Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * User-space Probes (UProbes) for x86
   4 *
   5 * Copyright (C) IBM Corporation, 2008-2011
   6 * Authors:
   7 *	Srikar Dronamraju
   8 *	Jim Keniston
   9 */
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/ptrace.h>
  13#include <linux/uprobes.h>
  14#include <linux/uaccess.h>
  15#include <linux/syscalls.h>
  16
  17#include <linux/kdebug.h>
  18#include <asm/processor.h>
  19#include <asm/insn.h>
  20#include <asm/mmu_context.h>
  21
  22/* Post-execution fixups. */
  23
  24/* Adjust IP back to vicinity of actual insn */
  25#define UPROBE_FIX_IP		0x01
  26
  27/* Adjust the return address of a call insn */
  28#define UPROBE_FIX_CALL		0x02
  29
  30/* Instruction will modify TF, don't change it */
  31#define UPROBE_FIX_SETF		0x04
  32
  33#define UPROBE_FIX_RIP_SI	0x08
  34#define UPROBE_FIX_RIP_DI	0x10
  35#define UPROBE_FIX_RIP_BX	0x20
  36#define UPROBE_FIX_RIP_MASK	\
  37	(UPROBE_FIX_RIP_SI | UPROBE_FIX_RIP_DI | UPROBE_FIX_RIP_BX)
  38
  39#define	UPROBE_TRAP_NR		UINT_MAX
  40
  41/* Adaptations for mhiramat x86 decoder v14. */
  42#define OPCODE1(insn)		((insn)->opcode.bytes[0])
  43#define OPCODE2(insn)		((insn)->opcode.bytes[1])
  44#define OPCODE3(insn)		((insn)->opcode.bytes[2])
  45#define MODRM_REG(insn)		X86_MODRM_REG((insn)->modrm.value)
  46
  47#define W(row, b0, b1, b2, b3, b4, b5, b6, b7, b8, b9, ba, bb, bc, bd, be, bf)\
  48	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \
  49	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \
  50	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \
  51	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \
  52	 << (row % 32))
  53
  54/*
  55 * Good-instruction tables for 32-bit apps.  This is non-const and volatile
  56 * to keep gcc from statically optimizing it out, as variable_test_bit makes
  57 * some versions of gcc to think only *(unsigned long*) is used.
  58 *
  59 * Opcodes we'll probably never support:
  60 * 6c-6f - ins,outs. SEGVs if used in userspace
  61 * e4-e7 - in,out imm. SEGVs if used in userspace
  62 * ec-ef - in,out acc. SEGVs if used in userspace
  63 * cc - int3. SIGTRAP if used in userspace
  64 * ce - into. Not used in userspace - no kernel support to make it useful. SEGVs
  65 *	(why we support bound (62) then? it's similar, and similarly unused...)
  66 * f1 - int1. SIGTRAP if used in userspace
  67 * f4 - hlt. SEGVs if used in userspace
  68 * fa - cli. SEGVs if used in userspace
  69 * fb - sti. SEGVs if used in userspace
  70 *
  71 * Opcodes which need some work to be supported:
  72 * 07,17,1f - pop es/ss/ds
  73 *	Normally not used in userspace, but would execute if used.
  74 *	Can cause GP or stack exception if tries to load wrong segment descriptor.
  75 *	We hesitate to run them under single step since kernel's handling
  76 *	of userspace single-stepping (TF flag) is fragile.
  77 *	We can easily refuse to support push es/cs/ss/ds (06/0e/16/1e)
  78 *	on the same grounds that they are never used.
  79 * cd - int N.
  80 *	Used by userspace for "int 80" syscall entry. (Other "int N"
  81 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
  82 *	Not supported since kernel's handling of userspace single-stepping
  83 *	(TF flag) is fragile.
  84 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
  85 */
  86#if defined(CONFIG_X86_32) || defined(CONFIG_IA32_EMULATION)
  87static volatile u32 good_insns_32[256 / 32] = {
  88	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
  89	/*      ----------------------------------------------         */
  90	W(0x00, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) | /* 00 */
  91	W(0x10, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 10 */
  92	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
  93	W(0x30, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
  94	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
  95	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
  96	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
  97	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
  98	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
  99	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 100	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 101	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 102	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 103	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 104	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0) | /* e0 */
 105	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 106	/*      ----------------------------------------------         */
 107	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 108};
 109#else
 110#define good_insns_32	NULL
 111#endif
 112
 113/* Good-instruction tables for 64-bit apps.
 114 *
 115 * Genuinely invalid opcodes:
 116 * 06,07 - formerly push/pop es
 117 * 0e - formerly push cs
 118 * 16,17 - formerly push/pop ss
 119 * 1e,1f - formerly push/pop ds
 120 * 27,2f,37,3f - formerly daa/das/aaa/aas
 121 * 60,61 - formerly pusha/popa
 122 * 62 - formerly bound. EVEX prefix for AVX512 (not yet supported)
 123 * 82 - formerly redundant encoding of Group1
 124 * 9a - formerly call seg:ofs
 125 * ce - formerly into
 126 * d4,d5 - formerly aam/aad
 127 * d6 - formerly undocumented salc
 128 * ea - formerly jmp seg:ofs
 129 *
 130 * Opcodes we'll probably never support:
 131 * 6c-6f - ins,outs. SEGVs if used in userspace
 132 * e4-e7 - in,out imm. SEGVs if used in userspace
 133 * ec-ef - in,out acc. SEGVs if used in userspace
 134 * cc - int3. SIGTRAP if used in userspace
 135 * f1 - int1. SIGTRAP if used in userspace
 136 * f4 - hlt. SEGVs if used in userspace
 137 * fa - cli. SEGVs if used in userspace
 138 * fb - sti. SEGVs if used in userspace
 139 *
 140 * Opcodes which need some work to be supported:
 141 * cd - int N.
 142 *	Used by userspace for "int 80" syscall entry. (Other "int N"
 143 *	cause GP -> SEGV since their IDT gates don't allow calls from CPL 3).
 144 *	Not supported since kernel's handling of userspace single-stepping
 145 *	(TF flag) is fragile.
