Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 * Driver for TI ADC128D818 System Monitor with Temperature Sensor
  4 *
  5 * Copyright (c) 2014 Guenter Roeck
  6 *
  7 * Derived from lm80.c
  8 * Copyright (C) 1998, 1999  Frodo Looijaard <frodol@dds.nl>
  9 *			     and Philip Edelbrock <phil@netroedge.com>
 10 */
 11
 12#include <linux/module.h>
 13#include <linux/slab.h>
 14#include <linux/jiffies.h>
 15#include <linux/i2c.h>
 16#include <linux/hwmon.h>
 17#include <linux/hwmon-sysfs.h>
 18#include <linux/err.h>
 19#include <linux/regulator/consumer.h>
 20#include <linux/mutex.h>
 21#include <linux/bitops.h>
 22#include <linux/of.h>
 23
 24/* Addresses to scan
 25 * The chip also supports addresses 0x35..0x37. Don't scan those addresses
 26 * since they are also used by some EEPROMs, which may result in false
 27 * positives.
 28 */
 29static const unsigned short normal_i2c[] = {
 30	0x1d, 0x1e, 0x1f, 0x2d, 0x2e, 0x2f, I2C_CLIENT_END };
 31
 32/* registers */
 33#define ADC128_REG_IN_MAX(nr)		(0x2a + (nr) * 2)
 34#define ADC128_REG_IN_MIN(nr)		(0x2b + (nr) * 2)
 35#define ADC128_REG_IN(nr)		(0x20 + (nr))
 36
 37#define ADC128_REG_TEMP			0x27
 38#define ADC128_REG_TEMP_MAX		0x38
 39#define ADC128_REG_TEMP_HYST		0x39
 40
 41#define ADC128_REG_CONFIG		0x00
 42#define ADC128_REG_ALARM		0x01
 43#define ADC128_REG_MASK			0x03
 44#define ADC128_REG_CONV_RATE		0x07
 45#define ADC128_REG_ONESHOT		0x09
 46#define ADC128_REG_SHUTDOWN		0x0a
 47#define ADC128_REG_CONFIG_ADV		0x0b
 48#define ADC128_REG_BUSY_STATUS		0x0c
 49
 50#define ADC128_REG_MAN_ID		0x3e
 51#define ADC128_REG_DEV_ID		0x3f
 52
 53/* No. of voltage entries in adc128_attrs */
 54#define ADC128_ATTR_NUM_VOLT		(8 * 4)
 55
 56/* Voltage inputs visible per operation mode */
 57static const u8 num_inputs[] = { 7, 8, 4, 6 };
 58
 59struct adc128_data {
 60	struct i2c_client *client;
 61	int vref;		/* Reference voltage in mV */
 62	struct mutex update_lock;
 63	u8 mode;		/* Operation mode */
 64	bool valid;		/* true if following fields are valid */
 65	unsigned long last_updated;	/* In jiffies */
 66
 67	u16 in[3][8];		/* Register value, normalized to 12 bit
 68				 * 0: input voltage
 69				 * 1: min limit
 70				 * 2: max limit
 71				 */
 72	s16 temp[3];		/* Register value, normalized to 9 bit
 73				 * 0: sensor 1: limit 2: hyst
 74				 */
 75	u8 alarms;		/* alarm register value */
 76};
 77
 78static struct adc128_data *adc128_update_device(struct device *dev)
 79{
 80	struct adc128_data *data = dev_get_drvdata(dev);
 81	struct i2c_client *client = data->client;
 82	struct adc128_data *ret = data;
 83	int i, rv;
 84
 85	mutex_lock(&data->update_lock);
 86
 87	if (time_after(jiffies, data->last_updated + HZ) || !data->valid) {
 88		for (i = 0; i < num_inputs[data->mode]; i++) {
 89			rv = i2c_smbus_read_word_swapped(client,
 90							 ADC128_REG_IN(i));
 91			if (rv < 0)
 92				goto abort;
 93			data->in[0][i] = rv >> 4;
 94
 95			rv = i2c_smbus_read_byte_data(client,
 96						      ADC128_REG_IN_MIN(i));
 97			if (rv < 0)
 98				goto abort;
 99			data->in[1][i] = rv << 4;
100
101			rv = i2c_smbus_read_byte_data(client,
102						      ADC128_REG_IN_MAX(i));
103			if (rv < 0)
104				goto abort;
105			data->in[2][i] = rv << 4;
106		}
107
108		if (data->mode != 1) {
109			rv = i2c_smbus_read_word_swapped(client,
110							 ADC128_REG_TEMP);
111			if (rv < 0)
112				goto abort;
113			data->temp[0] = rv >> 7;
114
