Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 *  Kernel Probes (KProbes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright (C) IBM Corporation, 2002, 2004
   6 *
   7 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
   8 *		Probes initial implementation (includes suggestions from
   9 *		Rusty Russell).
  10 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  11 *		hlists and exceptions notifier as suggested by Andi Kleen.
  12 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  13 *		interface to access function arguments.
  14 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  15 *		exceptions notifier to be first on the priority list.
  16 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  17 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  18 *		<prasanna@in.ibm.com> added function-return probes.
  19 */
  20
  21#define pr_fmt(fmt) "kprobes: " fmt
  22
  23#include <linux/kprobes.h>
  24#include <linux/hash.h>
  25#include <linux/init.h>
  26#include <linux/slab.h>
  27#include <linux/stddef.h>
  28#include <linux/export.h>
 
  29#include <linux/kallsyms.h>
  30#include <linux/freezer.h>
  31#include <linux/seq_file.h>
  32#include <linux/debugfs.h>
  33#include <linux/sysctl.h>
  34#include <linux/kdebug.h>
  35#include <linux/memory.h>
  36#include <linux/ftrace.h>
  37#include <linux/cpu.h>
  38#include <linux/jump_label.h>
  39#include <linux/static_call.h>
  40#include <linux/perf_event.h>
  41#include <linux/execmem.h>
  42
  43#include <asm/sections.h>
  44#include <asm/cacheflush.h>
  45#include <asm/errno.h>
  46#include <linux/uaccess.h>
  47
  48#define KPROBE_HASH_BITS 6
  49#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  50
  51#if !defined(CONFIG_OPTPROBES) || !defined(CONFIG_SYSCTL)
  52#define kprobe_sysctls_init() do { } while (0)
 
 
 
 
 
 
  53#endif
  54
  55static int kprobes_initialized;
  56/* kprobe_table can be accessed by
  57 * - Normal hlist traversal and RCU add/del under 'kprobe_mutex' is held.
  58 * Or
  59 * - RCU hlist traversal under disabling preempt (breakpoint handlers)
  60 */
  61static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
 
  62
  63/* NOTE: change this value only with 'kprobe_mutex' held */
  64static bool kprobes_all_disarmed;
  65
  66/* This protects 'kprobe_table' and 'optimizing_list' */
  67static DEFINE_MUTEX(kprobe_mutex);
  68static DEFINE_PER_CPU(struct kprobe *, kprobe_instance);
 
 
 
  69
  70kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
  71					unsigned int __unused)
  72{
  73	return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
  74}
  75
  76/*
  77 * Blacklist -- list of 'struct kprobe_blacklist_entry' to store info where
  78 * kprobes can not probe.
 
 
 
  79 */
  80static LIST_HEAD(kprobe_blacklist);
 
 
 
 
 
 
 
  81
  82#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
  83/*
  84 * 'kprobe::ainsn.insn' points to the copy of the instruction to be
  85 * single-stepped. x86_64, POWER4 and above have no-exec support and
  86 * stepping on the instruction on a vmalloced/kmalloced/data page
  87 * is a recipe for disaster
  88 */
  89struct kprobe_insn_page {
  90	struct list_head list;
  91	kprobe_opcode_t *insns;		/* Page of instruction slots */
  92	struct kprobe_insn_cache *cache;
  93	int nused;
  94	int ngarbage;
  95	char slot_used[];
  96};
  97
 
 
 
 
 
 
 
 
 
 
  98static int slots_per_page(struct kprobe_insn_cache *c)
  99{
 100	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 101}
 102
 103enum kprobe_slot_state {
 104	SLOT_CLEAN = 0,
 105	SLOT_DIRTY = 1,
 106	SLOT_USED = 2,
 107};
 108
 109void __weak *alloc_insn_page(void)
 110{
 111	/*
 112	 * Use execmem_alloc() so this page is within +/- 2GB of where the
 113	 * kernel image and loaded module images reside. This is required
 114	 * for most of the architectures.
 115	 * (e.g. x86-64 needs this to handle the %rip-relative fixups.)
 116	 */
 117	return execmem_alloc(EXECMEM_KPROBES, PAGE_SIZE);
 118}
 119
 120static void free_insn_page(void *page)
 121{
 122	execmem_free(page);
 123}
 124
 125struct kprobe_insn_cache kprobe_insn_slots = {
 126	.mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
 127	.alloc = alloc_insn_page,
 128	.free = free_insn_page,
 129	.sym = KPROBE_INSN_PAGE_SYM,
 130	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 131	.insn_size = MAX_INSN_SIZE,
 132	.nr_garbage = 0,
 133};
 134static int collect_garbage_slots(struct kprobe_insn_cache *c);
 135
 136/**
 137 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 138 * We allocate an executable page if there's no room on existing ones.
 139 */
 140kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
 141{
 142	struct kprobe_insn_page *kip;
 143	kprobe_opcode_t *slot = NULL;
 144
 145	/* Since the slot array is not protected by rcu, we need a mutex */
 146	mutex_lock(&c->mutex);
 147 retry:
 148	rcu_read_lock();
 149	list_for_each_entry_rcu(kip, &c->pages, list) {
 150		if (kip->nused < slots_per_page(c)) {
 151			int i;
 152
 153			for (i = 0; i < slots_per_page(c); i++) {
 154				if (kip->slot_used[i] == SLOT_CLEAN) {
 155					kip->slot_used[i] = SLOT_USED;
 156					kip->nused++;
 157					slot = kip->insns + (i * c->insn_size);
 158					rcu_read_unlock();
 159					goto out;
 160				}
 161			}
 162			/* kip->nused is broken. Fix it. */
 163			kip->nused = slots_per_page(c);
 164			WARN_ON(1);
 165		}
 166	}
 167	rcu_read_unlock();
 168
 169	/* If there are any garbage slots, collect it and try again. */
 170	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 171		goto retry;
 172
 173	/* All out of space.  Need to allocate a new page. */
 174	kip = kmalloc(struct_size(kip, slot_used, slots_per_page(c)), GFP_KERNEL);
 175	if (!kip)
 176		goto out;
 177
 178	kip->insns = c->alloc();
 
