Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
 
 
 
   6#include <linux/hpet.h>
 
   7#include <linux/cpu.h>
   8#include <linux/irq.h>
 
   9
  10#include <asm/irq_remapping.h>
  11#include <asm/hpet.h>
  12#include <asm/time.h>
  13#include <asm/mwait.h>
  14
  15#undef  pr_fmt
  16#define pr_fmt(fmt) "hpet: " fmt
  17
  18enum hpet_mode {
  19	HPET_MODE_UNUSED,
  20	HPET_MODE_LEGACY,
  21	HPET_MODE_CLOCKEVT,
  22	HPET_MODE_DEVICE,
  23};
  24
  25struct hpet_channel {
  26	struct clock_event_device	evt;
  27	unsigned int			num;
  28	unsigned int			cpu;
  29	unsigned int			irq;
  30	unsigned int			in_use;
  31	enum hpet_mode			mode;
  32	unsigned int			boot_cfg;
  33	char				name[10];
  34};
  35
  36struct hpet_base {
  37	unsigned int			nr_channels;
  38	unsigned int			nr_clockevents;
  39	unsigned int			boot_cfg;
  40	struct hpet_channel		*channels;
  41};
  42
  43#define HPET_MASK			CLOCKSOURCE_MASK(32)
  44
 
 
 
 
 
 
 
 
 
 
  45#define HPET_MIN_CYCLES			128
  46#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  47
 
 
  48/*
  49 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  50 */
  51unsigned long				hpet_address;
  52u8					hpet_blockid; /* OS timer block num */
  53bool					hpet_msi_disable;
  54
  55#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
  56static DEFINE_PER_CPU(struct hpet_channel *, cpu_hpet_channel);
  57static struct irq_domain		*hpet_domain;
  58#endif
  59
  60static void __iomem			*hpet_virt_address;
  61
  62static struct hpet_base			hpet_base;
  63
  64static bool				hpet_legacy_int_enabled;
  65static unsigned long			hpet_freq;
  66
  67bool					boot_hpet_disable;
  68bool					hpet_force_user;
  69static bool				hpet_verbose;
  70
  71static inline
  72struct hpet_channel *clockevent_to_channel(struct clock_event_device *evt)
  73{
  74	return container_of(evt, struct hpet_channel, evt);
  75}
  76
  77inline unsigned int hpet_readl(unsigned int a)
  78{
  79	return readl(hpet_virt_address + a);
  80}
  81
  82static inline void hpet_writel(unsigned int d, unsigned int a)
  83{
  84	writel(d, hpet_virt_address + a);
  85}
  86
 
 
 
 
  87static inline void hpet_set_mapping(void)
  88{
  89	hpet_virt_address = ioremap(hpet_address, HPET_MMAP_SIZE);
 
 
 
  90}
  91
  92static inline void hpet_clear_mapping(void)
  93{
  94	iounmap(hpet_virt_address);
  95	hpet_virt_address = NULL;
  96}
  97
  98/*
  99 * HPET command line enable / disable
 100 */
 
 
 
 
 101static int __init hpet_setup(char *str)
 102{
 103	while (str) {
 104		char *next = strchr(str, ',');
 105
 106		if (next)
 107			*next++ = 0;
 108		if (!strncmp("disable", str, 7))
 109			boot_hpet_disable = true;
 110		if (!strncmp("force", str, 5))
 111			hpet_force_user = true;
 112		if (!strncmp("verbose", str, 7))
 113			hpet_verbose = true;
 114		str = next;
 115	}
 116	return 1;
 117}
 118__setup("hpet=", hpet_setup);
 119
 120static int __init disable_hpet(char *str)
 121{
 122	boot_hpet_disable = true;
 123	return 1;
 124}
 125__setup("nohpet", disable_hpet);
 126
 127static inline int is_hpet_capable(void)
 128{
 129	return !boot_hpet_disable && hpet_address;
 130}
 131
 
 
 
 
 
 132/**
 133 * is_hpet_enabled - Check whether the legacy HPET timer interrupt is enabled
 134 */
 135int is_hpet_enabled(void)
 136{
 137	return is_hpet_capable() && hpet_legacy_int_enabled;
 138}
 139EXPORT_SYMBOL_GPL(is_hpet_enabled);
 140
 141static void _hpet_print_config(const char *function, int line)
 142{
 143	u32 i, id, period, cfg, status, channels, l, h;
 144
 145	pr_info("%s(%d):\n", function, line);
 146
 147	id = hpet_readl(HPET_ID);
 148	period = hpet_readl(HPET_PERIOD);
 149	pr_info("ID: 0x%x, PERIOD: 0x%x\n", id, period);
 150
 151	cfg = hpet_readl(HPET_CFG);
 152	status = hpet_readl(HPET_STATUS);
 153	pr_info("CFG: 0x%x, STATUS: 0x%x\n", cfg, status);
 154
 155	l = hpet_readl(HPET_COUNTER);
 156	h = hpet_readl(HPET_COUNTER+4);
 157	pr_info("COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 158
 159	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 160
 161	for (i = 0; i < channels; i++) {
 162		l = hpet_readl(HPET_Tn_CFG(i));
 163		h = hpet_readl(HPET_Tn_CFG(i)+4);
 164		pr_info("T%d: CFG_l: 0x%x, CFG_h: 0x%x\n", i, l, h);
 165
 166		l = hpet_readl(HPET_Tn_CMP(i));
 167		h = hpet_readl(HPET_Tn_CMP(i)+4);
 168		pr_info("T%d: CMP_l: 0x%x, CMP_h: 0x%x\n", i, l, h);
 169
 170		l = hpet_readl(HPET_Tn_ROUTE(i));
 171		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 172		pr_info("T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n", i, l, h);
 
 173	}
 174}
 175
 176#define hpet_print_config()					\
 177do {								\
 178	if (hpet_verbose)					\
 179		_hpet_print_config(__func__, __LINE__);	\
 180} while (0)
 181
 182/*
 183 * When the HPET driver (/dev/hpet) is enabled, we need to reserve
 184 * timer 0 and timer 1 in case of RTC emulation.
 185 */
 186#ifdef CONFIG_HPET
 187
 188static void __init hpet_reserve_platform_timers(void)
 
 
 189{
 
 
 
 190	struct hpet_data hd;
 191	unsigned int i;
 
 192
 193	memset(&hd, 0, sizeof(hd));
 194	hd.hd_phys_address	= hpet_address;
 195	hd.hd_address		= hpet_virt_address;
 196	hd.hd_nirqs		= hpet_base.nr_channels;
 
 
 
 
 
 197
 198	/*
 199	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 200	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 201	 * don't bother configuring *any* comparator interrupts.
 202	 */
 203	hd.hd_irq[0] = HPET_LEGACY_8254;
 204	hd.hd_irq[1] = HPET_LEGACY_RTC;
 205
 206	for (i = 0; i < hpet_base.nr_channels; i++) {
 207		struct hpet_channel *hc = hpet_base.channels + i;
 208
 209		if (i >= 2)
 210			hd.hd_irq[i] = hc->irq;
 211
 212		switch (hc->mode) {
 213		case HPET_MODE_UNUSED:
 214		case HPET_MODE_DEVICE:
 215			hc->mode = HPET_MODE_DEVICE;
 216			break;
 217		case HPET_MODE_CLOCKEVT:
 218		case HPET_MODE_LEGACY:
 219			hpet_reserve_timer(&hd, hc->num);
 220			break;
 221		}
 222	}
 223
 224	hpet_alloc(&hd);
 225}
 226
 227static void __init hpet_select_device_channel(void)
 228{
 229	int i;
 230
 231	for (i = 0; i < hpet_base.nr_channels; i++) {
 232		struct hpet_channel *hc = hpet_base.channels + i;
 233
 234		/* Associate the first unused channel to /dev/hpet */
 235		if (hc->mode == HPET_MODE_UNUSED) {
 236			hc->mode = HPET_MODE_DEVICE;
 237			return;
 238		}
 239	}
 240}
 241
 242#else
 243static inline void hpet_reserve_platform_timers(void) { }
 244static inline void hpet_select_device_channel(void) {}
 245#endif
 246
 247/* Common HPET functions */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248static void hpet_stop_counter(void)
 249{
 250	u32 cfg = hpet_readl(HPET_CFG);
 251
 252	cfg &= ~HPET_CFG_ENABLE;
 253	hpet_writel(cfg, HPET_CFG);
 254}
 255
 256static void hpet_reset_counter(void)
 257{
 258	hpet_writel(0, HPET_COUNTER);
 259	hpet_writel(0, HPET_COUNTER + 4);
 260}
 261
 262static void hpet_start_counter(void)
 263{
 264	unsigned int cfg = hpet_readl(HPET_CFG);
 265
 266	cfg |= HPET_CFG_ENABLE;
 267	hpet_writel(cfg, HPET_CFG);
 268}
 269
 270static void hpet_restart_counter(void)
 271{
 272	hpet_stop_counter();
 273	hpet_reset_counter();
 274	hpet_start_counter();
 275}
 276
 277static void hpet_resume_device(void)
 278{
 279	force_hpet_resume();
 280}
 281
 282static void hpet_resume_counter(struct clocksource *cs)
 283{
 284	hpet_resume_device();
 285	hpet_restart_counter();
 286}
 287
 288static void hpet_enable_legacy_int(void)
 289{
 290	unsigned int cfg = hpet_readl(HPET_CFG);
 291
 292	cfg |= HPET_CFG_LEGACY;
 293	hpet_writel(cfg, HPET_CFG);
 294	hpet_legacy_int_enabled = true;
 295}
 296
 297static int hpet_clkevt_set_state_periodic(struct clock_event_device *evt)
 298{
 299	unsigned int channel = clockevent_to_channel(evt)->num;
 300	unsigned int cfg, cmp, now;
 301	uint64_t delta;
 302
 303	hpet_stop_counter();
 304	delta = ((uint64_t)(NSEC_PER_SEC / HZ)) * evt->mult;
 305	delta >>= evt->shift;
 306	now = hpet_readl(HPET_COUNTER);
 307	cmp = now + (unsigned int)delta;
 308	cfg = hpet_readl(HPET_Tn_CFG(channel));
 309	cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
 310	       HPET_TN_32BIT;
 311	hpet_writel(cfg, HPET_Tn_CFG(channel));
 312	hpet_writel(cmp, HPET_Tn_CMP(channel));
 313	udelay(1);
 314	/*
 315	 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 316	 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 317	 * bit is automatically cleared after the first write.
 318	 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 319	 * Publication # 24674)
 320	 */
 321	hpet_writel((unsigned int)delta, HPET_Tn_CMP(channel));
 322	hpet_start_counter();
 323	hpet_print_config();
 324
 325	return 0;
 326}
 327
 328static int hpet_clkevt_set_state_oneshot(struct clock_event_device *evt)
 329{
 330	unsigned int channel = clockevent_to_channel(evt)->num;
 331	unsigned int cfg;
 332
 333	cfg = hpet_readl(HPET_Tn_CFG(channel));
 334	cfg &= ~HPET_TN_PERIODIC;
 335	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 336	hpet_writel(cfg, HPET_Tn_CFG(channel));
 337
 338	return 0;
 339}
 340
 341static int hpet_clkevt_set_state_shutdown(struct clock_event_device *evt)
 