 146 * cf - iret. Normally not used in userspace. Doesn't SEGV unless arguments are bad
 147 */
 148#if defined(CONFIG_X86_64)
 149static volatile u32 good_insns_64[256 / 32] = {
 150	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 151	/*      ----------------------------------------------         */
 152	W(0x00, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 1) | /* 00 */
 153	W(0x10, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0) , /* 10 */
 154	W(0x20, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) | /* 20 */
 155	W(0x30, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0) , /* 30 */
 156	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 157	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 158	W(0x60, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* 60 */
 159	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 70 */
 160	W(0x80, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 161	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1) , /* 90 */
 162	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* a0 */
 163	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 164	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0) | /* c0 */
 165	W(0xd0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 166	W(0xe0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0) | /* e0 */
 167	W(0xf0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1)   /* f0 */
 168	/*      ----------------------------------------------         */
 169	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 170};
 171#else
 172#define good_insns_64	NULL
 173#endif
 174
 175/* Using this for both 64-bit and 32-bit apps.
 176 * Opcodes we don't support:
 177 * 0f 00 - SLDT/STR/LLDT/LTR/VERR/VERW/-/- group. System insns
 178 * 0f 01 - SGDT/SIDT/LGDT/LIDT/SMSW/-/LMSW/INVLPG group.
 179 *	Also encodes tons of other system insns if mod=11.
 180 *	Some are in fact non-system: xend, xtest, rdtscp, maybe more
 181 * 0f 05 - syscall
 182 * 0f 06 - clts (CPL0 insn)
 183 * 0f 07 - sysret
 184 * 0f 08 - invd (CPL0 insn)
 185 * 0f 09 - wbinvd (CPL0 insn)
 186 * 0f 0b - ud2
 187 * 0f 30 - wrmsr (CPL0 insn) (then why rdmsr is allowed, it's also CPL0 insn?)
 188 * 0f 34 - sysenter
 189 * 0f 35 - sysexit
 190 * 0f 37 - getsec
 191 * 0f 78 - vmread (Intel VMX. CPL0 insn)
 192 * 0f 79 - vmwrite (Intel VMX. CPL0 insn)
 193 *	Note: with prefixes, these two opcodes are
 194 *	extrq/insertq/AVX512 convert vector ops.
 195 * 0f ae - group15: [f]xsave,[f]xrstor,[v]{ld,st}mxcsr,clflush[opt],
 196 *	{rd,wr}{fs,gs}base,{s,l,m}fence.
 197 *	Why? They are all user-executable.
 198 */
 199static volatile u32 good_2byte_insns[256 / 32] = {
 200	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 201	/*      ----------------------------------------------         */
 202	W(0x00, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1) | /* 00 */
 203	W(0x10, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 10 */
 204	W(0x20, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 20 */
 205	W(0x30, 0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1) , /* 30 */
 206	W(0x40, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 40 */
 207	W(0x50, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 50 */
 208	W(0x60, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 60 */
 209	W(0x70, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1) , /* 70 */
 210	W(0x80, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* 80 */
 211	W(0x90, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* 90 */
 212	W(0xa0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1) | /* a0 */
 213	W(0xb0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* b0 */
 214	W(0xc0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* c0 */
 215	W(0xd0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) , /* d0 */
 216	W(0xe0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) | /* e0 */
 217	W(0xf0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)   /* f0 */
 218	/*      ----------------------------------------------         */
 219	/*      0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f         */
 220};
 221#undef W
 222
 223/*
 224 * opcodes we may need to refine support for:
 225 *
 226 *  0f - 2-byte instructions: For many of these instructions, the validity
 227 *  depends on the prefix and/or the reg field.  On such instructions, we
 228 *  just consider the opcode combination valid if it corresponds to any
 229 *  valid instruction.
 230 *
 231 *  8f - Group 1 - only reg = 0 is OK
 232 *  c6-c7 - Group 11 - only reg = 0 is OK
 233 *  d9-df - fpu insns with some illegal encodings
 234 *  f2, f3 - repnz, repz prefixes.  These are also the first byte for
 235 *  certain floating-point instructions, such as addsd.
 236 *
 237 *  fe - Group 4 - only reg = 0 or 1 is OK
 238 *  ff - Group 5 - only reg = 0-6 is OK
 239 *
 240 * others -- Do we need to support these?
 241 *
 242 *  0f - (floating-point?) prefetch instructions
 243 *  07, 17, 1f - pop es, pop ss, pop ds
 244 *  26, 2e, 36, 3e - es:, cs:, ss:, ds: segment prefixes --
 245 *	but 64 and 65 (fs: and gs:) seem to be used, so we support them
 246 *  67 - addr16 prefix
 247 *  ce - into
 248 *  f0 - lock prefix
 249 */
 250
 251/*
 252 * TODO:
 253 * - Where necessary, examine the modrm byte and allow only valid instructions
 254 * in the different Groups and fpu instructions.
