Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  AMD CPU Microcode Update Driver for Linux
   4 *
   5 *  This driver allows to upgrade microcode on F10h AMD
   6 *  CPUs and later.
   7 *
   8 *  Copyright (C) 2008-2011 Advanced Micro Devices Inc.
   9 *	          2013-2018 Borislav Petkov <bp@alien8.de>
  10 *
  11 *  Author: Peter Oruba <peter.oruba@amd.com>
  12 *
  13 *  Based on work by:
  14 *  Tigran Aivazian <aivazian.tigran@gmail.com>
  15 *
  16 *  early loader:
  17 *  Copyright (C) 2013 Advanced Micro Devices, Inc.
  18 *
  19 *  Author: Jacob Shin <jacob.shin@amd.com>
  20 *  Fixes: Borislav Petkov <bp@suse.de>
  21 */
  22#define pr_fmt(fmt) "microcode: " fmt
  23
  24#include <linux/earlycpio.h>
  25#include <linux/firmware.h>
  26#include <linux/bsearch.h>
  27#include <linux/uaccess.h>
  28#include <linux/vmalloc.h>
  29#include <linux/initrd.h>
  30#include <linux/kernel.h>
  31#include <linux/pci.h>
  32
  33#include <crypto/sha2.h>
  34
  35#include <asm/microcode.h>
  36#include <asm/processor.h>
  37#include <asm/cmdline.h>
  38#include <asm/setup.h>
  39#include <asm/cpu.h>
  40#include <asm/msr.h>
  41#include <asm/tlb.h>
  42
  43#include "internal.h"
  44
  45struct ucode_patch {
  46	struct list_head plist;
  47	void *data;
  48	unsigned int size;
  49	u32 patch_id;
  50	u16 equiv_cpu;
  51};
  52
  53static LIST_HEAD(microcode_cache);
  54
  55#define UCODE_MAGIC			0x00414d44
  56#define UCODE_EQUIV_CPU_TABLE_TYPE	0x00000000
  57#define UCODE_UCODE_TYPE		0x00000001
  58
  59#define SECTION_HDR_SIZE		8
  60#define CONTAINER_HDR_SZ		12
  61
  62struct equiv_cpu_entry {
  63	u32	installed_cpu;
  64	u32	fixed_errata_mask;
  65	u32	fixed_errata_compare;
  66	u16	equiv_cpu;
  67	u16	res;
  68} __packed;
  69
  70struct microcode_header_amd {
  71	u32	data_code;
  72	u32	patch_id;
  73	u16	mc_patch_data_id;
  74	u8	mc_patch_data_len;
  75	u8	init_flag;
  76	u32	mc_patch_data_checksum;
  77	u32	nb_dev_id;
  78	u32	sb_dev_id;
  79	u16	processor_rev_id;
  80	u8	nb_rev_id;
  81	u8	sb_rev_id;
  82	u8	bios_api_rev;
  83	u8	reserved1[3];
  84	u32	match_reg[8];
  85} __packed;
  86
  87struct microcode_amd {
  88	struct microcode_header_amd	hdr;
  89	unsigned int			mpb[];
  90};
  91
  92static struct equiv_cpu_table {
  93	unsigned int num_entries;
  94	struct equiv_cpu_entry *entry;
  95} equiv_table;
  96
  97union zen_patch_rev {
  98	struct {
  99		__u32 rev	 : 8,
 100		      stepping	 : 4,
 101		      model	 : 4,
 102		      __reserved : 4,
 103		      ext_model	 : 4,
 104		      ext_fam	 : 8;
 105	};
 106	__u32 ucode_rev;
 107};
 108
 109union cpuid_1_eax {
 110	struct {
 111		__u32 stepping    : 4,
 112		      model	  : 4,
 113		      family	  : 4,
 114		      __reserved0 : 4,
 115		      ext_model   : 4,
 116		      ext_fam     : 8,
 117		      __reserved1 : 4;
 118	};
 119	__u32 full;
 120};
 121
 122/*
 123 * This points to the current valid container of microcode patches which we will
 124 * save from the initrd/builtin before jettisoning its contents. @mc is the
 125 * microcode patch we found to match.
 126 */
 127struct cont_desc {
 128	struct microcode_amd *mc;
 129	u32		     psize;
 130	u8		     *data;
 131	size_t		     size;
 132};
 133
 134/*
 135 * Microcode patch container file is prepended to the initrd in cpio
 136 * format. See Documentation/arch/x86/microcode.rst
 137 */
 138static const char
 139ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin";
 140
 141/*
 142 * This is CPUID(1).EAX on the BSP. It is used in two ways:
 143 *
 144 * 1. To ignore the equivalence table on Zen1 and newer.
 145 *
 146 * 2. To match which patches to load because the patch revision ID
 147 *    already contains the f/m/s for which the microcode is destined
 148 *    for.