 342{
 343	unsigned int channel = clockevent_to_channel(evt)->num;
 344	unsigned int cfg;
 345
 346	cfg = hpet_readl(HPET_Tn_CFG(channel));
 347	cfg &= ~HPET_TN_ENABLE;
 348	hpet_writel(cfg, HPET_Tn_CFG(channel));
 349
 350	return 0;
 351}
 352
 353static int hpet_clkevt_legacy_resume(struct clock_event_device *evt)
 354{
 355	hpet_enable_legacy_int();
 356	hpet_print_config();
 357	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 358}
 359
 360static int
 361hpet_clkevt_set_next_event(unsigned long delta, struct clock_event_device *evt)
 362{
 363	unsigned int channel = clockevent_to_channel(evt)->num;
 364	u32 cnt;
 365	s32 res;
 366
 367	cnt = hpet_readl(HPET_COUNTER);
 368	cnt += (u32) delta;
 369	hpet_writel(cnt, HPET_Tn_CMP(channel));
 370
 371	/*
 372	 * HPETs are a complete disaster. The compare register is
 373	 * based on a equal comparison and neither provides a less
 374	 * than or equal functionality (which would require to take
 375	 * the wraparound into account) nor a simple count down event
 376	 * mode. Further the write to the comparator register is
 377	 * delayed internally up to two HPET clock cycles in certain
 378	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 379	 * longer delays. We worked around that by reading back the
 380	 * compare register, but that required another workaround for
 381	 * ICH9,10 chips where the first readout after write can
 382	 * return the old stale value. We already had a minimum
 383	 * programming delta of 5us enforced, but a NMI or SMI hitting
 384	 * between the counter readout and the comparator write can
 385	 * move us behind that point easily. Now instead of reading
 386	 * the compare register back several times, we make the ETIME
 387	 * decision based on the following: Return ETIME if the
 388	 * counter value after the write is less than HPET_MIN_CYCLES
 389	 * away from the event or if the counter is already ahead of
 390	 * the event. The minimum programming delta for the generic
 391	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 392	 */
 393	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 394
 395	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 396}
 397
 398static void hpet_init_clockevent(struct hpet_channel *hc, unsigned int rating)
 
 399{
 400	struct clock_event_device *evt = &hc->evt;
 401
 402	evt->rating		= rating;
 403	evt->irq		= hc->irq;
 404	evt->name		= hc->name;
 405	evt->cpumask		= cpumask_of(hc->cpu);
 406	evt->set_state_oneshot	= hpet_clkevt_set_state_oneshot;
 407	evt->set_next_event	= hpet_clkevt_set_next_event;
 408	evt->set_state_shutdown	= hpet_clkevt_set_state_shutdown;
 409
 410	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 411	if (hc->boot_cfg & HPET_TN_PERIODIC) {
 412		evt->features		|= CLOCK_EVT_FEAT_PERIODIC;
 413		evt->set_state_periodic	= hpet_clkevt_set_state_periodic;
 414	}
 415}
 416
 417static void __init hpet_legacy_clockevent_register(struct hpet_channel *hc)
 
 418{
 419	/*
 420	 * Start HPET with the boot CPU's cpumask and make it global after
 421	 * the IO_APIC has been initialized.
 422	 */
 423	hc->cpu = boot_cpu_data.cpu_index;
 424	strscpy(hc->name, "hpet", sizeof(hc->name));
 425	hpet_init_clockevent(hc, 50);
 426
 427	hc->evt.tick_resume	= hpet_clkevt_legacy_resume;
 428
 429	/*
 430	 * Legacy horrors and sins from the past. HPET used periodic mode
 431	 * unconditionally forever on the legacy channel 0. Removing the
 432	 * below hack and using the conditional in hpet_init_clockevent()
 433	 * makes at least Qemu and one hardware machine fail to boot.
 434	 * There are two issues which cause the boot failure:
 435	 *
 436	 * #1 After the timer delivery test in IOAPIC and the IOAPIC setup
 437	 *    the next interrupt is not delivered despite the HPET channel
 438	 *    being programmed correctly. Reprogramming the HPET after
 439	 *    switching to IOAPIC makes it work again. After fixing this,
 440	 *    the next issue surfaces:
 441	 *
 442	 * #2 Due to the unconditional periodic mode availability the Local
 443	 *    APIC timer calibration can hijack the global clockevents
 444	 *    event handler without causing damage. Using oneshot at this
 445	 *    stage makes if hang because the HPET does not get
 446	 *    reprogrammed due to the handler hijacking. Duh, stupid me!
 447	 *
 448	 * Both issues require major surgery and especially the kick HPET
 449	 * again after enabling IOAPIC results in really nasty hackery.
 450	 * This 'assume periodic works' magic has survived since HPET
 451	 * support got added, so it's questionable whether this should be
 452	 * fixed. Both Qemu and the failing hardware machine support
 453	 * periodic mode despite the fact that both don't advertise it in
 454	 * the configuration register and both need that extra kick after
 455	 * switching to IOAPIC. Seems to be a feature...
 456	 */
 457	hc->evt.features		|= CLOCK_EVT_FEAT_PERIODIC;
 458	hc->evt.set_state_periodic	= hpet_clkevt_set_state_periodic;
 459
 460	/* Start HPET legacy interrupts */
 461	hpet_enable_legacy_int();
 462
 463	clockevents_config_and_register(&hc->evt, hpet_freq,
 464					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 465	global_clock_event = &hc->evt;
 466	pr_debug("Clockevent registered\n");
 467}
 468
 469/*
 470 * HPET MSI Support
 471 */
 472#if defined(CONFIG_X86_LOCAL_APIC) && defined(CONFIG_GENERIC_MSI_IRQ)
 473static void hpet_msi_unmask(struct irq_data *data)
 
 
 
 
 474{
 475	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 476	unsigned int cfg;
 477
 478	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 479	cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 480	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 
 481}
 482
 483static void hpet_msi_mask(struct irq_data *data)
 484{
 485	struct hpet_channel *hc = irq_data_get_irq_handler_data(data);
 486	unsigned int cfg;
 487
 488	cfg = hpet_readl(HPET_Tn_CFG(hc->num));
 489	cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 490	hpet_writel(cfg, HPET_Tn_CFG(hc->num));
 
 491}
 492
 493static void hpet_msi_write(struct hpet_channel *hc, struct msi_msg *msg)
 494{
 495	hpet_writel(msg->data, HPET_Tn_ROUTE(hc->num));
 496	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hc->num) + 4);
 497}
 498
 499static void hpet_msi_write_msg(struct irq_data *data, struct msi_msg *msg)
 500{
 501	hpet_msi_write(irq_data_get_irq_handler_data(data), msg);
 
 
 502}
 503
 504static struct irq_chip hpet_msi_controller __ro_after_init = {
 505	.name = "HPET-MSI",
 506	.irq_unmask = hpet_msi_unmask,
 507	.irq_mask = hpet_msi_mask,
 508	.irq_ack = irq_chip_ack_parent,
 509	.irq_set_affinity = msi_domain_set_affinity,
 510	.irq_retrigger = irq_chip_retrigger_hierarchy,
 511	.irq_write_msi_msg = hpet_msi_write_msg,
 512	.flags = IRQCHIP_SKIP_SET_WAKE | IRQCHIP_AFFINITY_PRE_STARTUP,
 513};
 514
 515static int hpet_msi_init(struct irq_domain *domain,
 516			 struct msi_domain_info *info, unsigned int virq,
 517			 irq_hw_number_t hwirq, msi_alloc_info_t *arg)
 518{
 519	irq_set_status_flags(virq, IRQ_MOVE_PCNTXT);
 520	irq_domain_set_info(domain, virq, arg->hwirq, info->chip, NULL,
 521			    handle_edge_irq, arg->data, "edge");
 522
 523	return 0;
 524}
 525
 526static void hpet_msi_free(struct irq_domain *domain,
 527			  struct msi_domain_info *info, unsigned int virq)
 528{
 529	irq_clear_status_flags(virq, IRQ_MOVE_PCNTXT);
 
 530}
 531
 532static struct msi_domain_ops hpet_msi_domain_ops = {
 533	.msi_init	= hpet_msi_init,
 534	.msi_free	= hpet_msi_free,
 535};
 536
 537static struct msi_domain_info hpet_msi_domain_info = {
 538	.ops		= &hpet_msi_domain_ops,
 539	.chip		= &hpet_msi_controller,
 540	.flags		= MSI_FLAG_USE_DEF_DOM_OPS,
 541};
 542
 543static struct irq_domain *hpet_create_irq_domain(int hpet_id)
 544{
 545	struct msi_domain_info *domain_info;
 546	struct irq_domain *parent, *d;
 547	struct fwnode_handle *fn;
 548	struct irq_fwspec fwspec;
 549
 550	if (x86_vector_domain == NULL)
 551		return NULL;
 552
 553	domain_info = kzalloc(sizeof(*domain_info), GFP_KERNEL);
 554	if (!domain_info)
 555		return NULL;
 556
 557	*domain_info = hpet_msi_domain_info;
 558	domain_info->data = (void *)(long)hpet_id;
 559
 560	fn = irq_domain_alloc_named_id_fwnode(hpet_msi_controller.name,
 561					      hpet_id);
 562	if (!fn) {
 563		kfree(domain_info);
 564		return NULL;
 565	}
 566
 567	fwspec.fwnode = fn;
 568	fwspec.param_count = 1;
 569	fwspec.param[0] = hpet_id;
 570
 571	parent = irq_find_matching_fwspec(&fwspec, DOMAIN_BUS_GENERIC_MSI);
 572	if (!parent) {
 573		irq_domain_free_fwnode(fn);
 574		kfree(domain_info);
 575		return NULL;
 576	}
 577	if (parent != x86_vector_domain)
 578		hpet_msi_controller.name = "IR-HPET-MSI";
 579
 580	d = msi_create_irq_domain(fn, domain_info, parent);
 581	if (!d) {
 582		irq_domain_free_fwnode(fn);
 583		kfree(domain_info);
 584	}
 585	return d;
 586}
 587
 588static inline int hpet_dev_id(struct irq_domain *domain)
 589{
 590	struct msi_domain_info *info = msi_get_domain_info(domain);
 591
 592	return (int)(long)info->data;
 
