Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
  4 * Home page:
  5 *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
  6 * This is from the implementation of CUBIC TCP in
  7 * Sangtae Ha, Injong Rhee and Lisong Xu,
  8 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
  9 *  in ACM SIGOPS Operating System Review, July 2008.
 10 * Available from:
 11 *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
 12 *
 13 * CUBIC integrates a new slow start algorithm, called HyStart.
 14 * The details of HyStart are presented in
 15 *  Sangtae Ha and Injong Rhee,
 16 *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
 17 * Available from:
 18 *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
 19 *
 20 * All testing results are available from:
 21 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
 22 *
 23 * Unless CUBIC is enabled and congestion window is large
 24 * this behaves the same as the original Reno.
 25 */
 26
 27#include <linux/mm.h>
 28#include <linux/btf.h>
 29#include <linux/btf_ids.h>
 30#include <linux/module.h>
 31#include <linux/math64.h>
 32#include <net/tcp.h>
 33
 34#define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
 35					 * max_cwnd = snd_cwnd * beta
 36					 */
 37#define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
 38
 39/* Two methods of hybrid slow start */
 40#define HYSTART_ACK_TRAIN	0x1
 41#define HYSTART_DELAY		0x2
 42
 43/* Number of delay samples for detecting the increase of delay */
 44#define HYSTART_MIN_SAMPLES	8
 45#define HYSTART_DELAY_MIN	(4000U)	/* 4 ms */
 46#define HYSTART_DELAY_MAX	(16000U)	/* 16 ms */
 47#define HYSTART_DELAY_THRESH(x)	clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
 48
 49static int fast_convergence __read_mostly = 1;
 50static int beta __read_mostly = 717;	/* = 717/1024 (BICTCP_BETA_SCALE) */
 51static int initial_ssthresh __read_mostly;
 52static int bic_scale __read_mostly = 41;
 53static int tcp_friendliness __read_mostly = 1;
 54
 55static int hystart __read_mostly = 1;
 56static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
 57static int hystart_low_window __read_mostly = 16;
 58static int hystart_ack_delta_us __read_mostly = 2000;
 59
 60static u32 cube_rtt_scale __read_mostly;
 61static u32 beta_scale __read_mostly;
 62static u64 cube_factor __read_mostly;
 63
 64/* Note parameters that are used for precomputing scale factors are read-only */
 65module_param(fast_convergence, int, 0644);
 66MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
 67module_param(beta, int, 0644);
 68MODULE_PARM_DESC(beta, "beta for multiplicative increase");
 69module_param(initial_ssthresh, int, 0644);
 70MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
 71module_param(bic_scale, int, 0444);
 72MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
 73module_param(tcp_friendliness, int, 0644);
 74MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
 75module_param(hystart, int, 0644);
 76MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
 77module_param(hystart_detect, int, 0644);
 78MODULE_PARM_DESC(hystart_detect, "hybrid slow start detection mechanisms"
 79		 " 1: packet-train 2: delay 3: both packet-train and delay");
 80module_param(hystart_low_window, int, 0644);
 81MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
 82module_param(hystart_ack_delta_us, int, 0644);
 83MODULE_PARM_DESC(hystart_ack_delta_us, "spacing between ack's indicating train (usecs)");
 84
 85/* BIC TCP Parameters */
 86struct bictcp {
 87	u32	cnt;		/* increase cwnd by 1 after ACKs */
 88	u32	last_max_cwnd;	/* last maximum snd_cwnd */
 
 89	u32	last_cwnd;	/* the last snd_cwnd */
 90	u32	last_time;	/* time when updated last_cwnd */
 91	u32	bic_origin_point;/* origin point of bic function */
 92	u32	bic_K;		/* time to origin point
 93				   from the beginning of the current epoch */
 94	u32	delay_min;	/* min delay (usec) */
 95	u32	epoch_start;	/* beginning of an epoch */
 96	u32	ack_cnt;	/* number of acks */
 97	u32	tcp_cwnd;	/* estimated tcp cwnd */
 98	u16	unused;
 
 
 99	u8	sample_cnt;	/* number of samples to decide curr_rtt */
100	u8	found;		/* the exit point is found? */
101	u32	round_start;	/* beginning of each round */
102	u32	end_seq;	/* end_seq of the round */
103	u32	last_ack;	/* last time when the ACK spacing is close */
104	u32	curr_rtt;	/* the minimum rtt of current round */
105};
106
107static inline void bictcp_reset(struct bictcp *ca)
108{
109	memset(ca, 0, offsetof(struct bictcp, unused));
 
 
 
 
 
 
 
 
 
 
 
110	ca->found = 0;
111}
112
113static inline u32 bictcp_clock_us(const struct sock *sk)
114{
115	return tcp_sk(sk)->tcp_mstamp;
 
 
 