 149 */
 150static u32 bsp_cpuid_1_eax __ro_after_init;
 151
 152static bool sha_check = true;
 153
 154struct patch_digest {
 155	u32 patch_id;
 156	u8 sha256[SHA256_DIGEST_SIZE];
 157};
 158
 159#include "amd_shas.c"
 160
 161static int cmp_id(const void *key, const void *elem)
 162{
 163	struct patch_digest *pd = (struct patch_digest *)elem;
 164	u32 patch_id = *(u32 *)key;
 165
 166	if (patch_id == pd->patch_id)
 167		return 0;
 168	else if (patch_id < pd->patch_id)
 169		return -1;
 170	else
 171		return 1;
 172}
 173
 174static bool need_sha_check(u32 cur_rev)
 175{
 176	switch (cur_rev >> 8) {
 177	case 0x80012: return cur_rev <= 0x800126f; break;
 178	case 0x80082: return cur_rev <= 0x800820f; break;
 179	case 0x83010: return cur_rev <= 0x830107c; break;
 180	case 0x86001: return cur_rev <= 0x860010e; break;
 181	case 0x86081: return cur_rev <= 0x8608108; break;
 182	case 0x87010: return cur_rev <= 0x8701034; break;
 183	case 0x8a000: return cur_rev <= 0x8a0000a; break;
 184	case 0xa0010: return cur_rev <= 0xa00107a; break;
 185	case 0xa0011: return cur_rev <= 0xa0011da; break;
 186	case 0xa0012: return cur_rev <= 0xa001243; break;
 187	case 0xa0082: return cur_rev <= 0xa00820e; break;
 188	case 0xa1011: return cur_rev <= 0xa101153; break;
 189	case 0xa1012: return cur_rev <= 0xa10124e; break;
 190	case 0xa1081: return cur_rev <= 0xa108109; break;
 191	case 0xa2010: return cur_rev <= 0xa20102f; break;
 192	case 0xa2012: return cur_rev <= 0xa201212; break;
 193	case 0xa4041: return cur_rev <= 0xa404109; break;
 194	case 0xa5000: return cur_rev <= 0xa500013; break;
 195	case 0xa6012: return cur_rev <= 0xa60120a; break;
 196	case 0xa7041: return cur_rev <= 0xa704109; break;
 197	case 0xa7052: return cur_rev <= 0xa705208; break;
 198	case 0xa7080: return cur_rev <= 0xa708009; break;
 199	case 0xa70c0: return cur_rev <= 0xa70C009; break;
 200	case 0xaa001: return cur_rev <= 0xaa00116; break;
 201	case 0xaa002: return cur_rev <= 0xaa00218; break;
 202	default: break;
 203	}
 204
 205	pr_info("You should not be seeing this. Please send the following couple of lines to x86-<at>-kernel.org\n");
 206	pr_info("CPUID(1).EAX: 0x%x, current revision: 0x%x\n", bsp_cpuid_1_eax, cur_rev);
 207	return true;
 208}
 209
 210static bool verify_sha256_digest(u32 patch_id, u32 cur_rev, const u8 *data, unsigned int len)
 211{
 212	struct patch_digest *pd = NULL;
 213	u8 digest[SHA256_DIGEST_SIZE];
 214	struct sha256_state s;
 215	int i;
 216
 217	if (x86_family(bsp_cpuid_1_eax) < 0x17 ||
 218	    x86_family(bsp_cpuid_1_eax) > 0x19)
 219		return true;
 220
 221	if (!need_sha_check(cur_rev))
 222		return true;
 223
 224	if (!sha_check)
 225		return true;
 226
 227	pd = bsearch(&patch_id, phashes, ARRAY_SIZE(phashes), sizeof(struct patch_digest), cmp_id);
 228	if (!pd) {
 229		pr_err("No sha256 digest for patch ID: 0x%x found\n", patch_id);
 230		return false;
 231	}
 232
 233	sha256_init(&s);
 234	sha256_update(&s, data, len);
 235	sha256_final(&s, digest);
 236
 237	if (memcmp(digest, pd->sha256, sizeof(digest))) {
 238		pr_err("Patch 0x%x SHA256 digest mismatch!\n", patch_id);
 239
 240		for (i = 0; i < SHA256_DIGEST_SIZE; i++)
 241			pr_cont("0x%x ", digest[i]);
 242		pr_info("\n");
 243
 244		return false;
 245	}
 246
 247	return true;
 248}
 249
 250static u32 get_patch_level(void)
 251{
 252	u32 rev, dummy __always_unused;
 253
 254	native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy);
 255
 256	return rev;
 257}
 258
 259static union cpuid_1_eax ucode_rev_to_cpuid(unsigned int val)
 260{
 261	union zen_patch_rev p;
 262	union cpuid_1_eax c;
 263
 264	p.ucode_rev = val;
 265	c.full = 0;
 266
 267	c.stepping  = p.stepping;
 268	c.model     = p.model;
 269	c.ext_model = p.ext_model;
 270	c.family    = 0xf;
 271	c.ext_fam   = p.ext_fam;
 272
 273	return c;
 274}
 275
 276static u16 find_equiv_id(struct equiv_cpu_table *et, u32 sig)
 277{
 278	unsigned int i;
 279
 280	/* Zen and newer do not need an equivalence table. */
 281	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 282		return 0;
 283
 284	if (!et || !et->num_entries)
 285		return 0;
 286
 287	for (i = 0; i < et->num_entries; i++) {
 288		struct equiv_cpu_entry *e = &et->entry[i];
 289
 290		if (sig == e->installed_cpu)
 291			return e->equiv_cpu;
 292	}
 293	return 0;
 294}
 295
 296/*
 297 * Check whether there is a valid microcode container file at the beginning
 298 * of @buf of size @buf_size.