 
 593}
 594
 595static int hpet_assign_irq(struct irq_domain *domain, struct hpet_channel *hc,
 596			   int dev_num)
 597{
 598	struct irq_alloc_info info;
 599
 600	init_irq_alloc_info(&info, NULL);
 601	info.type = X86_IRQ_ALLOC_TYPE_HPET;
 602	info.data = hc;
 603	info.devid = hpet_dev_id(domain);
 604	info.hwirq = dev_num;
 605
 606	return irq_domain_alloc_irqs(domain, 1, NUMA_NO_NODE, &info);
 607}
 608
 609static int hpet_clkevt_msi_resume(struct clock_event_device *evt)
 610{
 611	struct hpet_channel *hc = clockevent_to_channel(evt);
 612	struct irq_data *data = irq_get_irq_data(hc->irq);
 613	struct msi_msg msg;
 614
 615	/* Restore the MSI msg and unmask the interrupt */
 616	irq_chip_compose_msi_msg(data, &msg);
 617	hpet_msi_write(hc, &msg);
 618	hpet_msi_unmask(data);
 619	return 0;
 620}
 621
 622static irqreturn_t hpet_msi_interrupt_handler(int irq, void *data)
 623{
 624	struct hpet_channel *hc = data;
 625	struct clock_event_device *evt = &hc->evt;
 626
 627	if (!evt->event_handler) {
 628		pr_info("Spurious interrupt HPET channel %d\n", hc->num);
 
 629		return IRQ_HANDLED;
 630	}
 631
 632	evt->event_handler(evt);
 633	return IRQ_HANDLED;
 634}
 635
 636static int hpet_setup_msi_irq(struct hpet_channel *hc)
 637{
 638	if (request_irq(hc->irq, hpet_msi_interrupt_handler,
 639			IRQF_TIMER | IRQF_NOBALANCING,
 640			hc->name, hc))
 
 641		return -1;
 642
 643	disable_irq(hc->irq);
 644	irq_set_affinity(hc->irq, cpumask_of(hc->cpu));
 645	enable_irq(hc->irq);
 646
 647	pr_debug("%s irq %u for MSI\n", hc->name, hc->irq);
 
 648
 649	return 0;
 650}
 651
 652/* Invoked from the hotplug callback on @cpu */
 653static void init_one_hpet_msi_clockevent(struct hpet_channel *hc, int cpu)
 654{
 655	struct clock_event_device *evt = &hc->evt;
 656
 657	hc->cpu = cpu;
 658	per_cpu(cpu_hpet_channel, cpu) = hc;
 659	hpet_setup_msi_irq(hc);
 660
 661	hpet_init_clockevent(hc, 110);
 662	evt->tick_resume = hpet_clkevt_msi_resume;
 663
 664	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 665					0x7FFFFFFF);
 666}
 667
 668static struct hpet_channel *hpet_get_unused_clockevent(void)
 669{
 670	int i;
 671
 672	for (i = 0; i < hpet_base.nr_channels; i++) {
 673		struct hpet_channel *hc = hpet_base.channels + i;
 
 
 
 674
 675		if (hc->mode != HPET_MODE_CLOCKEVT || hc->in_use)
 676			continue;
 677		hc->in_use = 1;
 678		return hc;
 679	}
 680	return NULL;
 681}
 682
 683static int hpet_cpuhp_online(unsigned int cpu)
 684{
 685	struct hpet_channel *hc = hpet_get_unused_clockevent();
 686
 687	if (hc)
 688		init_one_hpet_msi_clockevent(hc, cpu);
 689	return 0;
 690}
 691
 692static int hpet_cpuhp_dead(unsigned int cpu)
 693{
 694	struct hpet_channel *hc = per_cpu(cpu_hpet_channel, cpu);
 695
 696	if (!hc)
 697		return 0;
 698	free_irq(hc->irq, hc);
 699	hc->in_use = 0;
 700	per_cpu(cpu_hpet_channel, cpu) = NULL;
 701	return 0;
 702}
 703
 704static void __init hpet_select_clockevents(void)
 705{
 706	unsigned int i;
 
 
 
 707
 708	hpet_base.nr_clockevents = 0;
 
 709
 710	/* No point if MSI is disabled or CPU has an Always Running APIC Timer */
 711	if (hpet_msi_disable || boot_cpu_has(X86_FEATURE_ARAT))
 712		return;
 
 713
 
 
 714	hpet_print_config();
 715
 716	hpet_domain = hpet_create_irq_domain(hpet_blockid);
 717	if (!hpet_domain)
 718		return;
 719
 720	for (i = 0; i < hpet_base.nr_channels; i++) {
 721		struct hpet_channel *hc = hpet_base.channels + i;
 722		int irq;
 723
 724		if (hc->mode != HPET_MODE_UNUSED)
 725			continue;
 
 726
 727		/* Only consider HPET channel with MSI support */
 728		if (!(hc->boot_cfg & HPET_TN_FSB_CAP))
 729			continue;
 730
 731		sprintf(hc->name, "hpet%d", i);
 
 
 
 732
 733		irq = hpet_assign_irq(hpet_domain, hc, hc->num);
 734		if (irq <= 0)
 735			continue;
 736
 737		hc->irq = irq;
 738		hc->mode = HPET_MODE_CLOCKEVT;
 739
 740		if (++hpet_base.nr_clockevents == num_possible_cpus())
 741			break;
 742	}
 743
 744	pr_info("%d channels of %d reserved for per-cpu timers\n",
 745		hpet_base.nr_channels, hpet_base.nr_clockevents);
 746}
 747
 748#else
 749
 750static inline void hpet_select_clockevents(void) { }
 
 751
 752#define hpet_cpuhp_online	NULL
 753#define hpet_cpuhp_dead		NULL
 754
 755#endif
 
 756
 757/*
 758 * Clock source related code
 759 */
 760#if defined(CONFIG_SMP) && defined(CONFIG_64BIT)
 761/*
 762 * Reading the HPET counter is a very slow operation. If a large number of
 763 * CPUs are trying to access the HPET counter simultaneously, it can cause
 764 * massive delays and slow down system performance dramatically. This may
 765 * happen when HPET is the default clock source instead of TSC. For a
 766 * really large system with hundreds of CPUs, the slowdown may be so
 767 * severe, that it can actually crash the system because of a NMI watchdog
 768 * soft lockup, for example.
 769 *
 770 * If multiple CPUs are trying to access the HPET counter at the same time,
 771 * we don't actually need to read the counter multiple times. Instead, the
 772 * other CPUs can use the counter value read by the first CPU in the group.
 773 *
 774 * This special feature is only enabled on x86-64 systems. It is unlikely
 775 * that 32-bit x86 systems will have enough CPUs to require this feature
 776 * with its associated locking overhead. We also need 64-bit atomic read.
 777 *
 778 * The lock and the HPET value are stored together and can be read in a
 779 * single atomic 64-bit read. It is explicitly assumed that arch_spinlock_t
 780 * is 32 bits in size.
 781 */
 782union hpet_lock {
 783	struct {
 784		arch_spinlock_t lock;
 785		u32 value;
 786	};
 787	u64 lockval;
 788};
 789
 790static union hpet_lock hpet __cacheline_aligned = {
 791	{ .lock = __ARCH_SPIN_LOCK_UNLOCKED, },
 792};
 
 
 793
 794static u64 read_hpet(struct clocksource *cs)
 795{
 796	unsigned long flags;
 797	union hpet_lock old, new;
 798
 799	BUILD_BUG_ON(sizeof(union hpet_lock) != 8);
 
 800
 801	/*
 802	 * Read HPET directly if in NMI.
 803	 */
 804	if (in_nmi())
 805		return (u64)hpet_readl(HPET_COUNTER);
 806
 807	/*
 808	 * Read the current state of the lock and HPET value atomically.
 809	 */
 810	old.lockval = READ_ONCE(hpet.lockval);
 
 
 
 
 
 811
 812	if (arch_spin_is_locked(&old.lock))
 813		goto contended;
 
 
 814
 815	local_irq_save(flags);
 816	if (arch_spin_trylock(&hpet.lock)) {
 817		new.value = hpet_readl(HPET_COUNTER);
 818		/*
 819		 * Use WRITE_ONCE() to prevent store tearing.
 820		 */
 821		WRITE_ONCE(hpet.value, new.value);
 822		arch_spin_unlock(&hpet.lock);
 823		local_irq_restore(flags);
 824		return (u64)new.value;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 825	}
 826	local_irq_restore(flags);
 
 
 827
 828contended:
 829	/*
 830	 * Contended case
 831	 * --------------
 832	 * Wait until the HPET value change or the lock is free to indicate
 833	 * its value is up-to-date.
 834	 *
 835	 * It is possible that old.value has already contained the latest
 836	 * HPET value while the lock holder was in the process of releasing
 837	 * the lock. Checking for lock state change will enable us to return
 838	 * the value immediately instead of waiting for the next HPET reader
 839	 * to come along.
 840	 */
 841	do {
 842		cpu_relax();
 843		new.lockval = READ_ONCE(hpet.lockval);
 844	} while ((new.value == old.value) && arch_spin_is_locked(&new.lock));
 845
 846	return (u64)new.value;
 
 
 
 847}
 848#else
 
 
 
 
 
 
 
 
 
 849/*
 850 * For UP or 32-bit.
 851 */
 852static u64 read_hpet(struct clocksource *cs)
 853{
 854	return (u64)hpet_readl(HPET_COUNTER);
 855}
 856#endif
 857
 858static struct clocksource clocksource_hpet = {
 859	.name		= "hpet",
 860	.rating		= 250,
 861	.read		= read_hpet,
 862	.mask		= HPET_MASK,
 863	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 864	.resume		= hpet_resume_counter,
 
 
 
 865};
 866
 867/*
 868 * AMD SB700 based systems with spread spectrum enabled use a SMM based
 869 * HPET emulation to provide proper frequency setting.
 870 *
 871 * On such systems the SMM code is initialized with the first HPET register
 872 * access and takes some time to complete. During this time the config
 873 * register reads 0xffffffff. We check for max 1000 loops whether the
 874 * config register reads a non-0xffffffff value to make sure that the
 875 * HPET is up and running before we proceed any further.
 876 *
 877 * A counting loop is safe, as the HPET access takes thousands of CPU cycles.
 878 *
 879 * On non-SB700 based machines this check is only done once and has no
 880 * side effects.
 881 */
 882static bool __init hpet_cfg_working(void)
 883{
 884	int i;
 885
 886	for (i = 0; i < 1000; i++) {
 887		if (hpet_readl(HPET_CFG) != 0xFFFFFFFF)
 888			return true;
 889	}
 890
 891	pr_warn("Config register invalid. Disabling HPET\n");
 892	return false;
 893}
 894
 895static bool __init hpet_counting(void)
 896{
 897	u64 start, now, t1;
 898
 
