Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   4 *
   5 *	PDC == Processor Dependent Code
   6 *
   7 * See PDC documentation at
   8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
   9 * for documentation describing the entry points and calling
  10 * conventions defined below.
  11 *
  12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
 
 
 
 
 
 
  17 */
  18
  19/*	I think it would be in everyone's best interest to follow this
  20 *	guidelines when writing PDC wrappers:
  21 *
  22 *	 - the name of the pdc wrapper should match one of the macros
  23 *	   used for the first two arguments
  24 *	 - don't use caps for random parts of the name
  25 *	 - use the static PDC result buffers and "copyout" to structs
  26 *	   supplied by the caller to encapsulate alignment restrictions
  27 *	 - hold pdc_lock while in PDC or using static result buffers
  28 *	 - use __pa() to convert virtual (kernel) pointers to physical
  29 *	   ones.
  30 *	 - the name of the struct used for pdc return values should equal
  31 *	   one of the macros used for the first two arguments to the
  32 *	   corresponding PDC call
  33 *	 - keep the order of arguments
  34 *	 - don't be smart (setting trailing NUL bytes for strings, return
  35 *	   something useful even if the call failed) unless you are sure
  36 *	   it's not going to affect functionality or performance
  37 *
  38 *	Example:
  39 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  40 *	{
  41 *		int retval;
  42 *
  43 *		spin_lock_irq(&pdc_lock);
  44 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  45 *		convert_to_wide(pdc_result);
  46 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  47 *		spin_unlock_irq(&pdc_lock);
  48 *
  49 *		return retval;
  50 *	}
  51 *					prumpf	991016	
  52 */
  53
  54#include <linux/stdarg.h>
  55
  56#include <linux/delay.h>
  57#include <linux/init.h>
  58#include <linux/kernel.h>
  59#include <linux/module.h>
  60#include <linux/string.h>
  61#include <linux/spinlock.h>
  62
  63#include <asm/page.h>
  64#include <asm/pdc.h>
  65#include <asm/pdcpat.h>
 
  66#include <asm/processor.h>	/* for boot_cpu_data */
  67
  68#if defined(BOOTLOADER)
  69# undef  spin_lock_irqsave
  70# define spin_lock_irqsave(a, b) { b = 1; }
  71# undef  spin_unlock_irqrestore
  72# define spin_unlock_irqrestore(a, b)
  73#else
  74static DEFINE_SPINLOCK(pdc_lock);
  75#endif
  76
  77static unsigned long pdc_result[NUM_PDC_RESULT]  __aligned(8);
  78static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
  79
  80#ifdef CONFIG_64BIT
  81#define WIDE_FIRMWARE		PDC_MODEL_OS64
  82#define NARROW_FIRMWARE		PDC_MODEL_OS32
  83
  84/* Firmware needs to be initially set to narrow to determine the
  85 * actual firmware width. */
  86int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
  87#endif
  88
  89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  90 * and MEM_PDC calls are always the same width as the OS.
  91 * Some PAT boxes may have 64-bit IODC I/O.
  92 *
  93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  95 * This allowed wide kernels to run on Cxxx boxes.
  96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  98 */
  99
 100#ifdef CONFIG_64BIT
 101long real64_call(unsigned long function, ...);
 102#endif
 103long real32_call(unsigned long function, ...);
 104
 105#ifdef CONFIG_64BIT
 106#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 108#else
 109#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 110#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 111#endif
 112
 113
 114/**
 115 * f_extend - Convert PDC addresses to kernel addresses.
 116 * @address: Address returned from PDC.
 117 *
 118 * This function is used to convert PDC addresses into kernel addresses
 119 * when the PDC address size and kernel address size are different.
 120 */
 121static unsigned long f_extend(unsigned long address)
 122{
 123#ifdef CONFIG_64BIT
 124	if(unlikely(parisc_narrow_firmware)) {
 125		if((address & 0xff000000) == 0xf0000000)
 126			return (0xfffffff0UL << 32) | (u32)address;
 127
 128		if((address & 0xf0000000) == 0xf0000000)
 129			return (0xffffffffUL << 32) | (u32)address;
 130	}
 131#endif
 132	return address;
 133}
 134
 135/**
 136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 137 * @addr: The return buffer from PDC.
 138 *
 139 * This function is used to convert the return buffer addresses retrieved from PDC
 140 * into kernel addresses when the PDC address size and kernel address size are
 141 * different.
 142 */
 143static void convert_to_wide(unsigned long *addr)
 144{
 145#ifdef CONFIG_64BIT
 146	int i;
 147	unsigned int *p = (unsigned int *)addr;
 148
 149	if (unlikely(parisc_narrow_firmware)) {
 150		for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
 151			addr[i] = p[i];
 152	}
 153#endif
 154}
 155
 156#ifdef CONFIG_64BIT
 157void set_firmware_width_unlocked(void)
 158{
 159	int ret;
 160
 161	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 162		__pa(pdc_result), 0);
 163	if (ret < 0)
 164		return;
 165	convert_to_wide(pdc_result);
 166	if (pdc_result[0] != NARROW_FIRMWARE)
 167		parisc_narrow_firmware = 0;
 168}
 169
 170/**
 171 * set_firmware_width - Determine if the firmware is wide or narrow.
 172 *
 173 * This function must be called before any pdc_* function that uses the
 174 * convert_to_wide function.
 175 */
 176void set_firmware_width(void)
 177{
 178	unsigned long flags;
 179
 180	/* already initialized? */
 181	if (parisc_narrow_firmware != NARROW_FIRMWARE)
 182		return;
 183
 184	spin_lock_irqsave(&pdc_lock, flags);
 185	set_firmware_width_unlocked();
 186	spin_unlock_irqrestore(&pdc_lock, flags);
 187}
 188#else
 189void set_firmware_width_unlocked(void)
 190{
 191	return;
 192}
 193
 194void set_firmware_width(void)
 195{
 196	return;
 197}
 198#endif /*CONFIG_64BIT*/
 199
 200
 201#if !defined(BOOTLOADER)
 202/**
 203 * pdc_emergency_unlock - Unlock the linux pdc lock
 204 *
 205 * This call unlocks the linux pdc lock in case we need some PDC functions
 206 * (like pdc_add_valid) during kernel stack dump.
 207 */
 208void pdc_emergency_unlock(void)
 209{
 210 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 211        if (spin_is_locked(&pdc_lock))
 212		spin_unlock(&pdc_lock);
 213}
 214
 215
 216/**
 217 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 218 * @address: Address to be verified.
 219 *
 220 * This PDC call attempts to read from the specified address and verifies
 221 * if the address is valid.
 222 * 
 223 * The return value is PDC_OK (0) in case accessing this address is valid.
 224 */
 225int pdc_add_valid(unsigned long address)
 226{
 227        int retval;
 228	unsigned long flags;
 229
 230        spin_lock_irqsave(&pdc_lock, flags);
 231        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 232        spin_unlock_irqrestore(&pdc_lock, flags);
 233
 234        return retval;
 235}
 236EXPORT_SYMBOL(pdc_add_valid);
 237
 238/**
 239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
 240 * @instr: Pointer to variable which will get instruction opcode.
 241 *
 242 * The return value is PDC_OK (0) in case call succeeded.
 243 */
 244int __init pdc_instr(unsigned int *instr)
 245{
 246	int retval;
 247	unsigned long flags;
 248
 249	spin_lock_irqsave(&pdc_lock, flags);
 250	retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
 251	convert_to_wide(pdc_result);
 252	*instr = pdc_result[0];
 253	spin_unlock_irqrestore(&pdc_lock, flags);
 254
 255	return retval;
 256}
 257
 258/**
 259 * pdc_chassis_info - Return chassis information.
 