115			rv = i2c_smbus_read_byte_data(client,
116						      ADC128_REG_TEMP_MAX);
117			if (rv < 0)
118				goto abort;
119			data->temp[1] = rv << 1;
120
121			rv = i2c_smbus_read_byte_data(client,
122						      ADC128_REG_TEMP_HYST);
123			if (rv < 0)
124				goto abort;
125			data->temp[2] = rv << 1;
126		}
127
128		rv = i2c_smbus_read_byte_data(client, ADC128_REG_ALARM);
129		if (rv < 0)
130			goto abort;
131		data->alarms |= rv;
132
133		data->last_updated = jiffies;
134		data->valid = true;
135	}
136	goto done;
137
138abort:
139	ret = ERR_PTR(rv);
140	data->valid = false;
141done:
142	mutex_unlock(&data->update_lock);
143	return ret;
144}
145
146static ssize_t adc128_in_show(struct device *dev,
147			      struct device_attribute *attr, char *buf)
148{
149	struct adc128_data *data = adc128_update_device(dev);
150	int index = to_sensor_dev_attr_2(attr)->index;
151	int nr = to_sensor_dev_attr_2(attr)->nr;
152	int val;
153
154	if (IS_ERR(data))
155		return PTR_ERR(data);
156
157	val = DIV_ROUND_CLOSEST(data->in[index][nr] * data->vref, 4095);
158	return sprintf(buf, "%d\n", val);
159}
160
161static ssize_t adc128_in_store(struct device *dev,
162			       struct device_attribute *attr, const char *buf,
163			       size_t count)
164{
165	struct adc128_data *data = dev_get_drvdata(dev);
166	int index = to_sensor_dev_attr_2(attr)->index;
167	int nr = to_sensor_dev_attr_2(attr)->nr;
168	u8 reg, regval;
169	long val;
170	int err;
171
172	err = kstrtol(buf, 10, &val);
173	if (err < 0)
174		return err;
175
176	mutex_lock(&data->update_lock);
177	/* 10 mV LSB on limit registers */
178	regval = DIV_ROUND_CLOSEST(clamp_val(val, 0, 2550), 10);
179	data->in[index][nr] = regval << 4;
180	reg = index == 1 ? ADC128_REG_IN_MIN(nr) : ADC128_REG_IN_MAX(nr);
181	i2c_smbus_write_byte_data(data->client, reg, regval);
182	mutex_unlock(&data->update_lock);
183
184	return count;
185}
186
187static ssize_t adc128_temp_show(struct device *dev,
188				struct device_attribute *attr, char *buf)
189{
190	struct adc128_data *data = adc128_update_device(dev);
191	int index = to_sensor_dev_attr(attr)->index;
192	int temp;
193
194	if (IS_ERR(data))
195		return PTR_ERR(data);
196
197	temp = sign_extend32(data->temp[index], 8);
198	return sprintf(buf, "%d\n", temp * 500);/* 0.5 degrees C resolution */
199}
200
201static ssize_t adc128_temp_store(struct device *dev,
202				 struct device_attribute *attr,
203				 const char *buf, size_t count)
204{
205	struct adc128_data *data = dev_get_drvdata(dev);
206	int index = to_sensor_dev_attr(attr)->index;
207	long val;
208	int err;
209	s8 regval;
210
211	err = kstrtol(buf, 10, &val);
212	if (err < 0)
213		return err;
214
215	mutex_lock(&data->update_lock);
216	regval = DIV_ROUND_CLOSEST(clamp_val(val, -128000, 127000), 1000);
217	data->temp[index] = regval << 1;
218	i2c_smbus_write_byte_data(data->client,
219				  index == 1 ? ADC128_REG_TEMP_MAX
220					     : ADC128_REG_TEMP_HYST,
221				  regval);
222	mutex_unlock(&data->update_lock);
223
224	return count;
225}
226
227static ssize_t adc128_alarm_show(struct device *dev,
228				 struct device_attribute *attr, char *buf)
229{
230	struct adc128_data *data = adc128_update_device(dev);
231	int mask = 1 << to_sensor_dev_attr(attr)->index;
232	u8 alarms;
233
234	if (IS_ERR(data))
235		return PTR_ERR(data);
236
237	/*
238	 * Clear an alarm after reporting it to user space. If it is still
239	 * active, the next update sequence will set the alarm bit again.