 
 
 
 
 179	if (!kip->insns) {
 180		kfree(kip);
 181		goto out;
 182	}
 183	INIT_LIST_HEAD(&kip->list);
 184	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 185	kip->slot_used[0] = SLOT_USED;
 186	kip->nused = 1;
 187	kip->ngarbage = 0;
 188	kip->cache = c;
 189	list_add_rcu(&kip->list, &c->pages);
 190	slot = kip->insns;
 191
 192	/* Record the perf ksymbol register event after adding the page */
 193	perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
 194			   PAGE_SIZE, false, c->sym);
 195out:
 196	mutex_unlock(&c->mutex);
 197	return slot;
 198}
 199
 200/* Return true if all garbages are collected, otherwise false. */
 201static bool collect_one_slot(struct kprobe_insn_page *kip, int idx)
 
 
 
 
 
 
 
 
 
 
 
 
 202{
 203	kip->slot_used[idx] = SLOT_CLEAN;
 204	kip->nused--;
 205	if (kip->nused != 0)
 206		return false;
 207
 208	/*
 209	 * Page is no longer in use.  Free it unless
 210	 * it's the last one.  We keep the last one
 211	 * so as not to have to set it up again the
 212	 * next time somebody inserts a probe.
 213	 */
 214	if (!list_is_singular(&kip->list)) {
 215		/*
 216		 * Record perf ksymbol unregister event before removing
 217		 * the page.
 
 
 218		 */
 219		perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
 220				   (unsigned long)kip->insns, PAGE_SIZE, true,
 221				   kip->cache->sym);
 222		list_del_rcu(&kip->list);
 223		synchronize_rcu();
 224		kip->cache->free(kip->insns);
 225		kfree(kip);
 226	}
 227	return true;
 228}
 229
 230static int collect_garbage_slots(struct kprobe_insn_cache *c)
 231{
 232	struct kprobe_insn_page *kip, *next;
 233
 234	/* Ensure no-one is interrupted on the garbages */
 235	synchronize_rcu();
 236
 237	list_for_each_entry_safe(kip, next, &c->pages, list) {
 238		int i;
 239
 240		if (kip->ngarbage == 0)
 241			continue;
 242		kip->ngarbage = 0;	/* we will collect all garbages */
 243		for (i = 0; i < slots_per_page(c); i++) {
 244			if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
 
 245				break;
 246		}
 247	}
 248	c->nr_garbage = 0;
 249	return 0;
 250}
 251
 252void __free_insn_slot(struct kprobe_insn_cache *c,
 253		      kprobe_opcode_t *slot, int dirty)
 254{
 255	struct kprobe_insn_page *kip;
 256	long idx;
 257
 258	mutex_lock(&c->mutex);
 259	rcu_read_lock();
 260	list_for_each_entry_rcu(kip, &c->pages, list) {
 261		idx = ((long)slot - (long)kip->insns) /
 262			(c->insn_size * sizeof(kprobe_opcode_t));
 263		if (idx >= 0 && idx < slots_per_page(c))
 264			goto out;
 265	}
 266	/* Could not find this slot. */
 267	WARN_ON(1);
 268	kip = NULL;
 269out:
 270	rcu_read_unlock();
 271	/* Mark and sweep: this may sleep */
 272	if (kip) {
 273		/* Check double free */
 274		WARN_ON(kip->slot_used[idx] != SLOT_USED);
 275		if (dirty) {
 276			kip->slot_used[idx] = SLOT_DIRTY;
 277			kip->ngarbage++;
 278			if (++c->nr_garbage > slots_per_page(c))
 279				collect_garbage_slots(c);
 280		} else {
 281			collect_one_slot(kip, idx);
 282		}
 283	}
 284	mutex_unlock(&c->mutex);
 