 299 */
 300static bool verify_container(const u8 *buf, size_t buf_size)
 301{
 302	u32 cont_magic;
 303
 304	if (buf_size <= CONTAINER_HDR_SZ) {
 305		pr_debug("Truncated microcode container header.\n");
 306		return false;
 307	}
 308
 309	cont_magic = *(const u32 *)buf;
 310	if (cont_magic != UCODE_MAGIC) {
 311		pr_debug("Invalid magic value (0x%08x).\n", cont_magic);
 312		return false;
 313	}
 314
 315	return true;
 316}
 317
 318/*
 319 * Check whether there is a valid, non-truncated CPU equivalence table at the
 320 * beginning of @buf of size @buf_size.
 321 */
 322static bool verify_equivalence_table(const u8 *buf, size_t buf_size)
 323{
 324	const u32 *hdr = (const u32 *)buf;
 325	u32 cont_type, equiv_tbl_len;
 326
 327	if (!verify_container(buf, buf_size))
 328		return false;
 329
 330	/* Zen and newer do not need an equivalence table. */
 331	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 332		return true;
 333
 334	cont_type = hdr[1];
 335	if (cont_type != UCODE_EQUIV_CPU_TABLE_TYPE) {
 336		pr_debug("Wrong microcode container equivalence table type: %u.\n",
 337			 cont_type);
 338		return false;
 339	}
 340
 341	buf_size -= CONTAINER_HDR_SZ;
 342
 343	equiv_tbl_len = hdr[2];
 344	if (equiv_tbl_len < sizeof(struct equiv_cpu_entry) ||
 345	    buf_size < equiv_tbl_len) {
 346		pr_debug("Truncated equivalence table.\n");
 347		return false;
 348	}
 349
 350	return true;
 351}
 352
 353/*
 354 * Check whether there is a valid, non-truncated microcode patch section at the
 355 * beginning of @buf of size @buf_size.
 356 *
 357 * On success, @sh_psize returns the patch size according to the section header,
 358 * to the caller.
 359 */
 360static bool __verify_patch_section(const u8 *buf, size_t buf_size, u32 *sh_psize)
 361{
 362	u32 p_type, p_size;
 363	const u32 *hdr;
 364
 365	if (buf_size < SECTION_HDR_SIZE) {
 366		pr_debug("Truncated patch section.\n");
 367		return false;
 368	}
 369
 370	hdr = (const u32 *)buf;
 371	p_type = hdr[0];
 372	p_size = hdr[1];
 373
 374	if (p_type != UCODE_UCODE_TYPE) {
 375		pr_debug("Invalid type field (0x%x) in container file section header.\n",
 376			 p_type);
 377		return false;
 378	}
 379
 380	if (p_size < sizeof(struct microcode_header_amd)) {
 381		pr_debug("Patch of size %u too short.\n", p_size);
 382		return false;
 383	}
 384
 385	*sh_psize = p_size;
 386
 387	return true;
 388}
 389
 390/*
 391 * Check whether the passed remaining file @buf_size is large enough to contain
 392 * a patch of the indicated @sh_psize (and also whether this size does not
 393 * exceed the per-family maximum). @sh_psize is the size read from the section
 394 * header.
 395 */
 396static unsigned int __verify_patch_size(u32 sh_psize, size_t buf_size)
 397{
 398	u8 family = x86_family(bsp_cpuid_1_eax);
 399	u32 max_size;
 400
 401	if (family >= 0x15)
 402		return min_t(u32, sh_psize, buf_size);
 403
 404#define F1XH_MPB_MAX_SIZE 2048
 405#define F14H_MPB_MAX_SIZE 1824
 406
 407	switch (family) {
 408	case 0x10 ... 0x12:
 409		max_size = F1XH_MPB_MAX_SIZE;
 410		break;
 411	case 0x14:
 412		max_size = F14H_MPB_MAX_SIZE;
 413		break;
 414	default:
 415		WARN(1, "%s: WTF family: 0x%x\n", __func__, family);
 416		return 0;
 417	}
 418
 419	if (sh_psize > min_t(u32, buf_size, max_size))
 420		return 0;
 421
 422	return sh_psize;
 423}
 424
 425/*
 426 * Verify the patch in @buf.
 427 *
 428 * Returns:
 429 * negative: on error
 430 * positive: patch is not for this family, skip it
 431 * 0: success
 432 */
 433static int verify_patch(const u8 *buf, size_t buf_size, u32 *patch_size)
 434{
 435	u8 family = x86_family(bsp_cpuid_1_eax);
 436	struct microcode_header_amd *mc_hdr;
 437	unsigned int ret;
 438	u32 sh_psize;
 439	u16 proc_id;
 440	u8 patch_fam;
 441
 442	if (!__verify_patch_section(buf, buf_size, &sh_psize))
 443		return -1;
 444
 445	/*
 446	 * The section header length is not included in this indicated size
 447	 * but is present in the leftover file length so we need to subtract
 448	 * it before passing this value to the function below.
