Linux Audio

Check our new training course

Loading...
v6.13.7
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 16#include <asm/barrier.h>
 17
 18/*
 19 *	Bit access functions vary across the ColdFire and 68k families.
 20 *	So we will break them out here, and then macro in the ones we want.
 21 *
 22 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 23 *	68000    - supports standard bset/bclr/bchg with memory operand
 24 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 25 *
 26 *	Although it is possible to use only the bset/bclr/bchg with register
 27 *	operands on all platforms you end up with larger generated code.
 28 *	So we use the best form possible on a given platform.
 29 */
 30
 31static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 32{
 33	char *p = (char *)vaddr + (nr ^ 31) / 8;
 34
 35	__asm__ __volatile__ ("bset %1,(%0)"
 36		:
 37		: "a" (p), "di" (nr & 7)
 38		: "memory");
 39}
 40
 41static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 42{
 43	char *p = (char *)vaddr + (nr ^ 31) / 8;
 44
 45	__asm__ __volatile__ ("bset %1,%0"
 46		: "+m" (*p)
 47		: "di" (nr & 7));
 48}
 49
 50static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 51{
 52	__asm__ __volatile__ ("bfset %1{%0:#1}"
 53		:
 54		: "d" (nr ^ 31), "o" (*vaddr)
 55		: "memory");
 56}
 57
 58#if defined(CONFIG_COLDFIRE)
 59#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 60#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 61#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 62#else
 63#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 64				bset_mem_set_bit(nr, vaddr) : \
 65				bfset_mem_set_bit(nr, vaddr))
 66#endif
 67
 68static __always_inline void
 69arch___set_bit(unsigned long nr, volatile unsigned long *addr)
 70{
 71	set_bit(nr, addr);
 72}
 
 
 
 73
 74static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 75{
 76	char *p = (char *)vaddr + (nr ^ 31) / 8;
 77
 78	__asm__ __volatile__ ("bclr %1,(%0)"
 79		:
 80		: "a" (p), "di" (nr & 7)
 81		: "memory");
 82}
 83
 84static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 85{
 86	char *p = (char *)vaddr + (nr ^ 31) / 8;
 87
 88	__asm__ __volatile__ ("bclr %1,%0"
 89		: "+m" (*p)
 90		: "di" (nr & 7));
 91}
 92
 93static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 94{
 95	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 96		:
 97		: "d" (nr ^ 31), "o" (*vaddr)
 98		: "memory");
 99}
100
101#if defined(CONFIG_COLDFIRE)
102#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
103#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
104#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
105#else
106#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
107				bclr_mem_clear_bit(nr, vaddr) : \
108				bfclr_mem_clear_bit(nr, vaddr))
109#endif
110
111static __always_inline void
112arch___clear_bit(unsigned long nr, volatile unsigned long *addr)
113{
114	clear_bit(nr, addr);
115}
116
117static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
118{
119	char *p = (char *)vaddr + (nr ^ 31) / 8;
120
121	__asm__ __volatile__ ("bchg %1,(%0)"
122		:
123		: "a" (p), "di" (nr & 7)
124		: "memory");
125}
126
127static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
128{
129	char *p = (char *)vaddr + (nr ^ 31) / 8;
130
131	__asm__ __volatile__ ("bchg %1,%0"
132		: "+m" (*p)
133		: "di" (nr & 7));
134}
135
136static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
137{
138	__asm__ __volatile__ ("bfchg %1{%0:#1}"
139		:
140		: "d" (nr ^ 31), "o" (*vaddr)
141		: "memory");
142}
143
144#if defined(CONFIG_COLDFIRE)
145#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
146#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
147#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
148#else
149#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
150				bchg_mem_change_bit(nr, vaddr) : \
151				bfchg_mem_change_bit(nr, vaddr))
152#endif
153
154static __always_inline void
155arch___change_bit(unsigned long nr, volatile unsigned long *addr)
 