 899	hpet_restart_counter();
 900
 
 901	t1 = hpet_readl(HPET_COUNTER);
 902	start = rdtsc();
 903
 904	/*
 905	 * We don't know the TSC frequency yet, but waiting for
 906	 * 200000 TSC cycles is safe:
 907	 * 4 GHz == 50us
 908	 * 1 GHz == 200us
 909	 */
 910	do {
 911		if (t1 != hpet_readl(HPET_COUNTER))
 912			return true;
 913		now = rdtsc();
 914	} while ((now - start) < 200000UL);
 915
 916	pr_warn("Counter not counting. HPET disabled\n");
 917	return false;
 918}
 919
 920static bool __init mwait_pc10_supported(void)
 921{
 922	unsigned int eax, ebx, ecx, mwait_substates;
 923
 924	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 925		return false;
 926
 927	if (!cpu_feature_enabled(X86_FEATURE_MWAIT))
 928		return false;
 929
 930	if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
 931		return false;
 932
 933	cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &mwait_substates);
 934
 935	return (ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) &&
 936	       (ecx & CPUID5_ECX_INTERRUPT_BREAK) &&
 937	       (mwait_substates & (0xF << 28));
 938}
 939
 940/*
 941 * Check whether the system supports PC10. If so force disable HPET as that
 942 * stops counting in PC10. This check is overbroad as it does not take any
 943 * of the following into account:
 944 *
 945 *	- ACPI tables
 946 *	- Enablement of intel_idle
 947 *	- Command line arguments which limit intel_idle C-state support
 948 *
 949 * That's perfectly fine. HPET is a piece of hardware designed by committee
 950 * and the only reasons why it is still in use on modern systems is the
 951 * fact that it is impossible to reliably query TSC and CPU frequency via
 952 * CPUID or firmware.
 953 *
 954 * If HPET is functional it is useful for calibrating TSC, but this can be
 955 * done via PMTIMER as well which seems to be the last remaining timer on
 956 * X86/INTEL platforms that has not been completely wreckaged by feature
 957 * creep.
 958 *
 959 * In theory HPET support should be removed altogether, but there are older
 960 * systems out there which depend on it because TSC and APIC timer are
 961 * dysfunctional in deeper C-states.
 962 *
 963 * It's only 20 years now that hardware people have been asked to provide
 964 * reliable and discoverable facilities which can be used for timekeeping
 965 * and per CPU timer interrupts.
 966 *
 967 * The probability that this problem is going to be solved in the
 968 * foreseeable future is close to zero, so the kernel has to be cluttered
 969 * with heuristics to keep up with the ever growing amount of hardware and
 970 * firmware trainwrecks. Hopefully some day hardware people will understand
 971 * that the approach of "This can be fixed in software" is not sustainable.
 972 * Hope dies last...
 973 */
 974static bool __init hpet_is_pc10_damaged(void)
 975{
 976	unsigned long long pcfg;
 977
 978	/* Check whether PC10 substates are supported */
 979	if (!mwait_pc10_supported())
 980		return false;
 981
 982	/* Check whether PC10 is enabled in PKG C-state limit */
 983	rdmsrl(MSR_PKG_CST_CONFIG_CONTROL, pcfg);
 984	if ((pcfg & 0xF) < 8)
 985		return false;
 986
 987	if (hpet_force_user) {
 988		pr_warn("HPET force enabled via command line, but dysfunctional in PC10.\n");
 989		return false;
 990	}
 991
 992	pr_info("HPET dysfunctional in PC10. Force disabled.\n");
 993	boot_hpet_disable = true;
 994	return true;
 995}
 996
 997/**
 998 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 999 */
1000int __init hpet_enable(void)
1001{
1002	u32 hpet_period, cfg, id, irq;
1003	unsigned int i, channels;
1004	struct hpet_channel *hc;
1005	u64 freq;
 
1006
1007	if (!is_hpet_capable())
1008		return 0;
1009
1010	if (hpet_is_pc10_damaged())
1011		return 0;
1012
1013	hpet_set_mapping();
1014	if (!hpet_virt_address)
1015		return 0;
1016
1017	/* Validate that the config register is working */
1018	if (!hpet_cfg_working())
1019		goto out_nohpet;
1020
1021	/*
1022	 * Read the period and check for a sane value:
1023	 */
1024	hpet_period = hpet_readl(HPET_PERIOD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1025	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
1026		goto out_nohpet;
1027
1028	/* The period is a femtoseconds value. Convert it to a frequency. */
 
 
 
1029	freq = FSEC_PER_SEC;
1030	do_div(freq, hpet_period);
1031	hpet_freq = freq;
1032
1033	/*
1034	 * Read the HPET ID register to retrieve the IRQ routing
1035	 * information and the number of channels
1036	 */
1037	id = hpet_readl(HPET_ID);
1038	hpet_print_config();
1039
1040	/* This is the HPET channel number which is zero based */
1041	channels = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
1042
1043	/*
1044	 * The legacy routing mode needs at least two channels, tick timer
1045	 * and the rtc emulation channel.
1046	 */
1047	if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC) && channels < 2)
1048		goto out_nohpet;
1049
1050	hc = kcalloc(channels, sizeof(*hc), GFP_KERNEL);
1051	if (!hc) {
1052		pr_warn("Disabling HPET.\n");
1053		goto out_nohpet;
1054	}
1055	hpet_base.channels = hc;
1056	hpet_base.nr_channels = channels;
1057
1058	/* Read, store and sanitize the global configuration */
1059	cfg = hpet_readl(HPET_CFG);
1060	hpet_base.boot_cfg = cfg;
1061	cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
1062	hpet_writel(cfg, HPET_CFG);
1063	if (cfg)
1064		pr_warn("Global config: Unknown bits %#x\n", cfg);
1065
1066	/* Read, store and sanitize the per channel configuration */
1067	for (i = 0; i < channels; i++, hc++) {
1068		hc->num = i;
1069
1070		cfg = hpet_readl(HPET_Tn_CFG(i));
1071		hc->boot_cfg = cfg;
1072		irq = (cfg & Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
1073		hc->irq = irq;
1074
1075		cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
1076		hpet_writel(cfg, HPET_Tn_CFG(i));
1077
1078		cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
1079			 | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
1080			 | HPET_TN_FSB | HPET_TN_FSB_CAP);
1081		if (cfg)
1082			pr_warn("Channel #%u config: Unknown bits %#x\n", i, cfg);
1083	}
1084	hpet_print_config();
1085
1086	/*
1087	 * Validate that the counter is counting. This needs to be done
1088	 * after sanitizing the config registers to properly deal with
1089	 * force enabled HPETs.
1090	 */
1091	if (!hpet_counting())
1092		goto out_nohpet;
1093
1094	if (tsc_clocksource_watchdog_disabled())
1095		clocksource_hpet.flags |= CLOCK_SOURCE_MUST_VERIFY;
1096	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
1097
1098	if (id & HPET_ID_LEGSUP) {
1099		hpet_legacy_clockevent_register(&hpet_base.channels[0]);
1100		hpet_base.channels[0].mode = HPET_MODE_LEGACY;
1101		if (IS_ENABLED(CONFIG_HPET_EMULATE_RTC))
1102			hpet_base.channels[1].mode = HPET_MODE_LEGACY;
1103		return 1;
1104	}
1105	return 0;
1106
1107out_nohpet:
1108	kfree(hpet_base.channels);
1109	hpet_base.channels = NULL;
1110	hpet_base.nr_channels = 0;
1111	hpet_clear_mapping();
1112	hpet_address = 0;
1113	return 0;
1114}
1115
1116/*
1117 * The late initialization runs after the PCI quirks have been invoked
1118 * which might have detected a system on which the HPET can be enforced.
1119 *
1120 * Also, the MSI machinery is not working yet when the HPET is initialized
1121 * early.
1122 *
1123 * If the HPET is enabled, then:
1124 *
1125 *  1) Reserve one channel for /dev/hpet if CONFIG_HPET=y
1126 *  2) Reserve up to num_possible_cpus() channels as per CPU clockevents
1127 *  3) Setup /dev/hpet if CONFIG_HPET=y
1128 *  4) Register hotplug callbacks when clockevents are available
1129 */
1130static __init int hpet_late_init(void)
1131{
1132	int ret;
 
 
 
1133
1134	if (!hpet_address) {
1135		if (!force_hpet_address)
1136			return -ENODEV;
1137
1138		hpet_address = force_hpet_address;
1139		hpet_enable();
1140	}
1141
1142	if (!hpet_virt_address)
1143		return -ENODEV;
1144
1145	hpet_select_device_channel();
1146	hpet_select_clockevents();
1147	hpet_reserve_platform_timers();
 
 
 
1148	hpet_print_config();
1149
1150	if (!hpet_base.nr_clockevents)
1151		return 0;
1152
1153	ret = cpuhp_setup_state(CPUHP_AP_X86_HPET_ONLINE, "x86/hpet:online",
1154				hpet_cpuhp_online, NULL);
1155	if (ret)
1156		return ret;
1157	ret = cpuhp_setup_state(CPUHP_X86_HPET_DEAD, "x86/hpet:dead", NULL,
1158				hpet_cpuhp_dead);
1159	if (ret)
1160		goto err_cpuhp;
1161	return 0;
1162
1163err_cpuhp:
1164	cpuhp_remove_state(CPUHP_AP_X86_HPET_ONLINE);
1165	return ret;
1166}
1167fs_initcall(hpet_late_init);
1168
1169void hpet_disable(void)
1170{
1171	unsigned int i;
1172	u32 cfg;
1173
1174	if (!is_hpet_capable() || !hpet_virt_address)
1175		return;
1176
1177	/* Restore boot configuration with the enable bit cleared */
1178	cfg = hpet_base.boot_cfg;
1179	cfg &= ~HPET_CFG_ENABLE;
1180	hpet_writel(cfg, HPET_CFG);
1181
1182	/* Restore the channel boot configuration */
1183	for (i = 0; i < hpet_base.nr_channels; i++)
1184		hpet_writel(hpet_base.channels[i].boot_cfg, HPET_Tn_CFG(i));
1185
1186	/* If the HPET was enabled at boot time, reenable it */
1187	if (hpet_base.boot_cfg & HPET_CFG_ENABLE)
1188		hpet_writel(hpet_base.boot_cfg, HPET_CFG);
1189}
1190
1191#ifdef CONFIG_HPET_EMULATE_RTC
1192
1193/*
1194 * HPET in LegacyReplacement mode eats up the RTC interrupt line. When HPET
1195 * is enabled, we support RTC interrupt functionality in software.
1196 *
1197 * RTC has 3 kinds of interrupts:
1198 *
1199 *  1) Update Interrupt - generate an interrupt, every second, when the
1200 *     RTC clock is updated
1201 *  2) Alarm Interrupt - generate an interrupt at a specific time of day
1202 *  3) Periodic Interrupt - generate periodic interrupt, with frequencies
1203 *     2Hz-8192Hz (2Hz-64Hz for non-root user) (all frequencies in powers of 2)
1204 *
1205 * (1) and (2) above are implemented using polling at a frequency of 64 Hz:
1206 * DEFAULT_RTC_INT_FREQ.
1207 *
1208 * The exact frequency is a tradeoff between accuracy and interrupt overhead.
1209 *
1210 * For (3), we use interrupts at 64 Hz, or the user specified periodic frequency,
1211 * if it's higher.
1212 */
1213#include <linux/mc146818rtc.h>
1214#include <linux/rtc.h>
 