 260 * @chassis_info: The memory buffer address.
 261 * @led_info: The size of the memory buffer address.
 262 * @len: The size of the memory buffer address.
 263 *
 264 * An HVERSION dependent call for returning the chassis information.
 265 */
 266int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 267{
 268        int retval;
 269	unsigned long flags;
 270
 271        spin_lock_irqsave(&pdc_lock, flags);
 272        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 273        memcpy(&pdc_result2, led_info, len);
 274        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 275                              __pa(pdc_result), __pa(pdc_result2), len);
 276        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 277        memcpy(led_info, pdc_result2, len);
 278        spin_unlock_irqrestore(&pdc_lock, flags);
 279
 280        return retval;
 281}
 282
 283/**
 284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 285 * @state: state of the machine
 286 * @data: value for that state
 287 * 
 288 * Must be correctly formatted or expect system crash
 289 */
 290#ifdef CONFIG_64BIT
 291int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 292{
 293	int retval = 0;
 294	unsigned long flags;
 295        
 296	if (!is_pdc_pat())
 297		return -1;
 298
 299	spin_lock_irqsave(&pdc_lock, flags);
 300	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 301	spin_unlock_irqrestore(&pdc_lock, flags);
 302
 303	return retval;
 304}
 305#endif
 306
 307/**
 308 * pdc_chassis_disp - Updates chassis code
 309 * @disp: value to show on display
 310 */
 311int pdc_chassis_disp(unsigned long disp)
 312{
 313	int retval = 0;
 314	unsigned long flags;
 315
 316	spin_lock_irqsave(&pdc_lock, flags);
 317	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 318	spin_unlock_irqrestore(&pdc_lock, flags);
 319
 320	return retval;
 321}
 322
 323/**
 324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
 325 */
 326int __pdc_cpu_rendezvous(void)
 327{
 328	if (is_pdc_pat())
 329		return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
 330	else
 331		return mem_pdc_call(PDC_PROC, 1, 0);
 332}
 333
 334/**
 335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
 336 */
 337void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
 338{
 339	spin_lock(&pdc_lock);
 340}
 341
 342/**
 343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
 344 */
 345void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
 346{
 347	spin_unlock(&pdc_lock);
 348}
 349
 350/**
 351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
 352 * @pdc_entry: pointer to where the PDC entry point should be stored
 353 */
 354int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
 355{
 356	int retval = 0;
 357	unsigned long flags;
 358
 359	if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
 360		*pdc_entry = MEM_PDC;
 361		return 0;
 362	}
 363
 364	spin_lock_irqsave(&pdc_lock, flags);
 365	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
 366			__pa(pdc_result));
 367	*pdc_entry = pdc_result[0];
 368	spin_unlock_irqrestore(&pdc_lock, flags);
 369
 370	return retval;
 371}
 372/**
 373 * pdc_chassis_warn - Fetches chassis warnings
 374 * @warn: The warning value to be shown
 375 */
 376int pdc_chassis_warn(unsigned long *warn)
 377{
 378	int retval = 0;
 379	unsigned long flags;
 380
 381	spin_lock_irqsave(&pdc_lock, flags);
 382	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 383	*warn = pdc_result[0];
 384	spin_unlock_irqrestore(&pdc_lock, flags);
 385
 386	return retval;
 387}
 388
 389int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 390{
 391	int ret;
 392
 393	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 394	convert_to_wide(pdc_result);
 395	pdc_coproc_info->ccr_functional = pdc_result[0];
 396	pdc_coproc_info->ccr_present = pdc_result[1];
 397	pdc_coproc_info->revision = pdc_result[17];
 398	pdc_coproc_info->model = pdc_result[18];
 399
 400	return ret;
 401}
 402
 403/**
 404 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 405 * @pdc_coproc_info: Return buffer address.
 406 *
 407 * This PDC call returns the presence and status of all the coprocessors
 408 * attached to the processor.
 409 */
 410int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 411{
 412	int ret;
 413	unsigned long flags;
 414
 415	spin_lock_irqsave(&pdc_lock, flags);
 416	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 417	spin_unlock_irqrestore(&pdc_lock, flags);
 418
 419	return ret;
 420}
 421
 422/**
 423 * pdc_iodc_read - Read data from the modules IODC.
 424 * @actcnt: The actual number of bytes.
 425 * @hpa: The HPA of the module for the iodc read.
 426 * @index: The iodc entry point.
 427 * @iodc_data: A buffer memory for the iodc options.
 428 * @iodc_data_size: Size of the memory buffer.
 429 *
 430 * This PDC call reads from the IODC of the module specified by the hpa
 431 * argument.
 432 */
 433int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 434		  void *iodc_data, unsigned int iodc_data_size)
 435{
 436	int retval;
 437	unsigned long flags;
 438
 439	spin_lock_irqsave(&pdc_lock, flags);
 440	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 441			      index, __pa(pdc_result2), iodc_data_size);
 442	convert_to_wide(pdc_result);
 443	*actcnt = pdc_result[0];
 444	memcpy(iodc_data, pdc_result2, iodc_data_size);
 445	spin_unlock_irqrestore(&pdc_lock, flags);
 446
 447	return retval;
 448}
 449EXPORT_SYMBOL(pdc_iodc_read);
 450
 451/**
 452 * pdc_system_map_find_mods - Locate unarchitected modules.
 453 * @pdc_mod_info: Return buffer address.
 454 * @mod_path: pointer to dev path structure.
 455 * @mod_index: fixed address module index.
 456 *
 457 * To locate and identify modules which reside at fixed I/O addresses, which
 458 * do not self-identify via architected bus walks.
 459 */
 460int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 461			     struct pdc_module_path *mod_path, long mod_index)
 462{
 463	int retval;
 464	unsigned long flags;
 465
 466	spin_lock_irqsave(&pdc_lock, flags);
 467	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 468			      __pa(pdc_result2), mod_index);
 469	convert_to_wide(pdc_result);
 470	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 471	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 472	spin_unlock_irqrestore(&pdc_lock, flags);
 473
 474	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 475	return retval;
 476}
 477
 478/**
 479 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 480 * @pdc_addr_info: Return buffer address.
 481 * @mod_index: Fixed address module index.
 482 * @addr_index: Address range index.
 483 * 
 484 * Retrieve additional information about subsequent address ranges for modules
 485 * with multiple address ranges.  
 486 */
 487int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 488			      long mod_index, long addr_index)
 489{
 490	int retval;
 491	unsigned long flags;
 492
 493	spin_lock_irqsave(&pdc_lock, flags);
 494	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 495			      mod_index, addr_index);
 496	convert_to_wide(pdc_result);
 497	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 498	spin_unlock_irqrestore(&pdc_lock, flags);
 499
 500	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 501	return retval;
 502}
 503
 504/**
 505 * pdc_model_info - Return model information about the processor.
 506 * @model: The return buffer.
 507 *
 508 * Returns the version numbers, identifiers, and capabilities from the processor module.
 509 */
 510int pdc_model_info(struct pdc_model *model) 
 511{
 512	int retval;
 513	unsigned long flags;
 514
 515	spin_lock_irqsave(&pdc_lock, flags);
 516	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 517	convert_to_wide(pdc_result);
 518	memcpy(model, pdc_result, sizeof(*model));
 519	spin_unlock_irqrestore(&pdc_lock, flags);
 520
 521	return retval;
 522}
 523
 524/**
 525 * pdc_model_sysmodel - Get the system model name.
 526 * @os_id: The operating system ID asked for (an OS_ID_* value)
 527 * @name: A char array of at least 81 characters.
 528 *
 529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 531 * on HP/UX.
 532 */
 533int pdc_model_sysmodel(unsigned int os_id, char *name)
 534{
 535        int retval;
 536	unsigned long flags;
 537
 538        spin_lock_irqsave(&pdc_lock, flags);
 539        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 540                              os_id, __pa(name));
 541        convert_to_wide(pdc_result);
 542
 543        if (retval == PDC_OK) {
 544                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 545        } else {
 546                name[0] = 0;
 547        }
 548        spin_unlock_irqrestore(&pdc_lock, flags);
 549
 550        return retval;
 551}
 552
 553/**
 554 * pdc_model_versions - Identify the version number of each processor.
 555 * @versions: The return buffer.
 556 * @id: The id of the processor to check.
 557 *
 558 * Returns the version number for each processor component.
 559 *
 560 * This comment was here before, but I do not know what it means :( -RB
 561 * id: 0 = cpu revision, 1 = boot-rom-version
 562 */
 563int pdc_model_versions(unsigned long *versions, int id)
 564{
 565        int retval;
 566	unsigned long flags;
 567
 568        spin_lock_irqsave(&pdc_lock, flags);
 569        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 570        convert_to_wide(pdc_result);
 571        *versions = pdc_result[0];
 572        spin_unlock_irqrestore(&pdc_lock, flags);
 573
 574        return retval;
 575}
 576
 577/**
 578 * pdc_model_cpuid - Returns the CPU_ID.
 579 * @cpu_id: The return buffer.
 580 *
 581 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 582 * the processor module.
 583 */
 584int pdc_model_cpuid(unsigned long *cpu_id)
 585{
 586        int retval;
 587	unsigned long flags;
 588
 589        spin_lock_irqsave(&pdc_lock, flags);
 590        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 591        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 592        convert_to_wide(pdc_result);
 593        *cpu_id = pdc_result[0];
 594        spin_unlock_irqrestore(&pdc_lock, flags);
 595
 596        return retval;
 597}
 598
 599/**
 600 * pdc_model_capabilities - Returns the platform capabilities.
 601 * @capabilities: The return buffer.
 602 *
 603 * Returns information about platform support for 32- and/or 64-bit
 604 * OSes, IO-PDIR coherency, and virtual aliasing.
 605 */
 606int pdc_model_capabilities(unsigned long *capabilities)
 607{
 608        int retval;
 609	unsigned long flags;
 610
 611        spin_lock_irqsave(&pdc_lock, flags);
 612        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 613        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 614        convert_to_wide(pdc_result);
 615        if (retval == PDC_OK) {
 616                *capabilities = pdc_result[0];
 617        } else {
 618                *capabilities = PDC_MODEL_OS32;
 619        }
 620        spin_unlock_irqrestore(&pdc_lock, flags);
 621
 622        return retval;
 623}
 624
 625/**
 626 * pdc_model_platform_info - Returns machine product and serial number.
 627 * @orig_prod_num: Return buffer for original product number.
 628 * @current_prod_num: Return buffer for current product number.
 629 * @serial_no: Return buffer for serial number.
 630 *
 631 * Returns strings containing the original and current product numbers and the
 632 * serial number of the system.
 633 */
 634int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
 635		char *serial_no)
 636{
 637	int retval;
 638	unsigned long flags;
 639
 640	spin_lock_irqsave(&pdc_lock, flags);
 641	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
 642		__pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
 643	convert_to_wide(pdc_result);
 644	spin_unlock_irqrestore(&pdc_lock, flags);
 645
 646	return retval;
 647}
 648
 649/**
 650 * pdc_cache_info - Return cache and TLB information.
 651 * @cache_info: The return buffer.
 652 *
 653 * Returns information about the processor's cache and TLB.
 654 */
 655int pdc_cache_info(struct pdc_cache_info *cache_info)
 656{
 657        int retval;
 658	unsigned long flags;
 659
 660        spin_lock_irqsave(&pdc_lock, flags);
 661        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 662        convert_to_wide(pdc_result);
 663        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 664        spin_unlock_irqrestore(&pdc_lock, flags);
 665
 666        return retval;
 667}
 668
 669/**
 670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 671 * @space_bits: Should be 0, if not, bad mojo!
 672 *
 673 * Returns information about Space ID hashing.
 674 */
 675int pdc_spaceid_bits(unsigned long *space_bits)
 676{
 677	int retval;
 678	unsigned long flags;
 679
 680	spin_lock_irqsave(&pdc_lock, flags);
 681	pdc_result[0] = 0;
 682	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 683	convert_to_wide(pdc_result);
 684	*space_bits = pdc_result[0];
 685	spin_unlock_irqrestore(&pdc_lock, flags);
 686
 687	return retval;
 688}
 689
 
 690/**
 691 * pdc_btlb_info - Return block TLB information.
 692 * @btlb: The return buffer.
 693 *
 694 * Returns information about the hardware Block TLB.
 695 */
 696int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 697{
 698	int retval;
 699	unsigned long flags;
 700
 701	if (IS_ENABLED(CONFIG_PA20))
 702		return PDC_BAD_PROC;
 703
 704	spin_lock_irqsave(&pdc_lock, flags);
 705	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 706	memcpy(btlb, pdc_result, sizeof(*btlb));
 707	spin_unlock_irqrestore(&pdc_lock, flags);
 708
 709	if(retval < 0) {
 710		btlb->max_size = 0;
 711	}
 712	return retval;
 713}
 714
 715int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
 716		    unsigned long entry_info, unsigned long slot)
 717{
 718	int retval;
 719	unsigned long flags;
 720
 721	if (IS_ENABLED(CONFIG_PA20))
 722		return PDC_BAD_PROC;
 723
 724	spin_lock_irqsave(&pdc_lock, flags);
 725	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
 726			      (unsigned long) vpage, physpage, len, entry_info, slot);
 727	spin_unlock_irqrestore(&pdc_lock, flags);
 728	return retval;
 729}
 730
 731int pdc_btlb_purge_all(void)
 732{
 733	int retval;
 734	unsigned long flags;
 735
 736	if (IS_ENABLED(CONFIG_PA20))
 737		return PDC_BAD_PROC;
 
 
 738
 739	spin_lock_irqsave(&pdc_lock, flags);
 740	retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
 741	spin_unlock_irqrestore(&pdc_lock, flags);
 742	return retval;
 743}
 744
 745/**
 746 * pdc_mem_map_hpa - Find fixed module information.  
 747 * @address: The return buffer
 748 * @mod_path: pointer to dev path structure.
 749 *
 750 * This call was developed for S700 workstations to allow the kernel to find
 751 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 752 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 753 * call.
 754 *
 755 * This call is supported by all existing S700 workstations (up to  Gecko).
 756 */
 757int pdc_mem_map_hpa(struct pdc_memory_map *address,
 758		struct pdc_module_path *mod_path)
 759{
 760        int retval;
 761	unsigned long flags;
 762
 763	if (IS_ENABLED(CONFIG_PA20))
 764		return PDC_BAD_PROC;
 765
 766        spin_lock_irqsave(&pdc_lock, flags);
 767        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 768        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 769				__pa(pdc_result2));
 770        memcpy(address, pdc_result, sizeof(*address));
 771        spin_unlock_irqrestore(&pdc_lock, flags);
 772
 773        return retval;
 774}
 