 285}
 286
 287/*
 288 * Check given address is on the page of kprobe instruction slots.
 289 * This will be used for checking whether the address on a stack
 290 * is on a text area or not.
 291 */
 292bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
 293{
 294	struct kprobe_insn_page *kip;
 295	bool ret = false;
 296
 297	rcu_read_lock();
 298	list_for_each_entry_rcu(kip, &c->pages, list) {
 299		if (addr >= (unsigned long)kip->insns &&
 300		    addr < (unsigned long)kip->insns + PAGE_SIZE) {
 301			ret = true;
 302			break;
 303		}
 304	}
 305	rcu_read_unlock();
 306
 307	return ret;
 308}
 309
 310int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
 311			     unsigned long *value, char *type, char *sym)
 
 
 
 
 
 
 
 312{
 313	struct kprobe_insn_page *kip;
 314	int ret = -ERANGE;
 315
 316	rcu_read_lock();
 317	list_for_each_entry_rcu(kip, &c->pages, list) {
 318		if ((*symnum)--)
 319			continue;
 320		strscpy(sym, c->sym, KSYM_NAME_LEN);
 321		*type = 't';
 322		*value = (unsigned long)kip->insns;
 323		ret = 0;
 324		break;
 325	}
 326	rcu_read_unlock();
 327
 328	return ret;
 329}
 330
 331#ifdef CONFIG_OPTPROBES
 332void __weak *alloc_optinsn_page(void)
 333{
 334	return alloc_insn_page();
 
 
 335}
 336
 337void __weak free_optinsn_page(void *page)
 338{
 339	free_insn_page(page);
 340}
 341
 342/* For optimized_kprobe buffer */
 343struct kprobe_insn_cache kprobe_optinsn_slots = {
 344	.mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
 345	.alloc = alloc_optinsn_page,
 346	.free = free_optinsn_page,
 347	.sym = KPROBE_OPTINSN_PAGE_SYM,
 348	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 349	/* .insn_size is initialized later */
 350	.nr_garbage = 0,
 351};
 352#endif /* CONFIG_OPTPROBES */
 353#endif /* __ARCH_WANT_KPROBES_INSN_SLOT */
 354
 355/* We have preemption disabled.. so it is safe to use __ versions */
 356static inline void set_kprobe_instance(struct kprobe *kp)
 357{
 358	__this_cpu_write(kprobe_instance, kp);
 359}
 360
 361static inline void reset_kprobe_instance(void)
 362{
 363	__this_cpu_write(kprobe_instance, NULL);
 364}
 365
 366/*
 367 * This routine is called either:
 368 *	- under the 'kprobe_mutex' - during kprobe_[un]register().
 369 *				OR
 370 *	- with preemption disabled - from architecture specific code.
 371 */
 372struct kprobe *get_kprobe(void *addr)
 373{
 374	struct hlist_head *head;
 
 375	struct kprobe *p;
 376
 377	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 378	hlist_for_each_entry_rcu(p, head, hlist,
 379				 lockdep_is_held(&kprobe_mutex)) {
 380		if (p->addr == addr)
 381			return p;
 382	}
 383
 384	return NULL;
 385}
 386NOKPROBE_SYMBOL(get_kprobe);
 387
 388static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 389
 390/* Return true if 'p' is an aggregator */
 391static inline bool kprobe_aggrprobe(struct kprobe *p)
 392{
 393	return p->pre_handler == aggr_pre_handler;
 394}
 395
 396/* Return true if 'p' is unused */
 397static inline bool kprobe_unused(struct kprobe *p)
 398{
 399	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 400	       list_empty(&p->list);
 401}
 402
 403/* Keep all fields in the kprobe consistent. */
 
