Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3  A FORE Systems 200E-series driver for ATM on Linux.
   4  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   5
   6  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   7
   8  This driver simultaneously supports PCA-200E and SBA-200E adapters
   9  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
  10
 
 
 
 
 
 
 
 
 
 
 
 
 
  11*/
  12
  13
  14#include <linux/kernel.h>
  15#include <linux/slab.h>
  16#include <linux/init.h>
  17#include <linux/capability.h>
  18#include <linux/interrupt.h>
  19#include <linux/bitops.h>
  20#include <linux/pci.h>
  21#include <linux/module.h>
  22#include <linux/atmdev.h>
  23#include <linux/sonet.h>
 
  24#include <linux/dma-mapping.h>
  25#include <linux/delay.h>
  26#include <linux/firmware.h>
  27#include <linux/pgtable.h>
  28#include <asm/io.h>
  29#include <asm/string.h>
  30#include <asm/page.h>
  31#include <asm/irq.h>
  32#include <asm/dma.h>
  33#include <asm/byteorder.h>
  34#include <linux/uaccess.h>
  35#include <linux/atomic.h>
  36
  37#ifdef CONFIG_SBUS
  38#include <linux/of.h>
  39#include <linux/platform_device.h>
  40#include <asm/idprom.h>
  41#include <asm/openprom.h>
  42#include <asm/oplib.h>
 
  43#endif
  44
  45#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  46#define FORE200E_USE_TASKLET
  47#endif
  48
  49#if 0 /* enable the debugging code of the buffer supply queues */
  50#define FORE200E_BSQ_DEBUG
  51#endif
  52
  53#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  54#define FORE200E_52BYTE_AAL0_SDU
  55#endif
  56
  57#include "fore200e.h"
  58#include "suni.h"
  59
  60#define FORE200E_VERSION "0.3e"
  61
  62#define FORE200E         "fore200e: "
  63
  64#if 0 /* override .config */
  65#define CONFIG_ATM_FORE200E_DEBUG 1
  66#endif
  67#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  68#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  69                                                  printk(FORE200E format, ##args); } while (0)
  70#else
  71#define DPRINTK(level, format, args...)  do {} while (0)
  72#endif
  73
  74
  75#define FORE200E_ALIGN(addr, alignment) \
  76        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  77
  78#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  79
  80#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  81
  82#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  83
  84#if 1
  85#define ASSERT(expr)     if (!(expr)) { \
  86			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
  87				    __func__, __LINE__, #expr); \
  88			     panic(FORE200E "%s", __func__); \
  89			 }
  90#else
  91#define ASSERT(expr)     do {} while (0)
  92#endif
  93
  94
  95static const struct atmdev_ops   fore200e_ops;
 
 
 
 
  96
  97MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
  98MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 
 
  99
 100static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 101    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 102    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 103};
 104
 105static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 106    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 107    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 108};
 109
 110
 111#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 112static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 113#endif
 114
 115
 116#if 0 /* currently unused */
 117static int 
 118fore200e_fore2atm_aal(enum fore200e_aal aal)
 119{
 120    switch(aal) {
 121    case FORE200E_AAL0:  return ATM_AAL0;
 122    case FORE200E_AAL34: return ATM_AAL34;
 123    case FORE200E_AAL5:  return ATM_AAL5;
 124    }
 125
 126    return -EINVAL;
 127}
 128#endif
 129
 130
 131static enum fore200e_aal
 132fore200e_atm2fore_aal(int aal)
 133{
 134    switch(aal) {
 135    case ATM_AAL0:  return FORE200E_AAL0;
 136    case ATM_AAL34: return FORE200E_AAL34;
 137    case ATM_AAL1:
 138    case ATM_AAL2:
 139    case ATM_AAL5:  return FORE200E_AAL5;
 140    }
 141
 142    return -EINVAL;
 143}
 144
 145
 146static char*
 147fore200e_irq_itoa(int irq)
 148{
 149    static char str[8];
 150    sprintf(str, "%d", irq);
 151    return str;
 152}
 153
 154
 155/* allocate and align a chunk of memory intended to hold the data behing exchanged
 156   between the driver and the adapter (using streaming DVMA) */
 157
 158static int
 159fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 160{
 161    unsigned long offset = 0;
 162
 163    if (alignment <= sizeof(int))
 164	alignment = 0;
 165
 166    chunk->alloc_size = size + alignment;
 
 167    chunk->direction  = direction;
 168
 169    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL);
 170    if (chunk->alloc_addr == NULL)
 171	return -ENOMEM;
 172
 173    if (alignment > 0)
 174	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 175    
 176    chunk->align_addr = chunk->alloc_addr + offset;
 177
 178    chunk->dma_addr = dma_map_single(fore200e->dev, chunk->align_addr,
 179				     size, direction);
 180    if (dma_mapping_error(fore200e->dev, chunk->dma_addr)) {
 181	kfree(chunk->alloc_addr);
 182	return -ENOMEM;
 183    }
 184    return 0;
 185}
 186
 187
 188/* free a chunk of memory */
 189
 190static void
 191fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 192{
 193    dma_unmap_single(fore200e->dev, chunk->dma_addr, chunk->dma_size,
 194		     chunk->direction);
 195    kfree(chunk->alloc_addr);
 196}
 197
 198/*
 199 * Allocate a DMA consistent chunk of memory intended to act as a communication
 200 * mechanism (to hold descriptors, status, queues, etc.) shared by the driver
 201 * and the adapter.
 202 */
 203static int
 204fore200e_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 205		int size, int nbr, int alignment)
 206{
 207	/* returned chunks are page-aligned */
 208	chunk->alloc_size = size * nbr;
 209	chunk->alloc_addr = dma_alloc_coherent(fore200e->dev, chunk->alloc_size,
 210					       &chunk->dma_addr, GFP_KERNEL);
 211	if (!chunk->alloc_addr)
 212		return -ENOMEM;
 213	chunk->align_addr = chunk->alloc_addr;
 214	return 0;
 215}
 216
 217/*
 218 * Free a DMA consistent chunk of memory.
 219 */
 220static void
 221fore200e_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 222{
 223	dma_free_coherent(fore200e->dev, chunk->alloc_size, chunk->alloc_addr,
 224			  chunk->dma_addr);
 225}
 226
 227static void
 228fore200e_spin(int msecs)
 229{
 230    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 231    while (time_before(jiffies, timeout));
 232}
 233
 234
 235static int
 236fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 237{
 238    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 239    int           ok;
 240
 241    mb();
 242    do {
 243	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 244	    break;
 245
 246    } while (time_before(jiffies, timeout));
 247
 248#if 1
 249    if (!ok) {
 250	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 251	       *addr, val);
 252    }
 253#endif
 254
 255    return ok;
 256}
 257
 258
 259static int
 260fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 261{
 262    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 263    int           ok;
 264
 265    do {
 266	if ((ok = (fore200e->bus->read(addr) == val)))
 267	    break;
 268
 269    } while (time_before(jiffies, timeout));
 270
 271#if 1
 272    if (!ok) {
 273	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 274	       fore200e->bus->read(addr), val);
 275    }
 276#endif
 277
 278    return ok;
 279}
 280
 281
 282static void
 283fore200e_free_rx_buf(struct fore200e* fore200e)
 284{
 285    int scheme, magn, nbr;
 286    struct buffer* buffer;
 287
 288    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 289	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 290
 291	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 292
 293		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 294
 295		    struct chunk* data = &buffer[ nbr ].data;
 296
 297		    if (data->alloc_addr != NULL)
 298			fore200e_chunk_free(fore200e, data);
 299		}
 300	    }
 301	}
 302    }
 303}
 304
 305
 306static void
 307fore200e_uninit_bs_queue(struct fore200e* fore200e)
 308{
 309    int scheme, magn;
 310    
 311    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 312	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 313
 314	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 315	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 316	    
 317	    if (status->alloc_addr)
 318		fore200e_dma_chunk_free(fore200e, status);
 319	    
 320	    if (rbd_block->alloc_addr)
 321		fore200e_dma_chunk_free(fore200e, rbd_block);
 322	}
 323    }
 324}
 325
 326
 327static int
 328fore200e_reset(struct fore200e* fore200e, int diag)
 329{
 330    int ok;
 331
 332    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 333    
 334    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 335
 336    fore200e->bus->reset(fore200e);
 337
 338    if (diag) {
 339	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 340	if (ok == 0) {
 341	    
 342	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 343	    return -ENODEV;
 344	}
 345
 346	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 347	
 348	fore200e->state = FORE200E_STATE_RESET;
 349    }
 350
 351    return 0;
 352}
 353
 354
 355static void
 356fore200e_shutdown(struct fore200e* fore200e)
 357{
 358    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 359	   fore200e->name, fore200e->phys_base, 
 360	   fore200e_irq_itoa(fore200e->irq));
 361    
 362    if (fore200e->state > FORE200E_STATE_RESET) {
 363	/* first, reset the board to prevent further interrupts or data transfers */
 364	fore200e_reset(fore200e, 0);
 365    }
 366    
 367    /* then, release all allocated resources */
 368    switch(fore200e->state) {
 369
 370    case FORE200E_STATE_COMPLETE:
 371	kfree(fore200e->stats);
 372
 373	fallthrough;
 374    case FORE200E_STATE_IRQ:
 375	free_irq(fore200e->irq, fore200e->atm_dev);
 376
 377	fallthrough;
 378    case FORE200E_STATE_ALLOC_BUF:
 379	fore200e_free_rx_buf(fore200e);
 380
 381	fallthrough;
 382    case FORE200E_STATE_INIT_BSQ:
 383	fore200e_uninit_bs_queue(fore200e);
 384
 385	fallthrough;
 386    case FORE200E_STATE_INIT_RXQ:
 387	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 388	fore200e_dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 389
 390	fallthrough;
 391    case FORE200E_STATE_INIT_TXQ:
 392	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.status);
 393	fore200e_dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 394
 395	fallthrough;
 396    case FORE200E_STATE_INIT_CMDQ:
 397	fore200e_dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 398
 399	fallthrough;
 400    case FORE200E_STATE_INITIALIZE:
 401	/* nothing to do for that state */
 402
 403    case FORE200E_STATE_START_FW:
 404	/* nothing to do for that state */
 405
 406    case FORE200E_STATE_RESET:
 407	/* nothing to do for that state */
 408
 409    case FORE200E_STATE_MAP:
 410	fore200e->bus->unmap(fore200e);
 411
 412	fallthrough;
 413    case FORE200E_STATE_CONFIGURE:
 414	/* nothing to do for that state */
 415
 416    case FORE200E_STATE_REGISTER:
 417	/* XXX shouldn't we *start* by deregistering the device? */
 418	atm_dev_deregister(fore200e->atm_dev);
 419
 420	fallthrough;
 421    case FORE200E_STATE_BLANK:
 422	/* nothing to do for that state */
 423	break;
 424    }
 425}
 426
 427
 428#ifdef CONFIG_PCI
 429
 430static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 431{
 432    /* on big-endian hosts, the board is configured to convert
 433       the endianess of slave RAM accesses  */
 434    return le32_to_cpu(readl(addr));
 435}
 436
 437
 438static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 439{
 440    /* on big-endian hosts, the board is configured to convert
 441       the endianess of slave RAM accesses  */
 442    writel(cpu_to_le32(val), addr);
 443}
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445static int
 446fore200e_pca_irq_check(struct fore200e* fore200e)
 447{
 448    /* this is a 1 bit register */
 449    int irq_posted = readl(fore200e->regs.pca.psr);
 450
 451#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 452    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 453	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 454    }
 455#endif
 456
 457    return irq_posted;
 458}
 459
 460
 461static void
 462fore200e_pca_irq_ack(struct fore200e* fore200e)
 463{
 464    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 465}
 466
 467
 468static void
 469fore200e_pca_reset(struct fore200e* fore200e)
 470{
 471    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 472    fore200e_spin(10);
 473    writel(0, fore200e->regs.pca.hcr);
 474}
 475
 476
 477static int fore200e_pca_map(struct fore200e* fore200e)
 
 478{
 479    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 480
 481    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 482    
 483    if (fore200e->virt_base == NULL) {
 484	printk(FORE200E "can't map device %s\n", fore200e->name);
 485	return -EFAULT;
 486    }
 487
 488    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 489
 490    /* gain access to the PCA specific registers  */
 491    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 492    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 493    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 494
 495    fore200e->state = FORE200E_STATE_MAP;
 496    return 0;
 497}
 498
 499
 500static void
 501fore200e_pca_unmap(struct fore200e* fore200e)
 502{
 503    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 504
 505    if (fore200e->virt_base != NULL)
 506	iounmap(fore200e->virt_base);
 507}
 508
 509
 510static int fore200e_pca_configure(struct fore200e *fore200e)
 
 511{
 512    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 513    u8              master_ctrl, latency;
 514
 515    DPRINTK(2, "device %s being configured\n", fore200e->name);
 516
 517    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 518	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 519	return -EIO;
 520    }
 521
 522    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 523
 524    master_ctrl = master_ctrl
 525#if defined(__BIG_ENDIAN)
 526	/* request the PCA board to convert the endianess of slave RAM accesses */
 527	| PCA200E_CTRL_CONVERT_ENDIAN
 528#endif
 529#if 0
 530        | PCA200E_CTRL_DIS_CACHE_RD
 531        | PCA200E_CTRL_DIS_WRT_INVAL
 532        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 533        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 534#endif
 535	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 536    
 537    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 538
 539    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 540       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 541       this may impact the performances of other PCI devices on the same bus, though */
 542    latency = 192;
 543    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 544
 545    fore200e->state = FORE200E_STATE_CONFIGURE;
 546    return 0;
 547}
 548
 549
 550static int __init
 551fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 552{
 553    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 554    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 555    struct prom_opcode      opcode;
 556    int                     ok;
 557    u32                     prom_dma;
 558
 559    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 560
 561    opcode.opcode = OPCODE_GET_PROM;
 562    opcode.pad    = 0;
 563
 564    prom_dma = dma_map_single(fore200e->dev, prom, sizeof(struct prom_data),
 565			      DMA_FROM_DEVICE);
 566    if (dma_mapping_error(fore200e->dev, prom_dma))
 567	return -ENOMEM;
 568
 569    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 570    
 571    *entry->status = STATUS_PENDING;
 572
 573    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 574
 575    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 576
 577    *entry->status = STATUS_FREE;
 578
 579    dma_unmap_single(fore200e->dev, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 580
 581    if (ok == 0) {
 582	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 583	return -EIO;
 584    }
 585
 586#if defined(__BIG_ENDIAN)
 587    
 588#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 589
 590    /* MAC address is stored as little-endian */
 591    swap_here(&prom->mac_addr[0]);
 592    swap_here(&prom->mac_addr[4]);
 593#endif
 594    
 595    return 0;
 596}
 597
 598
 599static int
 600fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 601{
 602    struct pci_dev *pci_dev = to_pci_dev(fore200e->dev);
 603
 604    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 605		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 606}
 607
 608static const struct fore200e_bus fore200e_pci_ops = {
 609	.model_name		= "PCA-200E",
 610	.proc_name		= "pca200e",
 611	.descr_alignment	= 32,
 612	.buffer_alignment	= 4,
 613	.status_alignment	= 32,
 614	.read			= fore200e_pca_read,
 615	.write			= fore200e_pca_write,
 616	.configure		= fore200e_pca_configure,
 617	.map			= fore200e_pca_map,
 618	.reset			= fore200e_pca_reset,
 619	.prom_read		= fore200e_pca_prom_read,
 620	.unmap			= fore200e_pca_unmap,
 621	.irq_check		= fore200e_pca_irq_check,
 622	.irq_ack		= fore200e_pca_irq_ack,
 623	.proc_read		= fore200e_pca_proc_read,
 624};
 625#endif /* CONFIG_PCI */
 626
 
 627#ifdef CONFIG_SBUS
 628
 629static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 630{
 631    return sbus_readl(addr);
 632}
 633
 634static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 635{
 636    sbus_writel(val, addr);
 637}
 638
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 640{
 641	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 642	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 643}
 644
 645static int fore200e_sba_irq_check(struct fore200e *fore200e)
 646{
 647	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 648}
 649
 650static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 651{
 652	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 653	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 654}
 655
 656static void fore200e_sba_reset(struct fore200e *fore200e)
 657{
 658	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 659	fore200e_spin(10);
 660	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 661}
 662
 663static int __init fore200e_sba_map(struct fore200e *fore200e)
 664{
 665	struct platform_device *op = to_platform_device(fore200e->dev);
 666	unsigned int bursts;
 667
 668	/* gain access to the SBA specific registers  */
 669	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 670	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 671	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 672	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 673
 674	if (!fore200e->virt_base) {
 675		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 676		return -EFAULT;
 677	}
 678
 679	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 680    
 681	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 682
 683	/* get the supported DVMA burst sizes */
 684	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 685
 686	if (sbus_can_dma_64bit())
 687		sbus_set_sbus64(&op->dev, bursts);
 688
 689	fore200e->state = FORE200E_STATE_MAP;
 690	return 0;
 691}
 692
 693static void fore200e_sba_unmap(struct fore200e *fore200e)
 694{
 695	struct platform_device *op = to_platform_device(fore200e->dev);
 696
 697	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 698	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 699	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 700	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 701}
 702
 703static int __init fore200e_sba_configure(struct fore200e *fore200e)
 704{
 705	fore200e->state = FORE200E_STATE_CONFIGURE;
 706	return 0;
 707}
 708
 709static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 710{
 711	struct platform_device *op = to_platform_device(fore200e->dev);
 712	const u8 *prop;
 713	int len;
 714
 715	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 716	if (!prop)
 717		return -ENODEV;
 718	memcpy(&prom->mac_addr[4], prop, 4);
 719
 720	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 721	if (!prop)
 722		return -ENODEV;
 723	memcpy(&prom->mac_addr[2], prop, 4);
 724
 725	prom->serial_number = of_getintprop_default(op->dev.of_node,
 726						    "serialnumber", 0);
 727	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 728						  "promversion", 0);
 729    
 730	return 0;
 731}
 732
 733static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 734{
 735	struct platform_device *op = to_platform_device(fore200e->dev);
 736	const struct linux_prom_registers *regs;
 737
 738	regs = of_get_property(op->dev.of_node, "reg", NULL);
 739
 740	return sprintf(page, "   SBUS slot/device:\t\t%d/'%pOFn'\n",
 741		       (regs ? regs->which_io : 0), op->dev.of_node);
 742}
 743
 744static const struct fore200e_bus fore200e_sbus_ops = {
 745	.model_name		= "SBA-200E",
 746	.proc_name		= "sba200e",
 747	.descr_alignment	= 32,
 748	.buffer_alignment	= 64,
 749	.status_alignment	= 32,
 750	.read			= fore200e_sba_read,
 751	.write			= fore200e_sba_write,
 752	.configure		= fore200e_sba_configure,
 753	.map			= fore200e_sba_map,
 754	.reset			= fore200e_sba_reset,
 755	.prom_read		= fore200e_sba_prom_read,
 756	.unmap			= fore200e_sba_unmap,
 757	.irq_enable		= fore200e_sba_irq_enable,
 758	.irq_check		= fore200e_sba_irq_check,
 759	.irq_ack		= fore200e_sba_irq_ack,
 760	.proc_read		= fore200e_sba_proc_read,
 761};
 762#endif /* CONFIG_SBUS */
 763
 
 764static void
 765fore200e_tx_irq(struct fore200e* fore200e)
 766{
 767    struct host_txq*        txq = &fore200e->host_txq;
 768    struct host_txq_entry*  entry;
 769    struct atm_vcc*         vcc;
 770    struct fore200e_vc_map* vc_map;
 771
 772    if (fore200e->host_txq.txing == 0)
 773	return;
 774
 775    for (;;) {
 776	
 777	entry = &txq->host_entry[ txq->tail ];
 778
 779        if ((*entry->status & STATUS_COMPLETE) == 0) {
 780	    break;
 781	}
 782
 783	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 784		entry, txq->tail, entry->vc_map, entry->skb);
 785
 786	/* free copy of misaligned data */
 787	kfree(entry->data);
 788	
 789	/* remove DMA mapping */
 790	dma_unmap_single(fore200e->dev, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 791				 DMA_TO_DEVICE);
 792
 793	vc_map = entry->vc_map;
 794
 795	/* vcc closed since the time the entry was submitted for tx? */
 796	if ((vc_map->vcc == NULL) ||
 797	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 798
 799	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 800		    fore200e->atm_dev->number);
 801
 802	    dev_kfree_skb_any(entry->skb);
 803	}
 804	else {
 805	    ASSERT(vc_map->vcc);
 806
 807	    /* vcc closed then immediately re-opened? */
 808	    if (vc_map->incarn != entry->incarn) {
 809
 810		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 811		   if the same vcc is immediately re-opened, those pending PDUs must
 812		   not be popped after the completion of their emission, as they refer
 813		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 814		   would be decremented by the size of the (unrelated) skb, possibly
 815		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 816		   we thus bind the tx entry to the current incarnation of the vcc
 817		   when the entry is submitted for tx. When the tx later completes,
 818		   if the incarnation number of the tx entry does not match the one
 819		   of the vcc, then this implies that the vcc has been closed then re-opened.
 820		   we thus just drop the skb here. */
 821
 822		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 823			fore200e->atm_dev->number);
 824
 825		dev_kfree_skb_any(entry->skb);
 826	    }
 827	    else {
 828		vcc = vc_map->vcc;
 829		ASSERT(vcc);
 830
 831		/* notify tx completion */
 832		if (vcc->pop) {
 833		    vcc->pop(vcc, entry->skb);
 834		}
 835		else {
 836		    dev_kfree_skb_any(entry->skb);
 837		}
 838
 
 
 
 
 
 839		/* check error condition */
 840		if (*entry->status & STATUS_ERROR)
 841		    atomic_inc(&vcc->stats->tx_err);
 842		else
 843		    atomic_inc(&vcc->stats->tx);
 844	    }
 845	}
 846
 847	*entry->status = STATUS_FREE;
 848
 849	fore200e->host_txq.txing--;
 850
 851	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 852    }
 853}
 854
 855
 856#ifdef FORE200E_BSQ_DEBUG
 857int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 858{
 859    struct buffer* buffer;
 860    int count = 0;
 861
 862    buffer = bsq->freebuf;
 863    while (buffer) {
 864
 865	if (buffer->supplied) {
 866	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 867		   where, scheme, magn, buffer->index);
 868	}
 869
 870	if (buffer->magn != magn) {
 871	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 872		   where, scheme, magn, buffer->index, buffer->magn);
 873	}
 874
 875	if (buffer->scheme != scheme) {
 876	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 877		   where, scheme, magn, buffer->index, buffer->scheme);
 878	}
 879
 880	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 881	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 882		   where, scheme, magn, buffer->index);
 883	}
 884
 885	count++;
 886	buffer = buffer->next;
 887    }
 888
 889    if (count != bsq->freebuf_count) {
 890	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 891	       where, scheme, magn, count, bsq->freebuf_count);
 892    }
 893    return 0;
 894}
 895#endif
 896
 897
 898static void
 899fore200e_supply(struct fore200e* fore200e)
 900{
 901    int  scheme, magn, i;
 902
 903    struct host_bsq*       bsq;
 904    struct host_bsq_entry* entry;
 905    struct buffer*         buffer;
 906
 907    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 908	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 909
 910	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
 911
 912#ifdef FORE200E_BSQ_DEBUG
 913	    bsq_audit(1, bsq, scheme, magn);
 914#endif
 915	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
 916
 917		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
 918			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
 919
 920		entry = &bsq->host_entry[ bsq->head ];
 921
 922		for (i = 0; i < RBD_BLK_SIZE; i++) {
 923
 924		    /* take the first buffer in the free buffer list */
 925		    buffer = bsq->freebuf;
 926		    if (!buffer) {
 927			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
 928			       scheme, magn, bsq->freebuf_count);
 929			return;
 930		    }
 931		    bsq->freebuf = buffer->next;
 932		    
 933#ifdef FORE200E_BSQ_DEBUG
 934		    if (buffer->supplied)
 935			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
 936			       scheme, magn, buffer->index);
 937		    buffer->supplied = 1;
 938#endif
 939		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
 940		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
 941		}
 942
 943		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
 944
 945 		/* decrease accordingly the number of free rx buffers */
 946		bsq->freebuf_count -= RBD_BLK_SIZE;
 947
 948		*entry->status = STATUS_PENDING;
 949		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
 950	    }
 951	}
 952    }
 953}
 954
 955
 956static int
 957fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
 958{
 959    struct sk_buff*      skb;
 960    struct buffer*       buffer;
 961    struct fore200e_vcc* fore200e_vcc;
 962    int                  i, pdu_len = 0;
 963#ifdef FORE200E_52BYTE_AAL0_SDU
 964    u32                  cell_header = 0;
 965#endif
 966
 967    ASSERT(vcc);
 968    
 969    fore200e_vcc = FORE200E_VCC(vcc);
 970    ASSERT(fore200e_vcc);
 971
 972#ifdef FORE200E_52BYTE_AAL0_SDU
 973    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
 974
 975	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
 976	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
 977                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
 978                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
 979                       rpd->atm_header.clp;
 980	pdu_len = 4;
 981    }
 982#endif
 983    
 984    /* compute total PDU length */
 985    for (i = 0; i < rpd->nseg; i++)
 986	pdu_len += rpd->rsd[ i ].length;
 987    
 988    skb = alloc_skb(pdu_len, GFP_ATOMIC);
 989    if (skb == NULL) {
 990	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
 991
 992	atomic_inc(&vcc->stats->rx_drop);
 993	return -ENOMEM;
 994    } 
 995
 996    __net_timestamp(skb);
 997    
 998#ifdef FORE200E_52BYTE_AAL0_SDU
 999    if (cell_header) {
1000	*((u32*)skb_put(skb, 4)) = cell_header;
1001    }
1002#endif
1003
1004    /* reassemble segments */
1005    for (i = 0; i < rpd->nseg; i++) {
1006	
1007	/* rebuild rx buffer address from rsd handle */
1008	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1009	
1010	/* Make device DMA transfer visible to CPU.  */
1011	dma_sync_single_for_cpu(fore200e->dev, buffer->data.dma_addr,
1012				rpd->rsd[i].length, DMA_FROM_DEVICE);
1013	
1014	skb_put_data(skb, buffer->data.align_addr, rpd->rsd[i].length);
1015
1016	/* Now let the device get at it again.  */
1017	dma_sync_single_for_device(fore200e->dev, buffer->data.dma_addr,
1018				   rpd->rsd[i].length, DMA_FROM_DEVICE);
1019    }
1020
1021    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1022    
1023    if (pdu_len < fore200e_vcc->rx_min_pdu)
1024	fore200e_vcc->rx_min_pdu = pdu_len;
1025    if (pdu_len > fore200e_vcc->rx_max_pdu)
1026	fore200e_vcc->rx_max_pdu = pdu_len;
1027    fore200e_vcc->rx_pdu++;
1028
1029    /* push PDU */
1030    if (atm_charge(vcc, skb->truesize) == 0) {
1031
1032	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1033		vcc->itf, vcc->vpi, vcc->vci);
1034
1035	dev_kfree_skb_any(skb);
1036
1037	atomic_inc(&vcc->stats->rx_drop);
1038	return -ENOMEM;
1039    }
1040
 