 
156{
157	change_bit(nr, addr);
158}
159
160#define arch_test_bit generic_test_bit
161#define arch_test_bit_acquire generic_test_bit_acquire
162
163static inline int bset_reg_test_and_set_bit(int nr,
164					    volatile unsigned long *vaddr)
165{
166	char *p = (char *)vaddr + (nr ^ 31) / 8;
167	char retval;
168
169	__asm__ __volatile__ ("bset %2,(%1); sne %0"
170		: "=d" (retval)
171		: "a" (p), "di" (nr & 7)
172		: "memory");
173	return retval;
174}
175
176static inline int bset_mem_test_and_set_bit(int nr,
177					    volatile unsigned long *vaddr)
178{
179	char *p = (char *)vaddr + (nr ^ 31) / 8;
180	char retval;
181
182	__asm__ __volatile__ ("bset %2,%1; sne %0"
183		: "=d" (retval), "+m" (*p)
184		: "di" (nr & 7));
185	return retval;
186}
187
188static inline int bfset_mem_test_and_set_bit(int nr,
189					     volatile unsigned long *vaddr)
190{
191	char retval;
192
193	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
194		: "=d" (retval)
195		: "d" (nr ^ 31), "o" (*vaddr)
196		: "memory");
197	return retval;
198}
199
200#if defined(CONFIG_COLDFIRE)
201#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
202#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
203#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
204#else
205#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
206					bset_mem_test_and_set_bit(nr, vaddr) : \
207					bfset_mem_test_and_set_bit(nr, vaddr))
208#endif
209
210static __always_inline bool
211arch___test_and_set_bit(unsigned long nr, volatile unsigned long *addr)
212{
213	return test_and_set_bit(nr, addr);
214}
215
216static inline int bclr_reg_test_and_clear_bit(int nr,
217					      volatile unsigned long *vaddr)
218{
219	char *p = (char *)vaddr + (nr ^ 31) / 8;
220	char retval;
221
222	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
223		: "=d" (retval)
224		: "a" (p), "di" (nr & 7)
225		: "memory");
226	return retval;
227}
228
229static inline int bclr_mem_test_and_clear_bit(int nr,
230					      volatile unsigned long *vaddr)
231{
232	char *p = (char *)vaddr + (nr ^ 31) / 8;
233	char retval;
234
235	__asm__ __volatile__ ("bclr %2,%1; sne %0"
236		: "=d" (retval), "+m" (*p)
237		: "di" (nr & 7));
238	return retval;
239}
240
241static inline int bfclr_mem_test_and_clear_bit(int nr,
242					       volatile unsigned long *vaddr)
243{
244	char retval;
245
246	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
247		: "=d" (retval)
248		: "d" (nr ^ 31), "o" (*vaddr)
249		: "memory");
250	return retval;
251}
252
253#if defined(CONFIG_COLDFIRE)
254#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
255#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
256#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
257#else
258#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
259					bclr_mem_test_and_clear_bit(nr, vaddr) : \
260					bfclr_mem_test_and_clear_bit(nr, vaddr))
261#endif
262
263static __always_inline bool
264arch___test_and_clear_bit(unsigned long nr, volatile unsigned long *addr)
265{
266	return test_and_clear_bit(nr, addr);
267}
268
269static inline int bchg_reg_test_and_change_bit(int nr,
270					       volatile unsigned long *vaddr)
271{
272	char *p = (char *)vaddr + (nr ^ 31) / 8;
273	char retval;
274
275	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
276		: "=d" (retval)
277		: "a" (p), "di" (nr & 7)
278		: "memory");
279	return retval;
280}
281
282static inline int bchg_mem_test_and_change_bit(int nr,
283					       volatile unsigned long *vaddr)
284{
285	char *p = (char *)vaddr + (nr ^ 31) / 8;
286	char retval;
287
288	__asm__ __volatile__ ("bchg %2,%1; sne %0"
289		: "=d" (retval), "+m" (*p)
290		: "di" (nr & 7));
291	return retval;
292}
293
294static inline int bfchg_mem_test_and_change_bit(int nr,
295						volatile unsigned long *vaddr)
296{
297	char retval;
298
299	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
300		: "=d" (retval)
301		: "d" (nr ^ 31), "o" (*vaddr)
302		: "memory");
303	return retval;
304}
305
306#if defined(CONFIG_COLDFIRE)
307#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
308#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
309#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
310#else
311#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
312					bchg_mem_test_and_change_bit(nr, vaddr) : \
313					bfchg_mem_test_and_change_bit(nr, vaddr))
314#endif
315
316static __always_inline bool
317arch___test_and_change_bit(unsigned long nr, volatile unsigned long *addr)
318{
319	return test_and_change_bit(nr, addr);
320}
321
322static inline bool xor_unlock_is_negative_byte(unsigned long mask,
323		volatile unsigned long *p)
324{
325#ifdef CONFIG_COLDFIRE
326	__asm__ __volatile__ ("eorl %1, %0"
327		: "+m" (*p)
328		: "d" (mask)
329		: "memory");
330	return *p & (1 << 7);
331#else
332	char result;
333	char *cp = (char *)p + 3;	/* m68k is big-endian */
334
335	__asm__ __volatile__ ("eor.b %1, %2; smi %0"
336		: "=d" (result)
337		: "di" (mask), "o" (*cp)
338		: "memory");
339	return result;
340#endif
341}
342
343/*
344 *	The true 68020 and more advanced processors support the "bfffo"
345 *	instruction for finding bits. ColdFire and simple 68000 parts
346 *	(including CPU32) do not support this. They simply use the generic