240	 */
241	alarms = data->alarms;
242	data->alarms &= ~mask;
243
244	return sprintf(buf, "%u\n", !!(alarms & mask));
245}
246
247static umode_t adc128_is_visible(struct kobject *kobj,
248				 struct attribute *attr, int index)
249{
250	struct device *dev = kobj_to_dev(kobj);
251	struct adc128_data *data = dev_get_drvdata(dev);
252
253	if (index < ADC128_ATTR_NUM_VOLT) {
254		/* Voltage, visible according to num_inputs[] */
255		if (index >= num_inputs[data->mode] * 4)
256			return 0;
257	} else {
258		/* Temperature, visible if not in mode 1 */
259		if (data->mode == 1)
260			return 0;
261	}
262
263	return attr->mode;
264}
265
266static SENSOR_DEVICE_ATTR_2_RO(in0_input, adc128_in, 0, 0);
267static SENSOR_DEVICE_ATTR_2_RW(in0_min, adc128_in, 0, 1);
268static SENSOR_DEVICE_ATTR_2_RW(in0_max, adc128_in, 0, 2);
269
270static SENSOR_DEVICE_ATTR_2_RO(in1_input, adc128_in, 1, 0);
271static SENSOR_DEVICE_ATTR_2_RW(in1_min, adc128_in, 1, 1);
272static SENSOR_DEVICE_ATTR_2_RW(in1_max, adc128_in, 1, 2);
273
274static SENSOR_DEVICE_ATTR_2_RO(in2_input, adc128_in, 2, 0);
275static SENSOR_DEVICE_ATTR_2_RW(in2_min, adc128_in, 2, 1);
276static SENSOR_DEVICE_ATTR_2_RW(in2_max, adc128_in, 2, 2);
277
278static SENSOR_DEVICE_ATTR_2_RO(in3_input, adc128_in, 3, 0);
279static SENSOR_DEVICE_ATTR_2_RW(in3_min, adc128_in, 3, 1);
280static SENSOR_DEVICE_ATTR_2_RW(in3_max, adc128_in, 3, 2);
281
282static SENSOR_DEVICE_ATTR_2_RO(in4_input, adc128_in, 4, 0);
283static SENSOR_DEVICE_ATTR_2_RW(in4_min, adc128_in, 4, 1);
284static SENSOR_DEVICE_ATTR_2_RW(in4_max, adc128_in, 4, 2);
285
286static SENSOR_DEVICE_ATTR_2_RO(in5_input, adc128_in, 5, 0);
287static SENSOR_DEVICE_ATTR_2_RW(in5_min, adc128_in, 5, 1);
288static SENSOR_DEVICE_ATTR_2_RW(in5_max, adc128_in, 5, 2);
289
290static SENSOR_DEVICE_ATTR_2_RO(in6_input, adc128_in, 6, 0);
291static SENSOR_DEVICE_ATTR_2_RW(in6_min, adc128_in, 6, 1);
292static SENSOR_DEVICE_ATTR_2_RW(in6_max, adc128_in, 6, 2);
293
294static SENSOR_DEVICE_ATTR_2_RO(in7_input, adc128_in, 7, 0);
295static SENSOR_DEVICE_ATTR_2_RW(in7_min, adc128_in, 7, 1);
296static SENSOR_DEVICE_ATTR_2_RW(in7_max, adc128_in, 7, 2);
297
298static SENSOR_DEVICE_ATTR_RO(temp1_input, adc128_temp, 0);
299static SENSOR_DEVICE_ATTR_RW(temp1_max, adc128_temp, 1);
300static SENSOR_DEVICE_ATTR_RW(temp1_max_hyst, adc128_temp, 2);
301
302static SENSOR_DEVICE_ATTR_RO(in0_alarm, adc128_alarm, 0);
303static SENSOR_DEVICE_ATTR_RO(in1_alarm, adc128_alarm, 1);
304static SENSOR_DEVICE_ATTR_RO(in2_alarm, adc128_alarm, 2);
305static SENSOR_DEVICE_ATTR_RO(in3_alarm, adc128_alarm, 3);
306static SENSOR_DEVICE_ATTR_RO(in4_alarm, adc128_alarm, 4);
307static SENSOR_DEVICE_ATTR_RO(in5_alarm, adc128_alarm, 5);
308static SENSOR_DEVICE_ATTR_RO(in6_alarm, adc128_alarm, 6);
309static SENSOR_DEVICE_ATTR_RO(in7_alarm, adc128_alarm, 7);
310static SENSOR_DEVICE_ATTR_RO(temp1_max_alarm, adc128_alarm, 7);
311
312static struct attribute *adc128_attrs[] = {
313	&sensor_dev_attr_in0_alarm.dev_attr.attr,
314	&sensor_dev_attr_in0_input.dev_attr.attr,
315	&sensor_dev_attr_in0_max.dev_attr.attr,