 255 */
 256
 257static bool is_prefix_bad(struct insn *insn)
 258{
 259	insn_byte_t p;
 260	int i;
 261
 262	for_each_insn_prefix(insn, i, p) {
 263		insn_attr_t attr;
 264
 265		attr = inat_get_opcode_attribute(p);
 266		switch (attr) {
 267		case INAT_MAKE_PREFIX(INAT_PFX_ES):
 268		case INAT_MAKE_PREFIX(INAT_PFX_CS):
 269		case INAT_MAKE_PREFIX(INAT_PFX_DS):
 270		case INAT_MAKE_PREFIX(INAT_PFX_SS):
 271		case INAT_MAKE_PREFIX(INAT_PFX_LOCK):
 272			return true;
 273		}
 274	}
 275	return false;
 276}
 277
 278static int uprobe_init_insn(struct arch_uprobe *auprobe, struct insn *insn, bool x86_64)
 279{
 280	enum insn_mode m = x86_64 ? INSN_MODE_64 : INSN_MODE_32;
 281	u32 volatile *good_insns;
 282	int ret;
 283
 284	ret = insn_decode(insn, auprobe->insn, sizeof(auprobe->insn), m);
 285	if (ret < 0)
 286		return -ENOEXEC;
 287
 288	if (is_prefix_bad(insn))
 289		return -ENOTSUPP;
 290
 291	/* We should not singlestep on the exception masking instructions */
 292	if (insn_masking_exception(insn))
 293		return -ENOTSUPP;
 294
 295	if (x86_64)
 296		good_insns = good_insns_64;
 297	else
 298		good_insns = good_insns_32;
 299
 300	if (test_bit(OPCODE1(insn), (unsigned long *)good_insns))
 301		return 0;
 302
 303	if (insn->opcode.nbytes == 2) {
 304		if (test_bit(OPCODE2(insn), (unsigned long *)good_2byte_insns))
 305			return 0;
 306	}
 307
 308	return -ENOTSUPP;
 309}
 310
 311#ifdef CONFIG_X86_64
 312
 313asm (
 314	".pushsection .rodata\n"
 315	".global uretprobe_trampoline_entry\n"
 316	"uretprobe_trampoline_entry:\n"
 317	"pushq %rax\n"
 318	"pushq %rcx\n"
 319	"pushq %r11\n"
 320	"movq $" __stringify(__NR_uretprobe) ", %rax\n"
 321	"syscall\n"
 322	".global uretprobe_syscall_check\n"
 323	"uretprobe_syscall_check:\n"
 324	"popq %r11\n"
 325	"popq %rcx\n"
 326
 327	/* The uretprobe syscall replaces stored %rax value with final
 328	 * return address, so we don't restore %rax in here and just
 329	 * call ret.
 330	 */
 331	"retq\n"
 332	".global uretprobe_trampoline_end\n"
 333	"uretprobe_trampoline_end:\n"
 334	".popsection\n"
 335);
 336
 337extern u8 uretprobe_trampoline_entry[];
 338extern u8 uretprobe_trampoline_end[];
 339extern u8 uretprobe_syscall_check[];
 340
 341void *arch_uprobe_trampoline(unsigned long *psize)
 342{
 343	static uprobe_opcode_t insn = UPROBE_SWBP_INSN;
 344	struct pt_regs *regs = task_pt_regs(current);
 345
 346	/*
 347	 * At the moment the uretprobe syscall trampoline is supported
 348	 * only for native 64-bit process, the compat process still uses
 349	 * standard breakpoint.
 350	 */
 351	if (user_64bit_mode(regs)) {
 352		*psize = uretprobe_trampoline_end - uretprobe_trampoline_entry;
 353		return uretprobe_trampoline_entry;
 354	}
 355
 356	*psize = UPROBE_SWBP_INSN_SIZE;
 357	return &insn;
 358}
 359
 360static unsigned long trampoline_check_ip(void)
 361{
 362	unsigned long tramp = uprobe_get_trampoline_vaddr();
 363
 364	return tramp + (uretprobe_syscall_check - uretprobe_trampoline_entry);
 365}
 366
 367SYSCALL_DEFINE0(uretprobe)
 368{
 369	struct pt_regs *regs = task_pt_regs(current);
 370	unsigned long err, ip, sp, r11_cx_ax[3];
 371
 372	if (regs->ip != trampoline_check_ip())
 373		goto sigill;
 374
 375	err = copy_from_user(r11_cx_ax, (void __user *)regs->sp, sizeof(r11_cx_ax));
 376	if (err)
 377		goto sigill;
 378
 379	/* expose the "right" values of r11/cx/ax/sp to uprobe_consumer/s */
 380	regs->r11 = r11_cx_ax[0];
 381	regs->cx  = r11_cx_ax[1];
 382	regs->ax  = r11_cx_ax[2];
 383	regs->sp += sizeof(r11_cx_ax);
 384	regs->orig_ax = -1;
 385
 386	ip = regs->ip;
 387	sp = regs->sp;
 388
 389	uprobe_handle_trampoline(regs);
 390
 391	/*
 392	 * Some of the uprobe consumers has changed sp, we can do nothing,
 393	 * just return via iret.
 394	 * .. or shadow stack is enabled, in which case we need to skip
 395	 * return through the user space stack address.
 396	 */
 397	if (regs->sp != sp || shstk_is_enabled())
 398		return regs->ax;
 399	regs->sp -= sizeof(r11_cx_ax);
 400
 401	/* for the case uprobe_consumer has changed r11/cx */
 402	r11_cx_ax[0] = regs->r11;
 403	r11_cx_ax[1] = regs->cx;
 404
 405	/*
 406	 * ax register is passed through as return value, so we can use
 407	 * its space on stack for ip value and jump to it through the
 408	 * trampoline's ret instruction
 409	 */
 410	r11_cx_ax[2] = regs->ip;
 411	regs->ip = ip;
 412
 413	err = copy_to_user((void __user *)regs->sp, r11_cx_ax, sizeof(r11_cx_ax));
 414	if (err)
 415		goto sigill;
 416
 417	/* ensure sysret, see do_syscall_64() */
 418	regs->r11 = regs->flags;
 419	regs->cx  = regs->ip;
 420
 421	return regs->ax;
 422
 423sigill:
 424	force_sig(SIGILL);
 425	return -1;
 426}
 427
 428/*
 429 * If arch_uprobe->insn doesn't use rip-relative addressing, return
 430 * immediately.  Otherwise, rewrite the instruction so that it accesses
 431 * its memory operand indirectly through a scratch register.  Set
 432 * defparam->fixups accordingly. (The contents of the scratch register
 433 * will be saved before we single-step the modified instruction,
 434 * and restored afterward).
 435 *
 436 * We do this because a rip-relative instruction can access only a
 437 * relatively small area (+/- 2 GB from the instruction), and the XOL
 438 * area typically lies beyond that area.  At least for instructions
 439 * that store to memory, we can't execute the original instruction
 440 * and "fix things up" later, because the misdirected store could be
 441 * disastrous.
 442 *
 443 * Some useful facts about rip-relative instructions:
 444 *
 445 *  - There's always a modrm byte with bit layout "00 reg 101".