 
 404static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 405{
 406	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 407	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 408}
 409
 410#ifdef CONFIG_OPTPROBES
 411/* NOTE: This is protected by 'kprobe_mutex'. */
 412static bool kprobes_allow_optimization;
 413
 414/*
 415 * Call all 'kprobe::pre_handler' on the list, but ignores its return value.
 416 * This must be called from arch-dep optimized caller.
 417 */
 418void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 419{
 420	struct kprobe *kp;
 421
 422	list_for_each_entry_rcu(kp, &p->list, list) {
 423		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 424			set_kprobe_instance(kp);
 425			kp->pre_handler(kp, regs);
 426		}
 427		reset_kprobe_instance();
 428	}
 429}
 430NOKPROBE_SYMBOL(opt_pre_handler);
 431
 432/* Free optimized instructions and optimized_kprobe */
 433static void free_aggr_kprobe(struct kprobe *p)
 434{
 435	struct optimized_kprobe *op;
 436
 437	op = container_of(p, struct optimized_kprobe, kp);
 438	arch_remove_optimized_kprobe(op);
 439	arch_remove_kprobe(p);
 440	kfree(op);
 441}
 442
 443/* Return true if the kprobe is ready for optimization. */
 444static inline int kprobe_optready(struct kprobe *p)
 445{
 446	struct optimized_kprobe *op;
 447
 448	if (kprobe_aggrprobe(p)) {
 449		op = container_of(p, struct optimized_kprobe, kp);
 450		return arch_prepared_optinsn(&op->optinsn);
 451	}
 452
 453	return 0;
 454}
 455
 456/* Return true if the kprobe is disarmed. Note: p must be on hash list */
 457bool kprobe_disarmed(struct kprobe *p)
 458{
 459	struct optimized_kprobe *op;
 460
 461	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 462	if (!kprobe_aggrprobe(p))
 463		return kprobe_disabled(p);
 464
 465	op = container_of(p, struct optimized_kprobe, kp);
 466
 467	return kprobe_disabled(p) && list_empty(&op->list);
 468}
 469
 470/* Return true if the probe is queued on (un)optimizing lists */
 471static bool kprobe_queued(struct kprobe *p)
 472{
 473	struct optimized_kprobe *op;
 474
 475	if (kprobe_aggrprobe(p)) {
 476		op = container_of(p, struct optimized_kprobe, kp);
 477		if (!list_empty(&op->list))
 478			return true;
 479	}
 480	return false;
 481}
 482
 483/*
 484 * Return an optimized kprobe whose optimizing code replaces
 485 * instructions including 'addr' (exclude breakpoint).
 486 */
 487static struct kprobe *get_optimized_kprobe(kprobe_opcode_t *addr)
 488{
 489	int i;
 490	struct kprobe *p = NULL;
 491	struct optimized_kprobe *op;
 492
 493	/* Don't check i == 0, since that is a breakpoint case. */
 494	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH / sizeof(kprobe_opcode_t); i++)
 495		p = get_kprobe(addr - i);
 496
 497	if (p && kprobe_optready(p)) {
 498		op = container_of(p, struct optimized_kprobe, kp);
 499		if (arch_within_optimized_kprobe(op, addr))
 500			return p;
 501	}
 502
 503	return NULL;
 504}
 505
 506/* Optimization staging list, protected by 'kprobe_mutex' */
 507static LIST_HEAD(optimizing_list);
 508static LIST_HEAD(unoptimizing_list);
 509static LIST_HEAD(freeing_list);
 510
 511static void kprobe_optimizer(struct work_struct *work);
 512static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 
 513#define OPTIMIZE_DELAY 5
 514
 515/*
 516 * Optimize (replace a breakpoint with a jump) kprobes listed on
 517 * 'optimizing_list'.
 518 */
 519static void do_optimize_kprobes(void)
 520{
 521	lockdep_assert_held(&text_mutex);
 522	/*
 523	 * The optimization/unoptimization refers 'online_cpus' via
 524	 * stop_machine() and cpu-hotplug modifies the 'online_cpus'.
 525	 * And same time, 'text_mutex' will be held in cpu-hotplug and here.
 526	 * This combination can cause a deadlock (cpu-hotplug tries to lock
 527	 * 'text_mutex' but stop_machine() can not be done because
 528	 * the 'online_cpus' has been changed)
 529	 * To avoid this deadlock, caller must have locked cpu-hotplug
 530	 * for preventing cpu-hotplug outside of 'text_mutex' locking.
 531	 */
 532	lockdep_assert_cpus_held();
 533
 534	/* Optimization never be done when disarmed */
 535	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 536	    list_empty(&optimizing_list))
 537		return;
 538
 
 
 
 
 
 
 
 
 
 
 
 
 539	arch_optimize_kprobes(&optimizing_list);
 
 
 540}
 541
 542/*
 543 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 544 * if need) kprobes listed on 'unoptimizing_list'.
 545 */
 546static void do_unoptimize_kprobes(void)
 547{
 548	struct optimized_kprobe *op, *tmp;
 549
 550	lockdep_assert_held(&text_mutex);
 551	/* See comment in do_optimize_kprobes() */
 552	lockdep_assert_cpus_held();
 553
 554	if (!list_empty(&unoptimizing_list))
 555		arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
 556
 557	/* Loop on 'freeing_list' for disarming and removing from kprobe hash list */
 558	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 559		/* Switching from detour code to origin */
 560		op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 561		/* Disarm probes if marked disabled and not gone */
 562		if (kprobe_disabled(&op->kp) && !kprobe_gone(&op->kp))
 563			arch_disarm_kprobe(&op->kp);
 564		if (kprobe_unused(&op->kp)) {
 565			/*
 566			 * Remove unused probes from hash list. After waiting
 567			 * for synchronization, these probes are reclaimed.
 568			 * (reclaiming is done by do_free_cleaned_kprobes().)
 569			 */
 570			hlist_del_rcu(&op->kp.hlist);
 571		} else
 572			list_del_init(&op->list);
 573	}
 
 
 574}
 575
 576/* Reclaim all kprobes on the 'freeing_list' */
 577static void do_free_cleaned_kprobes(void)
 578{
 579	struct optimized_kprobe *op, *tmp;
 580
 581	list_for_each_entry_safe(op, tmp, &freeing_list, list) {
 
 582		list_del_init(&op->list);
 583		if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
 584			/*
 585			 * This must not happen, but if there is a kprobe
 586			 * still in use, keep it on kprobes hash list.
 587			 */
 588			continue;
 589		}
 590		free_aggr_kprobe(&op->kp);
 591	}
 592}
 593
 594/* Start optimizer after OPTIMIZE_DELAY passed */
 595static void kick_kprobe_optimizer(void)
 596{
 597	schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 
 598}
 599
 600/* Kprobe jump optimizer */
 601static void kprobe_optimizer(struct work_struct *work)
 602{
 