 449	 */
 450	buf_size -= SECTION_HDR_SIZE;
 451
 452	/*
 453	 * Check if the remaining buffer is big enough to contain a patch of
 454	 * size sh_psize, as the section claims.
 455	 */
 456	if (buf_size < sh_psize) {
 457		pr_debug("Patch of size %u truncated.\n", sh_psize);
 458		return -1;
 459	}
 460
 461	ret = __verify_patch_size(sh_psize, buf_size);
 462	if (!ret) {
 463		pr_debug("Per-family patch size mismatch.\n");
 464		return -1;
 465	}
 466
 467	*patch_size = sh_psize;
 468
 469	mc_hdr	= (struct microcode_header_amd *)(buf + SECTION_HDR_SIZE);
 470	if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) {
 471		pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id);
 472		return -1;
 473	}
 474
 475	proc_id	= mc_hdr->processor_rev_id;
 476	patch_fam = 0xf + (proc_id >> 12);
 477	if (patch_fam != family)
 478		return 1;
 479
 480	return 0;
 481}
 482
 483static bool mc_patch_matches(struct microcode_amd *mc, u16 eq_id)
 484{
 485	/* Zen and newer do not need an equivalence table. */
 486	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 487		return ucode_rev_to_cpuid(mc->hdr.patch_id).full == bsp_cpuid_1_eax;
 488	else
 489		return eq_id == mc->hdr.processor_rev_id;
 490}
 491
 492/*
 493 * This scans the ucode blob for the proper container as we can have multiple
 494 * containers glued together. Returns the equivalence ID from the equivalence
 495 * table or 0 if none found.
 496 * Returns the amount of bytes consumed while scanning. @desc contains all the
 497 * data we're going to use in later stages of the application.
 498 */
 499static size_t parse_container(u8 *ucode, size_t size, struct cont_desc *desc)
 500{
 501	struct equiv_cpu_table table;
 502	size_t orig_size = size;
 503	u32 *hdr = (u32 *)ucode;
 504	u16 eq_id;
 505	u8 *buf;
 506
 507	if (!verify_equivalence_table(ucode, size))
 508		return 0;
 509
 510	buf = ucode;
 511
 512	table.entry = (struct equiv_cpu_entry *)(buf + CONTAINER_HDR_SZ);
 513	table.num_entries = hdr[2] / sizeof(struct equiv_cpu_entry);
 514
 515	/*
 516	 * Find the equivalence ID of our CPU in this table. Even if this table
 517	 * doesn't contain a patch for the CPU, scan through the whole container
 518	 * so that it can be skipped in case there are other containers appended.
 519	 */
 520	eq_id = find_equiv_id(&table, bsp_cpuid_1_eax);
 521
 522	buf  += hdr[2] + CONTAINER_HDR_SZ;
 523	size -= hdr[2] + CONTAINER_HDR_SZ;
 524
 525	/*
 526	 * Scan through the rest of the container to find where it ends. We do
 527	 * some basic sanity-checking too.
 528	 */
 529	while (size > 0) {
 530		struct microcode_amd *mc;
 531		u32 patch_size;
 532		int ret;
 533
 534		ret = verify_patch(buf, size, &patch_size);
 535		if (ret < 0) {
 536			/*
 537			 * Patch verification failed, skip to the next container, if
 538			 * there is one. Before exit, check whether that container has
 539			 * found a patch already. If so, use it.
 540			 */
 541			goto out;
 542		} else if (ret > 0) {
 543			goto skip;
 544		}
 545
 546		mc = (struct microcode_amd *)(buf + SECTION_HDR_SIZE);
 547		if (mc_patch_matches(mc, eq_id)) {
 548			desc->psize = patch_size;
 549			desc->mc = mc;
 550		}
 551
 552skip:
 553		/* Skip patch section header too: */
 554		buf  += patch_size + SECTION_HDR_SIZE;
 555		size -= patch_size + SECTION_HDR_SIZE;
 556	}
 557
 558out:
 559	/*
 560	 * If we have found a patch (desc->mc), it means we're looking at the
 561	 * container which has a patch for this CPU so return 0 to mean, @ucode
 562	 * already points to the proper container. Otherwise, we return the size
 563	 * we scanned so that we can advance to the next container in the
 564	 * buffer.
 565	 */
 566	if (desc->mc) {
 567		desc->data = ucode;
 568		desc->size = orig_size - size;
 569
 570		return 0;
 571	}
 572
 573	return orig_size - size;
 574}
 575
 576/*
 577 * Scan the ucode blob for the proper container as we can have multiple
 578 * containers glued together.