 446 *  - There's never a SIB byte.
 447 *  - The displacement is always 4 bytes.
 448 *  - REX.B=1 bit in REX prefix, which normally extends r/m field,
 449 *    has no effect on rip-relative mode. It doesn't make modrm byte
 450 *    with r/m=101 refer to register 1101 = R13.
 451 */
 452static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 453{
 454	u8 *cursor;
 455	u8 reg;
 456	u8 reg2;
 457
 458	if (!insn_rip_relative(insn))
 459		return;
 460
 461	/*
 462	 * insn_rip_relative() would have decoded rex_prefix, vex_prefix, modrm.
 463	 * Clear REX.b bit (extension of MODRM.rm field):
 464	 * we want to encode low numbered reg, not r8+.
 465	 */
 466	if (insn->rex_prefix.nbytes) {
 467		cursor = auprobe->insn + insn_offset_rex_prefix(insn);
 468		/* REX byte has 0100wrxb layout, clearing REX.b bit */
 469		*cursor &= 0xfe;
 470	}
 471	/*
 472	 * Similar treatment for VEX3/EVEX prefix.
 473	 * TODO: add XOP treatment when insn decoder supports them
 474	 */
 475	if (insn->vex_prefix.nbytes >= 3) {
 476		/*
 477		 * vex2:     c5    rvvvvLpp   (has no b bit)
 478		 * vex3/xop: c4/8f rxbmmmmm wvvvvLpp
 479		 * evex:     62    rxbR00mm wvvvv1pp zllBVaaa
 480		 * Setting VEX3.b (setting because it has inverted meaning).
 481		 * Setting EVEX.x since (in non-SIB encoding) EVEX.x
 482		 * is the 4th bit of MODRM.rm, and needs the same treatment.
 483		 * For VEX3-encoded insns, VEX3.x value has no effect in
 484		 * non-SIB encoding, the change is superfluous but harmless.
 485		 */
 486		cursor = auprobe->insn + insn_offset_vex_prefix(insn) + 1;
 487		*cursor |= 0x60;
 488	}
 489
 490	/*
 491	 * Convert from rip-relative addressing to register-relative addressing
 492	 * via a scratch register.
 493	 *
 494	 * This is tricky since there are insns with modrm byte
 495	 * which also use registers not encoded in modrm byte:
 496	 * [i]div/[i]mul: implicitly use dx:ax
 497	 * shift ops: implicitly use cx
 498	 * cmpxchg: implicitly uses ax
 499	 * cmpxchg8/16b: implicitly uses dx:ax and bx:cx
 500	 *   Encoding: 0f c7/1 modrm
 501	 *   The code below thinks that reg=1 (cx), chooses si as scratch.
 502	 * mulx: implicitly uses dx: mulx r/m,r1,r2 does r1:r2 = dx * r/m.
 503	 *   First appeared in Haswell (BMI2 insn). It is vex-encoded.
 504	 *   Example where none of bx,cx,dx can be used as scratch reg:
 505	 *   c4 e2 63 f6 0d disp32   mulx disp32(%rip),%ebx,%ecx
 506	 * [v]pcmpistri: implicitly uses cx, xmm0
 507	 * [v]pcmpistrm: implicitly uses xmm0
 508	 * [v]pcmpestri: implicitly uses ax, dx, cx, xmm0
 509	 * [v]pcmpestrm: implicitly uses ax, dx, xmm0
 510	 *   Evil SSE4.2 string comparison ops from hell.
 511	 * maskmovq/[v]maskmovdqu: implicitly uses (ds:rdi) as destination.
 512	 *   Encoding: 0f f7 modrm, 66 0f f7 modrm, vex-encoded: c5 f9 f7 modrm.
 513	 *   Store op1, byte-masked by op2 msb's in each byte, to (ds:rdi).
 514	 *   AMD says it has no 3-operand form (vex.vvvv must be 1111)
 515	 *   and that it can have only register operands, not mem
 516	 *   (its modrm byte must have mode=11).
 517	 *   If these restrictions will ever be lifted,
 518	 *   we'll need code to prevent selection of di as scratch reg!
 519	 *
 520	 * Summary: I don't know any insns with modrm byte which
 521	 * use SI register implicitly. DI register is used only
 522	 * by one insn (maskmovq) and BX register is used
 523	 * only by one too (cmpxchg8b).
 524	 * BP is stack-segment based (may be a problem?).
 525	 * AX, DX, CX are off-limits (many implicit users).
 526	 * SP is unusable (it's stack pointer - think about "pop mem";
 527	 * also, rsp+disp32 needs sib encoding -> insn length change).
 528	 */
 529
 530	reg = MODRM_REG(insn);	/* Fetch modrm.reg */
 531	reg2 = 0xff;		/* Fetch vex.vvvv */
 532	if (insn->vex_prefix.nbytes)
 533		reg2 = insn->vex_prefix.bytes[2];
 534	/*
 535	 * TODO: add XOP vvvv reading.
 536	 *
 537	 * vex.vvvv field is in bits 6-3, bits are inverted.
 538	 * But in 32-bit mode, high-order bit may be ignored.
 539	 * Therefore, let's consider only 3 low-order bits.
 540	 */
 541	reg2 = ((reg2 >> 3) & 0x7) ^ 0x7;
 542	/*
 543	 * Register numbering is ax,cx,dx,bx, sp,bp,si,di, r8..r15.
 544	 *
 545	 * Choose scratch reg. Order is important: must not select bx
 546	 * if we can use si (cmpxchg8b case!)
 547	 */
 548	if (reg != 6 && reg2 != 6) {
 549		reg2 = 6;
 550		auprobe->defparam.fixups |= UPROBE_FIX_RIP_SI;
 551	} else if (reg != 7 && reg2 != 7) {
 552		reg2 = 7;
 553		auprobe->defparam.fixups |= UPROBE_FIX_RIP_DI;
 554		/* TODO (paranoia): force maskmovq to not use di */
 555	} else {
 556		reg2 = 3;
 557		auprobe->defparam.fixups |= UPROBE_FIX_RIP_BX;
 558	}
 559	/*
 560	 * Point cursor at the modrm byte.  The next 4 bytes are the
 561	 * displacement.  Beyond the displacement, for some instructions,
 562	 * is the immediate operand.
