iommu->cmd_buf + tail;
1006 memcpy(target, cmd, sizeof(*cmd));
1007
1008 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1009 iommu->cmd_buf_tail = tail;
1010
1011 /* Tell the IOMMU about it */
1012 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1013}
1014
1015static void build_completion_wait(struct iommu_cmd *cmd,
1016 struct amd_iommu *iommu,
1017 u64 data)
1018{
1019 u64 paddr = iommu_virt_to_phys((void *)iommu->cmd_sem);
1020
1021 memset(cmd, 0, sizeof(*cmd));
1022 cmd->data[0] = lower_32_bits(paddr) | CMD_COMPL_WAIT_STORE_MASK;
1023 cmd->data[1] = upper_32_bits(paddr);
1024 cmd->data[2] = lower_32_bits(data);
1025 cmd->data[3] = upper_32_bits(data);
1026 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
1027}
1028
1029static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
1030{
1031 memset(cmd, 0, sizeof(*cmd));
1032 cmd->data[0] = devid;
1033 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
1034}
1035
1036/*
1037 * Builds an invalidation address which is suitable for one page or multiple
1038 * pages. Sets the size bit (S) as needed is more than one page is flushed.
1039 */
1040static inline u64 build_inv_address(u64 address, size_t size)
1041{
1042 u64 pages, end, msb_diff;
1043
1044 pages = iommu_num_pages(address, size, PAGE_SIZE);
1045
1046 if (pages == 1)
1047 return address & PAGE_MASK;
1048
1049 end = address + size - 1;
1050
1051 /*
1052 * msb_diff would hold the index of the most significant bit that
1053 * flipped between the start and end.
1054 */
1055 msb_diff = fls64(end ^ address) - 1;
1056
1057 /*
1058 * Bits 63:52 are sign extended. If for some reason bit 51 is different
1059 * between the start and the end, invalidate everything.
1060 */
1061 if (unlikely(msb_diff > 51)) {
1062 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
1063 } else {
1064 /*
1065 * The msb-bit must be clear on the address. Just set all the
1066 * lower bits.
1067 */
1068 address |= (1ull << msb_diff) - 1;
1069 }
1070
1071 /* Clear bits 11:0 */
1072 address &= PAGE_MASK;
1073
1074 /* Set the size bit - we flush more than one 4kb page */
1075 return address | CMD_INV_IOMMU_PAGES_SIZE_MASK;
1076}
1077
1078static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
1079 size_t size, u16 domid,
1080 ioasid_t pasid, bool gn)
1081{
1082 u64 inv_address = build_inv_address(address, size);
1083
1084 memset(cmd, 0, sizeof(*cmd));
1085
1086 cmd->data[1] |= domid;
1087 cmd->data[2] = lower_32_bits(inv_address);
1088 cmd->data[3] = upper_32_bits(inv_address);
1089 /* PDE bit - we want to flush everything, not only the PTEs */
1090 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
1091 if (gn) {
1092 cmd->data[0] |= pasid;
1093 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1094 }
1095 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
1096}
1097
1098static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
1099 u64 address, size_t size,
1100 ioasid_t pasid, bool gn)
1101{
1102 u64 inv_address = build_inv_address(address, size);
1103
1104 memset(cmd, 0, sizeof(*cmd));
1105
1106 cmd->data[0] = devid;
1107 cmd->data[0] |= (qdep & 0xff) << 24;
1108 cmd->data[1] = devid;
1109 cmd->data[2] = lower_32_bits(inv_address);
1110 cmd->data[3] = upper_32_bits(inv_address);
1111 if (gn) {
1112 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
1113 cmd->data[1] |= (pasid & 0xff) << 16;
1114 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
1115 }
1116
1117 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
1118}
1119
1120static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, u32 pasid,
1121 int status, int tag, u8 gn)
1122{
1123 memset(cmd, 0, sizeof(*cmd));
1124
1125 cmd->data[0] = devid;
1126 if (gn) {
1127 cmd->data[1] = pasid;
1128 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
1129 }
1130 cmd->data[3] = tag & 0x1ff;
1131 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
1132
1133 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
1134}
1135
1136static void build_inv_all(struct iommu_cmd *cmd)
1137{
1138 memset(cmd, 0, sizeof(*cmd));
1139 CMD_SET_TYPE(cmd, CMD_INV_ALL);
1140}
1141
1142static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1143{
1144 memset(cmd, 0, sizeof(*cmd));
1145 cmd->data[0] = devid;
1146 CMD_SET_TYPE(cmd, CMD_INV_IRT);
1147}
1148
1149/*
1150 * Writes the command to the IOMMUs command buffer and informs the
1151 * hardware about the new command.
1152 */
1153static int __iommu_queue_command_sync(struct amd_iommu *iommu,
1154 struct iommu_cmd *cmd,
1155 bool sync)
1156{
1157 unsigned int count = 0;
1158 u32 left, next_tail;
1159
1160 next_tail = (iommu->cmd_buf_tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
1161again:
1162 left = (iommu->cmd_buf_head - next_tail) % CMD_BUFFER_SIZE;
1163
1164 if (left <= 0x20) {
1165 /* Skip udelay() the first time around */
1166 if (count++) {
1167 if (count == LOOP_TIMEOUT) {
1168 pr_err("Command buffer timeout\n");
1169 return -EIO;
1170 }
1171
1172 udelay(1);
1173 }
1174
1175 /* Update head and recheck remaining space */
1176 iommu->cmd_buf_head = readl(iommu->mmio_base +
1177 MMIO_CMD_HEAD_OFFSET);
1178
1179 goto again;
1180 }
1181
1182 copy_cmd_to_buffer(iommu, cmd);
1183
1184 /* Do we need to make sure all commands are processed? */
1185 iommu->need_sync = sync;
1186
1187 return 0;
1188}
1189
1190static int iommu_queue_command_sync(struct amd_iommu *iommu,
1191 struct iommu_cmd *cmd,
1192 bool sync)
1193{
1194 unsigned long flags;
1195 int ret;
1196
1197 raw_spin_lock_irqsave(&iommu->lock, flags);
1198 ret = __iommu_queue_command_sync(iommu, cmd, sync);
1199 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1200
1201 return ret;
1202}
1203
1204static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1205{
1206 return iommu_queue_command_sync(iommu, cmd, true);
1207}
1208
1209/*
1210 * This function queues a completion wait command into the command
1211 * buffer of an IOMMU
1212 */
1213static int iommu_completion_wait(struct amd_iommu *iommu)
1214{
1215 struct iommu_cmd cmd;
1216 unsigned long flags;
1217 int ret;
1218 u64 data;
1219
1220 if (!iommu->need_sync)
1221 return 0;
1222
1223 data = atomic64_inc_return(&iommu->cmd_sem_val);
1224 build_completion_wait(&cmd, iommu, data);
1225
1226 raw_spin_lock_irqsave(&iommu->lock, flags);
1227
1228 ret = __iommu_queue_command_sync(iommu, &cmd, false);
1229 if (ret)
1230 goto out_unlock;
1231
1232 ret = wait_on_sem(iommu, data);
1233
1234out_unlock:
1235 raw_spin_unlock_irqrestore(&iommu->lock, flags);
1236
1237 return ret;
1238}
1239
1240static void domain_flush_complete(struct protection_domain *domain)
1241{
1242 struct pdom_iommu_info *pdom_iommu_info;
1243 unsigned long i;
1244
1245 lockdep_assert_held(&domain->lock);
1246
1247 /*
1248 * Devices of this domain are behind this IOMMU
1249 * We need to wait for completion of all commands.
1250 */
1251 xa_for_each(&domain->iommu_array, i, pdom_iommu_info)
1252 iommu_completion_wait(pdom_iommu_info->iommu);
1253}
1254
1255static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1256{
1257 struct iommu_cmd cmd;
1258
1259 build_inv_dte(&cmd, devid);
1260
1261 return iommu_queue_command(iommu, &cmd);
1262}
1263
1264static void amd_iommu_flush_dte_all(struct amd_iommu *iommu)
1265{
1266 u32 devid;
1267 u16 last_bdf = iommu->pci_seg->last_bdf;
1268
1269 for (devid = 0; devid <= last_bdf; ++devid)
1270 iommu_flush_dte(iommu, devid);
1271
1272 iommu_completion_wait(iommu);
1273}
1274
1275/*
1276 * This function uses heavy locking and may disable irqs for some time. But
1277 * this is no issue because it is only called during resume.
1278 */
1279static void amd_iommu_flush_tlb_all(struct amd_iommu *iommu)
1280{
1281 u32 dom_id;
1282 u16 last_bdf = iommu->pci_seg->last_bdf;
1283
1284 for (dom_id = 0; dom_id <= last_bdf; ++dom_id) {
1285 struct iommu_cmd cmd;
1286 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1287 dom_id, IOMMU_NO_PASID, false);
1288 iommu_queue_command(iommu, &cmd);
1289 }
1290
1291 iommu_completion_wait(iommu);
1292}
1293
1294static void amd_iommu_flush_tlb_domid(struct amd_iommu *iommu, u32 dom_id)
1295{
1296 struct iommu_cmd cmd;
1297
1298 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1299 dom_id, IOMMU_NO_PASID, false);
1300 iommu_queue_command(iommu, &cmd);
1301
1302 iommu_completion_wait(iommu);
1303}
1304
1305static void amd_iommu_flush_all(struct amd_iommu *iommu)
1306{
1307 struct iommu_cmd cmd;
1308
1309 build_inv_all(&cmd);
1310
1311 iommu_queue_command(iommu, &cmd);
1312 iommu_completion_wait(iommu);
1313}
1314
1315static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1316{
1317 struct iommu_cmd cmd;
1318
1319 build_inv_irt(&cmd, devid);
1320
1321 iommu_queue_command(iommu, &cmd);
1322}
1323
1324static void amd_iommu_flush_irt_all(struct amd_iommu *iommu)
1325{
1326 u32 devid;
1327 u16 last_bdf = iommu->pci_seg->last_bdf;
1328
1329 if (iommu->irtcachedis_enabled)
1330 return;
1331
1332 for (devid = 0; devid <= last_bdf; devid++)
1333 iommu_flush_irt(iommu, devid);
1334
1335 iommu_completion_wait(iommu);
1336}
1337
1338void amd_iommu_flush_all_caches(struct amd_iommu *iommu)
1339{
1340 if (check_feature(FEATURE_IA)) {
1341 amd_iommu_flush_all(iommu);
1342 } else {
1343 amd_iommu_flush_dte_all(iommu);
1344 amd_iommu_flush_irt_all(iommu);
1345 amd_iommu_flush_tlb_all(iommu);
1346 }
1347}
1348
1349/*
1350 * Command send function for flushing on-device TLB
1351 */
1352static int device_flush_iotlb(struct iommu_dev_data *dev_data, u64 address,
1353 size_t size, ioasid_t pasid, bool gn)
1354{
1355 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1356 struct iommu_cmd cmd;
1357 int qdep = dev_data->ats_qdep;
1358
1359 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address,
1360 size, pasid, gn);
1361
1362 return iommu_queue_command(iommu, &cmd);
1363}
1364
1365static int device_flush_dte_alias(struct pci_dev *pdev, u16 alias, void *data)
1366{
1367 struct amd_iommu *iommu = data;
1368
1369 return iommu_flush_dte(iommu, alias);
1370}
1371
1372/*
1373 * Command send function for invalidating a device table entry
1374 */
1375static int device_flush_dte(struct iommu_dev_data *dev_data)
1376{
1377 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1378 struct pci_dev *pdev = NULL;
1379 struct amd_iommu_pci_seg *pci_seg;
1380 u16 alias;
1381 int ret;
1382
1383 if (dev_is_pci(dev_data->dev))
1384 pdev = to_pci_dev(dev_data->dev);
1385
1386 if (pdev)
1387 ret = pci_for_each_dma_alias(pdev,
1388 device_flush_dte_alias, iommu);
1389 else
1390 ret = iommu_flush_dte(iommu, dev_data->devid);
1391 if (ret)
1392 return ret;
1393
1394 pci_seg = iommu->pci_seg;
1395 alias = pci_seg->alias_table[dev_data->devid];
1396 if (alias != dev_data->devid) {
1397 ret = iommu_flush_dte(iommu, alias);
1398 if (ret)
1399 return ret;
1400 }
1401
1402 if (dev_data->ats_enabled) {
1403 /* Invalidate the entire contents of an IOTLB */
1404 ret = device_flush_iotlb(dev_data, 0, ~0UL,
1405 IOMMU_NO_PASID, false);
1406 }
1407
1408 return ret;
1409}
1410
1411static int domain_flush_pages_v2(struct protection_domain *pdom,
1412 u64 address, size_t size)
1413{
1414 struct iommu_dev_data *dev_data;
1415 struct iommu_cmd cmd;
1416 int ret = 0;
1417
1418 lockdep_assert_held(&pdom->lock);
1419 list_for_each_entry(dev_data, &pdom->dev_list, list) {
1420 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1421 u16 domid = dev_data->gcr3_info.domid;
1422
1423 build_inv_iommu_pages(&cmd, address, size,
1424 domid, IOMMU_NO_PASID, true);
1425
1426 ret |= iommu_queue_command(iommu, &cmd);
1427 }
1428
1429 return ret;
1430}
1431
1432static int domain_flush_pages_v1(struct protection_domain *pdom,
1433 u64 address, size_t size)
1434{
1435 struct pdom_iommu_info *pdom_iommu_info;
1436 struct iommu_cmd cmd;
1437 int ret = 0;
1438 unsigned long i;
1439
1440 lockdep_assert_held(&pdom->lock);
1441
1442 build_inv_iommu_pages(&cmd, address, size,
1443 pdom->id, IOMMU_NO_PASID, false);
1444
1445 xa_for_each(&pdom->iommu_array, i, pdom_iommu_info) {
1446 /*
1447 * Devices of this domain are behind this IOMMU
1448 * We need a TLB flush
1449 */
1450 ret |= iommu_queue_command(pdom_iommu_info->iommu, &cmd);
1451 }
1452
1453 return ret;
1454}
1455
1456/*
1457 * TLB invalidation function which is called from the mapping functions.
