Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright 2016 Broadcom
   4 */
   5
   6#include <linux/err.h>
   7#include <linux/module.h>
   8#include <linux/init.h>
   9#include <linux/errno.h>
  10#include <linux/kernel.h>
  11#include <linux/interrupt.h>
  12#include <linux/platform_device.h>
  13#include <linux/scatterlist.h>
  14#include <linux/crypto.h>
  15#include <linux/kthread.h>
  16#include <linux/rtnetlink.h>
  17#include <linux/sched.h>
  18#include <linux/of.h>
  19#include <linux/io.h>
  20#include <linux/bitops.h>
  21
  22#include <crypto/algapi.h>
  23#include <crypto/aead.h>
  24#include <crypto/internal/aead.h>
  25#include <crypto/aes.h>
  26#include <crypto/internal/des.h>
  27#include <crypto/hmac.h>
  28#include <crypto/md5.h>
  29#include <crypto/authenc.h>
  30#include <crypto/skcipher.h>
  31#include <crypto/hash.h>
  32#include <crypto/sha1.h>
  33#include <crypto/sha2.h>
  34#include <crypto/sha3.h>
  35
  36#include "util.h"
  37#include "cipher.h"
  38#include "spu.h"
  39#include "spum.h"
  40#include "spu2.h"
  41
  42/* ================= Device Structure ================== */
  43
  44struct bcm_device_private iproc_priv;
  45
  46/* ==================== Parameters ===================== */
  47
  48int flow_debug_logging;
  49module_param(flow_debug_logging, int, 0644);
  50MODULE_PARM_DESC(flow_debug_logging, "Enable Flow Debug Logging");
  51
  52int packet_debug_logging;
  53module_param(packet_debug_logging, int, 0644);
  54MODULE_PARM_DESC(packet_debug_logging, "Enable Packet Debug Logging");
  55
  56int debug_logging_sleep;
  57module_param(debug_logging_sleep, int, 0644);
  58MODULE_PARM_DESC(debug_logging_sleep, "Packet Debug Logging Sleep");
  59
  60/*
  61 * The value of these module parameters is used to set the priority for each
  62 * algo type when this driver registers algos with the kernel crypto API.
  63 * To use a priority other than the default, set the priority in the insmod or
  64 * modprobe. Changing the module priority after init time has no effect.
  65 *
  66 * The default priorities are chosen to be lower (less preferred) than ARMv8 CE
  67 * algos, but more preferred than generic software algos.
  68 */
  69static int cipher_pri = 150;
  70module_param(cipher_pri, int, 0644);
  71MODULE_PARM_DESC(cipher_pri, "Priority for cipher algos");
  72
  73static int hash_pri = 100;
  74module_param(hash_pri, int, 0644);
  75MODULE_PARM_DESC(hash_pri, "Priority for hash algos");
  76
  77static int aead_pri = 150;
  78module_param(aead_pri, int, 0644);
  79MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
  80
  81/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
  82 * Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
  83 * 0x60 - ring 0
  84 * 0x68 - ring 1
  85 * 0x70 - ring 2
  86 * 0x78 - ring 3
  87 */
  88static char BCMHEADER[] = { 0x60, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28 };
  89/*
  90 * Some SPU hw does not use BCM header on SPU messages. So BCM_HDR_LEN
  91 * is set dynamically after reading SPU type from device tree.
  92 */
  93#define BCM_HDR_LEN  iproc_priv.bcm_hdr_len
  94
  95/* min and max time to sleep before retrying when mbox queue is full. usec */
  96#define MBOX_SLEEP_MIN  800
  97#define MBOX_SLEEP_MAX 1000
  98
  99/**
 100 * select_channel() - Select a SPU channel to handle a crypto request. Selects
 101 * channel in round robin order.
 102 *
 103 * Return:  channel index
 104 */
 105static u8 select_channel(void)
 106{
 107	u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
 108
 109	return chan_idx % iproc_priv.spu.num_chan;
 110}
 111
 112/**
 113 * spu_skcipher_rx_sg_create() - Build up the scatterlist of buffers used to
 114 * receive a SPU response message for an skcipher request. Includes buffers to
 115 * catch SPU message headers and the response data.
 116 * @mssg:	mailbox message containing the receive sg
 117 * @rctx:	crypto request context
 118 * @rx_frag_num: number of scatterlist elements required to hold the
 119 *		SPU response message
 120 * @chunksize:	Number of bytes of response data expected
 121 * @stat_pad_len: Number of bytes required to pad the STAT field to
 122 *		a 4-byte boundary
 123 *
 124 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 125 * when the request completes, whether the request is handled successfully or
 126 * there is an error.
 127 *
 128 * Returns:
 129 *   0 if successful
 130 *   < 0 if an error
 131 */
 132static int
 133spu_skcipher_rx_sg_create(struct brcm_message *mssg,
 134			    struct iproc_reqctx_s *rctx,
 135			    u8 rx_frag_num,
 136			    unsigned int chunksize, u32 stat_pad_len)
 137{
 138	struct spu_hw *spu = &iproc_priv.spu;
 139	struct scatterlist *sg;	/* used to build sgs in mbox message */
 140	struct iproc_ctx_s *ctx = rctx->ctx;
 141	u32 datalen;		/* Number of bytes of response data expected */
 142
 143	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 144				rctx->gfp);
 145	if (!mssg->spu.dst)
 146		return -ENOMEM;
 147
 148	sg = mssg->spu.dst;
 149	sg_init_table(sg, rx_frag_num);
 150	/* Space for SPU message header */
 151	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 152
 153	/* If XTS tweak in payload, add buffer to receive encrypted tweak */
 154	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 155	    spu->spu_xts_tweak_in_payload())
 156		sg_set_buf(sg++, rctx->msg_buf.c.supdt_tweak,
 157			   SPU_XTS_TWEAK_SIZE);
 158
 159	/* Copy in each dst sg entry from request, up to chunksize */
 160	datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
 161				 rctx->dst_nents, chunksize);
 162	if (datalen < chunksize) {
 163		pr_err("%s(): failed to copy dst sg to mbox msg. chunksize %u, datalen %u",
 164		       __func__, chunksize, datalen);
 165		return -EFAULT;
 166	}
 167
 168	if (stat_pad_len)
 169		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 170
 171	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 172	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 173
 174	return 0;
 175}
 176
 177/**
 178 * spu_skcipher_tx_sg_create() - Build up the scatterlist of buffers used to
 179 * send a SPU request message for an skcipher request. Includes SPU message
 180 * headers and the request data.
 181 * @mssg:	mailbox message containing the transmit sg
 182 * @rctx:	crypto request context
 183 * @tx_frag_num: number of scatterlist elements required to construct the
 184 *		SPU request message
 185 * @chunksize:	Number of bytes of request data
 186 * @pad_len:	Number of pad bytes
 187 *
 188 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 189 * when the request completes, whether the request is handled successfully or
 190 * there is an error.
 191 *
 192 * Returns:
 193 *   0 if successful
 194 *   < 0 if an error
 195 */
 196static int
 197spu_skcipher_tx_sg_create(struct brcm_message *mssg,
 198			    struct iproc_reqctx_s *rctx,
 199			    u8 tx_frag_num, unsigned int chunksize, u32 pad_len)
 200{
 201	struct spu_hw *spu = &iproc_priv.spu;
 202	struct scatterlist *sg;	/* used to build sgs in mbox message */
 203	struct iproc_ctx_s *ctx = rctx->ctx;
 204	u32 datalen;		/* Number of bytes of response data expected */
 205	u32 stat_len;
 206
 207	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 208				rctx->gfp);
 209	if (unlikely(!mssg->spu.src))
 210		return -ENOMEM;
 211
 212	sg = mssg->spu.src;
 213	sg_init_table(sg, tx_frag_num);
 214
 215	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 216		   BCM_HDR_LEN + ctx->spu_req_hdr_len);
 217
 218	/* if XTS tweak in payload, copy from IV (where crypto API puts it) */
 219	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 220	    spu->spu_xts_tweak_in_payload())
 221		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, SPU_XTS_TWEAK_SIZE);
 222
 223	/* Copy in each src sg entry from request, up to chunksize */
 224	datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 225				 rctx->src_nents, chunksize);
 226	if (unlikely(datalen < chunksize)) {
 227		pr_err("%s(): failed to copy src sg to mbox msg",
 228		       __func__);
 229		return -EFAULT;
 230	}
 231
 232	if (pad_len)
 233		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 234
 235	stat_len = spu->spu_tx_status_len();
 236	if (stat_len) {
 237		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 238		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 239	}
 240	return 0;
 241}
 242
 243static int mailbox_send_message(struct brcm_message *mssg, u32 flags,
 244				u8 chan_idx)
 245{
 246	int err;
 247	int retry_cnt = 0;
 248	struct device *dev = &(iproc_priv.pdev->dev);
 249
 250	err = mbox_send_message(iproc_priv.mbox[chan_idx], mssg);
 251	if (flags & CRYPTO_TFM_REQ_MAY_SLEEP) {
 252		while ((err == -ENOBUFS) && (retry_cnt < SPU_MB_RETRY_MAX)) {
 253			/*
 254			 * Mailbox queue is full. Since MAY_SLEEP is set, assume
 255			 * not in atomic context and we can wait and try again.
 256			 */
 257			retry_cnt++;
 258			usleep_range(MBOX_SLEEP_MIN, MBOX_SLEEP_MAX);
 259			err = mbox_send_message(iproc_priv.mbox[chan_idx],
 260						mssg);
 261			atomic_inc(&iproc_priv.mb_no_spc);
 262		}
 263	}
 264	if (err < 0) {
 265		atomic_inc(&iproc_priv.mb_send_fail);
 266		return err;
 267	}
 268
 269	/* Check error returned by mailbox controller */
 270	err = mssg->error;
 271	if (unlikely(err < 0)) {
 272		dev_err(dev, "message error %d", err);
 273		/* Signal txdone for mailbox channel */
 274	}
 275
 276	/* Signal txdone for mailbox channel */
 277	mbox_client_txdone(iproc_priv.mbox[chan_idx], err);
 278	return err;
 279}
 280
 281/**
 282 * handle_skcipher_req() - Submit as much of a block cipher request as fits in
 283 * a single SPU request message, starting at the current position in the request
 284 * data.
 285 * @rctx:	Crypto request context
 286 *
 287 * This may be called on the crypto API thread, or, when a request is so large
 288 * it must be broken into multiple SPU messages, on the thread used to invoke
 289 * the response callback. When requests are broken into multiple SPU
 290 * messages, we assume subsequent messages depend on previous results, and
 291 * thus always wait for previous results before submitting the next message.
 292 * Because requests are submitted in lock step like this, there is no need
 293 * to synchronize access to request data structures.
 294 *
 295 * Return: -EINPROGRESS: request has been accepted and result will be returned
 296 *			 asynchronously
 297 *         Any other value indicates an error
 298 */
 299static int handle_skcipher_req(struct iproc_reqctx_s *rctx)
 300{
 301	struct spu_hw *spu = &iproc_priv.spu;
 302	struct crypto_async_request *areq = rctx->parent;
 303	struct skcipher_request *req =
 304	    container_of(areq, struct skcipher_request, base);
 305	struct iproc_ctx_s *ctx = rctx->ctx;
 306	struct spu_cipher_parms cipher_parms;
 307	int err;
 308	unsigned int chunksize;	/* Num bytes of request to submit */
 309	int remaining;	/* Bytes of request still to process */
 310	int chunk_start;	/* Beginning of data for current SPU msg */
 311
 312	/* IV or ctr value to use in this SPU msg */
 313	u8 local_iv_ctr[MAX_IV_SIZE];
 314	u32 stat_pad_len;	/* num bytes to align status field */
 315	u32 pad_len;		/* total length of all padding */
 316	struct brcm_message *mssg;	/* mailbox message */
 317
 318	/* number of entries in src and dst sg in mailbox message. */
 319	u8 rx_frag_num = 2;	/* response header and STATUS */
 320	u8 tx_frag_num = 1;	/* request header */
 321
 322	flow_log("%s\n", __func__);
 323
 324	cipher_parms.alg = ctx->cipher.alg;
 325	cipher_parms.mode = ctx->cipher.mode;
 326	cipher_parms.type = ctx->cipher_type;
 327	cipher_parms.key_len = ctx->enckeylen;
 328	cipher_parms.key_buf = ctx->enckey;
 329	cipher_parms.iv_buf = local_iv_ctr;
 330	cipher_parms.iv_len = rctx->iv_ctr_len;
 331
 332	mssg = &rctx->mb_mssg;
 333	chunk_start = rctx->src_sent;
 334	remaining = rctx->total_todo - chunk_start;
 335
 336	/* determine the chunk we are breaking off and update the indexes */
 337	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 338	    (remaining > ctx->max_payload))
 339		chunksize = ctx->max_payload;
 340	else
 341		chunksize = remaining;
 342
 343	rctx->src_sent += chunksize;
 344	rctx->total_sent = rctx->src_sent;
 345
 346	/* Count number of sg entries to be included in this request */
 347	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
 348	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
 349
 350	if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 351	    rctx->is_encrypt && chunk_start)
 352		/*
 353		 * Encrypting non-first first chunk. Copy last block of
 354		 * previous result to IV for this chunk.
 355		 */
 356		sg_copy_part_to_buf(req->dst, rctx->msg_buf.iv_ctr,
 357				    rctx->iv_ctr_len,
 358				    chunk_start - rctx->iv_ctr_len);
 359
 360	if (rctx->iv_ctr_len) {
 361		/* get our local copy of the iv */
 362		__builtin_memcpy(local_iv_ctr, rctx->msg_buf.iv_ctr,
 363				 rctx->iv_ctr_len);
 364
 365		/* generate the next IV if possible */
 366		if ((ctx->cipher.mode == CIPHER_MODE_CBC) &&
 367		    !rctx->is_encrypt) {
 368			/*
 369			 * CBC Decrypt: next IV is the last ciphertext block in
 370			 * this chunk
 371			 */
 372			sg_copy_part_to_buf(req->src, rctx->msg_buf.iv_ctr,
 373					    rctx->iv_ctr_len,
 374					    rctx->src_sent - rctx->iv_ctr_len);
 375		} else if (ctx->cipher.mode == CIPHER_MODE_CTR) {
 376			/*
 377			 * The SPU hardware increments the counter once for
 378			 * each AES block of 16 bytes. So update the counter
 379			 * for the next chunk, if there is one. Note that for
 380			 * this chunk, the counter has already been copied to
 381			 * local_iv_ctr. We can assume a block size of 16,
 382			 * because we only support CTR mode for AES, not for
 383			 * any other cipher alg.
 384			 */
 385			add_to_ctr(rctx->msg_buf.iv_ctr, chunksize >> 4);
 386		}
 387	}
 388
 389	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 390		flow_log("max_payload infinite\n");
 391	else
 392		flow_log("max_payload %u\n", ctx->max_payload);
 393
 394	flow_log("sent:%u start:%u remains:%u size:%u\n",
 395		 rctx->src_sent, chunk_start, remaining, chunksize);
 396
 397	/* Copy SPU header template created at setkey time */
 398	memcpy(rctx->msg_buf.bcm_spu_req_hdr, ctx->bcm_spu_req_hdr,
 399	       sizeof(rctx->msg_buf.bcm_spu_req_hdr));
 400
 401	spu->spu_cipher_req_finish(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 402				   ctx->spu_req_hdr_len, !(rctx->is_encrypt),
 403				   &cipher_parms, chunksize);
 404
 405	atomic64_add(chunksize, &iproc_priv.bytes_out);
 406
 407	stat_pad_len = spu->spu_wordalign_padlen(chunksize);
 408	if (stat_pad_len)
 409		rx_frag_num++;
 410	pad_len = stat_pad_len;
 411	if (pad_len) {
 412		tx_frag_num++;
 413		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, 0,
 414				     0, ctx->auth.alg, ctx->auth.mode,
 415				     rctx->total_sent, stat_pad_len);
 416	}
 417
 418	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 419			      ctx->spu_req_hdr_len);
 420	packet_log("payload:\n");
 421	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
 422	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 423
 424	/*
 425	 * Build mailbox message containing SPU request msg and rx buffers
 426	 * to catch response message
 427	 */
 428	memset(mssg, 0, sizeof(*mssg));
 429	mssg->type = BRCM_MESSAGE_SPU;
 430	mssg->ctx = rctx;	/* Will be returned in response */
 431
 432	/* Create rx scatterlist to catch result */
 433	rx_frag_num += rctx->dst_nents;
 434
 435	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 436	    spu->spu_xts_tweak_in_payload())
 437		rx_frag_num++;	/* extra sg to insert tweak */
 438
 439	err = spu_skcipher_rx_sg_create(mssg, rctx, rx_frag_num, chunksize,
 440					  stat_pad_len);
 441	if (err)
 442		return err;
 443
 444	/* Create tx scatterlist containing SPU request message */
 445	tx_frag_num += rctx->src_nents;
 446	if (spu->spu_tx_status_len())
 447		tx_frag_num++;
 448
 449	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 450	    spu->spu_xts_tweak_in_payload())
 451		tx_frag_num++;	/* extra sg to insert tweak */
 452
 453	err = spu_skcipher_tx_sg_create(mssg, rctx, tx_frag_num, chunksize,
 454					  pad_len);
 455	if (err)
 456		return err;
 457
 458	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 459	if (unlikely(err < 0))
 460		return err;
 461
 462	return -EINPROGRESS;
 463}
 464
 465/**
 466 * handle_skcipher_resp() - Process a block cipher SPU response. Updates the
 467 * total received count for the request and updates global stats.
 468 * @rctx:	Crypto request context
 469 */
 470static void handle_skcipher_resp(struct iproc_reqctx_s *rctx)
 471{
 472	struct spu_hw *spu = &iproc_priv.spu;
 473	struct crypto_async_request *areq = rctx->parent;
 474	struct skcipher_request *req = skcipher_request_cast(areq);
 475	struct iproc_ctx_s *ctx = rctx->ctx;
 476	u32 payload_len;
 477
 478	/* See how much data was returned */
 479	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
 480
 481	/*
 482	 * In XTS mode, the first SPU_XTS_TWEAK_SIZE bytes may be the
 483	 * encrypted tweak ("i") value; we don't count those.
 484	 */
 485	if ((ctx->cipher.mode == CIPHER_MODE_XTS) &&
 486	    spu->spu_xts_tweak_in_payload() &&
 487	    (payload_len >= SPU_XTS_TWEAK_SIZE))
 488		payload_len -= SPU_XTS_TWEAK_SIZE;
 489
 490	atomic64_add(payload_len, &iproc_priv.bytes_in);
 491
 492	flow_log("%s() offset: %u, bd_len: %u BD:\n",
 493		 __func__, rctx->total_received, payload_len);
 494
 495	dump_sg(req->dst, rctx->total_received, payload_len);
 496
 497	rctx->total_received += payload_len;
 498	if (rctx->total_received == rctx->total_todo) {
 499		atomic_inc(&iproc_priv.op_counts[SPU_OP_CIPHER]);
 500		atomic_inc(
 501		   &iproc_priv.cipher_cnt[ctx->cipher.alg][ctx->cipher.mode]);
 502	}
 503}
 504
 505/**
 506 * spu_ahash_rx_sg_create() - Build up the scatterlist of buffers used to
 507 * receive a SPU response message for an ahash request.
 508 * @mssg:	mailbox message containing the receive sg
 509 * @rctx:	crypto request context
 510 * @rx_frag_num: number of scatterlist elements required to hold the
 511 *		SPU response message
 512 * @digestsize: length of hash digest, in bytes
 513 * @stat_pad_len: Number of bytes required to pad the STAT field to
 514 *		a 4-byte boundary
 515 *
 516 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 517 * when the request completes, whether the request is handled successfully or
 518 * there is an error.
 519 *
 520 * Return:
 521 *   0 if successful
 522 *   < 0 if an error
 523 */
 524static int
 525spu_ahash_rx_sg_create(struct brcm_message *mssg,
 526		       struct iproc_reqctx_s *rctx,
 527		       u8 rx_frag_num, unsigned int digestsize,
 528		       u32 stat_pad_len)
 529{
 530	struct spu_hw *spu = &iproc_priv.spu;
 531	struct scatterlist *sg;	/* used to build sgs in mbox message */
 532	struct iproc_ctx_s *ctx = rctx->ctx;
 533
 534	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
 535				rctx->gfp);
 536	if (!mssg->spu.dst)
 537		return -ENOMEM;
 538
 539	sg = mssg->spu.dst;
 540	sg_init_table(sg, rx_frag_num);
 541	/* Space for SPU message header */
 542	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
 543
 544	/* Space for digest */
 545	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
 546
 547	if (stat_pad_len)
 548		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
 549
 550	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
 551	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
 552	return 0;
 553}
 554
 555/**
 556 * spu_ahash_tx_sg_create() -  Build up the scatterlist of buffers used to send
 557 * a SPU request message for an ahash request. Includes SPU message headers and
 558 * the request data.
 559 * @mssg:	mailbox message containing the transmit sg
 560 * @rctx:	crypto request context
 561 * @tx_frag_num: number of scatterlist elements required to construct the
 562 *		SPU request message
 563 * @spu_hdr_len: length in bytes of SPU message header
 564 * @hash_carry_len: Number of bytes of data carried over from previous req
 565 * @new_data_len: Number of bytes of new request data
 566 * @pad_len:	Number of pad bytes
 567 *
 568 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
 569 * when the request completes, whether the request is handled successfully or
 570 * there is an error.
 571 *
 572 * Return:
 573 *   0 if successful
 574 *   < 0 if an error
 575 */
 576static int
 577spu_ahash_tx_sg_create(struct brcm_message *mssg,
 578		       struct iproc_reqctx_s *rctx,
 579		       u8 tx_frag_num,
 580		       u32 spu_hdr_len,
 581		       unsigned int hash_carry_len,
 582		       unsigned int new_data_len, u32 pad_len)
 583{
 584	struct spu_hw *spu = &iproc_priv.spu;
 585	struct scatterlist *sg;	/* used to build sgs in mbox message */
 586	u32 datalen;		/* Number of bytes of response data expected */
 587	u32 stat_len;
 588
 589	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
 590				rctx->gfp);
 591	if (!mssg->spu.src)
 592		return -ENOMEM;
 593
 594	sg = mssg->spu.src;
 595	sg_init_table(sg, tx_frag_num);
 596
 597	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
 598		   BCM_HDR_LEN + spu_hdr_len);
 599
 600	if (hash_carry_len)
 601		sg_set_buf(sg++, rctx->hash_carry, hash_carry_len);
 602
 603	if (new_data_len) {
 604		/* Copy in each src sg entry from request, up to chunksize */
 605		datalen = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
 606					 rctx->src_nents, new_data_len);
 607		if (datalen < new_data_len) {
 608			pr_err("%s(): failed to copy src sg to mbox msg",
 609			       __func__);
 610			return -EFAULT;
 611		}
 612	}
 613
 614	if (pad_len)
 615		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
 616
 617	stat_len = spu->spu_tx_status_len();
 618	if (stat_len) {
 619		memset(rctx->msg_buf.tx_stat, 0, stat_len);
 620		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
 621	}
 622
 623	return 0;
 624}
 625
 626/**
 627 * handle_ahash_req() - Process an asynchronous hash request from the crypto
 628 * API.