 563	 */
 564	cursor = auprobe->insn + insn_offset_modrm(insn);
 565	/*
 566	 * Change modrm from "00 reg 101" to "10 reg reg2". Example:
 567	 * 89 05 disp32  mov %eax,disp32(%rip) becomes
 568	 * 89 86 disp32  mov %eax,disp32(%rsi)
 569	 */
 570	*cursor = 0x80 | (reg << 3) | reg2;
 571}
 572
 573static inline unsigned long *
 574scratch_reg(struct arch_uprobe *auprobe, struct pt_regs *regs)
 575{
 576	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_SI)
 577		return &regs->si;
 578	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_DI)
 579		return &regs->di;
 580	return &regs->bx;
 581}
 582
 583/*
 584 * If we're emulating a rip-relative instruction, save the contents
 585 * of the scratch register and store the target address in that register.
 586 */
 587static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 588{
 589	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 590		struct uprobe_task *utask = current->utask;
 591		unsigned long *sr = scratch_reg(auprobe, regs);
 592
 593		utask->autask.saved_scratch_register = *sr;
 594		*sr = utask->vaddr + auprobe->defparam.ilen;
 595	}
 596}
 597
 598static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 599{
 600	if (auprobe->defparam.fixups & UPROBE_FIX_RIP_MASK) {
 601		struct uprobe_task *utask = current->utask;
 602		unsigned long *sr = scratch_reg(auprobe, regs);
 603
 604		*sr = utask->autask.saved_scratch_register;
 605	}
 606}
 607#else /* 32-bit: */
 608/*
 609 * No RIP-relative addressing on 32-bit
 610 */
 611static void riprel_analyze(struct arch_uprobe *auprobe, struct insn *insn)
 612{
 613}
 614static void riprel_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 615{
 616}
 617static void riprel_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
 618{
 619}
 620#endif /* CONFIG_X86_64 */
 621
 622struct uprobe_xol_ops {
 623	bool	(*emulate)(struct arch_uprobe *, struct pt_regs *);
 624	int	(*pre_xol)(struct arch_uprobe *, struct pt_regs *);
 625	int	(*post_xol)(struct arch_uprobe *, struct pt_regs *);
 626	void	(*abort)(struct arch_uprobe *, struct pt_regs *);
 627};
 628
 629static inline int sizeof_long(struct pt_regs *regs)
 630{
 631	/*
 632	 * Check registers for mode as in_xxx_syscall() does not apply here.
 633	 */
 634	return user_64bit_mode(regs) ? 8 : 4;
 635}
 636
 637static int default_pre_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 638{
 639	riprel_pre_xol(auprobe, regs);
 640	return 0;
 641}
 642
 643static int emulate_push_stack(struct pt_regs *regs, unsigned long val)
 644{
 645	unsigned long new_sp = regs->sp - sizeof_long(regs);
 646
 647	if (copy_to_user((void __user *)new_sp, &val, sizeof_long(regs)))
 648		return -EFAULT;
 649
 650	regs->sp = new_sp;
 651	return 0;
 652}
 653
 654/*
 655 * We have to fix things up as follows:
 656 *
 657 * Typically, the new ip is relative to the copied instruction.  We need
 658 * to make it relative to the original instruction (FIX_IP).  Exceptions
 659 * are return instructions and absolute or indirect jump or call instructions.
 660 *
 661 * If the single-stepped instruction was a call, the return address that
 662 * is atop the stack is the address following the copied instruction.  We
 663 * need to make it the address following the original instruction (FIX_CALL).
 664 *
 665 * If the original instruction was a rip-relative instruction such as
 666 * "movl %edx,0xnnnn(%rip)", we have instead executed an equivalent
 667 * instruction using a scratch register -- e.g., "movl %edx,0xnnnn(%rsi)".
 668 * We need to restore the contents of the scratch register
 669 * (FIX_RIP_reg).
 670 */
 671static int default_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 672{
 673	struct uprobe_task *utask = current->utask;
 674
 675	riprel_post_xol(auprobe, regs);
 676	if (auprobe->defparam.fixups & UPROBE_FIX_IP) {
 677		long correction = utask->vaddr - utask->xol_vaddr;
 678		regs->ip += correction;
 679	} else if (auprobe->defparam.fixups & UPROBE_FIX_CALL) {
 680		regs->sp += sizeof_long(regs); /* Pop incorrect return address */
 681		if (emulate_push_stack(regs, utask->vaddr + auprobe->defparam.ilen))
 682			return -ERESTART;
 683	}
 684	/* popf; tell the caller to not touch TF */
 685	if (auprobe->defparam.fixups & UPROBE_FIX_SETF)
 686		utask->autask.saved_tf = true;
 687
 688	return 0;
 689}
 690
 691static void default_abort_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 692{
 693	riprel_post_xol(auprobe, regs);
 694}
 695
 696static const struct uprobe_xol_ops default_xol_ops = {
 697	.pre_xol  = default_pre_xol_op,
 698	.post_xol = default_post_xol_op,
 699	.abort	  = default_abort_op,
 700};
 701
 702static bool branch_is_call(struct arch_uprobe *auprobe)
 703{
 704	return auprobe->branch.opc1 == 0xe8;
 705}
 706
 707#define CASE_COND					\
 708	COND(70, 71, XF(OF))				\
 709	COND(72, 73, XF(CF))				\
 710	COND(74, 75, XF(ZF))				\
 711	COND(78, 79, XF(SF))				\
 712	COND(7a, 7b, XF(PF))				\
 713	COND(76, 77, XF(CF) || XF(ZF))			\
 714	COND(7c, 7d, XF(SF) != XF(OF))			\
 715	COND(7e, 7f, XF(ZF) || XF(SF) != XF(OF))
 716
 717#define COND(op_y, op_n, expr)				\
 718	case 0x ## op_y: DO((expr) != 0)		\
 719	case 0x ## op_n: DO((expr) == 0)
 720
 721#define XF(xf)	(!!(flags & X86_EFLAGS_ ## xf))
 722
 723static bool is_cond_jmp_opcode(u8 opcode)
 724{
 725	switch (opcode) {
 726	#define DO(expr)	\
 727		return true;
 728	CASE_COND
 729	#undef	DO
 730
 731	default:
 732		return false;
 733	}
 734}
 735
 736static bool check_jmp_cond(struct arch_uprobe *auprobe, struct pt_regs *regs)
 737{
 738	unsigned long flags = regs->flags;
 739
 740	switch (auprobe->branch.opc1) {
 741	#define DO(expr)	\
 742		return expr;
 743	CASE_COND
 744	#undef	DO
 745
 746	default:	/* not a conditional jmp */
 747		return true;
 748	}
 749}
 750
 751#undef	XF
 752#undef	COND
 753#undef	CASE_COND
 754
 755static bool branch_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 756{
 757	unsigned long new_ip = regs->ip += auprobe->branch.ilen;
 758	unsigned long offs = (long)auprobe->branch.offs;
 759
 760	if (branch_is_call(auprobe)) {
 761		/*
 762		 * If it fails we execute this (mangled, see the comment in
 763		 * branch_clear_offset) insn out-of-line. In the likely case
 764		 * this should trigger the trap, and the probed application
 765		 * should die or restart the same insn after it handles the
 766		 * signal, arch_uprobe_post_xol() won't be even called.