 
116}
117
118static inline void bictcp_hystart_reset(struct sock *sk)
119{
120	struct tcp_sock *tp = tcp_sk(sk);
121	struct bictcp *ca = inet_csk_ca(sk);
122
123	ca->round_start = ca->last_ack = bictcp_clock_us(sk);
124	ca->end_seq = tp->snd_nxt;
125	ca->curr_rtt = ~0U;
126	ca->sample_cnt = 0;
127}
128
129__bpf_kfunc static void cubictcp_init(struct sock *sk)
130{
131	struct bictcp *ca = inet_csk_ca(sk);
132
133	bictcp_reset(ca);
134
135	if (hystart)
136		bictcp_hystart_reset(sk);
137
138	if (!hystart && initial_ssthresh)
139		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
140}
141
142__bpf_kfunc static void cubictcp_cwnd_event(struct sock *sk, enum tcp_ca_event event)
143{
144	if (event == CA_EVENT_TX_START) {
145		struct bictcp *ca = inet_csk_ca(sk);
146		u32 now = tcp_jiffies32;
147		s32 delta;
148
149		delta = now - tcp_sk(sk)->lsndtime;
150
151		/* We were application limited (idle) for a while.
152		 * Shift epoch_start to keep cwnd growth to cubic curve.
153		 */
154		if (ca->epoch_start && delta > 0) {
155			ca->epoch_start += delta;
156			if (after(ca->epoch_start, now))
157				ca->epoch_start = now;
158		}
159		return;
160	}
161}
162
163/* calculate the cubic root of x using a table lookup followed by one
164 * Newton-Raphson iteration.
165 * Avg err ~= 0.195%
166 */
167static u32 cubic_root(u64 a)
168{
169	u32 x, b, shift;
170	/*
171	 * cbrt(x) MSB values for x MSB values in [0..63].
172	 * Precomputed then refined by hand - Willy Tarreau
173	 *
174	 * For x in [0..63],
175	 *   v = cbrt(x << 18) - 1
176	 *   cbrt(x) = (v[x] + 10) >> 6
177	 */
178	static const u8 v[] = {
179		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
180		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
181		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
182		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
183		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
184		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
185		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
186		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
187	};
188
189	b = fls64(a);
190	if (b < 7) {
191		/* a in [0..63] */
192		return ((u32)v[(u32)a] + 35) >> 6;
193	}
194
195	b = ((b * 84) >> 8) - 1;
196	shift = (a >> (b * 3));
197
198	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
199
200	/*
201	 * Newton-Raphson iteration
202	 *                         2
203	 * x    = ( 2 * x  +  a / x  ) / 3
204	 *  k+1          k         k
205	 */
206	x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
207	x = ((x * 341) >> 10);
208	return x;
209}
210
211/*
212 * Compute congestion window to use.
213 */
214static inline void bictcp_update(struct bictcp *ca, u32 cwnd, u32 acked)
215{
216	u32 delta, bic_target, max_cnt;
217	u64 offs, t;
218
219	ca->ack_cnt += acked;	/* count the number of ACKed packets */
220
221	if (ca->last_cwnd == cwnd &&
222	    (s32)(tcp_jiffies32 - ca->last_time) <= HZ / 32)
223		return;
224
225	/* The CUBIC function can update ca->cnt at most once per jiffy.
226	 * On all cwnd reduction events, ca->epoch_start is set to 0,
227	 * which will force a recalculation of ca->cnt.
228	 */
229	if (ca->epoch_start && tcp_jiffies32 == ca->last_time)
230		goto tcp_friendliness;
231
232	ca->last_cwnd = cwnd;
233	ca->last_time = tcp_jiffies32;
234
235	if (ca->epoch_start == 0) {
236		ca->epoch_start = tcp_jiffies32;	/* record beginning */
237		ca->ack_cnt = acked;			/* start counting */
238		ca->tcp_cwnd = cwnd;			/* syn with cubic */
239
240		if (ca->last_max_cwnd <= cwnd) {
241			ca->bic_K = 0;
242			ca->bic_origin_point = cwnd;
243		} else {
244			/* Compute new K based on
245			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
246			 */
247			ca->bic_K = cubic_root(cube_factor
248					       * (ca->last_max_cwnd - cwnd));
249			ca->bic_origin_point = ca->last_max_cwnd;
250		}
251	}
252
253	/* cubic function - calc*/
254	/* calculate c * time^3 / rtt,
255	 *  while considering overflow in calculation of time^3
256	 * (so time^3 is done by using 64 bit)
257	 * and without the support of division of 64bit numbers
258	 * (so all divisions are done by using 32 bit)
259	 *  also NOTE the unit of those veriables
260	 *	  time  = (t - K) / 2^bictcp_HZ
261	 *	  c = bic_scale >> 10
262	 * rtt  = (srtt >> 3) / HZ
263	 * !!! The following code does not have overflow problems,
264	 * if the cwnd < 1 million packets !!!
265	 */
266
267	t = (s32)(tcp_jiffies32 - ca->epoch_start);
268	t += usecs_to_jiffies(ca->delay_min);
269	/* change the unit from HZ to bictcp_HZ */
270	t <<= BICTCP_HZ;
271	do_div(t, HZ);
272
273	if (t < ca->bic_K)		/* t - K */
274		offs = ca->bic_K - t;
275	else
276		offs = t - ca->bic_K;
277
278	/* c/rtt * (t-K)^3 */
279	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
280	if (t < ca->bic_K)                            /* below origin*/
281		bic_target = ca->bic_origin_point - delta;
282	else                                          /* above origin*/
283		bic_target = ca->bic_origin_point + delta;
284
285	/* cubic function - calc bictcp_cnt*/
286	if (bic_target > cwnd) {
287		ca->cnt = cwnd / (bic_target - cwnd);
288	} else {
289		ca->cnt = 100 * cwnd;              /* very small increment*/
290	}
291
292	/*
293	 * The initial growth of cubic function may be too conservative
294	 * when the available bandwidth is still unknown.
295	 */
296	if (ca->last_max_cwnd == 0 && ca->cnt > 20)
297		ca->cnt = 20;	/* increase cwnd 5% per RTT */
298
299tcp_friendliness:
300	/* TCP Friendly */
301	if (tcp_friendliness) {
302		u32 scale = beta_scale;
303
304		delta = (cwnd * scale) >> 3;
305		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
306			ca->ack_cnt -= delta;
307			ca->tcp_cwnd++;
308		}
309
310		if (ca->tcp_cwnd > cwnd) {	/* if bic is slower than tcp */
311			delta = ca->tcp_cwnd - cwnd;
312			max_cnt = cwnd / delta;
313			if (ca->cnt > max_cnt)
314				ca->cnt = max_cnt;
315		}
316	}
317
318	/* The maximum rate of cwnd increase CUBIC allows is 1 packet per
319	 * 2 packets ACKed, meaning cwnd grows at 1.5x per RTT.
320	 */
321	ca->cnt = max(ca->cnt, 2U);
322}
323
324__bpf_kfunc static void cubictcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
325{
326	struct tcp_sock *tp = tcp_sk(sk);
327	struct bictcp *ca = inet_csk_ca(sk);
328
329	if (!tcp_is_cwnd_limited(sk))
330		return;
331
332	if (tcp_in_slow_start(tp)) {
333		acked = tcp_slow_start(tp, acked);
334		if (!acked)
335			return;
 