 
1041    vcc->push(vcc, skb);
1042    atomic_inc(&vcc->stats->rx);
1043
 
 
1044    return 0;
1045}
1046
1047
1048static void
1049fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1050{
1051    struct host_bsq* bsq;
1052    struct buffer*   buffer;
1053    int              i;
1054    
1055    for (i = 0; i < rpd->nseg; i++) {
1056
1057	/* rebuild rx buffer address from rsd handle */
1058	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1059
1060	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1061
1062#ifdef FORE200E_BSQ_DEBUG
1063	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1064
1065	if (buffer->supplied == 0)
1066	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1067		   buffer->scheme, buffer->magn, buffer->index);
1068	buffer->supplied = 0;
1069#endif
1070
1071	/* re-insert the buffer into the free buffer list */
1072	buffer->next = bsq->freebuf;
1073	bsq->freebuf = buffer;
1074
1075	/* then increment the number of free rx buffers */
1076	bsq->freebuf_count++;
1077    }
1078}
1079
1080
1081static void
1082fore200e_rx_irq(struct fore200e* fore200e)
1083{
1084    struct host_rxq*        rxq = &fore200e->host_rxq;
1085    struct host_rxq_entry*  entry;
1086    struct atm_vcc*         vcc;
1087    struct fore200e_vc_map* vc_map;
1088
1089    for (;;) {
1090	
1091	entry = &rxq->host_entry[ rxq->head ];
1092
1093	/* no more received PDUs */
1094	if ((*entry->status & STATUS_COMPLETE) == 0)
1095	    break;
1096
1097	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1098
1099	if ((vc_map->vcc == NULL) ||
1100	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1101
1102	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1103		    fore200e->atm_dev->number,
1104		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1105	}
1106	else {
1107	    vcc = vc_map->vcc;
1108	    ASSERT(vcc);
1109
1110	    if ((*entry->status & STATUS_ERROR) == 0) {
1111
1112		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1113	    }
1114	    else {
1115		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1116			fore200e->atm_dev->number,
1117			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1118		atomic_inc(&vcc->stats->rx_err);
1119	    }
1120	}
1121
1122	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1123
1124	fore200e_collect_rpd(fore200e, entry->rpd);
1125
1126	/* rewrite the rpd address to ack the received PDU */
1127	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1128	*entry->status = STATUS_FREE;
1129
1130	fore200e_supply(fore200e);
1131    }
1132}
1133
1134
1135#ifndef FORE200E_USE_TASKLET
1136static void
1137fore200e_irq(struct fore200e* fore200e)
1138{
1139    unsigned long flags;
1140
1141    spin_lock_irqsave(&fore200e->q_lock, flags);
1142    fore200e_rx_irq(fore200e);
1143    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1144
1145    spin_lock_irqsave(&fore200e->q_lock, flags);
1146    fore200e_tx_irq(fore200e);
1147    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1148}
1149#endif
1150
1151
1152static irqreturn_t
1153fore200e_interrupt(int irq, void* dev)
1154{
1155    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1156
1157    if (fore200e->bus->irq_check(fore200e) == 0) {
1158	
1159	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1160	return IRQ_NONE;
1161    }
1162    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1163
1164#ifdef FORE200E_USE_TASKLET
1165    tasklet_schedule(&fore200e->tx_tasklet);
1166    tasklet_schedule(&fore200e->rx_tasklet);
1167#else
1168    fore200e_irq(fore200e);
1169#endif
1170    
1171    fore200e->bus->irq_ack(fore200e);
1172    return IRQ_HANDLED;
1173}
1174
1175
1176#ifdef FORE200E_USE_TASKLET
1177static void
1178fore200e_tx_tasklet(unsigned long data)
1179{
1180    struct fore200e* fore200e = (struct fore200e*) data;
1181    unsigned long flags;
1182
1183    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1184
1185    spin_lock_irqsave(&fore200e->q_lock, flags);
1186    fore200e_tx_irq(fore200e);
1187    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1188}
1189
1190
1191static void
1192fore200e_rx_tasklet(unsigned long data)
1193{
1194    struct fore200e* fore200e = (struct fore200e*) data;
1195    unsigned long    flags;
1196
1197    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1198
1199    spin_lock_irqsave(&fore200e->q_lock, flags);
1200    fore200e_rx_irq((struct fore200e*) data);
1201    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1202}
1203#endif
1204
1205
1206static int
1207fore200e_select_scheme(struct atm_vcc* vcc)
1208{
1209    /* fairly balance the VCs over (identical) buffer schemes */
1210    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1211
1212    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1213	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1214
1215    return scheme;
1216}
1217
1218
1219static int 
1220fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1221{
1222    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1223    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1224    struct activate_opcode   activ_opcode;
1225    struct deactivate_opcode deactiv_opcode;
1226    struct vpvc              vpvc;
1227    int                      ok;
1228    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1229
1230    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1231    
1232    if (activate) {
1233	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1234	
1235	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1236	activ_opcode.aal    = aal;
1237	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1238	activ_opcode.pad    = 0;
1239    }
1240    else {
1241	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1242	deactiv_opcode.pad    = 0;
1243    }
1244
1245    vpvc.vci = vcc->vci;
1246    vpvc.vpi = vcc->vpi;
1247
1248    *entry->status = STATUS_PENDING;
1249
1250    if (activate) {
1251
1252#ifdef FORE200E_52BYTE_AAL0_SDU
1253	mtu = 48;
1254#endif
1255	/* the MTU is not used by the cp, except in the case of AAL0 */
1256	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1257	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1258	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1259    }
1260    else {
1261	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1262	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1263    }
1264
1265    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1266
1267    *entry->status = STATUS_FREE;
1268
1269    if (ok == 0) {
1270	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1271	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1272	return -EIO;
1273    }
1274
1275    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1276	    activate ? "open" : "clos");
1277
1278    return 0;
1279}
1280
1281
1282#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1283
1284static void
1285fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1286{
1287    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1288    
1289	/* compute the data cells to idle cells ratio from the tx PCR */
1290	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1291	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1292    }
1293    else {
1294	/* disable rate control */
1295	rate->data_cells = rate->idle_cells = 0;
1296    }
1297}
1298
1299
1300static int
1301fore200e_open(struct atm_vcc *vcc)
1302{
1303    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1304    struct fore200e_vcc*    fore200e_vcc;
1305    struct fore200e_vc_map* vc_map;
1306    unsigned long	    flags;
1307    int			    vci = vcc->vci;
1308    short		    vpi = vcc->vpi;
1309
1310    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1311    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1312
1313    spin_lock_irqsave(&fore200e->q_lock, flags);
1314
1315    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1316    if (vc_map->vcc) {
1317
1318	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1319
1320	printk(FORE200E "VC %d.%d.%d already in use\n",
1321	       fore200e->atm_dev->number, vpi, vci);
1322
1323	return -EINVAL;
1324    }
1325
1326    vc_map->vcc = vcc;
1327
1328    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1329
1330    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1331    if (fore200e_vcc == NULL) {
1332	vc_map->vcc = NULL;
1333	return -ENOMEM;
1334    }
1335
1336    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1337	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1338	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1339	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1340	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1341	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1342	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1343    
1344    /* pseudo-CBR bandwidth requested? */
1345    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1346	
1347	mutex_lock(&fore200e->rate_mtx);
1348	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1349	    mutex_unlock(&fore200e->rate_mtx);
1350
1351	    kfree(fore200e_vcc);
1352	    vc_map->vcc = NULL;
1353	    return -EAGAIN;
1354	}
1355
1356	/* reserve bandwidth */
1357	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1358	mutex_unlock(&fore200e->rate_mtx);
1359    }
1360    
1361    vcc->itf = vcc->dev->number;
1362
1363    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1364    set_bit(ATM_VF_ADDR, &vcc->flags);
1365
1366    vcc->dev_data = fore200e_vcc;
1367    
1368    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1369
1370	vc_map->vcc = NULL;
1371
1372	clear_bit(ATM_VF_ADDR, &vcc->flags);
1373	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1374
1375	vcc->dev_data = NULL;
1376
1377	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1378
1379	kfree(fore200e_vcc);
1380	return -EINVAL;
1381    }
1382    
1383    /* compute rate control parameters */
1384    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1385	
1386	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1387	set_bit(ATM_VF_HASQOS, &vcc->flags);
1388
1389	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1390		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1391		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1392		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1393    }
1394    
1395    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1396    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1397    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1398
1399    /* new incarnation of the vcc */
1400    vc_map->incarn = ++fore200e->incarn_count;
1401
1402    /* VC unusable before this flag is set */
1403    set_bit(ATM_VF_READY, &vcc->flags);
1404
1405    return 0;
1406}
1407
1408
1409static void
1410fore200e_close(struct atm_vcc* vcc)
1411{
 
1412    struct fore200e_vcc*    fore200e_vcc;
1413    struct fore200e*        fore200e;
1414    struct fore200e_vc_map* vc_map;
1415    unsigned long           flags;
1416
1417    ASSERT(vcc);
1418    fore200e = FORE200E_DEV(vcc->dev);
1419
1420    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1421    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1422
1423    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1424
1425    clear_bit(ATM_VF_READY, &vcc->flags);
1426
1427    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1428
1429    spin_lock_irqsave(&fore200e->q_lock, flags);
1430
1431    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1432
1433    /* the vc is no longer considered as "in use" by fore200e_open() */
1434    vc_map->vcc = NULL;
1435
1436    vcc->itf = vcc->vci = vcc->vpi = 0;
1437
1438    fore200e_vcc = FORE200E_VCC(vcc);
1439    vcc->dev_data = NULL;
1440
1441    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1442
1443    /* release reserved bandwidth, if any */
1444    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1445
1446	mutex_lock(&fore200e->rate_mtx);
1447	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1448	mutex_unlock(&fore200e->rate_mtx);
1449
1450	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1451    }
1452
1453    clear_bit(ATM_VF_ADDR, &vcc->flags);
1454    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1455
1456    ASSERT(fore200e_vcc);
1457    kfree(fore200e_vcc);
1458}
1459
1460
1461static int
1462fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1463{
1464    struct fore200e*        fore200e;
1465    struct fore200e_vcc*    fore200e_vcc;
1466    struct fore200e_vc_map* vc_map;
1467    struct host_txq*        txq;
1468    struct host_txq_entry*  entry;
1469    struct tpd*             tpd;
1470    struct tpd_haddr        tpd_haddr;
1471    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1472    int                     tx_copy      = 0;
1473    int                     tx_len       = skb->len;
1474    u32*                    cell_header  = NULL;
1475    unsigned char*          skb_data;
1476    int                     skb_len;
1477    unsigned char*          data;
1478    unsigned long           flags;
1479
1480    if (!vcc)
1481        return -EINVAL;
1482
1483    fore200e = FORE200E_DEV(vcc->dev);
1484    fore200e_vcc = FORE200E_VCC(vcc);
1485
1486    if (!fore200e)
1487        return -EINVAL;
1488
1489    txq = &fore200e->host_txq;
1490    if (!fore200e_vcc)
1491        return -EINVAL;
1492
1493    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1494	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1495	dev_kfree_skb_any(skb);
1496	return -EINVAL;
1497    }
1498
1499#ifdef FORE200E_52BYTE_AAL0_SDU
1500    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1501	cell_header = (u32*) skb->data;
1502	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1503	skb_len     = tx_len = skb->len  - 4;
1504
1505	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1506    }
1507    else 
1508#endif
1509    {
1510	skb_data = skb->data;
1511	skb_len  = skb->len;
1512    }
1513    
1514    if (((unsigned long)skb_data) & 0x3) {
1515
1516	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1517	tx_copy = 1;
1518	tx_len  = skb_len;
1519    }
1520
1521    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1522
1523        /* this simply NUKES the PCA board */
1524	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1525	tx_copy = 1;
1526	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1527    }
1528    
1529    if (tx_copy) {
1530	data = kmalloc(tx_len, GFP_ATOMIC);
1531	if (data == NULL) {
1532	    if (vcc->pop) {
1533		vcc->pop(vcc, skb);
1534	    }
1535	    else {
1536		dev_kfree_skb_any(skb);
1537	    }
1538	    return -ENOMEM;
1539	}
1540
1541	memcpy(data, skb_data, skb_len);
1542	if (skb_len < tx_len)
1543	    memset(data + skb_len, 0x00, tx_len - skb_len);
1544    }
1545    else {
1546	data = skb_data;
1547    }
1548
1549    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1550    ASSERT(vc_map->vcc == vcc);
1551
1552  retry_here:
1553
1554    spin_lock_irqsave(&fore200e->q_lock, flags);
1555
1556    entry = &txq->host_entry[ txq->head ];
1557
1558    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1559
1560	/* try to free completed tx queue entries */
1561	fore200e_tx_irq(fore200e);
1562
1563	if (*entry->status != STATUS_FREE) {
1564
1565	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1566
1567	    /* retry once again? */
1568	    if (--retry > 0) {
1569		udelay(50);
1570		goto retry_here;
1571	    }
1572
1573	    atomic_inc(&vcc->stats->tx_err);
1574
1575	    fore200e->tx_sat++;
1576	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1577		    fore200e->name, fore200e->cp_queues->heartbeat);
1578	    if (vcc->pop) {
1579		vcc->pop(vcc, skb);
1580	    }
1581	    else {
1582		dev_kfree_skb_any(skb);
1583	    }
1584
1585	    if (tx_copy)
1586		kfree(data);
1587
1588	    return -ENOBUFS;
1589	}
1590    }
1591
1592    entry->incarn = vc_map->incarn;
1593    entry->vc_map = vc_map;
1594    entry->skb    = skb;
1595    entry->data   = tx_copy ? data : NULL;
1596
1597    tpd = entry->tpd;
1598    tpd->tsd[ 0 ].buffer = dma_map_single(fore200e->dev, data, tx_len,
1599					  DMA_TO_DEVICE);
1600    if (dma_mapping_error(fore200e->dev, tpd->tsd[0].buffer)) {
1601	if (tx_copy)
1602	    kfree(data);
1603	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1604	return -ENOMEM;
1605    }
1606    tpd->tsd[ 0 ].length = tx_len;
1607
1608    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1609    txq->txing++;
1610
1611    /* The dma_map call above implies a dma_sync so the device can use it,
1612     * thus no explicit dma_sync call is necessary here.
1613     */
1614    
1615    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1616	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1617	    tpd->tsd[0].length, skb_len);
1618
1619    if (skb_len < fore200e_vcc->tx_min_pdu)
1620	fore200e_vcc->tx_min_pdu = skb_len;
1621    if (skb_len > fore200e_vcc->tx_max_pdu)
1622	fore200e_vcc->tx_max_pdu = skb_len;
1623    fore200e_vcc->tx_pdu++;
1624
1625    /* set tx rate control information */
1626    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1627    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1628
1629    if (cell_header) {
1630	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1631	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1632	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1633	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1634	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1635    }
1636    else {
1637	/* set the ATM header, common to all cells conveying the PDU */
1638	tpd->atm_header.clp = 0;
1639	tpd->atm_header.plt = 0;
1640	tpd->atm_header.vci = vcc->vci;
1641	tpd->atm_header.vpi = vcc->vpi;
1642	tpd->atm_header.gfc = 0;
1643    }
1644
1645    tpd->spec.length = tx_len;
1646    tpd->spec.nseg   = 1;
1647    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1648    tpd->spec.intr   = 1;
1649
1650    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1651    tpd_haddr.pad   = 0;
1652    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1653
1654    *entry->status = STATUS_PENDING;
1655    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1656
1657    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1658
1659    return 0;
1660}
1661
1662
1663static int
1664fore200e_getstats(struct fore200e* fore200e)
1665{
1666    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1667    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1668    struct stats_opcode     opcode;
1669    int                     ok;
1670    u32                     stats_dma_addr;
1671
1672    if (fore200e->stats == NULL) {
1673	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL);
1674	if (fore200e->stats == NULL)
1675	    return -ENOMEM;
1676    }
1677    
1678    stats_dma_addr = dma_map_single(fore200e->dev, fore200e->stats,
1679				    sizeof(struct stats), DMA_FROM_DEVICE);
1680    if (dma_mapping_error(fore200e->dev, stats_dma_addr))
1681    	return -ENOMEM;
1682    
1683    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1684
1685    opcode.opcode = OPCODE_GET_STATS;
1686    opcode.pad    = 0;
1687
1688    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1689    
1690    *entry->status = STATUS_PENDING;
1691
1692    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1693
1694    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1695
1696    *entry->status = STATUS_FREE;
1697
1698    dma_unmap_single(fore200e->dev, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1699    
1700    if (ok == 0) {
1701	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1702	return -EIO;
1703    }
1704
1705    return 0;
1706}
1707
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1708#if 0 /* currently unused */
1709static int
1710fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1711{
1712    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1713    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1714    struct oc3_opcode       opcode;
1715    int                     ok;
1716    u32                     oc3_regs_dma_addr;
1717
1718    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1719
1720    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1721
1722    opcode.opcode = OPCODE_GET_OC3;
1723    opcode.reg    = 0;
1724    opcode.value  = 0;
1725    opcode.mask   = 0;
1726
1727    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1728    
1729    *entry->status = STATUS_PENDING;
1730
1731    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1732
1733    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1734
1735    *entry->status = STATUS_FREE;
1736
1737    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1738    
1739    if (ok == 0) {
1740	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1741	return -EIO;
1742    }
1743
1744    return 0;
1745}
1746#endif
1747
1748
1749static int
1750fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1751{
1752    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1753    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1754    struct oc3_opcode       opcode;
1755    int                     ok;
1756
1757    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1758
1759    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1760
1761    opcode.opcode = OPCODE_SET_OC3;
1762    opcode.reg    = reg;
1763    opcode.value  = value;
1764    opcode.mask   = mask;
1765
1766    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    if (ok == 0) {
1777	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1778	return -EIO;
1779    }
1780
1781    return 0;
1782}
1783
1784
1785static int
1786fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1787{
1788    u32 mct_value, mct_mask;
1789    int error;
1790
1791    if (!capable(CAP_NET_ADMIN))
1792	return -EPERM;
1793    
1794    switch (loop_mode) {
1795
1796    case ATM_LM_NONE:
1797	mct_value = 0; 
1798	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1799	break;
1800	
1801    case ATM_LM_LOC_PHY:
1802	mct_value = mct_mask = SUNI_MCT_DLE;
1803	break;
1804
1805    case ATM_LM_RMT_PHY:
1806	mct_value = mct_mask = SUNI_MCT_LLE;
1807	break;
1808
1809    default:
1810	return -EINVAL;
1811    }
1812
1813    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1814    if (error == 0)
1815	fore200e->loop_mode = loop_mode;
1816
1817    return error;
1818}
1819
1820
1821static int
1822fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1823{
1824    struct sonet_stats tmp;
1825
1826    if (fore200e_getstats(fore200e) < 0)
1827	return -EIO;
1828
1829    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1830    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1831    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1832    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1833    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1834    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1835    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1836    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1837	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1838	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1839    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1840	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1841	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1842
1843    if (arg)
1844	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1845    
1846    return 0;
1847}
1848
1849
1850static int
1851fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1852{
1853    struct fore200e* fore200e = FORE200E_DEV(dev);
1854    
1855    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1856
1857    switch (cmd) {
1858
1859    case SONET_GETSTAT:
1860	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1861
1862    case SONET_GETDIAG:
1863	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1864
1865    case ATM_SETLOOP:
1866	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1867
1868    case ATM_GETLOOP:
1869	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1870
1871    case ATM_QUERYLOOP:
1872	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1873    }
1874
1875    return -ENOSYS; /* not implemented */
1876}
1877
1878
1879static int
1880fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1881{
1882    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1883    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1884
1885    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1886	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1887	return -EINVAL;
1888    }
1889
1890    DPRINTK(2, "change_qos %d.%d.%d, "
1891	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1892	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1893	    "available_cell_rate = %u",
1894	    vcc->itf, vcc->vpi, vcc->vci,
1895	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1896	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
1897	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
1898	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
1899	    flags, fore200e->available_cell_rate);
1900
1901    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
1902
1903	mutex_lock(&fore200e->rate_mtx);
1904	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
1905	    mutex_unlock(&fore200e->rate_mtx);
1906	    return -EAGAIN;
1907	}
1908
1909	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1910	fore200e->available_cell_rate -= qos->txtp.max_pcr;
1911
1912	mutex_unlock(&fore200e->rate_mtx);
1913	
1914	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
1915	
1916	/* update rate control parameters */
1917	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
1918
1919	set_bit(ATM_VF_HASQOS, &vcc->flags);
1920
1921	return 0;
1922    }
1923    
1924    return -EINVAL;
1925}
1926    
1927
1928static int fore200e_irq_request(struct fore200e *fore200e)
 
1929{
1930    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
1931
1932	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
1933	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
1934	return -EBUSY;
1935    }
1936
1937    printk(FORE200E "IRQ %s reserved for device %s\n",
1938	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
1939
1940#ifdef FORE200E_USE_TASKLET
1941    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
1942    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
1943#endif
1944
1945    fore200e->state = FORE200E_STATE_IRQ;
1946    return 0;
1947}
1948
1949
1950static int fore200e_get_esi(struct fore200e *fore200e)
 
1951{
1952    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL);
1953    int ok, i;
1954
1955    if (!prom)
1956	return -ENOMEM;
1957
1958    ok = fore200e->bus->prom_read(fore200e, prom);
1959    if (ok < 0) {
1960	kfree(prom);
1961	return -EBUSY;
1962    }
1963	
1964    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
1965	   fore200e->name, 
1966	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
1967	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
1968	
1969    for (i = 0; i < ESI_LEN; i++) {
1970	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
1971    }
1972    
1973    kfree(prom);
1974
1975    return 0;
1976}
1977
1978
1979static int fore200e_alloc_rx_buf(struct fore200e *fore200e)
 
1980{
1981    int scheme, magn, nbr, size, i;
1982
1983    struct host_bsq* bsq;
1984    struct buffer*   buffer;
1985
1986    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1987	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1988
1989	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1990
1991	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
1992	    size = fore200e_rx_buf_size[ scheme ][ magn ];
1993
1994	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
1995
1996	    /* allocate the array of receive buffers */
1997	    buffer = bsq->buffer = kcalloc(nbr, sizeof(struct buffer),
1998                                           GFP_KERNEL);
1999
2000	    if (buffer == NULL)
2001		return -ENOMEM;
2002
2003	    bsq->freebuf = NULL;
2004
2005	    for (i = 0; i < nbr; i++) {
2006
2007		buffer[ i ].scheme = scheme;
2008		buffer[ i ].magn   = magn;
2009#ifdef FORE200E_BSQ_DEBUG
2010		buffer[ i ].index  = i;
2011		buffer[ i ].supplied = 0;
2012#endif
2013
2014		/* allocate the receive buffer body */
2015		if (fore200e_chunk_alloc(fore200e,
2016					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2017					 DMA_FROM_DEVICE) < 0) {
2018		    
2019		    while (i > 0)
2020			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2021		    kfree(buffer);
2022		    
2023		    return -ENOMEM;
2024		}
2025
2026		/* insert the buffer into the free buffer list */
2027		buffer[ i ].next = bsq->freebuf;
2028		bsq->freebuf = &buffer[ i ];
2029	    }
2030	    /* all the buffers are free, initially */
2031	    bsq->freebuf_count = nbr;
2032
2033#ifdef FORE200E_BSQ_DEBUG
2034	    bsq_audit(3, bsq, scheme, magn);
2035#endif
2036	}
2037    }
2038
2039    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2040    return 0;
2041}
2042
2043
2044static int fore200e_init_bs_queue(struct fore200e *fore200e)
 