 579 */
 580static void scan_containers(u8 *ucode, size_t size, struct cont_desc *desc)
 581{
 582	while (size) {
 583		size_t s = parse_container(ucode, size, desc);
 584		if (!s)
 585			return;
 586
 587		/* catch wraparound */
 588		if (size >= s) {
 589			ucode += s;
 590			size  -= s;
 591		} else {
 592			return;
 593		}
 594	}
 595}
 596
 597static bool __apply_microcode_amd(struct microcode_amd *mc, u32 *cur_rev,
 598				  unsigned int psize)
 599{
 600	unsigned long p_addr = (unsigned long)&mc->hdr.data_code;
 601
 602	if (!verify_sha256_digest(mc->hdr.patch_id, *cur_rev, (const u8 *)p_addr, psize))
 603		return -1;
 604
 605	native_wrmsrl(MSR_AMD64_PATCH_LOADER, p_addr);
 606
 607	if (x86_family(bsp_cpuid_1_eax) == 0x17) {
 608		unsigned long p_addr_end = p_addr + psize - 1;
 609
 610		invlpg(p_addr);
 611
 612		/*
 613		 * Flush next page too if patch image is crossing a page
 614		 * boundary.
 615		 */
 616		if (p_addr >> PAGE_SHIFT != p_addr_end >> PAGE_SHIFT)
 617			invlpg(p_addr_end);
 618	}
 619
 620	/* verify patch application was successful */
 621	*cur_rev = get_patch_level();
 622	if (*cur_rev != mc->hdr.patch_id)
 623		return false;
 624
 625	return true;
 626}
 627
 628
 629static bool get_builtin_microcode(struct cpio_data *cp)
 630{
 631	char fw_name[36] = "amd-ucode/microcode_amd.bin";
 632	u8 family = x86_family(bsp_cpuid_1_eax);
 633	struct firmware fw;
 634
 635	if (IS_ENABLED(CONFIG_X86_32))
 636		return false;
 637
 638	if (family >= 0x15)
 639		snprintf(fw_name, sizeof(fw_name),
 640			 "amd-ucode/microcode_amd_fam%02hhxh.bin", family);
 641
 642	if (firmware_request_builtin(&fw, fw_name)) {
 643		cp->size = fw.size;
 644		cp->data = (void *)fw.data;
 645		return true;
 646	}
 647
 648	return false;
 649}
 650
 651static bool __init find_blobs_in_containers(struct cpio_data *ret)
 652{
 653	struct cpio_data cp;
 654	bool found;
 655
 656	if (!get_builtin_microcode(&cp))
 657		cp = find_microcode_in_initrd(ucode_path);
 658
 659	found = cp.data && cp.size;
 660	if (found)
 661		*ret = cp;
 662
 663	return found;
 664}
 665
 666/*
 667 * Early load occurs before we can vmalloc(). So we look for the microcode
 668 * patch container file in initrd, traverse equivalent cpu table, look for a
 669 * matching microcode patch, and update, all in initrd memory in place.
 670 * When vmalloc() is available for use later -- on 64-bit during first AP load,
 671 * and on 32-bit during save_microcode_in_initrd() -- we can call
 672 * load_microcode_amd() to save equivalent cpu table and microcode patches in
 673 * kernel heap memory.
 674 */
 675void __init load_ucode_amd_bsp(struct early_load_data *ed, unsigned int cpuid_1_eax)
 676{
 677	struct cont_desc desc = { };
 678	struct microcode_amd *mc;
 679	struct cpio_data cp = { };
 680	char buf[4];
 681	u32 rev;
 682
 683	if (cmdline_find_option(boot_command_line, "microcode.amd_sha_check", buf, 4)) {
 684		if (!strncmp(buf, "off", 3)) {
 685			sha_check = false;
 686			pr_warn_once("It is a very very bad idea to disable the blobs SHA check!\n");
 687			add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
 688		}
 689	}
 690
 691	bsp_cpuid_1_eax = cpuid_1_eax;
 692
 693	rev = get_patch_level();
 694	ed->old_rev = rev;
 695
 696	/* Needed in load_microcode_amd() */
 697	ucode_cpu_info[0].cpu_sig.sig = cpuid_1_eax;
 698
 699	if (!find_blobs_in_containers(&cp))
 700		return;
 701
 702	scan_containers(cp.data, cp.size, &desc);
 703
 704	mc = desc.mc;
 705	if (!mc)
 706		return;
 707
 708	/*
 709	 * Allow application of the same revision to pick up SMT-specific
 710	 * changes even if the revision of the other SMT thread is already
 711	 * up-to-date.