 767		 *
 768		 * But there is corner case, see the comment in ->post_xol().
 769		 */
 770		if (emulate_push_stack(regs, new_ip))
 771			return false;
 772	} else if (!check_jmp_cond(auprobe, regs)) {
 773		offs = 0;
 774	}
 775
 776	regs->ip = new_ip + offs;
 777	return true;
 778}
 779
 780static bool push_emulate_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 781{
 782	unsigned long *src_ptr = (void *)regs + auprobe->push.reg_offset;
 783
 784	if (emulate_push_stack(regs, *src_ptr))
 785		return false;
 786	regs->ip += auprobe->push.ilen;
 787	return true;
 788}
 789
 790static int branch_post_xol_op(struct arch_uprobe *auprobe, struct pt_regs *regs)
 791{
 792	BUG_ON(!branch_is_call(auprobe));
 793	/*
 794	 * We can only get here if branch_emulate_op() failed to push the ret
 795	 * address _and_ another thread expanded our stack before the (mangled)
 796	 * "call" insn was executed out-of-line. Just restore ->sp and restart.
 797	 * We could also restore ->ip and try to call branch_emulate_op() again.
 798	 */
 799	regs->sp += sizeof_long(regs);
 800	return -ERESTART;
 801}
 802
 803static void branch_clear_offset(struct arch_uprobe *auprobe, struct insn *insn)
 804{
 805	/*
 806	 * Turn this insn into "call 1f; 1:", this is what we will execute
 807	 * out-of-line if ->emulate() fails. We only need this to generate
 808	 * a trap, so that the probed task receives the correct signal with
 809	 * the properly filled siginfo.
 810	 *
 811	 * But see the comment in ->post_xol(), in the unlikely case it can
 812	 * succeed. So we need to ensure that the new ->ip can not fall into
 813	 * the non-canonical area and trigger #GP.
 814	 *
 815	 * We could turn it into (say) "pushf", but then we would need to
 816	 * divorce ->insn[] and ->ixol[]. We need to preserve the 1st byte
 817	 * of ->insn[] for set_orig_insn().
 818	 */
 819	memset(auprobe->insn + insn_offset_immediate(insn),
 820		0, insn->immediate.nbytes);
 821}
 822
 823static const struct uprobe_xol_ops branch_xol_ops = {
 824	.emulate  = branch_emulate_op,
 825	.post_xol = branch_post_xol_op,
 826};
 827
 828static const struct uprobe_xol_ops push_xol_ops = {
 829	.emulate  = push_emulate_op,
 830};
 831
 832/* Returns -ENOSYS if branch_xol_ops doesn't handle this insn */
 833static int branch_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 834{
 835	u8 opc1 = OPCODE1(insn);
 836	insn_byte_t p;
 837	int i;
 838
 839	switch (opc1) {
 840	case 0xeb:	/* jmp 8 */
 841	case 0xe9:	/* jmp 32 */
 842		break;
 843	case 0x90:	/* prefix* + nop; same as jmp with .offs = 0 */
 844		goto setup;
 845
 846	case 0xe8:	/* call relative */
 847		branch_clear_offset(auprobe, insn);
 848		break;
 849
 850	case 0x0f:
 851		if (insn->opcode.nbytes != 2)
 852			return -ENOSYS;
 853		/*
 854		 * If it is a "near" conditional jmp, OPCODE2() - 0x10 matches
 855		 * OPCODE1() of the "short" jmp which checks the same condition.
 856		 */
 857		opc1 = OPCODE2(insn) - 0x10;
 858		fallthrough;
 859	default:
 860		if (!is_cond_jmp_opcode(opc1))
 861			return -ENOSYS;
 862	}
 863
 864	/*
 865	 * 16-bit overrides such as CALLW (66 e8 nn nn) are not supported.
 866	 * Intel and AMD behavior differ in 64-bit mode: Intel ignores 66 prefix.
 867	 * No one uses these insns, reject any branch insns with such prefix.