347 *	functions.
348 */
349#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 
350#include <asm-generic/bitops/ffz.h>
351#else
352
353static inline int find_first_zero_bit(const unsigned long *vaddr,
354				      unsigned size)
355{
356	const unsigned long *p = vaddr;
357	int res = 32;
358	unsigned int words;
359	unsigned long num;
360
361	if (!size)
362		return 0;
363
364	words = (size + 31) >> 5;
365	while (!(num = ~*p++)) {
366		if (!--words)
367			goto out;
368	}
369
370	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
371			      : "=d" (res) : "d" (num & -num));
372	res ^= 31;
373out:
374	res += ((long)p - (long)vaddr - 4) * 8;
375	return res < size ? res : size;
376}
377#define find_first_zero_bit find_first_zero_bit
378
379static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
380				     int offset)
381{
382	const unsigned long *p = vaddr + (offset >> 5);
383	int bit = offset & 31UL, res;
384
385	if (offset >= size)
386		return size;
387
388	if (bit) {
389		unsigned long num = ~*p++ & (~0UL << bit);
390		offset -= bit;
391
392		/* Look for zero in first longword */
393		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
394				      : "=d" (res) : "d" (num & -num));
395		if (res < 32) {
396			offset += res ^ 31;
397			return offset < size ? offset : size;
398		}
399		offset += 32;
400
401		if (offset >= size)
402			return size;
403	}
404	/* No zero yet, search remaining full bytes for a zero */
405	return offset + find_first_zero_bit(p, size - offset);
406}
407#define find_next_zero_bit find_next_zero_bit
408
409static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
410{
411	const unsigned long *p = vaddr;
412	int res = 32;
413	unsigned int words;
414	unsigned long num;
415
416	if (!size)
417		return 0;
418
419	words = (size + 31) >> 5;
420	while (!(num = *p++)) {
421		if (!--words)
422			goto out;
423	}
424
425	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
426			      : "=d" (res) : "d" (num & -num));
427	res ^= 31;
428out:
429	res += ((long)p - (long)vaddr - 4) * 8;
430	return res < size ? res : size;
431}
432#define find_first_bit find_first_bit
433
434static inline int find_next_bit(const unsigned long *vaddr, int size,
435				int offset)
436{
437	const unsigned long *p = vaddr + (offset >> 5);
438	int bit = offset & 31UL, res;
439
440	if (offset >= size)
441		return size;
442
443	if (bit) {
444		unsigned long num = *p++ & (~0UL << bit);
445		offset -= bit;
446
447		/* Look for one in first longword */
448		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
449				      : "=d" (res) : "d" (num & -num));
450		if (res < 32) {
451			offset += res ^ 31;
452			return offset < size ? offset : size;
453		}
454		offset += 32;
455
456		if (offset >= size)
457			return size;
458	}
459	/* No one yet, search remaining full bytes for a one */
460	return offset + find_first_bit(p, size - offset);
461}
462#define find_next_bit find_next_bit
463
464/*
465 * ffz = Find First Zero in word. Undefined if no zero exists,
466 * so code should check against ~0UL first..
467 */
468static inline unsigned long ffz(unsigned long word)
469{
470	int res;
471
472	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
473			      : "=d" (res) : "d" (~word & -~word));
474	return res ^ 31;
475}
476
477#endif
478
479#ifdef __KERNEL__
480
481#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
482
483/*
484 *	The newer ColdFire family members support a "bitrev" instruction
485 *	and we can use that to implement a fast ffs. Older Coldfire parts,
486 *	and normal 68000 parts don't have anything special, so we use the
487 *	generic functions for those.
488 */
489#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
490	!defined(CONFIG_M68000)
491static inline unsigned long __ffs(unsigned long x)
492{
493	__asm__ __volatile__ ("bitrev %0; ff1 %0"
494		: "=d" (x)
495		: "0" (x));
496	return x;
497}
498
499static inline int ffs(int x)
500{
501	if (!x)
502		return 0;
503	return __ffs(x) + 1;
504}
505
506#else
507#include <asm-generic/bitops/ffs.h>
508#include <asm-generic/bitops/__ffs.h>
509#endif
510
511#include <asm-generic/bitops/fls.h>
512#include <asm-generic/bitops/__fls.h>
513
514#else
515
516/*
517 *	ffs: find first bit set. This is defined the same way as
518 *	the libc and compiler builtin ffs routines, therefore
519 *	differs in spirit from the above ffz (man ffs).
520 */
521static inline int ffs(int x)
522{
523	int cnt;
524
525	__asm__ ("bfffo %1{#0:#0},%0"
526		: "=d" (cnt)
527		: "dm" (x & -x));
528	return 32 - cnt;
529}
530
531static inline unsigned long __ffs(unsigned long x)
532{
533	return ffs(x) - 1;
534}
535
536/*
537 *	fls: find last bit set.
538 */
539static inline int fls(unsigned int x)
540{
541	int cnt;
542
543	__asm__ ("bfffo %1{#0,#0},%0"
544		: "=d" (cnt)
545		: "dm" (x));
546	return 32 - cnt;
547}
548
549static inline unsigned long __fls(unsigned long x)
550{
551	return fls(x) - 1;
552}
553
554#endif
555
556/* Simple test-and-set bit locks */
557#define test_and_set_bit_lock	test_and_set_bit
558#define clear_bit_unlock	clear_bit
559#define __clear_bit_unlock	clear_bit_unlock
560
561#include <asm-generic/bitops/non-instrumented-non-atomic.h>
562#include <asm-generic/bitops/ext2-atomic.h>
 
