Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1/* linux/arch/arm/mach-exynos4/mct.c
  2 *
  3 * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4 *		http://www.samsung.com
  5 *
  6 * EXYNOS4 MCT(Multi-Core Timer) support
  7 *
  8 * This program is free software; you can redistribute it and/or modify
  9 * it under the terms of the GNU General Public License version 2 as
 10 * published by the Free Software Foundation.
 11*/
 12
 13#include <linux/sched.h>
 14#include <linux/interrupt.h>
 15#include <linux/irq.h>
 16#include <linux/err.h>
 17#include <linux/clk.h>
 18#include <linux/clockchips.h>
 19#include <linux/platform_device.h>
 20#include <linux/delay.h>
 21#include <linux/percpu.h>
 22
 23#include <mach/map.h>
 24#include <mach/regs-mct.h>
 25#include <asm/mach/time.h>
 26
 27static unsigned long clk_cnt_per_tick;
 28static unsigned long clk_rate;
 29
 30struct mct_clock_event_device {
 31	struct clock_event_device *evt;
 32	void __iomem *base;
 33};
 34
 35struct mct_clock_event_device mct_tick[2];
 36
 37static void exynos4_mct_write(unsigned int value, void *addr)
 38{
 39	void __iomem *stat_addr;
 40	u32 mask;
 41	u32 i;
 42
 43	__raw_writel(value, addr);
 44
 45	switch ((u32) addr) {
 46	case (u32) EXYNOS4_MCT_G_TCON:
 47		stat_addr = EXYNOS4_MCT_G_WSTAT;
 48		mask = 1 << 16;		/* G_TCON write status */
 49		break;
 50	case (u32) EXYNOS4_MCT_G_COMP0_L:
 51		stat_addr = EXYNOS4_MCT_G_WSTAT;
 52		mask = 1 << 0;		/* G_COMP0_L write status */
 53		break;
 54	case (u32) EXYNOS4_MCT_G_COMP0_U:
 55		stat_addr = EXYNOS4_MCT_G_WSTAT;
 56		mask = 1 << 1;		/* G_COMP0_U write status */
 57		break;
 58	case (u32) EXYNOS4_MCT_G_COMP0_ADD_INCR:
 59		stat_addr = EXYNOS4_MCT_G_WSTAT;
 60		mask = 1 << 2;		/* G_COMP0_ADD_INCR write status */
 61		break;
 62	case (u32) EXYNOS4_MCT_G_CNT_L:
 63		stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 64		mask = 1 << 0;		/* G_CNT_L write status */
 65		break;
 66	case (u32) EXYNOS4_MCT_G_CNT_U:
 67		stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
 68		mask = 1 << 1;		/* G_CNT_U write status */
 69		break;
 70	case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_TCON_OFFSET):
 71		stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET;
 72		mask = 1 << 3;		/* L0_TCON write status */
 73		break;
 74	case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_TCON_OFFSET):
 75		stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET;
 76		mask = 1 << 3;		/* L1_TCON write status */
 77		break;
 78	case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_TCNTB_OFFSET):
 79		stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET;
 80		mask = 1 << 0;		/* L0_TCNTB write status */
 81		break;
 82	case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_TCNTB_OFFSET):
 83		stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET;
 84		mask = 1 << 0;		/* L1_TCNTB write status */
 85		break;
 86	case (u32)(EXYNOS4_MCT_L0_BASE + MCT_L_ICNTB_OFFSET):
 87		stat_addr = EXYNOS4_MCT_L0_BASE + MCT_L_WSTAT_OFFSET;
 88		mask = 1 << 1;		/* L0_ICNTB write status */
 89		break;
 90	case (u32)(EXYNOS4_MCT_L1_BASE + MCT_L_ICNTB_OFFSET):
 91		stat_addr = EXYNOS4_MCT_L1_BASE + MCT_L_WSTAT_OFFSET;
 92		mask = 1 << 1;		/* L1_ICNTB write status */
 93		break;
 94	default:
 95		return;
 96	}
 97
 98	/* Wait maximum 1 ms until written values are applied */
 99	for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
100		if (__raw_readl(stat_addr) & mask) {
101			__raw_writel(mask, stat_addr);
102			return;
103		}
104
105	panic("MCT hangs after writing %d (addr:0x%08x)\n", value, (u32)addr);
106}
107
108/* Clocksource handling */
109static void exynos4_mct_frc_start(u32 hi, u32 lo)
110{
111	u32 reg;
112
113	exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
114	exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
115
116	reg = __raw_readl(EXYNOS4_MCT_G_TCON);
117	reg |= MCT_G_TCON_START;
118	exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
119}
120
121static cycle_t exynos4_frc_read(struct clocksource *cs)
122{
123	unsigned int lo, hi;
124	u32 hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