 
 
336	}
337	bictcp_update(ca, tcp_snd_cwnd(tp), acked);
338	tcp_cong_avoid_ai(tp, ca->cnt, acked);
339}
340
341__bpf_kfunc static u32 cubictcp_recalc_ssthresh(struct sock *sk)
342{
343	const struct tcp_sock *tp = tcp_sk(sk);
344	struct bictcp *ca = inet_csk_ca(sk);
345
346	ca->epoch_start = 0;	/* end of epoch */
347
348	/* Wmax and fast convergence */
349	if (tcp_snd_cwnd(tp) < ca->last_max_cwnd && fast_convergence)
350		ca->last_max_cwnd = (tcp_snd_cwnd(tp) * (BICTCP_BETA_SCALE + beta))
351			/ (2 * BICTCP_BETA_SCALE);
352	else
353		ca->last_max_cwnd = tcp_snd_cwnd(tp);
 
 
 
 
 
 
 
 
 
354
355	return max((tcp_snd_cwnd(tp) * beta) / BICTCP_BETA_SCALE, 2U);
356}
357
358__bpf_kfunc static void cubictcp_state(struct sock *sk, u8 new_state)
359{
360	if (new_state == TCP_CA_Loss) {
361		bictcp_reset(inet_csk_ca(sk));
362		bictcp_hystart_reset(sk);
363	}
364}
365
366/* Account for TSO/GRO delays.
367 * Otherwise short RTT flows could get too small ssthresh, since during
368 * slow start we begin with small TSO packets and ca->delay_min would
369 * not account for long aggregation delay when TSO packets get bigger.
370 * Ideally even with a very small RTT we would like to have at least one
371 * TSO packet being sent and received by GRO, and another one in qdisc layer.
372 * We apply another 100% factor because @rate is doubled at this point.
373 * We cap the cushion to 1ms.
374 */
375static u32 hystart_ack_delay(const struct sock *sk)
376{
377	unsigned long rate;
378
379	rate = READ_ONCE(sk->sk_pacing_rate);
380	if (!rate)
381		return 0;
382	return min_t(u64, USEC_PER_MSEC,
383		     div64_ul((u64)sk->sk_gso_max_size * 4 * USEC_PER_SEC, rate));
384}
385
386static void hystart_update(struct sock *sk, u32 delay)
387{
388	struct tcp_sock *tp = tcp_sk(sk);
389	struct bictcp *ca = inet_csk_ca(sk);
390	u32 threshold;
391
392	if (after(tp->snd_una, ca->end_seq))
393		bictcp_hystart_reset(sk);
394
395	/* hystart triggers when cwnd is larger than some threshold */
396	if (tcp_snd_cwnd(tp) < hystart_low_window)
397		return;
398
399	if (hystart_detect & HYSTART_ACK_TRAIN) {
400		u32 now = bictcp_clock_us(sk);
401
402		/* first detection parameter - ack-train detection */
403		if ((s32)(now - ca->last_ack) <= hystart_ack_delta_us) {
404			ca->last_ack = now;
405
406			threshold = ca->delay_min + hystart_ack_delay(sk);
407
408			/* Hystart ack train triggers if we get ack past
409			 * ca->delay_min/2.
410			 * Pacing might have delayed packets up to RTT/2
411			 * during slow start.
412			 */
413			if (sk->sk_pacing_status == SK_PACING_NONE)
414				threshold >>= 1;
415
416			if ((s32)(now - ca->round_start) > threshold) {
417				ca->found = 1;
418				pr_debug("hystart_ack_train (%u > %u) delay_min %u (+ ack_delay %u) cwnd %u\n",
419					 now - ca->round_start, threshold,
420					 ca->delay_min, hystart_ack_delay(sk), tcp_snd_cwnd(tp));
421				NET_INC_STATS(sock_net(sk),
422					      LINUX_MIB_TCPHYSTARTTRAINDETECT);
423				NET_ADD_STATS(sock_net(sk),
424					      LINUX_MIB_TCPHYSTARTTRAINCWND,
425					      tcp_snd_cwnd(tp));
426				tp->snd_ssthresh = tcp_snd_cwnd(tp);
427			}
428		}
429	}
430
431	if (hystart_detect & HYSTART_DELAY) {
432		/* obtain the minimum delay of more than sampling packets */
433		if (ca->curr_rtt > delay)