 629 * @rctx:  Crypto request context
 630 *
 631 * Builds a SPU request message embedded in a mailbox message and submits the
 632 * mailbox message on a selected mailbox channel. The SPU request message is
 633 * constructed as a scatterlist, including entries from the crypto API's
 634 * src scatterlist to avoid copying the data to be hashed. This function is
 635 * called either on the thread from the crypto API, or, in the case that the
 636 * crypto API request is too large to fit in a single SPU request message,
 637 * on the thread that invokes the receive callback with a response message.
 638 * Because some operations require the response from one chunk before the next
 639 * chunk can be submitted, we always wait for the response for the previous
 640 * chunk before submitting the next chunk. Because requests are submitted in
 641 * lock step like this, there is no need to synchronize access to request data
 642 * structures.
 643 *
 644 * Return:
 645 *   -EINPROGRESS: request has been submitted to SPU and response will be
 646 *		   returned asynchronously
 647 *   -EAGAIN:      non-final request included a small amount of data, which for
 648 *		   efficiency we did not submit to the SPU, but instead stored
 649 *		   to be submitted to the SPU with the next part of the request
 650 *   other:        an error code
 651 */
 652static int handle_ahash_req(struct iproc_reqctx_s *rctx)
 653{
 654	struct spu_hw *spu = &iproc_priv.spu;
 655	struct crypto_async_request *areq = rctx->parent;
 656	struct ahash_request *req = ahash_request_cast(areq);
 657	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 658	struct crypto_tfm *tfm = crypto_ahash_tfm(ahash);
 659	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
 660	struct iproc_ctx_s *ctx = rctx->ctx;
 661
 662	/* number of bytes still to be hashed in this req */
 663	unsigned int nbytes_to_hash = 0;
 664	int err;
 665	unsigned int chunksize = 0;	/* length of hash carry + new data */
 666	/*
 667	 * length of new data, not from hash carry, to be submitted in
 668	 * this hw request
 669	 */
 670	unsigned int new_data_len;
 671
 672	unsigned int __maybe_unused chunk_start = 0;
 673	u32 db_size;	 /* Length of data field, incl gcm and hash padding */
 674	int pad_len = 0; /* total pad len, including gcm, hash, stat padding */
 675	u32 data_pad_len = 0;	/* length of GCM/CCM padding */
 676	u32 stat_pad_len = 0;	/* length of padding to align STATUS word */
 677	struct brcm_message *mssg;	/* mailbox message */
 678	struct spu_request_opts req_opts;
 679	struct spu_cipher_parms cipher_parms;
 680	struct spu_hash_parms hash_parms;
 681	struct spu_aead_parms aead_parms;
 682	unsigned int local_nbuf;
 683	u32 spu_hdr_len;
 684	unsigned int digestsize;
 685	u16 rem = 0;
 686
 687	/*
 688	 * number of entries in src and dst sg. Always includes SPU msg header.
 689	 * rx always includes a buffer to catch digest and STATUS.
 690	 */
 691	u8 rx_frag_num = 3;
 692	u8 tx_frag_num = 1;
 693
 694	flow_log("total_todo %u, total_sent %u\n",
 695		 rctx->total_todo, rctx->total_sent);
 696
 697	memset(&req_opts, 0, sizeof(req_opts));
 698	memset(&cipher_parms, 0, sizeof(cipher_parms));
 699	memset(&hash_parms, 0, sizeof(hash_parms));
 700	memset(&aead_parms, 0, sizeof(aead_parms));
 701
 702	req_opts.bd_suppress = true;
 703	hash_parms.alg = ctx->auth.alg;
 704	hash_parms.mode = ctx->auth.mode;
 705	hash_parms.type = HASH_TYPE_NONE;
 706	hash_parms.key_buf = (u8 *)ctx->authkey;
 707	hash_parms.key_len = ctx->authkeylen;
 708
 709	/*
 710	 * For hash algorithms below assignment looks bit odd but
 711	 * it's needed for AES-XCBC and AES-CMAC hash algorithms
 712	 * to differentiate between 128, 192, 256 bit key values.
 713	 * Based on the key values, hash algorithm is selected.
 714	 * For example for 128 bit key, hash algorithm is AES-128.
 715	 */
 716	cipher_parms.type = ctx->cipher_type;
 717
 718	mssg = &rctx->mb_mssg;
 719	chunk_start = rctx->src_sent;
 720
 721	/*
 722	 * Compute the amount remaining to hash. This may include data
 723	 * carried over from previous requests.
 724	 */
 725	nbytes_to_hash = rctx->total_todo - rctx->total_sent;
 726	chunksize = nbytes_to_hash;
 727	if ((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
 728	    (chunksize > ctx->max_payload))
 729		chunksize = ctx->max_payload;
 730
 731	/*
 732	 * If this is not a final request and the request data is not a multiple
 733	 * of a full block, then simply park the extra data and prefix it to the
 734	 * data for the next request.
 735	 */
 736	if (!rctx->is_final) {
 737		u8 *dest = rctx->hash_carry + rctx->hash_carry_len;
 738		u16 new_len;  /* len of data to add to hash carry */
 739
 740		rem = chunksize % blocksize;   /* remainder */
 741		if (rem) {
 742			/* chunksize not a multiple of blocksize */
 743			chunksize -= rem;
 744			if (chunksize == 0) {
 745				/* Don't have a full block to submit to hw */
 746				new_len = rem - rctx->hash_carry_len;
 747				sg_copy_part_to_buf(req->src, dest, new_len,
 748						    rctx->src_sent);
 749				rctx->hash_carry_len = rem;
 750				flow_log("Exiting with hash carry len: %u\n",
 751					 rctx->hash_carry_len);
 752				packet_dump("  buf: ",
 753					    rctx->hash_carry,
 754					    rctx->hash_carry_len);
 755				return -EAGAIN;
 756			}
 757		}
 758	}
 759
 760	/* if we have hash carry, then prefix it to the data in this request */
 761	local_nbuf = rctx->hash_carry_len;
 762	rctx->hash_carry_len = 0;
 763	if (local_nbuf)
 764		tx_frag_num++;
 765	new_data_len = chunksize - local_nbuf;
 766
 767	/* Count number of sg entries to be used in this request */
 768	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip,
 769				       new_data_len);
 770
 771	/* AES hashing keeps key size in type field, so need to copy it here */
 772	if (hash_parms.alg == HASH_ALG_AES)
 773		hash_parms.type = (enum hash_type)cipher_parms.type;
 774	else
 775		hash_parms.type = spu->spu_hash_type(rctx->total_sent);
 776
 777	digestsize = spu->spu_digest_size(ctx->digestsize, ctx->auth.alg,
 778					  hash_parms.type);
 779	hash_parms.digestsize =	digestsize;
 780
 781	/* update the indexes */
 782	rctx->total_sent += chunksize;
 783	/* if you sent a prebuf then that wasn't from this req->src */
 784	rctx->src_sent += new_data_len;
 785
 786	if ((rctx->total_sent == rctx->total_todo) && rctx->is_final)
 787		hash_parms.pad_len = spu->spu_hash_pad_len(hash_parms.alg,
 788							   hash_parms.mode,
 789							   chunksize,
 790							   blocksize);
 791
 792	/*
 793	 * If a non-first chunk, then include the digest returned from the
 794	 * previous chunk so that hw can add to it (except for AES types).
 795	 */
 796	if ((hash_parms.type == HASH_TYPE_UPDT) &&
 797	    (hash_parms.alg != HASH_ALG_AES)) {
 798		hash_parms.key_buf = rctx->incr_hash;
 799		hash_parms.key_len = digestsize;
 800	}
 801
 802	atomic64_add(chunksize, &iproc_priv.bytes_out);
 803
 804	flow_log("%s() final: %u nbuf: %u ",
 805		 __func__, rctx->is_final, local_nbuf);
 806
 807	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
 808		flow_log("max_payload infinite\n");
 809	else
 810		flow_log("max_payload %u\n", ctx->max_payload);
 811
 812	flow_log("chunk_start: %u chunk_size: %u\n", chunk_start, chunksize);
 813
 814	/* Prepend SPU header with type 3 BCM header */
 815	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
 816
 817	hash_parms.prebuf_len = local_nbuf;
 818	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
 819					      BCM_HDR_LEN,
 820					      &req_opts, &cipher_parms,
 821					      &hash_parms, &aead_parms,
 822					      new_data_len);
 823
 824	if (spu_hdr_len == 0) {
 825		pr_err("Failed to create SPU request header\n");
 826		return -EFAULT;
 827	}
 828
 829	/*
 830	 * Determine total length of padding required. Put all padding in one
 831	 * buffer.
 832	 */
 833	data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode, chunksize);
 834	db_size = spu_real_db_size(0, 0, local_nbuf, new_data_len,
 835				   0, 0, hash_parms.pad_len);
 836	if (spu->spu_tx_status_len())
 837		stat_pad_len = spu->spu_wordalign_padlen(db_size);
 838	if (stat_pad_len)
 839		rx_frag_num++;
 840	pad_len = hash_parms.pad_len + data_pad_len + stat_pad_len;
 841	if (pad_len) {
 842		tx_frag_num++;
 843		spu->spu_request_pad(rctx->msg_buf.spu_req_pad, data_pad_len,
 844				     hash_parms.pad_len, ctx->auth.alg,
 845				     ctx->auth.mode, rctx->total_sent,
 846				     stat_pad_len);
 847	}
 848
 849	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
 850			      spu_hdr_len);
 851	packet_dump("    prebuf: ", rctx->hash_carry, local_nbuf);
 852	flow_log("Data:\n");
 853	dump_sg(rctx->src_sg, rctx->src_skip, new_data_len);
 854	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
 855
 856	/*
 857	 * Build mailbox message containing SPU request msg and rx buffers
 858	 * to catch response message
 859	 */
 860	memset(mssg, 0, sizeof(*mssg));
 861	mssg->type = BRCM_MESSAGE_SPU;
 862	mssg->ctx = rctx;	/* Will be returned in response */
 863
 864	/* Create rx scatterlist to catch result */
 865	err = spu_ahash_rx_sg_create(mssg, rctx, rx_frag_num, digestsize,
 866				     stat_pad_len);
 867	if (err)
 868		return err;
 869
 870	/* Create tx scatterlist containing SPU request message */
 871	tx_frag_num += rctx->src_nents;
 872	if (spu->spu_tx_status_len())
 873		tx_frag_num++;
 874	err = spu_ahash_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
 875				     local_nbuf, new_data_len, pad_len);
 876	if (err)
 877		return err;
 878
 879	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
 880	if (unlikely(err < 0))
 881		return err;
 882
 883	return -EINPROGRESS;
 884}
 885
 886/**
 887 * spu_hmac_outer_hash() - Request synchonous software compute of the outer hash
 888 * for an HMAC request.
 889 * @req:  The HMAC request from the crypto API
 890 * @ctx:  The session context
 891 *
 892 * Return: 0 if synchronous hash operation successful
 893 *         -EINVAL if the hash algo is unrecognized
 894 *         any other value indicates an error
 895 */
 896static int spu_hmac_outer_hash(struct ahash_request *req,
 897			       struct iproc_ctx_s *ctx)
 898{
 899	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 900	unsigned int blocksize =
 901		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 902	int rc;
 903
 904	switch (ctx->auth.alg) {
 905	case HASH_ALG_MD5:
 906		rc = do_shash("md5", req->result, ctx->opad, blocksize,
 907			      req->result, ctx->digestsize, NULL, 0);
 908		break;
 909	case HASH_ALG_SHA1:
 910		rc = do_shash("sha1", req->result, ctx->opad, blocksize,
 911			      req->result, ctx->digestsize, NULL, 0);
 912		break;
 913	case HASH_ALG_SHA224:
 914		rc = do_shash("sha224", req->result, ctx->opad, blocksize,
 915			      req->result, ctx->digestsize, NULL, 0);
 916		break;
 917	case HASH_ALG_SHA256:
 918		rc = do_shash("sha256", req->result, ctx->opad, blocksize,
 919			      req->result, ctx->digestsize, NULL, 0);
 920		break;
 921	case HASH_ALG_SHA384:
 922		rc = do_shash("sha384", req->result, ctx->opad, blocksize,
 923			      req->result, ctx->digestsize, NULL, 0);
 924		break;
 925	case HASH_ALG_SHA512:
 926		rc = do_shash("sha512", req->result, ctx->opad, blocksize,
 927			      req->result, ctx->digestsize, NULL, 0);
 928		break;
 929	default:
 930		pr_err("%s() Error : unknown hmac type\n", __func__);
 931		rc = -EINVAL;
 932	}
 933	return rc;
 934}
 935
 936/**
 937 * ahash_req_done() - Process a hash result from the SPU hardware.
 938 * @rctx: Crypto request context
 939 *
 940 * Return: 0 if successful
 941 *         < 0 if an error
 942 */
 943static int ahash_req_done(struct iproc_reqctx_s *rctx)
 944{
 945	struct spu_hw *spu = &iproc_priv.spu;
 946	struct crypto_async_request *areq = rctx->parent;
 947	struct ahash_request *req = ahash_request_cast(areq);
 948	struct iproc_ctx_s *ctx = rctx->ctx;
 949	int err;
 950
 951	memcpy(req->result, rctx->msg_buf.digest, ctx->digestsize);
 952
 953	if (spu->spu_type == SPU_TYPE_SPUM) {
 954		/* byte swap the output from the UPDT function to network byte
 955		 * order
 956		 */
 957		if (ctx->auth.alg == HASH_ALG_MD5) {
 958			__swab32s((u32 *)req->result);
 959			__swab32s(((u32 *)req->result) + 1);
 960			__swab32s(((u32 *)req->result) + 2);
 961			__swab32s(((u32 *)req->result) + 3);
 962			__swab32s(((u32 *)req->result) + 4);
 963		}
 964	}
 965
 966	flow_dump("  digest ", req->result, ctx->digestsize);
 967
 968	/* if this an HMAC then do the outer hash */
 969	if (rctx->is_sw_hmac) {
 970		err = spu_hmac_outer_hash(req, ctx);
 971		if (err < 0)
 972			return err;
 973		flow_dump("  hmac: ", req->result, ctx->digestsize);
 974	}
 975
 976	if (rctx->is_sw_hmac || ctx->auth.mode == HASH_MODE_HMAC) {
 977		atomic_inc(&iproc_priv.op_counts[SPU_OP_HMAC]);
 978		atomic_inc(&iproc_priv.hmac_cnt[ctx->auth.alg]);
 979	} else {
 980		atomic_inc(&iproc_priv.op_counts[SPU_OP_HASH]);
 981		atomic_inc(&iproc_priv.hash_cnt[ctx->auth.alg]);
 982	}
 983
 984	return 0;
 985}
 986
 987/**
 988 * handle_ahash_resp() - Process a SPU response message for a hash request.
 989 * Checks if the entire crypto API request has been processed, and if so,
 990 * invokes post processing on the result.
 991 * @rctx: Crypto request context
 992 */
 993static void handle_ahash_resp(struct iproc_reqctx_s *rctx)
 994{
 995	struct iproc_ctx_s *ctx = rctx->ctx;
 996	struct crypto_async_request *areq = rctx->parent;
 997	struct ahash_request *req = ahash_request_cast(areq);
 998	struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 999	unsigned int blocksize =
1000		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
1001	/*
1002	 * Save hash to use as input to next op if incremental. Might be copying
1003	 * too much, but that's easier than figuring out actual digest size here
1004	 */
1005	memcpy(rctx->incr_hash, rctx->msg_buf.digest, MAX_DIGEST_SIZE);
1006
1007	flow_log("%s() blocksize:%u digestsize:%u\n",
1008		 __func__, blocksize, ctx->digestsize);
1009
1010	atomic64_add(ctx->digestsize, &iproc_priv.bytes_in);
1011
1012	if (rctx->is_final && (rctx->total_sent == rctx->total_todo))
1013		ahash_req_done(rctx);
1014}
1015
1016/**
1017 * spu_aead_rx_sg_create() - Build up the scatterlist of buffers used to receive
1018 * a SPU response message for an AEAD request. Includes buffers to catch SPU
1019 * message headers and the response data.
1020 * @mssg:	mailbox message containing the receive sg
1021 * @req:	Crypto API request
1022 * @rctx:	crypto request context
1023 * @rx_frag_num: number of scatterlist elements required to hold the
1024 *		SPU response message
1025 * @assoc_len:	Length of associated data included in the crypto request
1026 * @ret_iv_len: Length of IV returned in response
1027 * @resp_len:	Number of bytes of response data expected to be written to
1028 *              dst buffer from crypto API
1029 * @digestsize: Length of hash digest, in bytes
1030 * @stat_pad_len: Number of bytes required to pad the STAT field to
1031 *		a 4-byte boundary
1032 *
1033 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1034 * when the request completes, whether the request is handled successfully or
1035 * there is an error.
1036 *
1037 * Returns:
1038 *   0 if successful
1039 *   < 0 if an error
1040 */
1041static int spu_aead_rx_sg_create(struct brcm_message *mssg,
1042				 struct aead_request *req,
1043				 struct iproc_reqctx_s *rctx,
1044				 u8 rx_frag_num,
1045				 unsigned int assoc_len,
1046				 u32 ret_iv_len, unsigned int resp_len,
1047				 unsigned int digestsize, u32 stat_pad_len)
1048{
1049	struct spu_hw *spu = &iproc_priv.spu;
1050	struct scatterlist *sg;	/* used to build sgs in mbox message */
1051	struct iproc_ctx_s *ctx = rctx->ctx;
1052	u32 datalen;		/* Number of bytes of response data expected */
1053	u32 assoc_buf_len;
1054	u8 data_padlen = 0;
1055
1056	if (ctx->is_rfc4543) {
1057		/* RFC4543: only pad after data, not after AAD */
1058		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1059							  assoc_len + resp_len);
1060		assoc_buf_len = assoc_len;
1061	} else {
1062		data_padlen = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1063							  resp_len);
1064		assoc_buf_len = spu->spu_assoc_resp_len(ctx->cipher.mode,
1065						assoc_len, ret_iv_len,
1066						rctx->is_encrypt);
1067	}
1068
1069	if (ctx->cipher.mode == CIPHER_MODE_CCM)
1070		/* ICV (after data) must be in the next 32-bit word for CCM */
1071		data_padlen += spu->spu_wordalign_padlen(assoc_buf_len +
1072							 resp_len +
1073							 data_padlen);
1074
1075	if (data_padlen)
1076		/* have to catch gcm pad in separate buffer */
1077		rx_frag_num++;
1078
1079	mssg->spu.dst = kcalloc(rx_frag_num, sizeof(struct scatterlist),
1080				rctx->gfp);
1081	if (!mssg->spu.dst)
1082		return -ENOMEM;
1083
1084	sg = mssg->spu.dst;
1085	sg_init_table(sg, rx_frag_num);
1086
1087	/* Space for SPU message header */
1088	sg_set_buf(sg++, rctx->msg_buf.spu_resp_hdr, ctx->spu_resp_hdr_len);
1089
1090	if (assoc_buf_len) {
1091		/*
1092		 * Don't write directly to req->dst, because SPU may pad the
1093		 * assoc data in the response
1094		 */
1095		memset(rctx->msg_buf.a.resp_aad, 0, assoc_buf_len);
1096		sg_set_buf(sg++, rctx->msg_buf.a.resp_aad, assoc_buf_len);
1097	}
1098
1099	if (resp_len) {
1100		/*
1101		 * Copy in each dst sg entry from request, up to chunksize.
1102		 * dst sg catches just the data. digest caught in separate buf.
1103		 */
1104		datalen = spu_msg_sg_add(&sg, &rctx->dst_sg, &rctx->dst_skip,
1105					 rctx->dst_nents, resp_len);
1106		if (datalen < (resp_len)) {
1107			pr_err("%s(): failed to copy dst sg to mbox msg. expected len %u, datalen %u",
1108			       __func__, resp_len, datalen);
1109			return -EFAULT;
1110		}
1111	}
1112
1113	/* If GCM/CCM data is padded, catch padding in separate buffer */
1114	if (data_padlen) {
1115		memset(rctx->msg_buf.a.gcmpad, 0, data_padlen);
1116		sg_set_buf(sg++, rctx->msg_buf.a.gcmpad, data_padlen);
1117	}
1118
1119	/* Always catch ICV in separate buffer */
1120	sg_set_buf(sg++, rctx->msg_buf.digest, digestsize);
1121
1122	flow_log("stat_pad_len %u\n", stat_pad_len);
1123	if (stat_pad_len) {
1124		memset(rctx->msg_buf.rx_stat_pad, 0, stat_pad_len);
1125		sg_set_buf(sg++, rctx->msg_buf.rx_stat_pad, stat_pad_len);
1126	}
1127
1128	memset(rctx->msg_buf.rx_stat, 0, SPU_RX_STATUS_LEN);
1129	sg_set_buf(sg, rctx->msg_buf.rx_stat, spu->spu_rx_status_len());
1130
1131	return 0;
1132}
1133
1134/**
1135 * spu_aead_tx_sg_create() - Build up the scatterlist of buffers used to send a
1136 * SPU request message for an AEAD request. Includes SPU message headers and the
1137 * request data.
1138 * @mssg:	mailbox message containing the transmit sg
1139 * @rctx:	crypto request context
1140 * @tx_frag_num: number of scatterlist elements required to construct the
1141 *		SPU request message
1142 * @spu_hdr_len: length of SPU message header in bytes
1143 * @assoc:	crypto API associated data scatterlist
1144 * @assoc_len:	length of associated data
1145 * @assoc_nents: number of scatterlist entries containing assoc data
1146 * @aead_iv_len: length of AEAD IV, if included
1147 * @chunksize:	Number of bytes of request data
1148 * @aad_pad_len: Number of bytes of padding at end of AAD. For GCM/CCM.
1149 * @pad_len:	Number of pad bytes
1150 * @incl_icv:	If true, write separate ICV buffer after data and
1151 *              any padding
1152 *
1153 * The scatterlist that gets allocated here is freed in spu_chunk_cleanup()
1154 * when the request completes, whether the request is handled successfully or
1155 * there is an error.