1458 * It flushes range of PTEs of the domain.
1459 */
1460static void __domain_flush_pages(struct protection_domain *domain,
1461 u64 address, size_t size)
1462{
1463 struct iommu_dev_data *dev_data;
1464 int ret = 0;
1465 ioasid_t pasid = IOMMU_NO_PASID;
1466 bool gn = false;
1467
1468 lockdep_assert_held(&domain->lock);
1469
1470 if (pdom_is_v2_pgtbl_mode(domain)) {
1471 gn = true;
1472 ret = domain_flush_pages_v2(domain, address, size);
1473 } else {
1474 ret = domain_flush_pages_v1(domain, address, size);
1475 }
1476
1477 list_for_each_entry(dev_data, &domain->dev_list, list) {
1478
1479 if (!dev_data->ats_enabled)
1480 continue;
1481
1482 ret |= device_flush_iotlb(dev_data, address, size, pasid, gn);
1483 }
1484
1485 WARN_ON(ret);
1486}
1487
1488void amd_iommu_domain_flush_pages(struct protection_domain *domain,
1489 u64 address, size_t size)
1490{
1491 lockdep_assert_held(&domain->lock);
1492
1493 if (likely(!amd_iommu_np_cache)) {
1494 __domain_flush_pages(domain, address, size);
1495
1496 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1497 domain_flush_complete(domain);
1498
1499 return;
1500 }
1501
1502 /*
1503 * When NpCache is on, we infer that we run in a VM and use a vIOMMU.
1504 * In such setups it is best to avoid flushes of ranges which are not
1505 * naturally aligned, since it would lead to flushes of unmodified
1506 * PTEs. Such flushes would require the hypervisor to do more work than
1507 * necessary. Therefore, perform repeated flushes of aligned ranges
1508 * until you cover the range. Each iteration flushes the smaller
1509 * between the natural alignment of the address that we flush and the
1510 * greatest naturally aligned region that fits in the range.
1511 */
1512 while (size != 0) {
1513 int addr_alignment = __ffs(address);
1514 int size_alignment = __fls(size);
1515 int min_alignment;
1516 size_t flush_size;
1517
1518 /*
1519 * size is always non-zero, but address might be zero, causing
1520 * addr_alignment to be negative. As the casting of the
1521 * argument in __ffs(address) to long might trim the high bits
1522 * of the address on x86-32, cast to long when doing the check.
1523 */
1524 if (likely((unsigned long)address != 0))
1525 min_alignment = min(addr_alignment, size_alignment);
1526 else
1527 min_alignment = size_alignment;
1528
1529 flush_size = 1ul << min_alignment;
1530
1531 __domain_flush_pages(domain, address, flush_size);
1532 address += flush_size;
1533 size -= flush_size;
1534 }
1535
1536 /* Wait until IOMMU TLB and all device IOTLB flushes are complete */
1537 domain_flush_complete(domain);
1538}
1539
1540/* Flush the whole IO/TLB for a given protection domain - including PDE */
1541static void amd_iommu_domain_flush_all(struct protection_domain *domain)
1542{
1543 amd_iommu_domain_flush_pages(domain, 0,
1544 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1545}
1546
1547void amd_iommu_dev_flush_pasid_pages(struct iommu_dev_data *dev_data,
1548 ioasid_t pasid, u64 address, size_t size)
1549{
1550 struct iommu_cmd cmd;
1551 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1552
1553 build_inv_iommu_pages(&cmd, address, size,
1554 dev_data->gcr3_info.domid, pasid, true);
1555 iommu_queue_command(iommu, &cmd);
1556
1557 if (dev_data->ats_enabled)
1558 device_flush_iotlb(dev_data, address, size, pasid, true);
1559
1560 iommu_completion_wait(iommu);
1561}
1562
1563static void dev_flush_pasid_all(struct iommu_dev_data *dev_data,
1564 ioasid_t pasid)
1565{
1566 amd_iommu_dev_flush_pasid_pages(dev_data, pasid, 0,
1567 CMD_INV_IOMMU_ALL_PAGES_ADDRESS);
1568}
1569
1570/* Flush the not present cache if it exists */
1571static void domain_flush_np_cache(struct protection_domain *domain,
1572 dma_addr_t iova, size_t size)
1573{
1574 if (unlikely(amd_iommu_np_cache)) {
1575 unsigned long flags;
1576
1577 spin_lock_irqsave(&domain->lock, flags);
1578 amd_iommu_domain_flush_pages(domain, iova, size);
1579 spin_unlock_irqrestore(&domain->lock, flags);
1580 }
1581}
1582
1583
1584/*
1585 * This function flushes the DTEs for all devices in domain
1586 */
1587void amd_iommu_update_and_flush_device_table(struct protection_domain *domain)
1588{
1589 struct iommu_dev_data *dev_data;
1590
1591 lockdep_assert_held(&domain->lock);
1592
1593 list_for_each_entry(dev_data, &domain->dev_list, list) {
1594 struct amd_iommu *iommu = rlookup_amd_iommu(dev_data->dev);
1595
1596 set_dte_entry(iommu, dev_data);
1597 clone_aliases(iommu, dev_data->dev);
1598 }
1599
1600 list_for_each_entry(dev_data, &domain->dev_list, list)
1601 device_flush_dte(dev_data);
1602
1603 domain_flush_complete(domain);
1604}
1605
1606int amd_iommu_complete_ppr(struct device *dev, u32 pasid, int status, int tag)
1607{
1608 struct iommu_dev_data *dev_data;
1609 struct amd_iommu *iommu;
1610 struct iommu_cmd cmd;
1611
1612 dev_data = dev_iommu_priv_get(dev);
1613 iommu = get_amd_iommu_from_dev(dev);
1614
1615 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
1616 tag, dev_data->pri_tlp);
1617
1618 return iommu_queue_command(iommu, &cmd);
1619}
1620
1621/****************************************************************************
1622 *
1623 * The next functions belong to the domain allocation. A domain is
1624 * allocated for every IOMMU as the default domain. If device isolation
1625 * is enabled, every device get its own domain. The most important thing
1626 * about domains is the page table mapping the DMA address space they
1627 * contain.
1628 *
1629 ****************************************************************************/
1630
1631static int pdom_id_alloc(void)
1632{
1633 return ida_alloc_range(&pdom_ids, 1, MAX_DOMAIN_ID - 1, GFP_ATOMIC);
1634}
1635
1636static void pdom_id_free(int id)
1637{
1638 ida_free(&pdom_ids, id);
1639}
1640
1641static void free_gcr3_tbl_level1(u64 *tbl)
1642{
1643 u64 *ptr;
1644 int i;
1645
1646 for (i = 0; i < 512; ++i) {
1647 if (!(tbl[i] & GCR3_VALID))
1648 continue;
1649
1650 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1651
1652 iommu_free_page(ptr);
1653 }
1654}
1655
1656static void free_gcr3_tbl_level2(u64 *tbl)
1657{
1658 u64 *ptr;
1659 int i;
1660
1661 for (i = 0; i < 512; ++i) {
1662 if (!(tbl[i] & GCR3_VALID))
1663 continue;
1664
1665 ptr = iommu_phys_to_virt(tbl[i] & PAGE_MASK);
1666
1667 free_gcr3_tbl_level1(ptr);
1668 }
1669}
1670
1671static void free_gcr3_table(struct gcr3_tbl_info *gcr3_info)
1672{
1673 if (gcr3_info->glx == 2)
1674 free_gcr3_tbl_level2(gcr3_info->gcr3_tbl);
1675 else if (gcr3_info->glx == 1)
1676 free_gcr3_tbl_level1(gcr3_info->gcr3_tbl);
1677 else
1678 WARN_ON_ONCE(gcr3_info->glx != 0);
1679
1680 gcr3_info->glx = 0;
1681
1682 /* Free per device domain ID */
1683 pdom_id_free(gcr3_info->domid);
1684
1685 iommu_free_page(gcr3_info->gcr3_tbl);
1686 gcr3_info->gcr3_tbl = NULL;
1687}
1688
1689/*
1690 * Number of GCR3 table levels required. Level must be 4-Kbyte
1691 * page and can contain up to 512 entries.