563#include <asm-generic/bitops/fls64.h>
564#include <asm-generic/bitops/sched.h>
565#include <asm-generic/bitops/hweight.h>
566#include <asm-generic/bitops/le.h>
567#endif /* __KERNEL__ */
568
569#endif /* _M68K_BITOPS_H */
v3.1
  1#ifndef _M68K_BITOPS_H
  2#define _M68K_BITOPS_H
  3/*
  4 * Copyright 1992, Linus Torvalds.
  5 *
  6 * This file is subject to the terms and conditions of the GNU General Public
  7 * License.  See the file COPYING in the main directory of this archive
  8 * for more details.
  9 */
 10
 11#ifndef _LINUX_BITOPS_H
 12#error only <linux/bitops.h> can be included directly
 13#endif
 14
 15#include <linux/compiler.h>
 
 16
 17/*
 18 *	Bit access functions vary across the ColdFire and 68k families.
 19 *	So we will break them out here, and then macro in the ones we want.
 20 *
 21 *	ColdFire - supports standard bset/bclr/bchg with register operand only
 22 *	68000    - supports standard bset/bclr/bchg with memory operand
 23 *	>= 68020 - also supports the bfset/bfclr/bfchg instructions
 24 *
 25 *	Although it is possible to use only the bset/bclr/bchg with register
 26 *	operands on all platforms you end up with larger generated code.
 27 *	So we use the best form possible on a given platform.
 28 */
 29
 30static inline void bset_reg_set_bit(int nr, volatile unsigned long *vaddr)
 31{
 32	char *p = (char *)vaddr + (nr ^ 31) / 8;
 33
 34	__asm__ __volatile__ ("bset %1,(%0)"
 35		:
 36		: "a" (p), "di" (nr & 7)
 37		: "memory");
 38}
 39
 40static inline void bset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 41{
 42	char *p = (char *)vaddr + (nr ^ 31) / 8;
 43
 44	__asm__ __volatile__ ("bset %1,%0"
 45		: "+m" (*p)
 46		: "di" (nr & 7));
 47}
 48
 49static inline void bfset_mem_set_bit(int nr, volatile unsigned long *vaddr)
 50{
 51	__asm__ __volatile__ ("bfset %1{%0:#1}"
 52		:
 53		: "d" (nr ^ 31), "o" (*vaddr)
 54		: "memory");
 55}
 56
 57#if defined(CONFIG_COLDFIRE)
 58#define	set_bit(nr, vaddr)	bset_reg_set_bit(nr, vaddr)
 59#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
 60#define	set_bit(nr, vaddr)	bset_mem_set_bit(nr, vaddr)
 61#else
 62#define set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
 63				bset_mem_set_bit(nr, vaddr) : \
 64				bfset_mem_set_bit(nr, vaddr))
 65#endif
 66
 67#define __set_bit(nr, vaddr)	set_bit(nr, vaddr)
 68
 69
 70/*
 71 * clear_bit() doesn't provide any barrier for the compiler.
 72 */
 73#define smp_mb__before_clear_bit()	barrier()
 74#define smp_mb__after_clear_bit()	barrier()
 75
 76static inline void bclr_reg_clear_bit(int nr, volatile unsigned long *vaddr)
 77{
 78	char *p = (char *)vaddr + (nr ^ 31) / 8;
 79
 80	__asm__ __volatile__ ("bclr %1,(%0)"
 81		:
 82		: "a" (p), "di" (nr & 7)
 83		: "memory");
 84}
 85
 86static inline void bclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 87{
 88	char *p = (char *)vaddr + (nr ^ 31) / 8;
 89
 90	__asm__ __volatile__ ("bclr %1,%0"
 91		: "+m" (*p)
 92		: "di" (nr & 7));
 93}
 94
 95static inline void bfclr_mem_clear_bit(int nr, volatile unsigned long *vaddr)
 96{
 97	__asm__ __volatile__ ("bfclr %1{%0:#1}"
 98		:
 99		: "d" (nr ^ 31), "o" (*vaddr)
100		: "memory");
101}
102
103#if defined(CONFIG_COLDFIRE)
104#define	clear_bit(nr, vaddr)	bclr_reg_clear_bit(nr, vaddr)
105#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
106#define	clear_bit(nr, vaddr)	bclr_mem_clear_bit(nr, vaddr)
107#else
108#define clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
109				bclr_mem_clear_bit(nr, vaddr) : \
110				bfclr_mem_clear_bit(nr, vaddr))
111#endif
112
113#define __clear_bit(nr, vaddr)	clear_bit(nr, vaddr)
114
 