1156 *
1157 * Return:
1158 *   0 if successful
1159 *   < 0 if an error
1160 */
1161static int spu_aead_tx_sg_create(struct brcm_message *mssg,
1162				 struct iproc_reqctx_s *rctx,
1163				 u8 tx_frag_num,
1164				 u32 spu_hdr_len,
1165				 struct scatterlist *assoc,
1166				 unsigned int assoc_len,
1167				 int assoc_nents,
1168				 unsigned int aead_iv_len,
1169				 unsigned int chunksize,
1170				 u32 aad_pad_len, u32 pad_len, bool incl_icv)
1171{
1172	struct spu_hw *spu = &iproc_priv.spu;
1173	struct scatterlist *sg;	/* used to build sgs in mbox message */
1174	struct scatterlist *assoc_sg = assoc;
1175	struct iproc_ctx_s *ctx = rctx->ctx;
1176	u32 datalen;		/* Number of bytes of data to write */
1177	u32 written;		/* Number of bytes of data written */
1178	u32 assoc_offset = 0;
1179	u32 stat_len;
1180
1181	mssg->spu.src = kcalloc(tx_frag_num, sizeof(struct scatterlist),
1182				rctx->gfp);
1183	if (!mssg->spu.src)
1184		return -ENOMEM;
1185
1186	sg = mssg->spu.src;
1187	sg_init_table(sg, tx_frag_num);
1188
1189	sg_set_buf(sg++, rctx->msg_buf.bcm_spu_req_hdr,
1190		   BCM_HDR_LEN + spu_hdr_len);
1191
1192	if (assoc_len) {
1193		/* Copy in each associated data sg entry from request */
1194		written = spu_msg_sg_add(&sg, &assoc_sg, &assoc_offset,
1195					 assoc_nents, assoc_len);
1196		if (written < assoc_len) {
1197			pr_err("%s(): failed to copy assoc sg to mbox msg",
1198			       __func__);
1199			return -EFAULT;
1200		}
1201	}
1202
1203	if (aead_iv_len)
1204		sg_set_buf(sg++, rctx->msg_buf.iv_ctr, aead_iv_len);
1205
1206	if (aad_pad_len) {
1207		memset(rctx->msg_buf.a.req_aad_pad, 0, aad_pad_len);
1208		sg_set_buf(sg++, rctx->msg_buf.a.req_aad_pad, aad_pad_len);
1209	}
1210
1211	datalen = chunksize;
1212	if ((chunksize > ctx->digestsize) && incl_icv)
1213		datalen -= ctx->digestsize;
1214	if (datalen) {
1215		/* For aead, a single msg should consume the entire src sg */
1216		written = spu_msg_sg_add(&sg, &rctx->src_sg, &rctx->src_skip,
1217					 rctx->src_nents, datalen);
1218		if (written < datalen) {
1219			pr_err("%s(): failed to copy src sg to mbox msg",
1220			       __func__);
1221			return -EFAULT;
1222		}
1223	}
1224
1225	if (pad_len) {
1226		memset(rctx->msg_buf.spu_req_pad, 0, pad_len);
1227		sg_set_buf(sg++, rctx->msg_buf.spu_req_pad, pad_len);
1228	}
1229
1230	if (incl_icv)
1231		sg_set_buf(sg++, rctx->msg_buf.digest, ctx->digestsize);
1232
1233	stat_len = spu->spu_tx_status_len();
1234	if (stat_len) {
1235		memset(rctx->msg_buf.tx_stat, 0, stat_len);
1236		sg_set_buf(sg, rctx->msg_buf.tx_stat, stat_len);
1237	}
1238	return 0;
1239}
1240
1241/**
1242 * handle_aead_req() - Submit a SPU request message for the next chunk of the
1243 * current AEAD request.
1244 * @rctx:  Crypto request context
1245 *
1246 * Unlike other operation types, we assume the length of the request fits in
1247 * a single SPU request message. aead_enqueue() makes sure this is true.
1248 * Comments for other op types regarding threads applies here as well.
1249 *
1250 * Unlike incremental hash ops, where the spu returns the entire hash for
1251 * truncated algs like sha-224, the SPU returns just the truncated hash in
1252 * response to aead requests. So digestsize is always ctx->digestsize here.
1253 *
1254 * Return: -EINPROGRESS: crypto request has been accepted and result will be
1255 *			 returned asynchronously
1256 *         Any other value indicates an error
1257 */
1258static int handle_aead_req(struct iproc_reqctx_s *rctx)
1259{
1260	struct spu_hw *spu = &iproc_priv.spu;
1261	struct crypto_async_request *areq = rctx->parent;
1262	struct aead_request *req = container_of(areq,
1263						struct aead_request, base);
1264	struct iproc_ctx_s *ctx = rctx->ctx;
1265	int err;
1266	unsigned int chunksize;
1267	unsigned int resp_len;
1268	u32 spu_hdr_len;
1269	u32 db_size;
1270	u32 stat_pad_len;
1271	u32 pad_len;
1272	struct brcm_message *mssg;	/* mailbox message */
1273	struct spu_request_opts req_opts;
1274	struct spu_cipher_parms cipher_parms;
1275	struct spu_hash_parms hash_parms;
1276	struct spu_aead_parms aead_parms;
1277	int assoc_nents = 0;
1278	bool incl_icv = false;
1279	unsigned int digestsize = ctx->digestsize;
1280
1281	/* number of entries in src and dst sg. Always includes SPU msg header.
1282	 */
1283	u8 rx_frag_num = 2;	/* and STATUS */
1284	u8 tx_frag_num = 1;
1285
1286	/* doing the whole thing at once */
1287	chunksize = rctx->total_todo;
1288
1289	flow_log("%s: chunksize %u\n", __func__, chunksize);
1290
1291	memset(&req_opts, 0, sizeof(req_opts));
1292	memset(&hash_parms, 0, sizeof(hash_parms));
1293	memset(&aead_parms, 0, sizeof(aead_parms));
1294
1295	req_opts.is_inbound = !(rctx->is_encrypt);
1296	req_opts.auth_first = ctx->auth_first;
1297	req_opts.is_aead = true;
1298	req_opts.is_esp = ctx->is_esp;
1299
1300	cipher_parms.alg = ctx->cipher.alg;
1301	cipher_parms.mode = ctx->cipher.mode;
1302	cipher_parms.type = ctx->cipher_type;
1303	cipher_parms.key_buf = ctx->enckey;
1304	cipher_parms.key_len = ctx->enckeylen;
1305	cipher_parms.iv_buf = rctx->msg_buf.iv_ctr;
1306	cipher_parms.iv_len = rctx->iv_ctr_len;
1307
1308	hash_parms.alg = ctx->auth.alg;
1309	hash_parms.mode = ctx->auth.mode;
1310	hash_parms.type = HASH_TYPE_NONE;
1311	hash_parms.key_buf = (u8 *)ctx->authkey;
1312	hash_parms.key_len = ctx->authkeylen;
1313	hash_parms.digestsize = digestsize;
1314
1315	if ((ctx->auth.alg == HASH_ALG_SHA224) &&
1316	    (ctx->authkeylen < SHA224_DIGEST_SIZE))
1317		hash_parms.key_len = SHA224_DIGEST_SIZE;
1318
1319	aead_parms.assoc_size = req->assoclen;
1320	if (ctx->is_esp && !ctx->is_rfc4543) {
1321		/*
1322		 * 8-byte IV is included assoc data in request. SPU2
1323		 * expects AAD to include just SPI and seqno. So
1324		 * subtract off the IV len.
1325		 */
1326		aead_parms.assoc_size -= GCM_RFC4106_IV_SIZE;
1327
1328		if (rctx->is_encrypt) {
1329			aead_parms.return_iv = true;
1330			aead_parms.ret_iv_len = GCM_RFC4106_IV_SIZE;
1331			aead_parms.ret_iv_off = GCM_ESP_SALT_SIZE;
1332		}
1333	} else {
1334		aead_parms.ret_iv_len = 0;
1335	}
1336
1337	/*
1338	 * Count number of sg entries from the crypto API request that are to
1339	 * be included in this mailbox message. For dst sg, don't count space
1340	 * for digest. Digest gets caught in a separate buffer and copied back
1341	 * to dst sg when processing response.
1342	 */
1343	rctx->src_nents = spu_sg_count(rctx->src_sg, rctx->src_skip, chunksize);
1344	rctx->dst_nents = spu_sg_count(rctx->dst_sg, rctx->dst_skip, chunksize);
1345	if (aead_parms.assoc_size)
1346		assoc_nents = spu_sg_count(rctx->assoc, 0,
1347					   aead_parms.assoc_size);
1348
1349	mssg = &rctx->mb_mssg;
1350
1351	rctx->total_sent = chunksize;
1352	rctx->src_sent = chunksize;
1353	if (spu->spu_assoc_resp_len(ctx->cipher.mode,
1354				    aead_parms.assoc_size,
1355				    aead_parms.ret_iv_len,
1356				    rctx->is_encrypt))
1357		rx_frag_num++;
1358
1359	aead_parms.iv_len = spu->spu_aead_ivlen(ctx->cipher.mode,
1360						rctx->iv_ctr_len);
1361
1362	if (ctx->auth.alg == HASH_ALG_AES)
1363		hash_parms.type = (enum hash_type)ctx->cipher_type;
1364
1365	/* General case AAD padding (CCM and RFC4543 special cases below) */
1366	aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1367						 aead_parms.assoc_size);
1368
1369	/* General case data padding (CCM decrypt special case below) */
1370	aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1371							   chunksize);
1372
1373	if (ctx->cipher.mode == CIPHER_MODE_CCM) {
1374		/*
1375		 * for CCM, AAD len + 2 (rather than AAD len) needs to be
1376		 * 128-bit aligned
1377		 */
1378		aead_parms.aad_pad_len = spu->spu_gcm_ccm_pad_len(
1379					 ctx->cipher.mode,
1380					 aead_parms.assoc_size + 2);
1381
1382		/*
1383		 * And when decrypting CCM, need to pad without including
1384		 * size of ICV which is tacked on to end of chunk
1385		 */
1386		if (!rctx->is_encrypt)
1387			aead_parms.data_pad_len =
1388				spu->spu_gcm_ccm_pad_len(ctx->cipher.mode,
1389							chunksize - digestsize);
1390
1391		/* CCM also requires software to rewrite portions of IV: */
1392		spu->spu_ccm_update_iv(digestsize, &cipher_parms, req->assoclen,
1393				       chunksize, rctx->is_encrypt,
1394				       ctx->is_esp);
1395	}
1396
1397	if (ctx->is_rfc4543) {
1398		/*
1399		 * RFC4543: data is included in AAD, so don't pad after AAD
1400		 * and pad data based on both AAD + data size
1401		 */
1402		aead_parms.aad_pad_len = 0;
1403		if (!rctx->is_encrypt)
1404			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1405					ctx->cipher.mode,
1406					aead_parms.assoc_size + chunksize -
1407					digestsize);
1408		else
1409			aead_parms.data_pad_len = spu->spu_gcm_ccm_pad_len(
1410					ctx->cipher.mode,
1411					aead_parms.assoc_size + chunksize);
1412
1413		req_opts.is_rfc4543 = true;
1414	}
1415
1416	if (spu_req_incl_icv(ctx->cipher.mode, rctx->is_encrypt)) {
1417		incl_icv = true;
1418		tx_frag_num++;
1419		/* Copy ICV from end of src scatterlist to digest buf */
1420		sg_copy_part_to_buf(req->src, rctx->msg_buf.digest, digestsize,
1421				    req->assoclen + rctx->total_sent -
1422				    digestsize);
1423	}
1424
1425	atomic64_add(chunksize, &iproc_priv.bytes_out);
1426
1427	flow_log("%s()-sent chunksize:%u\n", __func__, chunksize);
1428
1429	/* Prepend SPU header with type 3 BCM header */
1430	memcpy(rctx->msg_buf.bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1431
1432	spu_hdr_len = spu->spu_create_request(rctx->msg_buf.bcm_spu_req_hdr +
1433					      BCM_HDR_LEN, &req_opts,
1434					      &cipher_parms, &hash_parms,
1435					      &aead_parms, chunksize);
1436
1437	/* Determine total length of padding. Put all padding in one buffer. */
1438	db_size = spu_real_db_size(aead_parms.assoc_size, aead_parms.iv_len, 0,
1439				   chunksize, aead_parms.aad_pad_len,
1440				   aead_parms.data_pad_len, 0);
1441
1442	stat_pad_len = spu->spu_wordalign_padlen(db_size);
1443
1444	if (stat_pad_len)
1445		rx_frag_num++;
1446	pad_len = aead_parms.data_pad_len + stat_pad_len;
1447	if (pad_len) {
1448		tx_frag_num++;
1449		spu->spu_request_pad(rctx->msg_buf.spu_req_pad,
1450				     aead_parms.data_pad_len, 0,
1451				     ctx->auth.alg, ctx->auth.mode,
1452				     rctx->total_sent, stat_pad_len);
1453	}
1454
1455	spu->spu_dump_msg_hdr(rctx->msg_buf.bcm_spu_req_hdr + BCM_HDR_LEN,
1456			      spu_hdr_len);
1457	dump_sg(rctx->assoc, 0, aead_parms.assoc_size);
1458	packet_dump("    aead iv: ", rctx->msg_buf.iv_ctr, aead_parms.iv_len);
1459	packet_log("BD:\n");
1460	dump_sg(rctx->src_sg, rctx->src_skip, chunksize);
1461	packet_dump("   pad: ", rctx->msg_buf.spu_req_pad, pad_len);
1462
1463	/*
1464	 * Build mailbox message containing SPU request msg and rx buffers
1465	 * to catch response message
1466	 */
1467	memset(mssg, 0, sizeof(*mssg));
1468	mssg->type = BRCM_MESSAGE_SPU;
1469	mssg->ctx = rctx;	/* Will be returned in response */
1470
1471	/* Create rx scatterlist to catch result */
1472	rx_frag_num += rctx->dst_nents;
1473	resp_len = chunksize;
1474
1475	/*
1476	 * Always catch ICV in separate buffer. Have to for GCM/CCM because of
1477	 * padding. Have to for SHA-224 and other truncated SHAs because SPU
1478	 * sends entire digest back.
1479	 */
1480	rx_frag_num++;
1481
1482	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
1483	     (ctx->cipher.mode == CIPHER_MODE_CCM)) && !rctx->is_encrypt) {
1484		/*
1485		 * Input is ciphertxt plus ICV, but ICV not incl
1486		 * in output.
1487		 */
1488		resp_len -= ctx->digestsize;
1489		if (resp_len == 0)
1490			/* no rx frags to catch output data */
1491			rx_frag_num -= rctx->dst_nents;
1492	}
1493
1494	err = spu_aead_rx_sg_create(mssg, req, rctx, rx_frag_num,
1495				    aead_parms.assoc_size,
1496				    aead_parms.ret_iv_len, resp_len, digestsize,
1497				    stat_pad_len);
1498	if (err)
1499		return err;
1500
1501	/* Create tx scatterlist containing SPU request message */
1502	tx_frag_num += rctx->src_nents;
1503	tx_frag_num += assoc_nents;
1504	if (aead_parms.aad_pad_len)
1505		tx_frag_num++;
1506	if (aead_parms.iv_len)
1507		tx_frag_num++;
1508	if (spu->spu_tx_status_len())
1509		tx_frag_num++;
1510	err = spu_aead_tx_sg_create(mssg, rctx, tx_frag_num, spu_hdr_len,
1511				    rctx->assoc, aead_parms.assoc_size,
1512				    assoc_nents, aead_parms.iv_len, chunksize,
1513				    aead_parms.aad_pad_len, pad_len, incl_icv);
1514	if (err)
1515		return err;
1516
1517	err = mailbox_send_message(mssg, req->base.flags, rctx->chan_idx);
1518	if (unlikely(err < 0))
1519		return err;
1520
1521	return -EINPROGRESS;
1522}
1523
1524/**
1525 * handle_aead_resp() - Process a SPU response message for an AEAD request.
1526 * @rctx:  Crypto request context
1527 */
1528static void handle_aead_resp(struct iproc_reqctx_s *rctx)
1529{
1530	struct spu_hw *spu = &iproc_priv.spu;
1531	struct crypto_async_request *areq = rctx->parent;
1532	struct aead_request *req = container_of(areq,
1533						struct aead_request, base);
1534	struct iproc_ctx_s *ctx = rctx->ctx;
1535	u32 payload_len;
1536	unsigned int icv_offset;
1537	u32 result_len;
1538
1539	/* See how much data was returned */
1540	payload_len = spu->spu_payload_length(rctx->msg_buf.spu_resp_hdr);
1541	flow_log("payload_len %u\n", payload_len);
1542
1543	/* only count payload */
1544	atomic64_add(payload_len, &iproc_priv.bytes_in);
1545
1546	if (req->assoclen)
1547		packet_dump("  assoc_data ", rctx->msg_buf.a.resp_aad,
1548			    req->assoclen);
1549
1550	/*
1551	 * Copy the ICV back to the destination
1552	 * buffer. In decrypt case, SPU gives us back the digest, but crypto
1553	 * API doesn't expect ICV in dst buffer.
1554	 */
1555	result_len = req->cryptlen;
1556	if (rctx->is_encrypt) {
1557		icv_offset = req->assoclen + rctx->total_sent;
1558		packet_dump("  ICV: ", rctx->msg_buf.digest, ctx->digestsize);
1559		flow_log("copying ICV to dst sg at offset %u\n", icv_offset);
1560		sg_copy_part_from_buf(req->dst, rctx->msg_buf.digest,
1561				      ctx->digestsize, icv_offset);
1562		result_len += ctx->digestsize;
1563	}
1564
1565	packet_log("response data:  ");
1566	dump_sg(req->dst, req->assoclen, result_len);
1567
1568	atomic_inc(&iproc_priv.op_counts[SPU_OP_AEAD]);
1569	if (ctx->cipher.alg == CIPHER_ALG_AES) {
1570		if (ctx->cipher.mode == CIPHER_MODE_CCM)
1571			atomic_inc(&iproc_priv.aead_cnt[AES_CCM]);
1572		else if (ctx->cipher.mode == CIPHER_MODE_GCM)
1573			atomic_inc(&iproc_priv.aead_cnt[AES_GCM]);
1574		else
1575			atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1576	} else {
1577		atomic_inc(&iproc_priv.aead_cnt[AUTHENC]);
1578	}
1579}
1580
1581/**
1582 * spu_chunk_cleanup() - Do cleanup after processing one chunk of a request
1583 * @rctx:  request context
1584 *
1585 * Mailbox scatterlists are allocated for each chunk. So free them after
1586 * processing each chunk.
1587 */
1588static void spu_chunk_cleanup(struct iproc_reqctx_s *rctx)
1589{
1590	/* mailbox message used to tx request */
1591	struct brcm_message *mssg = &rctx->mb_mssg;
1592
1593	kfree(mssg->spu.src);
1594	kfree(mssg->spu.dst);
1595	memset(mssg, 0, sizeof(struct brcm_message));
1596}
1597
1598/**
1599 * finish_req() - Used to invoke the complete callback from the requester when
1600 * a request has been handled asynchronously.
1601 * @rctx:  Request context
1602 * @err:   Indicates whether the request was successful or not
1603 *
1604 * Ensures that cleanup has been done for request
1605 */
1606static void finish_req(struct iproc_reqctx_s *rctx, int err)
1607{
1608	struct crypto_async_request *areq = rctx->parent;
1609
1610	flow_log("%s() err:%d\n\n", __func__, err);
1611
1612	/* No harm done if already called */
1613	spu_chunk_cleanup(rctx);
1614
1615	if (areq)
1616		crypto_request_complete(areq, err);
1617}
1618
1619/**
1620 * spu_rx_callback() - Callback from mailbox framework with a SPU response.
1621 * @cl:		mailbox client structure for SPU driver
1622 * @msg:	mailbox message containing SPU response
1623 */
1624static void spu_rx_callback(struct mbox_client *cl, void *msg)
1625{
1626	struct spu_hw *spu = &iproc_priv.spu;
1627	struct brcm_message *mssg = msg;
1628	struct iproc_reqctx_s *rctx;
1629	int err;
1630
1631	rctx = mssg->ctx;
1632	if (unlikely(!rctx)) {
1633		/* This is fatal */
1634		pr_err("%s(): no request context", __func__);
1635		err = -EFAULT;
1636		goto cb_finish;
1637	}
1638
1639	/* process the SPU status */
1640	err = spu->spu_status_process(rctx->msg_buf.rx_stat);
1641	if (err != 0) {
1642		if (err == SPU_INVALID_ICV)
1643			atomic_inc(&iproc_priv.bad_icv);
1644		err = -EBADMSG;
1645		goto cb_finish;
1646	}
1647
1648	/* Process the SPU response message */
1649	switch (rctx->ctx->alg->type) {
1650	case CRYPTO_ALG_TYPE_SKCIPHER:
1651		handle_skcipher_resp(rctx);
1652		break;
1653	case CRYPTO_ALG_TYPE_AHASH:
1654		handle_ahash_resp(rctx);
1655		break;
1656	case CRYPTO_ALG_TYPE_AEAD:
1657		handle_aead_resp(rctx);
1658		break;
1659	default:
1660		err = -EINVAL;
1661		goto cb_finish;
1662	}
1663
1664	/*
1665	 * If this response does not complete the request, then send the next
1666	 * request chunk.
1667	 */
1668	if (rctx->total_sent < rctx->total_todo) {
1669		/* Deallocate anything specific to previous chunk */
1670		spu_chunk_cleanup(rctx);
1671
1672		switch (rctx->ctx->alg->type) {
1673		case CRYPTO_ALG_TYPE_SKCIPHER:
1674			err = handle_skcipher_req(rctx);
1675			break;
1676		case CRYPTO_ALG_TYPE_AHASH:
1677			err = handle_ahash_req(rctx);
1678			if (err == -EAGAIN)
1679				/*
1680				 * we saved data in hash carry, but tell crypto
1681				 * API we successfully completed request.
1682				 */
1683				err = 0;
1684			break;
1685		case CRYPTO_ALG_TYPE_AEAD:
1686			err = handle_aead_req(rctx);
1687			break;
1688		default:
1689			err = -EINVAL;
1690		}
1691
1692		if (err == -EINPROGRESS)
1693			/* Successfully submitted request for next chunk */
1694			return;
1695	}
1696
1697cb_finish:
1698	finish_req(rctx, err);
1699}
1700
1701/* ==================== Kernel Cryptographic API ==================== */
1702
1703/**
1704 * skcipher_enqueue() - Handle skcipher encrypt or decrypt request.