2045{
2046    int scheme, magn, i;
2047
2048    struct host_bsq*     bsq;
2049    struct cp_bsq_entry __iomem * cp_entry;
2050
2051    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2052	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2053
2054	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2055
2056	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2057
2058	    /* allocate and align the array of status words */
2059	    if (fore200e_dma_chunk_alloc(fore200e,
2060					       &bsq->status,
2061					       sizeof(enum status), 
2062					       QUEUE_SIZE_BS,
2063					       fore200e->bus->status_alignment) < 0) {
2064		return -ENOMEM;
2065	    }
2066
2067	    /* allocate and align the array of receive buffer descriptors */
2068	    if (fore200e_dma_chunk_alloc(fore200e,
2069					       &bsq->rbd_block,
2070					       sizeof(struct rbd_block),
2071					       QUEUE_SIZE_BS,
2072					       fore200e->bus->descr_alignment) < 0) {
2073		
2074		fore200e_dma_chunk_free(fore200e, &bsq->status);
2075		return -ENOMEM;
2076	    }
2077	    
2078	    /* get the base address of the cp resident buffer supply queue entries */
2079	    cp_entry = fore200e->virt_base + 
2080		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2081	    
2082	    /* fill the host resident and cp resident buffer supply queue entries */
2083	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2084		
2085		bsq->host_entry[ i ].status = 
2086		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2087	        bsq->host_entry[ i ].rbd_block =
2088		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2089		bsq->host_entry[ i ].rbd_block_dma =
2090		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2091		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2092		
2093		*bsq->host_entry[ i ].status = STATUS_FREE;
2094		
2095		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2096				     &cp_entry[ i ].status_haddr);
2097	    }
2098	}
2099    }
2100
2101    fore200e->state = FORE200E_STATE_INIT_BSQ;
2102    return 0;
2103}
2104
2105
2106static int fore200e_init_rx_queue(struct fore200e *fore200e)
 
2107{
2108    struct host_rxq*     rxq =  &fore200e->host_rxq;
2109    struct cp_rxq_entry __iomem * cp_entry;
2110    int i;
2111
2112    DPRINTK(2, "receive queue is being initialized\n");
2113
2114    /* allocate and align the array of status words */
2115    if (fore200e_dma_chunk_alloc(fore200e,
2116				       &rxq->status,
2117				       sizeof(enum status), 
2118				       QUEUE_SIZE_RX,
2119				       fore200e->bus->status_alignment) < 0) {
2120	return -ENOMEM;
2121    }
2122
2123    /* allocate and align the array of receive PDU descriptors */
2124    if (fore200e_dma_chunk_alloc(fore200e,
2125				       &rxq->rpd,
2126				       sizeof(struct rpd), 
2127				       QUEUE_SIZE_RX,
2128				       fore200e->bus->descr_alignment) < 0) {
2129	
2130	fore200e_dma_chunk_free(fore200e, &rxq->status);
2131	return -ENOMEM;
2132    }
2133
2134    /* get the base address of the cp resident rx queue entries */
2135    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2136
2137    /* fill the host resident and cp resident rx entries */
2138    for (i=0; i < QUEUE_SIZE_RX; i++) {
2139	
2140	rxq->host_entry[ i ].status = 
2141	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2142	rxq->host_entry[ i ].rpd = 
2143	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2144	rxq->host_entry[ i ].rpd_dma = 
2145	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2146	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2147
2148	*rxq->host_entry[ i ].status = STATUS_FREE;
2149
2150	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2151			     &cp_entry[ i ].status_haddr);
2152
2153	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2154			     &cp_entry[ i ].rpd_haddr);
2155    }
2156
2157    /* set the head entry of the queue */
2158    rxq->head = 0;
2159
2160    fore200e->state = FORE200E_STATE_INIT_RXQ;
2161    return 0;
2162}
2163
2164
2165static int fore200e_init_tx_queue(struct fore200e *fore200e)
 
2166{
2167    struct host_txq*     txq =  &fore200e->host_txq;
2168    struct cp_txq_entry __iomem * cp_entry;
2169    int i;
2170
2171    DPRINTK(2, "transmit queue is being initialized\n");
2172
2173    /* allocate and align the array of status words */
2174    if (fore200e_dma_chunk_alloc(fore200e,
2175				       &txq->status,
2176				       sizeof(enum status), 
2177				       QUEUE_SIZE_TX,
2178				       fore200e->bus->status_alignment) < 0) {
2179	return -ENOMEM;
2180    }
2181
2182    /* allocate and align the array of transmit PDU descriptors */
2183    if (fore200e_dma_chunk_alloc(fore200e,
2184				       &txq->tpd,
2185				       sizeof(struct tpd), 
2186				       QUEUE_SIZE_TX,
2187				       fore200e->bus->descr_alignment) < 0) {
2188	
2189	fore200e_dma_chunk_free(fore200e, &txq->status);
2190	return -ENOMEM;
2191    }
2192
2193    /* get the base address of the cp resident tx queue entries */
2194    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2195
2196    /* fill the host resident and cp resident tx entries */
2197    for (i=0; i < QUEUE_SIZE_TX; i++) {
2198	
2199	txq->host_entry[ i ].status = 
2200	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2201	txq->host_entry[ i ].tpd = 
2202	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2203	txq->host_entry[ i ].tpd_dma  = 
2204                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2205	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2206
2207	*txq->host_entry[ i ].status = STATUS_FREE;
2208	
2209	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2210			     &cp_entry[ i ].status_haddr);
2211	
2212        /* although there is a one-to-one mapping of tx queue entries and tpds,
2213	   we do not write here the DMA (physical) base address of each tpd into
2214	   the related cp resident entry, because the cp relies on this write
2215	   operation to detect that a new pdu has been submitted for tx */
2216    }
2217
2218    /* set the head and tail entries of the queue */
2219    txq->head = 0;
2220    txq->tail = 0;
2221
2222    fore200e->state = FORE200E_STATE_INIT_TXQ;
2223    return 0;
2224}
2225
2226
2227static int fore200e_init_cmd_queue(struct fore200e *fore200e)
 
2228{
2229    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2230    struct cp_cmdq_entry __iomem * cp_entry;
2231    int i;
2232
2233    DPRINTK(2, "command queue is being initialized\n");
2234
2235    /* allocate and align the array of status words */
2236    if (fore200e_dma_chunk_alloc(fore200e,
2237				       &cmdq->status,
2238				       sizeof(enum status), 
2239				       QUEUE_SIZE_CMD,
2240				       fore200e->bus->status_alignment) < 0) {
2241	return -ENOMEM;
2242    }
2243    
2244    /* get the base address of the cp resident cmd queue entries */
2245    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2246
2247    /* fill the host resident and cp resident cmd entries */
2248    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2249	
2250	cmdq->host_entry[ i ].status   = 
2251                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2252	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2253
2254	*cmdq->host_entry[ i ].status = STATUS_FREE;
2255
2256	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2257                             &cp_entry[ i ].status_haddr);
2258    }
2259
2260    /* set the head entry of the queue */
2261    cmdq->head = 0;
2262
2263    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2264    return 0;
2265}
2266
2267
2268static void fore200e_param_bs_queue(struct fore200e *fore200e,
2269				    enum buffer_scheme scheme,
2270				    enum buffer_magn magn, int queue_length,
2271				    int pool_size, int supply_blksize)
2272{
2273    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2274
2275    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2276    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2277    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2278    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2279}
2280
2281
2282static int fore200e_initialize(struct fore200e *fore200e)
 
2283{
2284    struct cp_queues __iomem * cpq;
2285    int               ok, scheme, magn;
2286
2287    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2288
2289    mutex_init(&fore200e->rate_mtx);
2290    spin_lock_init(&fore200e->q_lock);
2291
2292    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2293
2294    /* enable cp to host interrupts */
2295    fore200e->bus->write(1, &cpq->imask);
2296
2297    if (fore200e->bus->irq_enable)
2298	fore200e->bus->irq_enable(fore200e);
2299    
2300    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2301
2302    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2303    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2304    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2305
2306    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2307    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2308
2309    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2310	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2311	    fore200e_param_bs_queue(fore200e, scheme, magn,
2312				    QUEUE_SIZE_BS, 
2313				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2314				    RBD_BLK_SIZE);
2315
2316    /* issue the initialize command */
2317    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2318    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2319
2320    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2321    if (ok == 0) {
2322	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2323	return -ENODEV;
2324    }
2325
2326    printk(FORE200E "device %s initialized\n", fore200e->name);
2327
2328    fore200e->state = FORE200E_STATE_INITIALIZE;
2329    return 0;
2330}
2331
2332
2333static void fore200e_monitor_putc(struct fore200e *fore200e, char c)
 
2334{
2335    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2336
2337#if 0
2338    printk("%c", c);
2339#endif
2340    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2341}
2342
2343
2344static int fore200e_monitor_getc(struct fore200e *fore200e)
 
2345{
2346    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2347    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2348    int                c;
2349
2350    while (time_before(jiffies, timeout)) {
2351
2352	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2353
2354	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2355
2356	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2357#if 0
2358	    printk("%c", c & 0xFF);
2359#endif
2360	    return c & 0xFF;
2361	}
2362    }
2363
2364    return -1;
2365}
2366
2367
2368static void fore200e_monitor_puts(struct fore200e *fore200e, char *str)
 
2369{
2370    while (*str) {
2371
2372	/* the i960 monitor doesn't accept any new character if it has something to say */
2373	while (fore200e_monitor_getc(fore200e) >= 0);
2374	
2375	fore200e_monitor_putc(fore200e, *str++);
2376    }
2377
2378    while (fore200e_monitor_getc(fore200e) >= 0);
2379}
2380
2381#ifdef __LITTLE_ENDIAN
2382#define FW_EXT ".bin"
2383#else
2384#define FW_EXT "_ecd.bin2"
2385#endif
2386
2387static int fore200e_load_and_start_fw(struct fore200e *fore200e)
 
2388{
2389    const struct firmware *firmware;
2390    const struct fw_header *fw_header;
 
2391    const __le32 *fw_data;
2392    u32 fw_size;
2393    u32 __iomem *load_addr;
2394    char buf[48];
2395    int err;
 
 
 
 
 
 
 
 
 
2396
2397    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2398    if ((err = request_firmware(&firmware, buf, fore200e->dev)) < 0) {
2399	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2400	return err;
2401    }
2402
2403    fw_data = (const __le32 *)firmware->data;
2404    fw_size = firmware->size / sizeof(u32);
2405    fw_header = (const struct fw_header *)firmware->data;
2406    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2407
2408    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2409	    fore200e->name, load_addr, fw_size);
2410
2411    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2412	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2413	goto release;
2414    }
2415
2416    for (; fw_size--; fw_data++, load_addr++)
2417	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2418
2419    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2420
2421#if defined(__sparc_v9__)
2422    /* reported to be required by SBA cards on some sparc64 hosts */
2423    fore200e_spin(100);
2424#endif
2425
2426    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2427    fore200e_monitor_puts(fore200e, buf);
2428
2429    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2430	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2431	goto release;
2432    }
2433
2434    printk(FORE200E "device %s firmware started\n", fore200e->name);
2435
2436    fore200e->state = FORE200E_STATE_START_FW;
2437    err = 0;
2438
2439release:
2440    release_firmware(firmware);
2441    return err;
2442}
2443
2444
2445static int fore200e_register(struct fore200e *fore200e, struct device *parent)
 
2446{
2447    struct atm_dev* atm_dev;
2448
2449    DPRINTK(2, "device %s being registered\n", fore200e->name);
2450
2451    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2452                               -1, NULL);
2453    if (atm_dev == NULL) {
2454	printk(FORE200E "unable to register device %s\n", fore200e->name);
2455	return -ENODEV;
2456    }
2457
2458    atm_dev->dev_data = fore200e;
2459    fore200e->atm_dev = atm_dev;
2460
2461    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2462    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2463
2464    fore200e->available_cell_rate = ATM_OC3_PCR;
2465
2466    fore200e->state = FORE200E_STATE_REGISTER;
2467    return 0;
2468}
2469
2470
2471static int fore200e_init(struct fore200e *fore200e, struct device *parent)
 
2472{
2473    if (fore200e_register(fore200e, parent) < 0)
2474	return -ENODEV;
2475    
2476    if (fore200e->bus->configure(fore200e) < 0)
2477	return -ENODEV;
2478
2479    if (fore200e->bus->map(fore200e) < 0)
2480	return -ENODEV;
2481
2482    if (fore200e_reset(fore200e, 1) < 0)
2483	return -ENODEV;
2484
2485    if (fore200e_load_and_start_fw(fore200e) < 0)
2486	return -ENODEV;
2487
2488    if (fore200e_initialize(fore200e) < 0)
2489	return -ENODEV;
2490
2491    if (fore200e_init_cmd_queue(fore200e) < 0)
2492	return -ENOMEM;
2493
2494    if (fore200e_init_tx_queue(fore200e) < 0)
2495	return -ENOMEM;
2496
2497    if (fore200e_init_rx_queue(fore200e) < 0)
2498	return -ENOMEM;
2499
2500    if (fore200e_init_bs_queue(fore200e) < 0)
2501	return -ENOMEM;
2502
2503    if (fore200e_alloc_rx_buf(fore200e) < 0)
2504	return -ENOMEM;
2505
2506    if (fore200e_get_esi(fore200e) < 0)
2507	return -EIO;
2508
2509    if (fore200e_irq_request(fore200e) < 0)
2510	return -EBUSY;
2511
2512    fore200e_supply(fore200e);
2513
2514    /* all done, board initialization is now complete */
2515    fore200e->state = FORE200E_STATE_COMPLETE;
2516    return 0;
2517}
2518
2519#ifdef CONFIG_SBUS
2520static int fore200e_sba_probe(struct platform_device *op)
 
2521{
 
 
2522	struct fore200e *fore200e;
2523	static int index = 0;
2524	int err;
2525
 
 
 
 
 
2526	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2527	if (!fore200e)
2528		return -ENOMEM;
2529
2530	fore200e->bus = &fore200e_sbus_ops;
2531	fore200e->dev = &op->dev;
2532	fore200e->irq = op->archdata.irqs[0];
2533	fore200e->phys_base = op->resource[0].start;
2534
2535	sprintf(fore200e->name, "SBA-200E-%d", index);
2536
2537	err = fore200e_init(fore200e, &op->dev);
2538	if (err < 0) {
2539		fore200e_shutdown(fore200e);
2540		kfree(fore200e);
2541		return err;
2542	}
2543
2544	index++;
2545	dev_set_drvdata(&op->dev, fore200e);
2546
2547	return 0;
2548}
2549
2550static void fore200e_sba_remove(struct platform_device *op)
2551{
2552	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2553
2554	fore200e_shutdown(fore200e);
2555	kfree(fore200e);
 
 
2556}
2557
2558static const struct of_device_id fore200e_sba_match[] = {
2559	{
2560		.name = SBA200E_PROM_NAME,
 
2561	},
2562	{},
2563};
2564MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2565
2566static struct platform_driver fore200e_sba_driver = {
2567	.driver = {
2568		.name = "fore_200e",
 
2569		.of_match_table = fore200e_sba_match,
2570	},
2571	.probe		= fore200e_sba_probe,
2572	.remove		= fore200e_sba_remove,
2573};
2574#endif
2575
2576#ifdef CONFIG_PCI
2577static int fore200e_pca_detect(struct pci_dev *pci_dev,
2578			       const struct pci_device_id *pci_ent)
2579{
 
2580    struct fore200e* fore200e;
2581    int err = 0;
2582    static int index = 0;
2583
2584    if (pci_enable_device(pci_dev)) {
2585	err = -EINVAL;
2586	goto out;
2587    }
2588
2589    if (dma_set_mask_and_coherent(&pci_dev->dev, DMA_BIT_MASK(32))) {
2590	err = -EINVAL;
2591	goto out;
2592    }
2593    
2594    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2595    if (fore200e == NULL) {
2596	err = -ENOMEM;
2597	goto out_disable;
2598    }
2599
2600    fore200e->bus       = &fore200e_pci_ops;
2601    fore200e->dev	= &pci_dev->dev;
2602    fore200e->irq       = pci_dev->irq;
2603    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2604
2605    sprintf(fore200e->name, "PCA-200E-%d", index - 1);
2606
2607    pci_set_master(pci_dev);
2608
2609    printk(FORE200E "device PCA-200E found at 0x%lx, IRQ %s\n",
 
2610	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2611
2612    sprintf(fore200e->name, "PCA-200E-%d", index);
2613
2614    err = fore200e_init(fore200e, &pci_dev->dev);
2615    if (err < 0) {
2616	fore200e_shutdown(fore200e);
2617	goto out_free;
2618    }
2619
2620    ++index;
2621    pci_set_drvdata(pci_dev, fore200e);
2622
2623out:
2624    return err;
2625
2626out_free:
2627    kfree(fore200e);
2628out_disable:
2629    pci_disable_device(pci_dev);
2630    goto out;
2631}
2632
2633
2634static void fore200e_pca_remove_one(struct pci_dev *pci_dev)
2635{
2636    struct fore200e *fore200e;
2637
2638    fore200e = pci_get_drvdata(pci_dev);
2639
2640    fore200e_shutdown(fore200e);
2641    kfree(fore200e);
2642    pci_disable_device(pci_dev);
2643}
2644
2645
2646static const struct pci_device_id fore200e_pca_tbl[] = {
2647    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID },
 
2648    { 0, }
2649};
2650
2651MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2652
2653static struct pci_driver fore200e_pca_driver = {
2654    .name =     "fore_200e",
2655    .probe =    fore200e_pca_detect,
2656    .remove =   fore200e_pca_remove_one,
2657    .id_table = fore200e_pca_tbl,
2658};
2659#endif
2660
2661static int __init fore200e_module_init(void)
2662{
2663	int err = 0;
2664
2665	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2666
2667#ifdef CONFIG_SBUS
2668	err = platform_driver_register(&fore200e_sba_driver);
2669	if (err)
2670		return err;
2671#endif
2672
2673#ifdef CONFIG_PCI
2674	err = pci_register_driver(&fore200e_pca_driver);
2675#endif
2676
2677#ifdef CONFIG_SBUS
2678	if (err)
2679		platform_driver_unregister(&fore200e_sba_driver);
2680#endif
2681
2682	return err;
2683}
2684
2685static void __exit fore200e_module_cleanup(void)
2686{
2687#ifdef CONFIG_PCI
2688	pci_unregister_driver(&fore200e_pca_driver);
2689#endif
2690#ifdef CONFIG_SBUS
2691	platform_driver_unregister(&fore200e_sba_driver);
2692#endif
2693}
2694
2695static int
2696fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2697{
2698    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2699    struct fore200e_vcc* fore200e_vcc;
2700    struct atm_vcc*      vcc;
2701    int                  i, len, left = *pos;
2702    unsigned long        flags;
2703
2704    if (!left--) {
2705
2706	if (fore200e_getstats(fore200e) < 0)
2707	    return -EIO;
2708
2709	len = sprintf(page,"\n"
2710		       " device:\n"
2711		       "   internal name:\t\t%s\n", fore200e->name);
2712
2713	/* print bus-specific information */
2714	if (fore200e->bus->proc_read)
2715	    len += fore200e->bus->proc_read(fore200e, page + len);
2716	
2717	len += sprintf(page + len,
2718		"   interrupt line:\t\t%s\n"
2719		"   physical base address:\t0x%p\n"
2720		"   virtual base address:\t0x%p\n"
2721		"   factory address (ESI):\t%pM\n"
2722		"   board serial number:\t\t%d\n\n",
2723		fore200e_irq_itoa(fore200e->irq),
2724		(void*)fore200e->phys_base,
2725		fore200e->virt_base,
2726		fore200e->esi,
2727		fore200e->esi[4] * 256 + fore200e->esi[5]);
2728
2729	return len;
2730    }
2731
2732    if (!left--)
2733	return sprintf(page,
2734		       "   free small bufs, scheme 1:\t%d\n"
2735		       "   free large bufs, scheme 1:\t%d\n"
2736		       "   free small bufs, scheme 2:\t%d\n"
2737		       "   free large bufs, scheme 2:\t%d\n",
2738		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2739		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2740		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2741		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2742
2743    if (!left--) {
2744	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2745
2746	len = sprintf(page,"\n\n"
2747		      " cell processor:\n"
2748		      "   heartbeat state:\t\t");
2749	
2750	if (hb >> 16 != 0xDEAD)
2751	    len += sprintf(page + len, "0x%08x\n", hb);
2752	else
2753	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2754
2755	return len;
2756    }
2757
2758    if (!left--) {
2759	static const char* media_name[] = {
2760	    "unshielded twisted pair",
2761	    "multimode optical fiber ST",
2762	    "multimode optical fiber SC",
2763	    "single-mode optical fiber ST",
2764	    "single-mode optical fiber SC",
2765	    "unknown"
2766	};
2767
2768	static const char* oc3_mode[] = {
2769	    "normal operation",
2770	    "diagnostic loopback",
2771	    "line loopback",
2772	    "unknown"
2773	};
2774
2775	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2776	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2777	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2778	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2779	u32 oc3_index;
2780
2781	if (media_index > 4)
2782		media_index = 5;
2783	
2784	switch (fore200e->loop_mode) {
2785	    case ATM_LM_NONE:    oc3_index = 0;
2786		                 break;
2787	    case ATM_LM_LOC_PHY: oc3_index = 1;
2788		                 break;
2789	    case ATM_LM_RMT_PHY: oc3_index = 2;
2790		                 break;
2791	    default:             oc3_index = 3;
2792	}
2793
2794	return sprintf(page,
2795		       "   firmware release:\t\t%d.%d.%d\n"
2796		       "   monitor release:\t\t%d.%d\n"
2797		       "   media type:\t\t\t%s\n"
2798		       "   OC-3 revision:\t\t0x%x\n"
2799                       "   OC-3 mode:\t\t\t%s",
2800		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2801		       mon960_release >> 16, mon960_release << 16 >> 16,
2802		       media_name[ media_index ],
2803		       oc3_revision,
2804		       oc3_mode[ oc3_index ]);
2805    }
2806
2807    if (!left--) {
2808	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2809
2810	return sprintf(page,
2811		       "\n\n"
2812		       " monitor:\n"
2813		       "   version number:\t\t%d\n"
2814		       "   boot status word:\t\t0x%08x\n",
2815		       fore200e->bus->read(&cp_monitor->mon_version),
2816		       fore200e->bus->read(&cp_monitor->bstat));
2817    }
2818
2819    if (!left--)
2820	return sprintf(page,
2821		       "\n"
2822		       " device statistics:\n"
2823		       "  4b5b:\n"
2824		       "     crc_header_errors:\t\t%10u\n"
2825		       "     framing_errors:\t\t%10u\n",
2826		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2827		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2828    
2829    if (!left--)
2830	return sprintf(page, "\n"
2831		       "  OC-3:\n"
2832		       "     section_bip8_errors:\t%10u\n"
2833		       "     path_bip8_errors:\t\t%10u\n"
2834		       "     line_bip24_errors:\t\t%10u\n"
2835		       "     line_febe_errors:\t\t%10u\n"
2836		       "     path_febe_errors:\t\t%10u\n"
2837		       "     corr_hcs_errors:\t\t%10u\n"
2838		       "     ucorr_hcs_errors:\t\t%10u\n",
2839		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2840		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2841		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2842		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2843		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2844		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2845		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2846
2847    if (!left--)
2848	return sprintf(page,"\n"
2849		       "   ATM:\t\t\t\t     cells\n"
2850		       "     TX:\t\t\t%10u\n"
2851		       "     RX:\t\t\t%10u\n"
2852		       "     vpi out of range:\t\t%10u\n"
2853		       "     vpi no conn:\t\t%10u\n"
2854		       "     vci out of range:\t\t%10u\n"
2855		       "     vci no conn:\t\t%10u\n",
2856		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2857		       be32_to_cpu(fore200e->stats->atm.cells_received),
2858		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2859		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2860		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2861		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2862    
2863    if (!left--)
2864	return sprintf(page,"\n"
2865		       "   AAL0:\t\t\t     cells\n"
2866		       "     TX:\t\t\t%10u\n"
2867		       "     RX:\t\t\t%10u\n"
2868		       "     dropped:\t\t\t%10u\n",
2869		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
2870		       be32_to_cpu(fore200e->stats->aal0.cells_received),
2871		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
2872    
2873    if (!left--)
2874	return sprintf(page,"\n"
2875		       "   AAL3/4:\n"
2876		       "     SAR sublayer:\t\t     cells\n"
2877		       "       TX:\t\t\t%10u\n"
2878		       "       RX:\t\t\t%10u\n"
2879		       "       dropped:\t\t\t%10u\n"
2880		       "       CRC errors:\t\t%10u\n"
2881		       "       protocol errors:\t\t%10u\n\n"
2882		       "     CS  sublayer:\t\t      PDUs\n"
2883		       "       TX:\t\t\t%10u\n"
2884		       "       RX:\t\t\t%10u\n"
2885		       "       dropped:\t\t\t%10u\n"
2886		       "       protocol errors:\t\t%10u\n",
2887		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
2888		       be32_to_cpu(fore200e->stats->aal34.cells_received),
2889		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
2890		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
2891		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
2892		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
2893		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
2894		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
2895		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
2896    
2897    if (!left--)
2898	return sprintf(page,"\n"
2899		       "   AAL5:\n"
2900		       "     SAR sublayer:\t\t     cells\n"
2901		       "       TX:\t\t\t%10u\n"
2902		       "       RX:\t\t\t%10u\n"
2903		       "       dropped:\t\t\t%10u\n"
2904		       "       congestions:\t\t%10u\n\n"
2905		       "     CS  sublayer:\t\t      PDUs\n"
2906		       "       TX:\t\t\t%10u\n"
2907		       "       RX:\t\t\t%10u\n"
2908		       "       dropped:\t\t\t%10u\n"
2909		       "       CRC errors:\t\t%10u\n"
2910		       "       protocol errors:\t\t%10u\n",
2911		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
2912		       be32_to_cpu(fore200e->stats->aal5.cells_received),
2913		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
2914		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
2915		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
2916		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
2917		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
2918		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
2919		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
2920    
2921    if (!left--)
2922	return sprintf(page,"\n"
2923		       "   AUX:\t\t       allocation failures\n"
2924		       "     small b1:\t\t\t%10u\n"
2925		       "     large b1:\t\t\t%10u\n"
2926		       "     small b2:\t\t\t%10u\n"
2927		       "     large b2:\t\t\t%10u\n"
2928		       "     RX PDUs:\t\t\t%10u\n"
2929		       "     TX PDUs:\t\t\t%10lu\n",
2930		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
2931		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
2932		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
2933		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
2934		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
2935		       fore200e->tx_sat);
2936    
2937    if (!left--)
2938	return sprintf(page,"\n"
2939		       " receive carrier:\t\t\t%s\n",
2940		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
2941    
2942    if (!left--) {
2943        return sprintf(page,"\n"
2944		       " VCCs:\n  address   VPI VCI   AAL "
2945		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
2946    }
2947
2948    for (i = 0; i < NBR_CONNECT; i++) {
2949
2950	vcc = fore200e->vc_map[i].vcc;
2951
2952	if (vcc == NULL)
2953	    continue;
2954
2955	spin_lock_irqsave(&fore200e->q_lock, flags);
2956
2957	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
2958
2959	    fore200e_vcc = FORE200E_VCC(vcc);
2960	    ASSERT(fore200e_vcc);
2961
2962	    len = sprintf(page,
2963			  "  %pK  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
2964			  vcc,
2965			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
2966			  fore200e_vcc->tx_pdu,
2967			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
2968			  fore200e_vcc->tx_max_pdu,
2969			  fore200e_vcc->rx_pdu,
2970			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
2971			  fore200e_vcc->rx_max_pdu);
2972
2973	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
2974	    return len;
2975	}
2976
2977	spin_unlock_irqrestore(&fore200e->q_lock, flags);
2978    }
2979    
2980    return 0;
2981}
2982
2983module_init(fore200e_module_init);
2984module_exit(fore200e_module_cleanup);
2985
2986
2987static const struct atmdev_ops fore200e_ops = {
 