 775
 776/**
 777 * pdc_lan_station_id - Get the LAN address.
 778 * @lan_addr: The return buffer.
 779 * @hpa: The network device HPA.
 780 *
 781 * Get the LAN station address when it is not directly available from the LAN hardware.
 782 */
 783int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 784{
 785	int retval;
 786	unsigned long flags;
 787
 788	spin_lock_irqsave(&pdc_lock, flags);
 789	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 790			__pa(pdc_result), hpa);
 791	if (retval < 0) {
 792		/* FIXME: else read MAC from NVRAM */
 793		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 794	} else {
 795		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 796	}
 797	spin_unlock_irqrestore(&pdc_lock, flags);
 798
 799	return retval;
 800}
 801EXPORT_SYMBOL(pdc_lan_station_id);
 802
 803/**
 804 * pdc_stable_read - Read data from Stable Storage.
 805 * @staddr: Stable Storage address to access.
 806 * @memaddr: The memory address where Stable Storage data shall be copied.
 807 * @count: number of bytes to transfer. count is multiple of 4.
 808 *
 809 * This PDC call reads from the Stable Storage address supplied in staddr
 810 * and copies count bytes to the memory address memaddr.
 811 * The call will fail if staddr+count > PDC_STABLE size.
 812 */
 813int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 814{
 815       int retval;
 816	unsigned long flags;
 817
 818       spin_lock_irqsave(&pdc_lock, flags);
 819       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 820               __pa(pdc_result), count);
 821       convert_to_wide(pdc_result);
 822       memcpy(memaddr, pdc_result, count);
 823       spin_unlock_irqrestore(&pdc_lock, flags);
 824
 825       return retval;
 826}
 827EXPORT_SYMBOL(pdc_stable_read);
 828
 829/**
 830 * pdc_stable_write - Write data to Stable Storage.
 831 * @staddr: Stable Storage address to access.
 832 * @memaddr: The memory address where Stable Storage data shall be read from.
 833 * @count: number of bytes to transfer. count is multiple of 4.
 834 *
 835 * This PDC call reads count bytes from the supplied memaddr address,
 836 * and copies count bytes to the Stable Storage address staddr.
 837 * The call will fail if staddr+count > PDC_STABLE size.
 838 */
 839int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 840{
 841       int retval;
 842	unsigned long flags;
 843
 844       spin_lock_irqsave(&pdc_lock, flags);
 845       memcpy(pdc_result, memaddr, count);
 846       convert_to_wide(pdc_result);
 847       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 848               __pa(pdc_result), count);
 849       spin_unlock_irqrestore(&pdc_lock, flags);
 850
 851       return retval;
 852}
 853EXPORT_SYMBOL(pdc_stable_write);
 854
 855/**
 856 * pdc_stable_get_size - Get Stable Storage size in bytes.
 857 * @size: pointer where the size will be stored.
 858 *
 859 * This PDC call returns the number of bytes in the processor's Stable
 860 * Storage, which is the number of contiguous bytes implemented in Stable
 861 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 862 * which is a multiple of four.
 863 */
 864int pdc_stable_get_size(unsigned long *size)
 865{
 866       int retval;
 867	unsigned long flags;
 868
 869       spin_lock_irqsave(&pdc_lock, flags);
 870       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 871       *size = pdc_result[0];
 872       spin_unlock_irqrestore(&pdc_lock, flags);
 873
 874       return retval;
 875}
 876EXPORT_SYMBOL(pdc_stable_get_size);
 877
 878/**
 879 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 880 *
 881 * This PDC call is meant to be used to check the integrity of the current
 882 * contents of Stable Storage.
 883 */
 884int pdc_stable_verify_contents(void)
 885{
 886       int retval;
 887	unsigned long flags;
 888
 889       spin_lock_irqsave(&pdc_lock, flags);
 890       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 891       spin_unlock_irqrestore(&pdc_lock, flags);
 892
 893       return retval;
 894}
 895EXPORT_SYMBOL(pdc_stable_verify_contents);
 896
 897/**
 898 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 899 * the validity indicator.
 900 *
 901 * This PDC call will erase all contents of Stable Storage. Use with care!
 902 */
 903int pdc_stable_initialize(void)
 904{
 905       int retval;
 906	unsigned long flags;
 907
 908       spin_lock_irqsave(&pdc_lock, flags);
 909       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 910       spin_unlock_irqrestore(&pdc_lock, flags);
 911
 912       return retval;
 913}
 914EXPORT_SYMBOL(pdc_stable_initialize);
 915
 916/**
 917 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 918 * @hwpath: fully bc.mod style path to the device.
 919 * @initiator: the array to return the result into
 920 *
 921 * Get the SCSI operational parameters from PDC.
 922 * Needed since HPUX never used BIOS or symbios card NVRAM.
 923 * Most ncr/sym cards won't have an entry and just use whatever
 924 * capabilities of the card are (eg Ultra, LVD). But there are
 925 * several cases where it's useful:
 926 *    o set SCSI id for Multi-initiator clusters,
 927 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 928 *    o bus width exported is less than what the interface chip supports.
 929 */
 930int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 931{
 932	int retval;
 933	unsigned long flags;
 934
 935	spin_lock_irqsave(&pdc_lock, flags);
 936
 937/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 938#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 939	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 940
 941	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 942			      __pa(pdc_result), __pa(hwpath));
 943	if (retval < PDC_OK)
 944		goto out;
 945
 946	if (pdc_result[0] < 16) {
 947		initiator->host_id = pdc_result[0];
 948	} else {
 949		initiator->host_id = -1;
 950	}
 951
 952	/*
 953	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 954	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 955	 */
 956	switch (pdc_result[1]) {
 957		case  1: initiator->factor = 50; break;
 958		case  2: initiator->factor = 25; break;
 959		case  5: initiator->factor = 12; break;
 960		case 25: initiator->factor = 10; break;
 961		case 20: initiator->factor = 12; break;
 962		case 40: initiator->factor = 10; break;
 963		default: initiator->factor = -1; break;
 964	}
 965
 966	if (IS_SPROCKETS()) {
 967		initiator->width = pdc_result[4];
 968		initiator->mode = pdc_result[5];
 969	} else {
 970		initiator->width = -1;
 971		initiator->mode = -1;
 972	}
 973
 974 out:
 975	spin_unlock_irqrestore(&pdc_lock, flags);
 976
 977	return (retval >= PDC_OK);
 978}
 979EXPORT_SYMBOL(pdc_get_initiator);
 980
 981
 982/**
 983 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 984 * @num_entries: The return value.
 985 * @hpa: The HPA for the device.
 986 *
 987 * This PDC function returns the number of entries in the specified cell's
 988 * interrupt table.
 989 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 990 */ 
 991int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 992{
 993	int retval;
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&pdc_lock, flags);
 997	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 998			      __pa(pdc_result), hpa);
 999	convert_to_wide(pdc_result);
1000	*num_entries = pdc_result[0];
1001	spin_unlock_irqrestore(&pdc_lock, flags);
1002
1003	return retval;
1004}
1005
1006/** 
1007 * pdc_pci_irt - Get the PCI interrupt routing table.
1008 * @num_entries: The number of entries in the table.
1009 * @hpa: The Hard Physical Address of the device.
1010 * @tbl: 
1011 *
1012 * Get the PCI interrupt routing table for the device at the given HPA.
1013 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014 */
1015int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016{
1017	int retval;
1018	unsigned long flags;
1019
1020	BUG_ON((unsigned long)tbl & 0x7);
1021
1022	spin_lock_irqsave(&pdc_lock, flags);
1023	pdc_result[0] = num_entries;
1024	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
1025			      __pa(pdc_result), hpa, __pa(tbl));
1026	spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028	return retval;
1029}
1030
1031
1032#if 0	/* UNTEST CODE - left here in case someone needs it */
1033
1034/** 
1035 * pdc_pci_config_read - read PCI config space.
1036 * @hpa: Token from PDC to indicate which PCI device
1037 * @cfg_addr: Configuration space address to read from
1038 *
1039 * Read PCI Configuration space *before* linux PCI subsystem is running.
1040 */
1041unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042{
1043	int retval;
1044	unsigned long flags;
1045
1046	spin_lock_irqsave(&pdc_lock, flags);
1047	pdc_result[0] = 0;
1048	pdc_result[1] = 0;
1049	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
1050			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051	spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053	return retval ? ~0 : (unsigned int) pdc_result[0];
1054}
1055
1056
1057/** 
1058 * pdc_pci_config_write - read PCI config space.
1059 * @hpa: Token from PDC to indicate which PCI device
1060 * @cfg_addr: Configuration space address to write
1061 * @val: Value we want in the 32-bit register
1062 *
1063 * Write PCI Configuration space *before* linux PCI subsystem is running.
1064 */
1065void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066{
1067	int retval;
1068	unsigned long flags;
1069
1070	spin_lock_irqsave(&pdc_lock, flags);
1071	pdc_result[0] = 0;
1072	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
1073			      __pa(pdc_result), hpa,
1074			      cfg_addr&~3UL, 4UL, (unsigned long) val);
1075	spin_unlock_irqrestore(&pdc_lock, flags);
1076
1077	return retval;
1078}
1079#endif /* UNTESTED CODE */
1080
1081/**
1082 * pdc_tod_read - Read the Time-Of-Day clock.
1083 * @tod: The return buffer:
1084 *
1085 * Read the Time-Of-Day clock
1086 */
1087int pdc_tod_read(struct pdc_tod *tod)
1088{
1089        int retval;
1090	unsigned long flags;
1091
1092        spin_lock_irqsave(&pdc_lock, flags);
1093        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094        convert_to_wide(pdc_result);
1095        memcpy(tod, pdc_result, sizeof(*tod));
1096        spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098        return retval;
1099}
1100EXPORT_SYMBOL(pdc_tod_read);
1101
1102int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103{
1104	int retval;
1105	unsigned long flags;
1106
1107	spin_lock_irqsave(&pdc_lock, flags);
1108	retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109	convert_to_wide(pdc_result);
1110	memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111	spin_unlock_irqrestore(&pdc_lock, flags);
1112
1113	return retval;
1114}
1115
1116int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117		unsigned long *pdt_entries_ptr)
1118{
1119	int retval;
1120	unsigned long flags;
1121
1122	spin_lock_irqsave(&pdc_lock, flags);
1123	retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124			__pa(pdt_entries_ptr));
1125	if (retval == PDC_OK) {
1126		convert_to_wide(pdc_result);
1127		memcpy(pret, pdc_result, sizeof(*pret));
1128	}
1129	spin_unlock_irqrestore(&pdc_lock, flags);
1130
1131#ifdef CONFIG_64BIT
1132	/*
1133	 * 64-bit kernels should not call this PDT function in narrow mode.
1134	 * The pdt_entries_ptr array above will now contain 32-bit values
1135	 */
1136	if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137		return PDC_ERROR;
1138#endif
1139
1140	return retval;
1141}
1142
1143/**
1144 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145 * @ret: pointer to return buffer
1146 */
1147int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148{
1149	int retval;
1150	unsigned long flags;
1151
1152	spin_lock_irqsave(&pdc_lock, flags);
1153	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154			      __pa(ret), sizeof(*ret));
1155	spin_unlock_irqrestore(&pdc_lock, flags);
1156	return retval;
1157}
1158
1159/**
1160 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161 * @ret: pointer to return buffer
1162 */
1163int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164{
1165	int retval;
1166	unsigned long flags;
1167
1168	spin_lock_irqsave(&pdc_lock, flags);
1169	retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170			      __pa(ret), sizeof(*ret));
1171	spin_unlock_irqrestore(&pdc_lock, flags);
1172	return retval;
1173}
1174
1175/**
1176 * pdc_tod_set - Set the Time-Of-Day clock.
1177 * @sec: The number of seconds since epoch.
1178 * @usec: The number of micro seconds.
1179 *
1180 * Set the Time-Of-Day clock.
1181 */ 
1182int pdc_tod_set(unsigned long sec, unsigned long usec)
1183{
1184        int retval;
1185	unsigned long flags;
1186
1187        spin_lock_irqsave(&pdc_lock, flags);
1188        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189        spin_unlock_irqrestore(&pdc_lock, flags);
1190
1191        return retval;
1192}
1193EXPORT_SYMBOL(pdc_tod_set);
1194
1195#ifdef CONFIG_64BIT
1196int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197		struct pdc_memory_table *tbl, unsigned long entries)
1198{
1199	int retval;
1200	unsigned long flags;
1201
1202	spin_lock_irqsave(&pdc_lock, flags);
1203	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204	convert_to_wide(pdc_result);
1205	memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207	spin_unlock_irqrestore(&pdc_lock, flags);
1208
1209	return retval;
1210}
1211#endif /* CONFIG_64BIT */
1212
1213/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
1214 * so I guessed at unsigned long.  Someone who knows what this does, can fix
1215 * it later. :)
1216 */
1217int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218{
1219        int retval;
1220	unsigned long flags;
1221
1222        spin_lock_irqsave(&pdc_lock, flags);
1223        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225        spin_unlock_irqrestore(&pdc_lock, flags);
1226
1227        return retval;
1228}
1229
1230/*
1231 * pdc_do_reset - Reset the system.
1232 *
1233 * Reset the system.
1234 */
1235int pdc_do_reset(void)
1236{
1237        int retval;
1238	unsigned long flags;
1239
1240        spin_lock_irqsave(&pdc_lock, flags);
1241        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242        spin_unlock_irqrestore(&pdc_lock, flags);
1243
1244        return retval;
1245}
1246
1247/*
1248 * pdc_soft_power_info - Enable soft power switch.
1249 * @power_reg: address of soft power register
1250 *
1251 * Return the absolute address of the soft power switch register
1252 */
1253int __init pdc_soft_power_info(unsigned long *power_reg)
1254{
1255	int retval;
1256	unsigned long flags;
1257
1258	*power_reg = (unsigned long) (-1);
1259	
1260	spin_lock_irqsave(&pdc_lock, flags);
1261	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262	if (retval == PDC_OK) {
1263                convert_to_wide(pdc_result);
1264                *power_reg = f_extend(pdc_result[0]);
1265	}
1266	spin_unlock_irqrestore(&pdc_lock, flags);
1267
1268	return retval;
1269}
1270
1271/*
1272 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273 * @sw_control: 0 for hardware control, 1 for software control
1274 *
1275 *
1276 * This PDC function places the soft power button under software or
1277 * hardware control.
1278 * Under software control the OS may control to when to allow to shut
1279 * down the system. Under hardware control pressing the power button
1280 * powers off the system immediately.
1281 *
1282 * The _panic version relies on spin_trylock to prevent deadlock
1283 * on panic path.
1284 */
1285int pdc_soft_power_button(int sw_control)
1286{
1287	int retval;
1288	unsigned long flags;
1289
1290	spin_lock_irqsave(&pdc_lock, flags);
1291	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292	spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294	return retval;
1295}
1296
1297int pdc_soft_power_button_panic(int sw_control)
1298{
1299	int retval;
1300	unsigned long flags;
1301
1302	if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303		pr_emerg("Couldn't enable soft power button\n");
1304		return -EBUSY; /* ignored by the panic notifier */
1305	}
1306
1307	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308	spin_unlock_irqrestore(&pdc_lock, flags);
1309
1310	return retval;
1311}
1312
1313/*
1314 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316 * who knows what other platform firmware might do with this OS "hook".
1317 */
1318void pdc_io_reset(void)
1319{
1320	unsigned long flags;
1321
1322	spin_lock_irqsave(&pdc_lock, flags);
1323	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324	spin_unlock_irqrestore(&pdc_lock, flags);
1325}
1326
1327/*
1328 * pdc_io_reset_devices - Hack to Stop USB controller
1329 *
1330 * If PDC used the usb controller, the usb controller
1331 * is still running and will crash the machines during iommu 
1332 * setup, because of still running DMA. This PDC call
1333 * stops the USB controller.
1334 * Normally called after calling pdc_io_reset().
1335 */
1336void pdc_io_reset_devices(void)
1337{
1338	unsigned long flags;
1339
1340	spin_lock_irqsave(&pdc_lock, flags);
1341	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342	spin_unlock_irqrestore(&pdc_lock, flags);
1343}
1344
1345#endif /* defined(BOOTLOADER) */
1346
1347/* locked by pdc_lock */
1348static char iodc_dbuf[4096] __page_aligned_bss;
1349
1350/**
1351 * pdc_iodc_print - Console print using IODC.
1352 * @str: the string to output.
1353 * @count: length of str
1354 *
1355 * Note that only these special chars are architected for console IODC io:
1356 * BEL, BS, CR, and LF. Others are passed through.
1357 * Since the HP console requires CR+LF to perform a 'newline', we translate
1358 * "\n" to "\r\n".
1359 */
1360int pdc_iodc_print(const unsigned char *str, unsigned count)
1361{
1362	unsigned int i, found = 0;
1363	unsigned long flags;
1364
1365	count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366
1367	spin_lock_irqsave(&pdc_lock, flags);
1368	for (i = 0; i < count;) {
1369		switch(str[i]) {
1370		case '\n':
1371			iodc_dbuf[i+0] = '\r';
1372			iodc_dbuf[i+1] = '\n';
1373			i += 2;
1374			found = 1;
1375			goto print;
1376		default:
1377			iodc_dbuf[i] = str[i];
1378			i++;
1379			break;
1380		}
1381	}
1382
1383print:
1384	real32_call(PAGE0->mem_cons.iodc_io,
1385		(unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386		PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387		__pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388	spin_unlock_irqrestore(&pdc_lock, flags);
 
