Linux Audio

Check our new training course

Loading...
v6.13.7
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _M68K_DMA_H
3#define _M68K_DMA_H 1
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5/* it's useless on the m68k, but unfortunately needed by the new
6   bootmem allocator (but this should do it for this) */
7#define MAX_DMA_ADDRESS PAGE_OFFSET
 
 
 
 
 
 
 
8
9#endif /* _M68K_DMA_H */
v3.1
 
  1#ifndef _M68K_DMA_H
  2#define _M68K_DMA_H 1
  3
  4#ifdef CONFIG_COLDFIRE
  5/*
  6 * ColdFire DMA Model:
  7 *   ColdFire DMA supports two forms of DMA: Single and Dual address. Single
  8 * address mode emits a source address, and expects that the device will either
  9 * pick up the data (DMA READ) or source data (DMA WRITE). This implies that
 10 * the device will place data on the correct byte(s) of the data bus, as the
 11 * memory transactions are always 32 bits. This implies that only 32 bit
 12 * devices will find single mode transfers useful. Dual address DMA mode
 13 * performs two cycles: source read and destination write. ColdFire will
 14 * align the data so that the device will always get the correct bytes, thus
 15 * is useful for 8 and 16 bit devices. This is the mode that is supported
 16 * below.
 17 *
 18 * AUG/22/2000 : added support for 32-bit Dual-Address-Mode (K) 2000
 19 *               Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
 20 *
 21 * AUG/25/2000 : addad support for 8, 16 and 32-bit Single-Address-Mode (K)2000
 22 *               Oliver Kamphenkel (O.Kamphenkel@tu-bs.de)
 23 *
 24 * APR/18/2002 : added proper support for MCF5272 DMA controller.
 25 *               Arthur Shipkowski (art@videon-central.com)
 26 */
 27
 28#include <asm/coldfire.h>
 29#include <asm/mcfsim.h>
 30#include <asm/mcfdma.h>
 31
 32/*
 33 * Set number of channels of DMA on ColdFire for different implementations.
 34 */
 35#if defined(CONFIG_M5249) || defined(CONFIG_M5307) || defined(CONFIG_M5407) || \
 36	defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x)
 37#define MAX_M68K_DMA_CHANNELS 4
 38#elif defined(CONFIG_M5272)
 39#define MAX_M68K_DMA_CHANNELS 1
 40#elif defined(CONFIG_M532x)
 41#define MAX_M68K_DMA_CHANNELS 0
 42#else
 43#define MAX_M68K_DMA_CHANNELS 2
 44#endif
 45
 46extern unsigned int dma_base_addr[MAX_M68K_DMA_CHANNELS];
 47extern unsigned int dma_device_address[MAX_M68K_DMA_CHANNELS];
 48
 49#if !defined(CONFIG_M5272)
 50#define DMA_MODE_WRITE_BIT  0x01  /* Memory/IO to IO/Memory select */
 51#define DMA_MODE_WORD_BIT   0x02  /* 8 or 16 bit transfers */
 52#define DMA_MODE_LONG_BIT   0x04  /* or 32 bit transfers */
 53#define DMA_MODE_SINGLE_BIT 0x08  /* single-address-mode */
 54
 55/* I/O to memory, 8 bits, mode */
 56#define DMA_MODE_READ	            0
 57/* memory to I/O, 8 bits, mode */
 58#define DMA_MODE_WRITE	            1
 59/* I/O to memory, 16 bits, mode */
 60#define DMA_MODE_READ_WORD          2
 61/* memory to I/O, 16 bits, mode */
 62#define DMA_MODE_WRITE_WORD         3
 63/* I/O to memory, 32 bits, mode */
 64#define DMA_MODE_READ_LONG          4
 65/* memory to I/O, 32 bits, mode */
 66#define DMA_MODE_WRITE_LONG         5
 67/* I/O to memory, 8 bits, single-address-mode */
 68#define DMA_MODE_READ_SINGLE        8
 69/* memory to I/O, 8 bits, single-address-mode */
 70#define DMA_MODE_WRITE_SINGLE       9
 71/* I/O to memory, 16 bits, single-address-mode */
 72#define DMA_MODE_READ_WORD_SINGLE  10
 73/* memory to I/O, 16 bits, single-address-mode */
 74#define DMA_MODE_WRITE_WORD_SINGLE 11
 75/* I/O to memory, 32 bits, single-address-mode */
 76#define DMA_MODE_READ_LONG_SINGLE  12
 77/* memory to I/O, 32 bits, single-address-mode */
 78#define DMA_MODE_WRITE_LONG_SINGLE 13
 79
 80#else /* CONFIG_M5272 is defined */
 81
 82/* Source static-address mode */
 83#define DMA_MODE_SRC_SA_BIT 0x01
 84/* Two bits to select between all four modes */
 85#define DMA_MODE_SSIZE_MASK 0x06
 86/* Offset to shift bits in */
 87#define DMA_MODE_SSIZE_OFF  0x01
 88/* Destination static-address mode */
 89#define DMA_MODE_DES_SA_BIT 0x10
 90/* Two bits to select between all four modes */
 91#define DMA_MODE_DSIZE_MASK 0x60
 92/* Offset to shift bits in */
 93#define DMA_MODE_DSIZE_OFF  0x05
 94/* Size modifiers */
 95#define DMA_MODE_SIZE_LONG  0x00
 96#define DMA_MODE_SIZE_BYTE  0x01
 97#define DMA_MODE_SIZE_WORD  0x02
 98#define DMA_MODE_SIZE_LINE  0x03
 99
100/*
101 * Aliases to help speed quick ports; these may be suboptimal, however. They
102 * do not include the SINGLE mode modifiers since the MCF5272 does not have a
103 * mode where the device is in control of its addressing.