 712	 */
 713	if (ed->old_rev > mc->hdr.patch_id)
 714		return;
 715
 716	if (__apply_microcode_amd(mc, &rev, desc.psize))
 717		ed->new_rev = rev;
 718}
 719
 720static inline bool patch_cpus_equivalent(struct ucode_patch *p,
 721					 struct ucode_patch *n,
 722					 bool ignore_stepping)
 723{
 724	/* Zen and newer hardcode the f/m/s in the patch ID */
 725        if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
 726		union cpuid_1_eax p_cid = ucode_rev_to_cpuid(p->patch_id);
 727		union cpuid_1_eax n_cid = ucode_rev_to_cpuid(n->patch_id);
 728
 729		if (ignore_stepping) {
 730			p_cid.stepping = 0;
 731			n_cid.stepping = 0;
 732		}
 733
 734		return p_cid.full == n_cid.full;
 735	} else {
 736		return p->equiv_cpu == n->equiv_cpu;
 737	}
 738}
 739
 740/*
 741 * a small, trivial cache of per-family ucode patches
 742 */
 743static struct ucode_patch *cache_find_patch(struct ucode_cpu_info *uci, u16 equiv_cpu)
 744{
 745	struct ucode_patch *p;
 746	struct ucode_patch n;
 747
 748	n.equiv_cpu = equiv_cpu;
 749	n.patch_id  = uci->cpu_sig.rev;
 750
 751	WARN_ON_ONCE(!n.patch_id);
 752
 753	list_for_each_entry(p, &microcode_cache, plist)
 754		if (patch_cpus_equivalent(p, &n, false))
 755			return p;
 756
 757	return NULL;
 758}
 759
 760static inline int patch_newer(struct ucode_patch *p, struct ucode_patch *n)
 761{
 762	/* Zen and newer hardcode the f/m/s in the patch ID */
 763        if (x86_family(bsp_cpuid_1_eax) >= 0x17) {
 764		union zen_patch_rev zp, zn;
 765
 766		zp.ucode_rev = p->patch_id;
 767		zn.ucode_rev = n->patch_id;
 768
 769		if (zn.stepping != zp.stepping)
 770			return -1;
 771
 772		return zn.rev > zp.rev;
 773	} else {
 774		return n->patch_id > p->patch_id;
 775	}
 776}
 777
 778static void update_cache(struct ucode_patch *new_patch)
 779{
 780	struct ucode_patch *p;
 781	int ret;
 782
 783	list_for_each_entry(p, &microcode_cache, plist) {
 784		if (patch_cpus_equivalent(p, new_patch, true)) {
 785			ret = patch_newer(p, new_patch);
 786			if (ret < 0)
 787				continue;
 788			else if (!ret) {
 789				/* we already have the latest patch */
 790				kfree(new_patch->data);
 791				kfree(new_patch);
 792				return;
 793			}
 794
 795			list_replace(&p->plist, &new_patch->plist);
 796			kfree(p->data);
 797			kfree(p);
 798			return;
 799		}
 800	}
 801	/* no patch found, add it */
 802	list_add_tail(&new_patch->plist, &microcode_cache);
 803}
 804
 805static void free_cache(void)
 806{
 807	struct ucode_patch *p, *tmp;
 808
 809	list_for_each_entry_safe(p, tmp, &microcode_cache, plist) {
 810		__list_del(p->plist.prev, p->plist.next);
 811		kfree(p->data);
 812		kfree(p);
 813	}
 814}
 815
 816static struct ucode_patch *find_patch(unsigned int cpu)
 817{
 818	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
 819	u16 equiv_id = 0;
 820
 821	uci->cpu_sig.rev = get_patch_level();
 822
 823	if (x86_family(bsp_cpuid_1_eax) < 0x17) {
 824		equiv_id = find_equiv_id(&equiv_table, uci->cpu_sig.sig);
 825		if (!equiv_id)
 826			return NULL;
 827	}
 828
 829	return cache_find_patch(uci, equiv_id);
 830}
 831
 832void reload_ucode_amd(unsigned int cpu)
 833{
 834	u32 rev, dummy __always_unused;
 835	struct microcode_amd *mc;
 836	struct ucode_patch *p;
 837
 838	p = find_patch(cpu);
 839	if (!p)
 840		return;
 841
 842	mc = p->data;
 843
 844	rev = get_patch_level();
 845	if (rev < mc->hdr.patch_id) {
 846		if (__apply_microcode_amd(mc, &rev, p->size))
 847			pr_info_once("reload revision: 0x%08x\n", rev);
 848	}
 849}
 850
 851static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig)
 852{
 853	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
 854	struct ucode_patch *p;
 855
 856	csig->sig = cpuid_eax(0x00000001);
 857	csig->rev = get_patch_level();
 858
 859	/*
 860	 * a patch could have been loaded early, set uci->mc so that
 861	 * mc_bp_resume() can call apply_microcode()
 862	 */
 863	p = find_patch(cpu);
 864	if (p && (p->patch_id == csig->rev))
 865		uci->mc = p->data;
 866
 867	return 0;
 868}
 869
 870static enum ucode_state apply_microcode_amd(int cpu)
 871{
 872	struct cpuinfo_x86 *c = &cpu_data(cpu);
 873	struct microcode_amd *mc_amd;
 874	struct ucode_cpu_info *uci;