2988	.open       = fore200e_open,
2989	.close      = fore200e_close,
2990	.ioctl      = fore200e_ioctl,
 
 
2991	.send       = fore200e_send,
2992	.change_qos = fore200e_change_qos,
2993	.proc_read  = fore200e_proc_read,
2994	.owner      = THIS_MODULE
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2995};
2996
2997MODULE_LICENSE("GPL");
2998#ifdef CONFIG_PCI
2999#ifdef __LITTLE_ENDIAN__
3000MODULE_FIRMWARE("pca200e.bin");
3001#else
3002MODULE_FIRMWARE("pca200e_ecd.bin2");
3003#endif
3004#endif /* CONFIG_PCI */
3005#ifdef CONFIG_SBUS
3006MODULE_FIRMWARE("sba200e_ecd.bin2");
3007#endif
v3.1
 
   1/*
   2  A FORE Systems 200E-series driver for ATM on Linux.
   3  Christophe Lizzi (lizzi@cnam.fr), October 1999-March 2003.
   4
   5  Based on the PCA-200E driver from Uwe Dannowski (Uwe.Dannowski@inf.tu-dresden.de).
   6
   7  This driver simultaneously supports PCA-200E and SBA-200E adapters
   8  on i386, alpha (untested), powerpc, sparc and sparc64 architectures.
   9
  10  This program is free software; you can redistribute it and/or modify
  11  it under the terms of the GNU General Public License as published by
  12  the Free Software Foundation; either version 2 of the License, or
  13  (at your option) any later version.
  14
  15  This program is distributed in the hope that it will be useful,
  16  but WITHOUT ANY WARRANTY; without even the implied warranty of
  17  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  18  GNU General Public License for more details.
  19
  20  You should have received a copy of the GNU General Public License
  21  along with this program; if not, write to the Free Software
  22  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  23*/
  24
  25
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/init.h>
  29#include <linux/capability.h>
  30#include <linux/interrupt.h>
  31#include <linux/bitops.h>
  32#include <linux/pci.h>
  33#include <linux/module.h>
  34#include <linux/atmdev.h>
  35#include <linux/sonet.h>
  36#include <linux/atm_suni.h>
  37#include <linux/dma-mapping.h>
  38#include <linux/delay.h>
  39#include <linux/firmware.h>
 
  40#include <asm/io.h>
  41#include <asm/string.h>
  42#include <asm/page.h>
  43#include <asm/irq.h>
  44#include <asm/dma.h>
  45#include <asm/byteorder.h>
  46#include <asm/uaccess.h>
  47#include <linux/atomic.h>
  48
  49#ifdef CONFIG_SBUS
  50#include <linux/of.h>
  51#include <linux/of_device.h>
  52#include <asm/idprom.h>
  53#include <asm/openprom.h>
  54#include <asm/oplib.h>
  55#include <asm/pgtable.h>
  56#endif
  57
  58#if defined(CONFIG_ATM_FORE200E_USE_TASKLET) /* defer interrupt work to a tasklet */
  59#define FORE200E_USE_TASKLET
  60#endif
  61
  62#if 0 /* enable the debugging code of the buffer supply queues */
  63#define FORE200E_BSQ_DEBUG
  64#endif
  65
  66#if 1 /* ensure correct handling of 52-byte AAL0 SDUs expected by atmdump-like apps */
  67#define FORE200E_52BYTE_AAL0_SDU
  68#endif
  69
  70#include "fore200e.h"
  71#include "suni.h"
  72
  73#define FORE200E_VERSION "0.3e"
  74
  75#define FORE200E         "fore200e: "
  76
  77#if 0 /* override .config */
  78#define CONFIG_ATM_FORE200E_DEBUG 1
  79#endif
  80#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
  81#define DPRINTK(level, format, args...)  do { if (CONFIG_ATM_FORE200E_DEBUG >= (level)) \
  82                                                  printk(FORE200E format, ##args); } while (0)
  83#else
  84#define DPRINTK(level, format, args...)  do {} while (0)
  85#endif
  86
  87
  88#define FORE200E_ALIGN(addr, alignment) \
  89        ((((unsigned long)(addr) + (alignment - 1)) & ~(alignment - 1)) - (unsigned long)(addr))
  90
  91#define FORE200E_DMA_INDEX(dma_addr, type, index)  ((dma_addr) + (index) * sizeof(type))
  92
  93#define FORE200E_INDEX(virt_addr, type, index)     (&((type *)(virt_addr))[ index ])
  94
  95#define FORE200E_NEXT_ENTRY(index, modulo)         (index = ((index) + 1) % (modulo))
  96
  97#if 1
  98#define ASSERT(expr)     if (!(expr)) { \
  99			     printk(FORE200E "assertion failed! %s[%d]: %s\n", \
 100				    __func__, __LINE__, #expr); \
 101			     panic(FORE200E "%s", __func__); \
 102			 }
 103#else
 104#define ASSERT(expr)     do {} while (0)
 105#endif
 106
 107
 108static const struct atmdev_ops   fore200e_ops;
 109static const struct fore200e_bus fore200e_bus[];
 110
 111static LIST_HEAD(fore200e_boards);
 112
 113
 114MODULE_AUTHOR("Christophe Lizzi - credits to Uwe Dannowski and Heikki Vatiainen");
 115MODULE_DESCRIPTION("FORE Systems 200E-series ATM driver - version " FORE200E_VERSION);
 116MODULE_SUPPORTED_DEVICE("PCA-200E, SBA-200E");
 117
 118
 119static const int fore200e_rx_buf_nbr[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 120    { BUFFER_S1_NBR, BUFFER_L1_NBR },
 121    { BUFFER_S2_NBR, BUFFER_L2_NBR }
 122};
 123
 124static const int fore200e_rx_buf_size[ BUFFER_SCHEME_NBR ][ BUFFER_MAGN_NBR ] = {
 125    { BUFFER_S1_SIZE, BUFFER_L1_SIZE },
 126    { BUFFER_S2_SIZE, BUFFER_L2_SIZE }
 127};
 128
 129
 130#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG > 0)
 131static const char* fore200e_traffic_class[] = { "NONE", "UBR", "CBR", "VBR", "ABR", "ANY" };
 132#endif
 133
 134
 135#if 0 /* currently unused */
 136static int 
 137fore200e_fore2atm_aal(enum fore200e_aal aal)
 138{
 139    switch(aal) {
 140    case FORE200E_AAL0:  return ATM_AAL0;
 141    case FORE200E_AAL34: return ATM_AAL34;
 142    case FORE200E_AAL5:  return ATM_AAL5;
 143    }
 144
 145    return -EINVAL;
 146}
 147#endif
 148
 149
 150static enum fore200e_aal
 151fore200e_atm2fore_aal(int aal)
 152{
 153    switch(aal) {
 154    case ATM_AAL0:  return FORE200E_AAL0;
 155    case ATM_AAL34: return FORE200E_AAL34;
 156    case ATM_AAL1:
 157    case ATM_AAL2:
 158    case ATM_AAL5:  return FORE200E_AAL5;
 159    }
 160
 161    return -EINVAL;
 162}
 163
 164
 165static char*
 166fore200e_irq_itoa(int irq)
 167{
 168    static char str[8];
 169    sprintf(str, "%d", irq);
 170    return str;
 171}
 172
 173
 174/* allocate and align a chunk of memory intended to hold the data behing exchanged
 175   between the driver and the adapter (using streaming DVMA) */
 176
 177static int
 178fore200e_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk, int size, int alignment, int direction)
 179{
 180    unsigned long offset = 0;
 181
 182    if (alignment <= sizeof(int))
 183	alignment = 0;
 184
 185    chunk->alloc_size = size + alignment;
 186    chunk->align_size = size;
 187    chunk->direction  = direction;
 188
 189    chunk->alloc_addr = kzalloc(chunk->alloc_size, GFP_KERNEL | GFP_DMA);
 190    if (chunk->alloc_addr == NULL)
 191	return -ENOMEM;
 192
 193    if (alignment > 0)
 194	offset = FORE200E_ALIGN(chunk->alloc_addr, alignment); 
 195    
 196    chunk->align_addr = chunk->alloc_addr + offset;
 197
 198    chunk->dma_addr = fore200e->bus->dma_map(fore200e, chunk->align_addr, chunk->align_size, direction);
 199    
 
 
 
 
 200    return 0;
 201}
 202
 203
 204/* free a chunk of memory */
 205
 206static void
 207fore200e_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 208{
 209    fore200e->bus->dma_unmap(fore200e, chunk->dma_addr, chunk->dma_size, chunk->direction);
 210
 211    kfree(chunk->alloc_addr);
 212}
 213
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 214
 215static void
 216fore200e_spin(int msecs)
 217{
 218    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 219    while (time_before(jiffies, timeout));
 220}
 221
 222
 223static int
 224fore200e_poll(struct fore200e* fore200e, volatile u32* addr, u32 val, int msecs)
 225{
 226    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 227    int           ok;
 228
 229    mb();
 230    do {
 231	if ((ok = (*addr == val)) || (*addr & STATUS_ERROR))
 232	    break;
 233
 234    } while (time_before(jiffies, timeout));
 235
 236#if 1
 237    if (!ok) {
 238	printk(FORE200E "cmd polling failed, got status 0x%08x, expected 0x%08x\n",
 239	       *addr, val);
 240    }
 241#endif
 242
 243    return ok;
 244}
 245
 246
 247static int
 248fore200e_io_poll(struct fore200e* fore200e, volatile u32 __iomem *addr, u32 val, int msecs)
 249{
 250    unsigned long timeout = jiffies + msecs_to_jiffies(msecs);
 251    int           ok;
 252
 253    do {
 254	if ((ok = (fore200e->bus->read(addr) == val)))
 255	    break;
 256
 257    } while (time_before(jiffies, timeout));
 258
 259#if 1
 260    if (!ok) {
 261	printk(FORE200E "I/O polling failed, got status 0x%08x, expected 0x%08x\n",
 262	       fore200e->bus->read(addr), val);
 263    }
 264#endif
 265
 266    return ok;
 267}
 268
 269
 270static void
 271fore200e_free_rx_buf(struct fore200e* fore200e)
 272{
 273    int scheme, magn, nbr;
 274    struct buffer* buffer;
 275
 276    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 277	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 278
 279	    if ((buffer = fore200e->host_bsq[ scheme ][ magn ].buffer) != NULL) {
 280
 281		for (nbr = 0; nbr < fore200e_rx_buf_nbr[ scheme ][ magn ]; nbr++) {
 282
 283		    struct chunk* data = &buffer[ nbr ].data;
 284
 285		    if (data->alloc_addr != NULL)
 286			fore200e_chunk_free(fore200e, data);
 287		}
 288	    }
 289	}
 290    }
 291}
 292
 293
 294static void
 295fore200e_uninit_bs_queue(struct fore200e* fore200e)
 296{
 297    int scheme, magn;
 298    
 299    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
 300	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
 301
 302	    struct chunk* status    = &fore200e->host_bsq[ scheme ][ magn ].status;
 303	    struct chunk* rbd_block = &fore200e->host_bsq[ scheme ][ magn ].rbd_block;
 304	    
 305	    if (status->alloc_addr)
 306		fore200e->bus->dma_chunk_free(fore200e, status);
 307	    
 308	    if (rbd_block->alloc_addr)
 309		fore200e->bus->dma_chunk_free(fore200e, rbd_block);
 310	}
 311    }
 312}
 313
 314
 315static int
 316fore200e_reset(struct fore200e* fore200e, int diag)
 317{
 318    int ok;
 319
 320    fore200e->cp_monitor = fore200e->virt_base + FORE200E_CP_MONITOR_OFFSET;
 321    
 322    fore200e->bus->write(BSTAT_COLD_START, &fore200e->cp_monitor->bstat);
 323
 324    fore200e->bus->reset(fore200e);
 325
 326    if (diag) {
 327	ok = fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_SELFTEST_OK, 1000);
 328	if (ok == 0) {
 329	    
 330	    printk(FORE200E "device %s self-test failed\n", fore200e->name);
 331	    return -ENODEV;
 332	}
 333
 334	printk(FORE200E "device %s self-test passed\n", fore200e->name);
 335	
 336	fore200e->state = FORE200E_STATE_RESET;
 337    }
 338
 339    return 0;
 340}
 341
 342
 343static void
 344fore200e_shutdown(struct fore200e* fore200e)
 345{
 346    printk(FORE200E "removing device %s at 0x%lx, IRQ %s\n",
 347	   fore200e->name, fore200e->phys_base, 
 348	   fore200e_irq_itoa(fore200e->irq));
 349    
 350    if (fore200e->state > FORE200E_STATE_RESET) {
 351	/* first, reset the board to prevent further interrupts or data transfers */
 352	fore200e_reset(fore200e, 0);
 353    }
 354    
 355    /* then, release all allocated resources */
 356    switch(fore200e->state) {
 357
 358    case FORE200E_STATE_COMPLETE:
 359	kfree(fore200e->stats);
 360
 
 361    case FORE200E_STATE_IRQ:
 362	free_irq(fore200e->irq, fore200e->atm_dev);
 363
 
 364    case FORE200E_STATE_ALLOC_BUF:
 365	fore200e_free_rx_buf(fore200e);
 366
 
 367    case FORE200E_STATE_INIT_BSQ:
 368	fore200e_uninit_bs_queue(fore200e);
 369
 
 370    case FORE200E_STATE_INIT_RXQ:
 371	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.status);
 372	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_rxq.rpd);
 373
 
 374    case FORE200E_STATE_INIT_TXQ:
 375	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.status);
 376	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_txq.tpd);
 377
 
 378    case FORE200E_STATE_INIT_CMDQ:
 379	fore200e->bus->dma_chunk_free(fore200e, &fore200e->host_cmdq.status);
 380
 
 381    case FORE200E_STATE_INITIALIZE:
 382	/* nothing to do for that state */
 383
 384    case FORE200E_STATE_START_FW:
 385	/* nothing to do for that state */
 386
 387    case FORE200E_STATE_RESET:
 388	/* nothing to do for that state */
 389
 390    case FORE200E_STATE_MAP:
 391	fore200e->bus->unmap(fore200e);
 392
 
 393    case FORE200E_STATE_CONFIGURE:
 394	/* nothing to do for that state */
 395
 396    case FORE200E_STATE_REGISTER:
 397	/* XXX shouldn't we *start* by deregistering the device? */
 398	atm_dev_deregister(fore200e->atm_dev);
 399
 
 400    case FORE200E_STATE_BLANK:
 401	/* nothing to do for that state */
 402	break;
 403    }
 404}
 405
 406
 407#ifdef CONFIG_PCI
 408
 409static u32 fore200e_pca_read(volatile u32 __iomem *addr)
 410{
 411    /* on big-endian hosts, the board is configured to convert
 412       the endianess of slave RAM accesses  */
 413    return le32_to_cpu(readl(addr));
 414}
 415
 416
 417static void fore200e_pca_write(u32 val, volatile u32 __iomem *addr)
 418{
 419    /* on big-endian hosts, the board is configured to convert
 420       the endianess of slave RAM accesses  */
 421    writel(cpu_to_le32(val), addr);
 422}
 423
 424
 425static u32
 426fore200e_pca_dma_map(struct fore200e* fore200e, void* virt_addr, int size, int direction)
 427{
 428    u32 dma_addr = pci_map_single((struct pci_dev*)fore200e->bus_dev, virt_addr, size, direction);
 429
 430    DPRINTK(3, "PCI DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d,  --> dma_addr = 0x%08x\n",
 431	    virt_addr, size, direction, dma_addr);
 432    
 433    return dma_addr;
 434}
 435
 436
 437static void
 438fore200e_pca_dma_unmap(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 439{
 440    DPRINTK(3, "PCI DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d\n",
 441	    dma_addr, size, direction);
 442
 443    pci_unmap_single((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 444}
 445
 446
 447static void
 448fore200e_pca_dma_sync_for_cpu(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 449{
 450    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 451
 452    pci_dma_sync_single_for_cpu((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 453}
 454
 455static void
 456fore200e_pca_dma_sync_for_device(struct fore200e* fore200e, u32 dma_addr, int size, int direction)
 457{
 458    DPRINTK(3, "PCI DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 459
 460    pci_dma_sync_single_for_device((struct pci_dev*)fore200e->bus_dev, dma_addr, size, direction);
 461}
 462
 463
 464/* allocate a DMA consistent chunk of memory intended to act as a communication mechanism
 465   (to hold descriptors, status, queues, etc.) shared by the driver and the adapter */
 466
 467static int
 468fore200e_pca_dma_chunk_alloc(struct fore200e* fore200e, struct chunk* chunk,
 469			     int size, int nbr, int alignment)
 470{
 471    /* returned chunks are page-aligned */
 472    chunk->alloc_size = size * nbr;
 473    chunk->alloc_addr = pci_alloc_consistent((struct pci_dev*)fore200e->bus_dev,
 474					     chunk->alloc_size,
 475					     &chunk->dma_addr);
 476    
 477    if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 478	return -ENOMEM;
 479
 480    chunk->align_addr = chunk->alloc_addr;
 481    
 482    return 0;
 483}
 484
 485
 486/* free a DMA consistent chunk of memory */
 487
 488static void
 489fore200e_pca_dma_chunk_free(struct fore200e* fore200e, struct chunk* chunk)
 490{
 491    pci_free_consistent((struct pci_dev*)fore200e->bus_dev,
 492			chunk->alloc_size,
 493			chunk->alloc_addr,
 494			chunk->dma_addr);
 495}
 496
 497
 498static int
 499fore200e_pca_irq_check(struct fore200e* fore200e)
 500{
 501    /* this is a 1 bit register */
 502    int irq_posted = readl(fore200e->regs.pca.psr);
 503
 504#if defined(CONFIG_ATM_FORE200E_DEBUG) && (CONFIG_ATM_FORE200E_DEBUG == 2)
 505    if (irq_posted && (readl(fore200e->regs.pca.hcr) & PCA200E_HCR_OUTFULL)) {
 506	DPRINTK(2,"FIFO OUT full, device %d\n", fore200e->atm_dev->number);
 507    }
 508#endif
 509
 510    return irq_posted;
 511}
 512
 513
 514static void
 515fore200e_pca_irq_ack(struct fore200e* fore200e)
 516{
 517    writel(PCA200E_HCR_CLRINTR, fore200e->regs.pca.hcr);
 518}
 519
 520
 521static void
 522fore200e_pca_reset(struct fore200e* fore200e)
 523{
 524    writel(PCA200E_HCR_RESET, fore200e->regs.pca.hcr);
 525    fore200e_spin(10);
 526    writel(0, fore200e->regs.pca.hcr);
 527}
 528
 529
 530static int __devinit
 531fore200e_pca_map(struct fore200e* fore200e)
 532{
 533    DPRINTK(2, "device %s being mapped in memory\n", fore200e->name);
 534
 535    fore200e->virt_base = ioremap(fore200e->phys_base, PCA200E_IOSPACE_LENGTH);
 536    
 537    if (fore200e->virt_base == NULL) {
 538	printk(FORE200E "can't map device %s\n", fore200e->name);
 539	return -EFAULT;
 540    }
 541
 542    DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 543
 544    /* gain access to the PCA specific registers  */
 545    fore200e->regs.pca.hcr = fore200e->virt_base + PCA200E_HCR_OFFSET;
 546    fore200e->regs.pca.imr = fore200e->virt_base + PCA200E_IMR_OFFSET;
 547    fore200e->regs.pca.psr = fore200e->virt_base + PCA200E_PSR_OFFSET;
 548
 549    fore200e->state = FORE200E_STATE_MAP;
 550    return 0;
 551}
 552
 553
 554static void
 555fore200e_pca_unmap(struct fore200e* fore200e)
 556{
 557    DPRINTK(2, "device %s being unmapped from memory\n", fore200e->name);
 558
 559    if (fore200e->virt_base != NULL)
 560	iounmap(fore200e->virt_base);
 561}
 562
 563
 564static int __devinit
 565fore200e_pca_configure(struct fore200e* fore200e)
 566{
 567    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 568    u8              master_ctrl, latency;
 569
 570    DPRINTK(2, "device %s being configured\n", fore200e->name);
 571
 572    if ((pci_dev->irq == 0) || (pci_dev->irq == 0xFF)) {
 573	printk(FORE200E "incorrect IRQ setting - misconfigured PCI-PCI bridge?\n");
 574	return -EIO;
 575    }
 576
 577    pci_read_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, &master_ctrl);
 578
 579    master_ctrl = master_ctrl
 580#if defined(__BIG_ENDIAN)
 581	/* request the PCA board to convert the endianess of slave RAM accesses */
 582	| PCA200E_CTRL_CONVERT_ENDIAN
 583#endif
 584#if 0
 585        | PCA200E_CTRL_DIS_CACHE_RD
 586        | PCA200E_CTRL_DIS_WRT_INVAL
 587        | PCA200E_CTRL_ENA_CONT_REQ_MODE
 588        | PCA200E_CTRL_2_CACHE_WRT_INVAL
 589#endif
 590	| PCA200E_CTRL_LARGE_PCI_BURSTS;
 591    
 592    pci_write_config_byte(pci_dev, PCA200E_PCI_MASTER_CTRL, master_ctrl);
 593
 594    /* raise latency from 32 (default) to 192, as this seems to prevent NIC
 595       lockups (under heavy rx loads) due to continuous 'FIFO OUT full' condition.
 596       this may impact the performances of other PCI devices on the same bus, though */
 597    latency = 192;
 598    pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, latency);
 599
 600    fore200e->state = FORE200E_STATE_CONFIGURE;
 601    return 0;
 602}
 603
 604
 605static int __init
 606fore200e_pca_prom_read(struct fore200e* fore200e, struct prom_data* prom)
 607{
 608    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
 609    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
 610    struct prom_opcode      opcode;
 611    int                     ok;
 612    u32                     prom_dma;
 613
 614    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
 615
 616    opcode.opcode = OPCODE_GET_PROM;
 617    opcode.pad    = 0;
 618
 619    prom_dma = fore200e->bus->dma_map(fore200e, prom, sizeof(struct prom_data), DMA_FROM_DEVICE);
 
 
 