1389
1390	return i - found;
1391}
1392
1393#if !defined(BOOTLOADER)
1394/**
1395 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396 *
1397 * Read a character (non-blocking) from the PDC console, returns -1 if
1398 * key is not present.
1399 */
1400int pdc_iodc_getc(void)
1401{
1402	int ch;
1403	int status;
1404	unsigned long flags;
1405
1406	/* Bail if no console input device. */
1407	if (!PAGE0->mem_kbd.iodc_io)
1408		return 0;
1409	
1410	/* wait for a keyboard (rs232)-input */
1411	spin_lock_irqsave(&pdc_lock, flags);
1412	real32_call(PAGE0->mem_kbd.iodc_io,
1413		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1415		    __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416
1417	ch = *iodc_dbuf;
1418	/* like convert_to_wide() but for first return value only: */
1419	status = *(int *)&pdc_result;
1420	spin_unlock_irqrestore(&pdc_lock, flags);
1421
1422	if (status == 0)
1423	    return -1;
1424	
1425	return ch;
1426}
1427
1428int pdc_sti_call(unsigned long func, unsigned long flags,
1429		unsigned long inptr, unsigned long outputr,
1430		unsigned long glob_cfg, int do_call64)
1431{
1432	int retval = 0;
1433	unsigned long irqflags;
1434
1435	spin_lock_irqsave(&pdc_lock, irqflags);
1436	if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437#ifdef CONFIG_64BIT
1438		retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439#else
1440		WARN_ON(1);
1441#endif
1442	} else {
1443		retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444	}
1445	spin_unlock_irqrestore(&pdc_lock, irqflags);
1446
1447	return retval;
1448}
1449EXPORT_SYMBOL(pdc_sti_call);
1450
1451#ifdef CONFIG_64BIT
1452/**
1453 * pdc_pat_cell_get_number - Returns the cell number.
1454 * @cell_info: The return buffer.
1455 *
1456 * This PDC call returns the cell number of the cell from which the call
1457 * is made.
1458 */
1459int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460{
1461	int retval;
1462	unsigned long flags;
1463
1464	spin_lock_irqsave(&pdc_lock, flags);
1465	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467	spin_unlock_irqrestore(&pdc_lock, flags);
1468
1469	return retval;
1470}
1471
1472/**
1473 * pdc_pat_cell_module - Retrieve the cell's module information.
1474 * @actcnt: The number of bytes written to mem_addr.
1475 * @ploc: The physical location.
1476 * @mod: The module index.
1477 * @view_type: The view of the address type.
1478 * @mem_addr: The return buffer.
1479 *
1480 * This PDC call returns information about each module attached to the cell
1481 * at the specified location.
1482 */
1483int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484			unsigned long view_type, void *mem_addr)
1485{
1486	int retval;
1487	unsigned long flags;
1488	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489
1490	spin_lock_irqsave(&pdc_lock, flags);
1491	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1492			      ploc, mod, view_type, __pa(&result));
1493	if(!retval) {
1494		*actcnt = pdc_result[0];
1495		memcpy(mem_addr, &result, *actcnt);
1496	}
1497	spin_unlock_irqrestore(&pdc_lock, flags);
1498
1499	return retval;
1500}
1501
1502/**
1503 * pdc_pat_cell_info - Retrieve the cell's information.
1504 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505 * @actcnt: The number of bytes which should be written to info.
1506 * @offset: offset of the structure.
1507 * @cell_number: The cell number which should be asked, or -1 for current cell.
1508 *
1509 * This PDC call returns information about the given cell (or all cells).
1510 */
1511int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512		unsigned long *actcnt, unsigned long offset,
1513		unsigned long cell_number)
1514{
1515	int retval;
1516	unsigned long flags;
1517	struct pdc_pat_cell_info_rtn_block result;
1518
1519	spin_lock_irqsave(&pdc_lock, flags);
1520	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521			__pa(pdc_result), __pa(&result), *actcnt,
1522			offset, cell_number);
1523	if (!retval) {
1524		*actcnt = pdc_result[0];
1525		memcpy(info, &result, *actcnt);
1526	}
1527	spin_unlock_irqrestore(&pdc_lock, flags);
1528
1529	return retval;
1530}
1531
1532/**
1533 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534 * @cpu_info: The return buffer.
1535 * @hpa: The Hard Physical Address of the CPU.
1536 *
1537 * Retrieve the cpu number for the cpu at the specified HPA.
1538 */
1539int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540{
1541	int retval;
1542	unsigned long flags;
1543
1544	spin_lock_irqsave(&pdc_lock, flags);
1545	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546			      __pa(&pdc_result), hpa);
1547	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548	spin_unlock_irqrestore(&pdc_lock, flags);
1549
1550	return retval;
1551}
1552
1553/**
1554 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555 * @num_entries: The return value.
1556 * @cell_num: The target cell.
1557 *
1558 * This PDC function returns the number of entries in the specified cell's
1559 * interrupt table.
1560 */
1561int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562{
1563	int retval;
1564	unsigned long flags;
1565
1566	spin_lock_irqsave(&pdc_lock, flags);
1567	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568			      __pa(pdc_result), cell_num);
1569	*num_entries = pdc_result[0];
1570	spin_unlock_irqrestore(&pdc_lock, flags);
1571
1572	return retval;
1573}
1574
1575/**
1576 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577 * @r_addr: The return buffer.
1578 * @cell_num: The target cell.
1579 *
1580 * This PDC function returns the actual interrupt table for the specified cell.
1581 */
1582int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583{
1584	int retval;
1585	unsigned long flags;
1586
1587	spin_lock_irqsave(&pdc_lock, flags);
1588	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589			      __pa(r_addr), cell_num);
1590	spin_unlock_irqrestore(&pdc_lock, flags);
1591
1592	return retval;
1593}
1594
1595/**
1596 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597 * @actual_len: The return buffer.
1598 * @mem_addr: Pointer to the memory buffer.
1599 * @count: The number of bytes to read from the buffer.
1600 * @offset: The offset with respect to the beginning of the buffer.
1601 *
1602 */
1603int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1604			    unsigned long count, unsigned long offset)
1605{
1606	int retval;
1607	unsigned long flags;
1608
1609	spin_lock_irqsave(&pdc_lock, flags);
1610	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1611			      __pa(pdc_result2), count, offset);
1612	*actual_len = pdc_result[0];
1613	memcpy(mem_addr, pdc_result2, *actual_len);
1614	spin_unlock_irqrestore(&pdc_lock, flags);
1615
1616	return retval;
1617}
1618
1619/**
1620 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621 * @legacy_rev: The legacy revision.
1622 * @pat_rev: The PAT revision.
1623 * @pdc_cap: The PDC capabilities.
1624 *
1625 */
1626int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627		unsigned long *pat_rev, unsigned long *pdc_cap)
1628{
1629	int retval;
1630	unsigned long flags;
1631
1632	spin_lock_irqsave(&pdc_lock, flags);
1633	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634				__pa(pdc_result));
1635	if (retval == PDC_OK) {
1636		*legacy_rev = pdc_result[0];
1637		*pat_rev = pdc_result[1];
1638		*pdc_cap = pdc_result[2];
1639	}
1640	spin_unlock_irqrestore(&pdc_lock, flags);
1641
1642	return retval;
1643}
1644
1645
1646/**
1647 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648 * @pci_addr: PCI configuration space address for which the read request is being made.
1649 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1650 * @mem_addr: Pointer to return memory buffer.
1651 *
1652 */
1653int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654{
1655	int retval;
1656	unsigned long flags;
1657
1658	spin_lock_irqsave(&pdc_lock, flags);
1659	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660					__pa(pdc_result), pci_addr, pci_size);
1661	switch(pci_size) {
1662		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0]; break;
1663		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0]; break;
1664		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0]; break;
1665	}
1666	spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668	return retval;
1669}
1670
1671/**
1672 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673 * @pci_addr: PCI configuration space address for which the write  request is being made.
1674 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1675 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676 *         written to PCI Config space.
1677 *
1678 */
1679int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680{
1681	int retval;
1682	unsigned long flags;
1683
1684	spin_lock_irqsave(&pdc_lock, flags);
1685	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686				pci_addr, pci_size, val);
1687	spin_unlock_irqrestore(&pdc_lock, flags);
1688
1689	return retval;
1690}
1691
1692/**
1693 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694 * @rinfo: memory pdt information
1695 *
1696 */
1697int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698{
1699	int retval;
1700	unsigned long flags;
1701
1702	spin_lock_irqsave(&pdc_lock, flags);
1703	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704			__pa(&pdc_result));
1705	if (retval == PDC_OK)
1706		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707	spin_unlock_irqrestore(&pdc_lock, flags);
1708
1709	return retval;
1710}
1711
1712/**
1713 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714 *				table of a cell
1715 * @rinfo: memory pdt information
1716 * @cell: cell number
1717 *
1718 */
1719int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720		unsigned long cell)
1721{
1722	int retval;
1723	unsigned long flags;
1724
1725	spin_lock_irqsave(&pdc_lock, flags);
1726	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727			__pa(&pdc_result), cell);
1728	if (retval == PDC_OK)
1729		memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730	spin_unlock_irqrestore(&pdc_lock, flags);
1731
1732	return retval;
1733}
1734
1735/**
1736 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737 * @pret: array of PDT entries
1738 * @pdt_entries_ptr: ptr to hold number of PDT entries
1739 * @max_entries: maximum number of entries to be read
1740 *
1741 */
1742int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743		unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744{
1745	int retval;
1746	unsigned long flags, entries;
1747
1748	spin_lock_irqsave(&pdc_lock, flags);
1749	/* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751			__pa(&pdc_result), parisc_cell_num,
1752			__pa(pdt_entries_ptr));
1753
1754	if (retval == PDC_OK) {
1755		/* build up return value as for PDC_PAT_MEM_PD_READ */
1756		entries = min(pdc_result[0], max_entries);
1757		pret->pdt_entries = entries;
1758		pret->actual_count_bytes = entries * sizeof(unsigned long);
1759	}
1760
1761	spin_unlock_irqrestore(&pdc_lock, flags);
1762	WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763
1764	return retval;
1765}
1766/**
1767 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768 * @pret: array of PDT entries
1769 * @pdt_entries_ptr: ptr to hold number of PDT entries
1770 * @count: number of bytes to read
1771 * @offset: offset to start (in bytes)
1772 *
1773 */
1774int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775		unsigned long *pdt_entries_ptr, unsigned long count,
1776		unsigned long offset)
1777{
1778	int retval;
1779	unsigned long flags, entries;
1780
1781	spin_lock_irqsave(&pdc_lock, flags);
1782	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783		__pa(&pdc_result), __pa(pdt_entries_ptr),
1784		count, offset);
1785
1786	if (retval == PDC_OK) {
1787		entries = min(pdc_result[0], count);
1788		pret->actual_count_bytes = entries;
1789		pret->pdt_entries = entries / sizeof(unsigned long);
1790	}
1791
1792	spin_unlock_irqrestore(&pdc_lock, flags);
1793
1794	return retval;
1795}
1796
1797/**
1798 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799 * @pret: ptr to hold returned information
1800 * @phys_addr: physical address to examine
1801 *
1802 */
1803int pdc_pat_mem_get_dimm_phys_location(
1804		struct pdc_pat_mem_phys_mem_location *pret,
1805		unsigned long phys_addr)
1806{
1807	int retval;
1808	unsigned long flags;
1809
1810	spin_lock_irqsave(&pdc_lock, flags);
1811	retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812		__pa(&pdc_result), phys_addr);
1813
1814	if (retval == PDC_OK)
1815		memcpy(pret, &pdc_result, sizeof(*pret));
1816
1817	spin_unlock_irqrestore(&pdc_lock, flags);
1818
1819	return retval;
1820}
1821#endif /* CONFIG_64BIT */
1822#endif /* defined(BOOTLOADER) */
1823
1824
1825/***************** 32-bit real-mode calls ***********/
1826/* The struct below is used
1827 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828 * real32_call_asm() then uses this stack in narrow real mode
1829 */
1830
1831struct narrow_stack {
1832	/* use int, not long which is 64 bits */
1833	unsigned int arg13;
1834	unsigned int arg12;
1835	unsigned int arg11;
1836	unsigned int arg10;
1837	unsigned int arg9;
1838	unsigned int arg8;
1839	unsigned int arg7;
1840	unsigned int arg6;
1841	unsigned int arg5;
1842	unsigned int arg4;
1843	unsigned int arg3;
1844	unsigned int arg2;
1845	unsigned int arg1;
1846	unsigned int arg0;
1847	unsigned int frame_marker[8];
1848	unsigned int sp;
1849	/* in reality, there's nearly 8k of stack after this */
1850};
1851
1852long real32_call(unsigned long fn, ...)
1853{
1854	va_list args;
1855	extern struct narrow_stack real_stack;
1856	extern unsigned long real32_call_asm(unsigned int *,
1857					     unsigned int *, 
1858					     unsigned int);
1859	
1860	va_start(args, fn);
1861	real_stack.arg0 = va_arg(args, unsigned int);
1862	real_stack.arg1 = va_arg(args, unsigned int);
1863	real_stack.arg2 = va_arg(args, unsigned int);
1864	real_stack.arg3 = va_arg(args, unsigned int);
1865	real_stack.arg4 = va_arg(args, unsigned int);
1866	real_stack.arg5 = va_arg(args, unsigned int);
1867	real_stack.arg6 = va_arg(args, unsigned int);
1868	real_stack.arg7 = va_arg(args, unsigned int);
1869	real_stack.arg8 = va_arg(args, unsigned int);
1870	real_stack.arg9 = va_arg(args, unsigned int);
1871	real_stack.arg10 = va_arg(args, unsigned int);
1872	real_stack.arg11 = va_arg(args, unsigned int);
1873	real_stack.arg12 = va_arg(args, unsigned int);
1874	real_stack.arg13 = va_arg(args, unsigned int);
1875	va_end(args);
1876	
1877	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878}
1879
1880#ifdef CONFIG_64BIT
1881/***************** 64-bit real-mode calls ***********/
1882
1883struct wide_stack {
1884	unsigned long arg0;
1885	unsigned long arg1;
1886	unsigned long arg2;
1887	unsigned long arg3;
1888	unsigned long arg4;
1889	unsigned long arg5;
1890	unsigned long arg6;
1891	unsigned long arg7;
1892	unsigned long arg8;
1893	unsigned long arg9;
1894	unsigned long arg10;
1895	unsigned long arg11;
1896	unsigned long arg12;
1897	unsigned long arg13;
1898	unsigned long frame_marker[2];	/* rp, previous sp */
1899	unsigned long sp;
1900	/* in reality, there's nearly 8k of stack after this */
1901};
1902
1903long real64_call(unsigned long fn, ...)
1904{
1905	va_list args;
1906	extern struct wide_stack real64_stack;
1907	extern unsigned long real64_call_asm(unsigned long *,
1908					     unsigned long *, 
1909					     unsigned long);
1910    
1911	va_start(args, fn);
1912	real64_stack.arg0 = va_arg(args, unsigned long);
1913	real64_stack.arg1 = va_arg(args, unsigned long);
1914	real64_stack.arg2 = va_arg(args, unsigned long);
1915	real64_stack.arg3 = va_arg(args, unsigned long);
1916	real64_stack.arg4 = va_arg(args, unsigned long);
1917	real64_stack.arg5 = va_arg(args, unsigned long);
1918	real64_stack.arg6 = va_arg(args, unsigned long);
1919	real64_stack.arg7 = va_arg(args, unsigned long);
1920	real64_stack.arg8 = va_arg(args, unsigned long);
1921	real64_stack.arg9 = va_arg(args, unsigned long);
1922	real64_stack.arg10 = va_arg(args, unsigned long);
1923	real64_stack.arg11 = va_arg(args, unsigned long);
1924	real64_stack.arg12 = va_arg(args, unsigned long);
1925	real64_stack.arg13 = va_arg(args, unsigned long);
1926	va_end(args);
1927	
1928	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929}
1930
1931#endif /* CONFIG_64BIT */
v3.1
 