1705 * @req:	Crypto API request
1706 * @encrypt:	true if encrypting; false if decrypting
1707 *
1708 * Return: -EINPROGRESS if request accepted and result will be returned
1709 *			asynchronously
1710 *	   < 0 if an error
1711 */
1712static int skcipher_enqueue(struct skcipher_request *req, bool encrypt)
1713{
1714	struct iproc_reqctx_s *rctx = skcipher_request_ctx(req);
1715	struct iproc_ctx_s *ctx =
1716	    crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
1717	int err;
1718
1719	flow_log("%s() enc:%u\n", __func__, encrypt);
1720
1721	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1722		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1723	rctx->parent = &req->base;
1724	rctx->is_encrypt = encrypt;
1725	rctx->bd_suppress = false;
1726	rctx->total_todo = req->cryptlen;
1727	rctx->src_sent = 0;
1728	rctx->total_sent = 0;
1729	rctx->total_received = 0;
1730	rctx->ctx = ctx;
1731
1732	/* Initialize current position in src and dst scatterlists */
1733	rctx->src_sg = req->src;
1734	rctx->src_nents = 0;
1735	rctx->src_skip = 0;
1736	rctx->dst_sg = req->dst;
1737	rctx->dst_nents = 0;
1738	rctx->dst_skip = 0;
1739
1740	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
1741	    ctx->cipher.mode == CIPHER_MODE_CTR ||
1742	    ctx->cipher.mode == CIPHER_MODE_OFB ||
1743	    ctx->cipher.mode == CIPHER_MODE_XTS ||
1744	    ctx->cipher.mode == CIPHER_MODE_GCM ||
1745	    ctx->cipher.mode == CIPHER_MODE_CCM) {
1746		rctx->iv_ctr_len =
1747		    crypto_skcipher_ivsize(crypto_skcipher_reqtfm(req));
1748		memcpy(rctx->msg_buf.iv_ctr, req->iv, rctx->iv_ctr_len);
1749	} else {
1750		rctx->iv_ctr_len = 0;
1751	}
1752
1753	/* Choose a SPU to process this request */
1754	rctx->chan_idx = select_channel();
1755	err = handle_skcipher_req(rctx);
1756	if (err != -EINPROGRESS)
1757		/* synchronous result */
1758		spu_chunk_cleanup(rctx);
1759
1760	return err;
1761}
1762
1763static int des_setkey(struct crypto_skcipher *cipher, const u8 *key,
1764		      unsigned int keylen)
1765{
1766	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1767	int err;
1768
1769	err = verify_skcipher_des_key(cipher, key);
1770	if (err)
1771		return err;
1772
1773	ctx->cipher_type = CIPHER_TYPE_DES;
1774	return 0;
1775}
1776
1777static int threedes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1778			   unsigned int keylen)
1779{
1780	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1781	int err;
1782
1783	err = verify_skcipher_des3_key(cipher, key);
1784	if (err)
1785		return err;
1786
1787	ctx->cipher_type = CIPHER_TYPE_3DES;
1788	return 0;
1789}
1790
1791static int aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
1792		      unsigned int keylen)
1793{
1794	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1795
1796	if (ctx->cipher.mode == CIPHER_MODE_XTS)
1797		/* XTS includes two keys of equal length */
1798		keylen = keylen / 2;
1799
1800	switch (keylen) {
1801	case AES_KEYSIZE_128:
1802		ctx->cipher_type = CIPHER_TYPE_AES128;
1803		break;
1804	case AES_KEYSIZE_192:
1805		ctx->cipher_type = CIPHER_TYPE_AES192;
1806		break;
1807	case AES_KEYSIZE_256:
1808		ctx->cipher_type = CIPHER_TYPE_AES256;
1809		break;
1810	default:
1811		return -EINVAL;
1812	}
1813	WARN_ON((ctx->max_payload != SPU_MAX_PAYLOAD_INF) &&
1814		((ctx->max_payload % AES_BLOCK_SIZE) != 0));
1815	return 0;
1816}
1817
1818static int skcipher_setkey(struct crypto_skcipher *cipher, const u8 *key,
1819			     unsigned int keylen)
1820{
1821	struct spu_hw *spu = &iproc_priv.spu;
1822	struct iproc_ctx_s *ctx = crypto_skcipher_ctx(cipher);
1823	struct spu_cipher_parms cipher_parms;
1824	u32 alloc_len = 0;
1825	int err;
1826
1827	flow_log("skcipher_setkey() keylen: %d\n", keylen);
1828	flow_dump("  key: ", key, keylen);
1829
1830	switch (ctx->cipher.alg) {
1831	case CIPHER_ALG_DES:
1832		err = des_setkey(cipher, key, keylen);
1833		break;
1834	case CIPHER_ALG_3DES:
1835		err = threedes_setkey(cipher, key, keylen);
1836		break;
1837	case CIPHER_ALG_AES:
1838		err = aes_setkey(cipher, key, keylen);
1839		break;
1840	default:
1841		pr_err("%s() Error: unknown cipher alg\n", __func__);
1842		err = -EINVAL;
1843	}
1844	if (err)
1845		return err;
1846
1847	memcpy(ctx->enckey, key, keylen);
1848	ctx->enckeylen = keylen;
1849
1850	/* SPU needs XTS keys in the reverse order the crypto API presents */
1851	if ((ctx->cipher.alg == CIPHER_ALG_AES) &&
1852	    (ctx->cipher.mode == CIPHER_MODE_XTS)) {
1853		unsigned int xts_keylen = keylen / 2;
1854
1855		memcpy(ctx->enckey, key + xts_keylen, xts_keylen);
1856		memcpy(ctx->enckey + xts_keylen, key, xts_keylen);
1857	}
1858
1859	if (spu->spu_type == SPU_TYPE_SPUM)
1860		alloc_len = BCM_HDR_LEN + SPU_HEADER_ALLOC_LEN;
1861	else if (spu->spu_type == SPU_TYPE_SPU2)
1862		alloc_len = BCM_HDR_LEN + SPU2_HEADER_ALLOC_LEN;
1863	memset(ctx->bcm_spu_req_hdr, 0, alloc_len);
1864	cipher_parms.iv_buf = NULL;
1865	cipher_parms.iv_len = crypto_skcipher_ivsize(cipher);
1866	flow_log("%s: iv_len %u\n", __func__, cipher_parms.iv_len);
1867
1868	cipher_parms.alg = ctx->cipher.alg;
1869	cipher_parms.mode = ctx->cipher.mode;
1870	cipher_parms.type = ctx->cipher_type;
1871	cipher_parms.key_buf = ctx->enckey;
1872	cipher_parms.key_len = ctx->enckeylen;
1873
1874	/* Prepend SPU request message with BCM header */
1875	memcpy(ctx->bcm_spu_req_hdr, BCMHEADER, BCM_HDR_LEN);
1876	ctx->spu_req_hdr_len =
1877	    spu->spu_cipher_req_init(ctx->bcm_spu_req_hdr + BCM_HDR_LEN,
1878				     &cipher_parms);
1879
1880	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
1881							  ctx->enckeylen,
1882							  false);
1883
1884	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_CIPHER]);
1885
1886	return 0;
1887}
1888
1889static int skcipher_encrypt(struct skcipher_request *req)
1890{
1891	flow_log("skcipher_encrypt() nbytes:%u\n", req->cryptlen);
1892
1893	return skcipher_enqueue(req, true);
1894}
1895
1896static int skcipher_decrypt(struct skcipher_request *req)
1897{
1898	flow_log("skcipher_decrypt() nbytes:%u\n", req->cryptlen);
1899	return skcipher_enqueue(req, false);
1900}
1901
1902static int ahash_enqueue(struct ahash_request *req)
1903{
1904	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1905	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1906	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1907	int err;
1908	const char *alg_name;
1909
1910	flow_log("ahash_enqueue() nbytes:%u\n", req->nbytes);
1911
1912	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
1913		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
1914	rctx->parent = &req->base;
1915	rctx->ctx = ctx;
1916	rctx->bd_suppress = true;
1917	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
1918
1919	/* Initialize position in src scatterlist */
1920	rctx->src_sg = req->src;
1921	rctx->src_skip = 0;
1922	rctx->src_nents = 0;
1923	rctx->dst_sg = NULL;
1924	rctx->dst_skip = 0;
1925	rctx->dst_nents = 0;
1926
1927	/* SPU2 hardware does not compute hash of zero length data */
1928	if ((rctx->is_final == 1) && (rctx->total_todo == 0) &&
1929	    (iproc_priv.spu.spu_type == SPU_TYPE_SPU2)) {
1930		alg_name = crypto_ahash_alg_name(tfm);
1931		flow_log("Doing %sfinal %s zero-len hash request in software\n",
1932			 rctx->is_final ? "" : "non-", alg_name);
1933		err = do_shash((unsigned char *)alg_name, req->result,
1934			       NULL, 0, NULL, 0, ctx->authkey,
1935			       ctx->authkeylen);
1936		if (err < 0)
1937			flow_log("Hash request failed with error %d\n", err);
1938		return err;
1939	}
1940	/* Choose a SPU to process this request */
1941	rctx->chan_idx = select_channel();
1942
1943	err = handle_ahash_req(rctx);
1944	if (err != -EINPROGRESS)
1945		/* synchronous result */
1946		spu_chunk_cleanup(rctx);
1947
1948	if (err == -EAGAIN)
1949		/*
1950		 * we saved data in hash carry, but tell crypto API
1951		 * we successfully completed request.
1952		 */
1953		err = 0;
1954
1955	return err;
1956}
1957
1958static int __ahash_init(struct ahash_request *req)
1959{
1960	struct spu_hw *spu = &iproc_priv.spu;
1961	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
1962	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1963	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
1964
1965	flow_log("%s()\n", __func__);
1966
1967	/* Initialize the context */
1968	rctx->hash_carry_len = 0;
1969	rctx->is_final = 0;
1970
1971	rctx->total_todo = 0;
1972	rctx->src_sent = 0;
1973	rctx->total_sent = 0;
1974	rctx->total_received = 0;
1975
1976	ctx->digestsize = crypto_ahash_digestsize(tfm);
1977	/* If we add a hash whose digest is larger, catch it here. */
1978	WARN_ON(ctx->digestsize > MAX_DIGEST_SIZE);
1979
1980	rctx->is_sw_hmac = false;
1981
1982	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen, 0,
1983							  true);
1984
1985	return 0;
1986}
1987
1988/**
1989 * spu_no_incr_hash() - Determine whether incremental hashing is supported.
1990 * @ctx:  Crypto session context
1991 *
1992 * SPU-2 does not support incremental hashing (we'll have to revisit and
1993 * condition based on chip revision or device tree entry if future versions do
1994 * support incremental hash)
1995 *
1996 * SPU-M also doesn't support incremental hashing of AES-XCBC
1997 *
1998 * Return: true if incremental hashing is not supported
1999 *         false otherwise
2000 */
2001static bool spu_no_incr_hash(struct iproc_ctx_s *ctx)
2002{
2003	struct spu_hw *spu = &iproc_priv.spu;
2004
2005	if (spu->spu_type == SPU_TYPE_SPU2)
2006		return true;
2007
2008	if ((ctx->auth.alg == HASH_ALG_AES) &&
2009	    (ctx->auth.mode == HASH_MODE_XCBC))
2010		return true;
2011
2012	/* Otherwise, incremental hashing is supported */
2013	return false;
2014}
2015
2016static int ahash_init(struct ahash_request *req)
2017{
2018	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2019	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2020	const char *alg_name;
2021	struct crypto_shash *hash;
2022	int ret;
2023	gfp_t gfp;
2024
2025	if (spu_no_incr_hash(ctx)) {
2026		/*
2027		 * If we get an incremental hashing request and it's not
2028		 * supported by the hardware, we need to handle it in software
2029		 * by calling synchronous hash functions.
2030		 */
2031		alg_name = crypto_ahash_alg_name(tfm);
2032		hash = crypto_alloc_shash(alg_name, 0, 0);
2033		if (IS_ERR(hash)) {
2034			ret = PTR_ERR(hash);
2035			goto err;
2036		}
2037
2038		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2039		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2040		ctx->shash = kmalloc(sizeof(*ctx->shash) +
2041				     crypto_shash_descsize(hash), gfp);
2042		if (!ctx->shash) {
2043			ret = -ENOMEM;
2044			goto err_hash;
2045		}
2046		ctx->shash->tfm = hash;
2047
2048		/* Set the key using data we already have from setkey */
2049		if (ctx->authkeylen > 0) {
2050			ret = crypto_shash_setkey(hash, ctx->authkey,
2051						  ctx->authkeylen);
2052			if (ret)
2053				goto err_shash;
2054		}
2055
2056		/* Initialize hash w/ this key and other params */
2057		ret = crypto_shash_init(ctx->shash);
2058		if (ret)
2059			goto err_shash;
2060	} else {
2061		/* Otherwise call the internal function which uses SPU hw */
2062		ret = __ahash_init(req);
2063	}
2064
2065	return ret;
2066
2067err_shash:
2068	kfree(ctx->shash);
2069err_hash:
2070	crypto_free_shash(hash);
2071err:
2072	return ret;
2073}
2074
2075static int __ahash_update(struct ahash_request *req)
2076{
2077	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2078
2079	flow_log("ahash_update() nbytes:%u\n", req->nbytes);
2080
2081	if (!req->nbytes)
2082		return 0;
2083	rctx->total_todo += req->nbytes;
2084	rctx->src_sent = 0;
2085
2086	return ahash_enqueue(req);
2087}
2088
2089static int ahash_update(struct ahash_request *req)
2090{
2091	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2092	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2093	u8 *tmpbuf;
2094	int ret;
2095	int nents;
2096	gfp_t gfp;
2097
2098	if (spu_no_incr_hash(ctx)) {
2099		/*
2100		 * If we get an incremental hashing request and it's not
2101		 * supported by the hardware, we need to handle it in software
2102		 * by calling synchronous hash functions.
2103		 */
2104		if (req->src)
2105			nents = sg_nents(req->src);
2106		else
2107			return -EINVAL;
2108
2109		/* Copy data from req scatterlist to tmp buffer */
2110		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2111		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2112		tmpbuf = kmalloc(req->nbytes, gfp);
2113		if (!tmpbuf)
2114			return -ENOMEM;
2115
2116		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2117				req->nbytes) {
2118			kfree(tmpbuf);
2119			return -EINVAL;
2120		}
2121
2122		/* Call synchronous update */
2123		ret = crypto_shash_update(ctx->shash, tmpbuf, req->nbytes);
2124		kfree(tmpbuf);
2125	} else {
2126		/* Otherwise call the internal function which uses SPU hw */
2127		ret = __ahash_update(req);
2128	}
2129
2130	return ret;
2131}
2132
2133static int __ahash_final(struct ahash_request *req)
2134{
2135	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2136
2137	flow_log("ahash_final() nbytes:%u\n", req->nbytes);
2138
2139	rctx->is_final = 1;
2140
2141	return ahash_enqueue(req);
2142}
2143
2144static int ahash_final(struct ahash_request *req)
2145{
2146	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2147	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2148	int ret;
2149
2150	if (spu_no_incr_hash(ctx)) {
2151		/*
2152		 * If we get an incremental hashing request and it's not
2153		 * supported by the hardware, we need to handle it in software
2154		 * by calling synchronous hash functions.
2155		 */
2156		ret = crypto_shash_final(ctx->shash, req->result);
2157
2158		/* Done with hash, can deallocate it now */
2159		crypto_free_shash(ctx->shash->tfm);
2160		kfree(ctx->shash);
2161
2162	} else {
2163		/* Otherwise call the internal function which uses SPU hw */
2164		ret = __ahash_final(req);
2165	}
2166
2167	return ret;
2168}
2169
2170static int __ahash_finup(struct ahash_request *req)
2171{
2172	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2173
2174	flow_log("ahash_finup() nbytes:%u\n", req->nbytes);
2175
2176	rctx->total_todo += req->nbytes;
2177	rctx->src_sent = 0;
2178	rctx->is_final = 1;
2179
2180	return ahash_enqueue(req);
2181}
2182
2183static int ahash_finup(struct ahash_request *req)
2184{
2185	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2186	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2187	u8 *tmpbuf;
2188	int ret;
2189	int nents;
2190	gfp_t gfp;
2191
2192	if (spu_no_incr_hash(ctx)) {
2193		/*
2194		 * If we get an incremental hashing request and it's not
2195		 * supported by the hardware, we need to handle it in software
2196		 * by calling synchronous hash functions.
2197		 */
2198		if (req->src) {
2199			nents = sg_nents(req->src);
2200		} else {
2201			ret = -EINVAL;
2202			goto ahash_finup_exit;
2203		}
2204
2205		/* Copy data from req scatterlist to tmp buffer */
2206		gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2207		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2208		tmpbuf = kmalloc(req->nbytes, gfp);
2209		if (!tmpbuf) {
2210			ret = -ENOMEM;
2211			goto ahash_finup_exit;
2212		}
2213
2214		if (sg_copy_to_buffer(req->src, nents, tmpbuf, req->nbytes) !=
2215				req->nbytes) {
2216			ret = -EINVAL;
2217			goto ahash_finup_free;
2218		}
2219
2220		/* Call synchronous update */
2221		ret = crypto_shash_finup(ctx->shash, tmpbuf, req->nbytes,
2222					 req->result);
2223	} else {
2224		/* Otherwise call the internal function which uses SPU hw */
2225		return __ahash_finup(req);
2226	}
2227ahash_finup_free:
2228	kfree(tmpbuf);
2229
2230ahash_finup_exit:
2231	/* Done with hash, can deallocate it now */
2232	crypto_free_shash(ctx->shash->tfm);
2233	kfree(ctx->shash);
2234	return ret;
2235}
2236
2237static int ahash_digest(struct ahash_request *req)
2238{
2239	int err;
2240
2241	flow_log("ahash_digest() nbytes:%u\n", req->nbytes);
2242
2243	/* whole thing at once */
2244	err = __ahash_init(req);
2245	if (!err)
2246		err = __ahash_finup(req);
2247
2248	return err;
2249}
2250
2251static int ahash_setkey(struct crypto_ahash *ahash, const u8 *key,
2252			unsigned int keylen)
2253{
2254	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2255
2256	flow_log("%s() ahash:%p key:%p keylen:%u\n",
2257		 __func__, ahash, key, keylen);
2258	flow_dump("  key: ", key, keylen);
2259
2260	if (ctx->auth.alg == HASH_ALG_AES) {
2261		switch (keylen) {
2262		case AES_KEYSIZE_128:
2263			ctx->cipher_type = CIPHER_TYPE_AES128;
2264			break;
2265		case AES_KEYSIZE_192:
2266			ctx->cipher_type = CIPHER_TYPE_AES192;
2267			break;
2268		case AES_KEYSIZE_256:
2269			ctx->cipher_type = CIPHER_TYPE_AES256;
2270			break;
2271		default:
2272			pr_err("%s() Error: Invalid key length\n", __func__);
2273			return -EINVAL;
2274		}
2275	} else {
2276		pr_err("%s() Error: unknown hash alg\n", __func__);
2277		return -EINVAL;
2278	}
2279	memcpy(ctx->authkey, key, keylen);
2280	ctx->authkeylen = keylen;
2281
2282	return 0;
2283}
2284
2285static int ahash_export(struct ahash_request *req, void *out)
2286{
2287	const struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2288	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)out;
2289
2290	spu_exp->total_todo = rctx->total_todo;
2291	spu_exp->total_sent = rctx->total_sent;
2292	spu_exp->is_sw_hmac = rctx->is_sw_hmac;
2293	memcpy(spu_exp->hash_carry, rctx->hash_carry, sizeof(rctx->hash_carry));
2294	spu_exp->hash_carry_len = rctx->hash_carry_len;
2295	memcpy(spu_exp->incr_hash, rctx->incr_hash, sizeof(rctx->incr_hash));
2296
2297	return 0;
2298}
2299
2300static int ahash_import(struct ahash_request *req, const void *in)
2301{
2302	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2303	struct spu_hash_export_s *spu_exp = (struct spu_hash_export_s *)in;
2304
2305	rctx->total_todo = spu_exp->total_todo;
2306	rctx->total_sent = spu_exp->total_sent;
2307	rctx->is_sw_hmac = spu_exp->is_sw_hmac;
2308	memcpy(rctx->hash_carry, spu_exp->hash_carry, sizeof(rctx->hash_carry));
2309	rctx->hash_carry_len = spu_exp->hash_carry_len;
2310	memcpy(rctx->incr_hash, spu_exp->incr_hash, sizeof(rctx->incr_hash));
2311
2312	return 0;
2313}
2314
2315static int ahash_hmac_setkey(struct crypto_ahash *ahash, const u8 *key,
2316			     unsigned int keylen)
2317{
2318	struct iproc_ctx_s *ctx = crypto_ahash_ctx(ahash);
2319	unsigned int blocksize =
2320		crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
2321	unsigned int digestsize = crypto_ahash_digestsize(ahash);
2322	unsigned int index;
2323	int rc;
2324
2325	flow_log("%s() ahash:%p key:%p keylen:%u blksz:%u digestsz:%u\n",
2326		 __func__, ahash, key, keylen, blocksize, digestsize);
2327	flow_dump("  key: ", key, keylen);
2328
2329	if (keylen > blocksize) {
2330		switch (ctx->auth.alg) {
2331		case HASH_ALG_MD5:
2332			rc = do_shash("md5", ctx->authkey, key, keylen, NULL,
2333				      0, NULL, 0);
2334			break;
2335		case HASH_ALG_SHA1:
2336			rc = do_shash("sha1", ctx->authkey, key, keylen, NULL,
2337				      0, NULL, 0);
2338			break;
2339		case HASH_ALG_SHA224:
2340			rc = do_shash("sha224", ctx->authkey, key, keylen, NULL,
2341				      0, NULL, 0);
2342			break;
2343		case HASH_ALG_SHA256:
2344			rc = do_shash("sha256", ctx->authkey, key, keylen, NULL,
2345				      0, NULL, 0);
2346			break;
2347		case HASH_ALG_SHA384:
2348			rc = do_shash("sha384", ctx->authkey, key, keylen, NULL,
2349				      0, NULL, 0);
2350			break;
2351		case HASH_ALG_SHA512:
2352			rc = do_shash("sha512", ctx->authkey, key, keylen, NULL,
2353				      0, NULL, 0);
2354			break;
2355		case HASH_ALG_SHA3_224:
2356			rc = do_shash("sha3-224", ctx->authkey, key, keylen,
2357				      NULL, 0, NULL, 0);
2358			break;
2359		case HASH_ALG_SHA3_256:
2360			rc = do_shash("sha3-256", ctx->authkey, key, keylen,
2361				      NULL, 0, NULL, 0);
2362			break;
2363		case HASH_ALG_SHA3_384:
2364			rc = do_shash("sha3-384", ctx->authkey, key, keylen,
2365				      NULL, 0, NULL, 0);
2366			break;
2367		case HASH_ALG_SHA3_512:
2368			rc = do_shash("sha3-512", ctx->authkey, key, keylen,
2369				      NULL, 0, NULL, 0);
2370			break;
2371		default:
2372			pr_err("%s() Error: unknown hash alg\n", __func__);
2373			return -EINVAL;
2374		}
2375		if (rc < 0) {
2376			pr_err("%s() Error %d computing shash for %s\n",
2377			       __func__, rc, hash_alg_name[ctx->auth.alg]);
2378			return rc;
2379		}
2380		ctx->authkeylen = digestsize;
2381
2382		flow_log("  keylen > digestsize... hashed\n");
2383		flow_dump("  newkey: ", ctx->authkey, ctx->authkeylen);
2384	} else {
2385		memcpy(ctx->authkey, key, keylen);
2386		ctx->authkeylen = keylen;
2387	}
2388
2389	/*
2390	 * Full HMAC operation in SPUM is not verified,
2391	 * So keeping the generation of IPAD, OPAD and
2392	 * outer hashing in software.