1692 */
1693static int get_gcr3_levels(int pasids)
1694{
1695 int levels;
1696
1697 if (pasids == -1)
1698 return amd_iommu_max_glx_val;
1699
1700 levels = get_count_order(pasids);
1701
1702 return levels ? (DIV_ROUND_UP(levels, 9) - 1) : levels;
1703}
1704
1705static int setup_gcr3_table(struct gcr3_tbl_info *gcr3_info,
1706 struct amd_iommu *iommu, int pasids)
1707{
1708 int levels = get_gcr3_levels(pasids);
1709 int nid = iommu ? dev_to_node(&iommu->dev->dev) : NUMA_NO_NODE;
1710 int domid;
1711
1712 if (levels > amd_iommu_max_glx_val)
1713 return -EINVAL;
1714
1715 if (gcr3_info->gcr3_tbl)
1716 return -EBUSY;
1717
1718 /* Allocate per device domain ID */
1719 domid = pdom_id_alloc();
1720 if (domid <= 0)
1721 return -ENOSPC;
1722 gcr3_info->domid = domid;
1723
1724 gcr3_info->gcr3_tbl = iommu_alloc_page_node(nid, GFP_ATOMIC);
1725 if (gcr3_info->gcr3_tbl == NULL) {
1726 pdom_id_free(domid);
1727 return -ENOMEM;
1728 }
1729
1730 gcr3_info->glx = levels;
1731
1732 return 0;
1733}
1734
1735static u64 *__get_gcr3_pte(struct gcr3_tbl_info *gcr3_info,
1736 ioasid_t pasid, bool alloc)
1737{
1738 int index;
1739 u64 *pte;
1740 u64 *root = gcr3_info->gcr3_tbl;
1741 int level = gcr3_info->glx;
1742
1743 while (true) {
1744
1745 index = (pasid >> (9 * level)) & 0x1ff;
1746 pte = &root[index];
1747
1748 if (level == 0)
1749 break;
1750
1751 if (!(*pte & GCR3_VALID)) {
1752 if (!alloc)
1753 return NULL;
1754
1755 root = (void *)get_zeroed_page(GFP_ATOMIC);
1756 if (root == NULL)
1757 return NULL;
1758
1759 *pte = iommu_virt_to_phys(root) | GCR3_VALID;
1760 }
1761
1762 root = iommu_phys_to_virt(*pte & PAGE_MASK);
1763
1764 level -= 1;
1765 }
1766
1767 return pte;
1768}
1769
1770static int update_gcr3(struct iommu_dev_data *dev_data,
1771 ioasid_t pasid, unsigned long gcr3, bool set)
1772{
1773 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1774 u64 *pte;
1775
1776 pte = __get_gcr3_pte(gcr3_info, pasid, true);
1777 if (pte == NULL)
1778 return -ENOMEM;
1779
1780 if (set)
1781 *pte = (gcr3 & PAGE_MASK) | GCR3_VALID;
1782 else
1783 *pte = 0;
1784
1785 dev_flush_pasid_all(dev_data, pasid);
1786 return 0;
1787}
1788
1789int amd_iommu_set_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid,
1790 unsigned long gcr3)
1791{
1792 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1793 int ret;
1794
1795 iommu_group_mutex_assert(dev_data->dev);
1796
1797 ret = update_gcr3(dev_data, pasid, gcr3, true);
1798 if (ret)
1799 return ret;
1800
1801 gcr3_info->pasid_cnt++;
1802 return ret;
1803}
1804
1805int amd_iommu_clear_gcr3(struct iommu_dev_data *dev_data, ioasid_t pasid)
1806{
1807 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1808 int ret;
1809
1810 iommu_group_mutex_assert(dev_data->dev);
1811
1812 ret = update_gcr3(dev_data, pasid, 0, false);
1813 if (ret)
1814 return ret;
1815
1816 gcr3_info->pasid_cnt--;
1817 return ret;
1818}
1819
1820static void set_dte_entry(struct amd_iommu *iommu,
1821 struct iommu_dev_data *dev_data)
1822{
1823 u64 pte_root = 0;
1824 u64 flags = 0;
1825 u32 old_domid;
1826 u16 devid = dev_data->devid;
1827 u16 domid;
1828 struct protection_domain *domain = dev_data->domain;
1829 struct dev_table_entry *dev_table = get_dev_table(iommu);
1830 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1831
1832 if (gcr3_info && gcr3_info->gcr3_tbl)
1833 domid = dev_data->gcr3_info.domid;
1834 else
1835 domid = domain->id;
1836
1837 if (domain->iop.mode != PAGE_MODE_NONE)
1838 pte_root = iommu_virt_to_phys(domain->iop.root);
1839
1840 pte_root |= (domain->iop.mode & DEV_ENTRY_MODE_MASK)
1841 << DEV_ENTRY_MODE_SHIFT;
1842
1843 pte_root |= DTE_FLAG_IR | DTE_FLAG_IW | DTE_FLAG_V;
1844
1845 /*
1846 * When SNP is enabled, Only set TV bit when IOMMU
1847 * page translation is in use.
1848 */
1849 if (!amd_iommu_snp_en || (domid != 0))
1850 pte_root |= DTE_FLAG_TV;
1851
1852 flags = dev_table[devid].data[1];
1853
1854 if (dev_data->ats_enabled)
1855 flags |= DTE_FLAG_IOTLB;
1856
1857 if (dev_data->ppr)
1858 pte_root |= 1ULL << DEV_ENTRY_PPR;
1859
1860 if (domain->dirty_tracking)
1861 pte_root |= DTE_FLAG_HAD;
1862
1863 if (gcr3_info && gcr3_info->gcr3_tbl) {
1864 u64 gcr3 = iommu_virt_to_phys(gcr3_info->gcr3_tbl);
1865 u64 glx = gcr3_info->glx;
1866 u64 tmp;
1867
1868 pte_root |= DTE_FLAG_GV;
1869 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1870
1871 /* First mask out possible old values for GCR3 table */
1872 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1873 flags &= ~tmp;
1874
1875 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1876 flags &= ~tmp;
1877
1878 /* Encode GCR3 table into DTE */
1879 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1880 pte_root |= tmp;
1881
1882 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1883 flags |= tmp;
1884
1885 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1886 flags |= tmp;
1887
1888 if (amd_iommu_gpt_level == PAGE_MODE_5_LEVEL) {
1889 dev_table[devid].data[2] |=
1890 ((u64)GUEST_PGTABLE_5_LEVEL << DTE_GPT_LEVEL_SHIFT);
1891 }
1892
1893 /* GIOV is supported with V2 page table mode only */
1894 if (pdom_is_v2_pgtbl_mode(domain))
1895 pte_root |= DTE_FLAG_GIOV;
1896 }
1897
1898 flags &= ~DEV_DOMID_MASK;
1899 flags |= domid;
1900
1901 old_domid = dev_table[devid].data[1] & DEV_DOMID_MASK;
1902 dev_table[devid].data[1] = flags;
1903 dev_table[devid].data[0] = pte_root;
1904
1905 /*
1906 * A kdump kernel might be replacing a domain ID that was copied from
1907 * the previous kernel--if so, it needs to flush the translation cache
1908 * entries for the old domain ID that is being overwritten
1909 */
1910 if (old_domid) {
1911 amd_iommu_flush_tlb_domid(iommu, old_domid);
1912 }
1913}
1914
1915static void clear_dte_entry(struct amd_iommu *iommu, u16 devid)
1916{
1917 struct dev_table_entry *dev_table = get_dev_table(iommu);
1918
1919 /* remove entry from the device table seen by the hardware */
1920 dev_table[devid].data[0] = DTE_FLAG_V;
1921
1922 if (!amd_iommu_snp_en)
1923 dev_table[devid].data[0] |= DTE_FLAG_TV;
1924
1925 dev_table[devid].data[1] &= DTE_FLAG_MASK;
1926
1927 amd_iommu_apply_erratum_63(iommu, devid);
1928}
1929
1930/* Update and flush DTE for the given device */
1931static void dev_update_dte(struct iommu_dev_data *dev_data, bool set)
1932{
1933 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev_data->dev);
1934
1935 if (set)
1936 set_dte_entry(iommu, dev_data);
1937 else
1938 clear_dte_entry(iommu, dev_data->devid);
1939
1940 clone_aliases(iommu, dev_data->dev);
1941 device_flush_dte(dev_data);
1942 iommu_completion_wait(iommu);
1943}
1944
1945/*
1946 * If domain is SVA capable then initialize GCR3 table. Also if domain is
1947 * in v2 page table mode then update GCR3[0].
1948 */
1949static int init_gcr3_table(struct iommu_dev_data *dev_data,
1950 struct protection_domain *pdom)
1951{
1952 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
1953 int max_pasids = dev_data->max_pasids;
1954 int ret = 0;
1955
1956 /*
1957 * If domain is in pt mode then setup GCR3 table only if device
1958 * is PASID capable
1959 */
1960 if (pdom_is_in_pt_mode(pdom) && !pdev_pasid_supported(dev_data))
1961 return ret;
1962
1963 /*
1964 * By default, setup GCR3 table to support MAX PASIDs
1965 * supported by the device/IOMMU.
1966 */
1967 ret = setup_gcr3_table(&dev_data->gcr3_info, iommu,
1968 max_pasids > 0 ? max_pasids : 1);
1969 if (ret)
1970 return ret;
1971
1972 /* Setup GCR3[0] only if domain is setup with v2 page table mode */
1973 if (!pdom_is_v2_pgtbl_mode(pdom))
1974 return ret;
1975
1976 ret = update_gcr3(dev_data, 0, iommu_virt_to_phys(pdom->iop.pgd), true);
1977 if (ret)
1978 free_gcr3_table(&dev_data->gcr3_info);
1979
1980 return ret;
1981}
1982
1983static void destroy_gcr3_table(struct iommu_dev_data *dev_data,
1984 struct protection_domain *pdom)
1985{
1986 struct gcr3_tbl_info *gcr3_info = &dev_data->gcr3_info;
1987
1988 if (pdom_is_v2_pgtbl_mode(pdom))
1989 update_gcr3(dev_data, 0, 0, false);
1990
1991 if (gcr3_info->gcr3_tbl == NULL)
1992 return;
1993
1994 free_gcr3_table(gcr3_info);
1995}
1996
1997static int pdom_attach_iommu(struct amd_iommu *iommu,
1998 struct protection_domain *pdom)
1999{
2000 struct pdom_iommu_info *pdom_iommu_info, *curr;
2001 struct io_pgtable_cfg *cfg = &pdom->iop.pgtbl.cfg;
2002 unsigned long flags;
2003 int ret = 0;
2004
2005 spin_lock_irqsave(&pdom->lock, flags);
2006
2007 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2008 if (pdom_iommu_info) {
2009 pdom_iommu_info->refcnt++;
2010 goto out_unlock;
2011 }
2012
2013 pdom_iommu_info = kzalloc(sizeof(*pdom_iommu_info), GFP_ATOMIC);
2014 if (!pdom_iommu_info) {
2015 ret = -ENOMEM;
2016 goto out_unlock;
2017 }
2018
2019 pdom_iommu_info->iommu = iommu;
2020 pdom_iommu_info->refcnt = 1;
2021
2022 curr = xa_cmpxchg(&pdom->iommu_array, iommu->index,
2023 NULL, pdom_iommu_info, GFP_ATOMIC);
2024 if (curr) {
2025 kfree(pdom_iommu_info);
2026 ret = -ENOSPC;
2027 goto out_unlock;
2028 }
2029
2030 /* Update NUMA Node ID */
2031 if (cfg->amd.nid == NUMA_NO_NODE)
2032 cfg->amd.nid = dev_to_node(&iommu->dev->dev);
2033
2034out_unlock:
2035 spin_unlock_irqrestore(&pdom->lock, flags);
2036 return ret;
2037}
2038
2039static void pdom_detach_iommu(struct amd_iommu *iommu,
2040 struct protection_domain *pdom)
2041{
2042 struct pdom_iommu_info *pdom_iommu_info;
2043 unsigned long flags;
2044
2045 spin_lock_irqsave(&pdom->lock, flags);
2046
2047 pdom_iommu_info = xa_load(&pdom->iommu_array, iommu->index);
2048 if (!pdom_iommu_info) {
2049 spin_unlock_irqrestore(&pdom->lock, flags);
2050 return;
2051 }
2052
2053 pdom_iommu_info->refcnt--;
2054 if (pdom_iommu_info->refcnt == 0) {
2055 xa_erase(&pdom->iommu_array, iommu->index);
2056 kfree(pdom_iommu_info);
2057 }
2058
2059 spin_unlock_irqrestore(&pdom->lock, flags);
2060}
2061
2062/*
2063 * If a device is not yet associated with a domain, this function makes the
2064 * device visible in the domain
2065 */
2066static int attach_device(struct device *dev,
2067 struct protection_domain *domain)
2068{
2069 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2070 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2071 struct pci_dev *pdev;
2072 unsigned long flags;
2073 int ret = 0;
2074
2075 mutex_lock(&dev_data->mutex);
2076
2077 if (dev_data->domain != NULL) {
2078 ret = -EBUSY;
2079 goto out;
2080 }
2081
2082 /* Do reference counting */
2083 ret = pdom_attach_iommu(iommu, domain);
2084 if (ret)
2085 goto out;
2086
2087 /* Setup GCR3 table */
2088 if (pdom_is_sva_capable(domain)) {
2089 ret = init_gcr3_table(dev_data, domain);
2090 if (ret) {
2091 pdom_detach_iommu(iommu, domain);
2092 goto out;
2093 }
2094 }
2095
2096 pdev = dev_is_pci(dev_data->dev) ? to_pci_dev(dev_data->dev) : NULL;
2097 if (pdev && pdom_is_sva_capable(domain)) {
2098 pdev_enable_caps(pdev);
2099
2100 /*
2101 * Device can continue to function even if IOPF
2102 * enablement failed. Hence in error path just
2103 * disable device PRI support.