   1/*
   2 * arch/parisc/kernel/firmware.c  - safe PDC access routines
   3 *
   4 *	PDC == Processor Dependent Code
   5 *
   6 * See http://www.parisc-linux.org/documentation/index.html
 
   7 * for documentation describing the entry points and calling
   8 * conventions defined below.
   9 *
  10 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
  11 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
  12 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
  13 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
  14 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
  15 *
  16 *    This program is free software; you can redistribute it and/or modify
  17 *    it under the terms of the GNU General Public License as published by
  18 *    the Free Software Foundation; either version 2 of the License, or
  19 *    (at your option) any later version.
  20 *
  21 */
  22
  23/*	I think it would be in everyone's best interest to follow this
  24 *	guidelines when writing PDC wrappers:
  25 *
  26 *	 - the name of the pdc wrapper should match one of the macros
  27 *	   used for the first two arguments
  28 *	 - don't use caps for random parts of the name
  29 *	 - use the static PDC result buffers and "copyout" to structs
  30 *	   supplied by the caller to encapsulate alignment restrictions
  31 *	 - hold pdc_lock while in PDC or using static result buffers
  32 *	 - use __pa() to convert virtual (kernel) pointers to physical
  33 *	   ones.
  34 *	 - the name of the struct used for pdc return values should equal
  35 *	   one of the macros used for the first two arguments to the
  36 *	   corresponding PDC call
  37 *	 - keep the order of arguments
  38 *	 - don't be smart (setting trailing NUL bytes for strings, return
  39 *	   something useful even if the call failed) unless you are sure
  40 *	   it's not going to affect functionality or performance
  41 *
  42 *	Example:
  43 *	int pdc_cache_info(struct pdc_cache_info *cache_info )
  44 *	{
  45 *		int retval;
  46 *
  47 *		spin_lock_irq(&pdc_lock);
  48 *		retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
  49 *		convert_to_wide(pdc_result);
  50 *		memcpy(cache_info, pdc_result, sizeof(*cache_info));
  51 *		spin_unlock_irq(&pdc_lock);
  52 *
  53 *		return retval;
  54 *	}
  55 *					prumpf	991016	
  56 */
  57
  58#include <stdarg.h>
  59
  60#include <linux/delay.h>
  61#include <linux/init.h>
  62#include <linux/kernel.h>
  63#include <linux/module.h>
  64#include <linux/string.h>
  65#include <linux/spinlock.h>
  66
  67#include <asm/page.h>
  68#include <asm/pdc.h>
  69#include <asm/pdcpat.h>
  70#include <asm/system.h>
  71#include <asm/processor.h>	/* for boot_cpu_data */
  72
 
 
 
 
 
 
  73static DEFINE_SPINLOCK(pdc_lock);
  74extern unsigned long pdc_result[NUM_PDC_RESULT];
  75extern unsigned long pdc_result2[NUM_PDC_RESULT];
 
 
  76
  77#ifdef CONFIG_64BIT
  78#define WIDE_FIRMWARE 0x1
  79#define NARROW_FIRMWARE 0x2
  80
  81/* Firmware needs to be initially set to narrow to determine the 
  82 * actual firmware width. */
  83int parisc_narrow_firmware __read_mostly = 1;
  84#endif
  85
  86/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
  87 * and MEM_PDC calls are always the same width as the OS.
  88 * Some PAT boxes may have 64-bit IODC I/O.
  89 *
  90 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
  91 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
  92 * This allowed wide kernels to run on Cxxx boxes.
  93 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
  94 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
  95 */
  96
  97#ifdef CONFIG_64BIT
  98long real64_call(unsigned long function, ...);
  99#endif
 100long real32_call(unsigned long function, ...);
 101
 102#ifdef CONFIG_64BIT
 103#   define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
 104#   define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
 105#else
 106#   define MEM_PDC (unsigned long)PAGE0->mem_pdc
 107#   define mem_pdc_call(args...) real32_call(MEM_PDC, args)
 108#endif
 109
 110
 111/**
 112 * f_extend - Convert PDC addresses to kernel addresses.
 113 * @address: Address returned from PDC.
 114 *
 115 * This function is used to convert PDC addresses into kernel addresses
 116 * when the PDC address size and kernel address size are different.
 117 */
 118static unsigned long f_extend(unsigned long address)
 119{
 120#ifdef CONFIG_64BIT
 121	if(unlikely(parisc_narrow_firmware)) {
 122		if((address & 0xff000000) == 0xf0000000)
 123			return 0xf0f0f0f000000000UL | (u32)address;
 124
 125		if((address & 0xf0000000) == 0xf0000000)
 126			return 0xffffffff00000000UL | (u32)address;
 127	}
 128#endif
 129	return address;
 130}
 131
 132/**
 133 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
 134 * @address: The return buffer from PDC.
 135 *
 136 * This function is used to convert the return buffer addresses retrieved from PDC
 137 * into kernel addresses when the PDC address size and kernel address size are
 138 * different.
 139 */
 140static void convert_to_wide(unsigned long *addr)
 141{
 142#ifdef CONFIG_64BIT
 143	int i;
 144	unsigned int *p = (unsigned int *)addr;
 145
 146	if(unlikely(parisc_narrow_firmware)) {
 147		for(i = 31; i >= 0; --i)
 148			addr[i] = p[i];
 149	}
 150#endif
 151}
 152
 153#ifdef CONFIG_64BIT
 154void __cpuinit set_firmware_width_unlocked(void)
 155{
 156	int ret;
 157
 158	ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
 159		__pa(pdc_result), 0);
 
 
 160	convert_to_wide(pdc_result);
 161	if (pdc_result[0] != NARROW_FIRMWARE)
 162		parisc_narrow_firmware = 0;
 163}
 164	
 165/**
 166 * set_firmware_width - Determine if the firmware is wide or narrow.
 167 * 
 168 * This function must be called before any pdc_* function that uses the
 169 * convert_to_wide function.
 170 */
 171void __cpuinit set_firmware_width(void)
 172{
 173	unsigned long flags;
 
 
 
 
 
 174	spin_lock_irqsave(&pdc_lock, flags);
 175	set_firmware_width_unlocked();
 176	spin_unlock_irqrestore(&pdc_lock, flags);
 177}
 178#else
 179void __cpuinit set_firmware_width_unlocked(void) {
 
 180	return;
 181}
 182
 183void __cpuinit set_firmware_width(void) {
 
 184	return;
 185}
 186#endif /*CONFIG_64BIT*/
 187
 
 
 188/**
 189 * pdc_emergency_unlock - Unlock the linux pdc lock
 190 *
 191 * This call unlocks the linux pdc lock in case we need some PDC functions
 192 * (like pdc_add_valid) during kernel stack dump.
 193 */
 194void pdc_emergency_unlock(void)
 195{
 196 	/* Spinlock DEBUG code freaks out if we unconditionally unlock */
 197        if (spin_is_locked(&pdc_lock))
 198		spin_unlock(&pdc_lock);
 199}
 200
 201
 202/**
 203 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
 204 * @address: Address to be verified.
 205 *
 206 * This PDC call attempts to read from the specified address and verifies
 207 * if the address is valid.
 208 * 
 209 * The return value is PDC_OK (0) in case accessing this address is valid.
 210 */
 211int pdc_add_valid(unsigned long address)
 212{
 213        int retval;
 214	unsigned long flags;
 215
 216        spin_lock_irqsave(&pdc_lock, flags);
 217        retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
 218        spin_unlock_irqrestore(&pdc_lock, flags);
 219
 220        return retval;
 221}
 222EXPORT_SYMBOL(pdc_add_valid);
 223
 224/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 225 * pdc_chassis_info - Return chassis information.
 226 * @result: The return buffer.
 227 * @chassis_info: The memory buffer address.
 