2393	 */
2394	if (iproc_priv.spu.spu_type == SPU_TYPE_SPUM) {
2395		memcpy(ctx->ipad, ctx->authkey, ctx->authkeylen);
2396		memset(ctx->ipad + ctx->authkeylen, 0,
2397		       blocksize - ctx->authkeylen);
2398		ctx->authkeylen = 0;
2399		unsafe_memcpy(ctx->opad, ctx->ipad, blocksize,
2400			      "fortified memcpy causes -Wrestrict warning");
2401
2402		for (index = 0; index < blocksize; index++) {
2403			ctx->ipad[index] ^= HMAC_IPAD_VALUE;
2404			ctx->opad[index] ^= HMAC_OPAD_VALUE;
2405		}
2406
2407		flow_dump("  ipad: ", ctx->ipad, blocksize);
2408		flow_dump("  opad: ", ctx->opad, blocksize);
2409	}
2410	ctx->digestsize = digestsize;
2411	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_HMAC]);
2412
2413	return 0;
2414}
2415
2416static int ahash_hmac_init(struct ahash_request *req)
2417{
2418	int ret;
2419	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2420	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2421	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2422	unsigned int blocksize =
2423			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2424
2425	flow_log("ahash_hmac_init()\n");
2426
2427	/* init the context as a hash */
2428	ret = ahash_init(req);
2429	if (ret)
2430		return ret;
2431
2432	if (!spu_no_incr_hash(ctx)) {
2433		/* SPU-M can do incr hashing but needs sw for outer HMAC */
2434		rctx->is_sw_hmac = true;
2435		ctx->auth.mode = HASH_MODE_HASH;
2436		/* start with a prepended ipad */
2437		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2438		rctx->hash_carry_len = blocksize;
2439		rctx->total_todo += blocksize;
2440	}
2441
2442	return 0;
2443}
2444
2445static int ahash_hmac_update(struct ahash_request *req)
2446{
2447	flow_log("ahash_hmac_update() nbytes:%u\n", req->nbytes);
2448
2449	if (!req->nbytes)
2450		return 0;
2451
2452	return ahash_update(req);
2453}
2454
2455static int ahash_hmac_final(struct ahash_request *req)
2456{
2457	flow_log("ahash_hmac_final() nbytes:%u\n", req->nbytes);
2458
2459	return ahash_final(req);
2460}
2461
2462static int ahash_hmac_finup(struct ahash_request *req)
2463{
2464	flow_log("ahash_hmac_finupl() nbytes:%u\n", req->nbytes);
2465
2466	return ahash_finup(req);
2467}
2468
2469static int ahash_hmac_digest(struct ahash_request *req)
2470{
2471	struct iproc_reqctx_s *rctx = ahash_request_ctx(req);
2472	struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
2473	struct iproc_ctx_s *ctx = crypto_ahash_ctx(tfm);
2474	unsigned int blocksize =
2475			crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
2476
2477	flow_log("ahash_hmac_digest() nbytes:%u\n", req->nbytes);
2478
2479	/* Perform initialization and then call finup */
2480	__ahash_init(req);
2481
2482	if (iproc_priv.spu.spu_type == SPU_TYPE_SPU2) {
2483		/*
2484		 * SPU2 supports full HMAC implementation in the
2485		 * hardware, need not to generate IPAD, OPAD and
2486		 * outer hash in software.
2487		 * Only for hash key len > hash block size, SPU2
2488		 * expects to perform hashing on the key, shorten
2489		 * it to digest size and feed it as hash key.
2490		 */
2491		rctx->is_sw_hmac = false;
2492		ctx->auth.mode = HASH_MODE_HMAC;
2493	} else {
2494		rctx->is_sw_hmac = true;
2495		ctx->auth.mode = HASH_MODE_HASH;
2496		/* start with a prepended ipad */
2497		memcpy(rctx->hash_carry, ctx->ipad, blocksize);
2498		rctx->hash_carry_len = blocksize;
2499		rctx->total_todo += blocksize;
2500	}
2501
2502	return __ahash_finup(req);
2503}
2504
2505/* aead helpers */
2506
2507static int aead_need_fallback(struct aead_request *req)
2508{
2509	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2510	struct spu_hw *spu = &iproc_priv.spu;
2511	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2512	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2513	u32 payload_len;
2514
2515	/*
2516	 * SPU hardware cannot handle the AES-GCM/CCM case where plaintext
2517	 * and AAD are both 0 bytes long. So use fallback in this case.
2518	 */
2519	if (((ctx->cipher.mode == CIPHER_MODE_GCM) ||
2520	     (ctx->cipher.mode == CIPHER_MODE_CCM)) &&
2521	    (req->assoclen == 0)) {
2522		if ((rctx->is_encrypt && (req->cryptlen == 0)) ||
2523		    (!rctx->is_encrypt && (req->cryptlen == ctx->digestsize))) {
2524			flow_log("AES GCM/CCM needs fallback for 0 len req\n");
2525			return 1;
2526		}
2527	}
2528
2529	/* SPU-M hardware only supports CCM digest size of 8, 12, or 16 bytes */
2530	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2531	    (spu->spu_type == SPU_TYPE_SPUM) &&
2532	    (ctx->digestsize != 8) && (ctx->digestsize != 12) &&
2533	    (ctx->digestsize != 16)) {
2534		flow_log("%s() AES CCM needs fallback for digest size %d\n",
2535			 __func__, ctx->digestsize);
2536		return 1;
2537	}
2538
2539	/*
2540	 * SPU-M on NSP has an issue where AES-CCM hash is not correct
2541	 * when AAD size is 0
2542	 */
2543	if ((ctx->cipher.mode == CIPHER_MODE_CCM) &&
2544	    (spu->spu_subtype == SPU_SUBTYPE_SPUM_NSP) &&
2545	    (req->assoclen == 0)) {
2546		flow_log("%s() AES_CCM needs fallback for 0 len AAD on NSP\n",
2547			 __func__);
2548		return 1;
2549	}
2550
2551	/*
2552	 * RFC4106 and RFC4543 cannot handle the case where AAD is other than
2553	 * 16 or 20 bytes long. So use fallback in this case.
2554	 */
2555	if (ctx->cipher.mode == CIPHER_MODE_GCM &&
2556	    ctx->cipher.alg == CIPHER_ALG_AES &&
2557	    rctx->iv_ctr_len == GCM_RFC4106_IV_SIZE &&
2558	    req->assoclen != 16 && req->assoclen != 20) {
2559		flow_log("RFC4106/RFC4543 needs fallback for assoclen"
2560			 " other than 16 or 20 bytes\n");
2561		return 1;
2562	}
2563
2564	payload_len = req->cryptlen;
2565	if (spu->spu_type == SPU_TYPE_SPUM)
2566		payload_len += req->assoclen;
2567
2568	flow_log("%s() payload len: %u\n", __func__, payload_len);
2569
2570	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2571		return 0;
2572	else
2573		return payload_len > ctx->max_payload;
2574}
2575
2576static int aead_do_fallback(struct aead_request *req, bool is_encrypt)
2577{
2578	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2579	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
2580	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2581	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
2582	struct aead_request *subreq;
2583
2584	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2585
2586	if (!ctx->fallback_cipher)
2587		return -EINVAL;
2588
2589	subreq = &rctx->req;
2590	aead_request_set_tfm(subreq, ctx->fallback_cipher);
2591	aead_request_set_callback(subreq, aead_request_flags(req),
2592				  req->base.complete, req->base.data);
2593	aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
2594			       req->iv);
2595	aead_request_set_ad(subreq, req->assoclen);
2596
2597	return is_encrypt ? crypto_aead_encrypt(req) :
2598			    crypto_aead_decrypt(req);
2599}
2600
2601static int aead_enqueue(struct aead_request *req, bool is_encrypt)
2602{
2603	struct iproc_reqctx_s *rctx = aead_request_ctx(req);
2604	struct crypto_aead *aead = crypto_aead_reqtfm(req);
2605	struct iproc_ctx_s *ctx = crypto_aead_ctx(aead);
2606	int err;
2607
2608	flow_log("%s() enc:%u\n", __func__, is_encrypt);
2609
2610	if (req->assoclen > MAX_ASSOC_SIZE) {
2611		pr_err
2612		    ("%s() Error: associated data too long. (%u > %u bytes)\n",
2613		     __func__, req->assoclen, MAX_ASSOC_SIZE);
2614		return -EINVAL;
2615	}
2616
2617	rctx->gfp = (req->base.flags & (CRYPTO_TFM_REQ_MAY_BACKLOG |
2618		       CRYPTO_TFM_REQ_MAY_SLEEP)) ? GFP_KERNEL : GFP_ATOMIC;
2619	rctx->parent = &req->base;
2620	rctx->is_encrypt = is_encrypt;
2621	rctx->bd_suppress = false;
2622	rctx->total_todo = req->cryptlen;
2623	rctx->src_sent = 0;
2624	rctx->total_sent = 0;
2625	rctx->total_received = 0;
2626	rctx->is_sw_hmac = false;
2627	rctx->ctx = ctx;
2628	memset(&rctx->mb_mssg, 0, sizeof(struct brcm_message));
2629
2630	/* assoc data is at start of src sg */
2631	rctx->assoc = req->src;
2632
2633	/*
2634	 * Init current position in src scatterlist to be after assoc data.
2635	 * src_skip set to buffer offset where data begins. (Assoc data could
2636	 * end in the middle of a buffer.)
2637	 */
2638	if (spu_sg_at_offset(req->src, req->assoclen, &rctx->src_sg,
2639			     &rctx->src_skip) < 0) {
2640		pr_err("%s() Error: Unable to find start of src data\n",
2641		       __func__);
2642		return -EINVAL;
2643	}
2644
2645	rctx->src_nents = 0;
2646	rctx->dst_nents = 0;
2647	if (req->dst == req->src) {
2648		rctx->dst_sg = rctx->src_sg;
2649		rctx->dst_skip = rctx->src_skip;
2650	} else {
2651		/*
2652		 * Expect req->dst to have room for assoc data followed by
2653		 * output data and ICV, if encrypt. So initialize dst_sg
2654		 * to point beyond assoc len offset.
2655		 */
2656		if (spu_sg_at_offset(req->dst, req->assoclen, &rctx->dst_sg,
2657				     &rctx->dst_skip) < 0) {
2658			pr_err("%s() Error: Unable to find start of dst data\n",
2659			       __func__);
2660			return -EINVAL;
2661		}
2662	}
2663
2664	if (ctx->cipher.mode == CIPHER_MODE_CBC ||
2665	    ctx->cipher.mode == CIPHER_MODE_CTR ||
2666	    ctx->cipher.mode == CIPHER_MODE_OFB ||
2667	    ctx->cipher.mode == CIPHER_MODE_XTS ||
2668	    ctx->cipher.mode == CIPHER_MODE_GCM) {
2669		rctx->iv_ctr_len =
2670			ctx->salt_len +
2671			crypto_aead_ivsize(crypto_aead_reqtfm(req));
2672	} else if (ctx->cipher.mode == CIPHER_MODE_CCM) {
2673		rctx->iv_ctr_len = CCM_AES_IV_SIZE;
2674	} else {
2675		rctx->iv_ctr_len = 0;
2676	}
2677
2678	rctx->hash_carry_len = 0;
2679
2680	flow_log("  src sg: %p\n", req->src);
2681	flow_log("  rctx->src_sg: %p, src_skip %u\n",
2682		 rctx->src_sg, rctx->src_skip);
2683	flow_log("  assoc:  %p, assoclen %u\n", rctx->assoc, req->assoclen);
2684	flow_log("  dst sg: %p\n", req->dst);
2685	flow_log("  rctx->dst_sg: %p, dst_skip %u\n",
2686		 rctx->dst_sg, rctx->dst_skip);
2687	flow_log("  iv_ctr_len:%u\n", rctx->iv_ctr_len);
2688	flow_dump("  iv: ", req->iv, rctx->iv_ctr_len);
2689	flow_log("  authkeylen:%u\n", ctx->authkeylen);
2690	flow_log("  is_esp: %s\n", ctx->is_esp ? "yes" : "no");
2691
2692	if (ctx->max_payload == SPU_MAX_PAYLOAD_INF)
2693		flow_log("  max_payload infinite");
2694	else
2695		flow_log("  max_payload: %u\n", ctx->max_payload);
2696
2697	if (unlikely(aead_need_fallback(req)))
2698		return aead_do_fallback(req, is_encrypt);
2699
2700	/*
2701	 * Do memory allocations for request after fallback check, because if we
2702	 * do fallback, we won't call finish_req() to dealloc.
2703	 */
2704	if (rctx->iv_ctr_len) {
2705		if (ctx->salt_len)
2706			memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset,
2707			       ctx->salt, ctx->salt_len);
2708		memcpy(rctx->msg_buf.iv_ctr + ctx->salt_offset + ctx->salt_len,
2709		       req->iv,
2710		       rctx->iv_ctr_len - ctx->salt_len - ctx->salt_offset);
2711	}
2712
2713	rctx->chan_idx = select_channel();
2714	err = handle_aead_req(rctx);
2715	if (err != -EINPROGRESS)
2716		/* synchronous result */
2717		spu_chunk_cleanup(rctx);
2718
2719	return err;
2720}
2721
2722static int aead_authenc_setkey(struct crypto_aead *cipher,
2723			       const u8 *key, unsigned int keylen)
2724{
2725	struct spu_hw *spu = &iproc_priv.spu;
2726	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2727	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2728	struct crypto_authenc_keys keys;
2729	int ret;
2730
2731	flow_log("%s() aead:%p key:%p keylen:%u\n", __func__, cipher, key,
2732		 keylen);
2733	flow_dump("  key: ", key, keylen);
2734
2735	ret = crypto_authenc_extractkeys(&keys, key, keylen);
2736	if (ret)
2737		goto badkey;
2738
2739	if (keys.enckeylen > MAX_KEY_SIZE ||
2740	    keys.authkeylen > MAX_KEY_SIZE)
2741		goto badkey;
2742
2743	ctx->enckeylen = keys.enckeylen;
2744	ctx->authkeylen = keys.authkeylen;
2745
2746	memcpy(ctx->enckey, keys.enckey, keys.enckeylen);
2747	/* May end up padding auth key. So make sure it's zeroed. */
2748	memset(ctx->authkey, 0, sizeof(ctx->authkey));
2749	memcpy(ctx->authkey, keys.authkey, keys.authkeylen);
2750
2751	switch (ctx->alg->cipher_info.alg) {
2752	case CIPHER_ALG_DES:
2753		if (verify_aead_des_key(cipher, keys.enckey, keys.enckeylen))
2754			return -EINVAL;
2755
2756		ctx->cipher_type = CIPHER_TYPE_DES;
2757		break;
2758	case CIPHER_ALG_3DES:
2759		if (verify_aead_des3_key(cipher, keys.enckey, keys.enckeylen))
2760			return -EINVAL;
2761
2762		ctx->cipher_type = CIPHER_TYPE_3DES;
2763		break;
2764	case CIPHER_ALG_AES:
2765		switch (ctx->enckeylen) {
2766		case AES_KEYSIZE_128:
2767			ctx->cipher_type = CIPHER_TYPE_AES128;
2768			break;
2769		case AES_KEYSIZE_192:
2770			ctx->cipher_type = CIPHER_TYPE_AES192;
2771			break;
2772		case AES_KEYSIZE_256:
2773			ctx->cipher_type = CIPHER_TYPE_AES256;
2774			break;
2775		default:
2776			goto badkey;
2777		}
2778		break;
2779	default:
2780		pr_err("%s() Error: Unknown cipher alg\n", __func__);
2781		return -EINVAL;
2782	}
2783
2784	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2785		 ctx->authkeylen);
2786	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2787	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2788
2789	/* setkey the fallback just in case we needto use it */
2790	if (ctx->fallback_cipher) {
2791		flow_log("  running fallback setkey()\n");
2792
2793		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2794		ctx->fallback_cipher->base.crt_flags |=
2795		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2796		ret = crypto_aead_setkey(ctx->fallback_cipher, key, keylen);
2797		if (ret)
2798			flow_log("  fallback setkey() returned:%d\n", ret);
2799	}
2800
2801	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2802							  ctx->enckeylen,
2803							  false);
2804
2805	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2806
2807	return ret;
2808
2809badkey:
2810	ctx->enckeylen = 0;
2811	ctx->authkeylen = 0;
2812	ctx->digestsize = 0;
2813
2814	return -EINVAL;
2815}
2816
2817static int aead_gcm_ccm_setkey(struct crypto_aead *cipher,
2818			       const u8 *key, unsigned int keylen)
2819{
2820	struct spu_hw *spu = &iproc_priv.spu;
2821	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2822	struct crypto_tfm *tfm = crypto_aead_tfm(cipher);
2823
2824	int ret = 0;
2825
2826	flow_log("%s() keylen:%u\n", __func__, keylen);
2827	flow_dump("  key: ", key, keylen);
2828
2829	if (!ctx->is_esp)
2830		ctx->digestsize = keylen;
2831
2832	ctx->enckeylen = keylen;
2833	ctx->authkeylen = 0;
2834
2835	switch (ctx->enckeylen) {
2836	case AES_KEYSIZE_128:
2837		ctx->cipher_type = CIPHER_TYPE_AES128;
2838		break;
2839	case AES_KEYSIZE_192:
2840		ctx->cipher_type = CIPHER_TYPE_AES192;
2841		break;
2842	case AES_KEYSIZE_256:
2843		ctx->cipher_type = CIPHER_TYPE_AES256;
2844		break;
2845	default:
2846		goto badkey;
2847	}
2848
2849	memcpy(ctx->enckey, key, ctx->enckeylen);
2850
2851	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2852		 ctx->authkeylen);
2853	flow_dump("  enc: ", ctx->enckey, ctx->enckeylen);
2854	flow_dump("  auth: ", ctx->authkey, ctx->authkeylen);
2855
2856	/* setkey the fallback just in case we need to use it */
2857	if (ctx->fallback_cipher) {
2858		flow_log("  running fallback setkey()\n");
2859
2860		ctx->fallback_cipher->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
2861		ctx->fallback_cipher->base.crt_flags |=
2862		    tfm->crt_flags & CRYPTO_TFM_REQ_MASK;
2863		ret = crypto_aead_setkey(ctx->fallback_cipher, key,
2864					 keylen + ctx->salt_len);
2865		if (ret)
2866			flow_log("  fallback setkey() returned:%d\n", ret);
2867	}
2868
2869	ctx->spu_resp_hdr_len = spu->spu_response_hdr_len(ctx->authkeylen,
2870							  ctx->enckeylen,
2871							  false);
2872
2873	atomic_inc(&iproc_priv.setkey_cnt[SPU_OP_AEAD]);
2874
2875	flow_log("  enckeylen:%u authkeylen:%u\n", ctx->enckeylen,
2876		 ctx->authkeylen);
2877
2878	return ret;
2879
2880badkey:
2881	ctx->enckeylen = 0;
2882	ctx->authkeylen = 0;
2883	ctx->digestsize = 0;
2884
2885	return -EINVAL;
2886}
2887
2888/**
2889 * aead_gcm_esp_setkey() - setkey() operation for ESP variant of GCM AES.
2890 * @cipher: AEAD structure
2891 * @key:    Key followed by 4 bytes of salt
2892 * @keylen: Length of key plus salt, in bytes
2893 *
2894 * Extracts salt from key and stores it to be prepended to IV on each request.
2895 * Digest is always 16 bytes
2896 *
2897 * Return: Value from generic gcm setkey.
2898 */
2899static int aead_gcm_esp_setkey(struct crypto_aead *cipher,
2900			       const u8 *key, unsigned int keylen)
2901{
2902	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2903
2904	flow_log("%s\n", __func__);
2905
2906	if (keylen < GCM_ESP_SALT_SIZE)
2907		return -EINVAL;
2908
2909	ctx->salt_len = GCM_ESP_SALT_SIZE;
2910	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2911	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2912	keylen -= GCM_ESP_SALT_SIZE;
2913	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2914	ctx->is_esp = true;
2915	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2916
2917	return aead_gcm_ccm_setkey(cipher, key, keylen);
2918}
2919
2920/**
2921 * rfc4543_gcm_esp_setkey() - setkey operation for RFC4543 variant of GCM/GMAC.
2922 * @cipher: AEAD structure
2923 * @key:    Key followed by 4 bytes of salt
2924 * @keylen: Length of key plus salt, in bytes
2925 *
2926 * Extracts salt from key and stores it to be prepended to IV on each request.
2927 * Digest is always 16 bytes
2928 *
2929 * Return: Value from generic gcm setkey.
2930 */
2931static int rfc4543_gcm_esp_setkey(struct crypto_aead *cipher,
2932				  const u8 *key, unsigned int keylen)
2933{
2934	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2935
2936	flow_log("%s\n", __func__);
2937
2938	if (keylen < GCM_ESP_SALT_SIZE)
2939		return -EINVAL;
2940
2941	ctx->salt_len = GCM_ESP_SALT_SIZE;
2942	ctx->salt_offset = GCM_ESP_SALT_OFFSET;
2943	memcpy(ctx->salt, key + keylen - GCM_ESP_SALT_SIZE, GCM_ESP_SALT_SIZE);
2944	keylen -= GCM_ESP_SALT_SIZE;
2945	ctx->digestsize = GCM_ESP_DIGESTSIZE;
2946	ctx->is_esp = true;
2947	ctx->is_rfc4543 = true;
2948	flow_dump("salt: ", ctx->salt, GCM_ESP_SALT_SIZE);
2949
2950	return aead_gcm_ccm_setkey(cipher, key, keylen);
2951}
2952
2953/**
2954 * aead_ccm_esp_setkey() - setkey() operation for ESP variant of CCM AES.
2955 * @cipher: AEAD structure
2956 * @key:    Key followed by 4 bytes of salt
2957 * @keylen: Length of key plus salt, in bytes
2958 *
2959 * Extracts salt from key and stores it to be prepended to IV on each request.
2960 * Digest is always 16 bytes
2961 *
2962 * Return: Value from generic ccm setkey.