2104 */
2105 if (amd_iommu_iopf_add_device(iommu, dev_data))
2106 pdev_disable_cap_pri(pdev);
2107 } else if (pdev) {
2108 pdev_enable_cap_ats(pdev);
2109 }
2110
2111 /* Update data structures */
2112 dev_data->domain = domain;
2113 spin_lock_irqsave(&domain->lock, flags);
2114 list_add(&dev_data->list, &domain->dev_list);
2115 spin_unlock_irqrestore(&domain->lock, flags);
2116
2117 /* Update device table */
2118 dev_update_dte(dev_data, true);
2119
2120out:
2121 mutex_unlock(&dev_data->mutex);
2122
2123 return ret;
2124}
2125
2126/*
2127 * Removes a device from a protection domain (with devtable_lock held)
2128 */
2129static void detach_device(struct device *dev)
2130{
2131 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2132 struct amd_iommu *iommu = get_amd_iommu_from_dev_data(dev_data);
2133 struct protection_domain *domain = dev_data->domain;
2134 unsigned long flags;
2135
2136 mutex_lock(&dev_data->mutex);
2137
2138 /*
2139 * First check if the device is still attached. It might already
2140 * be detached from its domain because the generic
2141 * iommu_detach_group code detached it and we try again here in
2142 * our alias handling.
2143 */
2144 if (WARN_ON(!dev_data->domain))
2145 goto out;
2146
2147 /* Remove IOPF handler */
2148 if (dev_data->ppr) {
2149 iopf_queue_flush_dev(dev);
2150 amd_iommu_iopf_remove_device(iommu, dev_data);
2151 }
2152
2153 if (dev_is_pci(dev))
2154 pdev_disable_caps(to_pci_dev(dev));
2155
2156 /* Clear DTE and flush the entry */
2157 dev_update_dte(dev_data, false);
2158
2159 /* Flush IOTLB and wait for the flushes to finish */
2160 spin_lock_irqsave(&domain->lock, flags);
2161 amd_iommu_domain_flush_all(domain);
2162 list_del(&dev_data->list);
2163 spin_unlock_irqrestore(&domain->lock, flags);
2164
2165 /* Clear GCR3 table */
2166 if (pdom_is_sva_capable(domain))
2167 destroy_gcr3_table(dev_data, domain);
2168
2169 /* Update data structures */
2170 dev_data->domain = NULL;
2171
2172 /* decrease reference counters - needs to happen after the flushes */
2173 pdom_detach_iommu(iommu, domain);
2174
2175out:
2176 mutex_unlock(&dev_data->mutex);
2177}
2178
2179static struct iommu_device *amd_iommu_probe_device(struct device *dev)
2180{
2181 struct iommu_device *iommu_dev;
2182 struct amd_iommu *iommu;
2183 struct iommu_dev_data *dev_data;
2184 int ret;
2185
2186 if (!check_device(dev))
2187 return ERR_PTR(-ENODEV);
2188
2189 iommu = rlookup_amd_iommu(dev);
2190 if (!iommu)
2191 return ERR_PTR(-ENODEV);
2192
2193 /* Not registered yet? */
2194 if (!iommu->iommu.ops)
2195 return ERR_PTR(-ENODEV);
2196
2197 if (dev_iommu_priv_get(dev))
2198 return &iommu->iommu;
2199
2200 ret = iommu_init_device(iommu, dev);
2201 if (ret) {
2202 dev_err(dev, "Failed to initialize - trying to proceed anyway\n");
2203 iommu_dev = ERR_PTR(ret);
2204 iommu_ignore_device(iommu, dev);
2205 goto out_err;
2206 }
2207
2208 amd_iommu_set_pci_msi_domain(dev, iommu);
2209 iommu_dev = &iommu->iommu;
2210
2211 /*
2212 * If IOMMU and device supports PASID then it will contain max
2213 * supported PASIDs, else it will be zero.
2214 */
2215 dev_data = dev_iommu_priv_get(dev);
2216 if (amd_iommu_pasid_supported() && dev_is_pci(dev) &&
2217 pdev_pasid_supported(dev_data)) {
2218 dev_data->max_pasids = min_t(u32, iommu->iommu.max_pasids,
2219 pci_max_pasids(to_pci_dev(dev)));
2220 }
2221
2222out_err:
2223 iommu_completion_wait(iommu);
2224
2225 if (dev_is_pci(dev))
2226 pci_prepare_ats(to_pci_dev(dev), PAGE_SHIFT);
2227
2228 return iommu_dev;
2229}
2230
2231static void amd_iommu_release_device(struct device *dev)
2232{
2233 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2234
2235 WARN_ON(dev_data->domain);
2236
2237 /*
2238 * We keep dev_data around for unplugged devices and reuse it when the
2239 * device is re-plugged - not doing so would introduce a ton of races.
2240 */
2241}
2242
2243static struct iommu_group *amd_iommu_device_group(struct device *dev)
2244{
2245 if (dev_is_pci(dev))
2246 return pci_device_group(dev);
2247
2248 return acpihid_device_group(dev);
2249}
2250
2251/*****************************************************************************
2252 *
2253 * The following functions belong to the exported interface of AMD IOMMU
2254 *
2255 * This interface allows access to lower level functions of the IOMMU
2256 * like protection domain handling and assignement of devices to domains
2257 * which is not possible with the dma_ops interface.
2258 *
2259 *****************************************************************************/
2260
2261void protection_domain_free(struct protection_domain *domain)
2262{
2263 WARN_ON(!list_empty(&domain->dev_list));
2264 if (domain->domain.type & __IOMMU_DOMAIN_PAGING)
2265 free_io_pgtable_ops(&domain->iop.pgtbl.ops);
2266 pdom_id_free(domain->id);
2267 kfree(domain);
2268}
2269
2270static void protection_domain_init(struct protection_domain *domain, int nid)
2271{
2272 spin_lock_init(&domain->lock);
2273 INIT_LIST_HEAD(&domain->dev_list);
2274 INIT_LIST_HEAD(&domain->dev_data_list);
2275 xa_init(&domain->iommu_array);
2276 domain->iop.pgtbl.cfg.amd.nid = nid;
2277}
2278
2279struct protection_domain *protection_domain_alloc(int nid)
2280{
2281 struct protection_domain *domain;
2282 int domid;
2283
2284 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2285 if (!domain)
2286 return NULL;
2287
2288 domid = pdom_id_alloc();
2289 if (domid <= 0) {
2290 kfree(domain);
2291 return NULL;
2292 }
2293 domain->id = domid;
2294
2295 protection_domain_init(domain, nid);
2296
2297 return domain;
2298}
2299
2300static int pdom_setup_pgtable(struct protection_domain *domain)
2301{
2302 struct io_pgtable_ops *pgtbl_ops;
2303 enum io_pgtable_fmt fmt;
2304
2305 switch (domain->pd_mode) {
2306 case PD_MODE_V1:
2307 fmt = AMD_IOMMU_V1;
2308 break;
2309 case PD_MODE_V2:
2310 fmt = AMD_IOMMU_V2;
2311 break;
2312 }
2313
2314 pgtbl_ops = alloc_io_pgtable_ops(fmt, &domain->iop.pgtbl.cfg, domain);
2315 if (!pgtbl_ops)
2316 return -ENOMEM;
2317
2318 return 0;
2319}
2320
2321static inline u64 dma_max_address(enum protection_domain_mode pgtable)
2322{
2323 if (pgtable == PD_MODE_V1)
2324 return ~0ULL;
2325
2326 /* V2 with 4/5 level page table */
2327 return ((1ULL << PM_LEVEL_SHIFT(amd_iommu_gpt_level)) - 1);
2328}
2329
2330static bool amd_iommu_hd_support(struct amd_iommu *iommu)
2331{
2332 return iommu && (iommu->features & FEATURE_HDSUP);
2333}
2334
2335static struct iommu_domain *
2336do_iommu_domain_alloc(struct device *dev, u32 flags,
2337 enum protection_domain_mode pgtable)
2338{
2339 bool dirty_tracking = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
2340 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2341 struct protection_domain *domain;
2342 int ret;
2343
2344 domain = protection_domain_alloc(dev_to_node(dev));
2345 if (!domain)
2346 return ERR_PTR(-ENOMEM);
2347
2348 domain->pd_mode = pgtable;
2349 ret = pdom_setup_pgtable(domain);
2350 if (ret) {
2351 pdom_id_free(domain->id);
2352 kfree(domain);
2353 return ERR_PTR(ret);
2354 }
2355
2356 domain->domain.geometry.aperture_start = 0;
2357 domain->domain.geometry.aperture_end = dma_max_address(pgtable);
2358 domain->domain.geometry.force_aperture = true;
2359 domain->domain.pgsize_bitmap = domain->iop.pgtbl.cfg.pgsize_bitmap;
2360
2361 domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
2362 domain->domain.ops = iommu->iommu.ops->default_domain_ops;
2363
2364 if (dirty_tracking)
2365 domain->domain.dirty_ops = &amd_dirty_ops;
2366
2367 return &domain->domain;
2368}
2369
2370static struct iommu_domain *
2371amd_iommu_domain_alloc_paging_flags(struct device *dev, u32 flags,
2372 const struct iommu_user_data *user_data)
2373
2374{
2375 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2376 const u32 supported_flags = IOMMU_HWPT_ALLOC_DIRTY_TRACKING |
2377 IOMMU_HWPT_ALLOC_PASID;
2378
2379 if ((flags & ~supported_flags) || user_data)
2380 return ERR_PTR(-EOPNOTSUPP);
2381
2382 switch (flags & supported_flags) {
2383 case IOMMU_HWPT_ALLOC_DIRTY_TRACKING:
2384 /* Allocate domain with v1 page table for dirty tracking */
2385 if (!amd_iommu_hd_support(iommu))
2386 break;
2387 return do_iommu_domain_alloc(dev, flags, PD_MODE_V1);
2388 case IOMMU_HWPT_ALLOC_PASID:
2389 /* Allocate domain with v2 page table if IOMMU supports PASID. */
2390 if (!amd_iommu_pasid_supported())
2391 break;
2392 return do_iommu_domain_alloc(dev, flags, PD_MODE_V2);
2393 case 0:
2394 /* If nothing specific is required use the kernel commandline default */
2395 return do_iommu_domain_alloc(dev, 0, amd_iommu_pgtable);
2396 default:
2397 break;
2398 }
2399 return ERR_PTR(-EOPNOTSUPP);
2400}
2401
2402void amd_iommu_domain_free(struct iommu_domain *dom)
2403{
2404 struct protection_domain *domain = to_pdomain(dom);
2405
2406 protection_domain_free(domain);
2407}
2408
2409static int blocked_domain_attach_device(struct iommu_domain *domain,
2410 struct device *dev)
2411{
2412 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2413
2414 if (dev_data->domain)
2415 detach_device(dev);
2416
2417 /* Clear DTE and flush the entry */
2418 mutex_lock(&dev_data->mutex);
2419 dev_update_dte(dev_data, false);
2420 mutex_unlock(&dev_data->mutex);
2421
2422 return 0;
2423}
2424
2425static struct iommu_domain blocked_domain = {
2426 .type = IOMMU_DOMAIN_BLOCKED,
2427 .ops = &(const struct iommu_domain_ops) {
2428 .attach_dev = blocked_domain_attach_device,
2429 }
2430};
2431
2432static struct protection_domain identity_domain;
2433
2434static const struct iommu_domain_ops identity_domain_ops = {
2435 .attach_dev = amd_iommu_attach_device,
2436};
2437
2438void amd_iommu_init_identity_domain(void)
2439{
2440 struct iommu_domain *domain = &identity_domain.domain;
2441
2442 domain->type = IOMMU_DOMAIN_IDENTITY;
2443 domain->ops = &identity_domain_ops;
2444 domain->owner = &amd_iommu_ops;
2445
2446 identity_domain.id = pdom_id_alloc();
2447
2448 protection_domain_init(&identity_domain, NUMA_NO_NODE);
2449}
2450
2451/* Same as blocked domain except it supports only ops->attach_dev() */
2452static struct iommu_domain release_domain = {
2453 .type = IOMMU_DOMAIN_BLOCKED,
2454 .ops = &(const struct iommu_domain_ops) {
2455 .attach_dev = blocked_domain_attach_device,
2456 }
2457};
2458
2459static int amd_iommu_attach_device(struct iommu_domain *dom,
2460 struct device *dev)
2461{
2462 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2463 struct protection_domain *domain = to_pdomain(dom);
2464 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2465 int ret;
2466
2467 /*
2468 * Skip attach device to domain if new domain is same as
2469 * devices current domain
2470 */
2471 if (dev_data->domain == domain)
2472 return 0;
2473
2474 dev_data->defer_attach = false;
2475
2476 /*
2477 * Restrict to devices with compatible IOMMU hardware support
2478 * when enforcement of dirty tracking is enabled.