 
 
 
 603	mutex_lock(&kprobe_mutex);
 604	cpus_read_lock();
 605	mutex_lock(&text_mutex);
 606
 607	/*
 608	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 609	 * kprobes before waiting for quiesence period.
 610	 */
 611	do_unoptimize_kprobes();
 612
 613	/*
 614	 * Step 2: Wait for quiesence period to ensure all potentially
 615	 * preempted tasks to have normally scheduled. Because optprobe
 616	 * may modify multiple instructions, there is a chance that Nth
 617	 * instruction is preempted. In that case, such tasks can return
 618	 * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
 619	 * Note that on non-preemptive kernel, this is transparently converted
 620	 * to synchronoze_sched() to wait for all interrupts to have completed.
 621	 */
 622	synchronize_rcu_tasks();
 623
 624	/* Step 3: Optimize kprobes after quiesence period */
 625	do_optimize_kprobes();
 626
 627	/* Step 4: Free cleaned kprobes after quiesence period */
 628	do_free_cleaned_kprobes();
 629
 630	mutex_unlock(&text_mutex);
 631	cpus_read_unlock();
 632
 633	/* Step 5: Kick optimizer again if needed */
 634	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 635		kick_kprobe_optimizer();
 636
 637	mutex_unlock(&kprobe_mutex);
 
 638}
 639
 640/* Wait for completing optimization and unoptimization */
 641void wait_for_kprobe_optimizer(void)
 642{
 643	mutex_lock(&kprobe_mutex);
 644
 645	while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
 646		mutex_unlock(&kprobe_mutex);
 647
 648		/* This will also make 'optimizing_work' execute immmediately */
 649		flush_delayed_work(&optimizing_work);
 650		/* 'optimizing_work' might not have been queued yet, relax */
 651		cpu_relax();
 652
 653		mutex_lock(&kprobe_mutex);
 654	}
 655
 656	mutex_unlock(&kprobe_mutex);
 657}
 658
 659bool optprobe_queued_unopt(struct optimized_kprobe *op)
 660{
 661	struct optimized_kprobe *_op;
 662
 663	list_for_each_entry(_op, &unoptimizing_list, list) {
 664		if (op == _op)
 665			return true;
 666	}
 667
 668	return false;
 669}
 670
 671/* Optimize kprobe if p is ready to be optimized */
 672static void optimize_kprobe(struct kprobe *p)
 673{
 674	struct optimized_kprobe *op;
 675
 676	/* Check if the kprobe is disabled or not ready for optimization. */
 677	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 678	    (kprobe_disabled(p) || kprobes_all_disarmed))
 679		return;
 680
 681	/* kprobes with 'post_handler' can not be optimized */
 682	if (p->post_handler)
 683		return;
 684
 685	op = container_of(p, struct optimized_kprobe, kp);
 686
 687	/* Check there is no other kprobes at the optimized instructions */
 688	if (arch_check_optimized_kprobe(op) < 0)
 689		return;
 690
 691	/* Check if it is already optimized. */
 692	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
 693		if (optprobe_queued_unopt(op)) {
 694			/* This is under unoptimizing. Just dequeue the probe */
 695			list_del_init(&op->list);
 696		}
 697		return;
 698	}
 699	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 700
 701	/*
 702	 * On the 'unoptimizing_list' and 'optimizing_list',
 703	 * 'op' must have OPTIMIZED flag
 704	 */
 705	if (WARN_ON_ONCE(!list_empty(&op->list)))
 706		return;
 707
 708	list_add(&op->list, &optimizing_list);
 709	kick_kprobe_optimizer();
 710}
 711
 712/* Short cut to direct unoptimizing */
 713static void force_unoptimize_kprobe(struct optimized_kprobe *op)
 714{
 715	lockdep_assert_cpus_held();
 716	arch_unoptimize_kprobe(op);
 717	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 
 
 718}
 719
 720/* Unoptimize a kprobe if p is optimized */
 721static void unoptimize_kprobe(struct kprobe *p, bool force)
 722{
 723	struct optimized_kprobe *op;
 724
 725	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 726		return; /* This is not an optprobe nor optimized */
 727
 728	op = container_of(p, struct optimized_kprobe, kp);
 729	if (!kprobe_optimized(p))
 730		return;
 731
 732	if (!list_empty(&op->list)) {
 733		if (optprobe_queued_unopt(op)) {
 734			/* Queued in unoptimizing queue */
 735			if (force) {
 736				/*
 737				 * Forcibly unoptimize the kprobe here, and queue it
 738				 * in the freeing list for release afterwards.
 739				 */
 740				force_unoptimize_kprobe(op);
 741				list_move(&op->list, &freeing_list);
 742			}
 743		} else {
 744			/* Dequeue from the optimizing queue */
 745			list_del_init(&op->list);
 746			op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 747		}
 748		return;
 749	}
 750
 
 
 
 
 