104 */
105
106/* I/O to memory, 8 bits, mode */
107#define DMA_MODE_READ	              ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
108/* memory to I/O, 8 bits, mode */
109#define DMA_MODE_WRITE	            ((DMA_MODE_SIZE_BYTE << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_BYTE << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
110/* I/O to memory, 16 bits, mode */
111#define DMA_MODE_READ_WORD	        ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
112/* memory to I/O, 16 bits, mode */
113#define DMA_MODE_WRITE_WORD         ((DMA_MODE_SIZE_WORD << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_WORD << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
114/* I/O to memory, 32 bits, mode */
115#define DMA_MODE_READ_LONG	        ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_SRC_SA_BIT)
116/* memory to I/O, 32 bits, mode */
117#define DMA_MODE_WRITE_LONG         ((DMA_MODE_SIZE_LONG << DMA_MODE_DSIZE_OFF) | (DMA_MODE_SIZE_LONG << DMA_MODE_SSIZE_OFF) | DMA_DES_SA_BIT)
118
119#endif /* !defined(CONFIG_M5272) */
120
121#if !defined(CONFIG_M5272)
122/* enable/disable a specific DMA channel */
123static __inline__ void enable_dma(unsigned int dmanr)
124{
125  volatile unsigned short *dmawp;
126
127#ifdef DMA_DEBUG
128  printk("enable_dma(dmanr=%d)\n", dmanr);
129#endif
130
131  dmawp = (unsigned short *) dma_base_addr[dmanr];
132  dmawp[MCFDMA_DCR] |= MCFDMA_DCR_EEXT;
133}
134
135static __inline__ void disable_dma(unsigned int dmanr)
136{
137  volatile unsigned short *dmawp;
138  volatile unsigned char  *dmapb;
139
140#ifdef DMA_DEBUG
141  printk("disable_dma(dmanr=%d)\n", dmanr);
142#endif
143
144  dmawp = (unsigned short *) dma_base_addr[dmanr];
145  dmapb = (unsigned char *) dma_base_addr[dmanr];
146
147  /* Turn off external requests, and stop any DMA in progress */
148  dmawp[MCFDMA_DCR] &= ~MCFDMA_DCR_EEXT;
149  dmapb[MCFDMA_DSR] = MCFDMA_DSR_DONE;
150}
151
152/*
153 * Clear the 'DMA Pointer Flip Flop'.
154 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
155 * Use this once to initialize the FF to a known state.
156 * After that, keep track of it. :-)
157 * --- In order to do that, the DMA routines below should ---
158 * --- only be used while interrupts are disabled! ---
159 *
160 * This is a NOP for ColdFire. Provide a stub for compatibility.