 
 
115
116static inline void bchg_reg_change_bit(int nr, volatile unsigned long *vaddr)
117{
118	char *p = (char *)vaddr + (nr ^ 31) / 8;
119
120	__asm__ __volatile__ ("bchg %1,(%0)"
121		:
122		: "a" (p), "di" (nr & 7)
123		: "memory");
124}
125
126static inline void bchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
127{
128	char *p = (char *)vaddr + (nr ^ 31) / 8;
129
130	__asm__ __volatile__ ("bchg %1,%0"
131		: "+m" (*p)
132		: "di" (nr & 7));
133}
134
135static inline void bfchg_mem_change_bit(int nr, volatile unsigned long *vaddr)
136{
137	__asm__ __volatile__ ("bfchg %1{%0:#1}"
138		:
139		: "d" (nr ^ 31), "o" (*vaddr)
140		: "memory");
141}
142
143#if defined(CONFIG_COLDFIRE)
144#define	change_bit(nr, vaddr)	bchg_reg_change_bit(nr, vaddr)
145#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
146#define	change_bit(nr, vaddr)	bchg_mem_change_bit(nr, vaddr)
147#else
148#define change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
149				bchg_mem_change_bit(nr, vaddr) : \
150				bfchg_mem_change_bit(nr, vaddr))
151#endif
152
153#define __change_bit(nr, vaddr)	change_bit(nr, vaddr)
154
155
156static inline int test_bit(int nr, const unsigned long *vaddr)
157{
158	return (vaddr[nr >> 5] & (1UL << (nr & 31))) != 0;
159}
160
 