 620
 621    fore200e->bus->write(prom_dma, &entry->cp_entry->cmd.prom_block.prom_haddr);
 622    
 623    *entry->status = STATUS_PENDING;
 624
 625    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.prom_block.opcode);
 626
 627    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
 628
 629    *entry->status = STATUS_FREE;
 630
 631    fore200e->bus->dma_unmap(fore200e, prom_dma, sizeof(struct prom_data), DMA_FROM_DEVICE);
 632
 633    if (ok == 0) {
 634	printk(FORE200E "unable to get PROM data from device %s\n", fore200e->name);
 635	return -EIO;
 636    }
 637
 638#if defined(__BIG_ENDIAN)
 639    
 640#define swap_here(addr) (*((u32*)(addr)) = swab32( *((u32*)(addr)) ))
 641
 642    /* MAC address is stored as little-endian */
 643    swap_here(&prom->mac_addr[0]);
 644    swap_here(&prom->mac_addr[4]);
 645#endif
 646    
 647    return 0;
 648}
 649
 650
 651static int
 652fore200e_pca_proc_read(struct fore200e* fore200e, char *page)
 653{
 654    struct pci_dev* pci_dev = (struct pci_dev*)fore200e->bus_dev;
 655
 656    return sprintf(page, "   PCI bus/slot/function:\t%d/%d/%d\n",
 657		   pci_dev->bus->number, PCI_SLOT(pci_dev->devfn), PCI_FUNC(pci_dev->devfn));
 658}
 659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 660#endif /* CONFIG_PCI */
 661
 662
 663#ifdef CONFIG_SBUS
 664
 665static u32 fore200e_sba_read(volatile u32 __iomem *addr)
 666{
 667    return sbus_readl(addr);
 668}
 669
 670static void fore200e_sba_write(u32 val, volatile u32 __iomem *addr)
 671{
 672    sbus_writel(val, addr);
 673}
 674
 675static u32 fore200e_sba_dma_map(struct fore200e *fore200e, void* virt_addr, int size, int direction)
 676{
 677	struct platform_device *op = fore200e->bus_dev;
 678	u32 dma_addr;
 679
 680	dma_addr = dma_map_single(&op->dev, virt_addr, size, direction);
 681
 682	DPRINTK(3, "SBUS DVMA mapping: virt_addr = 0x%p, size = %d, direction = %d --> dma_addr = 0x%08x\n",
 683		virt_addr, size, direction, dma_addr);
 684    
 685	return dma_addr;
 686}
 687
 688static void fore200e_sba_dma_unmap(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 689{
 690	struct platform_device *op = fore200e->bus_dev;
 691
 692	DPRINTK(3, "SBUS DVMA unmapping: dma_addr = 0x%08x, size = %d, direction = %d,\n",
 693		dma_addr, size, direction);
 694
 695	dma_unmap_single(&op->dev, dma_addr, size, direction);
 696}
 697
 698static void fore200e_sba_dma_sync_for_cpu(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 699{
 700	struct platform_device *op = fore200e->bus_dev;
 701
 702	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 703    
 704	dma_sync_single_for_cpu(&op->dev, dma_addr, size, direction);
 705}
 706
 707static void fore200e_sba_dma_sync_for_device(struct fore200e *fore200e, u32 dma_addr, int size, int direction)
 708{
 709	struct platform_device *op = fore200e->bus_dev;
 710
 711	DPRINTK(3, "SBUS DVMA sync: dma_addr = 0x%08x, size = %d, direction = %d\n", dma_addr, size, direction);
 712
 713	dma_sync_single_for_device(&op->dev, dma_addr, size, direction);
 714}
 715
 716/* Allocate a DVMA consistent chunk of memory intended to act as a communication mechanism
 717 * (to hold descriptors, status, queues, etc.) shared by the driver and the adapter.
 718 */
 719static int fore200e_sba_dma_chunk_alloc(struct fore200e *fore200e, struct chunk *chunk,
 720					int size, int nbr, int alignment)
 721{
 722	struct platform_device *op = fore200e->bus_dev;
 723
 724	chunk->alloc_size = chunk->align_size = size * nbr;
 725
 726	/* returned chunks are page-aligned */
 727	chunk->alloc_addr = dma_alloc_coherent(&op->dev, chunk->alloc_size,
 728					       &chunk->dma_addr, GFP_ATOMIC);
 729
 730	if ((chunk->alloc_addr == NULL) || (chunk->dma_addr == 0))
 731		return -ENOMEM;
 732
 733	chunk->align_addr = chunk->alloc_addr;
 734    
 735	return 0;
 736}
 737
 738/* free a DVMA consistent chunk of memory */
 739static void fore200e_sba_dma_chunk_free(struct fore200e *fore200e, struct chunk *chunk)
 740{
 741	struct platform_device *op = fore200e->bus_dev;
 742
 743	dma_free_coherent(&op->dev, chunk->alloc_size,
 744			  chunk->alloc_addr, chunk->dma_addr);
 745}
 746
 747static void fore200e_sba_irq_enable(struct fore200e *fore200e)
 748{
 749	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 750	fore200e->bus->write(hcr | SBA200E_HCR_INTR_ENA, fore200e->regs.sba.hcr);
 751}
 752
 753static int fore200e_sba_irq_check(struct fore200e *fore200e)
 754{
 755	return fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_INTR_REQ;
 756}
 757
 758static void fore200e_sba_irq_ack(struct fore200e *fore200e)
 759{
 760	u32 hcr = fore200e->bus->read(fore200e->regs.sba.hcr) & SBA200E_HCR_STICKY;
 761	fore200e->bus->write(hcr | SBA200E_HCR_INTR_CLR, fore200e->regs.sba.hcr);
 762}
 763
 764static void fore200e_sba_reset(struct fore200e *fore200e)
 765{
 766	fore200e->bus->write(SBA200E_HCR_RESET, fore200e->regs.sba.hcr);
 767	fore200e_spin(10);
 768	fore200e->bus->write(0, fore200e->regs.sba.hcr);
 769}
 770
 771static int __init fore200e_sba_map(struct fore200e *fore200e)
 772{
 773	struct platform_device *op = fore200e->bus_dev;
 774	unsigned int bursts;
 775
 776	/* gain access to the SBA specific registers  */
 777	fore200e->regs.sba.hcr = of_ioremap(&op->resource[0], 0, SBA200E_HCR_LENGTH, "SBA HCR");
 778	fore200e->regs.sba.bsr = of_ioremap(&op->resource[1], 0, SBA200E_BSR_LENGTH, "SBA BSR");
 779	fore200e->regs.sba.isr = of_ioremap(&op->resource[2], 0, SBA200E_ISR_LENGTH, "SBA ISR");
 780	fore200e->virt_base    = of_ioremap(&op->resource[3], 0, SBA200E_RAM_LENGTH, "SBA RAM");
 781
 782	if (!fore200e->virt_base) {
 783		printk(FORE200E "unable to map RAM of device %s\n", fore200e->name);
 784		return -EFAULT;
 785	}
 786
 787	DPRINTK(1, "device %s mapped to 0x%p\n", fore200e->name, fore200e->virt_base);
 788    
 789	fore200e->bus->write(0x02, fore200e->regs.sba.isr); /* XXX hardwired interrupt level */
 790
 791	/* get the supported DVMA burst sizes */
 792	bursts = of_getintprop_default(op->dev.of_node->parent, "burst-sizes", 0x00);
 793
 794	if (sbus_can_dma_64bit())
 795		sbus_set_sbus64(&op->dev, bursts);
 796
 797	fore200e->state = FORE200E_STATE_MAP;
 798	return 0;
 799}
 800
 801static void fore200e_sba_unmap(struct fore200e *fore200e)
 802{
 803	struct platform_device *op = fore200e->bus_dev;
 804
 805	of_iounmap(&op->resource[0], fore200e->regs.sba.hcr, SBA200E_HCR_LENGTH);
 806	of_iounmap(&op->resource[1], fore200e->regs.sba.bsr, SBA200E_BSR_LENGTH);
 807	of_iounmap(&op->resource[2], fore200e->regs.sba.isr, SBA200E_ISR_LENGTH);
 808	of_iounmap(&op->resource[3], fore200e->virt_base,    SBA200E_RAM_LENGTH);
 809}
 810
 811static int __init fore200e_sba_configure(struct fore200e *fore200e)
 812{
 813	fore200e->state = FORE200E_STATE_CONFIGURE;
 814	return 0;
 815}
 816
 817static int __init fore200e_sba_prom_read(struct fore200e *fore200e, struct prom_data *prom)
 818{
 819	struct platform_device *op = fore200e->bus_dev;
 820	const u8 *prop;
 821	int len;
 822
 823	prop = of_get_property(op->dev.of_node, "madaddrlo2", &len);
 824	if (!prop)
 825		return -ENODEV;
 826	memcpy(&prom->mac_addr[4], prop, 4);
 827
 828	prop = of_get_property(op->dev.of_node, "madaddrhi4", &len);
 829	if (!prop)
 830		return -ENODEV;
 831	memcpy(&prom->mac_addr[2], prop, 4);
 832
 833	prom->serial_number = of_getintprop_default(op->dev.of_node,
 834						    "serialnumber", 0);
 835	prom->hw_revision = of_getintprop_default(op->dev.of_node,
 836						  "promversion", 0);
 837    
 838	return 0;
 839}
 840
 841static int fore200e_sba_proc_read(struct fore200e *fore200e, char *page)
 842{
 843	struct platform_device *op = fore200e->bus_dev;
 844	const struct linux_prom_registers *regs;
 845
 846	regs = of_get_property(op->dev.of_node, "reg", NULL);
 847
 848	return sprintf(page, "   SBUS slot/device:\t\t%d/'%s'\n",
 849		       (regs ? regs->which_io : 0), op->dev.of_node->name);
 850}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851#endif /* CONFIG_SBUS */
 852
 853
 854static void
 855fore200e_tx_irq(struct fore200e* fore200e)
 856{
 857    struct host_txq*        txq = &fore200e->host_txq;
 858    struct host_txq_entry*  entry;
 859    struct atm_vcc*         vcc;
 860    struct fore200e_vc_map* vc_map;
 861
 862    if (fore200e->host_txq.txing == 0)
 863	return;
 864
 865    for (;;) {
 866	
 867	entry = &txq->host_entry[ txq->tail ];
 868
 869        if ((*entry->status & STATUS_COMPLETE) == 0) {
 870	    break;
 871	}
 872
 873	DPRINTK(3, "TX COMPLETED: entry = %p [tail = %d], vc_map = %p, skb = %p\n", 
 874		entry, txq->tail, entry->vc_map, entry->skb);
 875
 876	/* free copy of misaligned data */
 877	kfree(entry->data);
 878	
 879	/* remove DMA mapping */
 880	fore200e->bus->dma_unmap(fore200e, entry->tpd->tsd[ 0 ].buffer, entry->tpd->tsd[ 0 ].length,
 881				 DMA_TO_DEVICE);
 882
 883	vc_map = entry->vc_map;
 884
 885	/* vcc closed since the time the entry was submitted for tx? */
 886	if ((vc_map->vcc == NULL) ||
 887	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
 888
 889	    DPRINTK(1, "no ready vcc found for PDU sent on device %d\n",
 890		    fore200e->atm_dev->number);
 891
 892	    dev_kfree_skb_any(entry->skb);
 893	}
 894	else {
 895	    ASSERT(vc_map->vcc);
 896
 897	    /* vcc closed then immediately re-opened? */
 898	    if (vc_map->incarn != entry->incarn) {
 899
 900		/* when a vcc is closed, some PDUs may be still pending in the tx queue.
 901		   if the same vcc is immediately re-opened, those pending PDUs must
 902		   not be popped after the completion of their emission, as they refer
 903		   to the prior incarnation of that vcc. otherwise, sk_atm(vcc)->sk_wmem_alloc
 904		   would be decremented by the size of the (unrelated) skb, possibly
 905		   leading to a negative sk->sk_wmem_alloc count, ultimately freezing the vcc.
 906		   we thus bind the tx entry to the current incarnation of the vcc
 907		   when the entry is submitted for tx. When the tx later completes,
 908		   if the incarnation number of the tx entry does not match the one
 909		   of the vcc, then this implies that the vcc has been closed then re-opened.
 910		   we thus just drop the skb here. */
 911
 912		DPRINTK(1, "vcc closed-then-re-opened; dropping PDU sent on device %d\n",
 913			fore200e->atm_dev->number);
 914
 915		dev_kfree_skb_any(entry->skb);
 916	    }
 917	    else {
 918		vcc = vc_map->vcc;
 919		ASSERT(vcc);
 920
 921		/* notify tx completion */
 922		if (vcc->pop) {
 923		    vcc->pop(vcc, entry->skb);
 924		}
 925		else {
 926		    dev_kfree_skb_any(entry->skb);
 927		}
 928#if 1
 929		/* race fixed by the above incarnation mechanism, but... */
 930		if (atomic_read(&sk_atm(vcc)->sk_wmem_alloc) < 0) {
 931		    atomic_set(&sk_atm(vcc)->sk_wmem_alloc, 0);
 932		}
 933#endif
 934		/* check error condition */
 935		if (*entry->status & STATUS_ERROR)
 936		    atomic_inc(&vcc->stats->tx_err);
 937		else
 938		    atomic_inc(&vcc->stats->tx);
 939	    }
 940	}
 941
 942	*entry->status = STATUS_FREE;
 943
 944	fore200e->host_txq.txing--;
 945
 946	FORE200E_NEXT_ENTRY(txq->tail, QUEUE_SIZE_TX);
 947    }
 948}
 949
 950
 951#ifdef FORE200E_BSQ_DEBUG
 952int bsq_audit(int where, struct host_bsq* bsq, int scheme, int magn)
 953{
 954    struct buffer* buffer;
 955    int count = 0;
 956
 957    buffer = bsq->freebuf;
 958    while (buffer) {
 959
 960	if (buffer->supplied) {
 961	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld supplied but in free list!\n",
 962		   where, scheme, magn, buffer->index);
 963	}
 964
 965	if (buffer->magn != magn) {
 966	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected magn = %d\n",
 967		   where, scheme, magn, buffer->index, buffer->magn);
 968	}
 969
 970	if (buffer->scheme != scheme) {
 971	    printk(FORE200E "bsq_audit(%d): queue %d.%d, buffer %ld, unexpected scheme = %d\n",
 972		   where, scheme, magn, buffer->index, buffer->scheme);
 973	}
 974
 975	if ((buffer->index < 0) || (buffer->index >= fore200e_rx_buf_nbr[ scheme ][ magn ])) {
 976	    printk(FORE200E "bsq_audit(%d): queue %d.%d, out of range buffer index = %ld !\n",
 977		   where, scheme, magn, buffer->index);
 978	}
 979
 980	count++;
 981	buffer = buffer->next;
 982    }
 983
 984    if (count != bsq->freebuf_count) {
 985	printk(FORE200E "bsq_audit(%d): queue %d.%d, %d bufs in free list, but freebuf_count = %d\n",
 986	       where, scheme, magn, count, bsq->freebuf_count);
 987    }
 988    return 0;
 989}
 990#endif
 991
 992
 993static void
 994fore200e_supply(struct fore200e* fore200e)
 995{
 996    int  scheme, magn, i;
 997
 998    struct host_bsq*       bsq;
 999    struct host_bsq_entry* entry;
1000    struct buffer*         buffer;
1001
1002    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
1003	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
1004
1005	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
1006
1007#ifdef FORE200E_BSQ_DEBUG
1008	    bsq_audit(1, bsq, scheme, magn);
1009#endif
1010	    while (bsq->freebuf_count >= RBD_BLK_SIZE) {
1011
1012		DPRINTK(2, "supplying %d rx buffers to queue %d / %d, freebuf_count = %d\n",
1013			RBD_BLK_SIZE, scheme, magn, bsq->freebuf_count);
1014
1015		entry = &bsq->host_entry[ bsq->head ];
1016
1017		for (i = 0; i < RBD_BLK_SIZE; i++) {
1018
1019		    /* take the first buffer in the free buffer list */
1020		    buffer = bsq->freebuf;
1021		    if (!buffer) {
1022			printk(FORE200E "no more free bufs in queue %d.%d, but freebuf_count = %d\n",
1023			       scheme, magn, bsq->freebuf_count);
1024			return;
1025		    }
1026		    bsq->freebuf = buffer->next;
1027		    
1028#ifdef FORE200E_BSQ_DEBUG
1029		    if (buffer->supplied)
1030			printk(FORE200E "queue %d.%d, buffer %lu already supplied\n",
1031			       scheme, magn, buffer->index);
1032		    buffer->supplied = 1;
1033#endif
1034		    entry->rbd_block->rbd[ i ].buffer_haddr = buffer->data.dma_addr;
1035		    entry->rbd_block->rbd[ i ].handle       = FORE200E_BUF2HDL(buffer);
1036		}
1037
1038		FORE200E_NEXT_ENTRY(bsq->head, QUEUE_SIZE_BS);
1039
1040 		/* decrease accordingly the number of free rx buffers */
1041		bsq->freebuf_count -= RBD_BLK_SIZE;
1042
1043		*entry->status = STATUS_PENDING;
1044		fore200e->bus->write(entry->rbd_block_dma, &entry->cp_entry->rbd_block_haddr);
1045	    }
1046	}
1047    }
1048}
1049
1050
1051static int
1052fore200e_push_rpd(struct fore200e* fore200e, struct atm_vcc* vcc, struct rpd* rpd)
1053{
1054    struct sk_buff*      skb;
1055    struct buffer*       buffer;
1056    struct fore200e_vcc* fore200e_vcc;
1057    int                  i, pdu_len = 0;
1058#ifdef FORE200E_52BYTE_AAL0_SDU
1059    u32                  cell_header = 0;
1060#endif
1061
1062    ASSERT(vcc);
1063    
1064    fore200e_vcc = FORE200E_VCC(vcc);
1065    ASSERT(fore200e_vcc);
1066
1067#ifdef FORE200E_52BYTE_AAL0_SDU
1068    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.rxtp.max_sdu == ATM_AAL0_SDU)) {
1069
1070	cell_header = (rpd->atm_header.gfc << ATM_HDR_GFC_SHIFT) |
1071	              (rpd->atm_header.vpi << ATM_HDR_VPI_SHIFT) |
1072                      (rpd->atm_header.vci << ATM_HDR_VCI_SHIFT) |
1073                      (rpd->atm_header.plt << ATM_HDR_PTI_SHIFT) | 
1074                       rpd->atm_header.clp;
1075	pdu_len = 4;
1076    }
1077#endif
1078    
1079    /* compute total PDU length */
1080    for (i = 0; i < rpd->nseg; i++)
1081	pdu_len += rpd->rsd[ i ].length;
1082    
1083    skb = alloc_skb(pdu_len, GFP_ATOMIC);
1084    if (skb == NULL) {
1085	DPRINTK(2, "unable to alloc new skb, rx PDU length = %d\n", pdu_len);
1086
1087	atomic_inc(&vcc->stats->rx_drop);
1088	return -ENOMEM;
1089    } 
1090
1091    __net_timestamp(skb);
1092    
1093#ifdef FORE200E_52BYTE_AAL0_SDU
1094    if (cell_header) {
1095	*((u32*)skb_put(skb, 4)) = cell_header;
1096    }
1097#endif
1098
1099    /* reassemble segments */
1100    for (i = 0; i < rpd->nseg; i++) {
1101	
1102	/* rebuild rx buffer address from rsd handle */
1103	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1104	
1105	/* Make device DMA transfer visible to CPU.  */
1106	fore200e->bus->dma_sync_for_cpu(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1107	
1108	memcpy(skb_put(skb, rpd->rsd[ i ].length), buffer->data.align_addr, rpd->rsd[ i ].length);
1109
1110	/* Now let the device get at it again.  */
1111	fore200e->bus->dma_sync_for_device(fore200e, buffer->data.dma_addr, rpd->rsd[ i ].length, DMA_FROM_DEVICE);
 