316	&sensor_dev_attr_in0_min.dev_attr.attr,
317	&sensor_dev_attr_in1_alarm.dev_attr.attr,
318	&sensor_dev_attr_in1_input.dev_attr.attr,
319	&sensor_dev_attr_in1_max.dev_attr.attr,
320	&sensor_dev_attr_in1_min.dev_attr.attr,
321	&sensor_dev_attr_in2_alarm.dev_attr.attr,
322	&sensor_dev_attr_in2_input.dev_attr.attr,
323	&sensor_dev_attr_in2_max.dev_attr.attr,
324	&sensor_dev_attr_in2_min.dev_attr.attr,
325	&sensor_dev_attr_in3_alarm.dev_attr.attr,
326	&sensor_dev_attr_in3_input.dev_attr.attr,
327	&sensor_dev_attr_in3_max.dev_attr.attr,
328	&sensor_dev_attr_in3_min.dev_attr.attr,
329	&sensor_dev_attr_in4_alarm.dev_attr.attr,
330	&sensor_dev_attr_in4_input.dev_attr.attr,
331	&sensor_dev_attr_in4_max.dev_attr.attr,
332	&sensor_dev_attr_in4_min.dev_attr.attr,
333	&sensor_dev_attr_in5_alarm.dev_attr.attr,
334	&sensor_dev_attr_in5_input.dev_attr.attr,
335	&sensor_dev_attr_in5_max.dev_attr.attr,
336	&sensor_dev_attr_in5_min.dev_attr.attr,
337	&sensor_dev_attr_in6_alarm.dev_attr.attr,
338	&sensor_dev_attr_in6_input.dev_attr.attr,
339	&sensor_dev_attr_in6_max.dev_attr.attr,
340	&sensor_dev_attr_in6_min.dev_attr.attr,
341	&sensor_dev_attr_in7_alarm.dev_attr.attr,
342	&sensor_dev_attr_in7_input.dev_attr.attr,
343	&sensor_dev_attr_in7_max.dev_attr.attr,
344	&sensor_dev_attr_in7_min.dev_attr.attr,
345	&sensor_dev_attr_temp1_input.dev_attr.attr,
346	&sensor_dev_attr_temp1_max.dev_attr.attr,
347	&sensor_dev_attr_temp1_max_alarm.dev_attr.attr,
348	&sensor_dev_attr_temp1_max_hyst.dev_attr.attr,
349	NULL
350};
351
352static const struct attribute_group adc128_group = {
353	.attrs = adc128_attrs,
354	.is_visible = adc128_is_visible,
355};
356__ATTRIBUTE_GROUPS(adc128);
357
358static int adc128_detect(struct i2c_client *client, struct i2c_board_info *info)
359{
360	int man_id, dev_id;
361
362	if (!i2c_check_functionality(client->adapter,
363				     I2C_FUNC_SMBUS_BYTE_DATA |
364				     I2C_FUNC_SMBUS_WORD_DATA))
365		return -ENODEV;
366
367	man_id = i2c_smbus_read_byte_data(client, ADC128_REG_MAN_ID);
368	dev_id = i2c_smbus_read_byte_data(client, ADC128_REG_DEV_ID);
369	if (man_id != 0x01 || dev_id != 0x09)
370		return -ENODEV;
371
372	/* Check unused bits for confirmation */
373	if (i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG) & 0xf4)
374		return -ENODEV;
375	if (i2c_smbus_read_byte_data(client, ADC128_REG_CONV_RATE) & 0xfe)
376		return -ENODEV;
377	if (i2c_smbus_read_byte_data(client, ADC128_REG_ONESHOT) & 0xfe)
378		return -ENODEV;
379	if (i2c_smbus_read_byte_data(client, ADC128_REG_SHUTDOWN) & 0xfe)
380		return -ENODEV;
381	if (i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG_ADV) & 0xf8)
382		return -ENODEV;
383	if (i2c_smbus_read_byte_data(client, ADC128_REG_BUSY_STATUS) & 0xfc)
384		return -ENODEV;
385
386	strscpy(info->type, "adc128d818", I2C_NAME_SIZE);
387
388	return 0;
389}
390
391static int adc128_init_client(struct adc128_data *data, bool external_vref)
392{
393	struct i2c_client *client = data->client;
394	int err;
395	u8 regval = 0x0;
396
397	/*
398	 * Reset chip to defaults.