 228 * @len: The size of the memory buffer address.
 229 *
 230 * An HVERSION dependent call for returning the chassis information.
 231 */
 232int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
 233{
 234        int retval;
 235	unsigned long flags;
 236
 237        spin_lock_irqsave(&pdc_lock, flags);
 238        memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
 239        memcpy(&pdc_result2, led_info, len);
 240        retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
 241                              __pa(pdc_result), __pa(pdc_result2), len);
 242        memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
 243        memcpy(led_info, pdc_result2, len);
 244        spin_unlock_irqrestore(&pdc_lock, flags);
 245
 246        return retval;
 247}
 248
 249/**
 250 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
 251 * @retval: -1 on error, 0 on success. Other value are PDC errors
 
 252 * 
 253 * Must be correctly formatted or expect system crash
 254 */
 255#ifdef CONFIG_64BIT
 256int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
 257{
 258	int retval = 0;
 259	unsigned long flags;
 260        
 261	if (!is_pdc_pat())
 262		return -1;
 263
 264	spin_lock_irqsave(&pdc_lock, flags);
 265	retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
 266	spin_unlock_irqrestore(&pdc_lock, flags);
 267
 268	return retval;
 269}
 270#endif
 271
 272/**
 273 * pdc_chassis_disp - Updates chassis code
 274 * @retval: -1 on error, 0 on success
 275 */
 276int pdc_chassis_disp(unsigned long disp)
 277{
 278	int retval = 0;
 279	unsigned long flags;
 280
 281	spin_lock_irqsave(&pdc_lock, flags);
 282	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
 283	spin_unlock_irqrestore(&pdc_lock, flags);
 284
 285	return retval;
 286}
 287
 288/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 289 * pdc_chassis_warn - Fetches chassis warnings
 290 * @retval: -1 on error, 0 on success
 291 */
 292int pdc_chassis_warn(unsigned long *warn)
 293{
 294	int retval = 0;
 295	unsigned long flags;
 296
 297	spin_lock_irqsave(&pdc_lock, flags);
 298	retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
 299	*warn = pdc_result[0];
 300	spin_unlock_irqrestore(&pdc_lock, flags);
 301
 302	return retval;
 303}
 304
 305int __cpuinit pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
 306{
 307	int ret;
 308
 309	ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
 310	convert_to_wide(pdc_result);
 311	pdc_coproc_info->ccr_functional = pdc_result[0];
 312	pdc_coproc_info->ccr_present = pdc_result[1];
 313	pdc_coproc_info->revision = pdc_result[17];
 314	pdc_coproc_info->model = pdc_result[18];
 315
 316	return ret;
 317}
 318
 319/**
 320 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
 321 * @pdc_coproc_info: Return buffer address.
 322 *
 323 * This PDC call returns the presence and status of all the coprocessors
 324 * attached to the processor.
 325 */
 326int __cpuinit pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
 327{
 328	int ret;
 329	unsigned long flags;
 330
 331	spin_lock_irqsave(&pdc_lock, flags);
 332	ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
 333	spin_unlock_irqrestore(&pdc_lock, flags);
 334
 335	return ret;
 336}
 337
 338/**
 339 * pdc_iodc_read - Read data from the modules IODC.
 340 * @actcnt: The actual number of bytes.
 341 * @hpa: The HPA of the module for the iodc read.
 342 * @index: The iodc entry point.
 343 * @iodc_data: A buffer memory for the iodc options.
 344 * @iodc_data_size: Size of the memory buffer.
 345 *
 346 * This PDC call reads from the IODC of the module specified by the hpa
 347 * argument.
 348 */
 349int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
 350		  void *iodc_data, unsigned int iodc_data_size)
 351{
 352	int retval;
 353	unsigned long flags;
 354
 355	spin_lock_irqsave(&pdc_lock, flags);
 356	retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa, 
 357			      index, __pa(pdc_result2), iodc_data_size);
 358	convert_to_wide(pdc_result);
 359	*actcnt = pdc_result[0];
 360	memcpy(iodc_data, pdc_result2, iodc_data_size);
 361	spin_unlock_irqrestore(&pdc_lock, flags);
 362
 363	return retval;
 364}
 365EXPORT_SYMBOL(pdc_iodc_read);
 366
 367/**
 368 * pdc_system_map_find_mods - Locate unarchitected modules.
 369 * @pdc_mod_info: Return buffer address.
 370 * @mod_path: pointer to dev path structure.
 371 * @mod_index: fixed address module index.
 372 *
 373 * To locate and identify modules which reside at fixed I/O addresses, which
 374 * do not self-identify via architected bus walks.
 375 */
 376int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
 377			     struct pdc_module_path *mod_path, long mod_index)
 378{
 379	int retval;
 380	unsigned long flags;
 381
 382	spin_lock_irqsave(&pdc_lock, flags);
 383	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result), 
 384			      __pa(pdc_result2), mod_index);
 385	convert_to_wide(pdc_result);
 386	memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
 387	memcpy(mod_path, pdc_result2, sizeof(*mod_path));
 388	spin_unlock_irqrestore(&pdc_lock, flags);
 389
 390	pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
 391	return retval;
 392}
 393
 394/**
 395 * pdc_system_map_find_addrs - Retrieve additional address ranges.
 396 * @pdc_addr_info: Return buffer address.
 397 * @mod_index: Fixed address module index.
 398 * @addr_index: Address range index.
 399 * 
 400 * Retrieve additional information about subsequent address ranges for modules
 401 * with multiple address ranges.  
 402 */
 403int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info, 
 404			      long mod_index, long addr_index)
 405{
 406	int retval;
 407	unsigned long flags;
 408
 409	spin_lock_irqsave(&pdc_lock, flags);
 410	retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
 411			      mod_index, addr_index);
 412	convert_to_wide(pdc_result);
 413	memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
 414	spin_unlock_irqrestore(&pdc_lock, flags);
 415
 416	pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
 417	return retval;
 418}
 419
 420/**
 421 * pdc_model_info - Return model information about the processor.
 422 * @model: The return buffer.
 423 *
 424 * Returns the version numbers, identifiers, and capabilities from the processor module.
 425 */
 426int pdc_model_info(struct pdc_model *model) 
 427{
 428	int retval;
 429	unsigned long flags;
 430
 431	spin_lock_irqsave(&pdc_lock, flags);
 432	retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
 433	convert_to_wide(pdc_result);
 434	memcpy(model, pdc_result, sizeof(*model));
 435	spin_unlock_irqrestore(&pdc_lock, flags);
 436
 437	return retval;
 438}
 439
 440/**
 441 * pdc_model_sysmodel - Get the system model name.
 
 442 * @name: A char array of at least 81 characters.
 443 *
 444 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
 445 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
 446 * on HP/UX.
 447 */
 448int pdc_model_sysmodel(char *name)
 449{
 450        int retval;
 451	unsigned long flags;
 452
 453        spin_lock_irqsave(&pdc_lock, flags);
 454        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
 455                              OS_ID_HPUX, __pa(name));
 456        convert_to_wide(pdc_result);
 457
 458        if (retval == PDC_OK) {
 459                name[pdc_result[0]] = '\0'; /* add trailing '\0' */
 460        } else {
 461                name[0] = 0;
 462        }
 463        spin_unlock_irqrestore(&pdc_lock, flags);
 464
 465        return retval;
 466}
 467
 468/**
 469 * pdc_model_versions - Identify the version number of each processor.
 470 * @cpu_id: The return buffer.
 471 * @id: The id of the processor to check.
 472 *
 473 * Returns the version number for each processor component.
 474 *
 475 * This comment was here before, but I do not know what it means :( -RB
 476 * id: 0 = cpu revision, 1 = boot-rom-version
 477 */
 478int pdc_model_versions(unsigned long *versions, int id)
 479{
 480        int retval;
 481	unsigned long flags;
 482
 483        spin_lock_irqsave(&pdc_lock, flags);
 484        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
 485        convert_to_wide(pdc_result);
 486        *versions = pdc_result[0];
 487        spin_unlock_irqrestore(&pdc_lock, flags);
 488
 489        return retval;
 490}
 491
 492/**
 493 * pdc_model_cpuid - Returns the CPU_ID.
 494 * @cpu_id: The return buffer.
 495 *
 496 * Returns the CPU_ID value which uniquely identifies the cpu portion of
 497 * the processor module.
 498 */
 499int pdc_model_cpuid(unsigned long *cpu_id)
 500{
 501        int retval;
 502	unsigned long flags;
 503
 504        spin_lock_irqsave(&pdc_lock, flags);
 505        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 506        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
 507        convert_to_wide(pdc_result);
 508        *cpu_id = pdc_result[0];
 509        spin_unlock_irqrestore(&pdc_lock, flags);
 510
 511        return retval;
 512}
 513
 514/**
 515 * pdc_model_capabilities - Returns the platform capabilities.
 516 * @capabilities: The return buffer.
 517 *
 518 * Returns information about platform support for 32- and/or 64-bit
 519 * OSes, IO-PDIR coherency, and virtual aliasing.
 520 */
 521int pdc_model_capabilities(unsigned long *capabilities)
 522{
 523        int retval;
 524	unsigned long flags;
 525
 526        spin_lock_irqsave(&pdc_lock, flags);
 527        pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
 528        retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
 529        convert_to_wide(pdc_result);
 530        if (retval == PDC_OK) {
 531                *capabilities = pdc_result[0];
 532        } else {
 533                *capabilities = PDC_MODEL_OS32;
 534        }
 535        spin_unlock_irqrestore(&pdc_lock, flags);
 536
 537        return retval;
 538}
 539
 540/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 541 * pdc_cache_info - Return cache and TLB information.
 542 * @cache_info: The return buffer.
 543 *
 544 * Returns information about the processor's cache and TLB.
 545 */
 546int pdc_cache_info(struct pdc_cache_info *cache_info)
 547{
 548        int retval;
 549	unsigned long flags;
 550
 551        spin_lock_irqsave(&pdc_lock, flags);
 552        retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
 553        convert_to_wide(pdc_result);
 554        memcpy(cache_info, pdc_result, sizeof(*cache_info));
 555        spin_unlock_irqrestore(&pdc_lock, flags);
 556
 557        return retval;
 558}
 559
 560/**
 561 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
 562 * @space_bits: Should be 0, if not, bad mojo!
 563 *
 564 * Returns information about Space ID hashing.
 565 */
 566int pdc_spaceid_bits(unsigned long *space_bits)
 567{
 568	int retval;
 569	unsigned long flags;
 570
 571	spin_lock_irqsave(&pdc_lock, flags);
 572	pdc_result[0] = 0;
 573	retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
 574	convert_to_wide(pdc_result);
 575	*space_bits = pdc_result[0];
 576	spin_unlock_irqrestore(&pdc_lock, flags);
 577
 578	return retval;
 579}
 580
 581#ifndef CONFIG_PA20
 582/**
 583 * pdc_btlb_info - Return block TLB information.
 584 * @btlb: The return buffer.
 585 *
 586 * Returns information about the hardware Block TLB.
 587 */
 588int pdc_btlb_info(struct pdc_btlb_info *btlb) 
 589{
 590        int retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	unsigned long flags;
 592
 593        spin_lock_irqsave(&pdc_lock, flags);
 594        retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
 595        memcpy(btlb, pdc_result, sizeof(*btlb));
 596        spin_unlock_irqrestore(&pdc_lock, flags);
 597
 598        if(retval < 0) {
 599                btlb->max_size = 0;
 600        }
 601        return retval;
 602}
 603
 604/**
 605 * pdc_mem_map_hpa - Find fixed module information.  
 606 * @address: The return buffer
 607 * @mod_path: pointer to dev path structure.
 608 *
 609 * This call was developed for S700 workstations to allow the kernel to find
 610 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
 611 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
 612 * call.
 613 *
 614 * This call is supported by all existing S700 workstations (up to  Gecko).
 615 */
 616int pdc_mem_map_hpa(struct pdc_memory_map *address,
 617		struct pdc_module_path *mod_path)
 618{
 619        int retval;
 620	unsigned long flags;
 621
 
 
 