2479 */
2480 if (dom->dirty_ops && !amd_iommu_hd_support(iommu))
2481 return -EINVAL;
2482
2483 if (dev_data->domain)
2484 detach_device(dev);
2485
2486 ret = attach_device(dev, domain);
2487
2488#ifdef CONFIG_IRQ_REMAP
2489 if (AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
2490 if (dom->type == IOMMU_DOMAIN_UNMANAGED)
2491 dev_data->use_vapic = 1;
2492 else
2493 dev_data->use_vapic = 0;
2494 }
2495#endif
2496
2497 return ret;
2498}
2499
2500static int amd_iommu_iotlb_sync_map(struct iommu_domain *dom,
2501 unsigned long iova, size_t size)
2502{
2503 struct protection_domain *domain = to_pdomain(dom);
2504 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2505
2506 if (ops->map_pages)
2507 domain_flush_np_cache(domain, iova, size);
2508 return 0;
2509}
2510
2511static int amd_iommu_map_pages(struct iommu_domain *dom, unsigned long iova,
2512 phys_addr_t paddr, size_t pgsize, size_t pgcount,
2513 int iommu_prot, gfp_t gfp, size_t *mapped)
2514{
2515 struct protection_domain *domain = to_pdomain(dom);
2516 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2517 int prot = 0;
2518 int ret = -EINVAL;
2519
2520 if ((domain->pd_mode == PD_MODE_V1) &&
2521 (domain->iop.mode == PAGE_MODE_NONE))
2522 return -EINVAL;
2523
2524 if (iommu_prot & IOMMU_READ)
2525 prot |= IOMMU_PROT_IR;
2526 if (iommu_prot & IOMMU_WRITE)
2527 prot |= IOMMU_PROT_IW;
2528
2529 if (ops->map_pages) {
2530 ret = ops->map_pages(ops, iova, paddr, pgsize,
2531 pgcount, prot, gfp, mapped);
2532 }
2533
2534 return ret;
2535}
2536
2537static void amd_iommu_iotlb_gather_add_page(struct iommu_domain *domain,
2538 struct iommu_iotlb_gather *gather,
2539 unsigned long iova, size_t size)
2540{
2541 /*
2542 * AMD's IOMMU can flush as many pages as necessary in a single flush.
2543 * Unless we run in a virtual machine, which can be inferred according
2544 * to whether "non-present cache" is on, it is probably best to prefer
2545 * (potentially) too extensive TLB flushing (i.e., more misses) over
2546 * mutliple TLB flushes (i.e., more flushes). For virtual machines the
2547 * hypervisor needs to synchronize the host IOMMU PTEs with those of
2548 * the guest, and the trade-off is different: unnecessary TLB flushes
2549 * should be avoided.
2550 */
2551 if (amd_iommu_np_cache &&
2552 iommu_iotlb_gather_is_disjoint(gather, iova, size))
2553 iommu_iotlb_sync(domain, gather);
2554
2555 iommu_iotlb_gather_add_range(gather, iova, size);
2556}
2557
2558static size_t amd_iommu_unmap_pages(struct iommu_domain *dom, unsigned long iova,
2559 size_t pgsize, size_t pgcount,
2560 struct iommu_iotlb_gather *gather)
2561{
2562 struct protection_domain *domain = to_pdomain(dom);
2563 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2564 size_t r;
2565
2566 if ((domain->pd_mode == PD_MODE_V1) &&
2567 (domain->iop.mode == PAGE_MODE_NONE))
2568 return 0;
2569
2570 r = (ops->unmap_pages) ? ops->unmap_pages(ops, iova, pgsize, pgcount, NULL) : 0;
2571
2572 if (r)
2573 amd_iommu_iotlb_gather_add_page(dom, gather, iova, r);
2574
2575 return r;
2576}
2577
2578static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
2579 dma_addr_t iova)
2580{
2581 struct protection_domain *domain = to_pdomain(dom);
2582 struct io_pgtable_ops *ops = &domain->iop.pgtbl.ops;
2583
2584 return ops->iova_to_phys(ops, iova);
2585}
2586
2587static bool amd_iommu_capable(struct device *dev, enum iommu_cap cap)
2588{
2589 switch (cap) {
2590 case IOMMU_CAP_CACHE_COHERENCY:
2591 return true;
2592 case IOMMU_CAP_NOEXEC:
2593 return false;
2594 case IOMMU_CAP_PRE_BOOT_PROTECTION:
2595 return amdr_ivrs_remap_support;
2596 case IOMMU_CAP_ENFORCE_CACHE_COHERENCY:
2597 return true;
2598 case IOMMU_CAP_DEFERRED_FLUSH:
2599 return true;
2600 case IOMMU_CAP_DIRTY_TRACKING: {
2601 struct amd_iommu *iommu = get_amd_iommu_from_dev(dev);
2602
2603 return amd_iommu_hd_support(iommu);
2604 }
2605 default:
2606 break;
2607 }
2608
2609 return false;
2610}
2611
2612static int amd_iommu_set_dirty_tracking(struct iommu_domain *domain,
2613 bool enable)
2614{
2615 struct protection_domain *pdomain = to_pdomain(domain);
2616 struct dev_table_entry *dev_table;
2617 struct iommu_dev_data *dev_data;
2618 bool domain_flush = false;
2619 struct amd_iommu *iommu;
2620 unsigned long flags;
2621 u64 pte_root;
2622
2623 spin_lock_irqsave(&pdomain->lock, flags);
2624 if (!(pdomain->dirty_tracking ^ enable)) {
2625 spin_unlock_irqrestore(&pdomain->lock, flags);
2626 return 0;
2627 }
2628
2629 list_for_each_entry(dev_data, &pdomain->dev_list, list) {
2630 iommu = get_amd_iommu_from_dev_data(dev_data);
2631
2632 dev_table = get_dev_table(iommu);
2633 pte_root = dev_table[dev_data->devid].data[0];
2634
2635 pte_root = (enable ? pte_root | DTE_FLAG_HAD :
2636 pte_root & ~DTE_FLAG_HAD);
2637
2638 /* Flush device DTE */
2639 dev_table[dev_data->devid].data[0] = pte_root;
2640 device_flush_dte(dev_data);
2641 domain_flush = true;
2642 }
2643
2644 /* Flush IOTLB to mark IOPTE dirty on the next translation(s) */
2645 if (domain_flush)
2646 amd_iommu_domain_flush_all(pdomain);
2647
2648 pdomain->dirty_tracking = enable;
2649 spin_unlock_irqrestore(&pdomain->lock, flags);
2650
2651 return 0;
2652}
2653
2654static int amd_iommu_read_and_clear_dirty(struct iommu_domain *domain,
2655 unsigned long iova, size_t size,
2656 unsigned long flags,
2657 struct iommu_dirty_bitmap *dirty)
2658{
2659 struct protection_domain *pdomain = to_pdomain(domain);
2660 struct io_pgtable_ops *ops = &pdomain->iop.pgtbl.ops;
2661 unsigned long lflags;
2662
2663 if (!ops || !ops->read_and_clear_dirty)
2664 return -EOPNOTSUPP;
2665
2666 spin_lock_irqsave(&pdomain->lock, lflags);
2667 if (!pdomain->dirty_tracking && dirty->bitmap) {
2668 spin_unlock_irqrestore(&pdomain->lock, lflags);
2669 return -EINVAL;
2670 }
2671 spin_unlock_irqrestore(&pdomain->lock, lflags);
2672
2673 return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
2674}
2675
2676static void amd_iommu_get_resv_regions(struct device *dev,
2677 struct list_head *head)
2678{
2679 struct iommu_resv_region *region;
2680 struct unity_map_entry *entry;
2681 struct amd_iommu *iommu;
2682 struct amd_iommu_pci_seg *pci_seg;
2683 int devid, sbdf;
2684
2685 sbdf = get_device_sbdf_id(dev);
2686 if (sbdf < 0)
2687 return;
2688
2689 devid = PCI_SBDF_TO_DEVID(sbdf);
2690 iommu = get_amd_iommu_from_dev(dev);
2691 pci_seg = iommu->pci_seg;
2692
2693 list_for_each_entry(entry, &pci_seg->unity_map, list) {
2694 int type, prot = 0;
2695 size_t length;
2696
2697 if (devid < entry->devid_start || devid > entry->devid_end)
2698 continue;
2699
2700 type = IOMMU_RESV_DIRECT;
2701 length = entry->address_end - entry->address_start;
2702 if (entry->prot & IOMMU_PROT_IR)
2703 prot |= IOMMU_READ;
2704 if (entry->prot & IOMMU_PROT_IW)
2705 prot |= IOMMU_WRITE;
2706 if (entry->prot & IOMMU_UNITY_MAP_FLAG_EXCL_RANGE)
2707 /* Exclusion range */
2708 type = IOMMU_RESV_RESERVED;
2709
2710 region = iommu_alloc_resv_region(entry->address_start,
2711 length, prot, type,
2712 GFP_KERNEL);
2713 if (!region) {
2714 dev_err(dev, "Out of memory allocating dm-regions\n");
2715 return;
2716 }
2717 list_add_tail(®ion->list, head);
2718 }
2719
2720 region = iommu_alloc_resv_region(MSI_RANGE_START,
2721 MSI_RANGE_END - MSI_RANGE_START + 1,
2722 0, IOMMU_RESV_MSI, GFP_KERNEL);
2723 if (!region)
2724 return;
2725 list_add_tail(®ion->list, head);
2726
2727 region = iommu_alloc_resv_region(HT_RANGE_START,
2728 HT_RANGE_END - HT_RANGE_START + 1,
2729 0, IOMMU_RESV_RESERVED, GFP_KERNEL);
2730 if (!region)
2731 return;
2732 list_add_tail(®ion->list, head);
2733}
2734
2735static bool amd_iommu_is_attach_deferred(struct device *dev)
2736{
2737 struct iommu_dev_data *dev_data = dev_iommu_priv_get(dev);
2738
2739 return dev_data->defer_attach;
2740}
2741
2742static void amd_iommu_flush_iotlb_all(struct iommu_domain *domain)
2743{
2744 struct protection_domain *dom = to_pdomain(domain);
2745 unsigned long flags;
2746
2747 spin_lock_irqsave(&dom->lock, flags);
2748 amd_iommu_domain_flush_all(dom);
2749 spin_unlock_irqrestore(&dom->lock, flags);
2750}
2751
2752static void amd_iommu_iotlb_sync(struct iommu_domain *domain,
2753 struct iommu_iotlb_gather *gather)
2754{
2755 struct protection_domain *dom = to_pdomain(domain);
2756 unsigned long flags;
2757
2758 spin_lock_irqsave(&dom->lock, flags);
2759 amd_iommu_domain_flush_pages(dom, gather->start,
2760 gather->end - gather->start + 1);
2761 spin_unlock_irqrestore(&dom->lock, flags);
2762}
2763
2764static int amd_iommu_def_domain_type(struct device *dev)
2765{
2766 struct iommu_dev_data *dev_data;
2767
2768 dev_data = dev_iommu_priv_get(dev);
2769 if (!dev_data)
2770 return 0;
2771
2772 /* Always use DMA domain for untrusted device */
2773 if (dev_is_pci(dev) && to_pci_dev(dev)->untrusted)
2774 return IOMMU_DOMAIN_DMA;
2775
2776 /*
2777 * Do not identity map IOMMUv2 capable devices when:
2778 * - memory encryption is active, because some of those devices
2779 * (AMD GPUs) don't have the encryption bit in their DMA-mask
2780 * and require remapping.
2781 * - SNP is enabled, because it prohibits DTE[Mode]=0.