434			ca->curr_rtt = delay;
435		if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
 
 
 
436			ca->sample_cnt++;
437		} else {
438			if (ca->curr_rtt > ca->delay_min +
439			    HYSTART_DELAY_THRESH(ca->delay_min >> 3)) {
440				ca->found = 1;
441				NET_INC_STATS(sock_net(sk),
442					      LINUX_MIB_TCPHYSTARTDELAYDETECT);
443				NET_ADD_STATS(sock_net(sk),
444					      LINUX_MIB_TCPHYSTARTDELAYCWND,
445					      tcp_snd_cwnd(tp));
446				tp->snd_ssthresh = tcp_snd_cwnd(tp);
447			}
448		}
 
 
 
 
 
 
449	}
450}
451
452__bpf_kfunc static void cubictcp_acked(struct sock *sk, const struct ack_sample *sample)
 
 
 
453{
 
454	const struct tcp_sock *tp = tcp_sk(sk);
455	struct bictcp *ca = inet_csk_ca(sk);
456	u32 delay;
457
 
 
 
 
 
 
 
 
 
458	/* Some calls are for duplicates without timetamps */
459	if (sample->rtt_us < 0)
460		return;
461
462	/* Discard delay samples right after fast recovery */
463	if (ca->epoch_start && (s32)(tcp_jiffies32 - ca->epoch_start) < HZ)
464		return;
465
466	delay = sample->rtt_us;
467	if (delay == 0)
468		delay = 1;
469
470	/* first time call or link delay decreases */
471	if (ca->delay_min == 0 || ca->delay_min > delay)
472		ca->delay_min = delay;
473
474	if (!ca->found && tcp_in_slow_start(tp) && hystart)
 
 
475		hystart_update(sk, delay);
476}
477
478static struct tcp_congestion_ops cubictcp __read_mostly = {
479	.init		= cubictcp_init,
480	.ssthresh	= cubictcp_recalc_ssthresh,
481	.cong_avoid	= cubictcp_cong_avoid,
482	.set_state	= cubictcp_state,
483	.undo_cwnd	= tcp_reno_undo_cwnd,
484	.cwnd_event	= cubictcp_cwnd_event,
485	.pkts_acked     = cubictcp_acked,
486	.owner		= THIS_MODULE,
487	.name		= "cubic",
488};
489
490BTF_KFUNCS_START(tcp_cubic_check_kfunc_ids)
491BTF_ID_FLAGS(func, cubictcp_init)
492BTF_ID_FLAGS(func, cubictcp_recalc_ssthresh)
493BTF_ID_FLAGS(func, cubictcp_cong_avoid)
494BTF_ID_FLAGS(func, cubictcp_state)
495BTF_ID_FLAGS(func, cubictcp_cwnd_event)
496BTF_ID_FLAGS(func, cubictcp_acked)
497BTF_KFUNCS_END(tcp_cubic_check_kfunc_ids)
498
499static const struct btf_kfunc_id_set tcp_cubic_kfunc_set = {
500	.owner = THIS_MODULE,
501	.set   = &tcp_cubic_check_kfunc_ids,
502};
503
504static int __init cubictcp_register(void)
505{
506	int ret;
507
508	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
509
510	/* Precompute a bunch of the scaling factors that are used per-packet
511	 * based on SRTT of 100ms
512	 */
513
514	beta_scale = 8*(BICTCP_BETA_SCALE+beta) / 3
515		/ (BICTCP_BETA_SCALE - beta);
516
517	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
518
519	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
520	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
521	 * the unit of K is bictcp_HZ=2^10, not HZ
522	 *
523	 *  c = bic_scale >> 10
524	 *  rtt = 100ms
525	 *
526	 * the following code has been designed and tested for
527	 * cwnd < 1 million packets
528	 * RTT < 100 seconds
529	 * HZ < 1,000,00  (corresponding to 10 nano-second)
530	 */
531
532	/* 1/c * 2^2*bictcp_HZ * srtt */
533	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
534
535	/* divide by bic_scale and by constant Srtt (100ms) */
536	do_div(cube_factor, bic_scale * 10);
537
538	ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, &tcp_cubic_kfunc_set);
539	if (ret < 0)
540		return ret;
 