125
126	do {
127		hi = hi2;
128		lo = __raw_readl(EXYNOS4_MCT_G_CNT_L);
129		hi2 = __raw_readl(EXYNOS4_MCT_G_CNT_U);
130	} while (hi != hi2);
131
132	return ((cycle_t)hi << 32) | lo;
133}
134
135static void exynos4_frc_resume(struct clocksource *cs)
136{
137	exynos4_mct_frc_start(0, 0);
138}
139
140struct clocksource mct_frc = {
141	.name		= "mct-frc",
142	.rating		= 400,
143	.read		= exynos4_frc_read,
144	.mask		= CLOCKSOURCE_MASK(64),
145	.flags		= CLOCK_SOURCE_IS_CONTINUOUS,
146	.resume		= exynos4_frc_resume,
147};
148
149static void __init exynos4_clocksource_init(void)
150{
151	exynos4_mct_frc_start(0, 0);
152
153	if (clocksource_register_hz(&mct_frc, clk_rate))
154		panic("%s: can't register clocksource\n", mct_frc.name);
155}
156
157static void exynos4_mct_comp0_stop(void)
158{
159	unsigned int tcon;
160
161	tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
162	tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
163
164	exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
165	exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
166}
167
168static void exynos4_mct_comp0_start(enum clock_event_mode mode,
169				    unsigned long cycles)
170{
171	unsigned int tcon;
172	cycle_t comp_cycle;
173
174	tcon = __raw_readl(EXYNOS4_MCT_G_TCON);
175
176	if (mode == CLOCK_EVT_MODE_PERIODIC) {
177		tcon |= MCT_G_TCON_COMP0_AUTO_INC;
178		exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
179	}
180
181	comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
182	exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
183	exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
184
185	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
186
187	tcon |= MCT_G_TCON_COMP0_ENABLE;
188	exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
189}
190
191static int exynos4_comp_set_next_event(unsigned long cycles,
192				       struct clock_event_device *evt)
193{
194	exynos4_mct_comp0_start(evt->mode, cycles);
195
196	return 0;
197}
198
199static void exynos4_comp_set_mode(enum clock_event_mode mode,
200				  struct clock_event_device *evt)
201{
202	exynos4_mct_comp0_stop();
203
204	switch (mode) {
205	case CLOCK_EVT_MODE_PERIODIC:
206		exynos4_mct_comp0_start(mode, clk_cnt_per_tick);
207		break;
208
209	case CLOCK_EVT_MODE_ONESHOT:
210	case CLOCK_EVT_MODE_UNUSED:
211	case CLOCK_EVT_MODE_SHUTDOWN:
212	case CLOCK_EVT_MODE_RESUME:
213		break;
214	}
215}
216
217static struct clock_event_device mct_comp_device = {
218	.name		= "mct-comp",
219	.features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
220	.rating		= 250,
221	.set_next_event	= exynos4_comp_set_next_event,
222	.set_mode	= exynos4_comp_set_mode,
223};
224
225static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
226{
227	struct clock_event_device *evt = dev_id;
228
229	exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
230
231	evt->event_handler(evt);
232
233	return IRQ_HANDLED;
234}
235
236static struct irqaction mct_comp_event_irq = {
237	.name		= "mct_comp_irq",
238	.flags		= IRQF_TIMER | IRQF_IRQPOLL,
239	.handler	= exynos4_mct_comp_isr,
240	.dev_id		= &mct_comp_device,
241};
242
243static void exynos4_clockevent_init(void)
244{
245	clk_cnt_per_tick = clk_rate / 2	/ HZ;
246
247	clockevents_calc_mult_shift(&mct_comp_device, clk_rate / 2, 5);
248	mct_comp_device.max_delta_ns =
249		clockevent_delta2ns(0xffffffff, &mct_comp_device);
250	mct_comp_device.min_delta_ns =
251		clockevent_delta2ns(0xf, &mct_comp_device);
252	mct_comp_device.cpumask = cpumask_of(0);
253	clockevents_register_device(&mct_comp_device);
254
255	setup_irq(IRQ_MCT_G0, &mct_comp_event_irq);
256}
257
258#ifdef CONFIG_LOCAL_TIMERS
259/* Clock event handling */
260static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
261{
262	unsigned long tmp;
263	unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
264	void __iomem *addr = mevt->base + MCT_L_TCON_OFFSET;
265
266	tmp = __raw_readl(addr);
267	if (tmp & mask) {
268		tmp &= ~mask;
269		exynos4_mct_write(tmp, addr);
270	}
271}
272
273static void exynos4_mct_tick_start(unsigned long cycles,
274				   struct mct_clock_event_device *mevt)