 
 751	/* Optimized kprobe case */
 752	if (force) {
 753		/* Forcibly update the code: this is a special case */
 754		force_unoptimize_kprobe(op);
 755	} else {
 756		list_add(&op->list, &unoptimizing_list);
 757		kick_kprobe_optimizer();
 758	}
 759}
 760
 761/* Cancel unoptimizing for reusing */
 762static int reuse_unused_kprobe(struct kprobe *ap)
 763{
 764	struct optimized_kprobe *op;
 765
 
 766	/*
 767	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 768	 * there is still a relative jump) and disabled.
 769	 */
 770	op = container_of(ap, struct optimized_kprobe, kp);
 771	WARN_ON_ONCE(list_empty(&op->list));
 
 
 772	/* Enable the probe again */
 773	ap->flags &= ~KPROBE_FLAG_DISABLED;
 774	/* Optimize it again. (remove from 'op->list') */
 775	if (!kprobe_optready(ap))
 776		return -EINVAL;
 777
 778	optimize_kprobe(ap);
 779	return 0;
 780}
 781
 782/* Remove optimized instructions */
 783static void kill_optimized_kprobe(struct kprobe *p)
 784{
 785	struct optimized_kprobe *op;
 786
 787	op = container_of(p, struct optimized_kprobe, kp);
 788	if (!list_empty(&op->list))
 789		/* Dequeue from the (un)optimization queue */
 790		list_del_init(&op->list);
 791	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 792
 793	if (kprobe_unused(p)) {
 794		/*
 795		 * Unused kprobe is on unoptimizing or freeing list. We move it
 796		 * to freeing_list and let the kprobe_optimizer() remove it from
 797		 * the kprobe hash list and free it.
 798		 */
 799		if (optprobe_queued_unopt(op))
 800			list_move(&op->list, &freeing_list);
 801	}
 802
 
 803	/* Don't touch the code, because it is already freed. */
 804	arch_remove_optimized_kprobe(op);
 805}
 806
 807static inline
 808void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
 809{
 810	if (!kprobe_ftrace(p))
 811		arch_prepare_optimized_kprobe(op, p);
 812}
 813
 814/* Try to prepare optimized instructions */
 815static void prepare_optimized_kprobe(struct kprobe *p)
 816{
 817	struct optimized_kprobe *op;
 818
 819	op = container_of(p, struct optimized_kprobe, kp);
 820	__prepare_optimized_kprobe(op, p);
 821}
 822
 823/* Allocate new optimized_kprobe and try to prepare optimized instructions. */
 824static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 825{
 826	struct optimized_kprobe *op;
 827
 828	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 829	if (!op)
 830		return NULL;
 831
 832	INIT_LIST_HEAD(&op->list);
 833	op->kp.addr = p->addr;
 834	__prepare_optimized_kprobe(op, p);
 835
 836	return &op->kp;
 837}
 838
 839static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 840
 841/*
 842 * Prepare an optimized_kprobe and optimize it.
 843 * NOTE: 'p' must be a normal registered kprobe.
 844 */
 845static void try_to_optimize_kprobe(struct kprobe *p)
 846{
 847	struct kprobe *ap;
 848	struct optimized_kprobe *op;
 849
 850	/* Impossible to optimize ftrace-based kprobe. */
 851	if (kprobe_ftrace(p))
 852		return;
 853
 854	/* For preparing optimization, jump_label_text_reserved() is called. */
 855	cpus_read_lock();
 856	jump_label_lock();
 857	mutex_lock(&text_mutex);
 858
 859	ap = alloc_aggr_kprobe(p);
 860	if (!ap)
 861		goto out;
 862
 863	op = container_of(ap, struct optimized_kprobe, kp);
 864	if (!arch_prepared_optinsn(&op->optinsn)) {
 865		/* If failed to setup optimizing, fallback to kprobe. */
 866		arch_remove_optimized_kprobe(op);
 867		kfree(op);
 868		goto out;
 869	}
 870
 871	init_aggr_kprobe(ap, p);
 872	optimize_kprobe(ap);	/* This just kicks optimizer thread. */
 873
 874out:
 875	mutex_unlock(&text_mutex);
 876	jump_label_unlock();
 877	cpus_read_unlock();
 878}
 879
 880static void optimize_all_kprobes(void)
 
 
 881{
 882	struct hlist_head *head;
 
 883	struct kprobe *p;
 884	unsigned int i;
 885
 886	mutex_lock(&kprobe_mutex);
 887	/* If optimization is already allowed, just return. */
 888	if (kprobes_allow_optimization)
 889		goto out;
 890
 891	cpus_read_lock();
 892	kprobes_allow_optimization = true;
 893	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 894		head = &kprobe_table[i];
 895		hlist_for_each_entry(p, head, hlist)
 896			if (!kprobe_disabled(p))
 897				optimize_kprobe(p);
 898	}
 899	cpus_read_unlock();
 900	pr_info("kprobe jump-optimization is enabled. All kprobes are optimized if possible.\n");
 901out:
 902	mutex_unlock(&kprobe_mutex);
 903}
 904
 905#ifdef CONFIG_SYSCTL
 906static void unoptimize_all_kprobes(void)
 907{
 908	struct hlist_head *head;
 