399	 * This makes most other initializations unnecessary.
400	 */
401	err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG, 0x80);
402	if (err)
403		return err;
404
405	/* Set operation mode, if non-default */
406	if (data->mode != 0)
407		regval |= data->mode << 1;
408
409	/* If external vref is selected, configure the chip to use it */
410	if (external_vref)
411		regval |= 0x01;
412
413	/* Write advanced configuration register */
414	if (regval != 0x0) {
415		err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG_ADV,
416						regval);
417		if (err)
418			return err;
419	}
420
421	/* Start monitoring */
422	err = i2c_smbus_write_byte_data(client, ADC128_REG_CONFIG, 0x01);
423	if (err)
424		return err;
425
426	return 0;
427}
428
429static int adc128_probe(struct i2c_client *client)
430{
431	struct device *dev = &client->dev;
432	struct device *hwmon_dev;
433	struct adc128_data *data;
434	bool external_vref;
435	int err, vref;
436
437	data = devm_kzalloc(dev, sizeof(struct adc128_data), GFP_KERNEL);
438	if (!data)
439		return -ENOMEM;
440
441	/* vref is optional. If specified, is used as chip reference voltage */
442	vref = devm_regulator_get_enable_read_voltage(dev, "vref");
443	if (vref == -ENODEV) {
444		external_vref = false;
445		data->vref = 2560;	/* 2.56V, in mV */
446	} else if (vref < 0) {
447		return vref;
448	} else {
449		external_vref = true;
450		data->vref = DIV_ROUND_CLOSEST(vref, 1000);
451	}
452
453	/* Operation mode is optional. If unspecified, keep current mode */
454	if (of_property_read_u8(dev->of_node, "ti,mode", &data->mode) == 0) {
455		if (data->mode > 3) {
456			dev_err(dev, "invalid operation mode %d\n",
457				data->mode);
458			return -EINVAL;
459		}
460	} else {
461		err = i2c_smbus_read_byte_data(client, ADC128_REG_CONFIG_ADV);
462		if (err < 0)
463			return err;
464		data->mode = (err >> 1) & ADC128_REG_MASK;
465	}
466
467	data->client = client;
468	i2c_set_clientdata(client, data);
469	mutex_init(&data->update_lock);
470
471	/* Initialize the chip */
472	err = adc128_init_client(data, external_vref);
473	if (err < 0)
474		return err;
475
476	hwmon_dev = devm_hwmon_device_register_with_groups(dev, client->name,
477							   data, adc128_groups);
478
479	return PTR_ERR_OR_ZERO(hwmon_dev);
480}
481
482static const struct i2c_device_id adc128_id[] = {
483	{ "adc128d818" },
484	{ }
485};
486MODULE_DEVICE_TABLE(i2c, adc128_id);
487
488static const struct of_device_id __maybe_unused adc128_of_match[] = {
489	{ .compatible = "ti,adc128d818" },
490	{ },
491};
492MODULE_DEVICE_TABLE(of, adc128_of_match);
493
494static struct i2c_driver adc128_driver = {
495	.class		= I2C_CLASS_HWMON,
496	.driver = {
497		.name	= "adc128d818",
498		.of_match_table = of_match_ptr(adc128_of_match),
499	},
500	.probe		= adc128_probe,
501	.id_table	= adc128_id,
502	.detect		= adc128_detect,
503	.address_list	= normal_i2c,
504};
505
506module_i2c_driver(adc128_driver);
507
508MODULE_AUTHOR("Guenter Roeck");
509MODULE_DESCRIPTION("Driver for ADC128D818");
510MODULE_LICENSE("GPL");