1215
1216#define DEFAULT_RTC_INT_FREQ	64
1217#define DEFAULT_RTC_SHIFT	6
1218#define RTC_NUM_INTS		1
1219
1220static unsigned long hpet_rtc_flags;
1221static int hpet_prev_update_sec;
1222static struct rtc_time hpet_alarm_time;
1223static unsigned long hpet_pie_count;
1224static u32 hpet_t1_cmp;
1225static u32 hpet_default_delta;
1226static u32 hpet_pie_delta;
1227static unsigned long hpet_pie_limit;
1228
1229static rtc_irq_handler irq_handler;
1230
1231/*
1232 * Check that the HPET counter c1 is ahead of c2
1233 */
1234static inline int hpet_cnt_ahead(u32 c1, u32 c2)
1235{
1236	return (s32)(c2 - c1) < 0;
1237}
1238
1239/*
1240 * Registers a IRQ handler.
1241 */
1242int hpet_register_irq_handler(rtc_irq_handler handler)
1243{
1244	if (!is_hpet_enabled())
1245		return -ENODEV;
1246	if (irq_handler)
1247		return -EBUSY;
1248
1249	irq_handler = handler;
1250
1251	return 0;
1252}
1253EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1254
1255/*
1256 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1257 * and does cleanup.
1258 */
1259void hpet_unregister_irq_handler(rtc_irq_handler handler)
1260{
1261	if (!is_hpet_enabled())
1262		return;
1263
1264	irq_handler = NULL;
1265	hpet_rtc_flags = 0;
1266}
1267EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1268
1269/*
1270 * Channel 1 for RTC emulation. We use one shot mode, as periodic mode
1271 * is not supported by all HPET implementations for channel 1.
1272 *
1273 * hpet_rtc_timer_init() is called when the rtc is initialized.
1274 */
1275int hpet_rtc_timer_init(void)
1276{
1277	unsigned int cfg, cnt, delta;
1278	unsigned long flags;
1279
1280	if (!is_hpet_enabled())
1281		return 0;
1282
1283	if (!hpet_default_delta) {
1284		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1285		uint64_t clc;
1286
1287		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1288		clc >>= evt->shift + DEFAULT_RTC_SHIFT;
1289		hpet_default_delta = clc;
1290	}
1291
1292	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1293		delta = hpet_default_delta;
1294	else
1295		delta = hpet_pie_delta;
1296
1297	local_irq_save(flags);
1298
1299	cnt = delta + hpet_readl(HPET_COUNTER);
1300	hpet_writel(cnt, HPET_T1_CMP);
1301	hpet_t1_cmp = cnt;
1302
1303	cfg = hpet_readl(HPET_T1_CFG);
1304	cfg &= ~HPET_TN_PERIODIC;
1305	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1306	hpet_writel(cfg, HPET_T1_CFG);
1307
1308	local_irq_restore(flags);
1309
1310	return 1;
1311}
1312EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1313
1314static void hpet_disable_rtc_channel(void)
1315{
1316	u32 cfg = hpet_readl(HPET_T1_CFG);
1317
1318	cfg &= ~HPET_TN_ENABLE;
1319	hpet_writel(cfg, HPET_T1_CFG);
1320}
1321
1322/*
1323 * The functions below are called from rtc driver.
1324 * Return 0 if HPET is not being used.
1325 * Otherwise do the necessary changes and return 1.
1326 */
1327int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1328{
1329	if (!is_hpet_enabled())
1330		return 0;
1331
1332	hpet_rtc_flags &= ~bit_mask;
1333	if (unlikely(!hpet_rtc_flags))
1334		hpet_disable_rtc_channel();
1335
1336	return 1;
1337}
1338EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1339
1340int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1341{
1342	unsigned long oldbits = hpet_rtc_flags;
1343
1344	if (!is_hpet_enabled())
1345		return 0;
1346
1347	hpet_rtc_flags |= bit_mask;
1348
1349	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1350		hpet_prev_update_sec = -1;
1351
1352	if (!oldbits)
1353		hpet_rtc_timer_init();
1354
1355	return 1;
1356}
1357EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1358
1359int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 
1360{
1361	if (!is_hpet_enabled())
1362		return 0;
1363
1364	hpet_alarm_time.tm_hour = hrs;
1365	hpet_alarm_time.tm_min = min;
1366	hpet_alarm_time.tm_sec = sec;
1367
1368	return 1;
1369}
1370EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1371
1372int hpet_set_periodic_freq(unsigned long freq)
1373{
1374	uint64_t clc;
1375
1376	if (!is_hpet_enabled())
1377		return 0;
1378
1379	if (freq <= DEFAULT_RTC_INT_FREQ) {
1380		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1381	} else {
1382		struct clock_event_device *evt = &hpet_base.channels[0].evt;
1383
1384		clc = (uint64_t) evt->mult * NSEC_PER_SEC;
1385		do_div(clc, freq);
1386		clc >>= evt->shift;
1387		hpet_pie_delta = clc;
1388		hpet_pie_limit = 0;
1389	}
1390
1391	return 1;
1392}
1393EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1394
1395int hpet_rtc_dropped_irq(void)
1396{
1397	return is_hpet_enabled();
1398}
1399EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1400
1401static void hpet_rtc_timer_reinit(void)
1402{
1403	unsigned int delta;
1404	int lost_ints = -1;
1405
1406	if (unlikely(!hpet_rtc_flags))
1407		hpet_disable_rtc_channel();
 
 
 
 
1408
1409	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1410		delta = hpet_default_delta;
1411	else
1412		delta = hpet_pie_delta;
1413
1414	/*
1415	 * Increment the comparator value until we are ahead of the
1416	 * current count.
1417	 */
1418	do {
1419		hpet_t1_cmp += delta;
1420		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1421		lost_ints++;
1422	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1423
1424	if (lost_ints) {
1425		if (hpet_rtc_flags & RTC_PIE)
1426			hpet_pie_count += lost_ints;
1427		if (printk_ratelimit())
1428			pr_warn("Lost %d RTC interrupts\n", lost_ints);
 
1429	}
1430}
1431
1432irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1433{
1434	struct rtc_time curr_time;
1435	unsigned long rtc_int_flag = 0;
1436
1437	hpet_rtc_timer_reinit();
1438	memset(&curr_time, 0, sizeof(struct rtc_time));
1439
1440	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE)) {
1441		if (unlikely(mc146818_get_time(&curr_time, 10) < 0)) {
1442			pr_err_ratelimited("unable to read current time from RTC\n");
1443			return IRQ_HANDLED;
1444		}
1445	}
1446
1447	if (hpet_rtc_flags & RTC_UIE &&
1448	    curr_time.tm_sec != hpet_prev_update_sec) {
1449		if (hpet_prev_update_sec >= 0)
1450			rtc_int_flag = RTC_UF;
1451		hpet_prev_update_sec = curr_time.tm_sec;
1452	}
1453
1454	if (hpet_rtc_flags & RTC_PIE && ++hpet_pie_count >= hpet_pie_limit) {
 
1455		rtc_int_flag |= RTC_PF;
1456		hpet_pie_count = 0;
1457	}
1458
1459	if (hpet_rtc_flags & RTC_AIE &&
1460	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1461	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1462	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1463		rtc_int_flag |= RTC_AF;
1464
1465	if (rtc_int_flag) {
1466		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1467		if (irq_handler)
1468			irq_handler(rtc_int_flag, dev_id);
1469	}
1470	return IRQ_HANDLED;
1471}
1472EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1473#endif
v3.1
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/sysdev.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/fixmap.h>
  16#include <asm/hpet.h>
  17#include <asm/time.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  18
  19#define HPET_MASK			CLOCKSOURCE_MASK(32)
  20
  21/* FSEC = 10^-15
  22   NSEC = 10^-9 */
  23#define FSEC_PER_NSEC			1000000L
  24
  25#define HPET_DEV_USED_BIT		2
  26#define HPET_DEV_USED			(1 << HPET_DEV_USED_BIT)
  27#define HPET_DEV_VALID			0x8
  28#define HPET_DEV_FSB_CAP		0x1000
  29#define HPET_DEV_PERI_CAP		0x2000
  30
  31#define HPET_MIN_CYCLES			128
  32#define HPET_MIN_PROG_DELTA		(HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  33
  34#define EVT_TO_HPET_DEV(evt) container_of(evt, struct hpet_dev, evt)
  35
  36/*
  37 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  38 */
  39unsigned long				hpet_address;
  40u8					hpet_blockid; /* OS timer block num */
  41u8					hpet_msi_disable;
  42
  43#ifdef CONFIG_PCI_MSI
  44static unsigned long			hpet_num_timers;
 
  45#endif
 
  46static void __iomem			*hpet_virt_address;
  47
  48struct hpet_dev {
  49	struct clock_event_device	evt;
  50	unsigned int			num;
  51	int				cpu;
  52	unsigned int			irq;
  53	unsigned int			flags;
  54	char				name[10];
  55};
 
 
 
 
 
 
  56
  57inline unsigned int hpet_readl(unsigned int a)
  58{
  59	return readl(hpet_virt_address + a);
  60}
  61
  62static inline void hpet_writel(unsigned int d, unsigned int a)
  63{
  64	writel(d, hpet_virt_address + a);
  65}
  66
  67#ifdef CONFIG_X86_64
  68#include <asm/pgtable.h>
  69#endif
  70
  71static inline void hpet_set_mapping(void)
  72{
  73	hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  74#ifdef CONFIG_X86_64
  75	__set_fixmap(VSYSCALL_HPET, hpet_address, PAGE_KERNEL_VVAR_NOCACHE);
  76#endif
  77}
  78
  79static inline void hpet_clear_mapping(void)
  80{
  81	iounmap(hpet_virt_address);
  82	hpet_virt_address = NULL;
  83}
  84
  85/*
  86 * HPET command line enable / disable
  87 */
  88static int boot_hpet_disable;
  89int hpet_force_user;
  90static int hpet_verbose;
  91
  92static int __init hpet_setup(char *str)
  93{
  94	if (str) {
 
 
 
 
  95		if (!strncmp("disable", str, 7))
  96			boot_hpet_disable = 1;
  97		if (!strncmp("force", str, 5))
  98			hpet_force_user = 1;
  99		if (!strncmp("verbose", str, 7))
 100			hpet_verbose = 1;
 
 101	}
 102	return 1;
 103}
 104__setup("hpet=", hpet_setup);
 105
 106static int __init disable_hpet(char *str)
 107{
 108	boot_hpet_disable = 1;
 109	return 1;
 110}
 111__setup("nohpet", disable_hpet);
 112
 113static inline int is_hpet_capable(void)
 114{
 115	return !boot_hpet_disable && hpet_address;
 116}
 117
 118/*
 119 * HPET timer interrupt enable / disable
 120 */
 121static int hpet_legacy_int_enabled;
 122
 123/**
 124 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 125 */
 126int is_hpet_enabled(void)
 127{
 128	return is_hpet_capable() && hpet_legacy_int_enabled;
 129}
 130EXPORT_SYMBOL_GPL(is_hpet_enabled);
 131
 132static void _hpet_print_config(const char *function, int line)
 133{
 134	u32 i, timers, l, h;
 135	printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 136	l = hpet_readl(HPET_ID);
 137	h = hpet_readl(HPET_PERIOD);
 138	timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 139	printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 140	l = hpet_readl(HPET_CFG);
 141	h = hpet_readl(HPET_STATUS);
 142	printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 
 