2782 */
2783 if (pdev_pasid_supported(dev_data) &&
2784 !cc_platform_has(CC_ATTR_MEM_ENCRYPT) &&
2785 !amd_iommu_snp_en) {
2786 return IOMMU_DOMAIN_IDENTITY;
2787 }
2788
2789 return 0;
2790}
2791
2792static bool amd_iommu_enforce_cache_coherency(struct iommu_domain *domain)
2793{
2794 /* IOMMU_PTE_FC is always set */
2795 return true;
2796}
2797
2798static const struct iommu_dirty_ops amd_dirty_ops = {
2799 .set_dirty_tracking = amd_iommu_set_dirty_tracking,
2800 .read_and_clear_dirty = amd_iommu_read_and_clear_dirty,
2801};
2802
2803static int amd_iommu_dev_enable_feature(struct device *dev,
2804 enum iommu_dev_features feat)
2805{
2806 int ret = 0;
2807
2808 switch (feat) {
2809 case IOMMU_DEV_FEAT_IOPF:
2810 case IOMMU_DEV_FEAT_SVA:
2811 break;
2812 default:
2813 ret = -EINVAL;
2814 break;
2815 }
2816 return ret;
2817}
2818
2819static int amd_iommu_dev_disable_feature(struct device *dev,
2820 enum iommu_dev_features feat)
2821{
2822 int ret = 0;
2823
2824 switch (feat) {
2825 case IOMMU_DEV_FEAT_IOPF:
2826 case IOMMU_DEV_FEAT_SVA:
2827 break;
2828 default:
2829 ret = -EINVAL;
2830 break;
2831 }
2832 return ret;
2833}
2834
2835const struct iommu_ops amd_iommu_ops = {
2836 .capable = amd_iommu_capable,
2837 .blocked_domain = &blocked_domain,
2838 .release_domain = &release_domain,
2839 .identity_domain = &identity_domain.domain,
2840 .domain_alloc_paging_flags = amd_iommu_domain_alloc_paging_flags,
2841 .domain_alloc_sva = amd_iommu_domain_alloc_sva,
2842 .probe_device = amd_iommu_probe_device,
2843 .release_device = amd_iommu_release_device,
2844 .device_group = amd_iommu_device_group,
2845 .get_resv_regions = amd_iommu_get_resv_regions,
2846 .is_attach_deferred = amd_iommu_is_attach_deferred,
2847 .def_domain_type = amd_iommu_def_domain_type,
2848 .dev_enable_feat = amd_iommu_dev_enable_feature,
2849 .dev_disable_feat = amd_iommu_dev_disable_feature,
2850 .remove_dev_pasid = amd_iommu_remove_dev_pasid,
2851 .page_response = amd_iommu_page_response,
2852 .default_domain_ops = &(const struct iommu_domain_ops) {
2853 .attach_dev = amd_iommu_attach_device,
2854 .map_pages = amd_iommu_map_pages,
2855 .unmap_pages = amd_iommu_unmap_pages,
2856 .iotlb_sync_map = amd_iommu_iotlb_sync_map,
2857 .iova_to_phys = amd_iommu_iova_to_phys,
2858 .flush_iotlb_all = amd_iommu_flush_iotlb_all,
2859 .iotlb_sync = amd_iommu_iotlb_sync,
2860 .free = amd_iommu_domain_free,
2861 .enforce_cache_coherency = amd_iommu_enforce_cache_coherency,
2862 }
2863};
2864
2865#ifdef CONFIG_IRQ_REMAP
2866
2867/*****************************************************************************
2868 *
2869 * Interrupt Remapping Implementation
2870 *
2871 *****************************************************************************/
2872
2873static struct irq_chip amd_ir_chip;
2874static DEFINE_SPINLOCK(iommu_table_lock);
2875
2876static void iommu_flush_irt_and_complete(struct amd_iommu *iommu, u16 devid)
2877{
2878 int ret;
2879 u64 data;
2880 unsigned long flags;
2881 struct iommu_cmd cmd, cmd2;
2882
2883 if (iommu->irtcachedis_enabled)
2884 return;
2885
2886 build_inv_irt(&cmd, devid);
2887 data = atomic64_inc_return(&iommu->cmd_sem_val);
2888 build_completion_wait(&cmd2, iommu, data);
2889
2890 raw_spin_lock_irqsave(&iommu->lock, flags);
2891 ret = __iommu_queue_command_sync(iommu, &cmd, true);
2892 if (ret)
2893 goto out;
2894 ret = __iommu_queue_command_sync(iommu, &cmd2, false);
2895 if (ret)
2896 goto out;
2897 wait_on_sem(iommu, data);
2898out:
2899 raw_spin_unlock_irqrestore(&iommu->lock, flags);
2900}
2901
2902static void set_dte_irq_entry(struct amd_iommu *iommu, u16 devid,
2903 struct irq_remap_table *table)
2904{
2905 u64 dte;
2906 struct dev_table_entry *dev_table = get_dev_table(iommu);
2907
2908 dte = dev_table[devid].data[2];
2909 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
2910 dte |= iommu_virt_to_phys(table->table);
2911 dte |= DTE_IRQ_REMAP_INTCTL;
2912 dte |= DTE_INTTABLEN;
2913 dte |= DTE_IRQ_REMAP_ENABLE;
2914
2915 dev_table[devid].data[2] = dte;
2916}
2917
2918static struct irq_remap_table *get_irq_table(struct amd_iommu *iommu, u16 devid)
2919{
2920 struct irq_remap_table *table;
2921 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2922
2923 if (WARN_ONCE(!pci_seg->rlookup_table[devid],
2924 "%s: no iommu for devid %x:%x\n",
2925 __func__, pci_seg->id, devid))
2926 return NULL;
2927
2928 table = pci_seg->irq_lookup_table[devid];
2929 if (WARN_ONCE(!table, "%s: no table for devid %x:%x\n",
2930 __func__, pci_seg->id, devid))
2931 return NULL;
2932
2933 return table;
2934}
2935
2936static struct irq_remap_table *__alloc_irq_table(void)
2937{
2938 struct irq_remap_table *table;
2939
2940 table = kzalloc(sizeof(*table), GFP_KERNEL);
2941 if (!table)
2942 return NULL;
2943
2944 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_KERNEL);
2945 if (!table->table) {
2946 kfree(table);
2947 return NULL;
2948 }
2949 raw_spin_lock_init(&table->lock);
2950
2951 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
2952 memset(table->table, 0,
2953 MAX_IRQS_PER_TABLE * sizeof(u32));
2954 else
2955 memset(table->table, 0,
2956 (MAX_IRQS_PER_TABLE * (sizeof(u64) * 2)));
2957 return table;
2958}
2959
2960static void set_remap_table_entry(struct amd_iommu *iommu, u16 devid,
2961 struct irq_remap_table *table)
2962{
2963 struct amd_iommu_pci_seg *pci_seg = iommu->pci_seg;
2964
2965 pci_seg->irq_lookup_table[devid] = table;
2966 set_dte_irq_entry(iommu, devid, table);
2967 iommu_flush_dte(iommu, devid);
2968}
2969
2970static int set_remap_table_entry_alias(struct pci_dev *pdev, u16 alias,
2971 void *data)
2972{
2973 struct irq_remap_table *table = data;
2974 struct amd_iommu_pci_seg *pci_seg;
2975 struct amd_iommu *iommu = rlookup_amd_iommu(&pdev->dev);
2976
2977 if (!iommu)
2978 return -EINVAL;
2979
2980 pci_seg = iommu->pci_seg;
2981 pci_seg->irq_lookup_table[alias] = table;
2982 set_dte_irq_entry(iommu, alias, table);
2983 iommu_flush_dte(pci_seg->rlookup_table[alias], alias);
2984
2985 return 0;
2986}
2987
2988static struct irq_remap_table *alloc_irq_table(struct amd_iommu *iommu,
2989 u16 devid, struct pci_dev *pdev)
2990{
2991 struct irq_remap_table *table = NULL;
2992 struct irq_remap_table *new_table = NULL;
2993 struct amd_iommu_pci_seg *pci_seg;
2994 unsigned long flags;
2995 u16 alias;
2996
2997 spin_lock_irqsave(&iommu_table_lock, flags);
2998
2999 pci_seg = iommu->pci_seg;
3000 table = pci_seg->irq_lookup_table[devid];
3001 if (table)
3002 goto out_unlock;
3003
3004 alias = pci_seg->alias_table[devid];
3005 table = pci_seg->irq_lookup_table[alias];
3006 if (table) {
3007 set_remap_table_entry(iommu, devid, table);
3008 goto out_wait;
3009 }
3010 spin_unlock_irqrestore(&iommu_table_lock, flags);
3011
3012 /* Nothing there yet, allocate new irq remapping table */
3013 new_table = __alloc_irq_table();
3014 if (!new_table)
3015 return NULL;
3016
3017 spin_lock_irqsave(&iommu_table_lock, flags);
3018
3019 table = pci_seg->irq_lookup_table[devid];
3020 if (table)
3021 goto out_unlock;
3022
3023 table = pci_seg->irq_lookup_table[alias];
3024 if (table) {
3025 set_remap_table_entry(iommu, devid, table);
3026 goto out_wait;
3027 }
3028
3029 table = new_table;
3030 new_table = NULL;
3031
3032 if (pdev)
3033 pci_for_each_dma_alias(pdev, set_remap_table_entry_alias,
3034 table);
3035 else
3036 set_remap_table_entry(iommu, devid, table);
3037
3038 if (devid != alias)
3039 set_remap_table_entry(iommu, alias, table);
3040
3041out_wait:
3042 iommu_completion_wait(iommu);
3043
3044out_unlock:
3045 spin_unlock_irqrestore(&iommu_table_lock, flags);
3046
3047 if (new_table) {
3048 kmem_cache_free(amd_iommu_irq_cache, new_table->table);
3049 kfree(new_table);
3050 }
3051 return table;
3052}
3053
3054static int alloc_irq_index(struct amd_iommu *iommu, u16 devid, int count,
3055 bool align, struct pci_dev *pdev)
3056{
3057 struct irq_remap_table *table;
3058 int index, c, alignment = 1;
3059 unsigned long flags;
3060
3061 table = alloc_irq_table(iommu, devid, pdev);
3062 if (!table)
3063 return -ENODEV;
3064
3065 if (align)
3066 alignment = roundup_pow_of_two(count);
3067
3068 raw_spin_lock_irqsave(&table->lock, flags);
3069
3070 /* Scan table for free entries */
3071 for (index = ALIGN(table->min_index, alignment), c = 0;
3072 index < MAX_IRQS_PER_TABLE;) {
3073 if (!iommu->irte_ops->is_allocated(table, index)) {
3074 c += 1;
3075 } else {
3076 c = 0;
3077 index = ALIGN(index + 1, alignment);
3078 continue;
3079 }
3080
3081 if (c == count) {
3082 for (; c != 0; --c)
3083 iommu->irte_ops->set_allocated(table, index - c + 1);
3084
3085 index -= count - 1;
3086 goto out;
3087 }
3088
3089 index++;
3090 }
3091
3092 index = -ENOSPC;
3093
3094out:
3095 raw_spin_unlock_irqrestore(&table->lock, flags);
3096
3097 return index;
3098}
3099
3100static int __modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3101 struct irte_ga *irte)
3102{
3103 struct irq_remap_table *table;
3104 struct irte_ga *entry;
3105 unsigned long flags;
3106 u128 old;
3107
3108 table = get_irq_table(iommu, devid);
3109 if (!table)
3110 return -ENOMEM;
3111
3112 raw_spin_lock_irqsave(&table->lock, flags);
3113
3114 entry = (struct irte_ga *)table->table;
3115 entry = &entry[index];
3116
3117 /*
3118 * We use cmpxchg16 to atomically update the 128-bit IRTE,
3119 * and it cannot be updated by the hardware or other processors
3120 * behind us, so the return value of cmpxchg16 should be the
3121 * same as the old value.