 909	struct kprobe *p;
 910	unsigned int i;
 911
 912	mutex_lock(&kprobe_mutex);
 913	/* If optimization is already prohibited, just return. */
 914	if (!kprobes_allow_optimization) {
 915		mutex_unlock(&kprobe_mutex);
 916		return;
 917	}
 918
 919	cpus_read_lock();
 920	kprobes_allow_optimization = false;
 921	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 922		head = &kprobe_table[i];
 923		hlist_for_each_entry(p, head, hlist) {
 924			if (!kprobe_disabled(p))
 925				unoptimize_kprobe(p, false);
 926		}
 927	}
 928	cpus_read_unlock();
 929	mutex_unlock(&kprobe_mutex);
 930
 931	/* Wait for unoptimizing completion. */
 932	wait_for_kprobe_optimizer();
 933	pr_info("kprobe jump-optimization is disabled. All kprobes are based on software breakpoint.\n");
 934}
 935
 936static DEFINE_MUTEX(kprobe_sysctl_mutex);
 937static int sysctl_kprobes_optimization;
 938static int proc_kprobes_optimization_handler(const struct ctl_table *table,
 939					     int write, void *buffer,
 940					     size_t *length, loff_t *ppos)
 941{
 942	int ret;
 943
 944	mutex_lock(&kprobe_sysctl_mutex);
 945	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 946	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 947
 948	if (sysctl_kprobes_optimization)
 949		optimize_all_kprobes();
 950	else
 951		unoptimize_all_kprobes();
 952	mutex_unlock(&kprobe_sysctl_mutex);
 953
 954	return ret;
 955}
 956
 957static struct ctl_table kprobe_sysctls[] = {
 958	{
 959		.procname	= "kprobes-optimization",
 960		.data		= &sysctl_kprobes_optimization,
 961		.maxlen		= sizeof(int),
 962		.mode		= 0644,
 963		.proc_handler	= proc_kprobes_optimization_handler,
 964		.extra1		= SYSCTL_ZERO,
 965		.extra2		= SYSCTL_ONE,
 966	},
 967};
 968
 969static void __init kprobe_sysctls_init(void)
 970{
 971	register_sysctl_init("debug", kprobe_sysctls);
 972}
 973#endif /* CONFIG_SYSCTL */
 974
 975/* Put a breakpoint for a probe. */
 976static void __arm_kprobe(struct kprobe *p)
 977{
 978	struct kprobe *_p;
 979
 980	lockdep_assert_held(&text_mutex);
 981
 982	/* Find the overlapping optimized kprobes. */
 983	_p = get_optimized_kprobe(p->addr);
 984	if (unlikely(_p))
 985		/* Fallback to unoptimized kprobe */
 986		unoptimize_kprobe(_p, true);
 987
 988	arch_arm_kprobe(p);
 989	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 990}
 991
 992/* Remove the breakpoint of a probe. */
 993static void __disarm_kprobe(struct kprobe *p, bool reopt)
 994{
 995	struct kprobe *_p;
 996
 997	lockdep_assert_held(&text_mutex);
 998
 999	/* Try to unoptimize */
1000	unoptimize_kprobe(p, kprobes_all_disarmed);
1001
1002	if (!kprobe_queued(p)) {
1003		arch_disarm_kprobe(p);
1004		/* If another kprobe was blocked, re-optimize it. */
1005		_p = get_optimized_kprobe(p->addr);
1006		if (unlikely(_p) && reopt)
1007			optimize_kprobe(_p);
1008	}
1009	/*
1010	 * TODO: Since unoptimization and real disarming will be done by
1011	 * the worker thread, we can not check whether another probe are
1012	 * unoptimized because of this probe here. It should be re-optimized
1013	 * by the worker thread.
1014	 */
1015}
1016
1017#else /* !CONFIG_OPTPROBES */
1018
1019#define optimize_kprobe(p)			do {} while (0)
1020#define unoptimize_kprobe(p, f)			do {} while (0)
1021#define kill_optimized_kprobe(p)		do {} while (0)
1022#define prepare_optimized_kprobe(p)		do {} while (0)
1023#define try_to_optimize_kprobe(p)		do {} while (0)
1024#define __arm_kprobe(p)				arch_arm_kprobe(p)
1025#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
1026#define kprobe_disarmed(p)			kprobe_disabled(p)
1027#define wait_for_kprobe_optimizer()		do {} while (0)
1028
1029static int reuse_unused_kprobe(struct kprobe *ap)
 