2963 */
2964static int aead_ccm_esp_setkey(struct crypto_aead *cipher,
2965			       const u8 *key, unsigned int keylen)
2966{
2967	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2968
2969	flow_log("%s\n", __func__);
2970
2971	if (keylen < CCM_ESP_SALT_SIZE)
2972		return -EINVAL;
2973
2974	ctx->salt_len = CCM_ESP_SALT_SIZE;
2975	ctx->salt_offset = CCM_ESP_SALT_OFFSET;
2976	memcpy(ctx->salt, key + keylen - CCM_ESP_SALT_SIZE, CCM_ESP_SALT_SIZE);
2977	keylen -= CCM_ESP_SALT_SIZE;
2978	ctx->is_esp = true;
2979	flow_dump("salt: ", ctx->salt, CCM_ESP_SALT_SIZE);
2980
2981	return aead_gcm_ccm_setkey(cipher, key, keylen);
2982}
2983
2984static int aead_setauthsize(struct crypto_aead *cipher, unsigned int authsize)
2985{
2986	struct iproc_ctx_s *ctx = crypto_aead_ctx(cipher);
2987	int ret = 0;
2988
2989	flow_log("%s() authkeylen:%u authsize:%u\n",
2990		 __func__, ctx->authkeylen, authsize);
2991
2992	ctx->digestsize = authsize;
2993
2994	/* setkey the fallback just in case we needto use it */
2995	if (ctx->fallback_cipher) {
2996		flow_log("  running fallback setauth()\n");
2997
2998		ret = crypto_aead_setauthsize(ctx->fallback_cipher, authsize);
2999		if (ret)
3000			flow_log("  fallback setauth() returned:%d\n", ret);
3001	}
3002
3003	return ret;
3004}
3005
3006static int aead_encrypt(struct aead_request *req)
3007{
3008	flow_log("%s() cryptlen:%u %08x\n", __func__, req->cryptlen,
3009		 req->cryptlen);
3010	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3011	flow_log("  assoc_len:%u\n", req->assoclen);
3012
3013	return aead_enqueue(req, true);
3014}
3015
3016static int aead_decrypt(struct aead_request *req)
3017{
3018	flow_log("%s() cryptlen:%u\n", __func__, req->cryptlen);
3019	dump_sg(req->src, 0, req->cryptlen + req->assoclen);
3020	flow_log("  assoc_len:%u\n", req->assoclen);
3021
3022	return aead_enqueue(req, false);
3023}
3024
3025/* ==================== Supported Cipher Algorithms ==================== */
3026
3027static struct iproc_alg_s driver_algs[] = {
3028	{
3029	 .type = CRYPTO_ALG_TYPE_AEAD,
3030	 .alg.aead = {
3031		 .base = {
3032			.cra_name = "gcm(aes)",
3033			.cra_driver_name = "gcm-aes-iproc",
3034			.cra_blocksize = AES_BLOCK_SIZE,
3035			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3036		 },
3037		 .setkey = aead_gcm_ccm_setkey,
3038		 .ivsize = GCM_AES_IV_SIZE,
3039		.maxauthsize = AES_BLOCK_SIZE,
3040	 },
3041	 .cipher_info = {
3042			 .alg = CIPHER_ALG_AES,
3043			 .mode = CIPHER_MODE_GCM,
3044			 },
3045	 .auth_info = {
3046		       .alg = HASH_ALG_AES,
3047		       .mode = HASH_MODE_GCM,
3048		       },
3049	 .auth_first = 0,
3050	 },
3051	{
3052	 .type = CRYPTO_ALG_TYPE_AEAD,
3053	 .alg.aead = {
3054		 .base = {
3055			.cra_name = "ccm(aes)",
3056			.cra_driver_name = "ccm-aes-iproc",
3057			.cra_blocksize = AES_BLOCK_SIZE,
3058			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3059		 },
3060		 .setkey = aead_gcm_ccm_setkey,
3061		 .ivsize = CCM_AES_IV_SIZE,
3062		.maxauthsize = AES_BLOCK_SIZE,
3063	 },
3064	 .cipher_info = {
3065			 .alg = CIPHER_ALG_AES,
3066			 .mode = CIPHER_MODE_CCM,
3067			 },
3068	 .auth_info = {
3069		       .alg = HASH_ALG_AES,
3070		       .mode = HASH_MODE_CCM,
3071		       },
3072	 .auth_first = 0,
3073	 },
3074	{
3075	 .type = CRYPTO_ALG_TYPE_AEAD,
3076	 .alg.aead = {
3077		 .base = {
3078			.cra_name = "rfc4106(gcm(aes))",
3079			.cra_driver_name = "gcm-aes-esp-iproc",
3080			.cra_blocksize = AES_BLOCK_SIZE,
3081			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3082		 },
3083		 .setkey = aead_gcm_esp_setkey,
3084		 .ivsize = GCM_RFC4106_IV_SIZE,
3085		 .maxauthsize = AES_BLOCK_SIZE,
3086	 },
3087	 .cipher_info = {
3088			 .alg = CIPHER_ALG_AES,
3089			 .mode = CIPHER_MODE_GCM,
3090			 },
3091	 .auth_info = {
3092		       .alg = HASH_ALG_AES,
3093		       .mode = HASH_MODE_GCM,
3094		       },
3095	 .auth_first = 0,
3096	 },
3097	{
3098	 .type = CRYPTO_ALG_TYPE_AEAD,
3099	 .alg.aead = {
3100		 .base = {
3101			.cra_name = "rfc4309(ccm(aes))",
3102			.cra_driver_name = "ccm-aes-esp-iproc",
3103			.cra_blocksize = AES_BLOCK_SIZE,
3104			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3105		 },
3106		 .setkey = aead_ccm_esp_setkey,
3107		 .ivsize = CCM_AES_IV_SIZE,
3108		 .maxauthsize = AES_BLOCK_SIZE,
3109	 },
3110	 .cipher_info = {
3111			 .alg = CIPHER_ALG_AES,
3112			 .mode = CIPHER_MODE_CCM,
3113			 },
3114	 .auth_info = {
3115		       .alg = HASH_ALG_AES,
3116		       .mode = HASH_MODE_CCM,
3117		       },
3118	 .auth_first = 0,
3119	 },
3120	{
3121	 .type = CRYPTO_ALG_TYPE_AEAD,
3122	 .alg.aead = {
3123		 .base = {
3124			.cra_name = "rfc4543(gcm(aes))",
3125			.cra_driver_name = "gmac-aes-esp-iproc",
3126			.cra_blocksize = AES_BLOCK_SIZE,
3127			.cra_flags = CRYPTO_ALG_NEED_FALLBACK
3128		 },
3129		 .setkey = rfc4543_gcm_esp_setkey,
3130		 .ivsize = GCM_RFC4106_IV_SIZE,
3131		 .maxauthsize = AES_BLOCK_SIZE,
3132	 },
3133	 .cipher_info = {
3134			 .alg = CIPHER_ALG_AES,
3135			 .mode = CIPHER_MODE_GCM,
3136			 },
3137	 .auth_info = {
3138		       .alg = HASH_ALG_AES,
3139		       .mode = HASH_MODE_GCM,
3140		       },
3141	 .auth_first = 0,
3142	 },
3143	{
3144	 .type = CRYPTO_ALG_TYPE_AEAD,
3145	 .alg.aead = {
3146		 .base = {
3147			.cra_name = "authenc(hmac(md5),cbc(aes))",
3148			.cra_driver_name = "authenc-hmac-md5-cbc-aes-iproc",
3149			.cra_blocksize = AES_BLOCK_SIZE,
3150			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3151				     CRYPTO_ALG_ASYNC |
3152				     CRYPTO_ALG_ALLOCATES_MEMORY
3153		 },
3154		 .setkey = aead_authenc_setkey,
3155		.ivsize = AES_BLOCK_SIZE,
3156		.maxauthsize = MD5_DIGEST_SIZE,
3157	 },
3158	 .cipher_info = {
3159			 .alg = CIPHER_ALG_AES,
3160			 .mode = CIPHER_MODE_CBC,
3161			 },
3162	 .auth_info = {
3163		       .alg = HASH_ALG_MD5,
3164		       .mode = HASH_MODE_HMAC,
3165		       },
3166	 .auth_first = 0,
3167	 },
3168	{
3169	 .type = CRYPTO_ALG_TYPE_AEAD,
3170	 .alg.aead = {
3171		 .base = {
3172			.cra_name = "authenc(hmac(sha1),cbc(aes))",
3173			.cra_driver_name = "authenc-hmac-sha1-cbc-aes-iproc",
3174			.cra_blocksize = AES_BLOCK_SIZE,
3175			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3176				     CRYPTO_ALG_ASYNC |
3177				     CRYPTO_ALG_ALLOCATES_MEMORY
3178		 },
3179		 .setkey = aead_authenc_setkey,
3180		 .ivsize = AES_BLOCK_SIZE,
3181		 .maxauthsize = SHA1_DIGEST_SIZE,
3182	 },
3183	 .cipher_info = {
3184			 .alg = CIPHER_ALG_AES,
3185			 .mode = CIPHER_MODE_CBC,
3186			 },
3187	 .auth_info = {
3188		       .alg = HASH_ALG_SHA1,
3189		       .mode = HASH_MODE_HMAC,
3190		       },
3191	 .auth_first = 0,
3192	 },
3193	{
3194	 .type = CRYPTO_ALG_TYPE_AEAD,
3195	 .alg.aead = {
3196		 .base = {
3197			.cra_name = "authenc(hmac(sha256),cbc(aes))",
3198			.cra_driver_name = "authenc-hmac-sha256-cbc-aes-iproc",
3199			.cra_blocksize = AES_BLOCK_SIZE,
3200			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3201				     CRYPTO_ALG_ASYNC |
3202				     CRYPTO_ALG_ALLOCATES_MEMORY
3203		 },
3204		 .setkey = aead_authenc_setkey,
3205		 .ivsize = AES_BLOCK_SIZE,
3206		 .maxauthsize = SHA256_DIGEST_SIZE,
3207	 },
3208	 .cipher_info = {
3209			 .alg = CIPHER_ALG_AES,
3210			 .mode = CIPHER_MODE_CBC,
3211			 },
3212	 .auth_info = {
3213		       .alg = HASH_ALG_SHA256,
3214		       .mode = HASH_MODE_HMAC,
3215		       },
3216	 .auth_first = 0,
3217	 },
3218	{
3219	 .type = CRYPTO_ALG_TYPE_AEAD,
3220	 .alg.aead = {
3221		 .base = {
3222			.cra_name = "authenc(hmac(md5),cbc(des))",
3223			.cra_driver_name = "authenc-hmac-md5-cbc-des-iproc",
3224			.cra_blocksize = DES_BLOCK_SIZE,
3225			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3226				     CRYPTO_ALG_ASYNC |
3227				     CRYPTO_ALG_ALLOCATES_MEMORY
3228		 },
3229		 .setkey = aead_authenc_setkey,
3230		 .ivsize = DES_BLOCK_SIZE,
3231		 .maxauthsize = MD5_DIGEST_SIZE,
3232	 },
3233	 .cipher_info = {
3234			 .alg = CIPHER_ALG_DES,
3235			 .mode = CIPHER_MODE_CBC,
3236			 },
3237	 .auth_info = {
3238		       .alg = HASH_ALG_MD5,
3239		       .mode = HASH_MODE_HMAC,
3240		       },
3241	 .auth_first = 0,
3242	 },
3243	{
3244	 .type = CRYPTO_ALG_TYPE_AEAD,
3245	 .alg.aead = {
3246		 .base = {
3247			.cra_name = "authenc(hmac(sha1),cbc(des))",
3248			.cra_driver_name = "authenc-hmac-sha1-cbc-des-iproc",
3249			.cra_blocksize = DES_BLOCK_SIZE,
3250			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3251				     CRYPTO_ALG_ASYNC |
3252				     CRYPTO_ALG_ALLOCATES_MEMORY
3253		 },
3254		 .setkey = aead_authenc_setkey,
3255		 .ivsize = DES_BLOCK_SIZE,
3256		 .maxauthsize = SHA1_DIGEST_SIZE,
3257	 },
3258	 .cipher_info = {
3259			 .alg = CIPHER_ALG_DES,
3260			 .mode = CIPHER_MODE_CBC,
3261			 },
3262	 .auth_info = {
3263		       .alg = HASH_ALG_SHA1,
3264		       .mode = HASH_MODE_HMAC,
3265		       },
3266	 .auth_first = 0,
3267	 },
3268	{
3269	 .type = CRYPTO_ALG_TYPE_AEAD,
3270	 .alg.aead = {
3271		 .base = {
3272			.cra_name = "authenc(hmac(sha224),cbc(des))",
3273			.cra_driver_name = "authenc-hmac-sha224-cbc-des-iproc",
3274			.cra_blocksize = DES_BLOCK_SIZE,
3275			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3276				     CRYPTO_ALG_ASYNC |
3277				     CRYPTO_ALG_ALLOCATES_MEMORY
3278		 },
3279		 .setkey = aead_authenc_setkey,
3280		 .ivsize = DES_BLOCK_SIZE,
3281		 .maxauthsize = SHA224_DIGEST_SIZE,
3282	 },
3283	 .cipher_info = {
3284			 .alg = CIPHER_ALG_DES,
3285			 .mode = CIPHER_MODE_CBC,
3286			 },
3287	 .auth_info = {
3288		       .alg = HASH_ALG_SHA224,
3289		       .mode = HASH_MODE_HMAC,
3290		       },
3291	 .auth_first = 0,
3292	 },
3293	{
3294	 .type = CRYPTO_ALG_TYPE_AEAD,
3295	 .alg.aead = {
3296		 .base = {
3297			.cra_name = "authenc(hmac(sha256),cbc(des))",
3298			.cra_driver_name = "authenc-hmac-sha256-cbc-des-iproc",
3299			.cra_blocksize = DES_BLOCK_SIZE,
3300			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3301				     CRYPTO_ALG_ASYNC |
3302				     CRYPTO_ALG_ALLOCATES_MEMORY
3303		 },
3304		 .setkey = aead_authenc_setkey,
3305		 .ivsize = DES_BLOCK_SIZE,
3306		 .maxauthsize = SHA256_DIGEST_SIZE,
3307	 },
3308	 .cipher_info = {
3309			 .alg = CIPHER_ALG_DES,
3310			 .mode = CIPHER_MODE_CBC,
3311			 },
3312	 .auth_info = {
3313		       .alg = HASH_ALG_SHA256,
3314		       .mode = HASH_MODE_HMAC,
3315		       },
3316	 .auth_first = 0,
3317	 },
3318	{
3319	 .type = CRYPTO_ALG_TYPE_AEAD,
3320	 .alg.aead = {
3321		 .base = {
3322			.cra_name = "authenc(hmac(sha384),cbc(des))",
3323			.cra_driver_name = "authenc-hmac-sha384-cbc-des-iproc",
3324			.cra_blocksize = DES_BLOCK_SIZE,
3325			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3326				     CRYPTO_ALG_ASYNC |
3327				     CRYPTO_ALG_ALLOCATES_MEMORY
3328		 },
3329		 .setkey = aead_authenc_setkey,
3330		 .ivsize = DES_BLOCK_SIZE,
3331		 .maxauthsize = SHA384_DIGEST_SIZE,
3332	 },
3333	 .cipher_info = {
3334			 .alg = CIPHER_ALG_DES,
3335			 .mode = CIPHER_MODE_CBC,
3336			 },
3337	 .auth_info = {
3338		       .alg = HASH_ALG_SHA384,
3339		       .mode = HASH_MODE_HMAC,
3340		       },
3341	 .auth_first = 0,
3342	 },
3343	{
3344	 .type = CRYPTO_ALG_TYPE_AEAD,
3345	 .alg.aead = {
3346		 .base = {
3347			.cra_name = "authenc(hmac(sha512),cbc(des))",
3348			.cra_driver_name = "authenc-hmac-sha512-cbc-des-iproc",
3349			.cra_blocksize = DES_BLOCK_SIZE,
3350			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3351				     CRYPTO_ALG_ASYNC |
3352				     CRYPTO_ALG_ALLOCATES_MEMORY
3353		 },
3354		 .setkey = aead_authenc_setkey,
3355		 .ivsize = DES_BLOCK_SIZE,
3356		 .maxauthsize = SHA512_DIGEST_SIZE,
3357	 },
3358	 .cipher_info = {
3359			 .alg = CIPHER_ALG_DES,
3360			 .mode = CIPHER_MODE_CBC,
3361			 },
3362	 .auth_info = {
3363		       .alg = HASH_ALG_SHA512,
3364		       .mode = HASH_MODE_HMAC,
3365		       },
3366	 .auth_first = 0,
3367	 },
3368	{
3369	 .type = CRYPTO_ALG_TYPE_AEAD,
3370	 .alg.aead = {
3371		 .base = {
3372			.cra_name = "authenc(hmac(md5),cbc(des3_ede))",
3373			.cra_driver_name = "authenc-hmac-md5-cbc-des3-iproc",
3374			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3375			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3376				     CRYPTO_ALG_ASYNC |
3377				     CRYPTO_ALG_ALLOCATES_MEMORY
3378		 },
3379		 .setkey = aead_authenc_setkey,
3380		 .ivsize = DES3_EDE_BLOCK_SIZE,
3381		 .maxauthsize = MD5_DIGEST_SIZE,
3382	 },
3383	 .cipher_info = {
3384			 .alg = CIPHER_ALG_3DES,
3385			 .mode = CIPHER_MODE_CBC,
3386			 },
3387	 .auth_info = {
3388		       .alg = HASH_ALG_MD5,
3389		       .mode = HASH_MODE_HMAC,
3390		       },
3391	 .auth_first = 0,
3392	 },
3393	{
3394	 .type = CRYPTO_ALG_TYPE_AEAD,
3395	 .alg.aead = {
3396		 .base = {
3397			.cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
3398			.cra_driver_name = "authenc-hmac-sha1-cbc-des3-iproc",
3399			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3400			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3401				     CRYPTO_ALG_ASYNC |
3402				     CRYPTO_ALG_ALLOCATES_MEMORY
3403		 },
3404		 .setkey = aead_authenc_setkey,
3405		 .ivsize = DES3_EDE_BLOCK_SIZE,
3406		 .maxauthsize = SHA1_DIGEST_SIZE,
3407	 },
3408	 .cipher_info = {
3409			 .alg = CIPHER_ALG_3DES,
3410			 .mode = CIPHER_MODE_CBC,
3411			 },
3412	 .auth_info = {
3413		       .alg = HASH_ALG_SHA1,
3414		       .mode = HASH_MODE_HMAC,
3415		       },
3416	 .auth_first = 0,
3417	 },
3418	{
3419	 .type = CRYPTO_ALG_TYPE_AEAD,
3420	 .alg.aead = {
3421		 .base = {
3422			.cra_name = "authenc(hmac(sha224),cbc(des3_ede))",
3423			.cra_driver_name = "authenc-hmac-sha224-cbc-des3-iproc",
3424			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3425			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3426				     CRYPTO_ALG_ASYNC |
3427				     CRYPTO_ALG_ALLOCATES_MEMORY
3428		 },
3429		 .setkey = aead_authenc_setkey,
3430		 .ivsize = DES3_EDE_BLOCK_SIZE,
3431		 .maxauthsize = SHA224_DIGEST_SIZE,
3432	 },
3433	 .cipher_info = {
3434			 .alg = CIPHER_ALG_3DES,
3435			 .mode = CIPHER_MODE_CBC,
3436			 },
3437	 .auth_info = {
3438		       .alg = HASH_ALG_SHA224,
3439		       .mode = HASH_MODE_HMAC,
3440		       },
3441	 .auth_first = 0,
3442	 },
3443	{
3444	 .type = CRYPTO_ALG_TYPE_AEAD,
3445	 .alg.aead = {
3446		 .base = {
3447			.cra_name = "authenc(hmac(sha256),cbc(des3_ede))",
3448			.cra_driver_name = "authenc-hmac-sha256-cbc-des3-iproc",
3449			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3450			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3451				     CRYPTO_ALG_ASYNC |
3452				     CRYPTO_ALG_ALLOCATES_MEMORY
3453		 },
3454		 .setkey = aead_authenc_setkey,
3455		 .ivsize = DES3_EDE_BLOCK_SIZE,
3456		 .maxauthsize = SHA256_DIGEST_SIZE,
3457	 },
3458	 .cipher_info = {
3459			 .alg = CIPHER_ALG_3DES,
3460			 .mode = CIPHER_MODE_CBC,
3461			 },
3462	 .auth_info = {
3463		       .alg = HASH_ALG_SHA256,
3464		       .mode = HASH_MODE_HMAC,
3465		       },
3466	 .auth_first = 0,
3467	 },
3468	{
3469	 .type = CRYPTO_ALG_TYPE_AEAD,
3470	 .alg.aead = {
3471		 .base = {
3472			.cra_name = "authenc(hmac(sha384),cbc(des3_ede))",
3473			.cra_driver_name = "authenc-hmac-sha384-cbc-des3-iproc",
3474			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3475			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3476				     CRYPTO_ALG_ASYNC |
3477				     CRYPTO_ALG_ALLOCATES_MEMORY
3478		 },
3479		 .setkey = aead_authenc_setkey,
3480		 .ivsize = DES3_EDE_BLOCK_SIZE,
3481		 .maxauthsize = SHA384_DIGEST_SIZE,
3482	 },
3483	 .cipher_info = {
3484			 .alg = CIPHER_ALG_3DES,
3485			 .mode = CIPHER_MODE_CBC,
3486			 },
3487	 .auth_info = {
3488		       .alg = HASH_ALG_SHA384,
3489		       .mode = HASH_MODE_HMAC,
3490		       },
3491	 .auth_first = 0,
3492	 },
3493	{
3494	 .type = CRYPTO_ALG_TYPE_AEAD,
3495	 .alg.aead = {
3496		 .base = {
3497			.cra_name = "authenc(hmac(sha512),cbc(des3_ede))",
3498			.cra_driver_name = "authenc-hmac-sha512-cbc-des3-iproc",
3499			.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3500			.cra_flags = CRYPTO_ALG_NEED_FALLBACK |
3501				     CRYPTO_ALG_ASYNC |
3502				     CRYPTO_ALG_ALLOCATES_MEMORY
3503		 },
3504		 .setkey = aead_authenc_setkey,
3505		 .ivsize = DES3_EDE_BLOCK_SIZE,
3506		 .maxauthsize = SHA512_DIGEST_SIZE,
3507	 },
3508	 .cipher_info = {
3509			 .alg = CIPHER_ALG_3DES,
3510			 .mode = CIPHER_MODE_CBC,
3511			 },
3512	 .auth_info = {
3513		       .alg = HASH_ALG_SHA512,
3514		       .mode = HASH_MODE_HMAC,
3515		       },
3516	 .auth_first = 0,
3517	 },
3518
3519/* SKCIPHER algorithms. */
3520	{
3521	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3522	 .alg.skcipher = {
3523			.base.cra_name = "cbc(des)",
3524			.base.cra_driver_name = "cbc-des-iproc",
3525			.base.cra_blocksize = DES_BLOCK_SIZE,
3526			.min_keysize = DES_KEY_SIZE,
3527			.max_keysize = DES_KEY_SIZE,
3528			.ivsize = DES_BLOCK_SIZE,
3529			},
3530	 .cipher_info = {
3531			 .alg = CIPHER_ALG_DES,
3532			 .mode = CIPHER_MODE_CBC,
3533			 },
3534	 .auth_info = {
3535		       .alg = HASH_ALG_NONE,
3536		       .mode = HASH_MODE_NONE,
3537		       },
3538	 },
3539	{
3540	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3541	 .alg.skcipher = {
3542			.base.cra_name = "ecb(des)",
3543			.base.cra_driver_name = "ecb-des-iproc",