3122 */
3123 old = entry->irte;
3124 WARN_ON(!try_cmpxchg128(&entry->irte, &old, irte->irte));
3125
3126 raw_spin_unlock_irqrestore(&table->lock, flags);
3127
3128 return 0;
3129}
3130
3131static int modify_irte_ga(struct amd_iommu *iommu, u16 devid, int index,
3132 struct irte_ga *irte)
3133{
3134 bool ret;
3135
3136 ret = __modify_irte_ga(iommu, devid, index, irte);
3137 if (ret)
3138 return ret;
3139
3140 iommu_flush_irt_and_complete(iommu, devid);
3141
3142 return 0;
3143}
3144
3145static int modify_irte(struct amd_iommu *iommu,
3146 u16 devid, int index, union irte *irte)
3147{
3148 struct irq_remap_table *table;
3149 unsigned long flags;
3150
3151 table = get_irq_table(iommu, devid);
3152 if (!table)
3153 return -ENOMEM;
3154
3155 raw_spin_lock_irqsave(&table->lock, flags);
3156 table->table[index] = irte->val;
3157 raw_spin_unlock_irqrestore(&table->lock, flags);
3158
3159 iommu_flush_irt_and_complete(iommu, devid);
3160
3161 return 0;
3162}
3163
3164static void free_irte(struct amd_iommu *iommu, u16 devid, int index)
3165{
3166 struct irq_remap_table *table;
3167 unsigned long flags;
3168
3169 table = get_irq_table(iommu, devid);
3170 if (!table)
3171 return;
3172
3173 raw_spin_lock_irqsave(&table->lock, flags);
3174 iommu->irte_ops->clear_allocated(table, index);
3175 raw_spin_unlock_irqrestore(&table->lock, flags);
3176
3177 iommu_flush_irt_and_complete(iommu, devid);
3178}
3179
3180static void irte_prepare(void *entry,
3181 u32 delivery_mode, bool dest_mode,
3182 u8 vector, u32 dest_apicid, int devid)
3183{
3184 union irte *irte = (union irte *) entry;
3185
3186 irte->val = 0;
3187 irte->fields.vector = vector;
3188 irte->fields.int_type = delivery_mode;
3189 irte->fields.destination = dest_apicid;
3190 irte->fields.dm = dest_mode;
3191 irte->fields.valid = 1;
3192}
3193
3194static void irte_ga_prepare(void *entry,
3195 u32 delivery_mode, bool dest_mode,
3196 u8 vector, u32 dest_apicid, int devid)
3197{
3198 struct irte_ga *irte = (struct irte_ga *) entry;
3199
3200 irte->lo.val = 0;
3201 irte->hi.val = 0;
3202 irte->lo.fields_remap.int_type = delivery_mode;
3203 irte->lo.fields_remap.dm = dest_mode;
3204 irte->hi.fields.vector = vector;
3205 irte->lo.fields_remap.destination = APICID_TO_IRTE_DEST_LO(dest_apicid);
3206 irte->hi.fields.destination = APICID_TO_IRTE_DEST_HI(dest_apicid);
3207 irte->lo.fields_remap.valid = 1;
3208}
3209
3210static void irte_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3211{
3212 union irte *irte = (union irte *) entry;
3213
3214 irte->fields.valid = 1;
3215 modify_irte(iommu, devid, index, irte);
3216}
3217
3218static void irte_ga_activate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3219{
3220 struct irte_ga *irte = (struct irte_ga *) entry;
3221
3222 irte->lo.fields_remap.valid = 1;
3223 modify_irte_ga(iommu, devid, index, irte);
3224}
3225
3226static void irte_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3227{
3228 union irte *irte = (union irte *) entry;
3229
3230 irte->fields.valid = 0;
3231 modify_irte(iommu, devid, index, irte);
3232}
3233
3234static void irte_ga_deactivate(struct amd_iommu *iommu, void *entry, u16 devid, u16 index)
3235{
3236 struct irte_ga *irte = (struct irte_ga *) entry;
3237
3238 irte->lo.fields_remap.valid = 0;
3239 modify_irte_ga(iommu, devid, index, irte);
3240}
3241
3242static void irte_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3243 u8 vector, u32 dest_apicid)
3244{
3245 union irte *irte = (union irte *) entry;
3246
3247 irte->fields.vector = vector;
3248 irte->fields.destination = dest_apicid;
3249 modify_irte(iommu, devid, index, irte);
3250}
3251
3252static void irte_ga_set_affinity(struct amd_iommu *iommu, void *entry, u16 devid, u16 index,
3253 u8 vector, u32 dest_apicid)
3254{
3255 struct irte_ga *irte = (struct irte_ga *) entry;
3256
3257 if (!irte->lo.fields_remap.guest_mode) {
3258 irte->hi.fields.vector = vector;
3259 irte->lo.fields_remap.destination =
3260 APICID_TO_IRTE_DEST_LO(dest_apicid);
3261 irte->hi.fields.destination =
3262 APICID_TO_IRTE_DEST_HI(dest_apicid);
3263 modify_irte_ga(iommu, devid, index, irte);
3264 }
3265}
3266
3267#define IRTE_ALLOCATED (~1U)
3268static void irte_set_allocated(struct irq_remap_table *table, int index)
3269{
3270 table->table[index] = IRTE_ALLOCATED;
3271}
3272
3273static void irte_ga_set_allocated(struct irq_remap_table *table, int index)
3274{
3275 struct irte_ga *ptr = (struct irte_ga *)table->table;
3276 struct irte_ga *irte = &ptr[index];
3277
3278 memset(&irte->lo.val, 0, sizeof(u64));
3279 memset(&irte->hi.val, 0, sizeof(u64));
3280 irte->hi.fields.vector = 0xff;
3281}
3282
3283static bool irte_is_allocated(struct irq_remap_table *table, int index)
3284{
3285 union irte *ptr = (union irte *)table->table;
3286 union irte *irte = &ptr[index];
3287
3288 return irte->val != 0;
3289}
3290
3291static bool irte_ga_is_allocated(struct irq_remap_table *table, int index)
3292{
3293 struct irte_ga *ptr = (struct irte_ga *)table->table;
3294 struct irte_ga *irte = &ptr[index];
3295
3296 return irte->hi.fields.vector != 0;
3297}
3298
3299static void irte_clear_allocated(struct irq_remap_table *table, int index)
3300{
3301 table->table[index] = 0;
3302}
3303
3304static void irte_ga_clear_allocated(struct irq_remap_table *table, int index)
3305{
3306 struct irte_ga *ptr = (struct irte_ga *)table->table;
3307 struct irte_ga *irte = &ptr[index];
3308
3309 memset(&irte->lo.val, 0, sizeof(u64));
3310 memset(&irte->hi.val, 0, sizeof(u64));
3311}
3312
3313static int get_devid(struct irq_alloc_info *info)
3314{
3315 switch (info->type) {
3316 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3317 return get_ioapic_devid(info->devid);
3318 case X86_IRQ_ALLOC_TYPE_HPET:
3319 return get_hpet_devid(info->devid);
3320 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3321 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3322 return get_device_sbdf_id(msi_desc_to_dev(info->desc));
3323 default:
3324 WARN_ON_ONCE(1);
3325 return -1;
3326 }
3327}
3328
3329struct irq_remap_ops amd_iommu_irq_ops = {
3330 .prepare = amd_iommu_prepare,
3331 .enable = amd_iommu_enable,
3332 .disable = amd_iommu_disable,
3333 .reenable = amd_iommu_reenable,
3334 .enable_faulting = amd_iommu_enable_faulting,
3335};
3336
3337static void fill_msi_msg(struct msi_msg *msg, u32 index)
3338{
3339 msg->data = index;
3340 msg->address_lo = 0;
3341 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
3342 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
3343}
3344
3345static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3346 struct irq_cfg *irq_cfg,
3347 struct irq_alloc_info *info,
3348 int devid, int index, int sub_handle)
3349{
3350 struct irq_2_irte *irte_info = &data->irq_2_irte;
3351 struct amd_iommu *iommu = data->iommu;
3352
3353 if (!iommu)
3354 return;
3355
3356 data->irq_2_irte.devid = devid;
3357 data->irq_2_irte.index = index + sub_handle;
3358 iommu->irte_ops->prepare(data->entry, APIC_DELIVERY_MODE_FIXED,
3359 apic->dest_mode_logical, irq_cfg->vector,
3360 irq_cfg->dest_apicid, devid);
3361
3362 switch (info->type) {
3363 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3364 case X86_IRQ_ALLOC_TYPE_HPET:
3365 case X86_IRQ_ALLOC_TYPE_PCI_MSI:
3366 case X86_IRQ_ALLOC_TYPE_PCI_MSIX:
3367 fill_msi_msg(&data->msi_entry, irte_info->index);
3368 break;
3369
3370 default:
3371 BUG_ON(1);
3372 break;
3373 }
3374}
3375
3376struct amd_irte_ops irte_32_ops = {
3377 .prepare = irte_prepare,
3378 .activate = irte_activate,
3379 .deactivate = irte_deactivate,
3380 .set_affinity = irte_set_affinity,
3381 .set_allocated = irte_set_allocated,
3382 .is_allocated = irte_is_allocated,
3383 .clear_allocated = irte_clear_allocated,
3384};
3385
3386struct amd_irte_ops irte_128_ops = {
3387 .prepare = irte_ga_prepare,
3388 .activate = irte_ga_activate,
3389 .deactivate = irte_ga_deactivate,
3390 .set_affinity = irte_ga_set_affinity,
3391 .set_allocated = irte_ga_set_allocated,
3392 .is_allocated = irte_ga_is_allocated,
3393 .clear_allocated = irte_ga_clear_allocated,
3394};
3395
3396static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3397 unsigned int nr_irqs, void *arg)
3398{
3399 struct irq_alloc_info *info = arg;
3400 struct irq_data *irq_data;
3401 struct amd_ir_data *data = NULL;
3402 struct amd_iommu *iommu;
3403 struct irq_cfg *cfg;
3404 int i, ret, devid, seg, sbdf;
3405 int index;
3406
3407 if (!info)
3408 return -EINVAL;
3409 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_PCI_MSI)
3410 return -EINVAL;
3411
3412 sbdf = get_devid(info);
3413 if (sbdf < 0)
3414 return -EINVAL;
3415
3416 seg = PCI_SBDF_TO_SEGID(sbdf);
3417 devid = PCI_SBDF_TO_DEVID(sbdf);
3418 iommu = __rlookup_amd_iommu(seg, devid);
3419 if (!iommu)
3420 return -EINVAL;
3421
3422 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3423 if (ret < 0)
3424 return ret;
3425
3426 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3427 struct irq_remap_table *table;
3428
3429 table = alloc_irq_table(iommu, devid, NULL);
3430 if (table) {
3431 if (!table->min_index) {
3432 /*
3433 * Keep the first 32 indexes free for IOAPIC
3434 * interrupts.