161 */
162static __inline__ void clear_dma_ff(unsigned int dmanr)
163{
164}
165
166/* set mode (above) for a specific DMA channel */
167static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
168{
169
170  volatile unsigned char  *dmabp;
171  volatile unsigned short *dmawp;
172
173#ifdef DMA_DEBUG
174  printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
175#endif
176
177  dmabp = (unsigned char *) dma_base_addr[dmanr];
178  dmawp = (unsigned short *) dma_base_addr[dmanr];
179
180  /* Clear config errors */
181  dmabp[MCFDMA_DSR] = MCFDMA_DSR_DONE;
182
183  /* Set command register */
184  dmawp[MCFDMA_DCR] =
185    MCFDMA_DCR_INT |         /* Enable completion irq */
186    MCFDMA_DCR_CS |          /* Force one xfer per request */
187    MCFDMA_DCR_AA |          /* Enable auto alignment */
188    /* single-address-mode */
189    ((mode & DMA_MODE_SINGLE_BIT) ? MCFDMA_DCR_SAA : 0) |
190    /* sets s_rw (-> r/w) high if Memory to I/0 */
191    ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_S_RW : 0) |
192    /* Memory to I/O or I/O to Memory */
193    ((mode & DMA_MODE_WRITE_BIT) ? MCFDMA_DCR_SINC : MCFDMA_DCR_DINC) |
194    /* 32 bit, 16 bit or 8 bit transfers */
195    ((mode & DMA_MODE_WORD_BIT)  ? MCFDMA_DCR_SSIZE_WORD :
196     ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_SSIZE_LONG :
197                                   MCFDMA_DCR_SSIZE_BYTE)) |
198    ((mode & DMA_MODE_WORD_BIT)  ? MCFDMA_DCR_DSIZE_WORD :
199     ((mode & DMA_MODE_LONG_BIT) ? MCFDMA_DCR_DSIZE_LONG :
200                                   MCFDMA_DCR_DSIZE_BYTE));
201
202#ifdef DEBUG_DMA
203  printk("%s(%d): dmanr=%d DSR[%x]=%x DCR[%x]=%x\n", __FILE__, __LINE__,
204         dmanr, (int) &dmabp[MCFDMA_DSR], dmabp[MCFDMA_DSR],
205	 (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR]);
206#endif
207}
208
209/* Set transfer address for specific DMA channel */
210static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
211{
212  volatile unsigned short *dmawp;
213  volatile unsigned int   *dmalp;
214
215#ifdef DMA_DEBUG
216  printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
217#endif
218
219  dmawp = (unsigned short *) dma_base_addr[dmanr];
220  dmalp = (unsigned int *) dma_base_addr[dmanr];
221
222  /* Determine which address registers are used for memory/device accesses */
223  if (dmawp[MCFDMA_DCR] & MCFDMA_DCR_SINC) {
224    /* Source incrementing, must be memory */
225    dmalp[MCFDMA_SAR] = a;
226    /* Set dest address, must be device */
227    dmalp[MCFDMA_DAR] = dma_device_address[dmanr];
228  } else {
229    /* Destination incrementing, must be memory */
230    dmalp[MCFDMA_DAR] = a;
231    /* Set source address, must be device */
232    dmalp[MCFDMA_SAR] = dma_device_address[dmanr];
233  }
234
235#ifdef DEBUG_DMA
236  printk("%s(%d): dmanr=%d DCR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
237	__FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DCR], dmawp[MCFDMA_DCR],
238	(int) &dmalp[MCFDMA_SAR], dmalp[MCFDMA_SAR],
239	(int) &dmalp[MCFDMA_DAR], dmalp[MCFDMA_DAR]);
240#endif
241}
242
243/*
244 * Specific for Coldfire - sets device address.
245 * Should be called after the mode set call, and before set DMA address.
246 */
247static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
248{
249#ifdef DMA_DEBUG
250  printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
251#endif
252
253  dma_device_address[dmanr] = a;
254}
255
256/*
257 * NOTE 2: "count" represents _bytes_.
258 */
259static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
260{
261  volatile unsigned short *dmawp;
262
263#ifdef DMA_DEBUG
264  printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
265#endif
266
267  dmawp = (unsigned short *) dma_base_addr[dmanr];
268  dmawp[MCFDMA_BCR] = (unsigned short)count;
269}
270
271/*
272 * Get DMA residue count. After a DMA transfer, this
273 * should return zero. Reading this while a DMA transfer is
274 * still in progress will return unpredictable results.
275 * Otherwise, it returns the number of _bytes_ left to transfer.
