Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
  1/*
  2 * parse_vdso.c: Linux reference vDSO parser
  3 * Written by Andrew Lutomirski, 2011-2014.
  4 *
  5 * This code is meant to be linked in to various programs that run on Linux.
  6 * As such, it is available with as few restrictions as possible.  This file
  7 * is licensed under the Creative Commons Zero License, version 1.0,
  8 * available at http://creativecommons.org/publicdomain/zero/1.0/legalcode
  9 *
 10 * The vDSO is a regular ELF DSO that the kernel maps into user space when
 11 * it starts a program.  It works equally well in statically and dynamically
 12 * linked binaries.
 13 *
 14 * This code is tested on x86.  In principle it should work on any
 15 * architecture that has a vDSO.
 16 */
 17
 18#include <stdbool.h>
 19#include <stdint.h>
 20#include <string.h>
 21#include <limits.h>
 22#include <elf.h>
 23
 24#include "parse_vdso.h"
 25
 26/* And here's the code. */
 27#ifndef ELF_BITS
 28# if ULONG_MAX > 0xffffffffUL
 29#  define ELF_BITS 64
 30# else
 31#  define ELF_BITS 32
 32# endif
 33#endif
 34
 35#define ELF_BITS_XFORM2(bits, x) Elf##bits##_##x
 36#define ELF_BITS_XFORM(bits, x) ELF_BITS_XFORM2(bits, x)
 37#define ELF(x) ELF_BITS_XFORM(ELF_BITS, x)
 38
 39#ifdef __s390x__
 40#define ELF_HASH_ENTRY ELF(Xword)
 41#else
 42#define ELF_HASH_ENTRY ELF(Word)
 43#endif
 44
 45static struct vdso_info
 46{
 47	bool valid;
 48
 49	/* Load information */
 50	uintptr_t load_addr;
 51	uintptr_t load_offset;  /* load_addr - recorded vaddr */
 52
 53	/* Symbol table */
 54	ELF(Sym) *symtab;
 55	const char *symstrings;
 56	ELF_HASH_ENTRY *bucket, *chain;
 57	ELF_HASH_ENTRY nbucket, nchain;
 58
 59	/* Version table */
 60	ELF(Versym) *versym;
 61	ELF(Verdef) *verdef;
 62} vdso_info;
 63
 64/*
 65 * Straight from the ELF specification...and then tweaked slightly, in order to
 66 * avoid a few clang warnings.
 67 */
 68static unsigned long elf_hash(const char *name)
 69{
 70	unsigned long h = 0, g;
 71	const unsigned char *uch_name = (const unsigned char *)name;
 72
 73	while (*uch_name)
 74	{
 75		h = (h << 4) + *uch_name++;
 76		g = h & 0xf0000000;
 77		if (g)
 78			h ^= g >> 24;
 79		h &= ~g;
 80	}
 81	return h;
 82}
 83
 84void vdso_init_from_sysinfo_ehdr(uintptr_t base)
 85{
 86	size_t i;
 87	bool found_vaddr = false;
 88
 89	vdso_info.valid = false;
 90
 91	vdso_info.load_addr = base;
 92
 93	ELF(Ehdr) *hdr = (ELF(Ehdr)*)base;
 94	if (hdr->e_ident[EI_CLASS] !=
 95	    (ELF_BITS == 32 ? ELFCLASS32 : ELFCLASS64)) {
 96		return;  /* Wrong ELF class -- check ELF_BITS */
 97	}
 98
 99	ELF(Phdr) *pt = (ELF(Phdr)*)(vdso_info.load_addr + hdr->e_phoff);
100	ELF(Dyn) *dyn = 0;
101
102	/*
103	 * We need two things from the segment table: the load offset
104	 * and the dynamic table.
105	 */
106	for (i = 0; i < hdr->e_phnum; i++)
107	{
108		if (pt[i].p_type == PT_LOAD && !found_vaddr) {
109			found_vaddr = true;
110			vdso_info.load_offset =	base
111				+ (uintptr_t)pt[i].p_offset
112				- (uintptr_t)pt[i].p_vaddr;
113		} else if (pt[i].p_type == PT_DYNAMIC) {
114			dyn = (ELF(Dyn)*)(base + pt[i].p_offset);
115		}
116	}
117
118	if (!found_vaddr || !dyn)
119		return;  /* Failed */
120
121	/*
122	 * Fish out the useful bits of the dynamic table.