 
 143	l = hpet_readl(HPET_COUNTER);
 144	h = hpet_readl(HPET_COUNTER+4);
 145	printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 
 
 146
 147	for (i = 0; i < timers; i++) {
 148		l = hpet_readl(HPET_Tn_CFG(i));
 149		h = hpet_readl(HPET_Tn_CFG(i)+4);
 150		printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 151		       i, l, h);
 152		l = hpet_readl(HPET_Tn_CMP(i));
 153		h = hpet_readl(HPET_Tn_CMP(i)+4);
 154		printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 155		       i, l, h);
 156		l = hpet_readl(HPET_Tn_ROUTE(i));
 157		h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 158		printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 159		       i, l, h);
 160	}
 161}
 162
 163#define hpet_print_config()					\
 164do {								\
 165	if (hpet_verbose)					\
 166		_hpet_print_config(__FUNCTION__, __LINE__);	\
 167} while (0)
 168
 169/*
 170 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 171 * timer 0 and timer 1 in case of RTC emulation.
 172 */
 173#ifdef CONFIG_HPET
 174
 175static void hpet_reserve_msi_timers(struct hpet_data *hd);
 176
 177static void hpet_reserve_platform_timers(unsigned int id)
 178{
 179	struct hpet __iomem *hpet = hpet_virt_address;
 180	struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 181	unsigned int nrtimers, i;
 182	struct hpet_data hd;
 183
 184	nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 185
 186	memset(&hd, 0, sizeof(hd));
 187	hd.hd_phys_address	= hpet_address;
 188	hd.hd_address		= hpet;
 189	hd.hd_nirqs		= nrtimers;
 190	hpet_reserve_timer(&hd, 0);
 191
 192#ifdef CONFIG_HPET_EMULATE_RTC
 193	hpet_reserve_timer(&hd, 1);
 194#endif
 195
 196	/*
 197	 * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 198	 * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 199	 * don't bother configuring *any* comparator interrupts.
 200	 */
 201	hd.hd_irq[0] = HPET_LEGACY_8254;
 202	hd.hd_irq[1] = HPET_LEGACY_RTC;
 203
 204	for (i = 2; i < nrtimers; timer++, i++) {
 205		hd.hd_irq[i] = (readl(&timer->hpet_config) &
 206			Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 207	}
 208
 209	hpet_reserve_msi_timers(&hd);
 
 
 
 
 
 210
 211	hpet_alloc(&hd);
 
 212
 
 
 
 
 
 
 213}
 
 214#else
 215static void hpet_reserve_platform_timers(unsigned int id) { }
 
 216#endif
 217
 218/*
 219 * Common hpet info
 220 */
 221static unsigned long hpet_freq;
 222
 223static void hpet_legacy_set_mode(enum clock_event_mode mode,
 224			  struct clock_event_device *evt);
 225static int hpet_legacy_next_event(unsigned long delta,
 226			   struct clock_event_device *evt);
 227
 228/*
 229 * The hpet clock event device
 230 */
 231static struct clock_event_device hpet_clockevent = {
 232	.name		= "hpet",
 233	.features	= CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 234	.set_mode	= hpet_legacy_set_mode,
 235	.set_next_event = hpet_legacy_next_event,
 236	.irq		= 0,
 237	.rating		= 50,
 238};
 239
 240static void hpet_stop_counter(void)
 241{
 242	unsigned long cfg = hpet_readl(HPET_CFG);
 
 243	cfg &= ~HPET_CFG_ENABLE;
 244	hpet_writel(cfg, HPET_CFG);
 245}
 246
 247static void hpet_reset_counter(void)
 248{
 249	hpet_writel(0, HPET_COUNTER);
 250	hpet_writel(0, HPET_COUNTER + 4);
 251}
 252
 253static void hpet_start_counter(void)
 254{
 255	unsigned int cfg = hpet_readl(HPET_CFG);
 
 256	cfg |= HPET_CFG_ENABLE;
 257	hpet_writel(cfg, HPET_CFG);
 258}
 259
 260static void hpet_restart_counter(void)
 261{
 262	hpet_stop_counter();
 263	hpet_reset_counter();
 264	hpet_start_counter();
 265}
 266
 267static void hpet_resume_device(void)
 268{
 269	force_hpet_resume();
 270}
 271
 272static void hpet_resume_counter(struct clocksource *cs)
 273{
 274	hpet_resume_device();
 275	hpet_restart_counter();
 276}
 277
 278static void hpet_enable_legacy_int(void)
 279{
 280	unsigned int cfg = hpet_readl(HPET_CFG);
 281
 282	cfg |= HPET_CFG_LEGACY;
 283	hpet_writel(cfg, HPET_CFG);
 284	hpet_legacy_int_enabled = 1;
 285}
 286
 287static void hpet_legacy_clockevent_register(void)
 288{
 289	/* Start HPET legacy interrupts */
 290	hpet_enable_legacy_int();
 
 291
 
 
 
 
 
 
 
 
 
 
 
 292	/*
 293	 * Start hpet with the boot cpu mask and make it
 294	 * global after the IO_APIC has been initialized.
 
 
 
 295	 */
 296	hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 297	clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 298					HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 299	global_clock_event = &hpet_clockevent;
 300	printk(KERN_DEBUG "hpet clockevent registered\n");
 301}
 302
 303static int hpet_setup_msi_irq(unsigned int irq);
 
 
 
 
 
 
 
 
 
 
 
 304
 305static void hpet_set_mode(enum clock_event_mode mode,
 306			  struct clock_event_device *evt, int timer)
 307{
 308	unsigned int cfg, cmp, now;
 309	uint64_t delta;
 
 
 
 
 
 
 
 310
 311	switch (mode) {
 312	case CLOCK_EVT_MODE_PERIODIC:
 313		hpet_stop_counter();
 314		delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 315		delta >>= evt->shift;
 316		now = hpet_readl(HPET_COUNTER);
 317		cmp = now + (unsigned int) delta;
 318		cfg = hpet_readl(HPET_Tn_CFG(timer));
 319		/* Make sure we use edge triggered interrupts */
 320		cfg &= ~HPET_TN_LEVEL;
 321		cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 322		       HPET_TN_SETVAL | HPET_TN_32BIT;
 323		hpet_writel(cfg, HPET_Tn_CFG(timer));
 324		hpet_writel(cmp, HPET_Tn_CMP(timer));
 325		udelay(1);
 326		/*
 327		 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 328		 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 329		 * bit is automatically cleared after the first write.
 330		 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 331		 * Publication # 24674)
 332		 */
 333		hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 334		hpet_start_counter();
 335		hpet_print_config();
 336		break;
 337
 338	case CLOCK_EVT_MODE_ONESHOT:
 339		cfg = hpet_readl(HPET_Tn_CFG(timer));
 340		cfg &= ~HPET_TN_PERIODIC;
 341		cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 342		hpet_writel(cfg, HPET_Tn_CFG(timer));
 343		break;
 344
 345	case CLOCK_EVT_MODE_UNUSED:
 346	case CLOCK_EVT_MODE_SHUTDOWN:
 347		cfg = hpet_readl(HPET_Tn_CFG(timer));
 348		cfg &= ~HPET_TN_ENABLE;
 349		hpet_writel(cfg, HPET_Tn_CFG(timer));
 350		break;
 351
 352	case CLOCK_EVT_MODE_RESUME:
 353		if (timer == 0) {
 354			hpet_enable_legacy_int();
 355		} else {
 356			struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 357			hpet_setup_msi_irq(hdev->irq);
 358			disable_irq(hdev->irq);
 359			irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 360			enable_irq(hdev->irq);
 361		}
 362		hpet_print_config();
 363		break;
 364	}
 365}
 366
 367static int hpet_next_event(unsigned long delta,
 368			   struct clock_event_device *evt, int timer)
 369{
 
 370	u32 cnt;
 371	s32 res;
 372
 373	cnt = hpet_readl(HPET_COUNTER);
 374	cnt += (u32) delta;
 375	hpet_writel(cnt, HPET_Tn_CMP(timer));
 376
 377	/*
 378	 * HPETs are a complete disaster. The compare register is
 379	 * based on a equal comparison and neither provides a less
 380	 * than or equal functionality (which would require to take
 381	 * the wraparound into account) nor a simple count down event
 382	 * mode. Further the write to the comparator register is
 383	 * delayed internally up to two HPET clock cycles in certain
 384	 * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 385	 * longer delays. We worked around that by reading back the
 386	 * compare register, but that required another workaround for
 387	 * ICH9,10 chips where the first readout after write can
 388	 * return the old stale value. We already had a minimum
 389	 * programming delta of 5us enforced, but a NMI or SMI hitting
 390	 * between the counter readout and the comparator write can
 391	 * move us behind that point easily. Now instead of reading
 392	 * the compare register back several times, we make the ETIME
 393	 * decision based on the following: Return ETIME if the
 394	 * counter value after the write is less than HPET_MIN_CYCLES
 395	 * away from the event or if the counter is already ahead of
 396	 * the event. The minimum programming delta for the generic
 397	 * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 398	 */
 399	res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 400
 401	return res < HPET_MIN_CYCLES ? -ETIME : 0;
 402}
 403
 404static void hpet_legacy_set_mode(enum clock_event_mode mode,
 405			struct clock_event_device *evt)
 406{
 407	hpet_set_mode(mode, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410static int hpet_legacy_next_event(unsigned long delta,
 411			struct clock_event_device *evt)
 412{
 413	return hpet_next_event(delta, evt, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 414}
 415
 416/*
 417 * HPET MSI Support
 418 */
 419#ifdef CONFIG_PCI_MSI
 420
 421static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 422static struct hpet_dev	*hpet_devs;
 423
 424void hpet_msi_unmask(struct irq_data *data)
 425{
 426	struct hpet_dev *hdev = data->handler_data;
 427	unsigned int cfg;
 428
 429	/* unmask it */
 430	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 431	cfg |= HPET_TN_FSB;
 432	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 433}
 434
 435void hpet_msi_mask(struct irq_data *data)
 436{
 437	struct hpet_dev *hdev = data->handler_data;
 438	unsigned int cfg;
 439
 440	/* mask it */
 441	cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 442	cfg &= ~HPET_TN_FSB;
 443	hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 444}
 445
 446void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 447{
 448	hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 449	hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 450}
 451
 452void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 453{
 454	msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 455	msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 456	msg->address_hi = 0;
 457}
 458
 459static void hpet_msi_set_mode(enum clock_event_mode mode,
 460				struct clock_event_device *evt)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461{
 462	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 463	hpet_set_mode(mode, evt, hdev->num);
 464}
 465
 466static int hpet_msi_next_event(unsigned long delta,
 467				struct clock_event_device *evt)
 