3435 */
3436 table->min_index = 32;
3437 for (i = 0; i < 32; ++i)
3438 iommu->irte_ops->set_allocated(table, i);
3439 }
3440 WARN_ON(table->min_index != 32);
3441 index = info->ioapic.pin;
3442 } else {
3443 index = -ENOMEM;
3444 }
3445 } else if (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI ||
3446 info->type == X86_IRQ_ALLOC_TYPE_PCI_MSIX) {
3447 bool align = (info->type == X86_IRQ_ALLOC_TYPE_PCI_MSI);
3448
3449 index = alloc_irq_index(iommu, devid, nr_irqs, align,
3450 msi_desc_to_pci_dev(info->desc));
3451 } else {
3452 index = alloc_irq_index(iommu, devid, nr_irqs, false, NULL);
3453 }
3454
3455 if (index < 0) {
3456 pr_warn("Failed to allocate IRTE\n");
3457 ret = index;
3458 goto out_free_parent;
3459 }
3460
3461 for (i = 0; i < nr_irqs; i++) {
3462 irq_data = irq_domain_get_irq_data(domain, virq + i);
3463 cfg = irq_data ? irqd_cfg(irq_data) : NULL;
3464 if (!cfg) {
3465 ret = -EINVAL;
3466 goto out_free_data;
3467 }
3468
3469 ret = -ENOMEM;
3470 data = kzalloc(sizeof(*data), GFP_KERNEL);
3471 if (!data)
3472 goto out_free_data;
3473
3474 if (!AMD_IOMMU_GUEST_IR_GA(amd_iommu_guest_ir))
3475 data->entry = kzalloc(sizeof(union irte), GFP_KERNEL);
3476 else
3477 data->entry = kzalloc(sizeof(struct irte_ga),
3478 GFP_KERNEL);
3479 if (!data->entry) {
3480 kfree(data);
3481 goto out_free_data;
3482 }
3483
3484 data->iommu = iommu;
3485 irq_data->hwirq = (devid << 16) + i;
3486 irq_data->chip_data = data;
3487 irq_data->chip = &amd_ir_chip;
3488 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3489 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3490 }
3491
3492 return 0;
3493
3494out_free_data:
3495 for (i--; i >= 0; i--) {
3496 irq_data = irq_domain_get_irq_data(domain, virq + i);
3497 if (irq_data)
3498 kfree(irq_data->chip_data);
3499 }
3500 for (i = 0; i < nr_irqs; i++)
3501 free_irte(iommu, devid, index + i);
3502out_free_parent:
3503 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3504 return ret;
3505}
3506
3507static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3508 unsigned int nr_irqs)
3509{
3510 struct irq_2_irte *irte_info;
3511 struct irq_data *irq_data;
3512 struct amd_ir_data *data;
3513 int i;
3514
3515 for (i = 0; i < nr_irqs; i++) {
3516 irq_data = irq_domain_get_irq_data(domain, virq + i);
3517 if (irq_data && irq_data->chip_data) {
3518 data = irq_data->chip_data;
3519 irte_info = &data->irq_2_irte;
3520 free_irte(data->iommu, irte_info->devid, irte_info->index);
3521 kfree(data->entry);
3522 kfree(data);
3523 }
3524 }
3525 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3526}
3527
3528static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3529 struct amd_ir_data *ir_data,
3530 struct irq_2_irte *irte_info,
3531 struct irq_cfg *cfg);
3532
3533static int irq_remapping_activate(struct irq_domain *domain,
3534 struct irq_data *irq_data, bool reserve)
3535{
3536 struct amd_ir_data *data = irq_data->chip_data;
3537 struct irq_2_irte *irte_info = &data->irq_2_irte;
3538 struct amd_iommu *iommu = data->iommu;
3539 struct irq_cfg *cfg = irqd_cfg(irq_data);
3540
3541 if (!iommu)
3542 return 0;
3543
3544 iommu->irte_ops->activate(iommu, data->entry, irte_info->devid,
3545 irte_info->index);
3546 amd_ir_update_irte(irq_data, iommu, data, irte_info, cfg);
3547 return 0;
3548}
3549
3550static void irq_remapping_deactivate(struct irq_domain *domain,
3551 struct irq_data *irq_data)
3552{
3553 struct amd_ir_data *data = irq_data->chip_data;
3554 struct irq_2_irte *irte_info = &data->irq_2_irte;
3555 struct amd_iommu *iommu = data->iommu;
3556
3557 if (iommu)
3558 iommu->irte_ops->deactivate(iommu, data->entry, irte_info->devid,
3559 irte_info->index);
3560}
3561
3562static int irq_remapping_select(struct irq_domain *d, struct irq_fwspec *fwspec,
3563 enum irq_domain_bus_token bus_token)
3564{
3565 struct amd_iommu *iommu;
3566 int devid = -1;
3567
3568 if (!amd_iommu_irq_remap)
3569 return 0;
3570
3571 if (x86_fwspec_is_ioapic(fwspec))
3572 devid = get_ioapic_devid(fwspec->param[0]);
3573 else if (x86_fwspec_is_hpet(fwspec))
3574 devid = get_hpet_devid(fwspec->param[0]);
3575
3576 if (devid < 0)
3577 return 0;
3578 iommu = __rlookup_amd_iommu((devid >> 16), (devid & 0xffff));
3579
3580 return iommu && iommu->ir_domain == d;
3581}
3582
3583static const struct irq_domain_ops amd_ir_domain_ops = {
3584 .select = irq_remapping_select,
3585 .alloc = irq_remapping_alloc,
3586 .free = irq_remapping_free,
3587 .activate = irq_remapping_activate,
3588 .deactivate = irq_remapping_deactivate,
3589};
3590
3591int amd_iommu_activate_guest_mode(void *data)
3592{
3593 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3594 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3595 u64 valid;
3596
3597 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) || !entry)
3598 return 0;
3599
3600 valid = entry->lo.fields_vapic.valid;
3601
3602 entry->lo.val = 0;
3603 entry->hi.val = 0;
3604
3605 entry->lo.fields_vapic.valid = valid;
3606 entry->lo.fields_vapic.guest_mode = 1;
3607 entry->lo.fields_vapic.ga_log_intr = 1;
3608 entry->hi.fields.ga_root_ptr = ir_data->ga_root_ptr;
3609 entry->hi.fields.vector = ir_data->ga_vector;
3610 entry->lo.fields_vapic.ga_tag = ir_data->ga_tag;
3611
3612 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3613 ir_data->irq_2_irte.index, entry);
3614}
3615EXPORT_SYMBOL(amd_iommu_activate_guest_mode);
3616
3617int amd_iommu_deactivate_guest_mode(void *data)
3618{
3619 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3620 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3621 struct irq_cfg *cfg = ir_data->cfg;
3622 u64 valid;
3623
3624 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3625 !entry || !entry->lo.fields_vapic.guest_mode)
3626 return 0;
3627
3628 valid = entry->lo.fields_remap.valid;
3629
3630 entry->lo.val = 0;
3631 entry->hi.val = 0;
3632
3633 entry->lo.fields_remap.valid = valid;
3634 entry->lo.fields_remap.dm = apic->dest_mode_logical;
3635 entry->lo.fields_remap.int_type = APIC_DELIVERY_MODE_FIXED;
3636 entry->hi.fields.vector = cfg->vector;
3637 entry->lo.fields_remap.destination =
3638 APICID_TO_IRTE_DEST_LO(cfg->dest_apicid);
3639 entry->hi.fields.destination =
3640 APICID_TO_IRTE_DEST_HI(cfg->dest_apicid);
3641
3642 return modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3643 ir_data->irq_2_irte.index, entry);
3644}
3645EXPORT_SYMBOL(amd_iommu_deactivate_guest_mode);
3646
3647static int amd_ir_set_vcpu_affinity(struct irq_data *data, void *vcpu_info)
3648{
3649 int ret;
3650 struct amd_iommu_pi_data *pi_data = vcpu_info;
3651 struct vcpu_data *vcpu_pi_info = pi_data->vcpu_data;
3652 struct amd_ir_data *ir_data = data->chip_data;
3653 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3654 struct iommu_dev_data *dev_data;
3655
3656 if (ir_data->iommu == NULL)
3657 return -EINVAL;
3658
3659 dev_data = search_dev_data(ir_data->iommu, irte_info->devid);
3660
3661 /* Note:
3662 * This device has never been set up for guest mode.
3663 * we should not modify the IRTE
3664 */
3665 if (!dev_data || !dev_data->use_vapic)
3666 return 0;
3667
3668 ir_data->cfg = irqd_cfg(data);
3669 pi_data->ir_data = ir_data;
3670
3671 /* Note:
3672 * SVM tries to set up for VAPIC mode, but we are in
3673 * legacy mode. So, we force legacy mode instead.
3674 */
3675 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir)) {
3676 pr_debug("%s: Fall back to using intr legacy remap\n",
3677 __func__);
3678 pi_data->is_guest_mode = false;
3679 }
3680
3681 pi_data->prev_ga_tag = ir_data->cached_ga_tag;
3682 if (pi_data->is_guest_mode) {
3683 ir_data->ga_root_ptr = (pi_data->base >> 12);
3684 ir_data->ga_vector = vcpu_pi_info->vector;
3685 ir_data->ga_tag = pi_data->ga_tag;
3686 ret = amd_iommu_activate_guest_mode(ir_data);
3687 if (!ret)
3688 ir_data->cached_ga_tag = pi_data->ga_tag;
3689 } else {
3690 ret = amd_iommu_deactivate_guest_mode(ir_data);
3691
3692 /*
3693 * This communicates the ga_tag back to the caller
3694 * so that it can do all the necessary clean up.
3695 */
3696 if (!ret)
3697 ir_data->cached_ga_tag = 0;
3698 }
3699
3700 return ret;
3701}
3702
3703
3704static void amd_ir_update_irte(struct irq_data *irqd, struct amd_iommu *iommu,
3705 struct amd_ir_data *ir_data,
3706 struct irq_2_irte *irte_info,
3707 struct irq_cfg *cfg)
3708{
3709
3710 /*
3711 * Atomically updates the IRTE with the new destination, vector
3712 * and flushes the interrupt entry cache.
3713 */
3714 iommu->irte_ops->set_affinity(iommu, ir_data->entry, irte_info->devid,
3715 irte_info->index, cfg->vector,
3716 cfg->dest_apicid);
3717}
3718
3719static int amd_ir_set_affinity(struct irq_data *data,
3720 const struct cpumask *mask, bool force)
3721{
3722 struct amd_ir_data *ir_data = data->chip_data;
3723 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3724 struct irq_cfg *cfg = irqd_cfg(data);
3725 struct irq_data *parent = data->parent_data;
3726 struct amd_iommu *iommu = ir_data->iommu;
3727 int ret;
3728
3729 if (!iommu)
3730 return -ENODEV;
3731
3732 ret = parent->chip->irq_set_affinity(parent, mask, force);
3733 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3734 return ret;
3735
3736 amd_ir_update_irte(data, iommu, ir_data, irte_info, cfg);
3737 /*
3738 * After this point, all the interrupts will start arriving
3739 * at the new destination. So, time to cleanup the previous
3740 * vector allocation.
3741 */
3742 vector_schedule_cleanup(cfg);
3743
3744 return IRQ_SET_MASK_OK_DONE;
3745}
3746
3747static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
3748{
3749 struct amd_ir_data *ir_data = irq_data->chip_data;
3750
3751 *msg = ir_data->msi_entry;
3752}
3753
3754static struct irq_chip amd_ir_chip = {
3755 .name = "AMD-IR",
3756 .irq_ack = apic_ack_irq,
3757 .irq_set_affinity = amd_ir_set_affinity,
3758 .irq_set_vcpu_affinity = amd_ir_set_vcpu_affinity,
3759 .irq_compose_msi_msg = ir_compose_msi_msg,
3760};
3761
3762static const struct msi_parent_ops amdvi_msi_parent_ops = {
3763 .supported_flags = X86_VECTOR_MSI_FLAGS_SUPPORTED | MSI_FLAG_MULTI_PCI_MSI,
3764 .prefix = "IR-",
3765 .init_dev_msi_info = msi_parent_init_dev_msi_info,
3766};
3767
3768int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
3769{
3770 struct fwnode_handle *fn;
3771
3772 fn = irq_domain_alloc_named_id_fwnode("AMD-IR", iommu->index);
3773 if (!fn)
3774 return -ENOMEM;
3775 iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, 0,
3776 fn, &amd_ir_domain_ops, iommu);
3777 if (!iommu->ir_domain) {
3778 irq_domain_free_fwnode(fn);
3779 return -ENOMEM;
3780 }
3781
3782 irq_domain_update_bus_token(iommu->ir_domain, DOMAIN_BUS_AMDVI);
3783 iommu->ir_domain->flags |= IRQ_DOMAIN_FLAG_MSI_PARENT |
3784 IRQ_DOMAIN_FLAG_ISOLATED_MSI;
3785 iommu->ir_domain->msi_parent_ops = &amdvi_msi_parent_ops;
3786
3787 return 0;
3788}
3789
3790int amd_iommu_update_ga(int cpu, bool is_run, void *data)
3791{
3792 struct amd_ir_data *ir_data = (struct amd_ir_data *)data;
3793 struct irte_ga *entry = (struct irte_ga *) ir_data->entry;
3794
3795 if (!AMD_IOMMU_GUEST_IR_VAPIC(amd_iommu_guest_ir) ||
3796 !entry || !entry->lo.fields_vapic.guest_mode)
3797 return 0;
3798
3799 if (!ir_data->iommu)
3800 return -ENODEV;
3801
3802 if (cpu >= 0) {
3803 entry->lo.fields_vapic.destination =
3804 APICID_TO_IRTE_DEST_LO(cpu);
3805 entry->hi.fields.destination =
3806 APICID_TO_IRTE_DEST_HI(cpu);
3807 }
3808 entry->lo.fields_vapic.is_run = is_run;
3809
3810 return __modify_irte_ga(ir_data->iommu, ir_data->irq_2_irte.devid,
3811 ir_data->irq_2_irte.index, entry);
3812}
3813EXPORT_SYMBOL(amd_iommu_update_ga);
3814#endif