 
161
162static inline int bset_reg_test_and_set_bit(int nr,
163					    volatile unsigned long *vaddr)
164{
165	char *p = (char *)vaddr + (nr ^ 31) / 8;
166	char retval;
167
168	__asm__ __volatile__ ("bset %2,(%1); sne %0"
169		: "=d" (retval)
170		: "a" (p), "di" (nr & 7)
171		: "memory");
172	return retval;
173}
174
175static inline int bset_mem_test_and_set_bit(int nr,
176					    volatile unsigned long *vaddr)
177{
178	char *p = (char *)vaddr + (nr ^ 31) / 8;
179	char retval;
180
181	__asm__ __volatile__ ("bset %2,%1; sne %0"
182		: "=d" (retval), "+m" (*p)
183		: "di" (nr & 7));
184	return retval;
185}
186
187static inline int bfset_mem_test_and_set_bit(int nr,
188					     volatile unsigned long *vaddr)
189{
190	char retval;
191
192	__asm__ __volatile__ ("bfset %2{%1:#1}; sne %0"
193		: "=d" (retval)
194		: "d" (nr ^ 31), "o" (*vaddr)
195		: "memory");
196	return retval;
197}
198
199#if defined(CONFIG_COLDFIRE)
200#define	test_and_set_bit(nr, vaddr)	bset_reg_test_and_set_bit(nr, vaddr)
201#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
202#define	test_and_set_bit(nr, vaddr)	bset_mem_test_and_set_bit(nr, vaddr)
203#else
204#define test_and_set_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
205					bset_mem_test_and_set_bit(nr, vaddr) : \
206					bfset_mem_test_and_set_bit(nr, vaddr))
207#endif
208
209#define __test_and_set_bit(nr, vaddr)	test_and_set_bit(nr, vaddr)
210
 
 
 
211
212static inline int bclr_reg_test_and_clear_bit(int nr,
213					      volatile unsigned long *vaddr)
214{
215	char *p = (char *)vaddr + (nr ^ 31) / 8;
216	char retval;
217
218	__asm__ __volatile__ ("bclr %2,(%1); sne %0"
219		: "=d" (retval)
220		: "a" (p), "di" (nr & 7)
221		: "memory");
222	return retval;
223}
224
225static inline int bclr_mem_test_and_clear_bit(int nr,
226					      volatile unsigned long *vaddr)
227{
228	char *p = (char *)vaddr + (nr ^ 31) / 8;
229	char retval;
230
231	__asm__ __volatile__ ("bclr %2,%1; sne %0"
232		: "=d" (retval), "+m" (*p)
233		: "di" (nr & 7));
234	return retval;
235}
236
237static inline int bfclr_mem_test_and_clear_bit(int nr,
238					       volatile unsigned long *vaddr)
239{
240	char retval;
241
242	__asm__ __volatile__ ("bfclr %2{%1:#1}; sne %0"
243		: "=d" (retval)
244		: "d" (nr ^ 31), "o" (*vaddr)
245		: "memory");
246	return retval;
247}
248
249#if defined(CONFIG_COLDFIRE)
250#define	test_and_clear_bit(nr, vaddr)	bclr_reg_test_and_clear_bit(nr, vaddr)
251#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
252#define	test_and_clear_bit(nr, vaddr)	bclr_mem_test_and_clear_bit(nr, vaddr)
253#else
254#define test_and_clear_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
255					bclr_mem_test_and_clear_bit(nr, vaddr) : \
256					bfclr_mem_test_and_clear_bit(nr, vaddr))
257#endif
258
259#define __test_and_clear_bit(nr, vaddr)	test_and_clear_bit(nr, vaddr)
260
 