3544			.base.cra_blocksize = DES_BLOCK_SIZE,
3545			.min_keysize = DES_KEY_SIZE,
3546			.max_keysize = DES_KEY_SIZE,
3547			.ivsize = 0,
3548			},
3549	 .cipher_info = {
3550			 .alg = CIPHER_ALG_DES,
3551			 .mode = CIPHER_MODE_ECB,
3552			 },
3553	 .auth_info = {
3554		       .alg = HASH_ALG_NONE,
3555		       .mode = HASH_MODE_NONE,
3556		       },
3557	 },
3558	{
3559	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3560	 .alg.skcipher = {
3561			.base.cra_name = "cbc(des3_ede)",
3562			.base.cra_driver_name = "cbc-des3-iproc",
3563			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3564			.min_keysize = DES3_EDE_KEY_SIZE,
3565			.max_keysize = DES3_EDE_KEY_SIZE,
3566			.ivsize = DES3_EDE_BLOCK_SIZE,
3567			},
3568	 .cipher_info = {
3569			 .alg = CIPHER_ALG_3DES,
3570			 .mode = CIPHER_MODE_CBC,
3571			 },
3572	 .auth_info = {
3573		       .alg = HASH_ALG_NONE,
3574		       .mode = HASH_MODE_NONE,
3575		       },
3576	 },
3577	{
3578	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3579	 .alg.skcipher = {
3580			.base.cra_name = "ecb(des3_ede)",
3581			.base.cra_driver_name = "ecb-des3-iproc",
3582			.base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
3583			.min_keysize = DES3_EDE_KEY_SIZE,
3584			.max_keysize = DES3_EDE_KEY_SIZE,
3585			.ivsize = 0,
3586			},
3587	 .cipher_info = {
3588			 .alg = CIPHER_ALG_3DES,
3589			 .mode = CIPHER_MODE_ECB,
3590			 },
3591	 .auth_info = {
3592		       .alg = HASH_ALG_NONE,
3593		       .mode = HASH_MODE_NONE,
3594		       },
3595	 },
3596	{
3597	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3598	 .alg.skcipher = {
3599			.base.cra_name = "cbc(aes)",
3600			.base.cra_driver_name = "cbc-aes-iproc",
3601			.base.cra_blocksize = AES_BLOCK_SIZE,
3602			.min_keysize = AES_MIN_KEY_SIZE,
3603			.max_keysize = AES_MAX_KEY_SIZE,
3604			.ivsize = AES_BLOCK_SIZE,
3605			},
3606	 .cipher_info = {
3607			 .alg = CIPHER_ALG_AES,
3608			 .mode = CIPHER_MODE_CBC,
3609			 },
3610	 .auth_info = {
3611		       .alg = HASH_ALG_NONE,
3612		       .mode = HASH_MODE_NONE,
3613		       },
3614	 },
3615	{
3616	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3617	 .alg.skcipher = {
3618			.base.cra_name = "ecb(aes)",
3619			.base.cra_driver_name = "ecb-aes-iproc",
3620			.base.cra_blocksize = AES_BLOCK_SIZE,
3621			.min_keysize = AES_MIN_KEY_SIZE,
3622			.max_keysize = AES_MAX_KEY_SIZE,
3623			.ivsize = 0,
3624			},
3625	 .cipher_info = {
3626			 .alg = CIPHER_ALG_AES,
3627			 .mode = CIPHER_MODE_ECB,
3628			 },
3629	 .auth_info = {
3630		       .alg = HASH_ALG_NONE,
3631		       .mode = HASH_MODE_NONE,
3632		       },
3633	 },
3634	{
3635	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3636	 .alg.skcipher = {
3637			.base.cra_name = "ctr(aes)",
3638			.base.cra_driver_name = "ctr-aes-iproc",
3639			.base.cra_blocksize = AES_BLOCK_SIZE,
3640			.min_keysize = AES_MIN_KEY_SIZE,
3641			.max_keysize = AES_MAX_KEY_SIZE,
3642			.ivsize = AES_BLOCK_SIZE,
3643			},
3644	 .cipher_info = {
3645			 .alg = CIPHER_ALG_AES,
3646			 .mode = CIPHER_MODE_CTR,
3647			 },
3648	 .auth_info = {
3649		       .alg = HASH_ALG_NONE,
3650		       .mode = HASH_MODE_NONE,
3651		       },
3652	 },
3653{
3654	 .type = CRYPTO_ALG_TYPE_SKCIPHER,
3655	 .alg.skcipher = {
3656			.base.cra_name = "xts(aes)",
3657			.base.cra_driver_name = "xts-aes-iproc",
3658			.base.cra_blocksize = AES_BLOCK_SIZE,
3659			.min_keysize = 2 * AES_MIN_KEY_SIZE,
3660			.max_keysize = 2 * AES_MAX_KEY_SIZE,
3661			.ivsize = AES_BLOCK_SIZE,
3662			},
3663	 .cipher_info = {
3664			 .alg = CIPHER_ALG_AES,
3665			 .mode = CIPHER_MODE_XTS,
3666			 },
3667	 .auth_info = {
3668		       .alg = HASH_ALG_NONE,
3669		       .mode = HASH_MODE_NONE,
3670		       },
3671	 },
3672
3673/* AHASH algorithms. */
3674	{
3675	 .type = CRYPTO_ALG_TYPE_AHASH,
3676	 .alg.hash = {
3677		      .halg.digestsize = MD5_DIGEST_SIZE,
3678		      .halg.base = {
3679				    .cra_name = "md5",
3680				    .cra_driver_name = "md5-iproc",
3681				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3682				    .cra_flags = CRYPTO_ALG_ASYNC |
3683						 CRYPTO_ALG_ALLOCATES_MEMORY,
3684				}
3685		      },
3686	 .cipher_info = {
3687			 .alg = CIPHER_ALG_NONE,
3688			 .mode = CIPHER_MODE_NONE,
3689			 },
3690	 .auth_info = {
3691		       .alg = HASH_ALG_MD5,
3692		       .mode = HASH_MODE_HASH,
3693		       },
3694	 },
3695	{
3696	 .type = CRYPTO_ALG_TYPE_AHASH,
3697	 .alg.hash = {
3698		      .halg.digestsize = MD5_DIGEST_SIZE,
3699		      .halg.base = {
3700				    .cra_name = "hmac(md5)",
3701				    .cra_driver_name = "hmac-md5-iproc",
3702				    .cra_blocksize = MD5_BLOCK_WORDS * 4,
3703				}
3704		      },
3705	 .cipher_info = {
3706			 .alg = CIPHER_ALG_NONE,
3707			 .mode = CIPHER_MODE_NONE,
3708			 },
3709	 .auth_info = {
3710		       .alg = HASH_ALG_MD5,
3711		       .mode = HASH_MODE_HMAC,
3712		       },
3713	 },
3714	{.type = CRYPTO_ALG_TYPE_AHASH,
3715	 .alg.hash = {
3716		      .halg.digestsize = SHA1_DIGEST_SIZE,
3717		      .halg.base = {
3718				    .cra_name = "sha1",
3719				    .cra_driver_name = "sha1-iproc",
3720				    .cra_blocksize = SHA1_BLOCK_SIZE,
3721				}
3722		      },
3723	 .cipher_info = {
3724			 .alg = CIPHER_ALG_NONE,
3725			 .mode = CIPHER_MODE_NONE,
3726			 },
3727	 .auth_info = {
3728		       .alg = HASH_ALG_SHA1,
3729		       .mode = HASH_MODE_HASH,
3730		       },
3731	 },
3732	{.type = CRYPTO_ALG_TYPE_AHASH,
3733	 .alg.hash = {
3734		      .halg.digestsize = SHA1_DIGEST_SIZE,
3735		      .halg.base = {
3736				    .cra_name = "hmac(sha1)",
3737				    .cra_driver_name = "hmac-sha1-iproc",
3738				    .cra_blocksize = SHA1_BLOCK_SIZE,
3739				}
3740		      },
3741	 .cipher_info = {
3742			 .alg = CIPHER_ALG_NONE,
3743			 .mode = CIPHER_MODE_NONE,
3744			 },
3745	 .auth_info = {
3746		       .alg = HASH_ALG_SHA1,
3747		       .mode = HASH_MODE_HMAC,
3748		       },
3749	 },
3750	{.type = CRYPTO_ALG_TYPE_AHASH,
3751	 .alg.hash = {
3752			.halg.digestsize = SHA224_DIGEST_SIZE,
3753			.halg.base = {
3754				    .cra_name = "sha224",
3755				    .cra_driver_name = "sha224-iproc",
3756				    .cra_blocksize = SHA224_BLOCK_SIZE,
3757			}
3758		      },
3759	 .cipher_info = {
3760			 .alg = CIPHER_ALG_NONE,
3761			 .mode = CIPHER_MODE_NONE,
3762			 },
3763	 .auth_info = {
3764		       .alg = HASH_ALG_SHA224,
3765		       .mode = HASH_MODE_HASH,
3766		       },
3767	 },
3768	{.type = CRYPTO_ALG_TYPE_AHASH,
3769	 .alg.hash = {
3770		      .halg.digestsize = SHA224_DIGEST_SIZE,
3771		      .halg.base = {
3772				    .cra_name = "hmac(sha224)",
3773				    .cra_driver_name = "hmac-sha224-iproc",
3774				    .cra_blocksize = SHA224_BLOCK_SIZE,
3775				}
3776		      },
3777	 .cipher_info = {
3778			 .alg = CIPHER_ALG_NONE,
3779			 .mode = CIPHER_MODE_NONE,
3780			 },
3781	 .auth_info = {
3782		       .alg = HASH_ALG_SHA224,
3783		       .mode = HASH_MODE_HMAC,
3784		       },
3785	 },
3786	{.type = CRYPTO_ALG_TYPE_AHASH,
3787	 .alg.hash = {
3788		      .halg.digestsize = SHA256_DIGEST_SIZE,
3789		      .halg.base = {
3790				    .cra_name = "sha256",
3791				    .cra_driver_name = "sha256-iproc",
3792				    .cra_blocksize = SHA256_BLOCK_SIZE,
3793				}
3794		      },
3795	 .cipher_info = {
3796			 .alg = CIPHER_ALG_NONE,
3797			 .mode = CIPHER_MODE_NONE,
3798			 },
3799	 .auth_info = {
3800		       .alg = HASH_ALG_SHA256,
3801		       .mode = HASH_MODE_HASH,
3802		       },
3803	 },
3804	{.type = CRYPTO_ALG_TYPE_AHASH,
3805	 .alg.hash = {
3806		      .halg.digestsize = SHA256_DIGEST_SIZE,
3807		      .halg.base = {
3808				    .cra_name = "hmac(sha256)",
3809				    .cra_driver_name = "hmac-sha256-iproc",
3810				    .cra_blocksize = SHA256_BLOCK_SIZE,
3811				}
3812		      },
3813	 .cipher_info = {
3814			 .alg = CIPHER_ALG_NONE,
3815			 .mode = CIPHER_MODE_NONE,
3816			 },
3817	 .auth_info = {
3818		       .alg = HASH_ALG_SHA256,
3819		       .mode = HASH_MODE_HMAC,
3820		       },
3821	 },
3822	{
3823	.type = CRYPTO_ALG_TYPE_AHASH,
3824	 .alg.hash = {
3825		      .halg.digestsize = SHA384_DIGEST_SIZE,
3826		      .halg.base = {
3827				    .cra_name = "sha384",
3828				    .cra_driver_name = "sha384-iproc",
3829				    .cra_blocksize = SHA384_BLOCK_SIZE,
3830				}
3831		      },
3832	 .cipher_info = {
3833			 .alg = CIPHER_ALG_NONE,
3834			 .mode = CIPHER_MODE_NONE,
3835			 },
3836	 .auth_info = {
3837		       .alg = HASH_ALG_SHA384,
3838		       .mode = HASH_MODE_HASH,
3839		       },
3840	 },
3841	{
3842	 .type = CRYPTO_ALG_TYPE_AHASH,
3843	 .alg.hash = {
3844		      .halg.digestsize = SHA384_DIGEST_SIZE,
3845		      .halg.base = {
3846				    .cra_name = "hmac(sha384)",
3847				    .cra_driver_name = "hmac-sha384-iproc",
3848				    .cra_blocksize = SHA384_BLOCK_SIZE,
3849				}
3850		      },
3851	 .cipher_info = {
3852			 .alg = CIPHER_ALG_NONE,
3853			 .mode = CIPHER_MODE_NONE,
3854			 },
3855	 .auth_info = {
3856		       .alg = HASH_ALG_SHA384,
3857		       .mode = HASH_MODE_HMAC,
3858		       },
3859	 },
3860	{
3861	 .type = CRYPTO_ALG_TYPE_AHASH,
3862	 .alg.hash = {
3863		      .halg.digestsize = SHA512_DIGEST_SIZE,
3864		      .halg.base = {
3865				    .cra_name = "sha512",
3866				    .cra_driver_name = "sha512-iproc",
3867				    .cra_blocksize = SHA512_BLOCK_SIZE,
3868				}
3869		      },
3870	 .cipher_info = {
3871			 .alg = CIPHER_ALG_NONE,
3872			 .mode = CIPHER_MODE_NONE,
3873			 },
3874	 .auth_info = {
3875		       .alg = HASH_ALG_SHA512,
3876		       .mode = HASH_MODE_HASH,
3877		       },
3878	 },
3879	{
3880	 .type = CRYPTO_ALG_TYPE_AHASH,
3881	 .alg.hash = {
3882		      .halg.digestsize = SHA512_DIGEST_SIZE,
3883		      .halg.base = {
3884				    .cra_name = "hmac(sha512)",
3885				    .cra_driver_name = "hmac-sha512-iproc",
3886				    .cra_blocksize = SHA512_BLOCK_SIZE,
3887				}
3888		      },
3889	 .cipher_info = {
3890			 .alg = CIPHER_ALG_NONE,
3891			 .mode = CIPHER_MODE_NONE,
3892			 },
3893	 .auth_info = {
3894		       .alg = HASH_ALG_SHA512,
3895		       .mode = HASH_MODE_HMAC,
3896		       },
3897	 },
3898	{
3899	 .type = CRYPTO_ALG_TYPE_AHASH,
3900	 .alg.hash = {
3901		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3902		      .halg.base = {
3903				    .cra_name = "sha3-224",
3904				    .cra_driver_name = "sha3-224-iproc",
3905				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3906				}
3907		      },
3908	 .cipher_info = {
3909			 .alg = CIPHER_ALG_NONE,
3910			 .mode = CIPHER_MODE_NONE,
3911			 },
3912	 .auth_info = {
3913		       .alg = HASH_ALG_SHA3_224,
3914		       .mode = HASH_MODE_HASH,
3915		       },
3916	 },
3917	{
3918	 .type = CRYPTO_ALG_TYPE_AHASH,
3919	 .alg.hash = {
3920		      .halg.digestsize = SHA3_224_DIGEST_SIZE,
3921		      .halg.base = {
3922				    .cra_name = "hmac(sha3-224)",
3923				    .cra_driver_name = "hmac-sha3-224-iproc",
3924				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3925				}
3926		      },
3927	 .cipher_info = {
3928			 .alg = CIPHER_ALG_NONE,
3929			 .mode = CIPHER_MODE_NONE,
3930			 },
3931	 .auth_info = {
3932		       .alg = HASH_ALG_SHA3_224,
3933		       .mode = HASH_MODE_HMAC
3934		       },
3935	 },
3936	{
3937	 .type = CRYPTO_ALG_TYPE_AHASH,
3938	 .alg.hash = {
3939		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
3940		      .halg.base = {
3941				    .cra_name = "sha3-256",
3942				    .cra_driver_name = "sha3-256-iproc",
3943				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
3944				}
3945		      },
3946	 .cipher_info = {
3947			 .alg = CIPHER_ALG_NONE,
3948			 .mode = CIPHER_MODE_NONE,
3949			 },
3950	 .auth_info = {
3951		       .alg = HASH_ALG_SHA3_256,
3952		       .mode = HASH_MODE_HASH,
3953		       },
3954	 },
3955	{
3956	 .type = CRYPTO_ALG_TYPE_AHASH,
3957	 .alg.hash = {
3958		      .halg.digestsize = SHA3_256_DIGEST_SIZE,
3959		      .halg.base = {
3960				    .cra_name = "hmac(sha3-256)",
3961				    .cra_driver_name = "hmac-sha3-256-iproc",
3962				    .cra_blocksize = SHA3_256_BLOCK_SIZE,
3963				}
3964		      },
3965	 .cipher_info = {
3966			 .alg = CIPHER_ALG_NONE,
3967			 .mode = CIPHER_MODE_NONE,
3968			 },
3969	 .auth_info = {
3970		       .alg = HASH_ALG_SHA3_256,
3971		       .mode = HASH_MODE_HMAC,
3972		       },
3973	 },
3974	{
3975	 .type = CRYPTO_ALG_TYPE_AHASH,
3976	 .alg.hash = {
3977		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
3978		      .halg.base = {
3979				    .cra_name = "sha3-384",
3980				    .cra_driver_name = "sha3-384-iproc",
3981				    .cra_blocksize = SHA3_224_BLOCK_SIZE,
3982				}
3983		      },
3984	 .cipher_info = {
3985			 .alg = CIPHER_ALG_NONE,
3986			 .mode = CIPHER_MODE_NONE,
3987			 },
3988	 .auth_info = {
3989		       .alg = HASH_ALG_SHA3_384,
3990		       .mode = HASH_MODE_HASH,
3991		       },
3992	 },
3993	{
3994	 .type = CRYPTO_ALG_TYPE_AHASH,
3995	 .alg.hash = {
3996		      .halg.digestsize = SHA3_384_DIGEST_SIZE,
3997		      .halg.base = {
3998				    .cra_name = "hmac(sha3-384)",
3999				    .cra_driver_name = "hmac-sha3-384-iproc",
4000				    .cra_blocksize = SHA3_384_BLOCK_SIZE,
4001				}
4002		      },
4003	 .cipher_info = {
4004			 .alg = CIPHER_ALG_NONE,
4005			 .mode = CIPHER_MODE_NONE,
4006			 },
4007	 .auth_info = {
4008		       .alg = HASH_ALG_SHA3_384,
4009		       .mode = HASH_MODE_HMAC,
4010		       },
4011	 },
4012	{
4013	 .type = CRYPTO_ALG_TYPE_AHASH,
4014	 .alg.hash = {
4015		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4016		      .halg.base = {
4017				    .cra_name = "sha3-512",
4018				    .cra_driver_name = "sha3-512-iproc",
4019				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4020				}
4021		      },
4022	 .cipher_info = {
4023			 .alg = CIPHER_ALG_NONE,
4024			 .mode = CIPHER_MODE_NONE,
4025			 },
4026	 .auth_info = {
4027		       .alg = HASH_ALG_SHA3_512,
4028		       .mode = HASH_MODE_HASH,
4029		       },
4030	 },
4031	{
4032	 .type = CRYPTO_ALG_TYPE_AHASH,
4033	 .alg.hash = {
4034		      .halg.digestsize = SHA3_512_DIGEST_SIZE,
4035		      .halg.base = {
4036				    .cra_name = "hmac(sha3-512)",
4037				    .cra_driver_name = "hmac-sha3-512-iproc",
4038				    .cra_blocksize = SHA3_512_BLOCK_SIZE,
4039				}
4040		      },
4041	 .cipher_info = {
4042			 .alg = CIPHER_ALG_NONE,
4043			 .mode = CIPHER_MODE_NONE,
4044			 },
4045	 .auth_info = {
4046		       .alg = HASH_ALG_SHA3_512,
4047		       .mode = HASH_MODE_HMAC,
4048		       },
4049	 },
4050	{
4051	 .type = CRYPTO_ALG_TYPE_AHASH,
4052	 .alg.hash = {
4053		      .halg.digestsize = AES_BLOCK_SIZE,
4054		      .halg.base = {
4055				    .cra_name = "xcbc(aes)",
4056				    .cra_driver_name = "xcbc-aes-iproc",
4057				    .cra_blocksize = AES_BLOCK_SIZE,
4058				}
4059		      },
4060	 .cipher_info = {
4061			 .alg = CIPHER_ALG_NONE,
4062			 .mode = CIPHER_MODE_NONE,
4063			 },
4064	 .auth_info = {
4065		       .alg = HASH_ALG_AES,
4066		       .mode = HASH_MODE_XCBC,
4067		       },
4068	 },
4069	{
4070	 .type = CRYPTO_ALG_TYPE_AHASH,
4071	 .alg.hash = {
4072		      .halg.digestsize = AES_BLOCK_SIZE,
4073		      .halg.base = {
4074				    .cra_name = "cmac(aes)",
4075				    .cra_driver_name = "cmac-aes-iproc",
4076				    .cra_blocksize = AES_BLOCK_SIZE,
4077				}
4078		      },
4079	 .cipher_info = {
4080			 .alg = CIPHER_ALG_NONE,
4081			 .mode = CIPHER_MODE_NONE,
4082			 },
4083	 .auth_info = {
4084		       .alg = HASH_ALG_AES,
4085		       .mode = HASH_MODE_CMAC,
4086		       },
4087	 },
4088};
4089
4090static int generic_cra_init(struct crypto_tfm *tfm,
4091			    struct iproc_alg_s *cipher_alg)
4092{
4093	struct spu_hw *spu = &iproc_priv.spu;
4094	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4095	unsigned int blocksize = crypto_tfm_alg_blocksize(tfm);
4096
4097	flow_log("%s()\n", __func__);
4098
4099	ctx->alg = cipher_alg;
4100	ctx->cipher = cipher_alg->cipher_info;
4101	ctx->auth = cipher_alg->auth_info;
4102	ctx->auth_first = cipher_alg->auth_first;
4103	ctx->max_payload = spu->spu_ctx_max_payload(ctx->cipher.alg,
4104						    ctx->cipher.mode,
4105						    blocksize);
4106	ctx->fallback_cipher = NULL;
4107
4108	ctx->enckeylen = 0;
4109	ctx->authkeylen = 0;
4110
4111	atomic_inc(&iproc_priv.stream_count);
4112	atomic_inc(&iproc_priv.session_count);
4113
4114	return 0;
4115}
4116
4117static int skcipher_init_tfm(struct crypto_skcipher *skcipher)
4118{
4119	struct crypto_tfm *tfm = crypto_skcipher_tfm(skcipher);
4120	struct skcipher_alg *alg = crypto_skcipher_alg(skcipher);
4121	struct iproc_alg_s *cipher_alg;
4122
4123	flow_log("%s()\n", __func__);
4124
4125	crypto_skcipher_set_reqsize(skcipher, sizeof(struct iproc_reqctx_s));
4126
4127	cipher_alg = container_of(alg, struct iproc_alg_s, alg.skcipher);
4128	return generic_cra_init(tfm, cipher_alg);
4129}
4130
4131static int ahash_cra_init(struct crypto_tfm *tfm)
4132{
4133	int err;
4134	struct crypto_alg *alg = tfm->__crt_alg;
4135	struct iproc_alg_s *cipher_alg;
4136
4137	cipher_alg = container_of(__crypto_ahash_alg(alg), struct iproc_alg_s,
4138				  alg.hash);
4139
4140	err = generic_cra_init(tfm, cipher_alg);
4141	flow_log("%s()\n", __func__);
4142
4143	/*
4144	 * export state size has to be < 512 bytes. So don't include msg bufs
4145	 * in state size.