1112    }
1113
1114    DPRINTK(3, "rx skb: len = %d, truesize = %d\n", skb->len, skb->truesize);
1115    
1116    if (pdu_len < fore200e_vcc->rx_min_pdu)
1117	fore200e_vcc->rx_min_pdu = pdu_len;
1118    if (pdu_len > fore200e_vcc->rx_max_pdu)
1119	fore200e_vcc->rx_max_pdu = pdu_len;
1120    fore200e_vcc->rx_pdu++;
1121
1122    /* push PDU */
1123    if (atm_charge(vcc, skb->truesize) == 0) {
1124
1125	DPRINTK(2, "receive buffers saturated for %d.%d.%d - PDU dropped\n",
1126		vcc->itf, vcc->vpi, vcc->vci);
1127
1128	dev_kfree_skb_any(skb);
1129
1130	atomic_inc(&vcc->stats->rx_drop);
1131	return -ENOMEM;
1132    }
1133
1134    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1135
1136    vcc->push(vcc, skb);
1137    atomic_inc(&vcc->stats->rx);
1138
1139    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1140
1141    return 0;
1142}
1143
1144
1145static void
1146fore200e_collect_rpd(struct fore200e* fore200e, struct rpd* rpd)
1147{
1148    struct host_bsq* bsq;
1149    struct buffer*   buffer;
1150    int              i;
1151    
1152    for (i = 0; i < rpd->nseg; i++) {
1153
1154	/* rebuild rx buffer address from rsd handle */
1155	buffer = FORE200E_HDL2BUF(rpd->rsd[ i ].handle);
1156
1157	bsq = &fore200e->host_bsq[ buffer->scheme ][ buffer->magn ];
1158
1159#ifdef FORE200E_BSQ_DEBUG
1160	bsq_audit(2, bsq, buffer->scheme, buffer->magn);
1161
1162	if (buffer->supplied == 0)
1163	    printk(FORE200E "queue %d.%d, buffer %ld was not supplied\n",
1164		   buffer->scheme, buffer->magn, buffer->index);
1165	buffer->supplied = 0;
1166#endif
1167
1168	/* re-insert the buffer into the free buffer list */
1169	buffer->next = bsq->freebuf;
1170	bsq->freebuf = buffer;
1171
1172	/* then increment the number of free rx buffers */
1173	bsq->freebuf_count++;
1174    }
1175}
1176
1177
1178static void
1179fore200e_rx_irq(struct fore200e* fore200e)
1180{
1181    struct host_rxq*        rxq = &fore200e->host_rxq;
1182    struct host_rxq_entry*  entry;
1183    struct atm_vcc*         vcc;
1184    struct fore200e_vc_map* vc_map;
1185
1186    for (;;) {
1187	
1188	entry = &rxq->host_entry[ rxq->head ];
1189
1190	/* no more received PDUs */
1191	if ((*entry->status & STATUS_COMPLETE) == 0)
1192	    break;
1193
1194	vc_map = FORE200E_VC_MAP(fore200e, entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1195
1196	if ((vc_map->vcc == NULL) ||
1197	    (test_bit(ATM_VF_READY, &vc_map->vcc->flags) == 0)) {
1198
1199	    DPRINTK(1, "no ready VC found for PDU received on %d.%d.%d\n",
1200		    fore200e->atm_dev->number,
1201		    entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1202	}
1203	else {
1204	    vcc = vc_map->vcc;
1205	    ASSERT(vcc);
1206
1207	    if ((*entry->status & STATUS_ERROR) == 0) {
1208
1209		fore200e_push_rpd(fore200e, vcc, entry->rpd);
1210	    }
1211	    else {
1212		DPRINTK(2, "damaged PDU on %d.%d.%d\n",
1213			fore200e->atm_dev->number,
1214			entry->rpd->atm_header.vpi, entry->rpd->atm_header.vci);
1215		atomic_inc(&vcc->stats->rx_err);
1216	    }
1217	}
1218
1219	FORE200E_NEXT_ENTRY(rxq->head, QUEUE_SIZE_RX);
1220
1221	fore200e_collect_rpd(fore200e, entry->rpd);
1222
1223	/* rewrite the rpd address to ack the received PDU */
1224	fore200e->bus->write(entry->rpd_dma, &entry->cp_entry->rpd_haddr);
1225	*entry->status = STATUS_FREE;
1226
1227	fore200e_supply(fore200e);
1228    }
1229}
1230
1231
1232#ifndef FORE200E_USE_TASKLET
1233static void
1234fore200e_irq(struct fore200e* fore200e)
1235{
1236    unsigned long flags;
1237
1238    spin_lock_irqsave(&fore200e->q_lock, flags);
1239    fore200e_rx_irq(fore200e);
1240    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1241
1242    spin_lock_irqsave(&fore200e->q_lock, flags);
1243    fore200e_tx_irq(fore200e);
1244    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1245}
1246#endif
1247
1248
1249static irqreturn_t
1250fore200e_interrupt(int irq, void* dev)
1251{
1252    struct fore200e* fore200e = FORE200E_DEV((struct atm_dev*)dev);
1253
1254    if (fore200e->bus->irq_check(fore200e) == 0) {
1255	
1256	DPRINTK(3, "interrupt NOT triggered by device %d\n", fore200e->atm_dev->number);
1257	return IRQ_NONE;
1258    }
1259    DPRINTK(3, "interrupt triggered by device %d\n", fore200e->atm_dev->number);
1260
1261#ifdef FORE200E_USE_TASKLET
1262    tasklet_schedule(&fore200e->tx_tasklet);
1263    tasklet_schedule(&fore200e->rx_tasklet);
1264#else
1265    fore200e_irq(fore200e);
1266#endif
1267    
1268    fore200e->bus->irq_ack(fore200e);
1269    return IRQ_HANDLED;
1270}
1271
1272
1273#ifdef FORE200E_USE_TASKLET
1274static void
1275fore200e_tx_tasklet(unsigned long data)
1276{
1277    struct fore200e* fore200e = (struct fore200e*) data;
1278    unsigned long flags;
1279
1280    DPRINTK(3, "tx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1281
1282    spin_lock_irqsave(&fore200e->q_lock, flags);
1283    fore200e_tx_irq(fore200e);
1284    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1285}
1286
1287
1288static void
1289fore200e_rx_tasklet(unsigned long data)
1290{
1291    struct fore200e* fore200e = (struct fore200e*) data;
1292    unsigned long    flags;
1293
1294    DPRINTK(3, "rx tasklet scheduled for device %d\n", fore200e->atm_dev->number);
1295
1296    spin_lock_irqsave(&fore200e->q_lock, flags);
1297    fore200e_rx_irq((struct fore200e*) data);
1298    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1299}
1300#endif
1301
1302
1303static int
1304fore200e_select_scheme(struct atm_vcc* vcc)
1305{
1306    /* fairly balance the VCs over (identical) buffer schemes */
1307    int scheme = vcc->vci % 2 ? BUFFER_SCHEME_ONE : BUFFER_SCHEME_TWO;
1308
1309    DPRINTK(1, "VC %d.%d.%d uses buffer scheme %d\n",
1310	    vcc->itf, vcc->vpi, vcc->vci, scheme);
1311
1312    return scheme;
1313}
1314
1315
1316static int 
1317fore200e_activate_vcin(struct fore200e* fore200e, int activate, struct atm_vcc* vcc, int mtu)
1318{
1319    struct host_cmdq*        cmdq  = &fore200e->host_cmdq;
1320    struct host_cmdq_entry*  entry = &cmdq->host_entry[ cmdq->head ];
1321    struct activate_opcode   activ_opcode;
1322    struct deactivate_opcode deactiv_opcode;
1323    struct vpvc              vpvc;
1324    int                      ok;
1325    enum fore200e_aal        aal = fore200e_atm2fore_aal(vcc->qos.aal);
1326
1327    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1328    
1329    if (activate) {
1330	FORE200E_VCC(vcc)->scheme = fore200e_select_scheme(vcc);
1331	
1332	activ_opcode.opcode = OPCODE_ACTIVATE_VCIN;
1333	activ_opcode.aal    = aal;
1334	activ_opcode.scheme = FORE200E_VCC(vcc)->scheme;
1335	activ_opcode.pad    = 0;
1336    }
1337    else {
1338	deactiv_opcode.opcode = OPCODE_DEACTIVATE_VCIN;
1339	deactiv_opcode.pad    = 0;
1340    }
1341
1342    vpvc.vci = vcc->vci;
1343    vpvc.vpi = vcc->vpi;
1344
1345    *entry->status = STATUS_PENDING;
1346
1347    if (activate) {
1348
1349#ifdef FORE200E_52BYTE_AAL0_SDU
1350	mtu = 48;
1351#endif
1352	/* the MTU is not used by the cp, except in the case of AAL0 */
1353	fore200e->bus->write(mtu,                        &entry->cp_entry->cmd.activate_block.mtu);
1354	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.activate_block.vpvc);
1355	fore200e->bus->write(*(u32*)&activ_opcode, (u32 __iomem *)&entry->cp_entry->cmd.activate_block.opcode);
1356    }
1357    else {
1358	fore200e->bus->write(*(u32*)&vpvc,         (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.vpvc);
1359	fore200e->bus->write(*(u32*)&deactiv_opcode, (u32 __iomem *)&entry->cp_entry->cmd.deactivate_block.opcode);
1360    }
1361
1362    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1363
1364    *entry->status = STATUS_FREE;
1365
1366    if (ok == 0) {
1367	printk(FORE200E "unable to %s VC %d.%d.%d\n",
1368	       activate ? "open" : "close", vcc->itf, vcc->vpi, vcc->vci);
1369	return -EIO;
1370    }
1371
1372    DPRINTK(1, "VC %d.%d.%d %sed\n", vcc->itf, vcc->vpi, vcc->vci, 
1373	    activate ? "open" : "clos");
1374
1375    return 0;
1376}
1377
1378
1379#define FORE200E_MAX_BACK2BACK_CELLS 255    /* XXX depends on CDVT */
1380
1381static void
1382fore200e_rate_ctrl(struct atm_qos* qos, struct tpd_rate* rate)
1383{
1384    if (qos->txtp.max_pcr < ATM_OC3_PCR) {
1385    
1386	/* compute the data cells to idle cells ratio from the tx PCR */
1387	rate->data_cells = qos->txtp.max_pcr * FORE200E_MAX_BACK2BACK_CELLS / ATM_OC3_PCR;
1388	rate->idle_cells = FORE200E_MAX_BACK2BACK_CELLS - rate->data_cells;
1389    }
1390    else {
1391	/* disable rate control */
1392	rate->data_cells = rate->idle_cells = 0;
1393    }
1394}
1395
1396
1397static int
1398fore200e_open(struct atm_vcc *vcc)
1399{
1400    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1401    struct fore200e_vcc*    fore200e_vcc;
1402    struct fore200e_vc_map* vc_map;
1403    unsigned long	    flags;
1404    int			    vci = vcc->vci;
1405    short		    vpi = vcc->vpi;
1406
1407    ASSERT((vpi >= 0) && (vpi < 1<<FORE200E_VPI_BITS));
1408    ASSERT((vci >= 0) && (vci < 1<<FORE200E_VCI_BITS));
1409
1410    spin_lock_irqsave(&fore200e->q_lock, flags);
1411
1412    vc_map = FORE200E_VC_MAP(fore200e, vpi, vci);
1413    if (vc_map->vcc) {
1414
1415	spin_unlock_irqrestore(&fore200e->q_lock, flags);
1416
1417	printk(FORE200E "VC %d.%d.%d already in use\n",
1418	       fore200e->atm_dev->number, vpi, vci);
1419
1420	return -EINVAL;
1421    }
1422
1423    vc_map->vcc = vcc;
1424
1425    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1426
1427    fore200e_vcc = kzalloc(sizeof(struct fore200e_vcc), GFP_ATOMIC);
1428    if (fore200e_vcc == NULL) {
1429	vc_map->vcc = NULL;
1430	return -ENOMEM;
1431    }
1432
1433    DPRINTK(2, "opening %d.%d.%d:%d QoS = (tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1434	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d)\n",
1435	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1436	    fore200e_traffic_class[ vcc->qos.txtp.traffic_class ],
1437	    vcc->qos.txtp.min_pcr, vcc->qos.txtp.max_pcr, vcc->qos.txtp.max_cdv, vcc->qos.txtp.max_sdu,
1438	    fore200e_traffic_class[ vcc->qos.rxtp.traffic_class ],
1439	    vcc->qos.rxtp.min_pcr, vcc->qos.rxtp.max_pcr, vcc->qos.rxtp.max_cdv, vcc->qos.rxtp.max_sdu);
1440    
1441    /* pseudo-CBR bandwidth requested? */
1442    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1443	
1444	mutex_lock(&fore200e->rate_mtx);
1445	if (fore200e->available_cell_rate < vcc->qos.txtp.max_pcr) {
1446	    mutex_unlock(&fore200e->rate_mtx);
1447
1448	    kfree(fore200e_vcc);
1449	    vc_map->vcc = NULL;
1450	    return -EAGAIN;
1451	}
1452
1453	/* reserve bandwidth */
1454	fore200e->available_cell_rate -= vcc->qos.txtp.max_pcr;
1455	mutex_unlock(&fore200e->rate_mtx);
1456    }
1457    
1458    vcc->itf = vcc->dev->number;
1459
1460    set_bit(ATM_VF_PARTIAL,&vcc->flags);
1461    set_bit(ATM_VF_ADDR, &vcc->flags);
1462
1463    vcc->dev_data = fore200e_vcc;
1464    
1465    if (fore200e_activate_vcin(fore200e, 1, vcc, vcc->qos.rxtp.max_sdu) < 0) {
1466
1467	vc_map->vcc = NULL;
1468
1469	clear_bit(ATM_VF_ADDR, &vcc->flags);
1470	clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1471
1472	vcc->dev_data = NULL;
1473
1474	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1475
1476	kfree(fore200e_vcc);
1477	return -EINVAL;
1478    }
1479    
1480    /* compute rate control parameters */
1481    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1482	
1483	fore200e_rate_ctrl(&vcc->qos, &fore200e_vcc->rate);
1484	set_bit(ATM_VF_HASQOS, &vcc->flags);
1485
1486	DPRINTK(3, "tx on %d.%d.%d:%d, tx PCR = %d, rx PCR = %d, data_cells = %u, idle_cells = %u\n",
1487		vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1488		vcc->qos.txtp.max_pcr, vcc->qos.rxtp.max_pcr, 
1489		fore200e_vcc->rate.data_cells, fore200e_vcc->rate.idle_cells);
1490    }
1491    
1492    fore200e_vcc->tx_min_pdu = fore200e_vcc->rx_min_pdu = MAX_PDU_SIZE + 1;
1493    fore200e_vcc->tx_max_pdu = fore200e_vcc->rx_max_pdu = 0;
1494    fore200e_vcc->tx_pdu     = fore200e_vcc->rx_pdu     = 0;
1495
1496    /* new incarnation of the vcc */
1497    vc_map->incarn = ++fore200e->incarn_count;
1498
1499    /* VC unusable before this flag is set */
1500    set_bit(ATM_VF_READY, &vcc->flags);
1501
1502    return 0;
1503}
1504
1505
1506static void
1507fore200e_close(struct atm_vcc* vcc)
1508{
1509    struct fore200e*        fore200e = FORE200E_DEV(vcc->dev);
1510    struct fore200e_vcc*    fore200e_vcc;
 
1511    struct fore200e_vc_map* vc_map;
1512    unsigned long           flags;
1513
1514    ASSERT(vcc);
 
 
1515    ASSERT((vcc->vpi >= 0) && (vcc->vpi < 1<<FORE200E_VPI_BITS));
1516    ASSERT((vcc->vci >= 0) && (vcc->vci < 1<<FORE200E_VCI_BITS));
1517
1518    DPRINTK(2, "closing %d.%d.%d:%d\n", vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal));
1519
1520    clear_bit(ATM_VF_READY, &vcc->flags);
1521
1522    fore200e_activate_vcin(fore200e, 0, vcc, 0);
1523
1524    spin_lock_irqsave(&fore200e->q_lock, flags);
1525
1526    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1527
1528    /* the vc is no longer considered as "in use" by fore200e_open() */
1529    vc_map->vcc = NULL;
1530
1531    vcc->itf = vcc->vci = vcc->vpi = 0;
1532
1533    fore200e_vcc = FORE200E_VCC(vcc);
1534    vcc->dev_data = NULL;
1535
1536    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1537
1538    /* release reserved bandwidth, if any */
1539    if ((vcc->qos.txtp.traffic_class == ATM_CBR) && (vcc->qos.txtp.max_pcr > 0)) {
1540
1541	mutex_lock(&fore200e->rate_mtx);
1542	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
1543	mutex_unlock(&fore200e->rate_mtx);
1544
1545	clear_bit(ATM_VF_HASQOS, &vcc->flags);
1546    }
1547
1548    clear_bit(ATM_VF_ADDR, &vcc->flags);
1549    clear_bit(ATM_VF_PARTIAL,&vcc->flags);
1550
1551    ASSERT(fore200e_vcc);
1552    kfree(fore200e_vcc);
1553}
1554
1555
1556static int
1557fore200e_send(struct atm_vcc *vcc, struct sk_buff *skb)
1558{
1559    struct fore200e*        fore200e     = FORE200E_DEV(vcc->dev);
1560    struct fore200e_vcc*    fore200e_vcc = FORE200E_VCC(vcc);
1561    struct fore200e_vc_map* vc_map;
1562    struct host_txq*        txq          = &fore200e->host_txq;
1563    struct host_txq_entry*  entry;
1564    struct tpd*             tpd;
1565    struct tpd_haddr        tpd_haddr;
1566    int                     retry        = CONFIG_ATM_FORE200E_TX_RETRY;
1567    int                     tx_copy      = 0;
1568    int                     tx_len       = skb->len;
1569    u32*                    cell_header  = NULL;
1570    unsigned char*          skb_data;
1571    int                     skb_len;
1572    unsigned char*          data;
1573    unsigned long           flags;
1574
1575    ASSERT(vcc);
1576    ASSERT(atomic_read(&sk_atm(vcc)->sk_wmem_alloc) >= 0);
1577    ASSERT(fore200e);
1578    ASSERT(fore200e_vcc);
 
 
 
 
 
 
 
 
1579
1580    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1581	DPRINTK(1, "VC %d.%d.%d not ready for tx\n", vcc->itf, vcc->vpi, vcc->vpi);
1582	dev_kfree_skb_any(skb);
1583	return -EINVAL;
1584    }
1585
1586#ifdef FORE200E_52BYTE_AAL0_SDU
1587    if ((vcc->qos.aal == ATM_AAL0) && (vcc->qos.txtp.max_sdu == ATM_AAL0_SDU)) {
1588	cell_header = (u32*) skb->data;
1589	skb_data    = skb->data + 4;    /* skip 4-byte cell header */
1590	skb_len     = tx_len = skb->len  - 4;
1591
1592	DPRINTK(3, "user-supplied cell header = 0x%08x\n", *cell_header);
1593    }
1594    else 
1595#endif
1596    {
1597	skb_data = skb->data;
1598	skb_len  = skb->len;
1599    }
1600    
1601    if (((unsigned long)skb_data) & 0x3) {
1602
1603	DPRINTK(2, "misaligned tx PDU on device %s\n", fore200e->name);
1604	tx_copy = 1;
1605	tx_len  = skb_len;
1606    }
1607
1608    if ((vcc->qos.aal == ATM_AAL0) && (skb_len % ATM_CELL_PAYLOAD)) {
1609
1610        /* this simply NUKES the PCA board */
1611	DPRINTK(2, "incomplete tx AAL0 PDU on device %s\n", fore200e->name);
1612	tx_copy = 1;
1613	tx_len  = ((skb_len / ATM_CELL_PAYLOAD) + 1) * ATM_CELL_PAYLOAD;
1614    }
1615    
1616    if (tx_copy) {
1617	data = kmalloc(tx_len, GFP_ATOMIC | GFP_DMA);
1618	if (data == NULL) {
1619	    if (vcc->pop) {
1620		vcc->pop(vcc, skb);
1621	    }
1622	    else {
1623		dev_kfree_skb_any(skb);
1624	    }
1625	    return -ENOMEM;
1626	}
1627
1628	memcpy(data, skb_data, skb_len);
1629	if (skb_len < tx_len)
1630	    memset(data + skb_len, 0x00, tx_len - skb_len);
1631    }
1632    else {
1633	data = skb_data;
1634    }
1635
1636    vc_map = FORE200E_VC_MAP(fore200e, vcc->vpi, vcc->vci);
1637    ASSERT(vc_map->vcc == vcc);
1638
1639  retry_here:
1640
1641    spin_lock_irqsave(&fore200e->q_lock, flags);
1642
1643    entry = &txq->host_entry[ txq->head ];
1644
1645    if ((*entry->status != STATUS_FREE) || (txq->txing >= QUEUE_SIZE_TX - 2)) {
1646
1647	/* try to free completed tx queue entries */
1648	fore200e_tx_irq(fore200e);
1649
1650	if (*entry->status != STATUS_FREE) {
1651
1652	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1653
1654	    /* retry once again? */
1655	    if (--retry > 0) {
1656		udelay(50);
1657		goto retry_here;
1658	    }
1659
1660	    atomic_inc(&vcc->stats->tx_err);
1661
1662	    fore200e->tx_sat++;
1663	    DPRINTK(2, "tx queue of device %s is saturated, PDU dropped - heartbeat is %08x\n",
1664		    fore200e->name, fore200e->cp_queues->heartbeat);
1665	    if (vcc->pop) {
1666		vcc->pop(vcc, skb);
1667	    }
1668	    else {
1669		dev_kfree_skb_any(skb);
1670	    }
1671
1672	    if (tx_copy)
1673		kfree(data);
1674
1675	    return -ENOBUFS;
1676	}
1677    }
1678
1679    entry->incarn = vc_map->incarn;
1680    entry->vc_map = vc_map;
1681    entry->skb    = skb;
1682    entry->data   = tx_copy ? data : NULL;
1683
1684    tpd = entry->tpd;
1685    tpd->tsd[ 0 ].buffer = fore200e->bus->dma_map(fore200e, data, tx_len, DMA_TO_DEVICE);
 
 
 
 
 
 
 
1686    tpd->tsd[ 0 ].length = tx_len;
1687
1688    FORE200E_NEXT_ENTRY(txq->head, QUEUE_SIZE_TX);
1689    txq->txing++;
1690
1691    /* The dma_map call above implies a dma_sync so the device can use it,
1692     * thus no explicit dma_sync call is necessary here.
1693     */
1694    
1695    DPRINTK(3, "tx on %d.%d.%d:%d, len = %u (%u)\n", 
1696	    vcc->itf, vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
1697	    tpd->tsd[0].length, skb_len);
1698
1699    if (skb_len < fore200e_vcc->tx_min_pdu)
1700	fore200e_vcc->tx_min_pdu = skb_len;
1701    if (skb_len > fore200e_vcc->tx_max_pdu)
1702	fore200e_vcc->tx_max_pdu = skb_len;
1703    fore200e_vcc->tx_pdu++;
1704
1705    /* set tx rate control information */
1706    tpd->rate.data_cells = fore200e_vcc->rate.data_cells;
1707    tpd->rate.idle_cells = fore200e_vcc->rate.idle_cells;
1708
1709    if (cell_header) {
1710	tpd->atm_header.clp = (*cell_header & ATM_HDR_CLP);
1711	tpd->atm_header.plt = (*cell_header & ATM_HDR_PTI_MASK) >> ATM_HDR_PTI_SHIFT;
1712	tpd->atm_header.vci = (*cell_header & ATM_HDR_VCI_MASK) >> ATM_HDR_VCI_SHIFT;
1713	tpd->atm_header.vpi = (*cell_header & ATM_HDR_VPI_MASK) >> ATM_HDR_VPI_SHIFT;
1714	tpd->atm_header.gfc = (*cell_header & ATM_HDR_GFC_MASK) >> ATM_HDR_GFC_SHIFT;
1715    }
1716    else {
1717	/* set the ATM header, common to all cells conveying the PDU */
1718	tpd->atm_header.clp = 0;
1719	tpd->atm_header.plt = 0;
1720	tpd->atm_header.vci = vcc->vci;
1721	tpd->atm_header.vpi = vcc->vpi;
1722	tpd->atm_header.gfc = 0;
1723    }
1724
1725    tpd->spec.length = tx_len;
1726    tpd->spec.nseg   = 1;
1727    tpd->spec.aal    = fore200e_atm2fore_aal(vcc->qos.aal);
1728    tpd->spec.intr   = 1;
1729
1730    tpd_haddr.size  = sizeof(struct tpd) / (1<<TPD_HADDR_SHIFT);  /* size is expressed in 32 byte blocks */
1731    tpd_haddr.pad   = 0;
1732    tpd_haddr.haddr = entry->tpd_dma >> TPD_HADDR_SHIFT;          /* shift the address, as we are in a bitfield */
1733
1734    *entry->status = STATUS_PENDING;
1735    fore200e->bus->write(*(u32*)&tpd_haddr, (u32 __iomem *)&entry->cp_entry->tpd_haddr);
1736
1737    spin_unlock_irqrestore(&fore200e->q_lock, flags);
1738
1739    return 0;
1740}
1741
1742
1743static int
1744fore200e_getstats(struct fore200e* fore200e)
1745{
1746    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1747    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1748    struct stats_opcode     opcode;
1749    int                     ok;
1750    u32                     stats_dma_addr;
1751
1752    if (fore200e->stats == NULL) {
1753	fore200e->stats = kzalloc(sizeof(struct stats), GFP_KERNEL | GFP_DMA);
1754	if (fore200e->stats == NULL)
1755	    return -ENOMEM;
1756    }
1757    
1758    stats_dma_addr = fore200e->bus->dma_map(fore200e, fore200e->stats,
1759					    sizeof(struct stats), DMA_FROM_DEVICE);
 