 622        spin_lock_irqsave(&pdc_lock, flags);
 623        memcpy(pdc_result2, mod_path, sizeof(*mod_path));
 624        retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
 625				__pa(pdc_result2));
 626        memcpy(address, pdc_result, sizeof(*address));
 627        spin_unlock_irqrestore(&pdc_lock, flags);
 628
 629        return retval;
 630}
 631#endif	/* !CONFIG_PA20 */
 632
 633/**
 634 * pdc_lan_station_id - Get the LAN address.
 635 * @lan_addr: The return buffer.
 636 * @hpa: The network device HPA.
 637 *
 638 * Get the LAN station address when it is not directly available from the LAN hardware.
 639 */
 640int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
 641{
 642	int retval;
 643	unsigned long flags;
 644
 645	spin_lock_irqsave(&pdc_lock, flags);
 646	retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
 647			__pa(pdc_result), hpa);
 648	if (retval < 0) {
 649		/* FIXME: else read MAC from NVRAM */
 650		memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
 651	} else {
 652		memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
 653	}
 654	spin_unlock_irqrestore(&pdc_lock, flags);
 655
 656	return retval;
 657}
 658EXPORT_SYMBOL(pdc_lan_station_id);
 659
 660/**
 661 * pdc_stable_read - Read data from Stable Storage.
 662 * @staddr: Stable Storage address to access.
 663 * @memaddr: The memory address where Stable Storage data shall be copied.
 664 * @count: number of bytes to transfer. count is multiple of 4.
 665 *
 666 * This PDC call reads from the Stable Storage address supplied in staddr
 667 * and copies count bytes to the memory address memaddr.
 668 * The call will fail if staddr+count > PDC_STABLE size.
 669 */
 670int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
 671{
 672       int retval;
 673	unsigned long flags;
 674
 675       spin_lock_irqsave(&pdc_lock, flags);
 676       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
 677               __pa(pdc_result), count);
 678       convert_to_wide(pdc_result);
 679       memcpy(memaddr, pdc_result, count);
 680       spin_unlock_irqrestore(&pdc_lock, flags);
 681
 682       return retval;
 683}
 684EXPORT_SYMBOL(pdc_stable_read);
 685
 686/**
 687 * pdc_stable_write - Write data to Stable Storage.
 688 * @staddr: Stable Storage address to access.
 689 * @memaddr: The memory address where Stable Storage data shall be read from.
 690 * @count: number of bytes to transfer. count is multiple of 4.
 691 *
 692 * This PDC call reads count bytes from the supplied memaddr address,
 693 * and copies count bytes to the Stable Storage address staddr.
 694 * The call will fail if staddr+count > PDC_STABLE size.
 695 */
 696int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
 697{
 698       int retval;
 699	unsigned long flags;
 700
 701       spin_lock_irqsave(&pdc_lock, flags);
 702       memcpy(pdc_result, memaddr, count);
 703       convert_to_wide(pdc_result);
 704       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
 705               __pa(pdc_result), count);
 706       spin_unlock_irqrestore(&pdc_lock, flags);
 707
 708       return retval;
 709}
 710EXPORT_SYMBOL(pdc_stable_write);
 711
 712/**
 713 * pdc_stable_get_size - Get Stable Storage size in bytes.
 714 * @size: pointer where the size will be stored.
 715 *
 716 * This PDC call returns the number of bytes in the processor's Stable
 717 * Storage, which is the number of contiguous bytes implemented in Stable
 718 * Storage starting from staddr=0. size in an unsigned 64-bit integer
 719 * which is a multiple of four.
 720 */
 721int pdc_stable_get_size(unsigned long *size)
 722{
 723       int retval;
 724	unsigned long flags;
 725
 726       spin_lock_irqsave(&pdc_lock, flags);
 727       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
 728       *size = pdc_result[0];
 729       spin_unlock_irqrestore(&pdc_lock, flags);
 730
 731       return retval;
 732}
 733EXPORT_SYMBOL(pdc_stable_get_size);
 734
 735/**
 736 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
 737 *
 738 * This PDC call is meant to be used to check the integrity of the current
 739 * contents of Stable Storage.
 740 */
 741int pdc_stable_verify_contents(void)
 742{
 743       int retval;
 744	unsigned long flags;
 745
 746       spin_lock_irqsave(&pdc_lock, flags);
 747       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
 748       spin_unlock_irqrestore(&pdc_lock, flags);
 749
 750       return retval;
 751}
 752EXPORT_SYMBOL(pdc_stable_verify_contents);
 753
 754/**
 755 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
 756 * the validity indicator.
 757 *
 758 * This PDC call will erase all contents of Stable Storage. Use with care!
 759 */
 760int pdc_stable_initialize(void)
 761{
 762       int retval;
 763	unsigned long flags;
 764
 765       spin_lock_irqsave(&pdc_lock, flags);
 766       retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
 767       spin_unlock_irqrestore(&pdc_lock, flags);
 768
 769       return retval;
 770}
 771EXPORT_SYMBOL(pdc_stable_initialize);
 772
 773/**
 774 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
 775 * @hwpath: fully bc.mod style path to the device.
 776 * @initiator: the array to return the result into
 777 *
 778 * Get the SCSI operational parameters from PDC.
 779 * Needed since HPUX never used BIOS or symbios card NVRAM.
 780 * Most ncr/sym cards won't have an entry and just use whatever
 781 * capabilities of the card are (eg Ultra, LVD). But there are
 782 * several cases where it's useful:
 783 *    o set SCSI id for Multi-initiator clusters,
 784 *    o cable too long (ie SE scsi 10Mhz won't support 6m length),
 785 *    o bus width exported is less than what the interface chip supports.
 786 */
 787int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
 788{
 789	int retval;
 790	unsigned long flags;
 791
 792	spin_lock_irqsave(&pdc_lock, flags);
 793
 794/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
 795#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
 796	strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
 797
 798	retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR, 
 799			      __pa(pdc_result), __pa(hwpath));
 800	if (retval < PDC_OK)
 801		goto out;
 802
 803	if (pdc_result[0] < 16) {
 804		initiator->host_id = pdc_result[0];
 805	} else {
 806		initiator->host_id = -1;
 807	}
 808
 809	/*
 810	 * Sprockets and Piranha return 20 or 40 (MT/s).  Prelude returns
 811	 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
 812	 */
 813	switch (pdc_result[1]) {
 814		case  1: initiator->factor = 50; break;
 815		case  2: initiator->factor = 25; break;
 816		case  5: initiator->factor = 12; break;
 817		case 25: initiator->factor = 10; break;
 818		case 20: initiator->factor = 12; break;
 819		case 40: initiator->factor = 10; break;
 820		default: initiator->factor = -1; break;
 821	}
 822
 823	if (IS_SPROCKETS()) {
 824		initiator->width = pdc_result[4];
 825		initiator->mode = pdc_result[5];
 826	} else {
 827		initiator->width = -1;
 828		initiator->mode = -1;
 829	}
 830
 831 out:
 832	spin_unlock_irqrestore(&pdc_lock, flags);
 833
 834	return (retval >= PDC_OK);
 835}
 836EXPORT_SYMBOL(pdc_get_initiator);
 837
 838
 839/**
 840 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
 841 * @num_entries: The return value.
 842 * @hpa: The HPA for the device.
 843 *
 844 * This PDC function returns the number of entries in the specified cell's
 845 * interrupt table.
 846 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 847 */ 
 848int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
 849{
 850	int retval;
 851	unsigned long flags;
 852
 853	spin_lock_irqsave(&pdc_lock, flags);
 854	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE, 
 855			      __pa(pdc_result), hpa);
 856	convert_to_wide(pdc_result);
 857	*num_entries = pdc_result[0];
 858	spin_unlock_irqrestore(&pdc_lock, flags);
 859
 860	return retval;
 861}
 862
 863/** 
 864 * pdc_pci_irt - Get the PCI interrupt routing table.
 865 * @num_entries: The number of entries in the table.
 866 * @hpa: The Hard Physical Address of the device.
 867 * @tbl: 
 868 *
 869 * Get the PCI interrupt routing table for the device at the given HPA.
 870 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
 871 */
 872int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
 873{
 874	int retval;
 875	unsigned long flags;
 876
 877	BUG_ON((unsigned long)tbl & 0x7);
 878
 879	spin_lock_irqsave(&pdc_lock, flags);
 880	pdc_result[0] = num_entries;
 881	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL, 
 882			      __pa(pdc_result), hpa, __pa(tbl));
 883	spin_unlock_irqrestore(&pdc_lock, flags);
 884
 885	return retval;
 886}
 887
 888
 889#if 0	/* UNTEST CODE - left here in case someone needs it */
 890
 891/** 
 892 * pdc_pci_config_read - read PCI config space.
 893 * @hpa		token from PDC to indicate which PCI device
 894 * @pci_addr	configuration space address to read from
 895 *
 896 * Read PCI Configuration space *before* linux PCI subsystem is running.
 897 */
 898unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
 899{
 900	int retval;
 901	unsigned long flags;
 902
 903	spin_lock_irqsave(&pdc_lock, flags);
 904	pdc_result[0] = 0;
 905	pdc_result[1] = 0;
 906	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG, 
 907			      __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
 908	spin_unlock_irqrestore(&pdc_lock, flags);
 909
 910	return retval ? ~0 : (unsigned int) pdc_result[0];
 911}
 912
 913
 914/** 
 915 * pdc_pci_config_write - read PCI config space.
 916 * @hpa		token from PDC to indicate which PCI device
 917 * @pci_addr	configuration space address to write
 918 * @val		value we want in the 32-bit register
 919 *
 920 * Write PCI Configuration space *before* linux PCI subsystem is running.
 921 */
 922void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
 923{
 924	int retval;
 925	unsigned long flags;
 926
 927	spin_lock_irqsave(&pdc_lock, flags);
 928	pdc_result[0] = 0;
 929	retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG, 
 930			      __pa(pdc_result), hpa,
 931			      cfg_addr&~3UL, 4UL, (unsigned long) val);
 932	spin_unlock_irqrestore(&pdc_lock, flags);
 933
 934	return retval;
 935}
 936#endif /* UNTESTED CODE */
 937
 938/**
 939 * pdc_tod_read - Read the Time-Of-Day clock.
 940 * @tod: The return buffer:
 941 *
 942 * Read the Time-Of-Day clock
 943 */
 944int pdc_tod_read(struct pdc_tod *tod)
 945{
 946        int retval;
 947	unsigned long flags;
 948
 949        spin_lock_irqsave(&pdc_lock, flags);
 950        retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
 951        convert_to_wide(pdc_result);
 952        memcpy(tod, pdc_result, sizeof(*tod));
 953        spin_unlock_irqrestore(&pdc_lock, flags);
 954
 955        return retval;
 956}
 957EXPORT_SYMBOL(pdc_tod_read);
 958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959/**
 960 * pdc_tod_set - Set the Time-Of-Day clock.
 961 * @sec: The number of seconds since epoch.
 962 * @usec: The number of micro seconds.
 963 *
 964 * Set the Time-Of-Day clock.
 965 */ 
 966int pdc_tod_set(unsigned long sec, unsigned long usec)
 967{
 968        int retval;
 969	unsigned long flags;
 970
 971        spin_lock_irqsave(&pdc_lock, flags);
 972        retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
 973        spin_unlock_irqrestore(&pdc_lock, flags);
 974
 975        return retval;
 976}
 977EXPORT_SYMBOL(pdc_tod_set);
 978
 979#ifdef CONFIG_64BIT
 980int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
 981		struct pdc_memory_table *tbl, unsigned long entries)
 982{
 983	int retval;
 984	unsigned long flags;
 985
 986	spin_lock_irqsave(&pdc_lock, flags);
 987	retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
 988	convert_to_wide(pdc_result);
 989	memcpy(r_addr, pdc_result, sizeof(*r_addr));
 990	memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
 991	spin_unlock_irqrestore(&pdc_lock, flags);
 992
 993	return retval;
 994}
 995#endif /* CONFIG_64BIT */
 996
 997/* FIXME: Is this pdc used?  I could not find type reference to ftc_bitmap
 998 * so I guessed at unsigned long.  Someone who knows what this does, can fix
 999 * it later. :)
1000 */
1001int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1002{
1003        int retval;
1004	unsigned long flags;
1005
1006        spin_lock_irqsave(&pdc_lock, flags);
1007        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1008                              PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1009        spin_unlock_irqrestore(&pdc_lock, flags);
1010
1011        return retval;
1012}
1013
1014/*
1015 * pdc_do_reset - Reset the system.
1016 *
1017 * Reset the system.
1018 */
1019int pdc_do_reset(void)
1020{
1021        int retval;
1022	unsigned long flags;
1023
1024        spin_lock_irqsave(&pdc_lock, flags);
1025        retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1026        spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028        return retval;
1029}
1030
1031/*
1032 * pdc_soft_power_info - Enable soft power switch.
1033 * @power_reg: address of soft power register
1034 *
1035 * Return the absolute address of the soft power switch register
1036 */
1037int __init pdc_soft_power_info(unsigned long *power_reg)
1038{
1039	int retval;
1040	unsigned long flags;
1041
1042	*power_reg = (unsigned long) (-1);
1043	
1044	spin_lock_irqsave(&pdc_lock, flags);
1045	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1046	if (retval == PDC_OK) {
1047                convert_to_wide(pdc_result);
1048                *power_reg = f_extend(pdc_result[0]);
1049	}
1050	spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052	return retval;
1053}
1054
1055/*
1056 * pdc_soft_power_button - Control the soft power button behaviour
1057 * @sw_control: 0 for hardware control, 1 for software control 
1058 *
1059 *
1060 * This PDC function places the soft power button under software or
1061 * hardware control.
1062 * Under software control the OS may control to when to allow to shut 
1063 * down the system. Under hardware control pressing the power button 
1064 * powers off the system immediately.
 