 
 
261
262static inline int bchg_reg_test_and_change_bit(int nr,
263					       volatile unsigned long *vaddr)
264{
265	char *p = (char *)vaddr + (nr ^ 31) / 8;
266	char retval;
267
268	__asm__ __volatile__ ("bchg %2,(%1); sne %0"
269		: "=d" (retval)
270		: "a" (p), "di" (nr & 7)
271		: "memory");
272	return retval;
273}
274
275static inline int bchg_mem_test_and_change_bit(int nr,
276					       volatile unsigned long *vaddr)
277{
278	char *p = (char *)vaddr + (nr ^ 31) / 8;
279	char retval;
280
281	__asm__ __volatile__ ("bchg %2,%1; sne %0"
282		: "=d" (retval), "+m" (*p)
283		: "di" (nr & 7));
284	return retval;
285}
286
287static inline int bfchg_mem_test_and_change_bit(int nr,
288						volatile unsigned long *vaddr)
289{
290	char retval;
291
292	__asm__ __volatile__ ("bfchg %2{%1:#1}; sne %0"
293		: "=d" (retval)
294		: "d" (nr ^ 31), "o" (*vaddr)
295		: "memory");
296	return retval;
297}
298
299#if defined(CONFIG_COLDFIRE)
300#define	test_and_change_bit(nr, vaddr)	bchg_reg_test_and_change_bit(nr, vaddr)
301#elif defined(CONFIG_CPU_HAS_NO_BITFIELDS)
302#define	test_and_change_bit(nr, vaddr)	bchg_mem_test_and_change_bit(nr, vaddr)
303#else
304#define test_and_change_bit(nr, vaddr)	(__builtin_constant_p(nr) ? \
305					bchg_mem_test_and_change_bit(nr, vaddr) : \
306					bfchg_mem_test_and_change_bit(nr, vaddr))
307#endif
308
309#define __test_and_change_bit(nr, vaddr) test_and_change_bit(nr, vaddr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310
 
 
 
 
 
 
 