 868	 */
 869	for_each_insn_prefix(insn, i, p) {
 870		if (p == 0x66)
 871			return -ENOTSUPP;
 872	}
 873
 874setup:
 875	auprobe->branch.opc1 = opc1;
 876	auprobe->branch.ilen = insn->length;
 877	auprobe->branch.offs = insn->immediate.value;
 878
 879	auprobe->ops = &branch_xol_ops;
 880	return 0;
 881}
 882
 883/* Returns -ENOSYS if push_xol_ops doesn't handle this insn */
 884static int push_setup_xol_ops(struct arch_uprobe *auprobe, struct insn *insn)
 885{
 886	u8 opc1 = OPCODE1(insn), reg_offset = 0;
 887
 888	if (opc1 < 0x50 || opc1 > 0x57)
 889		return -ENOSYS;
 890
 891	if (insn->length > 2)
 892		return -ENOSYS;
 893	if (insn->length == 2) {
 894		/* only support rex_prefix 0x41 (x64 only) */
 895#ifdef CONFIG_X86_64
 896		if (insn->rex_prefix.nbytes != 1 ||
 897		    insn->rex_prefix.bytes[0] != 0x41)
 898			return -ENOSYS;
 899
 900		switch (opc1) {
 901		case 0x50:
 902			reg_offset = offsetof(struct pt_regs, r8);
 903			break;
 904		case 0x51:
 905			reg_offset = offsetof(struct pt_regs, r9);
 906			break;
 907		case 0x52:
 908			reg_offset = offsetof(struct pt_regs, r10);
 909			break;
 910		case 0x53:
 911			reg_offset = offsetof(struct pt_regs, r11);
 912			break;
 913		case 0x54:
 914			reg_offset = offsetof(struct pt_regs, r12);
 915			break;
 916		case 0x55:
 917			reg_offset = offsetof(struct pt_regs, r13);
 918			break;
 919		case 0x56:
 920			reg_offset = offsetof(struct pt_regs, r14);
 921			break;
 922		case 0x57:
 923			reg_offset = offsetof(struct pt_regs, r15);
 924			break;
 925		}
 926#else
 927		return -ENOSYS;
 928#endif
 929	} else {
 930		switch (opc1) {
 931		case 0x50:
 932			reg_offset = offsetof(struct pt_regs, ax);
 933			break;
 934		case 0x51:
 935			reg_offset = offsetof(struct pt_regs, cx);
 936			break;
 937		case 0x52:
 938			reg_offset = offsetof(struct pt_regs, dx);
 939			break;
 940		case 0x53:
 941			reg_offset = offsetof(struct pt_regs, bx);
 942			break;
 943		case 0x54:
 944			reg_offset = offsetof(struct pt_regs, sp);
 945			break;
 946		case 0x55:
 947			reg_offset = offsetof(struct pt_regs, bp);
 948			break;
 949		case 0x56:
 950			reg_offset = offsetof(struct pt_regs, si);
 951			break;
 952		case 0x57:
 953			reg_offset = offsetof(struct pt_regs, di);
 954			break;
 955		}
 956	}
 957
 958	auprobe->push.reg_offset = reg_offset;
 959	auprobe->push.ilen = insn->length;
 960	auprobe->ops = &push_xol_ops;
 961	return 0;
 962}
 963
 964/**
 965 * arch_uprobe_analyze_insn - instruction analysis including validity and fixups.
 966 * @auprobe: the probepoint information.
 967 * @mm: the probed address space.
 968 * @addr: virtual address at which to install the probepoint
 969 * Return 0 on success or a -ve number on error.
 970 */
 971int arch_uprobe_analyze_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long addr)
 972{
 973	struct insn insn;
 974	u8 fix_ip_or_call = UPROBE_FIX_IP;
 975	int ret;
 976
 977	ret = uprobe_init_insn(auprobe, &insn, is_64bit_mm(mm));
 978	if (ret)
 979		return ret;
 980
 981	ret = branch_setup_xol_ops(auprobe, &insn);
 982	if (ret != -ENOSYS)
 983		return ret;
 984
 985	ret = push_setup_xol_ops(auprobe, &insn);
 986	if (ret != -ENOSYS)
 987		return ret;
 988
 989	/*
 990	 * Figure out which fixups default_post_xol_op() will need to perform,
 991	 * and annotate defparam->fixups accordingly.
 992	 */
 993	switch (OPCODE1(&insn)) {
 994	case 0x9d:		/* popf */
 995		auprobe->defparam.fixups |= UPROBE_FIX_SETF;
 996		break;
 997	case 0xc3:		/* ret or lret -- ip is correct */
 998	case 0xcb:
 999	case 0xc2:
1000	case 0xca:
1001	case 0xea:		/* jmp absolute -- ip is correct */
1002		fix_ip_or_call = 0;
1003		break;
1004	case 0x9a:		/* call absolute - Fix return addr, not ip */
1005		fix_ip_or_call = UPROBE_FIX_CALL;
1006		break;
1007	case 0xff:
1008		switch (MODRM_REG(&insn)) {
1009		case 2: case 3:			/* call or lcall, indirect */
1010			fix_ip_or_call = UPROBE_FIX_CALL;
1011			break;
1012		case 4: case 5:			/* jmp or ljmp, indirect */
1013			fix_ip_or_call = 0;
1014			break;
1015		}
1016		fallthrough;
1017	default:
1018		riprel_analyze(auprobe, &insn);
1019	}
1020
1021	auprobe->defparam.ilen = insn.length;
1022	auprobe->defparam.fixups |= fix_ip_or_call;
1023
1024	auprobe->ops = &default_xol_ops;
1025	return 0;
1026}
1027
1028/*
1029 * arch_uprobe_pre_xol - prepare to execute out of line.
1030 * @auprobe: the probepoint information.
1031 * @regs: reflects the saved user state of current task.
1032 */
1033int arch_uprobe_pre_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1034{
1035	struct uprobe_task *utask = current->utask;
1036
1037	if (auprobe->ops->pre_xol) {
1038		int err = auprobe->ops->pre_xol(auprobe, regs);
1039		if (err)
1040			return err;
1041	}
1042
1043	regs->ip = utask->xol_vaddr;
1044	utask->autask.saved_trap_nr = current->thread.trap_nr;
1045	current->thread.trap_nr = UPROBE_TRAP_NR;
1046
1047	utask->autask.saved_tf = !!(regs->flags & X86_EFLAGS_TF);
1048	regs->flags |= X86_EFLAGS_TF;
1049	if (test_tsk_thread_flag(current, TIF_BLOCKSTEP))
1050		set_task_blockstep(current, false);
1051
1052	return 0;
1053}
1054
1055/*
1056 * If xol insn itself traps and generates a signal(Say,
1057 * SIGILL/SIGSEGV/etc), then detect the case where a singlestepped
1058 * instruction jumps back to its own address. It is assumed that anything
1059 * like do_page_fault/do_trap/etc sets thread.trap_nr != -1.