 
1760    
1761    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1762
1763    opcode.opcode = OPCODE_GET_STATS;
1764    opcode.pad    = 0;
1765
1766    fore200e->bus->write(stats_dma_addr, &entry->cp_entry->cmd.stats_block.stats_haddr);
1767    
1768    *entry->status = STATUS_PENDING;
1769
1770    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.stats_block.opcode);
1771
1772    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1773
1774    *entry->status = STATUS_FREE;
1775
1776    fore200e->bus->dma_unmap(fore200e, stats_dma_addr, sizeof(struct stats), DMA_FROM_DEVICE);
1777    
1778    if (ok == 0) {
1779	printk(FORE200E "unable to get statistics from device %s\n", fore200e->name);
1780	return -EIO;
1781    }
1782
1783    return 0;
1784}
1785
1786
1787static int
1788fore200e_getsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, int optlen)
1789{
1790    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1791
1792    DPRINTK(2, "getsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1793	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1794
1795    return -EINVAL;
1796}
1797
1798
1799static int
1800fore200e_setsockopt(struct atm_vcc* vcc, int level, int optname, void __user *optval, unsigned int optlen)
1801{
1802    /* struct fore200e* fore200e = FORE200E_DEV(vcc->dev); */
1803    
1804    DPRINTK(2, "setsockopt %d.%d.%d, level = %d, optname = 0x%x, optval = 0x%p, optlen = %d\n",
1805	    vcc->itf, vcc->vpi, vcc->vci, level, optname, optval, optlen);
1806    
1807    return -EINVAL;
1808}
1809
1810
1811#if 0 /* currently unused */
1812static int
1813fore200e_get_oc3(struct fore200e* fore200e, struct oc3_regs* regs)
1814{
1815    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1816    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1817    struct oc3_opcode       opcode;
1818    int                     ok;
1819    u32                     oc3_regs_dma_addr;
1820
1821    oc3_regs_dma_addr = fore200e->bus->dma_map(fore200e, regs, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1822
1823    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1824
1825    opcode.opcode = OPCODE_GET_OC3;
1826    opcode.reg    = 0;
1827    opcode.value  = 0;
1828    opcode.mask   = 0;
1829
1830    fore200e->bus->write(oc3_regs_dma_addr, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1831    
1832    *entry->status = STATUS_PENDING;
1833
1834    fore200e->bus->write(*(u32*)&opcode, (u32*)&entry->cp_entry->cmd.oc3_block.opcode);
1835
1836    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1837
1838    *entry->status = STATUS_FREE;
1839
1840    fore200e->bus->dma_unmap(fore200e, oc3_regs_dma_addr, sizeof(struct oc3_regs), DMA_FROM_DEVICE);
1841    
1842    if (ok == 0) {
1843	printk(FORE200E "unable to get OC-3 regs of device %s\n", fore200e->name);
1844	return -EIO;
1845    }
1846
1847    return 0;
1848}
1849#endif
1850
1851
1852static int
1853fore200e_set_oc3(struct fore200e* fore200e, u32 reg, u32 value, u32 mask)
1854{
1855    struct host_cmdq*       cmdq  = &fore200e->host_cmdq;
1856    struct host_cmdq_entry* entry = &cmdq->host_entry[ cmdq->head ];
1857    struct oc3_opcode       opcode;
1858    int                     ok;
1859
1860    DPRINTK(2, "set OC-3 reg = 0x%02x, value = 0x%02x, mask = 0x%02x\n", reg, value, mask);
1861
1862    FORE200E_NEXT_ENTRY(cmdq->head, QUEUE_SIZE_CMD);
1863
1864    opcode.opcode = OPCODE_SET_OC3;
1865    opcode.reg    = reg;
1866    opcode.value  = value;
1867    opcode.mask   = mask;
1868
1869    fore200e->bus->write(0, &entry->cp_entry->cmd.oc3_block.regs_haddr);
1870    
1871    *entry->status = STATUS_PENDING;
1872
1873    fore200e->bus->write(*(u32*)&opcode, (u32 __iomem *)&entry->cp_entry->cmd.oc3_block.opcode);
1874
1875    ok = fore200e_poll(fore200e, entry->status, STATUS_COMPLETE, 400);
1876
1877    *entry->status = STATUS_FREE;
1878
1879    if (ok == 0) {
1880	printk(FORE200E "unable to set OC-3 reg 0x%02x of device %s\n", reg, fore200e->name);
1881	return -EIO;
1882    }
1883
1884    return 0;
1885}
1886
1887
1888static int
1889fore200e_setloop(struct fore200e* fore200e, int loop_mode)
1890{
1891    u32 mct_value, mct_mask;
1892    int error;
1893
1894    if (!capable(CAP_NET_ADMIN))
1895	return -EPERM;
1896    
1897    switch (loop_mode) {
1898
1899    case ATM_LM_NONE:
1900	mct_value = 0; 
1901	mct_mask  = SUNI_MCT_DLE | SUNI_MCT_LLE;
1902	break;
1903	
1904    case ATM_LM_LOC_PHY:
1905	mct_value = mct_mask = SUNI_MCT_DLE;
1906	break;
1907
1908    case ATM_LM_RMT_PHY:
1909	mct_value = mct_mask = SUNI_MCT_LLE;
1910	break;
1911
1912    default:
1913	return -EINVAL;
1914    }
1915
1916    error = fore200e_set_oc3(fore200e, SUNI_MCT, mct_value, mct_mask);
1917    if (error == 0)
1918	fore200e->loop_mode = loop_mode;
1919
1920    return error;
1921}
1922
1923
1924static int
1925fore200e_fetch_stats(struct fore200e* fore200e, struct sonet_stats __user *arg)
1926{
1927    struct sonet_stats tmp;
1928
1929    if (fore200e_getstats(fore200e) < 0)
1930	return -EIO;
1931
1932    tmp.section_bip = be32_to_cpu(fore200e->stats->oc3.section_bip8_errors);
1933    tmp.line_bip    = be32_to_cpu(fore200e->stats->oc3.line_bip24_errors);
1934    tmp.path_bip    = be32_to_cpu(fore200e->stats->oc3.path_bip8_errors);
1935    tmp.line_febe   = be32_to_cpu(fore200e->stats->oc3.line_febe_errors);
1936    tmp.path_febe   = be32_to_cpu(fore200e->stats->oc3.path_febe_errors);
1937    tmp.corr_hcs    = be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors);
1938    tmp.uncorr_hcs  = be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors);
1939    tmp.tx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_transmitted)  +
1940	              be32_to_cpu(fore200e->stats->aal34.cells_transmitted) +
1941	              be32_to_cpu(fore200e->stats->aal5.cells_transmitted);
1942    tmp.rx_cells    = be32_to_cpu(fore200e->stats->aal0.cells_received)     +
1943	              be32_to_cpu(fore200e->stats->aal34.cells_received)    +
1944	              be32_to_cpu(fore200e->stats->aal5.cells_received);
1945
1946    if (arg)
1947	return copy_to_user(arg, &tmp, sizeof(struct sonet_stats)) ? -EFAULT : 0;	
1948    
1949    return 0;
1950}
1951
1952
1953static int
1954fore200e_ioctl(struct atm_dev* dev, unsigned int cmd, void __user * arg)
1955{
1956    struct fore200e* fore200e = FORE200E_DEV(dev);
1957    
1958    DPRINTK(2, "ioctl cmd = 0x%x (%u), arg = 0x%p (%lu)\n", cmd, cmd, arg, (unsigned long)arg);
1959
1960    switch (cmd) {
1961
1962    case SONET_GETSTAT:
1963	return fore200e_fetch_stats(fore200e, (struct sonet_stats __user *)arg);
1964
1965    case SONET_GETDIAG:
1966	return put_user(0, (int __user *)arg) ? -EFAULT : 0;
1967
1968    case ATM_SETLOOP:
1969	return fore200e_setloop(fore200e, (int)(unsigned long)arg);
1970
1971    case ATM_GETLOOP:
1972	return put_user(fore200e->loop_mode, (int __user *)arg) ? -EFAULT : 0;
1973
1974    case ATM_QUERYLOOP:
1975	return put_user(ATM_LM_LOC_PHY | ATM_LM_RMT_PHY, (int __user *)arg) ? -EFAULT : 0;
1976    }
1977
1978    return -ENOSYS; /* not implemented */
1979}
1980
1981
1982static int
1983fore200e_change_qos(struct atm_vcc* vcc,struct atm_qos* qos, int flags)
1984{
1985    struct fore200e_vcc* fore200e_vcc = FORE200E_VCC(vcc);
1986    struct fore200e*     fore200e     = FORE200E_DEV(vcc->dev);
1987
1988    if (!test_bit(ATM_VF_READY, &vcc->flags)) {
1989	DPRINTK(1, "VC %d.%d.%d not ready for QoS change\n", vcc->itf, vcc->vpi, vcc->vpi);
1990	return -EINVAL;
1991    }
1992
1993    DPRINTK(2, "change_qos %d.%d.%d, "
1994	    "(tx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d; "
1995	    "rx: cl=%s, pcr=%d-%d, cdv=%d, max_sdu=%d), flags = 0x%x\n"
1996	    "available_cell_rate = %u",
1997	    vcc->itf, vcc->vpi, vcc->vci,
1998	    fore200e_traffic_class[ qos->txtp.traffic_class ],
1999	    qos->txtp.min_pcr, qos->txtp.max_pcr, qos->txtp.max_cdv, qos->txtp.max_sdu,
2000	    fore200e_traffic_class[ qos->rxtp.traffic_class ],
2001	    qos->rxtp.min_pcr, qos->rxtp.max_pcr, qos->rxtp.max_cdv, qos->rxtp.max_sdu,
2002	    flags, fore200e->available_cell_rate);
2003
2004    if ((qos->txtp.traffic_class == ATM_CBR) && (qos->txtp.max_pcr > 0)) {
2005
2006	mutex_lock(&fore200e->rate_mtx);
2007	if (fore200e->available_cell_rate + vcc->qos.txtp.max_pcr < qos->txtp.max_pcr) {
2008	    mutex_unlock(&fore200e->rate_mtx);
2009	    return -EAGAIN;
2010	}
2011
2012	fore200e->available_cell_rate += vcc->qos.txtp.max_pcr;
2013	fore200e->available_cell_rate -= qos->txtp.max_pcr;
2014
2015	mutex_unlock(&fore200e->rate_mtx);
2016	
2017	memcpy(&vcc->qos, qos, sizeof(struct atm_qos));
2018	
2019	/* update rate control parameters */
2020	fore200e_rate_ctrl(qos, &fore200e_vcc->rate);
2021
2022	set_bit(ATM_VF_HASQOS, &vcc->flags);
2023
2024	return 0;
2025    }
2026    
2027    return -EINVAL;
2028}
2029    
2030
2031static int __devinit
2032fore200e_irq_request(struct fore200e* fore200e)
2033{
2034    if (request_irq(fore200e->irq, fore200e_interrupt, IRQF_SHARED, fore200e->name, fore200e->atm_dev) < 0) {
2035
2036	printk(FORE200E "unable to reserve IRQ %s for device %s\n",
2037	       fore200e_irq_itoa(fore200e->irq), fore200e->name);
2038	return -EBUSY;
2039    }
2040
2041    printk(FORE200E "IRQ %s reserved for device %s\n",
2042	   fore200e_irq_itoa(fore200e->irq), fore200e->name);
2043
2044#ifdef FORE200E_USE_TASKLET
2045    tasklet_init(&fore200e->tx_tasklet, fore200e_tx_tasklet, (unsigned long)fore200e);
2046    tasklet_init(&fore200e->rx_tasklet, fore200e_rx_tasklet, (unsigned long)fore200e);
2047#endif
2048
2049    fore200e->state = FORE200E_STATE_IRQ;
2050    return 0;
2051}
2052
2053
2054static int __devinit
2055fore200e_get_esi(struct fore200e* fore200e)
2056{
2057    struct prom_data* prom = kzalloc(sizeof(struct prom_data), GFP_KERNEL | GFP_DMA);
2058    int ok, i;
2059
2060    if (!prom)
2061	return -ENOMEM;
2062
2063    ok = fore200e->bus->prom_read(fore200e, prom);
2064    if (ok < 0) {
2065	kfree(prom);
2066	return -EBUSY;
2067    }
2068	
2069    printk(FORE200E "device %s, rev. %c, S/N: %d, ESI: %pM\n",
2070	   fore200e->name, 
2071	   (prom->hw_revision & 0xFF) + '@',    /* probably meaningless with SBA boards */
2072	   prom->serial_number & 0xFFFF, &prom->mac_addr[2]);
2073	
2074    for (i = 0; i < ESI_LEN; i++) {
2075	fore200e->esi[ i ] = fore200e->atm_dev->esi[ i ] = prom->mac_addr[ i + 2 ];
2076    }
2077    
2078    kfree(prom);
2079
2080    return 0;
2081}
2082
2083
2084static int __devinit
2085fore200e_alloc_rx_buf(struct fore200e* fore200e)
2086{
2087    int scheme, magn, nbr, size, i;
2088
2089    struct host_bsq* bsq;
2090    struct buffer*   buffer;
2091
2092    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2093	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2094
2095	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2096
2097	    nbr  = fore200e_rx_buf_nbr[ scheme ][ magn ];
2098	    size = fore200e_rx_buf_size[ scheme ][ magn ];
2099
2100	    DPRINTK(2, "rx buffers %d / %d are being allocated\n", scheme, magn);
2101
2102	    /* allocate the array of receive buffers */
2103	    buffer = bsq->buffer = kzalloc(nbr * sizeof(struct buffer), GFP_KERNEL);
 
2104
2105	    if (buffer == NULL)
2106		return -ENOMEM;
2107
2108	    bsq->freebuf = NULL;
2109
2110	    for (i = 0; i < nbr; i++) {
2111
2112		buffer[ i ].scheme = scheme;
2113		buffer[ i ].magn   = magn;
2114#ifdef FORE200E_BSQ_DEBUG
2115		buffer[ i ].index  = i;
2116		buffer[ i ].supplied = 0;
2117#endif
2118
2119		/* allocate the receive buffer body */
2120		if (fore200e_chunk_alloc(fore200e,
2121					 &buffer[ i ].data, size, fore200e->bus->buffer_alignment,
2122					 DMA_FROM_DEVICE) < 0) {
2123		    
2124		    while (i > 0)
2125			fore200e_chunk_free(fore200e, &buffer[ --i ].data);
2126		    kfree(buffer);
2127		    
2128		    return -ENOMEM;
2129		}
2130
2131		/* insert the buffer into the free buffer list */
2132		buffer[ i ].next = bsq->freebuf;
2133		bsq->freebuf = &buffer[ i ];
2134	    }
2135	    /* all the buffers are free, initially */
2136	    bsq->freebuf_count = nbr;
2137
2138#ifdef FORE200E_BSQ_DEBUG
2139	    bsq_audit(3, bsq, scheme, magn);
2140#endif
2141	}
2142    }
2143
2144    fore200e->state = FORE200E_STATE_ALLOC_BUF;
2145    return 0;
2146}
2147
2148
2149static int __devinit
2150fore200e_init_bs_queue(struct fore200e* fore200e)
2151{
2152    int scheme, magn, i;
2153
2154    struct host_bsq*     bsq;
2155    struct cp_bsq_entry __iomem * cp_entry;
2156
2157    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++) {
2158	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++) {
2159
2160	    DPRINTK(2, "buffer supply queue %d / %d is being initialized\n", scheme, magn);
2161
2162	    bsq = &fore200e->host_bsq[ scheme ][ magn ];
2163
2164	    /* allocate and align the array of status words */
2165	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2166					       &bsq->status,
2167					       sizeof(enum status), 
2168					       QUEUE_SIZE_BS,
2169					       fore200e->bus->status_alignment) < 0) {
2170		return -ENOMEM;
2171	    }
2172
2173	    /* allocate and align the array of receive buffer descriptors */
2174	    if (fore200e->bus->dma_chunk_alloc(fore200e,
2175					       &bsq->rbd_block,
2176					       sizeof(struct rbd_block),
2177					       QUEUE_SIZE_BS,
2178					       fore200e->bus->descr_alignment) < 0) {
2179		
2180		fore200e->bus->dma_chunk_free(fore200e, &bsq->status);
2181		return -ENOMEM;
2182	    }
2183	    
2184	    /* get the base address of the cp resident buffer supply queue entries */
2185	    cp_entry = fore200e->virt_base + 
2186		       fore200e->bus->read(&fore200e->cp_queues->cp_bsq[ scheme ][ magn ]);
2187	    
2188	    /* fill the host resident and cp resident buffer supply queue entries */
2189	    for (i = 0; i < QUEUE_SIZE_BS; i++) {
2190		
2191		bsq->host_entry[ i ].status = 
2192		                     FORE200E_INDEX(bsq->status.align_addr, enum status, i);
2193	        bsq->host_entry[ i ].rbd_block =
2194		                     FORE200E_INDEX(bsq->rbd_block.align_addr, struct rbd_block, i);
2195		bsq->host_entry[ i ].rbd_block_dma =
2196		                     FORE200E_DMA_INDEX(bsq->rbd_block.dma_addr, struct rbd_block, i);
2197		bsq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2198		
2199		*bsq->host_entry[ i ].status = STATUS_FREE;
2200		
2201		fore200e->bus->write(FORE200E_DMA_INDEX(bsq->status.dma_addr, enum status, i), 
2202				     &cp_entry[ i ].status_haddr);
2203	    }
2204	}
2205    }
2206
2207    fore200e->state = FORE200E_STATE_INIT_BSQ;
2208    return 0;
2209}
2210
2211
2212static int __devinit
2213fore200e_init_rx_queue(struct fore200e* fore200e)
2214{
2215    struct host_rxq*     rxq =  &fore200e->host_rxq;
2216    struct cp_rxq_entry __iomem * cp_entry;
2217    int i;
2218
2219    DPRINTK(2, "receive queue is being initialized\n");
2220
2221    /* allocate and align the array of status words */
2222    if (fore200e->bus->dma_chunk_alloc(fore200e,
2223				       &rxq->status,
2224				       sizeof(enum status), 
2225				       QUEUE_SIZE_RX,
2226				       fore200e->bus->status_alignment) < 0) {
2227	return -ENOMEM;
2228    }
2229
2230    /* allocate and align the array of receive PDU descriptors */
2231    if (fore200e->bus->dma_chunk_alloc(fore200e,
2232				       &rxq->rpd,
2233				       sizeof(struct rpd), 
2234				       QUEUE_SIZE_RX,
2235				       fore200e->bus->descr_alignment) < 0) {
2236	
2237	fore200e->bus->dma_chunk_free(fore200e, &rxq->status);
2238	return -ENOMEM;
2239    }
2240
2241    /* get the base address of the cp resident rx queue entries */
2242    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_rxq);
2243
2244    /* fill the host resident and cp resident rx entries */
2245    for (i=0; i < QUEUE_SIZE_RX; i++) {
2246	
2247	rxq->host_entry[ i ].status = 
2248	                     FORE200E_INDEX(rxq->status.align_addr, enum status, i);
2249	rxq->host_entry[ i ].rpd = 
2250	                     FORE200E_INDEX(rxq->rpd.align_addr, struct rpd, i);
2251	rxq->host_entry[ i ].rpd_dma = 
2252	                     FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i);
2253	rxq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2254
2255	*rxq->host_entry[ i ].status = STATUS_FREE;
2256
2257	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->status.dma_addr, enum status, i), 
2258			     &cp_entry[ i ].status_haddr);
2259
2260	fore200e->bus->write(FORE200E_DMA_INDEX(rxq->rpd.dma_addr, struct rpd, i),
2261			     &cp_entry[ i ].rpd_haddr);
2262    }
2263
2264    /* set the head entry of the queue */
2265    rxq->head = 0;
2266
2267    fore200e->state = FORE200E_STATE_INIT_RXQ;
2268    return 0;
2269}
2270
2271
2272static int __devinit
2273fore200e_init_tx_queue(struct fore200e* fore200e)
2274{
2275    struct host_txq*     txq =  &fore200e->host_txq;
2276    struct cp_txq_entry __iomem * cp_entry;
2277    int i;
2278
2279    DPRINTK(2, "transmit queue is being initialized\n");
2280
2281    /* allocate and align the array of status words */
2282    if (fore200e->bus->dma_chunk_alloc(fore200e,
2283				       &txq->status,
2284				       sizeof(enum status), 
2285				       QUEUE_SIZE_TX,
2286				       fore200e->bus->status_alignment) < 0) {
2287	return -ENOMEM;
2288    }
2289
2290    /* allocate and align the array of transmit PDU descriptors */
2291    if (fore200e->bus->dma_chunk_alloc(fore200e,
2292				       &txq->tpd,
2293				       sizeof(struct tpd), 
2294				       QUEUE_SIZE_TX,
2295				       fore200e->bus->descr_alignment) < 0) {
2296	
2297	fore200e->bus->dma_chunk_free(fore200e, &txq->status);
2298	return -ENOMEM;
2299    }
2300
2301    /* get the base address of the cp resident tx queue entries */
2302    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_txq);
2303
2304    /* fill the host resident and cp resident tx entries */
2305    for (i=0; i < QUEUE_SIZE_TX; i++) {
2306	
2307	txq->host_entry[ i ].status = 
2308	                     FORE200E_INDEX(txq->status.align_addr, enum status, i);
2309	txq->host_entry[ i ].tpd = 
2310	                     FORE200E_INDEX(txq->tpd.align_addr, struct tpd, i);
2311	txq->host_entry[ i ].tpd_dma  = 
2312                             FORE200E_DMA_INDEX(txq->tpd.dma_addr, struct tpd, i);
2313	txq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2314
2315	*txq->host_entry[ i ].status = STATUS_FREE;
2316	
2317	fore200e->bus->write(FORE200E_DMA_INDEX(txq->status.dma_addr, enum status, i), 
2318			     &cp_entry[ i ].status_haddr);
2319	
2320        /* although there is a one-to-one mapping of tx queue entries and tpds,
2321	   we do not write here the DMA (physical) base address of each tpd into
2322	   the related cp resident entry, because the cp relies on this write
2323	   operation to detect that a new pdu has been submitted for tx */
2324    }
2325
2326    /* set the head and tail entries of the queue */
2327    txq->head = 0;
2328    txq->tail = 0;
2329
2330    fore200e->state = FORE200E_STATE_INIT_TXQ;
2331    return 0;
2332}
2333
2334
2335static int __devinit
2336fore200e_init_cmd_queue(struct fore200e* fore200e)
2337{
2338    struct host_cmdq*     cmdq =  &fore200e->host_cmdq;
2339    struct cp_cmdq_entry __iomem * cp_entry;
2340    int i;
2341
2342    DPRINTK(2, "command queue is being initialized\n");
2343
2344    /* allocate and align the array of status words */
2345    if (fore200e->bus->dma_chunk_alloc(fore200e,
2346				       &cmdq->status,
2347				       sizeof(enum status), 
2348				       QUEUE_SIZE_CMD,
2349				       fore200e->bus->status_alignment) < 0) {
2350	return -ENOMEM;
2351    }
2352    
2353    /* get the base address of the cp resident cmd queue entries */
2354    cp_entry = fore200e->virt_base + fore200e->bus->read(&fore200e->cp_queues->cp_cmdq);
2355
2356    /* fill the host resident and cp resident cmd entries */
2357    for (i=0; i < QUEUE_SIZE_CMD; i++) {
2358	
2359	cmdq->host_entry[ i ].status   = 
2360                              FORE200E_INDEX(cmdq->status.align_addr, enum status, i);
2361	cmdq->host_entry[ i ].cp_entry = &cp_entry[ i ];
2362
2363	*cmdq->host_entry[ i ].status = STATUS_FREE;
2364
2365	fore200e->bus->write(FORE200E_DMA_INDEX(cmdq->status.dma_addr, enum status, i), 
2366                             &cp_entry[ i ].status_haddr);
2367    }
2368
2369    /* set the head entry of the queue */
2370    cmdq->head = 0;
2371
2372    fore200e->state = FORE200E_STATE_INIT_CMDQ;
2373    return 0;
2374}
2375
2376
2377static void __devinit
2378fore200e_param_bs_queue(struct fore200e* fore200e,
2379			enum buffer_scheme scheme, enum buffer_magn magn,
2380			int queue_length, int pool_size, int supply_blksize)
2381{
2382    struct bs_spec __iomem * bs_spec = &fore200e->cp_queues->init.bs_spec[ scheme ][ magn ];
2383
2384    fore200e->bus->write(queue_length,                           &bs_spec->queue_length);
2385    fore200e->bus->write(fore200e_rx_buf_size[ scheme ][ magn ], &bs_spec->buffer_size);
2386    fore200e->bus->write(pool_size,                              &bs_spec->pool_size);
2387    fore200e->bus->write(supply_blksize,                         &bs_spec->supply_blksize);
2388}
2389
2390
2391static int __devinit
2392fore200e_initialize(struct fore200e* fore200e)
2393{
2394    struct cp_queues __iomem * cpq;
2395    int               ok, scheme, magn;
2396
2397    DPRINTK(2, "device %s being initialized\n", fore200e->name);
2398
2399    mutex_init(&fore200e->rate_mtx);
2400    spin_lock_init(&fore200e->q_lock);
2401
2402    cpq = fore200e->cp_queues = fore200e->virt_base + FORE200E_CP_QUEUES_OFFSET;
2403
2404    /* enable cp to host interrupts */
2405    fore200e->bus->write(1, &cpq->imask);
2406
2407    if (fore200e->bus->irq_enable)
2408	fore200e->bus->irq_enable(fore200e);
2409    
2410    fore200e->bus->write(NBR_CONNECT, &cpq->init.num_connect);
2411
2412    fore200e->bus->write(QUEUE_SIZE_CMD, &cpq->init.cmd_queue_len);
2413    fore200e->bus->write(QUEUE_SIZE_RX,  &cpq->init.rx_queue_len);
2414    fore200e->bus->write(QUEUE_SIZE_TX,  &cpq->init.tx_queue_len);
2415
2416    fore200e->bus->write(RSD_EXTENSION,  &cpq->init.rsd_extension);
2417    fore200e->bus->write(TSD_EXTENSION,  &cpq->init.tsd_extension);
2418
2419    for (scheme = 0; scheme < BUFFER_SCHEME_NBR; scheme++)
2420	for (magn = 0; magn < BUFFER_MAGN_NBR; magn++)
2421	    fore200e_param_bs_queue(fore200e, scheme, magn,
2422				    QUEUE_SIZE_BS, 
2423				    fore200e_rx_buf_nbr[ scheme ][ magn ],
2424				    RBD_BLK_SIZE);
2425
2426    /* issue the initialize command */
2427    fore200e->bus->write(STATUS_PENDING,    &cpq->init.status);
2428    fore200e->bus->write(OPCODE_INITIALIZE, &cpq->init.opcode);
2429
2430    ok = fore200e_io_poll(fore200e, &cpq->init.status, STATUS_COMPLETE, 3000);
2431    if (ok == 0) {
2432	printk(FORE200E "device %s initialization failed\n", fore200e->name);
2433	return -ENODEV;
2434    }
2435
2436    printk(FORE200E "device %s initialized\n", fore200e->name);
2437
2438    fore200e->state = FORE200E_STATE_INITIALIZE;
2439    return 0;
2440}
2441
2442
2443static void __devinit
2444fore200e_monitor_putc(struct fore200e* fore200e, char c)
2445{
2446    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2447
2448#if 0
2449    printk("%c", c);
2450#endif
2451    fore200e->bus->write(((u32) c) | FORE200E_CP_MONITOR_UART_AVAIL, &monitor->soft_uart.send);
2452}
2453
2454
2455static int __devinit
2456fore200e_monitor_getc(struct fore200e* fore200e)
2457{
2458    struct cp_monitor __iomem * monitor = fore200e->cp_monitor;
2459    unsigned long      timeout = jiffies + msecs_to_jiffies(50);
2460    int                c;
2461
2462    while (time_before(jiffies, timeout)) {
2463
2464	c = (int) fore200e->bus->read(&monitor->soft_uart.recv);
2465
2466	if (c & FORE200E_CP_MONITOR_UART_AVAIL) {
2467
2468	    fore200e->bus->write(FORE200E_CP_MONITOR_UART_FREE, &monitor->soft_uart.recv);
2469#if 0
2470	    printk("%c", c & 0xFF);
2471#endif
2472	    return c & 0xFF;
2473	}
2474    }
2475
2476    return -1;
2477}
2478
2479
2480static void __devinit
2481fore200e_monitor_puts(struct fore200e* fore200e, char* str)
2482{
2483    while (*str) {
2484
2485	/* the i960 monitor doesn't accept any new character if it has something to say */
2486	while (fore200e_monitor_getc(fore200e) >= 0);
2487	
2488	fore200e_monitor_putc(fore200e, *str++);
2489    }
2490
2491    while (fore200e_monitor_getc(fore200e) >= 0);
2492}
2493
2494#ifdef __LITTLE_ENDIAN
2495#define FW_EXT ".bin"
2496#else
2497#define FW_EXT "_ecd.bin2"
2498#endif
2499
2500static int __devinit
2501fore200e_load_and_start_fw(struct fore200e* fore200e)
2502{
2503    const struct firmware *firmware;
2504    struct device *device;
2505    struct fw_header *fw_header;
2506    const __le32 *fw_data;
2507    u32 fw_size;
2508    u32 __iomem *load_addr;
2509    char buf[48];
2510    int err = -ENODEV;
2511
2512    if (strcmp(fore200e->bus->model_name, "PCA-200E") == 0)
2513	device = &((struct pci_dev *) fore200e->bus_dev)->dev;
2514#ifdef CONFIG_SBUS
2515    else if (strcmp(fore200e->bus->model_name, "SBA-200E") == 0)
2516	device = &((struct platform_device *) fore200e->bus_dev)->dev;
2517#endif
2518    else
2519	return err;
2520
2521    sprintf(buf, "%s%s", fore200e->bus->proc_name, FW_EXT);
2522    if ((err = request_firmware(&firmware, buf, device)) < 0) {
2523	printk(FORE200E "problem loading firmware image %s\n", fore200e->bus->model_name);
2524	return err;
2525    }
2526
2527    fw_data = (__le32 *) firmware->data;
2528    fw_size = firmware->size / sizeof(u32);
2529    fw_header = (struct fw_header *) firmware->data;
2530    load_addr = fore200e->virt_base + le32_to_cpu(fw_header->load_offset);
2531
2532    DPRINTK(2, "device %s firmware being loaded at 0x%p (%d words)\n",
2533	    fore200e->name, load_addr, fw_size);
2534
2535    if (le32_to_cpu(fw_header->magic) != FW_HEADER_MAGIC) {
2536	printk(FORE200E "corrupted %s firmware image\n", fore200e->bus->model_name);
2537	goto release;
2538    }
2539
2540    for (; fw_size--; fw_data++, load_addr++)
2541	fore200e->bus->write(le32_to_cpu(*fw_data), load_addr);
2542
2543    DPRINTK(2, "device %s firmware being started\n", fore200e->name);
2544
2545#if defined(__sparc_v9__)
2546    /* reported to be required by SBA cards on some sparc64 hosts */
2547    fore200e_spin(100);
2548#endif
2549
2550    sprintf(buf, "\rgo %x\r", le32_to_cpu(fw_header->start_offset));
2551    fore200e_monitor_puts(fore200e, buf);
2552
2553    if (fore200e_io_poll(fore200e, &fore200e->cp_monitor->bstat, BSTAT_CP_RUNNING, 1000) == 0) {
2554	printk(FORE200E "device %s firmware didn't start\n", fore200e->name);
2555	goto release;
2556    }
2557
2558    printk(FORE200E "device %s firmware started\n", fore200e->name);
2559
2560    fore200e->state = FORE200E_STATE_START_FW;
2561    err = 0;
2562
2563release:
2564    release_firmware(firmware);
2565    return err;
2566}
2567
2568
2569static int __devinit
2570fore200e_register(struct fore200e* fore200e, struct device *parent)
2571{
2572    struct atm_dev* atm_dev;
2573
2574    DPRINTK(2, "device %s being registered\n", fore200e->name);
2575
2576    atm_dev = atm_dev_register(fore200e->bus->proc_name, parent, &fore200e_ops,
2577                               -1, NULL);
2578    if (atm_dev == NULL) {
2579	printk(FORE200E "unable to register device %s\n", fore200e->name);
2580	return -ENODEV;
2581    }
2582
2583    atm_dev->dev_data = fore200e;
2584    fore200e->atm_dev = atm_dev;
2585
2586    atm_dev->ci_range.vpi_bits = FORE200E_VPI_BITS;
2587    atm_dev->ci_range.vci_bits = FORE200E_VCI_BITS;
2588
2589    fore200e->available_cell_rate = ATM_OC3_PCR;
2590
2591    fore200e->state = FORE200E_STATE_REGISTER;
2592    return 0;
2593}
2594
2595
2596static int __devinit
2597fore200e_init(struct fore200e* fore200e, struct device *parent)
2598{
2599    if (fore200e_register(fore200e, parent) < 0)
2600	return -ENODEV;
2601    
2602    if (fore200e->bus->configure(fore200e) < 0)
2603	return -ENODEV;
2604
2605    if (fore200e->bus->map(fore200e) < 0)
2606	return -ENODEV;
2607
2608    if (fore200e_reset(fore200e, 1) < 0)
2609	return -ENODEV;
2610
2611    if (fore200e_load_and_start_fw(fore200e) < 0)
2612	return -ENODEV;
2613
2614    if (fore200e_initialize(fore200e) < 0)
2615	return -ENODEV;
2616
2617    if (fore200e_init_cmd_queue(fore200e) < 0)
2618	return -ENOMEM;
2619
2620    if (fore200e_init_tx_queue(fore200e) < 0)
2621	return -ENOMEM;
2622
2623    if (fore200e_init_rx_queue(fore200e) < 0)
2624	return -ENOMEM;
2625
2626    if (fore200e_init_bs_queue(fore200e) < 0)
2627	return -ENOMEM;
2628
2629    if (fore200e_alloc_rx_buf(fore200e) < 0)
2630	return -ENOMEM;
2631
2632    if (fore200e_get_esi(fore200e) < 0)
2633	return -EIO;
2634
2635    if (fore200e_irq_request(fore200e) < 0)
2636	return -EBUSY;
2637
2638    fore200e_supply(fore200e);
2639
2640    /* all done, board initialization is now complete */
2641    fore200e->state = FORE200E_STATE_COMPLETE;
2642    return 0;
2643}
2644
2645#ifdef CONFIG_SBUS
2646static const struct of_device_id fore200e_sba_match[];
2647static int __devinit fore200e_sba_probe(struct platform_device *op)
2648{
2649	const struct of_device_id *match;
2650	const struct fore200e_bus *bus;
2651	struct fore200e *fore200e;
2652	static int index = 0;
2653	int err;
2654
2655	match = of_match_device(fore200e_sba_match, &op->dev);
2656	if (!match)
2657		return -EINVAL;
2658	bus = match->data;
2659
2660	fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2661	if (!fore200e)
2662		return -ENOMEM;
2663
2664	fore200e->bus = bus;
2665	fore200e->bus_dev = op;
2666	fore200e->irq = op->archdata.irqs[0];
2667	fore200e->phys_base = op->resource[0].start;
2668
2669	sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2670
2671	err = fore200e_init(fore200e, &op->dev);
2672	if (err < 0) {
2673		fore200e_shutdown(fore200e);
2674		kfree(fore200e);
2675		return err;
2676	}
2677
2678	index++;
2679	dev_set_drvdata(&op->dev, fore200e);
2680
2681	return 0;
2682}
2683
2684static int __devexit fore200e_sba_remove(struct platform_device *op)
2685{
2686	struct fore200e *fore200e = dev_get_drvdata(&op->dev);
2687
2688	fore200e_shutdown(fore200e);
2689	kfree(fore200e);
2690
2691	return 0;
2692}
2693
2694static const struct of_device_id fore200e_sba_match[] = {
2695	{
2696		.name = SBA200E_PROM_NAME,
2697		.data = (void *) &fore200e_bus[1],
2698	},
2699	{},
2700};
2701MODULE_DEVICE_TABLE(of, fore200e_sba_match);
2702
2703static struct platform_driver fore200e_sba_driver = {
2704	.driver = {
2705		.name = "fore_200e",
2706		.owner = THIS_MODULE,
2707		.of_match_table = fore200e_sba_match,
2708	},
2709	.probe		= fore200e_sba_probe,
2710	.remove		= __devexit_p(fore200e_sba_remove),
2711};
2712#endif
2713
2714#ifdef CONFIG_PCI
2715static int __devinit
2716fore200e_pca_detect(struct pci_dev *pci_dev, const struct pci_device_id *pci_ent)
2717{
2718    const struct fore200e_bus* bus = (struct fore200e_bus*) pci_ent->driver_data;
2719    struct fore200e* fore200e;
2720    int err = 0;
2721    static int index = 0;
2722
2723    if (pci_enable_device(pci_dev)) {
2724	err = -EINVAL;
2725	goto out;
2726    }
 