 875	struct ucode_patch *p;
 876	enum ucode_state ret;
 877	u32 rev;
 878
 879	BUG_ON(raw_smp_processor_id() != cpu);
 880
 881	uci = ucode_cpu_info + cpu;
 882
 883	p = find_patch(cpu);
 884	if (!p)
 885		return UCODE_NFOUND;
 886
 887	rev = uci->cpu_sig.rev;
 888
 889	mc_amd  = p->data;
 890	uci->mc = p->data;
 891
 892	/* need to apply patch? */
 893	if (rev > mc_amd->hdr.patch_id) {
 894		ret = UCODE_OK;
 895		goto out;
 896	}
 897
 898	if (!__apply_microcode_amd(mc_amd, &rev, p->size)) {
 899		pr_err("CPU%d: update failed for patch_level=0x%08x\n",
 900			cpu, mc_amd->hdr.patch_id);
 901		return UCODE_ERROR;
 902	}
 903
 904	rev = mc_amd->hdr.patch_id;
 905	ret = UCODE_UPDATED;
 906
 907out:
 908	uci->cpu_sig.rev = rev;
 909	c->microcode	 = rev;
 910
 911	/* Update boot_cpu_data's revision too, if we're on the BSP: */
 912	if (c->cpu_index == boot_cpu_data.cpu_index)
 913		boot_cpu_data.microcode = rev;
 914
 915	return ret;
 916}
 917
 918void load_ucode_amd_ap(unsigned int cpuid_1_eax)
 919{
 920	unsigned int cpu = smp_processor_id();
 921
 922	ucode_cpu_info[cpu].cpu_sig.sig = cpuid_1_eax;
 923	apply_microcode_amd(cpu);
 924}
 925
 926static size_t install_equiv_cpu_table(const u8 *buf, size_t buf_size)
 927{
 928	u32 equiv_tbl_len;
 929	const u32 *hdr;
 930
 931	if (!verify_equivalence_table(buf, buf_size))
 932		return 0;
 933
 934	hdr = (const u32 *)buf;
 935	equiv_tbl_len = hdr[2];
 936
 937	/* Zen and newer do not need an equivalence table. */
 938	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 939		goto out;
 940
 941	equiv_table.entry = vmalloc(equiv_tbl_len);
 942	if (!equiv_table.entry) {
 943		pr_err("failed to allocate equivalent CPU table\n");
 944		return 0;
 945	}
 946
 947	memcpy(equiv_table.entry, buf + CONTAINER_HDR_SZ, equiv_tbl_len);
 948	equiv_table.num_entries = equiv_tbl_len / sizeof(struct equiv_cpu_entry);
 949
 950out:
 951	/* add header length */
 952	return equiv_tbl_len + CONTAINER_HDR_SZ;
 953}
 954
 955static void free_equiv_cpu_table(void)
 956{
 957	if (x86_family(bsp_cpuid_1_eax) >= 0x17)
 958		return;
 959
 960	vfree(equiv_table.entry);
 961	memset(&equiv_table, 0, sizeof(equiv_table));
 962}
 963
 964static void cleanup(void)
 965{
 966	free_equiv_cpu_table();
 967	free_cache();
 968}
 969
 970/*
 971 * Return a non-negative value even if some of the checks failed so that
 972 * we can skip over the next patch. If we return a negative value, we
 973 * signal a grave error like a memory allocation has failed and the
 974 * driver cannot continue functioning normally. In such cases, we tear
 975 * down everything we've used up so far and exit.
 976 */
 977static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover,
 978				unsigned int *patch_size)
 979{
 980	struct microcode_header_amd *mc_hdr;
 981	struct ucode_patch *patch;
 982	u16 proc_id;
 983	int ret;
 984
 985	ret = verify_patch(fw, leftover, patch_size);
 986	if (ret)
 987		return ret;
 988
 989	patch = kzalloc(sizeof(*patch), GFP_KERNEL);
 990	if (!patch) {
 991		pr_err("Patch allocation failure.\n");
 992		return -EINVAL;
 993	}
 994
 995	patch->data = kmemdup(fw + SECTION_HDR_SIZE, *patch_size, GFP_KERNEL);
 996	if (!patch->data) {
 997		pr_err("Patch data allocation failure.\n");
 998		kfree(patch);
 999		return -EINVAL;
1000	}
1001	patch->size = *patch_size;
1002
1003	mc_hdr      = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE);
1004	proc_id     = mc_hdr->processor_rev_id;
1005
1006	INIT_LIST_HEAD(&patch->plist);
1007	patch->patch_id  = mc_hdr->patch_id;
1008	patch->equiv_cpu = proc_id;
1009
1010	pr_debug("%s: Adding patch_id: 0x%08x, proc_id: 0x%04x\n",
1011		 __func__, patch->patch_id, proc_id);
1012
1013	/* ... and add to cache. */
1014	update_cache(patch);
1015
1016	return 0;
1017}
1018
1019/* Scan the blob in @data and add microcode patches to the cache. */
1020static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size)
1021{
1022	u8 *fw = (u8 *)data;
1023	size_t offset;
1024
1025	offset = install_equiv_cpu_table(data, size);
1026	if (!offset)
1027		return UCODE_ERROR;
1028
1029	fw   += offset;
1030	size -= offset;
1031
1032	if (*(u32 *)fw != UCODE_UCODE_TYPE) {