541	return tcp_register_congestion_control(&cubictcp);
542}
543
544static void __exit cubictcp_unregister(void)
545{
546	tcp_unregister_congestion_control(&cubictcp);
547}
548
549module_init(cubictcp_register);
550module_exit(cubictcp_unregister);
551
552MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
553MODULE_LICENSE("GPL");
554MODULE_DESCRIPTION("CUBIC TCP");
555MODULE_VERSION("2.3");
v3.1
 
  1/*
  2 * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
  3 * Home page:
  4 *      http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
  5 * This is from the implementation of CUBIC TCP in
  6 * Sangtae Ha, Injong Rhee and Lisong Xu,
  7 *  "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
  8 *  in ACM SIGOPS Operating System Review, July 2008.
  9 * Available from:
 10 *  http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
 11 *
 12 * CUBIC integrates a new slow start algorithm, called HyStart.
 13 * The details of HyStart are presented in
 14 *  Sangtae Ha and Injong Rhee,
 15 *  "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
 16 * Available from:
 17 *  http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
 18 *
 19 * All testing results are available from:
 20 * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
 21 *
 22 * Unless CUBIC is enabled and congestion window is large
 23 * this behaves the same as the original Reno.
 24 */
 25
 26#include <linux/mm.h>
 
 
 27#include <linux/module.h>
 28#include <linux/math64.h>
 29#include <net/tcp.h>
 30
 31#define BICTCP_BETA_SCALE    1024	/* Scale factor beta calculation
 32					 * max_cwnd = snd_cwnd * beta
 33					 */
 34#define	BICTCP_HZ		10	/* BIC HZ 2^10 = 1024 */
 35
 36/* Two methods of hybrid slow start */
 37#define HYSTART_ACK_TRAIN	0x1
 38#define HYSTART_DELAY		0x2
 39
 40/* Number of delay samples for detecting the increase of delay */
 41#define HYSTART_MIN_SAMPLES	8
 42#define HYSTART_DELAY_MIN	(4U<<3)
 43#define HYSTART_DELAY_MAX	(16U<<3)
 44#define HYSTART_DELAY_THRESH(x)	clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
 45
 46static int fast_convergence __read_mostly = 1;
 47static int beta __read_mostly = 717;	/* = 717/1024 (BICTCP_BETA_SCALE) */
 48static int initial_ssthresh __read_mostly;
 49static int bic_scale __read_mostly = 41;
 50static int tcp_friendliness __read_mostly = 1;
 51
 52static int hystart __read_mostly = 1;
 53static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
 54static int hystart_low_window __read_mostly = 16;
 55static int hystart_ack_delta __read_mostly = 2;
 56
 57static u32 cube_rtt_scale __read_mostly;
 58static u32 beta_scale __read_mostly;
 59static u64 cube_factor __read_mostly;
 60
 61/* Note parameters that are used for precomputing scale factors are read-only */
 62module_param(fast_convergence, int, 0644);
 63MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
 64module_param(beta, int, 0644);
 65MODULE_PARM_DESC(beta, "beta for multiplicative increase");
 66module_param(initial_ssthresh, int, 0644);
 67MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
 68module_param(bic_scale, int, 0444);
 69MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
 70module_param(tcp_friendliness, int, 0644);
 71MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
 72module_param(hystart, int, 0644);
 73MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
 74module_param(hystart_detect, int, 0644);
 75MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
 76		 " 1: packet-train 2: delay 3: both packet-train and delay");
 77module_param(hystart_low_window, int, 0644);
 78MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
 79module_param(hystart_ack_delta, int, 0644);
 80MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
 81
 82/* BIC TCP Parameters */
 83struct bictcp {
 84	u32	cnt;		/* increase cwnd by 1 after ACKs */
 85	u32 	last_max_cwnd;	/* last maximum snd_cwnd */
 86	u32	loss_cwnd;	/* congestion window at last loss */
 87	u32	last_cwnd;	/* the last snd_cwnd */
 88	u32	last_time;	/* time when updated last_cwnd */
 89	u32	bic_origin_point;/* origin point of bic function */
 90	u32	bic_K;		/* time to origin point from the beginning of the current epoch */
 91	u32	delay_min;	/* min delay (msec << 3) */
 