 
 
 
 
 
 
 
 
 
 468{
 469	struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 470	return hpet_next_event(delta, evt, hdev->num);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 471}
 472
 473static int hpet_setup_msi_irq(unsigned int irq)
 474{
 475	if (arch_setup_hpet_msi(irq, hpet_blockid)) {
 476		destroy_irq(irq);
 477		return -EINVAL;
 478	}
 479	return 0;
 480}
 481
 482static int hpet_assign_irq(struct hpet_dev *dev)
 
 483{
 484	unsigned int irq;
 485
 486	irq = create_irq_nr(0, -1);
 487	if (!irq)
 488		return -EINVAL;
 
 
 489
 490	irq_set_handler_data(irq, dev);
 
 491
 492	if (hpet_setup_msi_irq(irq))
 493		return -EINVAL;
 
 
 
 494
 495	dev->irq = irq;
 
 
 
 496	return 0;
 497}
 498
 499static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 500{
 501	struct hpet_dev *dev = (struct hpet_dev *)data;
 502	struct clock_event_device *hevt = &dev->evt;
 503
 504	if (!hevt->event_handler) {
 505		printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 506				dev->num);
 507		return IRQ_HANDLED;
 508	}
 509
 510	hevt->event_handler(hevt);
 511	return IRQ_HANDLED;
 512}
 513
 514static int hpet_setup_irq(struct hpet_dev *dev)
 515{
 516
 517	if (request_irq(dev->irq, hpet_interrupt_handler,
 518			IRQF_TIMER | IRQF_DISABLED | IRQF_NOBALANCING,
 519			dev->name, dev))
 520		return -1;
 521
 522	disable_irq(dev->irq);
 523	irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 524	enable_irq(dev->irq);
 525
 526	printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 527			 dev->name, dev->irq);
 528
 529	return 0;
 530}
 531
 532/* This should be called in specific @cpu */
 533static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 534{
 535	struct clock_event_device *evt = &hdev->evt;
 
 
 
 
 
 
 
 536
 537	WARN_ON(cpu != smp_processor_id());
 538	if (!(hdev->flags & HPET_DEV_VALID))
 539		return;
 540
 541	if (hpet_setup_msi_irq(hdev->irq))
 542		return;
 
 543
 544	hdev->cpu = cpu;
 545	per_cpu(cpu_hpet_dev, cpu) = hdev;
 546	evt->name = hdev->name;
 547	hpet_setup_irq(hdev);
 548	evt->irq = hdev->irq;
 549
 550	evt->rating = 110;
 551	evt->features = CLOCK_EVT_FEAT_ONESHOT;
 552	if (hdev->flags & HPET_DEV_PERI_CAP)
 553		evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 
 
 
 554
 555	evt->set_mode = hpet_msi_set_mode;
 556	evt->set_next_event = hpet_msi_next_event;
 557	evt->cpumask = cpumask_of(hdev->cpu);
 558
 559	clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 560					0x7FFFFFFF);
 
 561}
 562
 563#ifdef CONFIG_HPET
 564/* Reserve at least one timer for userspace (/dev/hpet) */
 565#define RESERVE_TIMERS 1
 566#else
 567#define RESERVE_TIMERS 0
 568#endif
 
 
 
 
 
 569
 570static void hpet_msi_capability_lookup(unsigned int start_timer)
 571{
 572	unsigned int id;
 573	unsigned int num_timers;
 574	unsigned int num_timers_used = 0;
 575	int i;
 576
 577	if (hpet_msi_disable)
 578		return;
 579
 580	if (boot_cpu_has(X86_FEATURE_ARAT))
 
 581		return;
 582	id = hpet_readl(HPET_ID);
 583
 584	num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 585	num_timers++; /* Value read out starts from 0 */
 586	hpet_print_config();
 587
 588	hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 589	if (!hpet_devs)
 590		return;
 591
 592	hpet_num_timers = num_timers;
 
 
 593
 594	for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 595		struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 596		unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 597
 598		/* Only consider HPET timer with MSI support */
 599		if (!(cfg & HPET_TN_FSB_CAP))
 600			continue;
 601
 602		hdev->flags = 0;
 603		if (cfg & HPET_TN_PERIODIC_CAP)
 604			hdev->flags |= HPET_DEV_PERI_CAP;
 605		hdev->num = i;
 606
 607		sprintf(hdev->name, "hpet%d", i);
 608		if (hpet_assign_irq(hdev))
 609			continue;
 610
 611		hdev->flags |= HPET_DEV_FSB_CAP;
 612		hdev->flags |= HPET_DEV_VALID;
 613		num_timers_used++;
 614		if (num_timers_used == num_possible_cpus())
 615			break;
 616	}
 617
 618	printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 619		num_timers, num_timers_used);
 620}
 621
 622#ifdef CONFIG_HPET
 623static void hpet_reserve_msi_timers(struct hpet_data *hd)
 624{
 625	int i;
 626
 627	if (!hpet_devs)
 628		return;
 629
 630	for (i = 0; i < hpet_num_timers; i++) {
 631		struct hpet_dev *hdev = &hpet_devs[i];
 632
 633		if (!(hdev->flags & HPET_DEV_VALID))
 634			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635
 636		hd->hd_irq[hdev->num] = hdev->irq;
 637		hpet_reserve_timer(hd, hdev->num);
 638	}
 639}
 640#endif
 641
 642static struct hpet_dev *hpet_get_unused_timer(void)
 643{
 644	int i;
 
 645
 646	if (!hpet_devs)
 647		return NULL;
 648
 649	for (i = 0; i < hpet_num_timers; i++) {
 650		struct hpet_dev *hdev = &hpet_devs[i];
 
 
 
 651
 652		if (!(hdev->flags & HPET_DEV_VALID))
 653			continue;
 654		if (test_and_set_bit(HPET_DEV_USED_BIT,
 655			(unsigned long *)&hdev->flags))
 656			continue;
 657		return hdev;
 658	}
 659	return NULL;
 660}
 661
 662struct hpet_work_struct {
 663	struct delayed_work work;
 664	struct completion complete;
 665};
 666
 667static void hpet_work(struct work_struct *w)
 668{
 669	struct hpet_dev *hdev;
 670	int cpu = smp_processor_id();
 671	struct hpet_work_struct *hpet_work;
 672
 673	hpet_work = container_of(w, struct hpet_work_struct, work.work);
 674
 675	hdev = hpet_get_unused_timer();
 676	if (hdev)
 677		init_one_hpet_msi_clockevent(hdev, cpu);
 678
 679	complete(&hpet_work->complete);
 680}
 681
 682static int hpet_cpuhp_notify(struct notifier_block *n,
 683		unsigned long action, void *hcpu)
 684{
 685	unsigned long cpu = (unsigned long)hcpu;
 686	struct hpet_work_struct work;
 687	struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 688
 689	switch (action & 0xf) {
 690	case CPU_ONLINE:
 691		INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 692		init_completion(&work.complete);
 693		/* FIXME: add schedule_work_on() */
 694		schedule_delayed_work_on(cpu, &work.work, 0);
 695		wait_for_completion(&work.complete);
 696		destroy_timer_on_stack(&work.work.timer);
 697		break;
 698	case CPU_DEAD:
 699		if (hdev) {
 700			free_irq(hdev->irq, hdev);
 701			hdev->flags &= ~HPET_DEV_USED;
 702			per_cpu(cpu_hpet_dev, cpu) = NULL;
 703		}
 704		break;
 705	}
 706	return NOTIFY_OK;
 707}
 708#else
 709
 710static int hpet_setup_msi_irq(unsigned int irq)
 711{
 712	return 0;
 713}
 714static void hpet_msi_capability_lookup(unsigned int start_timer)
 715{
 716	return;
 717}
 
 
 
 
 
 
 
 
 
 718
 719#ifdef CONFIG_HPET
 720static void hpet_reserve_msi_timers(struct hpet_data *hd)
 721{
 722	return;
 723}
 724#endif
 725
 726static int hpet_cpuhp_notify(struct notifier_block *n,
 727		unsigned long action, void *hcpu)
 728{
 729	return NOTIFY_OK;
 730}
 731
 732#endif
 733
 734/*
 735 * Clock source related code
 736 */
 737static cycle_t read_hpet(struct clocksource *cs)
 738{
 739	return (cycle_t)hpet_readl(HPET_COUNTER);
 740}
 
 741
 742static struct clocksource clocksource_hpet = {
 743	.name		= "hpet",
 744	.rating		= 250,
 745	.read		= read_hpet,
 746	.mask		= HPET_MASK,
 747	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
 748	.resume		= hpet_resume_counter,
 749#ifdef CONFIG_X86_64
 750	.archdata	= { .vclock_mode = VCLOCK_HPET },
 751#endif
 752};
 753
 754static int hpet_clocksource_register(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 755{
 756	u64 start, now;
 757	cycle_t t1;
 
 
 
 
 
 
 
 
 
 
 
 
 758
 759	/* Start the counter */
 760	hpet_restart_counter();
 761
 762	/* Verify whether hpet counter works */
 763	t1 = hpet_readl(HPET_COUNTER);
 764	rdtscll(start);
 765
 766	/*
 767	 * We don't know the TSC frequency yet, but waiting for
 768	 * 200000 TSC cycles is safe:
 769	 * 4 GHz == 50us
 770	 * 1 GHz == 200us
 771	 */
 772	do {
 773		rep_nop();
 774		rdtscll(now);
 
 775	} while ((now - start) < 200000UL);
 776
 777	if (t1 == hpet_readl(HPET_COUNTER)) {
 778		printk(KERN_WARNING
 779		       "HPET counter not counting. HPET disabled\n");
 780		return -ENODEV;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 781	}
 782
 783	clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 784	return 0;
 
 785}
 786
 787/**
 788 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 789 */
 790int __init hpet_enable(void)
 791{
 792	unsigned long hpet_period;
 793	unsigned int id;
 
 794	u64 freq;
 795	int i;
 796
 797	if (!is_hpet_capable())
 798		return 0;
 799
 
 
 
 800	hpet_set_mapping();
 
 
 
 
 