123	 */
124	ELF_HASH_ENTRY *hash = 0;
125	vdso_info.symstrings = 0;
126	vdso_info.symtab = 0;
127	vdso_info.versym = 0;
128	vdso_info.verdef = 0;
129	for (i = 0; dyn[i].d_tag != DT_NULL; i++) {
130		switch (dyn[i].d_tag) {
131		case DT_STRTAB:
132			vdso_info.symstrings = (const char *)
133				((uintptr_t)dyn[i].d_un.d_ptr
134				 + vdso_info.load_offset);
135			break;
136		case DT_SYMTAB:
137			vdso_info.symtab = (ELF(Sym) *)
138				((uintptr_t)dyn[i].d_un.d_ptr
139				 + vdso_info.load_offset);
140			break;
141		case DT_HASH:
142			hash = (ELF_HASH_ENTRY *)
143				((uintptr_t)dyn[i].d_un.d_ptr
144				 + vdso_info.load_offset);
145			break;
146		case DT_VERSYM:
147			vdso_info.versym = (ELF(Versym) *)
148				((uintptr_t)dyn[i].d_un.d_ptr
149				 + vdso_info.load_offset);
150			break;
151		case DT_VERDEF:
152			vdso_info.verdef = (ELF(Verdef) *)
153				((uintptr_t)dyn[i].d_un.d_ptr
154				 + vdso_info.load_offset);
155			break;
156		}
157	}
158	if (!vdso_info.symstrings || !vdso_info.symtab || !hash)
159		return;  /* Failed */
160
161	if (!vdso_info.verdef)
162		vdso_info.versym = 0;
163
164	/* Parse the hash table header. */
165	vdso_info.nbucket = hash[0];
166	vdso_info.nchain = hash[1];
167	vdso_info.bucket = &hash[2];
168	vdso_info.chain = &hash[vdso_info.nbucket + 2];
169
170	/* That's all we need. */
171	vdso_info.valid = true;
172}
173
174static bool vdso_match_version(ELF(Versym) ver,
175			       const char *name, ELF(Word) hash)
176{
177	/*
178	 * This is a helper function to check if the version indexed by
179	 * ver matches name (which hashes to hash).
180	 *
181	 * The version definition table is a mess, and I don't know how
182	 * to do this in better than linear time without allocating memory
183	 * to build an index.  I also don't know why the table has
184	 * variable size entries in the first place.
185	 *
186	 * For added fun, I can't find a comprehensible specification of how
187	 * to parse all the weird flags in the table.
188	 *
189	 * So I just parse the whole table every time.
190	 */
191
192	/* First step: find the version definition */
193	ver &= 0x7fff;  /* Apparently bit 15 means "hidden" */
194	ELF(Verdef) *def = vdso_info.verdef;
195	while(true) {
196		if ((def->vd_flags & VER_FLG_BASE) == 0
197		    && (def->vd_ndx & 0x7fff) == ver)
198			break;
199
200		if (def->vd_next == 0)
201			return false;  /* No definition. */
202
203		def = (ELF(Verdef) *)((char *)def + def->vd_next);
204	}
205
206	/* Now figure out whether it matches. */
207	ELF(Verdaux) *aux = (ELF(Verdaux)*)((char *)def + def->vd_aux);
208	return def->vd_hash == hash
209		&& !strcmp(name, vdso_info.symstrings + aux->vda_name);
210}
211
212void *vdso_sym(const char *version, const char *name)
213{
214	unsigned long ver_hash;
215	if (!vdso_info.valid)
216		return 0;
217
218	ver_hash = elf_hash(version);
219	ELF(Word) chain = vdso_info.bucket[elf_hash(name) % vdso_info.nbucket];
220
221	for (; chain != STN_UNDEF; chain = vdso_info.chain[chain]) {
222		ELF(Sym) *sym = &vdso_info.symtab[chain];
223
224		/* Check for a defined global or weak function w/ right name. */
225		if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
226			continue;
227		if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
228		    ELF64_ST_BIND(sym->st_info) != STB_WEAK)
229			continue;
230		if (sym->st_shndx == SHN_UNDEF)
231			continue;
232		if (strcmp(name, vdso_info.symstrings + sym->st_name))
233			continue;
234
235		/* Check symbol version. */
236		if (vdso_info.versym
237		    && !vdso_match_version(vdso_info.versym[chain],
238					   version, ver_hash))
239			continue;
240
241		return (void *)(vdso_info.load_offset + sym->st_value);
242	}
243
244	return 0;
245}
246
247void vdso_init_from_auxv(void *auxv)
248{
249	ELF(auxv_t) *elf_auxv = auxv;
250	for (int i = 0; elf_auxv[i].a_type != AT_NULL; i++)
251	{
252		if (elf_auxv[i].a_type == AT_SYSINFO_EHDR) {
253			vdso_init_from_sysinfo_ehdr(elf_auxv[i].a_un.a_val);
254			return;
255		}
256	}
257
258	vdso_info.valid = false;
259}