 92	u32	epoch_start;	/* beginning of an epoch */
 93	u32	ack_cnt;	/* number of acks */
 94	u32	tcp_cwnd;	/* estimated tcp cwnd */
 95#define ACK_RATIO_SHIFT	4
 96#define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
 97	u16	delayed_ack;	/* estimate the ratio of Packets/ACKs << 4 */
 98	u8	sample_cnt;	/* number of samples to decide curr_rtt */
 99	u8	found;		/* the exit point is found? */
100	u32	round_start;	/* beginning of each round */
101	u32	end_seq;	/* end_seq of the round */
102	u32	last_ack;	/* last time when the ACK spacing is close */
103	u32	curr_rtt;	/* the minimum rtt of current round */
104};
105
106static inline void bictcp_reset(struct bictcp *ca)
107{
108	ca->cnt = 0;
109	ca->last_max_cwnd = 0;
110	ca->loss_cwnd = 0;
111	ca->last_cwnd = 0;
112	ca->last_time = 0;
113	ca->bic_origin_point = 0;
114	ca->bic_K = 0;
115	ca->delay_min = 0;
116	ca->epoch_start = 0;
117	ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
118	ca->ack_cnt = 0;
119	ca->tcp_cwnd = 0;
120	ca->found = 0;
121}
122
123static inline u32 bictcp_clock(void)
124{
125#if HZ < 1000
126	return ktime_to_ms(ktime_get_real());
127#else
128	return jiffies_to_msecs(jiffies);
129#endif
130}
131
132static inline void bictcp_hystart_reset(struct sock *sk)
133{
134	struct tcp_sock *tp = tcp_sk(sk);
135	struct bictcp *ca = inet_csk_ca(sk);
136
137	ca->round_start = ca->last_ack = bictcp_clock();
138	ca->end_seq = tp->snd_nxt;
139	ca->curr_rtt = 0;
140	ca->sample_cnt = 0;
141}
142
143static void bictcp_init(struct sock *sk)
144{
145	bictcp_reset(inet_csk_ca(sk));
 
 
146
147	if (hystart)
148		bictcp_hystart_reset(sk);
149
150	if (!hystart && initial_ssthresh)
151		tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
152}
153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
154/* calculate the cubic root of x using a table lookup followed by one
155 * Newton-Raphson iteration.
156 * Avg err ~= 0.195%
157 */
158static u32 cubic_root(u64 a)
159{
160	u32 x, b, shift;
161	/*
162	 * cbrt(x) MSB values for x MSB values in [0..63].
163	 * Precomputed then refined by hand - Willy Tarreau
164	 *
165	 * For x in [0..63],
166	 *   v = cbrt(x << 18) - 1
167	 *   cbrt(x) = (v[x] + 10) >> 6
168	 */
169	static const u8 v[] = {
170		/* 0x00 */    0,   54,   54,   54,  118,  118,  118,  118,
171		/* 0x08 */  123,  129,  134,  138,  143,  147,  151,  156,
172		/* 0x10 */  157,  161,  164,  168,  170,  173,  176,  179,
173		/* 0x18 */  181,  185,  187,  190,  192,  194,  197,  199,
174		/* 0x20 */  200,  202,  204,  206,  209,  211,  213,  215,
175		/* 0x28 */  217,  219,  221,  222,  224,  225,  227,  229,
176		/* 0x30 */  231,  232,  234,  236,  237,  239,  240,  242,
177		/* 0x38 */  244,  245,  246,  248,  250,  251,  252,  254,
178	};
179
180	b = fls64(a);
181	if (b < 7) {
182		/* a in [0..63] */
183		return ((u32)v[(u32)a] + 35) >> 6;
184	}
185
186	b = ((b * 84) >> 8) - 1;
187	shift = (a >> (b * 3));
188
189	x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
190
191	/*
192	 * Newton-Raphson iteration
193	 *                         2
194	 * x    = ( 2 * x  +  a / x  ) / 3
195	 *  k+1          k         k
196	 */
197	x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
198	x = ((x * 341) >> 10);
199	return x;
200}
201
202/*
203 * Compute congestion window to use.
204 */
205static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
206{
207	u64 offs;
208	u32 delta, t, bic_target, max_cnt;
209
210	ca->ack_cnt++;	/* count the number of ACKs */
211
212	if (ca->last_cwnd == cwnd &&
213	    (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
214		return;
215
 