311
312/*
313 *	The true 68020 and more advanced processors support the "bfffo"
314 *	instruction for finding bits. ColdFire and simple 68000 parts
315 *	(including CPU32) do not support this. They simply use the generic
316 *	functions.
317 */
318#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
319#include <asm-generic/bitops/find.h>
320#include <asm-generic/bitops/ffz.h>
321#else
322
323static inline int find_first_zero_bit(const unsigned long *vaddr,
324				      unsigned size)
325{
326	const unsigned long *p = vaddr;
327	int res = 32;
328	unsigned int words;
329	unsigned long num;
330
331	if (!size)
332		return 0;
333
334	words = (size + 31) >> 5;
335	while (!(num = ~*p++)) {
336		if (!--words)
337			goto out;
338	}
339
340	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
341			      : "=d" (res) : "d" (num & -num));
342	res ^= 31;
343out:
344	res += ((long)p - (long)vaddr - 4) * 8;
345	return res < size ? res : size;
346}
347#define find_first_zero_bit find_first_zero_bit
348
349static inline int find_next_zero_bit(const unsigned long *vaddr, int size,
350				     int offset)
351{
352	const unsigned long *p = vaddr + (offset >> 5);
353	int bit = offset & 31UL, res;
354
355	if (offset >= size)
356		return size;
357
358	if (bit) {
359		unsigned long num = ~*p++ & (~0UL << bit);
360		offset -= bit;
361
362		/* Look for zero in first longword */
363		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
364				      : "=d" (res) : "d" (num & -num));
365		if (res < 32) {
366			offset += res ^ 31;
367			return offset < size ? offset : size;
368		}
369		offset += 32;
370
371		if (offset >= size)
372			return size;
373	}
374	/* No zero yet, search remaining full bytes for a zero */
375	return offset + find_first_zero_bit(p, size - offset);
376}
377#define find_next_zero_bit find_next_zero_bit
378
379static inline int find_first_bit(const unsigned long *vaddr, unsigned size)
380{
381	const unsigned long *p = vaddr;
382	int res = 32;
383	unsigned int words;
384	unsigned long num;
385
386	if (!size)
387		return 0;
388
389	words = (size + 31) >> 5;
390	while (!(num = *p++)) {
391		if (!--words)
392			goto out;
393	}
394
395	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
396			      : "=d" (res) : "d" (num & -num));
397	res ^= 31;
398out:
399	res += ((long)p - (long)vaddr - 4) * 8;
400	return res < size ? res : size;
401}
402#define find_first_bit find_first_bit
403
404static inline int find_next_bit(const unsigned long *vaddr, int size,
405				int offset)
406{
407	const unsigned long *p = vaddr + (offset >> 5);
408	int bit = offset & 31UL, res;
409
410	if (offset >= size)
411		return size;
412
413	if (bit) {
414		unsigned long num = *p++ & (~0UL << bit);
415		offset -= bit;
416
417		/* Look for one in first longword */
418		__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
419				      : "=d" (res) : "d" (num & -num));
420		if (res < 32) {
421			offset += res ^ 31;
422			return offset < size ? offset : size;
423		}
424		offset += 32;
425
426		if (offset >= size)
427			return size;
428	}
429	/* No one yet, search remaining full bytes for a one */
430	return offset + find_first_bit(p, size - offset);
431}
432#define find_next_bit find_next_bit
433
434/*
435 * ffz = Find First Zero in word. Undefined if no zero exists,
436 * so code should check against ~0UL first..
437 */
438static inline unsigned long ffz(unsigned long word)
439{
440	int res;
441
442	__asm__ __volatile__ ("bfffo %1{#0,#0},%0"
443			      : "=d" (res) : "d" (~word & -~word));
444	return res ^ 31;
445}
446
447#endif
448
449#ifdef __KERNEL__
450
451#if defined(CONFIG_CPU_HAS_NO_BITFIELDS)
452
453/*
454 *	The newer ColdFire family members support a "bitrev" instruction
455 *	and we can use that to implement a fast ffs. Older Coldfire parts,
456 *	and normal 68000 parts don't have anything special, so we use the
457 *	generic functions for those.
458 */
459#if (defined(__mcfisaaplus__) || defined(__mcfisac__)) && \
460	!defined(CONFIG_M68000) && !defined(CONFIG_MCPU32)
461static inline int __ffs(int x)
462{
463	__asm__ __volatile__ ("bitrev %0; ff1 %0"
464		: "=d" (x)
465		: "0" (x));
466	return x;
467}
468
469static inline int ffs(int x)
470{
471	if (!x)
472		return 0;
473	return __ffs(x) + 1;
474}
475
476#else
477#include <asm-generic/bitops/ffs.h>
478#include <asm-generic/bitops/__ffs.h>
479#endif
480
481#include <asm-generic/bitops/fls.h>
482#include <asm-generic/bitops/__fls.h>
483
484#else
485
486/*
487 *	ffs: find first bit set. This is defined the same way as
488 *	the libc and compiler builtin ffs routines, therefore
489 *	differs in spirit from the above ffz (man ffs).
490 */
491static inline int ffs(int x)
492{
493	int cnt;
494
495	__asm__ ("bfffo %1{#0:#0},%0"
496		: "=d" (cnt)
497		: "dm" (x & -x));
498	return 32 - cnt;
499}
500#define __ffs(x) (ffs(x) - 1)
 
 
 
 
501
502/*
503 *	fls: find last bit set.
504 */
505static inline int fls(int x)
506{
507	int cnt;
508
509	__asm__ ("bfffo %1{#0,#0},%0"
510		: "=d" (cnt)
511		: "dm" (x));
512	return 32 - cnt;
513}
514
515static inline int __fls(int x)
516{
517	return fls(x) - 1;
518}
519
520#endif
521
 
 
 
 
 
 
522#include <asm-generic/bitops/ext2-atomic.h>
523#include <asm-generic/bitops/le.h>
524#include <asm-generic/bitops/fls64.h>
525#include <asm-generic/bitops/sched.h>
526#include <asm-generic/bitops/hweight.h>
527#include <asm-generic/bitops/lock.h>
528#endif /* __KERNEL__ */
529
530#endif /* _M68K_BITOPS_H */