276 */
277static __inline__ int get_dma_residue(unsigned int dmanr)
278{
279  volatile unsigned short *dmawp;
280  unsigned short count;
281
282#ifdef DMA_DEBUG
283  printk("get_dma_residue(dmanr=%d)\n", dmanr);
284#endif
285
286  dmawp = (unsigned short *) dma_base_addr[dmanr];
287  count = dmawp[MCFDMA_BCR];
288  return((int) count);
289}
290#else /* CONFIG_M5272 is defined */
291
292/*
293 * The MCF5272 DMA controller is very different than the controller defined above
294 * in terms of register mapping.  For instance, with the exception of the 16-bit
295 * interrupt register (IRQ#85, for reference), all of the registers are 32-bit.
296 *
297 * The big difference, however, is the lack of device-requested DMA.  All modes
298 * are dual address transfer, and there is no 'device' setup or direction bit.
299 * You can DMA between a device and memory, between memory and memory, or even between
300 * two devices directly, with any combination of incrementing and non-incrementing
301 * addresses you choose.  This puts a crimp in distinguishing between the 'device
302 * address' set up by set_dma_device_addr.
303 *
304 * Therefore, there are two options.  One is to use set_dma_addr and set_dma_device_addr,
305 * which will act exactly as above in -- it will look to see if the source is set to
306 * autoincrement, and if so it will make the source use the set_dma_addr value and the
307 * destination the set_dma_device_addr value.  Otherwise the source will be set to the
308 * set_dma_device_addr value and the destination will get the set_dma_addr value.
309 *
310 * The other is to use the provided set_dma_src_addr and set_dma_dest_addr functions
311 * and make it explicit.  Depending on what you're doing, one of these two should work
312 * for you, but don't mix them in the same transfer setup.
313 */
314
315/* enable/disable a specific DMA channel */
316static __inline__ void enable_dma(unsigned int dmanr)
317{
318  volatile unsigned int  *dmalp;
319
320#ifdef DMA_DEBUG
321  printk("enable_dma(dmanr=%d)\n", dmanr);
322#endif
323
324  dmalp = (unsigned int *) dma_base_addr[dmanr];
325  dmalp[MCFDMA_DMR] |= MCFDMA_DMR_EN;
326}
327
328static __inline__ void disable_dma(unsigned int dmanr)
329{
330  volatile unsigned int   *dmalp;
331
332#ifdef DMA_DEBUG
333  printk("disable_dma(dmanr=%d)\n", dmanr);
334#endif
335
336  dmalp = (unsigned int *) dma_base_addr[dmanr];
337
338  /* Turn off external requests, and stop any DMA in progress */
339  dmalp[MCFDMA_DMR] &= ~MCFDMA_DMR_EN;
340  dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
341}
342
343/*
344 * Clear the 'DMA Pointer Flip Flop'.
345 * Write 0 for LSB/MSB, 1 for MSB/LSB access.
346 * Use this once to initialize the FF to a known state.
347 * After that, keep track of it. :-)
348 * --- In order to do that, the DMA routines below should ---
349 * --- only be used while interrupts are disabled! ---
350 *
351 * This is a NOP for ColdFire. Provide a stub for compatibility.
352 */
353static __inline__ void clear_dma_ff(unsigned int dmanr)
354{
355}
356
357/* set mode (above) for a specific DMA channel */
358static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
359{
360
361  volatile unsigned int   *dmalp;
362  volatile unsigned short *dmawp;
363
364#ifdef DMA_DEBUG
365  printk("set_dma_mode(dmanr=%d,mode=%d)\n", dmanr, mode);
366#endif
367  dmalp = (unsigned int *) dma_base_addr[dmanr];
368  dmawp = (unsigned short *) dma_base_addr[dmanr];
369
370  /* Clear config errors */
371  dmalp[MCFDMA_DMR] |= MCFDMA_DMR_RESET;
372
373  /* Set command register */
374  dmalp[MCFDMA_DMR] =
375    MCFDMA_DMR_RQM_DUAL |         /* Mandatory Request Mode setting */
376    MCFDMA_DMR_DSTT_SD  |         /* Set up addressing types; set to supervisor-data. */
377    MCFDMA_DMR_SRCT_SD  |         /* Set up addressing types; set to supervisor-data. */