 
 
 
 
 
 
216	ca->last_cwnd = cwnd;
217	ca->last_time = tcp_time_stamp;
218
219	if (ca->epoch_start == 0) {
220		ca->epoch_start = tcp_time_stamp;	/* record the beginning of an epoch */
221		ca->ack_cnt = 1;			/* start counting */
222		ca->tcp_cwnd = cwnd;			/* syn with cubic */
223
224		if (ca->last_max_cwnd <= cwnd) {
225			ca->bic_K = 0;
226			ca->bic_origin_point = cwnd;
227		} else {
228			/* Compute new K based on
229			 * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
230			 */
231			ca->bic_K = cubic_root(cube_factor
232					       * (ca->last_max_cwnd - cwnd));
233			ca->bic_origin_point = ca->last_max_cwnd;
234		}
235	}
236
237	/* cubic function - calc*/
238	/* calculate c * time^3 / rtt,
239	 *  while considering overflow in calculation of time^3
240	 * (so time^3 is done by using 64 bit)
241	 * and without the support of division of 64bit numbers
242	 * (so all divisions are done by using 32 bit)
243	 *  also NOTE the unit of those veriables
244	 *	  time  = (t - K) / 2^bictcp_HZ
245	 *	  c = bic_scale >> 10
246	 * rtt  = (srtt >> 3) / HZ
247	 * !!! The following code does not have overflow problems,
248	 * if the cwnd < 1 million packets !!!
249	 */
250
 
 
251	/* change the unit from HZ to bictcp_HZ */
252	t = ((tcp_time_stamp + msecs_to_jiffies(ca->delay_min>>3)
253	      - ca->epoch_start) << BICTCP_HZ) / HZ;
254
255	if (t < ca->bic_K)		/* t - K */
256		offs = ca->bic_K - t;
257	else
258		offs = t - ca->bic_K;
259
260	/* c/rtt * (t-K)^3 */
261	delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
262	if (t < ca->bic_K)                                	/* below origin*/
263		bic_target = ca->bic_origin_point - delta;
264	else                                                	/* above origin*/
265		bic_target = ca->bic_origin_point + delta;
266
267	/* cubic function - calc bictcp_cnt*/
268	if (bic_target > cwnd) {
269		ca->cnt = cwnd / (bic_target - cwnd);
270	} else {
271		ca->cnt = 100 * cwnd;              /* very small increment*/
272	}
273
274	/*
275	 * The initial growth of cubic function may be too conservative
276	 * when the available bandwidth is still unknown.
277	 */
278	if (ca->loss_cwnd == 0 && ca->cnt > 20)
279		ca->cnt = 20;	/* increase cwnd 5% per RTT */
280
 
281	/* TCP Friendly */
282	if (tcp_friendliness) {
283		u32 scale = beta_scale;
 
284		delta = (cwnd * scale) >> 3;
285		while (ca->ack_cnt > delta) {		/* update tcp cwnd */
286			ca->ack_cnt -= delta;
287			ca->tcp_cwnd++;
288		}
289
290		if (ca->tcp_cwnd > cwnd){	/* if bic is slower than tcp */
291			delta = ca->tcp_cwnd - cwnd;
292			max_cnt = cwnd / delta;
293			if (ca->cnt > max_cnt)
294				ca->cnt = max_cnt;
295		}
296	}
297
298	ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
299	if (ca->cnt == 0)			/* cannot be zero */
300		ca->cnt = 1;
 
301}
302
303static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
304{
305	struct tcp_sock *tp = tcp_sk(sk);
306	struct bictcp *ca = inet_csk_ca(sk);
307
308	if (!tcp_is_cwnd_limited(sk, in_flight))
309		return;
310
311	if (tp->snd_cwnd <= tp->snd_ssthresh) {
312		if (hystart && after(ack, ca->end_seq))
313			bictcp_hystart_reset(sk);
314		tcp_slow_start(tp);
315	} else {
316		bictcp_update(ca, tp->snd_cwnd);
317		tcp_cong_avoid_ai(tp, ca->cnt);
318	}
319
 
320}
321
322static u32 bictcp_recalc_ssthresh(struct sock *sk)
323{
324	const struct tcp_sock *tp = tcp_sk(sk);
325	struct bictcp *ca = inet_csk_ca(sk);
326
327	ca->epoch_start = 0;	/* end of epoch */
328
329	/* Wmax and fast convergence */
330	if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
331		ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
332			/ (2 * BICTCP_BETA_SCALE);
333	else
334		ca->last_max_cwnd = tp->snd_cwnd;
335
336	ca->loss_cwnd = tp->snd_cwnd;
337
338	return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
339}
340
341static u32 bictcp_undo_cwnd(struct sock *sk)
342{
343	struct bictcp *ca = inet_csk_ca(sk);
344
345	return max(tcp_sk(sk)->snd_cwnd, ca->last_max_cwnd);
346}
347
348static void bictcp_state(struct sock *sk, u8 new_state)
349{
350	if (new_state == TCP_CA_Loss) {
351		bictcp_reset(inet_csk_ca(sk));
352		bictcp_hystart_reset(sk);
353	}
354}
355
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
356static void hystart_update(struct sock *sk, u32 delay)
357{
358	struct tcp_sock *tp = tcp_sk(sk);
359	struct bictcp *ca = inet_csk_ca(sk);
 