1033		pr_err("invalid type field in container file section header\n");
1034		free_equiv_cpu_table();
1035		return UCODE_ERROR;
1036	}
1037
1038	while (size > 0) {
1039		unsigned int crnt_size = 0;
1040		int ret;
1041
1042		ret = verify_and_add_patch(family, fw, size, &crnt_size);
1043		if (ret < 0)
1044			return UCODE_ERROR;
1045
1046		fw   +=  crnt_size + SECTION_HDR_SIZE;
1047		size -= (crnt_size + SECTION_HDR_SIZE);
1048	}
1049
1050	return UCODE_OK;
1051}
1052
1053static enum ucode_state _load_microcode_amd(u8 family, const u8 *data, size_t size)
1054{
1055	enum ucode_state ret;
1056
1057	/* free old equiv table */
1058	free_equiv_cpu_table();
1059
1060	ret = __load_microcode_amd(family, data, size);
1061	if (ret != UCODE_OK)
1062		cleanup();
1063
1064	return ret;
1065}
1066
1067static enum ucode_state load_microcode_amd(u8 family, const u8 *data, size_t size)
1068{
1069	struct cpuinfo_x86 *c;
1070	unsigned int nid, cpu;
1071	struct ucode_patch *p;
1072	enum ucode_state ret;
1073
1074	ret = _load_microcode_amd(family, data, size);
1075	if (ret != UCODE_OK)
1076		return ret;
1077
1078	for_each_node(nid) {
1079		cpu = cpumask_first(cpumask_of_node(nid));
1080		c = &cpu_data(cpu);
1081
1082		p = find_patch(cpu);
1083		if (!p)
1084			continue;
1085
1086		if (c->microcode >= p->patch_id)
1087			continue;
1088
1089		ret = UCODE_NEW;
1090	}
1091
1092	return ret;
1093}
1094
1095static int __init save_microcode_in_initrd(void)
1096{
1097	unsigned int cpuid_1_eax = native_cpuid_eax(1);
1098	struct cpuinfo_x86 *c = &boot_cpu_data;
1099	struct cont_desc desc = { 0 };
1100	enum ucode_state ret;
1101	struct cpio_data cp;
1102
1103	if (dis_ucode_ldr || c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10)
1104		return 0;
1105
1106	if (!find_blobs_in_containers(&cp))
1107		return -EINVAL;
1108
1109	scan_containers(cp.data, cp.size, &desc);
1110	if (!desc.mc)
1111		return -EINVAL;
1112
1113	ret = _load_microcode_amd(x86_family(cpuid_1_eax), desc.data, desc.size);
1114	if (ret > UCODE_UPDATED)
1115		return -EINVAL;
1116
1117	return 0;
1118}
1119early_initcall(save_microcode_in_initrd);
1120
1121/*
1122 * AMD microcode firmware naming convention, up to family 15h they are in
1123 * the legacy file:
1124 *
1125 *    amd-ucode/microcode_amd.bin
1126 *
1127 * This legacy file is always smaller than 2K in size.
1128 *
1129 * Beginning with family 15h, they are in family-specific firmware files:
1130 *
1131 *    amd-ucode/microcode_amd_fam15h.bin
1132 *    amd-ucode/microcode_amd_fam16h.bin
1133 *    ...
1134 *
1135 * These might be larger than 2K.
1136 */
1137static enum ucode_state request_microcode_amd(int cpu, struct device *device)
1138{
1139	char fw_name[36] = "amd-ucode/microcode_amd.bin";
1140	struct cpuinfo_x86 *c = &cpu_data(cpu);
1141	enum ucode_state ret = UCODE_NFOUND;
1142	const struct firmware *fw;
1143
1144	if (force_minrev)
1145		return UCODE_NFOUND;
1146
1147	if (c->x86 >= 0x15)
1148		snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86);
1149
1150	if (request_firmware_direct(&fw, (const char *)fw_name, device)) {
1151		pr_debug("failed to load file %s\n", fw_name);
1152		goto out;
1153	}
1154
1155	ret = UCODE_ERROR;
1156	if (!verify_container(fw->data, fw->size))
1157		goto fw_release;
1158
1159	ret = load_microcode_amd(c->x86, fw->data, fw->size);
1160
1161 fw_release:
1162	release_firmware(fw);
1163
1164 out:
1165	return ret;
1166}
1167
1168static void microcode_fini_cpu_amd(int cpu)
1169{
1170	struct ucode_cpu_info *uci = ucode_cpu_info + cpu;
1171
1172	uci->mc = NULL;
1173}
1174
1175static struct microcode_ops microcode_amd_ops = {
1176	.request_microcode_fw	= request_microcode_amd,
1177	.collect_cpu_info	= collect_cpu_info_amd,
1178	.apply_microcode	= apply_microcode_amd,
1179	.microcode_fini_cpu	= microcode_fini_cpu_amd,
1180	.nmi_safe		= true,
1181};
1182
1183struct microcode_ops * __init init_amd_microcode(void)
1184{
1185	struct cpuinfo_x86 *c = &boot_cpu_data;
1186
1187	if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) {
1188		pr_warn("AMD CPU family 0x%x not supported\n", c->x86);
1189		return NULL;
1190	}
1191	return &microcode_amd_ops;
1192}
1193
1194void __exit exit_amd_microcode(void)
1195{
1196	cleanup();
1197}