275{
276	unsigned long tmp;
277
278	exynos4_mct_tick_stop(mevt);
279
280	tmp = (1 << 31) | cycles;	/* MCT_L_UPDATE_ICNTB */
281
282	/* update interrupt count buffer */
283	exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
284
285	/* enable MCT tick interrupt */
286	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
287
288	tmp = __raw_readl(mevt->base + MCT_L_TCON_OFFSET);
289	tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
290	       MCT_L_TCON_INTERVAL_MODE;
291	exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
292}
293
294static int exynos4_tick_set_next_event(unsigned long cycles,
295				       struct clock_event_device *evt)
296{
297	struct mct_clock_event_device *mevt = &mct_tick[smp_processor_id()];
298
299	exynos4_mct_tick_start(cycles, mevt);
300
301	return 0;
302}
303
304static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
305					 struct clock_event_device *evt)
306{
307	struct mct_clock_event_device *mevt = &mct_tick[smp_processor_id()];
308
309	exynos4_mct_tick_stop(mevt);
310
311	switch (mode) {
312	case CLOCK_EVT_MODE_PERIODIC:
313		exynos4_mct_tick_start(clk_cnt_per_tick, mevt);
314		break;
315
316	case CLOCK_EVT_MODE_ONESHOT:
317	case CLOCK_EVT_MODE_UNUSED:
318	case CLOCK_EVT_MODE_SHUTDOWN:
319	case CLOCK_EVT_MODE_RESUME:
320		break;
321	}
322}
323
324static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
325{
326	struct mct_clock_event_device *mevt = dev_id;
327	struct clock_event_device *evt = mevt->evt;
328
329	/*
330	 * This is for supporting oneshot mode.
331	 * Mct would generate interrupt periodically
332	 * without explicit stopping.
333	 */
334	if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
335		exynos4_mct_tick_stop(mevt);
336
337	/* Clear the MCT tick interrupt */
338	exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
339
340	evt->event_handler(evt);
341
342	return IRQ_HANDLED;
343}
344
345static struct irqaction mct_tick0_event_irq = {
346	.name		= "mct_tick0_irq",
347	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
348	.handler	= exynos4_mct_tick_isr,
349};
350
351static struct irqaction mct_tick1_event_irq = {
352	.name		= "mct_tick1_irq",
353	.flags		= IRQF_TIMER | IRQF_NOBALANCING,
354	.handler	= exynos4_mct_tick_isr,
355};
356
357static void exynos4_mct_tick_init(struct clock_event_device *evt)
358{
359	unsigned int cpu = smp_processor_id();
360
361	mct_tick[cpu].evt = evt;
362
363	if (cpu == 0) {
364		mct_tick[cpu].base = EXYNOS4_MCT_L0_BASE;
365		evt->name = "mct_tick0";
366	} else {
367		mct_tick[cpu].base = EXYNOS4_MCT_L1_BASE;
368		evt->name = "mct_tick1";
369	}
370
371	evt->cpumask = cpumask_of(cpu);
372	evt->set_next_event = exynos4_tick_set_next_event;
373	evt->set_mode = exynos4_tick_set_mode;
374	evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
375	evt->rating = 450;
376
377	clockevents_calc_mult_shift(evt, clk_rate / 2, 5);
378	evt->max_delta_ns =
379		clockevent_delta2ns(0x7fffffff, evt);
380	evt->min_delta_ns =
381		clockevent_delta2ns(0xf, evt);
382
383	clockevents_register_device(evt);
384
385	exynos4_mct_write(0x1, mct_tick[cpu].base + MCT_L_TCNTB_OFFSET);
386
387	if (cpu == 0) {
388		mct_tick0_event_irq.dev_id = &mct_tick[cpu];
389		setup_irq(IRQ_MCT_L0, &mct_tick0_event_irq);
390	} else {
391		mct_tick1_event_irq.dev_id = &mct_tick[cpu];
392		setup_irq(IRQ_MCT_L1, &mct_tick1_event_irq);
393		irq_set_affinity(IRQ_MCT_L1, cpumask_of(1));
394	}
395}
396
397/* Setup the local clock events for a CPU */
398int __cpuinit local_timer_setup(struct clock_event_device *evt)
399{
400	exynos4_mct_tick_init(evt);
401
402	return 0;
403}
404
405int local_timer_ack(void)
406{
407	return 0;
408}
409
410#endif /* CONFIG_LOCAL_TIMERS */
411
412static void __init exynos4_timer_resources(void)
413{
414	struct clk *mct_clk;
415	mct_clk = clk_get(NULL, "xtal");
416
417	clk_rate = clk_get_rate(mct_clk);
418}
419
420static void __init exynos4_timer_init(void)
421{
422	exynos4_timer_resources();
423	exynos4_clocksource_init();
424	exynos4_clockevent_init();
425}
426
427struct sys_timer exynos4_timer = {
428	.init		= exynos4_timer_init,
429};