4146	 */
4147	crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
4148				 sizeof(struct iproc_reqctx_s));
4149
4150	return err;
4151}
4152
4153static int aead_cra_init(struct crypto_aead *aead)
4154{
4155	unsigned int reqsize = sizeof(struct iproc_reqctx_s);
4156	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4157	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4158	struct crypto_alg *alg = tfm->__crt_alg;
4159	struct aead_alg *aalg = container_of(alg, struct aead_alg, base);
4160	struct iproc_alg_s *cipher_alg = container_of(aalg, struct iproc_alg_s,
4161						      alg.aead);
4162
4163	int err = generic_cra_init(tfm, cipher_alg);
4164
4165	flow_log("%s()\n", __func__);
4166
4167	ctx->is_esp = false;
4168	ctx->salt_len = 0;
4169	ctx->salt_offset = 0;
4170
4171	/* random first IV */
4172	get_random_bytes(ctx->iv, MAX_IV_SIZE);
4173	flow_dump("  iv: ", ctx->iv, MAX_IV_SIZE);
4174
4175	if (err)
4176		goto out;
4177
4178	if (!(alg->cra_flags & CRYPTO_ALG_NEED_FALLBACK))
4179		goto reqsize;
4180
4181	flow_log("%s() creating fallback cipher\n", __func__);
4182
4183	ctx->fallback_cipher = crypto_alloc_aead(alg->cra_name, 0,
4184						 CRYPTO_ALG_ASYNC |
4185						 CRYPTO_ALG_NEED_FALLBACK);
4186	if (IS_ERR(ctx->fallback_cipher)) {
4187		pr_err("%s() Error: failed to allocate fallback for %s\n",
4188		       __func__, alg->cra_name);
4189		return PTR_ERR(ctx->fallback_cipher);
4190	}
4191
4192	reqsize += crypto_aead_reqsize(ctx->fallback_cipher);
4193
4194reqsize:
4195	crypto_aead_set_reqsize(aead, reqsize);
4196
4197out:
4198	return err;
4199}
4200
4201static void generic_cra_exit(struct crypto_tfm *tfm)
4202{
4203	atomic_dec(&iproc_priv.session_count);
4204}
4205
4206static void skcipher_exit_tfm(struct crypto_skcipher *tfm)
4207{
4208	generic_cra_exit(crypto_skcipher_tfm(tfm));
4209}
4210
4211static void aead_cra_exit(struct crypto_aead *aead)
4212{
4213	struct crypto_tfm *tfm = crypto_aead_tfm(aead);
4214	struct iproc_ctx_s *ctx = crypto_tfm_ctx(tfm);
4215
4216	generic_cra_exit(tfm);
4217
4218	if (ctx->fallback_cipher) {
4219		crypto_free_aead(ctx->fallback_cipher);
4220		ctx->fallback_cipher = NULL;
4221	}
4222}
4223
4224/**
4225 * spu_functions_register() - Specify hardware-specific SPU functions based on
4226 * SPU type read from device tree.
4227 * @dev:	device structure
4228 * @spu_type:	SPU hardware generation
4229 * @spu_subtype: SPU hardware version
4230 */
4231static void spu_functions_register(struct device *dev,
4232				   enum spu_spu_type spu_type,
4233				   enum spu_spu_subtype spu_subtype)
4234{
4235	struct spu_hw *spu = &iproc_priv.spu;
4236
4237	if (spu_type == SPU_TYPE_SPUM) {
4238		dev_dbg(dev, "Registering SPUM functions");
4239		spu->spu_dump_msg_hdr = spum_dump_msg_hdr;
4240		spu->spu_payload_length = spum_payload_length;
4241		spu->spu_response_hdr_len = spum_response_hdr_len;
4242		spu->spu_hash_pad_len = spum_hash_pad_len;
4243		spu->spu_gcm_ccm_pad_len = spum_gcm_ccm_pad_len;
4244		spu->spu_assoc_resp_len = spum_assoc_resp_len;
4245		spu->spu_aead_ivlen = spum_aead_ivlen;
4246		spu->spu_hash_type = spum_hash_type;
4247		spu->spu_digest_size = spum_digest_size;
4248		spu->spu_create_request = spum_create_request;
4249		spu->spu_cipher_req_init = spum_cipher_req_init;
4250		spu->spu_cipher_req_finish = spum_cipher_req_finish;
4251		spu->spu_request_pad = spum_request_pad;
4252		spu->spu_tx_status_len = spum_tx_status_len;
4253		spu->spu_rx_status_len = spum_rx_status_len;
4254		spu->spu_status_process = spum_status_process;
4255		spu->spu_xts_tweak_in_payload = spum_xts_tweak_in_payload;
4256		spu->spu_ccm_update_iv = spum_ccm_update_iv;
4257		spu->spu_wordalign_padlen = spum_wordalign_padlen;
4258		if (spu_subtype == SPU_SUBTYPE_SPUM_NS2)
4259			spu->spu_ctx_max_payload = spum_ns2_ctx_max_payload;
4260		else
4261			spu->spu_ctx_max_payload = spum_nsp_ctx_max_payload;
4262	} else {
4263		dev_dbg(dev, "Registering SPU2 functions");
4264		spu->spu_dump_msg_hdr = spu2_dump_msg_hdr;
4265		spu->spu_ctx_max_payload = spu2_ctx_max_payload;
4266		spu->spu_payload_length = spu2_payload_length;
4267		spu->spu_response_hdr_len = spu2_response_hdr_len;
4268		spu->spu_hash_pad_len = spu2_hash_pad_len;
4269		spu->spu_gcm_ccm_pad_len = spu2_gcm_ccm_pad_len;
4270		spu->spu_assoc_resp_len = spu2_assoc_resp_len;
4271		spu->spu_aead_ivlen = spu2_aead_ivlen;
4272		spu->spu_hash_type = spu2_hash_type;
4273		spu->spu_digest_size = spu2_digest_size;
4274		spu->spu_create_request = spu2_create_request;
4275		spu->spu_cipher_req_init = spu2_cipher_req_init;
4276		spu->spu_cipher_req_finish = spu2_cipher_req_finish;
4277		spu->spu_request_pad = spu2_request_pad;
4278		spu->spu_tx_status_len = spu2_tx_status_len;
4279		spu->spu_rx_status_len = spu2_rx_status_len;
4280		spu->spu_status_process = spu2_status_process;
4281		spu->spu_xts_tweak_in_payload = spu2_xts_tweak_in_payload;
4282		spu->spu_ccm_update_iv = spu2_ccm_update_iv;
4283		spu->spu_wordalign_padlen = spu2_wordalign_padlen;
4284	}
4285}
4286
4287/**
4288 * spu_mb_init() - Initialize mailbox client. Request ownership of a mailbox
4289 * channel for the SPU being probed.
4290 * @dev:  SPU driver device structure
4291 *
4292 * Return: 0 if successful
4293 *	   < 0 otherwise
4294 */
4295static int spu_mb_init(struct device *dev)
4296{
4297	struct mbox_client *mcl = &iproc_priv.mcl;
4298	int err, i;
4299
4300	iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
4301				  sizeof(struct mbox_chan *), GFP_KERNEL);
4302	if (!iproc_priv.mbox)
4303		return -ENOMEM;
4304
4305	mcl->dev = dev;
4306	mcl->tx_block = false;
4307	mcl->tx_tout = 0;
4308	mcl->knows_txdone = true;
4309	mcl->rx_callback = spu_rx_callback;
4310	mcl->tx_done = NULL;
4311
4312	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4313		iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
4314		if (IS_ERR(iproc_priv.mbox[i])) {
4315			err = PTR_ERR(iproc_priv.mbox[i]);
4316			dev_err(dev,
4317				"Mbox channel %d request failed with err %d",
4318				i, err);
4319			iproc_priv.mbox[i] = NULL;
4320			goto free_channels;
4321		}
4322	}
4323
4324	return 0;
4325free_channels:
4326	for (i = 0; i < iproc_priv.spu.num_chan; i++) {
4327		if (iproc_priv.mbox[i])
4328			mbox_free_channel(iproc_priv.mbox[i]);
4329	}
4330
4331	return err;
4332}
4333
4334static void spu_mb_release(struct platform_device *pdev)
4335{
4336	int i;
4337
4338	for (i = 0; i < iproc_priv.spu.num_chan; i++)
4339		mbox_free_channel(iproc_priv.mbox[i]);
4340}
4341
4342static void spu_counters_init(void)
4343{
4344	int i;
4345	int j;
4346
4347	atomic_set(&iproc_priv.session_count, 0);
4348	atomic_set(&iproc_priv.stream_count, 0);
4349	atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
4350	atomic64_set(&iproc_priv.bytes_in, 0);
4351	atomic64_set(&iproc_priv.bytes_out, 0);
4352	for (i = 0; i < SPU_OP_NUM; i++) {
4353		atomic_set(&iproc_priv.op_counts[i], 0);
4354		atomic_set(&iproc_priv.setkey_cnt[i], 0);
4355	}
4356	for (i = 0; i < CIPHER_ALG_LAST; i++)
4357		for (j = 0; j < CIPHER_MODE_LAST; j++)
4358			atomic_set(&iproc_priv.cipher_cnt[i][j], 0);
4359
4360	for (i = 0; i < HASH_ALG_LAST; i++) {
4361		atomic_set(&iproc_priv.hash_cnt[i], 0);
4362		atomic_set(&iproc_priv.hmac_cnt[i], 0);
4363	}
4364	for (i = 0; i < AEAD_TYPE_LAST; i++)
4365		atomic_set(&iproc_priv.aead_cnt[i], 0);
4366
4367	atomic_set(&iproc_priv.mb_no_spc, 0);
4368	atomic_set(&iproc_priv.mb_send_fail, 0);
4369	atomic_set(&iproc_priv.bad_icv, 0);
4370}
4371
4372static int spu_register_skcipher(struct iproc_alg_s *driver_alg)
4373{
4374	struct skcipher_alg *crypto = &driver_alg->alg.skcipher;
4375	int err;
4376
4377	crypto->base.cra_module = THIS_MODULE;
4378	crypto->base.cra_priority = cipher_pri;
4379	crypto->base.cra_alignmask = 0;
4380	crypto->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4381	crypto->base.cra_flags = CRYPTO_ALG_ASYNC |
4382				 CRYPTO_ALG_ALLOCATES_MEMORY |
4383				 CRYPTO_ALG_KERN_DRIVER_ONLY;
4384
4385	crypto->init = skcipher_init_tfm;
4386	crypto->exit = skcipher_exit_tfm;
4387	crypto->setkey = skcipher_setkey;
4388	crypto->encrypt = skcipher_encrypt;
4389	crypto->decrypt = skcipher_decrypt;
4390
4391	err = crypto_register_skcipher(crypto);
4392	/* Mark alg as having been registered, if successful */
4393	if (err == 0)
4394		driver_alg->registered = true;
4395	pr_debug("  registered skcipher %s\n", crypto->base.cra_driver_name);
4396	return err;
4397}
4398
4399static int spu_register_ahash(struct iproc_alg_s *driver_alg)
4400{
4401	struct spu_hw *spu = &iproc_priv.spu;
4402	struct ahash_alg *hash = &driver_alg->alg.hash;
4403	int err;
4404
4405	/* AES-XCBC is the only AES hash type currently supported on SPU-M */
4406	if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4407	    (driver_alg->auth_info.mode != HASH_MODE_XCBC) &&
4408	    (spu->spu_type == SPU_TYPE_SPUM))
4409		return 0;
4410
4411	/* SHA3 algorithm variants are not registered for SPU-M or SPU2. */
4412	if ((driver_alg->auth_info.alg >= HASH_ALG_SHA3_224) &&
4413	    (spu->spu_subtype != SPU_SUBTYPE_SPU2_V2))
4414		return 0;
4415
4416	hash->halg.base.cra_module = THIS_MODULE;
4417	hash->halg.base.cra_priority = hash_pri;
4418	hash->halg.base.cra_alignmask = 0;
4419	hash->halg.base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4420	hash->halg.base.cra_init = ahash_cra_init;
4421	hash->halg.base.cra_exit = generic_cra_exit;
4422	hash->halg.base.cra_flags = CRYPTO_ALG_ASYNC |
4423				    CRYPTO_ALG_ALLOCATES_MEMORY;
4424	hash->halg.statesize = sizeof(struct spu_hash_export_s);
4425
4426	if (driver_alg->auth_info.mode != HASH_MODE_HMAC) {
4427		hash->init = ahash_init;
4428		hash->update = ahash_update;
4429		hash->final = ahash_final;
4430		hash->finup = ahash_finup;
4431		hash->digest = ahash_digest;
4432		if ((driver_alg->auth_info.alg == HASH_ALG_AES) &&
4433		    ((driver_alg->auth_info.mode == HASH_MODE_XCBC) ||
4434		    (driver_alg->auth_info.mode == HASH_MODE_CMAC))) {
4435			hash->setkey = ahash_setkey;
4436		}
4437	} else {
4438		hash->setkey = ahash_hmac_setkey;
4439		hash->init = ahash_hmac_init;
4440		hash->update = ahash_hmac_update;
4441		hash->final = ahash_hmac_final;
4442		hash->finup = ahash_hmac_finup;
4443		hash->digest = ahash_hmac_digest;
4444	}
4445	hash->export = ahash_export;
4446	hash->import = ahash_import;
4447
4448	err = crypto_register_ahash(hash);
4449	/* Mark alg as having been registered, if successful */
4450	if (err == 0)
4451		driver_alg->registered = true;
4452	pr_debug("  registered ahash %s\n",
4453		 hash->halg.base.cra_driver_name);
4454	return err;
4455}
4456
4457static int spu_register_aead(struct iproc_alg_s *driver_alg)
4458{
4459	struct aead_alg *aead = &driver_alg->alg.aead;
4460	int err;
4461
4462	aead->base.cra_module = THIS_MODULE;
4463	aead->base.cra_priority = aead_pri;
4464	aead->base.cra_alignmask = 0;
4465	aead->base.cra_ctxsize = sizeof(struct iproc_ctx_s);
4466
4467	aead->base.cra_flags |= CRYPTO_ALG_ASYNC | CRYPTO_ALG_ALLOCATES_MEMORY;
4468	/* setkey set in alg initialization */
4469	aead->setauthsize = aead_setauthsize;
4470	aead->encrypt = aead_encrypt;
4471	aead->decrypt = aead_decrypt;
4472	aead->init = aead_cra_init;
4473	aead->exit = aead_cra_exit;
4474
4475	err = crypto_register_aead(aead);
4476	/* Mark alg as having been registered, if successful */
4477	if (err == 0)
4478		driver_alg->registered = true;
4479	pr_debug("  registered aead %s\n", aead->base.cra_driver_name);
4480	return err;
4481}
4482
4483/* register crypto algorithms the device supports */
4484static int spu_algs_register(struct device *dev)
4485{
4486	int i, j;
4487	int err;
4488
4489	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4490		switch (driver_algs[i].type) {
4491		case CRYPTO_ALG_TYPE_SKCIPHER:
4492			err = spu_register_skcipher(&driver_algs[i]);
4493			break;
4494		case CRYPTO_ALG_TYPE_AHASH:
4495			err = spu_register_ahash(&driver_algs[i]);
4496			break;
4497		case CRYPTO_ALG_TYPE_AEAD:
4498			err = spu_register_aead(&driver_algs[i]);
4499			break;
4500		default:
4501			dev_err(dev,
4502				"iproc-crypto: unknown alg type: %d",
4503				driver_algs[i].type);
4504			err = -EINVAL;
4505		}
4506
4507		if (err) {
4508			dev_err(dev, "alg registration failed with error %d\n",
4509				err);
4510			goto err_algs;
4511		}
4512	}
4513
4514	return 0;
4515
4516err_algs:
4517	for (j = 0; j < i; j++) {
4518		/* Skip any algorithm not registered */
4519		if (!driver_algs[j].registered)
4520			continue;
4521		switch (driver_algs[j].type) {
4522		case CRYPTO_ALG_TYPE_SKCIPHER:
4523			crypto_unregister_skcipher(&driver_algs[j].alg.skcipher);
4524			driver_algs[j].registered = false;
4525			break;
4526		case CRYPTO_ALG_TYPE_AHASH:
4527			crypto_unregister_ahash(&driver_algs[j].alg.hash);
4528			driver_algs[j].registered = false;
4529			break;
4530		case CRYPTO_ALG_TYPE_AEAD:
4531			crypto_unregister_aead(&driver_algs[j].alg.aead);
4532			driver_algs[j].registered = false;
4533			break;
4534		}
4535	}
4536	return err;
4537}
4538
4539/* ==================== Kernel Platform API ==================== */
4540
4541static struct spu_type_subtype spum_ns2_types = {
4542	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NS2
4543};
4544
4545static struct spu_type_subtype spum_nsp_types = {
4546	SPU_TYPE_SPUM, SPU_SUBTYPE_SPUM_NSP
4547};
4548
4549static struct spu_type_subtype spu2_types = {
4550	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V1
4551};
4552
4553static struct spu_type_subtype spu2_v2_types = {
4554	SPU_TYPE_SPU2, SPU_SUBTYPE_SPU2_V2
4555};
4556
4557static const struct of_device_id bcm_spu_dt_ids[] = {
4558	{
4559		.compatible = "brcm,spum-crypto",
4560		.data = &spum_ns2_types,
4561	},
4562	{
4563		.compatible = "brcm,spum-nsp-crypto",
4564		.data = &spum_nsp_types,
4565	},
4566	{
4567		.compatible = "brcm,spu2-crypto",
4568		.data = &spu2_types,
4569	},
4570	{
4571		.compatible = "brcm,spu2-v2-crypto",
4572		.data = &spu2_v2_types,
4573	},
4574	{ /* sentinel */ }
4575};
4576
4577MODULE_DEVICE_TABLE(of, bcm_spu_dt_ids);
4578
4579static int spu_dt_read(struct platform_device *pdev)
4580{
4581	struct device *dev = &pdev->dev;
4582	struct spu_hw *spu = &iproc_priv.spu;
4583	struct resource *spu_ctrl_regs;
4584	const struct spu_type_subtype *matched_spu_type;
4585	struct device_node *dn = pdev->dev.of_node;
4586	int err, i;
4587
4588	/* Count number of mailbox channels */
4589	spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
4590
4591	matched_spu_type = of_device_get_match_data(dev);
4592	if (!matched_spu_type) {
4593		dev_err(dev, "Failed to match device\n");
4594		return -ENODEV;
4595	}
4596
4597	spu->spu_type = matched_spu_type->type;
4598	spu->spu_subtype = matched_spu_type->subtype;
4599
4600	for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
4601		platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
4602
4603		spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
4604		if (IS_ERR(spu->reg_vbase[i])) {
4605			err = PTR_ERR(spu->reg_vbase[i]);
4606			dev_err(dev, "Failed to map registers: %d\n",
4607				err);
4608			spu->reg_vbase[i] = NULL;
4609			return err;
4610		}
4611	}
4612	spu->num_spu = i;
4613	dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
4614
4615	return 0;
4616}
4617
4618static int bcm_spu_probe(struct platform_device *pdev)
4619{
4620	struct device *dev = &pdev->dev;
4621	struct spu_hw *spu = &iproc_priv.spu;
4622	int err;
4623
4624	iproc_priv.pdev  = pdev;
4625	platform_set_drvdata(iproc_priv.pdev,
4626			     &iproc_priv);
4627
4628	err = spu_dt_read(pdev);
4629	if (err < 0)
4630		goto failure;
4631
4632	err = spu_mb_init(dev);
4633	if (err < 0)
4634		goto failure;
4635
4636	if (spu->spu_type == SPU_TYPE_SPUM)
4637		iproc_priv.bcm_hdr_len = 8;
4638	else if (spu->spu_type == SPU_TYPE_SPU2)
4639		iproc_priv.bcm_hdr_len = 0;
4640
4641	spu_functions_register(dev, spu->spu_type, spu->spu_subtype);
4642
4643	spu_counters_init();
4644
4645	spu_setup_debugfs();
4646
4647	err = spu_algs_register(dev);
4648	if (err < 0)
4649		goto fail_reg;
4650
4651	return 0;
4652
4653fail_reg:
4654	spu_free_debugfs();
4655failure:
4656	spu_mb_release(pdev);
4657	dev_err(dev, "%s failed with error %d.\n", __func__, err);
4658
4659	return err;
4660}
4661
4662static void bcm_spu_remove(struct platform_device *pdev)
4663{
4664	int i;
4665	struct device *dev = &pdev->dev;
4666	char *cdn;
4667
4668	for (i = 0; i < ARRAY_SIZE(driver_algs); i++) {
4669		/*
4670		 * Not all algorithms were registered, depending on whether
4671		 * hardware is SPU or SPU2.  So here we make sure to skip
4672		 * those algorithms that were not previously registered.
4673		 */
4674		if (!driver_algs[i].registered)
4675			continue;
4676
4677		switch (driver_algs[i].type) {
4678		case CRYPTO_ALG_TYPE_SKCIPHER:
4679			crypto_unregister_skcipher(&driver_algs[i].alg.skcipher);
4680			dev_dbg(dev, "  unregistered cipher %s\n",
4681				driver_algs[i].alg.skcipher.base.cra_driver_name);
4682			driver_algs[i].registered = false;
4683			break;
4684		case CRYPTO_ALG_TYPE_AHASH:
4685			crypto_unregister_ahash(&driver_algs[i].alg.hash);
4686			cdn = driver_algs[i].alg.hash.halg.base.cra_driver_name;
4687			dev_dbg(dev, "  unregistered hash %s\n", cdn);
4688			driver_algs[i].registered = false;
4689			break;
4690		case CRYPTO_ALG_TYPE_AEAD:
4691			crypto_unregister_aead(&driver_algs[i].alg.aead);
4692			dev_dbg(dev, "  unregistered aead %s\n",
4693				driver_algs[i].alg.aead.base.cra_driver_name);
4694			driver_algs[i].registered = false;
4695			break;
4696		}
4697	}
4698	spu_free_debugfs();
4699	spu_mb_release(pdev);
4700}
4701
4702/* ===== Kernel Module API ===== */
4703
4704static struct platform_driver bcm_spu_pdriver = {
4705	.driver = {
4706		   .name = "brcm-spu-crypto",
4707		   .of_match_table = of_match_ptr(bcm_spu_dt_ids),
4708		   },
4709	.probe = bcm_spu_probe,
4710	.remove = bcm_spu_remove,
4711};
4712module_platform_driver(bcm_spu_pdriver);
4713
4714MODULE_AUTHOR("Rob Rice <rob.rice@broadcom.com>");
4715MODULE_DESCRIPTION("Broadcom symmetric crypto offload driver");
4716MODULE_LICENSE("GPL v2");