378    /* source static-address-mode */
379    ((mode & DMA_MODE_SRC_SA_BIT) ? MCFDMA_DMR_SRCM_SA : MCFDMA_DMR_SRCM_IA) |
380    /* dest static-address-mode */
381    ((mode & DMA_MODE_DES_SA_BIT) ? MCFDMA_DMR_DSTM_SA : MCFDMA_DMR_DSTM_IA) |
382    /* burst, 32 bit, 16 bit or 8 bit transfers are separately configurable on the MCF5272 */
383    (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_DSTS_OFF) |
384    (((mode & DMA_MODE_SSIZE_MASK) >> DMA_MODE_SSIZE_OFF) << MCFDMA_DMR_SRCS_OFF);
385
386  dmawp[MCFDMA_DIR] |= MCFDMA_DIR_ASCEN;   /* Enable completion interrupts */
387
388#ifdef DEBUG_DMA
389  printk("%s(%d): dmanr=%d DMR[%x]=%x DIR[%x]=%x\n", __FILE__, __LINE__,
390         dmanr, (int) &dmalp[MCFDMA_DMR], dmabp[MCFDMA_DMR],
391	 (int) &dmawp[MCFDMA_DIR], dmawp[MCFDMA_DIR]);
392#endif
393}
394
395/* Set transfer address for specific DMA channel */
396static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
397{
398  volatile unsigned int   *dmalp;
399
400#ifdef DMA_DEBUG
401  printk("set_dma_addr(dmanr=%d,a=%x)\n", dmanr, a);
402#endif
403
404  dmalp = (unsigned int *) dma_base_addr[dmanr];
405
406  /* Determine which address registers are used for memory/device accesses */
407  if (dmalp[MCFDMA_DMR] & MCFDMA_DMR_SRCM) {
408    /* Source incrementing, must be memory */
409    dmalp[MCFDMA_DSAR] = a;
410    /* Set dest address, must be device */
411    dmalp[MCFDMA_DDAR] = dma_device_address[dmanr];
412  } else {
413    /* Destination incrementing, must be memory */
414    dmalp[MCFDMA_DDAR] = a;
415    /* Set source address, must be device */
416    dmalp[MCFDMA_DSAR] = dma_device_address[dmanr];
417  }
418
419#ifdef DEBUG_DMA
420  printk("%s(%d): dmanr=%d DMR[%x]=%x SAR[%x]=%08x DAR[%x]=%08x\n",
421	__FILE__, __LINE__, dmanr, (int) &dmawp[MCFDMA_DMR], dmawp[MCFDMA_DMR],
422	(int) &dmalp[MCFDMA_DSAR], dmalp[MCFDMA_DSAR],
423	(int) &dmalp[MCFDMA_DDAR], dmalp[MCFDMA_DDAR]);
424#endif
425}
426
427/*
428 * Specific for Coldfire - sets device address.
429 * Should be called after the mode set call, and before set DMA address.
430 */
431static __inline__ void set_dma_device_addr(unsigned int dmanr, unsigned int a)
432{
433#ifdef DMA_DEBUG
434  printk("set_dma_device_addr(dmanr=%d,a=%x)\n", dmanr, a);
435#endif
436
437  dma_device_address[dmanr] = a;
438}
439
440/*
441 * NOTE 2: "count" represents _bytes_.
442 *
443 * NOTE 3: While a 32-bit register, "count" is only a maximum 24-bit value.
444 */
445static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
446{
447  volatile unsigned int *dmalp;
448
449#ifdef DMA_DEBUG
450  printk("set_dma_count(dmanr=%d,count=%d)\n", dmanr, count);
451#endif
452
453  dmalp = (unsigned int *) dma_base_addr[dmanr];
454  dmalp[MCFDMA_DBCR] = count;
455}
456
457/*
458 * Get DMA residue count. After a DMA transfer, this
459 * should return zero. Reading this while a DMA transfer is
460 * still in progress will return unpredictable results.
461 * Otherwise, it returns the number of _bytes_ left to transfer.
462 */
463static __inline__ int get_dma_residue(unsigned int dmanr)
464{
465  volatile unsigned int *dmalp;
466  unsigned int count;
467
468#ifdef DMA_DEBUG
469  printk("get_dma_residue(dmanr=%d)\n", dmanr);
470#endif
471
472  dmalp = (unsigned int *) dma_base_addr[dmanr];
473  count = dmalp[MCFDMA_DBCR];
474  return(count);
475}
476
477#endif /* !defined(CONFIG_M5272) */
478#endif /* CONFIG_COLDFIRE */
479
480/* it's useless on the m68k, but unfortunately needed by the new
481   bootmem allocator (but this should do it for this) */
482#define MAX_DMA_ADDRESS PAGE_OFFSET
483
484#define MAX_DMA_CHANNELS 8
485
486extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
487extern void free_dma(unsigned int dmanr);	/* release it again */
488
489#define isa_dma_bridge_buggy    (0)
490
491#endif /* _M68K_DMA_H */