 
 801
 802	/*
 803	 * Read the period and check for a sane value:
 804	 */
 805	hpet_period = hpet_readl(HPET_PERIOD);
 806
 807	/*
 808	 * AMD SB700 based systems with spread spectrum enabled use a
 809	 * SMM based HPET emulation to provide proper frequency
 810	 * setting. The SMM code is initialized with the first HPET
 811	 * register access and takes some time to complete. During
 812	 * this time the config register reads 0xffffffff. We check
 813	 * for max. 1000 loops whether the config register reads a non
 814	 * 0xffffffff value to make sure that HPET is up and running
 815	 * before we go further. A counting loop is safe, as the HPET
 816	 * access takes thousands of CPU cycles. On non SB700 based
 817	 * machines this check is only done once and has no side
 818	 * effects.
 819	 */
 820	for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 821		if (i == 1000) {
 822			printk(KERN_WARNING
 823			       "HPET config register value = 0xFFFFFFFF. "
 824			       "Disabling HPET\n");
 825			goto out_nohpet;
 826		}
 827	}
 828
 829	if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 830		goto out_nohpet;
 831
 832	/*
 833	 * The period is a femto seconds value. Convert it to a
 834	 * frequency.
 835	 */
 836	freq = FSEC_PER_SEC;
 837	do_div(freq, hpet_period);
 838	hpet_freq = freq;
 839
 840	/*
 841	 * Read the HPET ID register to retrieve the IRQ routing
 842	 * information and the number of channels
 843	 */
 844	id = hpet_readl(HPET_ID);
 845	hpet_print_config();
 846
 847#ifdef CONFIG_HPET_EMULATE_RTC
 
 
 848	/*
 849	 * The legacy routing mode needs at least two channels, tick timer
 850	 * and the rtc emulation channel.
 851	 */
 852	if (!(id & HPET_ID_NUMBER))
 
 
 
 
 
 853		goto out_nohpet;
 854#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	if (hpet_clocksource_register())
 
 
 
 
 
 857		goto out_nohpet;
 858
 
 
 
 
 859	if (id & HPET_ID_LEGSUP) {
 860		hpet_legacy_clockevent_register();
 
 
 
 861		return 1;
 862	}
 863	return 0;
 864
 865out_nohpet:
 
 
 
 866	hpet_clear_mapping();
 867	hpet_address = 0;
 868	return 0;
 869}
 870
 871/*
 872 * Needs to be late, as the reserve_timer code calls kalloc !
 
 873 *
 874 * Not a problem on i386 as hpet_enable is called from late_time_init,
 875 * but on x86_64 it is necessary !
 
 
 
 
 
 
 
 876 */
 877static __init int hpet_late_init(void)
 878{
 879	int cpu;
 880
 881	if (boot_hpet_disable)
 882		return -ENODEV;
 883
 884	if (!hpet_address) {
 885		if (!force_hpet_address)
 886			return -ENODEV;
 887
 888		hpet_address = force_hpet_address;
 889		hpet_enable();
 890	}
 891
 892	if (!hpet_virt_address)
 893		return -ENODEV;
 894
 895	if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 896		hpet_msi_capability_lookup(2);
 897	else
 898		hpet_msi_capability_lookup(0);
 899
 900	hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 901	hpet_print_config();
 902
 903	if (hpet_msi_disable)
 904		return 0;
 905
 906	if (boot_cpu_has(X86_FEATURE_ARAT))
 907		return 0;
 908
 909	for_each_online_cpu(cpu) {
 910		hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 911	}
 912
 913	/* This notifier should be called after workqueue is ready */
 914	hotcpu_notifier(hpet_cpuhp_notify, -20);
 915
 916	return 0;
 
 
 917}
 918fs_initcall(hpet_late_init);
 919
 920void hpet_disable(void)
 921{
 922	if (is_hpet_capable() && hpet_virt_address) {
 923		unsigned int cfg = hpet_readl(HPET_CFG);
 
 
 
 924
 925		if (hpet_legacy_int_enabled) {
 926			cfg &= ~HPET_CFG_LEGACY;
 927			hpet_legacy_int_enabled = 0;
 928		}
 929		cfg &= ~HPET_CFG_ENABLE;
 930		hpet_writel(cfg, HPET_CFG);
 931	}
 
 
 
 
 
 932}
 933
 934#ifdef CONFIG_HPET_EMULATE_RTC
 935
 936/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 
 937 * is enabled, we support RTC interrupt functionality in software.
 
 938 * RTC has 3 kinds of interrupts:
 939 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 940 *    is updated
 941 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 942 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 943 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 944 * (1) and (2) above are implemented using polling at a frequency of
 945 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 946 * overhead. (DEFAULT_RTC_INT_FREQ)
 947 * For (3), we use interrupts at 64Hz or user specified periodic
 948 * frequency, whichever is higher.
 
 
 
 
 949 */
 950#include <linux/mc146818rtc.h>
 951#include <linux/rtc.h>
 952#include <asm/rtc.h>
 953
 954#define DEFAULT_RTC_INT_FREQ	64
 955#define DEFAULT_RTC_SHIFT	6
 956#define RTC_NUM_INTS		1
 957
 958static unsigned long hpet_rtc_flags;
 959static int hpet_prev_update_sec;
 960static struct rtc_time hpet_alarm_time;
 961static unsigned long hpet_pie_count;
 962static u32 hpet_t1_cmp;
 963static u32 hpet_default_delta;
 964static u32 hpet_pie_delta;
 965static unsigned long hpet_pie_limit;
 966
 967static rtc_irq_handler irq_handler;
 968
 969/*
 970 * Check that the hpet counter c1 is ahead of the c2
 971 */
 972static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 973{
 974	return (s32)(c2 - c1) < 0;
 975}
 976
 977/*
 978 * Registers a IRQ handler.
 979 */
 980int hpet_register_irq_handler(rtc_irq_handler handler)
 981{
 982	if (!is_hpet_enabled())
 983		return -ENODEV;
 984	if (irq_handler)
 985		return -EBUSY;
 986
 987	irq_handler = handler;
 988
 989	return 0;
 990}
 991EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
 992
 993/*
 994 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
 995 * and does cleanup.
 996 */
 997void hpet_unregister_irq_handler(rtc_irq_handler handler)
 998{
 999	if (!is_hpet_enabled())
1000		return;
1001
1002	irq_handler = NULL;
1003	hpet_rtc_flags = 0;
1004}
1005EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1006
1007/*
1008 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1009 * is not supported by all HPET implementations for timer 1.
1010 *
1011 * hpet_rtc_timer_init() is called when the rtc is initialized.
1012 */
1013int hpet_rtc_timer_init(void)
1014{
1015	unsigned int cfg, cnt, delta;
1016	unsigned long flags;
1017
1018	if (!is_hpet_enabled())
1019		return 0;
1020
1021	if (!hpet_default_delta) {
 
1022		uint64_t clc;
1023
1024		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1025		clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1026		hpet_default_delta = clc;
1027	}
1028
1029	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1030		delta = hpet_default_delta;
1031	else
1032		delta = hpet_pie_delta;
1033
1034	local_irq_save(flags);
1035
1036	cnt = delta + hpet_readl(HPET_COUNTER);
1037	hpet_writel(cnt, HPET_T1_CMP);
1038	hpet_t1_cmp = cnt;
1039
1040	cfg = hpet_readl(HPET_T1_CFG);
1041	cfg &= ~HPET_TN_PERIODIC;
1042	cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1043	hpet_writel(cfg, HPET_T1_CFG);
1044
1045	local_irq_restore(flags);
1046
1047	return 1;
1048}
1049EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1050
 
 
 
 
 
 
 
 
1051/*
1052 * The functions below are called from rtc driver.
1053 * Return 0 if HPET is not being used.
1054 * Otherwise do the necessary changes and return 1.
1055 */
1056int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1057{
1058	if (!is_hpet_enabled())
1059		return 0;
1060
1061	hpet_rtc_flags &= ~bit_mask;
 
 
 
1062	return 1;
1063}
1064EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1065
1066int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1067{
1068	unsigned long oldbits = hpet_rtc_flags;
1069
1070	if (!is_hpet_enabled())
1071		return 0;
1072
1073	hpet_rtc_flags |= bit_mask;
1074
1075	if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1076		hpet_prev_update_sec = -1;
1077
1078	if (!oldbits)
1079		hpet_rtc_timer_init();
1080
1081	return 1;
1082}
1083EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1084
1085int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1086			unsigned char sec)
1087{
1088	if (!is_hpet_enabled())
1089		return 0;
1090
1091	hpet_alarm_time.tm_hour = hrs;
1092	hpet_alarm_time.tm_min = min;
1093	hpet_alarm_time.tm_sec = sec;
1094
1095	return 1;
1096}
1097EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1098
1099int hpet_set_periodic_freq(unsigned long freq)
1100{
1101	uint64_t clc;
1102
1103	if (!is_hpet_enabled())
1104		return 0;
1105
1106	if (freq <= DEFAULT_RTC_INT_FREQ)
1107		hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1108	else {
1109		clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
 
 
1110		do_div(clc, freq);
1111		clc >>= hpet_clockevent.shift;
1112		hpet_pie_delta = clc;
1113		hpet_pie_limit = 0;
1114	}
 
1115	return 1;
1116}
1117EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1118
1119int hpet_rtc_dropped_irq(void)
1120{
1121	return is_hpet_enabled();
1122}
1123EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1124
1125static void hpet_rtc_timer_reinit(void)
1126{
1127	unsigned int cfg, delta;
1128	int lost_ints = -1;
1129
1130	if (unlikely(!hpet_rtc_flags)) {
1131		cfg = hpet_readl(HPET_T1_CFG);
1132		cfg &= ~HPET_TN_ENABLE;
1133		hpet_writel(cfg, HPET_T1_CFG);
1134		return;
1135	}
1136
1137	if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1138		delta = hpet_default_delta;
1139	else
1140		delta = hpet_pie_delta;
1141
1142	/*
1143	 * Increment the comparator value until we are ahead of the
1144	 * current count.
1145	 */
1146	do {
1147		hpet_t1_cmp += delta;
1148		hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1149		lost_ints++;
1150	} while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1151
1152	if (lost_ints) {
1153		if (hpet_rtc_flags & RTC_PIE)
1154			hpet_pie_count += lost_ints;
1155		if (printk_ratelimit())
1156			printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1157				lost_ints);
1158	}
1159}
1160
1161irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1162{
1163	struct rtc_time curr_time;
1164	unsigned long rtc_int_flag = 0;
1165
1166	hpet_rtc_timer_reinit();
1167	memset(&curr_time, 0, sizeof(struct rtc_time));
1168
1169	if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1170		get_rtc_time(&curr_time);
 
 
 
 
1171
1172	if (hpet_rtc_flags & RTC_UIE &&
1173	    curr_time.tm_sec != hpet_prev_update_sec) {
1174		if (hpet_prev_update_sec >= 0)
1175			rtc_int_flag = RTC_UF;
1176		hpet_prev_update_sec = curr_time.tm_sec;
1177	}
1178
1179	if (hpet_rtc_flags & RTC_PIE &&
1180	    ++hpet_pie_count >= hpet_pie_limit) {
1181		rtc_int_flag |= RTC_PF;
1182		hpet_pie_count = 0;
1183	}
1184
1185	if (hpet_rtc_flags & RTC_AIE &&
1186	    (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1187	    (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1188	    (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1189			rtc_int_flag |= RTC_AF;
1190
1191	if (rtc_int_flag) {
1192		rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1193		if (irq_handler)
1194			irq_handler(rtc_int_flag, dev_id);
1195	}
1196	return IRQ_HANDLED;
1197}
1198EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1199#endif