 
 
1065 */
1066int pdc_soft_power_button(int sw_control)
1067{
1068	int retval;
1069	unsigned long flags;
1070
1071	spin_lock_irqsave(&pdc_lock, flags);
1072	retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1073	spin_unlock_irqrestore(&pdc_lock, flags);
1074
1075	return retval;
1076}
1077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078/*
1079 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1080 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1081 * who knows what other platform firmware might do with this OS "hook".
1082 */
1083void pdc_io_reset(void)
1084{
1085	unsigned long flags;
1086
1087	spin_lock_irqsave(&pdc_lock, flags);
1088	mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1089	spin_unlock_irqrestore(&pdc_lock, flags);
1090}
1091
1092/*
1093 * pdc_io_reset_devices - Hack to Stop USB controller
1094 *
1095 * If PDC used the usb controller, the usb controller
1096 * is still running and will crash the machines during iommu 
1097 * setup, because of still running DMA. This PDC call
1098 * stops the USB controller.
1099 * Normally called after calling pdc_io_reset().
1100 */
1101void pdc_io_reset_devices(void)
1102{
1103	unsigned long flags;
1104
1105	spin_lock_irqsave(&pdc_lock, flags);
1106	mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1107	spin_unlock_irqrestore(&pdc_lock, flags);
1108}
1109
1110/* locked by pdc_console_lock */
1111static int __attribute__((aligned(8)))   iodc_retbuf[32];
1112static char __attribute__((aligned(64))) iodc_dbuf[4096];
 
1113
1114/**
1115 * pdc_iodc_print - Console print using IODC.
1116 * @str: the string to output.
1117 * @count: length of str
1118 *
1119 * Note that only these special chars are architected for console IODC io:
1120 * BEL, BS, CR, and LF. Others are passed through.
1121 * Since the HP console requires CR+LF to perform a 'newline', we translate
1122 * "\n" to "\r\n".
1123 */
1124int pdc_iodc_print(const unsigned char *str, unsigned count)
1125{
1126	unsigned int i;
1127	unsigned long flags;
1128
 
 
 
1129	for (i = 0; i < count;) {
1130		switch(str[i]) {
1131		case '\n':
1132			iodc_dbuf[i+0] = '\r';
1133			iodc_dbuf[i+1] = '\n';
1134			i += 2;
 
1135			goto print;
1136		default:
1137			iodc_dbuf[i] = str[i];
1138			i++;
1139			break;
1140		}
1141	}
1142
1143print:
1144        spin_lock_irqsave(&pdc_lock, flags);
1145        real32_call(PAGE0->mem_cons.iodc_io,
1146                    (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1147                    PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1148                    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1149        spin_unlock_irqrestore(&pdc_lock, flags);
1150
1151	return i;
1152}
1153
 
1154/**
1155 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1156 *
1157 * Read a character (non-blocking) from the PDC console, returns -1 if
1158 * key is not present.
1159 */
1160int pdc_iodc_getc(void)
1161{
1162	int ch;
1163	int status;
1164	unsigned long flags;
1165
1166	/* Bail if no console input device. */
1167	if (!PAGE0->mem_kbd.iodc_io)
1168		return 0;
1169	
1170	/* wait for a keyboard (rs232)-input */
1171	spin_lock_irqsave(&pdc_lock, flags);
1172	real32_call(PAGE0->mem_kbd.iodc_io,
1173		    (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1174		    PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers), 
1175		    __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1176
1177	ch = *iodc_dbuf;
1178	status = *iodc_retbuf;
 
1179	spin_unlock_irqrestore(&pdc_lock, flags);
1180
1181	if (status == 0)
1182	    return -1;
1183	
1184	return ch;
1185}
1186
1187int pdc_sti_call(unsigned long func, unsigned long flags,
1188                 unsigned long inptr, unsigned long outputr,
1189                 unsigned long glob_cfg)
1190{
1191        int retval;
1192	unsigned long irqflags;
1193
1194        spin_lock_irqsave(&pdc_lock, irqflags);  
1195        retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1196        spin_unlock_irqrestore(&pdc_lock, irqflags);
 
 
 
 
 
 
 
 
1197
1198        return retval;
1199}
1200EXPORT_SYMBOL(pdc_sti_call);
1201
1202#ifdef CONFIG_64BIT
1203/**
1204 * pdc_pat_cell_get_number - Returns the cell number.
1205 * @cell_info: The return buffer.
1206 *
1207 * This PDC call returns the cell number of the cell from which the call
1208 * is made.
1209 */
1210int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1211{
1212	int retval;
1213	unsigned long flags;
1214
1215	spin_lock_irqsave(&pdc_lock, flags);
1216	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1217	memcpy(cell_info, pdc_result, sizeof(*cell_info));
1218	spin_unlock_irqrestore(&pdc_lock, flags);
1219
1220	return retval;
1221}
1222
1223/**
1224 * pdc_pat_cell_module - Retrieve the cell's module information.
1225 * @actcnt: The number of bytes written to mem_addr.
1226 * @ploc: The physical location.
1227 * @mod: The module index.
1228 * @view_type: The view of the address type.
1229 * @mem_addr: The return buffer.
1230 *
1231 * This PDC call returns information about each module attached to the cell
1232 * at the specified location.
1233 */
1234int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1235			unsigned long view_type, void *mem_addr)
1236{
1237	int retval;
1238	unsigned long flags;
1239	static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1240
1241	spin_lock_irqsave(&pdc_lock, flags);
1242	retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result), 
1243			      ploc, mod, view_type, __pa(&result));
1244	if(!retval) {
1245		*actcnt = pdc_result[0];
1246		memcpy(mem_addr, &result, *actcnt);
1247	}
1248	spin_unlock_irqrestore(&pdc_lock, flags);
1249
1250	return retval;
1251}
1252
1253/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1254 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1255 * @cpu_info: The return buffer.
1256 * @hpa: The Hard Physical Address of the CPU.
1257 *
1258 * Retrieve the cpu number for the cpu at the specified HPA.
1259 */
1260int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, void *hpa)
1261{
1262	int retval;
1263	unsigned long flags;
1264
1265	spin_lock_irqsave(&pdc_lock, flags);
1266	retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1267			      __pa(&pdc_result), hpa);
1268	memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1269	spin_unlock_irqrestore(&pdc_lock, flags);
1270
1271	return retval;
1272}
1273
1274/**
1275 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1276 * @num_entries: The return value.
1277 * @cell_num: The target cell.
1278 *
1279 * This PDC function returns the number of entries in the specified cell's
1280 * interrupt table.
1281 */
1282int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1283{
1284	int retval;
1285	unsigned long flags;
1286
1287	spin_lock_irqsave(&pdc_lock, flags);
1288	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1289			      __pa(pdc_result), cell_num);
1290	*num_entries = pdc_result[0];
1291	spin_unlock_irqrestore(&pdc_lock, flags);
1292
1293	return retval;
1294}
1295
1296/**
1297 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1298 * @r_addr: The return buffer.
1299 * @cell_num: The target cell.
1300 *
1301 * This PDC function returns the actual interrupt table for the specified cell.
1302 */
1303int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1304{
1305	int retval;
1306	unsigned long flags;
1307
1308	spin_lock_irqsave(&pdc_lock, flags);
1309	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1310			      __pa(r_addr), cell_num);
1311	spin_unlock_irqrestore(&pdc_lock, flags);
1312
1313	return retval;
1314}
1315
1316/**
1317 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1318 * @actlen: The return buffer.
1319 * @mem_addr: Pointer to the memory buffer.
1320 * @count: The number of bytes to read from the buffer.
1321 * @offset: The offset with respect to the beginning of the buffer.
1322 *
1323 */
1324int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr, 
1325			    unsigned long count, unsigned long offset)
1326{
1327	int retval;
1328	unsigned long flags;
1329
1330	spin_lock_irqsave(&pdc_lock, flags);
1331	retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result), 
1332			      __pa(pdc_result2), count, offset);
1333	*actual_len = pdc_result[0];
1334	memcpy(mem_addr, pdc_result2, *actual_len);
1335	spin_unlock_irqrestore(&pdc_lock, flags);
1336
1337	return retval;
1338}
1339
1340/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1342 * @pci_addr: PCI configuration space address for which the read request is being made.
1343 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4. 
1344 * @mem_addr: Pointer to return memory buffer.
1345 *
1346 */
1347int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1348{
1349	int retval;
1350	unsigned long flags;
1351
1352	spin_lock_irqsave(&pdc_lock, flags);
1353	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1354					__pa(pdc_result), pci_addr, pci_size);
1355	switch(pci_size) {
1356		case 1: *(u8 *) mem_addr =  (u8)  pdc_result[0];
1357		case 2: *(u16 *)mem_addr =  (u16) pdc_result[0];
1358		case 4: *(u32 *)mem_addr =  (u32) pdc_result[0];
1359	}
1360	spin_unlock_irqrestore(&pdc_lock, flags);
1361
1362	return retval;
1363}
1364
1365/**
1366 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1367 * @pci_addr: PCI configuration space address for which the write  request is being made.
1368 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4. 
1369 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be 
1370 *         written to PCI Config space.
1371 *
1372 */
1373int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1374{
1375	int retval;
1376	unsigned long flags;
1377
1378	spin_lock_irqsave(&pdc_lock, flags);
1379	retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1380				pci_addr, pci_size, val);
1381	spin_unlock_irqrestore(&pdc_lock, flags);
1382
1383	return retval;
1384}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385#endif /* CONFIG_64BIT */
 
1386
1387
1388/***************** 32-bit real-mode calls ***********/
1389/* The struct below is used
1390 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1391 * real32_call_asm() then uses this stack in narrow real mode
1392 */
1393
1394struct narrow_stack {
1395	/* use int, not long which is 64 bits */
1396	unsigned int arg13;
1397	unsigned int arg12;
1398	unsigned int arg11;
1399	unsigned int arg10;
1400	unsigned int arg9;
1401	unsigned int arg8;
1402	unsigned int arg7;
1403	unsigned int arg6;
1404	unsigned int arg5;
1405	unsigned int arg4;
1406	unsigned int arg3;
1407	unsigned int arg2;
1408	unsigned int arg1;
1409	unsigned int arg0;
1410	unsigned int frame_marker[8];
1411	unsigned int sp;
1412	/* in reality, there's nearly 8k of stack after this */
1413};
1414
1415long real32_call(unsigned long fn, ...)
1416{
1417	va_list args;
1418	extern struct narrow_stack real_stack;
1419	extern unsigned long real32_call_asm(unsigned int *,
1420					     unsigned int *, 
1421					     unsigned int);
1422	
1423	va_start(args, fn);
1424	real_stack.arg0 = va_arg(args, unsigned int);
1425	real_stack.arg1 = va_arg(args, unsigned int);
1426	real_stack.arg2 = va_arg(args, unsigned int);
1427	real_stack.arg3 = va_arg(args, unsigned int);
1428	real_stack.arg4 = va_arg(args, unsigned int);
1429	real_stack.arg5 = va_arg(args, unsigned int);
1430	real_stack.arg6 = va_arg(args, unsigned int);
1431	real_stack.arg7 = va_arg(args, unsigned int);
1432	real_stack.arg8 = va_arg(args, unsigned int);
1433	real_stack.arg9 = va_arg(args, unsigned int);
1434	real_stack.arg10 = va_arg(args, unsigned int);
1435	real_stack.arg11 = va_arg(args, unsigned int);
1436	real_stack.arg12 = va_arg(args, unsigned int);
1437	real_stack.arg13 = va_arg(args, unsigned int);
1438	va_end(args);
1439	
1440	return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1441}
1442
1443#ifdef CONFIG_64BIT
1444/***************** 64-bit real-mode calls ***********/
1445
1446struct wide_stack {
1447	unsigned long arg0;
1448	unsigned long arg1;
1449	unsigned long arg2;
1450	unsigned long arg3;
1451	unsigned long arg4;
1452	unsigned long arg5;
1453	unsigned long arg6;
1454	unsigned long arg7;
1455	unsigned long arg8;
1456	unsigned long arg9;
1457	unsigned long arg10;
1458	unsigned long arg11;
1459	unsigned long arg12;
1460	unsigned long arg13;
1461	unsigned long frame_marker[2];	/* rp, previous sp */
1462	unsigned long sp;
1463	/* in reality, there's nearly 8k of stack after this */
1464};
1465
1466long real64_call(unsigned long fn, ...)
1467{
1468	va_list args;
1469	extern struct wide_stack real64_stack;
1470	extern unsigned long real64_call_asm(unsigned long *,
1471					     unsigned long *, 
1472					     unsigned long);
1473    
1474	va_start(args, fn);
1475	real64_stack.arg0 = va_arg(args, unsigned long);
1476	real64_stack.arg1 = va_arg(args, unsigned long);
1477	real64_stack.arg2 = va_arg(args, unsigned long);
1478	real64_stack.arg3 = va_arg(args, unsigned long);
1479	real64_stack.arg4 = va_arg(args, unsigned long);
1480	real64_stack.arg5 = va_arg(args, unsigned long);
1481	real64_stack.arg6 = va_arg(args, unsigned long);
1482	real64_stack.arg7 = va_arg(args, unsigned long);
1483	real64_stack.arg8 = va_arg(args, unsigned long);
1484	real64_stack.arg9 = va_arg(args, unsigned long);
1485	real64_stack.arg10 = va_arg(args, unsigned long);
1486	real64_stack.arg11 = va_arg(args, unsigned long);
1487	real64_stack.arg12 = va_arg(args, unsigned long);
1488	real64_stack.arg13 = va_arg(args, unsigned long);
1489	va_end(args);
1490	
1491	return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1492}
1493
1494#endif /* CONFIG_64BIT */
1495