360
361	if (!(ca->found & hystart_detect)) {
362		u32 now = bictcp_clock();
 
 
 
 
 
 
 
363
364		/* first detection parameter - ack-train detection */
365		if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
366			ca->last_ack = now;
367			if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
368				ca->found |= HYSTART_ACK_TRAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
369		}
 
370
 
371		/* obtain the minimum delay of more than sampling packets */
 
 
372		if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
373			if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
374				ca->curr_rtt = delay;
375
376			ca->sample_cnt++;
377		} else {
378			if (ca->curr_rtt > ca->delay_min +
379			    HYSTART_DELAY_THRESH(ca->delay_min>>4))
380				ca->found |= HYSTART_DELAY;
 
 
 
 
 
 
 
381		}
382		/*
383		 * Either one of two conditions are met,
384		 * we exit from slow start immediately.
385		 */
386		if (ca->found & hystart_detect)
387			tp->snd_ssthresh = tp->snd_cwnd;
388	}
389}
390
391/* Track delayed acknowledgment ratio using sliding window
392 * ratio = (15*ratio + sample) / 16
393 */
394static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
395{
396	const struct inet_connection_sock *icsk = inet_csk(sk);
397	const struct tcp_sock *tp = tcp_sk(sk);
398	struct bictcp *ca = inet_csk_ca(sk);
399	u32 delay;
400
401	if (icsk->icsk_ca_state == TCP_CA_Open) {
402		u32 ratio = ca->delayed_ack;
403
404		ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
405		ratio += cnt;
406
407		ca->delayed_ack = min(ratio, ACK_RATIO_LIMIT);
408	}
409
410	/* Some calls are for duplicates without timetamps */
411	if (rtt_us < 0)
412		return;
413
414	/* Discard delay samples right after fast recovery */
415	if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
416		return;
417
418	delay = (rtt_us << 3) / USEC_PER_MSEC;
419	if (delay == 0)
420		delay = 1;
421
422	/* first time call or link delay decreases */
423	if (ca->delay_min == 0 || ca->delay_min > delay)
424		ca->delay_min = delay;
425
426	/* hystart triggers when cwnd is larger than some threshold */
427	if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
428	    tp->snd_cwnd >= hystart_low_window)
429		hystart_update(sk, delay);
430}
431
432static struct tcp_congestion_ops cubictcp __read_mostly = {
433	.init		= bictcp_init,
434	.ssthresh	= bictcp_recalc_ssthresh,
435	.cong_avoid	= bictcp_cong_avoid,
436	.set_state	= bictcp_state,
437	.undo_cwnd	= bictcp_undo_cwnd,
438	.pkts_acked     = bictcp_acked,
 
439	.owner		= THIS_MODULE,
440	.name		= "cubic",
441};
442
 
 
 
 
 
 
 
 
 
 
 
 
 
 
443static int __init cubictcp_register(void)
444{
 
 
445	BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
446
447	/* Precompute a bunch of the scaling factors that are used per-packet
448	 * based on SRTT of 100ms
449	 */
450
451	beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
 
452
453	cube_rtt_scale = (bic_scale * 10);	/* 1024*c/rtt */
454
455	/* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
456	 *  so K = cubic_root( (wmax-cwnd)*rtt/c )
457	 * the unit of K is bictcp_HZ=2^10, not HZ
458	 *
459	 *  c = bic_scale >> 10
460	 *  rtt = 100ms
461	 *
462	 * the following code has been designed and tested for
463	 * cwnd < 1 million packets
464	 * RTT < 100 seconds
465	 * HZ < 1,000,00  (corresponding to 10 nano-second)
466	 */
467
468	/* 1/c * 2^2*bictcp_HZ * srtt */
469	cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
470
471	/* divide by bic_scale and by constant Srtt (100ms) */
472	do_div(cube_factor, bic_scale * 10);
473
474	/* hystart needs ms clock resolution */
475	if (hystart && HZ < 1000)
476		cubictcp.flags |= TCP_CONG_RTT_STAMP;
477
478	return tcp_register_congestion_control(&cubictcp);
479}
480
481static void __exit cubictcp_unregister(void)
482{
483	tcp_unregister_congestion_control(&cubictcp);
484}
485
486module_init(cubictcp_register);
487module_exit(cubictcp_unregister);
488
489MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
490MODULE_LICENSE("GPL");
491MODULE_DESCRIPTION("CUBIC TCP");
492MODULE_VERSION("2.3");