 
 
 
 
2727    
2728    fore200e = kzalloc(sizeof(struct fore200e), GFP_KERNEL);
2729    if (fore200e == NULL) {
2730	err = -ENOMEM;
2731	goto out_disable;
2732    }
2733
2734    fore200e->bus       = bus;
2735    fore200e->bus_dev   = pci_dev;    
2736    fore200e->irq       = pci_dev->irq;
2737    fore200e->phys_base = pci_resource_start(pci_dev, 0);
2738
2739    sprintf(fore200e->name, "%s-%d", bus->model_name, index - 1);
2740
2741    pci_set_master(pci_dev);
2742
2743    printk(FORE200E "device %s found at 0x%lx, IRQ %s\n",
2744	   fore200e->bus->model_name, 
2745	   fore200e->phys_base, fore200e_irq_itoa(fore200e->irq));
2746
2747    sprintf(fore200e->name, "%s-%d", bus->model_name, index);
2748
2749    err = fore200e_init(fore200e, &pci_dev->dev);
2750    if (err < 0) {
2751	fore200e_shutdown(fore200e);
2752	goto out_free;
2753    }
2754
2755    ++index;
2756    pci_set_drvdata(pci_dev, fore200e);
2757
2758out:
2759    return err;
2760
2761out_free:
2762    kfree(fore200e);
2763out_disable:
2764    pci_disable_device(pci_dev);
2765    goto out;
2766}
2767
2768
2769static void __devexit fore200e_pca_remove_one(struct pci_dev *pci_dev)
2770{
2771    struct fore200e *fore200e;
2772
2773    fore200e = pci_get_drvdata(pci_dev);
2774
2775    fore200e_shutdown(fore200e);
2776    kfree(fore200e);
2777    pci_disable_device(pci_dev);
2778}
2779
2780
2781static struct pci_device_id fore200e_pca_tbl[] = {
2782    { PCI_VENDOR_ID_FORE, PCI_DEVICE_ID_FORE_PCA200E, PCI_ANY_ID, PCI_ANY_ID,
2783      0, 0, (unsigned long) &fore200e_bus[0] },
2784    { 0, }
2785};
2786
2787MODULE_DEVICE_TABLE(pci, fore200e_pca_tbl);
2788
2789static struct pci_driver fore200e_pca_driver = {
2790    .name =     "fore_200e",
2791    .probe =    fore200e_pca_detect,
2792    .remove =   __devexit_p(fore200e_pca_remove_one),
2793    .id_table = fore200e_pca_tbl,
2794};
2795#endif
2796
2797static int __init fore200e_module_init(void)
2798{
2799	int err;
2800
2801	printk(FORE200E "FORE Systems 200E-series ATM driver - version " FORE200E_VERSION "\n");
2802
2803#ifdef CONFIG_SBUS
2804	err = platform_driver_register(&fore200e_sba_driver);
2805	if (err)
2806		return err;
2807#endif
2808
2809#ifdef CONFIG_PCI
2810	err = pci_register_driver(&fore200e_pca_driver);
2811#endif
2812
2813#ifdef CONFIG_SBUS
2814	if (err)
2815		platform_driver_unregister(&fore200e_sba_driver);
2816#endif
2817
2818	return err;
2819}
2820
2821static void __exit fore200e_module_cleanup(void)
2822{
2823#ifdef CONFIG_PCI
2824	pci_unregister_driver(&fore200e_pca_driver);
2825#endif
2826#ifdef CONFIG_SBUS
2827	platform_driver_unregister(&fore200e_sba_driver);
2828#endif
2829}
2830
2831static int
2832fore200e_proc_read(struct atm_dev *dev, loff_t* pos, char* page)
2833{
2834    struct fore200e*     fore200e  = FORE200E_DEV(dev);
2835    struct fore200e_vcc* fore200e_vcc;
2836    struct atm_vcc*      vcc;
2837    int                  i, len, left = *pos;
2838    unsigned long        flags;
2839
2840    if (!left--) {
2841
2842	if (fore200e_getstats(fore200e) < 0)
2843	    return -EIO;
2844
2845	len = sprintf(page,"\n"
2846		       " device:\n"
2847		       "   internal name:\t\t%s\n", fore200e->name);
2848
2849	/* print bus-specific information */
2850	if (fore200e->bus->proc_read)
2851	    len += fore200e->bus->proc_read(fore200e, page + len);
2852	
2853	len += sprintf(page + len,
2854		"   interrupt line:\t\t%s\n"
2855		"   physical base address:\t0x%p\n"
2856		"   virtual base address:\t0x%p\n"
2857		"   factory address (ESI):\t%pM\n"
2858		"   board serial number:\t\t%d\n\n",
2859		fore200e_irq_itoa(fore200e->irq),
2860		(void*)fore200e->phys_base,
2861		fore200e->virt_base,
2862		fore200e->esi,
2863		fore200e->esi[4] * 256 + fore200e->esi[5]);
2864
2865	return len;
2866    }
2867
2868    if (!left--)
2869	return sprintf(page,
2870		       "   free small bufs, scheme 1:\t%d\n"
2871		       "   free large bufs, scheme 1:\t%d\n"
2872		       "   free small bufs, scheme 2:\t%d\n"
2873		       "   free large bufs, scheme 2:\t%d\n",
2874		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_SMALL ].freebuf_count,
2875		       fore200e->host_bsq[ BUFFER_SCHEME_ONE ][ BUFFER_MAGN_LARGE ].freebuf_count,
2876		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_SMALL ].freebuf_count,
2877		       fore200e->host_bsq[ BUFFER_SCHEME_TWO ][ BUFFER_MAGN_LARGE ].freebuf_count);
2878
2879    if (!left--) {
2880	u32 hb = fore200e->bus->read(&fore200e->cp_queues->heartbeat);
2881
2882	len = sprintf(page,"\n\n"
2883		      " cell processor:\n"
2884		      "   heartbeat state:\t\t");
2885	
2886	if (hb >> 16 != 0xDEAD)
2887	    len += sprintf(page + len, "0x%08x\n", hb);
2888	else
2889	    len += sprintf(page + len, "*** FATAL ERROR %04x ***\n", hb & 0xFFFF);
2890
2891	return len;
2892    }
2893
2894    if (!left--) {
2895	static const char* media_name[] = {
2896	    "unshielded twisted pair",
2897	    "multimode optical fiber ST",
2898	    "multimode optical fiber SC",
2899	    "single-mode optical fiber ST",
2900	    "single-mode optical fiber SC",
2901	    "unknown"
2902	};
2903
2904	static const char* oc3_mode[] = {
2905	    "normal operation",
2906	    "diagnostic loopback",
2907	    "line loopback",
2908	    "unknown"
2909	};
2910
2911	u32 fw_release     = fore200e->bus->read(&fore200e->cp_queues->fw_release);
2912	u32 mon960_release = fore200e->bus->read(&fore200e->cp_queues->mon960_release);
2913	u32 oc3_revision   = fore200e->bus->read(&fore200e->cp_queues->oc3_revision);
2914	u32 media_index    = FORE200E_MEDIA_INDEX(fore200e->bus->read(&fore200e->cp_queues->media_type));
2915	u32 oc3_index;
2916
2917	if (media_index > 4)
2918		media_index = 5;
2919	
2920	switch (fore200e->loop_mode) {
2921	    case ATM_LM_NONE:    oc3_index = 0;
2922		                 break;
2923	    case ATM_LM_LOC_PHY: oc3_index = 1;
2924		                 break;
2925	    case ATM_LM_RMT_PHY: oc3_index = 2;
2926		                 break;
2927	    default:             oc3_index = 3;
2928	}
2929
2930	return sprintf(page,
2931		       "   firmware release:\t\t%d.%d.%d\n"
2932		       "   monitor release:\t\t%d.%d\n"
2933		       "   media type:\t\t\t%s\n"
2934		       "   OC-3 revision:\t\t0x%x\n"
2935                       "   OC-3 mode:\t\t\t%s",
2936		       fw_release >> 16, fw_release << 16 >> 24,  fw_release << 24 >> 24,
2937		       mon960_release >> 16, mon960_release << 16 >> 16,
2938		       media_name[ media_index ],
2939		       oc3_revision,
2940		       oc3_mode[ oc3_index ]);
2941    }
2942
2943    if (!left--) {
2944	struct cp_monitor __iomem * cp_monitor = fore200e->cp_monitor;
2945
2946	return sprintf(page,
2947		       "\n\n"
2948		       " monitor:\n"
2949		       "   version number:\t\t%d\n"
2950		       "   boot status word:\t\t0x%08x\n",
2951		       fore200e->bus->read(&cp_monitor->mon_version),
2952		       fore200e->bus->read(&cp_monitor->bstat));
2953    }
2954
2955    if (!left--)
2956	return sprintf(page,
2957		       "\n"
2958		       " device statistics:\n"
2959		       "  4b5b:\n"
2960		       "     crc_header_errors:\t\t%10u\n"
2961		       "     framing_errors:\t\t%10u\n",
2962		       be32_to_cpu(fore200e->stats->phy.crc_header_errors),
2963		       be32_to_cpu(fore200e->stats->phy.framing_errors));
2964    
2965    if (!left--)
2966	return sprintf(page, "\n"
2967		       "  OC-3:\n"
2968		       "     section_bip8_errors:\t%10u\n"
2969		       "     path_bip8_errors:\t\t%10u\n"
2970		       "     line_bip24_errors:\t\t%10u\n"
2971		       "     line_febe_errors:\t\t%10u\n"
2972		       "     path_febe_errors:\t\t%10u\n"
2973		       "     corr_hcs_errors:\t\t%10u\n"
2974		       "     ucorr_hcs_errors:\t\t%10u\n",
2975		       be32_to_cpu(fore200e->stats->oc3.section_bip8_errors),
2976		       be32_to_cpu(fore200e->stats->oc3.path_bip8_errors),
2977		       be32_to_cpu(fore200e->stats->oc3.line_bip24_errors),
2978		       be32_to_cpu(fore200e->stats->oc3.line_febe_errors),
2979		       be32_to_cpu(fore200e->stats->oc3.path_febe_errors),
2980		       be32_to_cpu(fore200e->stats->oc3.corr_hcs_errors),
2981		       be32_to_cpu(fore200e->stats->oc3.ucorr_hcs_errors));
2982
2983    if (!left--)
2984	return sprintf(page,"\n"
2985		       "   ATM:\t\t\t\t     cells\n"
2986		       "     TX:\t\t\t%10u\n"
2987		       "     RX:\t\t\t%10u\n"
2988		       "     vpi out of range:\t\t%10u\n"
2989		       "     vpi no conn:\t\t%10u\n"
2990		       "     vci out of range:\t\t%10u\n"
2991		       "     vci no conn:\t\t%10u\n",
2992		       be32_to_cpu(fore200e->stats->atm.cells_transmitted),
2993		       be32_to_cpu(fore200e->stats->atm.cells_received),
2994		       be32_to_cpu(fore200e->stats->atm.vpi_bad_range),
2995		       be32_to_cpu(fore200e->stats->atm.vpi_no_conn),
2996		       be32_to_cpu(fore200e->stats->atm.vci_bad_range),
2997		       be32_to_cpu(fore200e->stats->atm.vci_no_conn));
2998    
2999    if (!left--)
3000	return sprintf(page,"\n"
3001		       "   AAL0:\t\t\t     cells\n"
3002		       "     TX:\t\t\t%10u\n"
3003		       "     RX:\t\t\t%10u\n"
3004		       "     dropped:\t\t\t%10u\n",
3005		       be32_to_cpu(fore200e->stats->aal0.cells_transmitted),
3006		       be32_to_cpu(fore200e->stats->aal0.cells_received),
3007		       be32_to_cpu(fore200e->stats->aal0.cells_dropped));
3008    
3009    if (!left--)
3010	return sprintf(page,"\n"
3011		       "   AAL3/4:\n"
3012		       "     SAR sublayer:\t\t     cells\n"
3013		       "       TX:\t\t\t%10u\n"
3014		       "       RX:\t\t\t%10u\n"
3015		       "       dropped:\t\t\t%10u\n"
3016		       "       CRC errors:\t\t%10u\n"
3017		       "       protocol errors:\t\t%10u\n\n"
3018		       "     CS  sublayer:\t\t      PDUs\n"
3019		       "       TX:\t\t\t%10u\n"
3020		       "       RX:\t\t\t%10u\n"
3021		       "       dropped:\t\t\t%10u\n"
3022		       "       protocol errors:\t\t%10u\n",
3023		       be32_to_cpu(fore200e->stats->aal34.cells_transmitted),
3024		       be32_to_cpu(fore200e->stats->aal34.cells_received),
3025		       be32_to_cpu(fore200e->stats->aal34.cells_dropped),
3026		       be32_to_cpu(fore200e->stats->aal34.cells_crc_errors),
3027		       be32_to_cpu(fore200e->stats->aal34.cells_protocol_errors),
3028		       be32_to_cpu(fore200e->stats->aal34.cspdus_transmitted),
3029		       be32_to_cpu(fore200e->stats->aal34.cspdus_received),
3030		       be32_to_cpu(fore200e->stats->aal34.cspdus_dropped),
3031		       be32_to_cpu(fore200e->stats->aal34.cspdus_protocol_errors));
3032    
3033    if (!left--)
3034	return sprintf(page,"\n"
3035		       "   AAL5:\n"
3036		       "     SAR sublayer:\t\t     cells\n"
3037		       "       TX:\t\t\t%10u\n"
3038		       "       RX:\t\t\t%10u\n"
3039		       "       dropped:\t\t\t%10u\n"
3040		       "       congestions:\t\t%10u\n\n"
3041		       "     CS  sublayer:\t\t      PDUs\n"
3042		       "       TX:\t\t\t%10u\n"
3043		       "       RX:\t\t\t%10u\n"
3044		       "       dropped:\t\t\t%10u\n"
3045		       "       CRC errors:\t\t%10u\n"
3046		       "       protocol errors:\t\t%10u\n",
3047		       be32_to_cpu(fore200e->stats->aal5.cells_transmitted),
3048		       be32_to_cpu(fore200e->stats->aal5.cells_received),
3049		       be32_to_cpu(fore200e->stats->aal5.cells_dropped),
3050		       be32_to_cpu(fore200e->stats->aal5.congestion_experienced),
3051		       be32_to_cpu(fore200e->stats->aal5.cspdus_transmitted),
3052		       be32_to_cpu(fore200e->stats->aal5.cspdus_received),
3053		       be32_to_cpu(fore200e->stats->aal5.cspdus_dropped),
3054		       be32_to_cpu(fore200e->stats->aal5.cspdus_crc_errors),
3055		       be32_to_cpu(fore200e->stats->aal5.cspdus_protocol_errors));
3056    
3057    if (!left--)
3058	return sprintf(page,"\n"
3059		       "   AUX:\t\t       allocation failures\n"
3060		       "     small b1:\t\t\t%10u\n"
3061		       "     large b1:\t\t\t%10u\n"
3062		       "     small b2:\t\t\t%10u\n"
3063		       "     large b2:\t\t\t%10u\n"
3064		       "     RX PDUs:\t\t\t%10u\n"
3065		       "     TX PDUs:\t\t\t%10lu\n",
3066		       be32_to_cpu(fore200e->stats->aux.small_b1_failed),
3067		       be32_to_cpu(fore200e->stats->aux.large_b1_failed),
3068		       be32_to_cpu(fore200e->stats->aux.small_b2_failed),
3069		       be32_to_cpu(fore200e->stats->aux.large_b2_failed),
3070		       be32_to_cpu(fore200e->stats->aux.rpd_alloc_failed),
3071		       fore200e->tx_sat);
3072    
3073    if (!left--)
3074	return sprintf(page,"\n"
3075		       " receive carrier:\t\t\t%s\n",
3076		       fore200e->stats->aux.receive_carrier ? "ON" : "OFF!");
3077    
3078    if (!left--) {
3079        return sprintf(page,"\n"
3080		       " VCCs:\n  address   VPI VCI   AAL "
3081		       "TX PDUs   TX min/max size  RX PDUs   RX min/max size\n");
3082    }
3083
3084    for (i = 0; i < NBR_CONNECT; i++) {
3085
3086	vcc = fore200e->vc_map[i].vcc;
3087
3088	if (vcc == NULL)
3089	    continue;
3090
3091	spin_lock_irqsave(&fore200e->q_lock, flags);
3092
3093	if (vcc && test_bit(ATM_VF_READY, &vcc->flags) && !left--) {
3094
3095	    fore200e_vcc = FORE200E_VCC(vcc);
3096	    ASSERT(fore200e_vcc);
3097
3098	    len = sprintf(page,
3099			  "  %08x  %03d %05d %1d   %09lu %05d/%05d      %09lu %05d/%05d\n",
3100			  (u32)(unsigned long)vcc,
3101			  vcc->vpi, vcc->vci, fore200e_atm2fore_aal(vcc->qos.aal),
3102			  fore200e_vcc->tx_pdu,
3103			  fore200e_vcc->tx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->tx_min_pdu,
3104			  fore200e_vcc->tx_max_pdu,
3105			  fore200e_vcc->rx_pdu,
3106			  fore200e_vcc->rx_min_pdu > 0xFFFF ? 0 : fore200e_vcc->rx_min_pdu,
3107			  fore200e_vcc->rx_max_pdu);
3108
3109	    spin_unlock_irqrestore(&fore200e->q_lock, flags);
3110	    return len;
3111	}
3112
3113	spin_unlock_irqrestore(&fore200e->q_lock, flags);
3114    }
3115    
3116    return 0;
3117}
3118
3119module_init(fore200e_module_init);
3120module_exit(fore200e_module_cleanup);
3121
3122
3123static const struct atmdev_ops fore200e_ops =
3124{
3125	.open       = fore200e_open,
3126	.close      = fore200e_close,
3127	.ioctl      = fore200e_ioctl,
3128	.getsockopt = fore200e_getsockopt,
3129	.setsockopt = fore200e_setsockopt,
3130	.send       = fore200e_send,
3131	.change_qos = fore200e_change_qos,
3132	.proc_read  = fore200e_proc_read,
3133	.owner      = THIS_MODULE
3134};
3135
3136
3137static const struct fore200e_bus fore200e_bus[] = {
3138#ifdef CONFIG_PCI
3139    { "PCA-200E", "pca200e", 32, 4, 32, 
3140      fore200e_pca_read,
3141      fore200e_pca_write,
3142      fore200e_pca_dma_map,
3143      fore200e_pca_dma_unmap,
3144      fore200e_pca_dma_sync_for_cpu,
3145      fore200e_pca_dma_sync_for_device,
3146      fore200e_pca_dma_chunk_alloc,
3147      fore200e_pca_dma_chunk_free,
3148      fore200e_pca_configure,
3149      fore200e_pca_map,
3150      fore200e_pca_reset,
3151      fore200e_pca_prom_read,
3152      fore200e_pca_unmap,
3153      NULL,
3154      fore200e_pca_irq_check,
3155      fore200e_pca_irq_ack,
3156      fore200e_pca_proc_read,
3157    },
3158#endif
3159#ifdef CONFIG_SBUS
3160    { "SBA-200E", "sba200e", 32, 64, 32,
3161      fore200e_sba_read,
3162      fore200e_sba_write,
3163      fore200e_sba_dma_map,
3164      fore200e_sba_dma_unmap,
3165      fore200e_sba_dma_sync_for_cpu,
3166      fore200e_sba_dma_sync_for_device,
3167      fore200e_sba_dma_chunk_alloc,
3168      fore200e_sba_dma_chunk_free,
3169      fore200e_sba_configure,
3170      fore200e_sba_map,
3171      fore200e_sba_reset,
3172      fore200e_sba_prom_read,
3173      fore200e_sba_unmap,
3174      fore200e_sba_irq_enable,
3175      fore200e_sba_irq_check,
3176      fore200e_sba_irq_ack,
3177      fore200e_sba_proc_read,
3178    },
3179#endif
3180    {}
3181};
3182
3183MODULE_LICENSE("GPL");
3184#ifdef CONFIG_PCI
3185#ifdef __LITTLE_ENDIAN__
3186MODULE_FIRMWARE("pca200e.bin");
3187#else
3188MODULE_FIRMWARE("pca200e_ecd.bin2");
3189#endif
3190#endif /* CONFIG_PCI */
3191#ifdef CONFIG_SBUS
3192MODULE_FIRMWARE("sba200e_ecd.bin2");
3193#endif