1060 *
1061 * arch_uprobe_pre_xol/arch_uprobe_post_xol save/restore thread.trap_nr,
1062 * arch_uprobe_xol_was_trapped() simply checks that ->trap_nr is not equal to
1063 * UPROBE_TRAP_NR == -1 set by arch_uprobe_pre_xol().
1064 */
1065bool arch_uprobe_xol_was_trapped(struct task_struct *t)
1066{
1067	if (t->thread.trap_nr != UPROBE_TRAP_NR)
1068		return true;
1069
1070	return false;
1071}
1072
1073/*
1074 * Called after single-stepping. To avoid the SMP problems that can
1075 * occur when we temporarily put back the original opcode to
1076 * single-step, we single-stepped a copy of the instruction.
1077 *
1078 * This function prepares to resume execution after the single-step.
1079 */
1080int arch_uprobe_post_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1081{
1082	struct uprobe_task *utask = current->utask;
1083	bool send_sigtrap = utask->autask.saved_tf;
1084	int err = 0;
1085
1086	WARN_ON_ONCE(current->thread.trap_nr != UPROBE_TRAP_NR);
1087	current->thread.trap_nr = utask->autask.saved_trap_nr;
1088
1089	if (auprobe->ops->post_xol) {
1090		err = auprobe->ops->post_xol(auprobe, regs);
1091		if (err) {
1092			/*
1093			 * Restore ->ip for restart or post mortem analysis.
1094			 * ->post_xol() must not return -ERESTART unless this
1095			 * is really possible.
1096			 */
1097			regs->ip = utask->vaddr;
1098			if (err == -ERESTART)
1099				err = 0;
1100			send_sigtrap = false;
1101		}
1102	}
1103	/*
1104	 * arch_uprobe_pre_xol() doesn't save the state of TIF_BLOCKSTEP
1105	 * so we can get an extra SIGTRAP if we do not clear TF. We need
1106	 * to examine the opcode to make it right.
1107	 */
1108	if (send_sigtrap)
1109		send_sig(SIGTRAP, current, 0);
1110
1111	if (!utask->autask.saved_tf)
1112		regs->flags &= ~X86_EFLAGS_TF;
1113
1114	return err;
1115}
1116
1117/* callback routine for handling exceptions. */
1118int arch_uprobe_exception_notify(struct notifier_block *self, unsigned long val, void *data)
1119{
1120	struct die_args *args = data;
1121	struct pt_regs *regs = args->regs;
1122	int ret = NOTIFY_DONE;
1123
1124	/* We are only interested in userspace traps */
1125	if (regs && !user_mode(regs))
1126		return NOTIFY_DONE;
1127
1128	switch (val) {
1129	case DIE_INT3:
1130		if (uprobe_pre_sstep_notifier(regs))
1131			ret = NOTIFY_STOP;
1132
1133		break;
1134
1135	case DIE_DEBUG:
1136		if (uprobe_post_sstep_notifier(regs))
1137			ret = NOTIFY_STOP;
1138
1139		break;
1140
1141	default:
1142		break;
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * This function gets called when XOL instruction either gets trapped or
1150 * the thread has a fatal signal. Reset the instruction pointer to its
1151 * probed address for the potential restart or for post mortem analysis.
1152 */
1153void arch_uprobe_abort_xol(struct arch_uprobe *auprobe, struct pt_regs *regs)
1154{
1155	struct uprobe_task *utask = current->utask;
1156
1157	if (auprobe->ops->abort)
1158		auprobe->ops->abort(auprobe, regs);
1159
1160	current->thread.trap_nr = utask->autask.saved_trap_nr;
1161	regs->ip = utask->vaddr;
1162	/* clear TF if it was set by us in arch_uprobe_pre_xol() */
1163	if (!utask->autask.saved_tf)
1164		regs->flags &= ~X86_EFLAGS_TF;
1165}
1166
1167static bool __skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1168{
1169	if (auprobe->ops->emulate)
1170		return auprobe->ops->emulate(auprobe, regs);
1171	return false;
1172}
1173
1174bool arch_uprobe_skip_sstep(struct arch_uprobe *auprobe, struct pt_regs *regs)
1175{
1176	bool ret = __skip_sstep(auprobe, regs);
1177	if (ret && (regs->flags & X86_EFLAGS_TF))
1178		send_sig(SIGTRAP, current, 0);
1179	return ret;
1180}
1181
1182unsigned long
1183arch_uretprobe_hijack_return_addr(unsigned long trampoline_vaddr, struct pt_regs *regs)
1184{
1185	int rasize = sizeof_long(regs), nleft;
1186	unsigned long orig_ret_vaddr = 0; /* clear high bits for 32-bit apps */
1187
1188	if (copy_from_user(&orig_ret_vaddr, (void __user *)regs->sp, rasize))
1189		return -1;
1190
1191	/* check whether address has been already hijacked */
1192	if (orig_ret_vaddr == trampoline_vaddr)
1193		return orig_ret_vaddr;
1194
1195	nleft = copy_to_user((void __user *)regs->sp, &trampoline_vaddr, rasize);
1196	if (likely(!nleft)) {
1197		if (shstk_update_last_frame(trampoline_vaddr)) {
1198			force_sig(SIGSEGV);
1199			return -1;
1200		}
1201		return orig_ret_vaddr;
1202	}
1203
1204	if (nleft != rasize) {
1205		pr_err("return address clobbered: pid=%d, %%sp=%#lx, %%ip=%#lx\n",
1206		       current->pid, regs->sp, regs->ip);
1207
1208		force_sig(SIGSEGV);
1209	}
1210
1211	return -1;
1212}
1213
1214bool arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1215				struct pt_regs *regs)
1216{
1217	if (ctx == RP_CHECK_CALL) /* sp was just decremented by "call" insn */
1218		return regs->sp < ret->stack;
1219	else
1220		return regs->sp <= ret->stack;
1221}