1030{
1031	/*
1032	 * If the optimized kprobe is NOT supported, the aggr kprobe is
1033	 * released at the same time that the last aggregated kprobe is
1034	 * unregistered.
1035	 * Thus there should be no chance to reuse unused kprobe.
1036	 */
1037	WARN_ON_ONCE(1);
1038	return -EINVAL;
1039}
1040
1041static void free_aggr_kprobe(struct kprobe *p)
1042{
1043	arch_remove_kprobe(p);
1044	kfree(p);
1045}
1046
1047static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1048{
1049	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1050}
1051#endif /* CONFIG_OPTPROBES */
1052
1053#ifdef CONFIG_KPROBES_ON_FTRACE
1054static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1055	.func = kprobe_ftrace_handler,
1056	.flags = FTRACE_OPS_FL_SAVE_REGS,
1057};
1058
1059static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1060	.func = kprobe_ftrace_handler,
1061	.flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1062};
1063
1064static int kprobe_ipmodify_enabled;
1065static int kprobe_ftrace_enabled;
1066bool kprobe_ftrace_disabled;
1067
1068static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1069			       int *cnt)
1070{
1071	int ret;
1072
1073	lockdep_assert_held(&kprobe_mutex);
1074
1075	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1076	if (WARN_ONCE(ret < 0, "Failed to arm kprobe-ftrace at %pS (error %d)\n", p->addr, ret))
1077		return ret;
1078
1079	if (*cnt == 0) {
1080		ret = register_ftrace_function(ops);
1081		if (WARN(ret < 0, "Failed to register kprobe-ftrace (error %d)\n", ret))
1082			goto err_ftrace;
1083	}
1084
1085	(*cnt)++;
1086	return ret;
1087
1088err_ftrace:
1089	/*
1090	 * At this point, sinec ops is not registered, we should be sefe from
1091	 * registering empty filter.
 
1092	 */
1093	ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1094	return ret;
1095}
1096
1097static int arm_kprobe_ftrace(struct kprobe *p)
1098{
1099	bool ipmodify = (p->post_handler != NULL);
1100
1101	return __arm_kprobe_ftrace(p,
1102		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1103		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1104}
1105
1106static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1107				  int *cnt)
1108{
1109	int ret;
1110
1111	lockdep_assert_held(&kprobe_mutex);
1112
1113	if (*cnt == 1) {
1114		ret = unregister_ftrace_function(ops);
1115		if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (error %d)\n", ret))
1116			return ret;
1117	}
1118
1119	(*cnt)--;
1120
1121	ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1122	WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (error %d)\n",
1123		  p->addr, ret);
1124	return ret;
1125}
1126
1127static int disarm_kprobe_ftrace(struct kprobe *p)
1128{
1129	bool ipmodify = (p->post_handler != NULL);
1130
1131	return __disarm_kprobe_ftrace(p,
1132		ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1133		ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1134}
1135
1136void kprobe_ftrace_kill(void)
1137{
1138	kprobe_ftrace_disabled = true;
1139}
1140#else	/* !CONFIG_KPROBES_ON_FTRACE */
1141static inline int arm_kprobe_ftrace(struct kprobe *p)
1142{
1143	return -ENODEV;
1144}
1145
1146static inline int disarm_kprobe_ftrace(struct kprobe *p)
1147{
1148	return -ENODEV;
1149}
1150#endif
1151
1152static int prepare_kprobe(struct kprobe *p)
1153{
1154	/* Must ensure p->addr is really on ftrace */
1155	if (kprobe_ftrace(p))
1156		return arch_prepare_kprobe_ftrace(p);
1157
1158	return arch_prepare_kprobe(p);
1159}
1160
1161static int arm_kprobe(struct kprobe *kp)
1162{
1163	if (unlikely(kprobe_ftrace(kp)))
1164		return arm_kprobe_ftrace(kp);
1165
1166	cpus_read_lock();
1167	mutex_lock(&text_mutex);
1168	__arm_kprobe(kp);
1169	mutex_unlock(&text_mutex);
1170	cpus_read_unlock();
1171
1172	return 0;
1173}
1174
1175static int disarm_kprobe(struct kprobe *kp, bool reopt)
 
1176{
1177	if (unlikely(kprobe_ftrace(kp)))
1178		return disarm_kprobe_ftrace(kp);
1179
1180	cpus_read_lock();
1181	mutex_lock(&text_mutex);
1182	__disarm_kprobe(kp, reopt);
1183	mutex_unlock(&text_mutex);
1184	cpus_read_unlock();
1185
1186	return 0;
1187}
1188
1189/*
1190 * Aggregate handlers for multiple kprobes support - these handlers
1191 * take care of invoking the individual kprobe handlers on p->list
1192 */
1193static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1194{
1195	struct kprobe *kp;
1196
1197	list_for_each_entry_rcu(kp, &p->list, list) {
1198		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1199			set_kprobe_instance(kp);
1200			if (kp->pre_handler(kp, regs))
1201				return 1;
1202		}
1203		reset_kprobe_instance();
1204	}
1205	return 0;
1206}
1207NOKPROBE_SYMBOL(aggr_pre_handler);
1208
1209static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1210			      unsigned long flags)
1211{
1212	struct kprobe *kp;
1213
1214	list_for_each_entry_rcu(kp, &p->list, list) {
1215		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1216			set_kprobe_instance(kp);
1217			kp->post_handler(kp, regs, flags);
1218			reset_kprobe_instance();
1219		}
1220	}
1221}
1222NOKPROBE_SYMBOL(aggr_post_handler);
1223
1224/* Walks the list and increments 'nmissed' if 'p' has child probes. */
1225void kprobes_inc_nmissed_count(struct kprobe *p)
1226{
1227	struct kprobe *kp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1228
 
 
 
 
1229	if (!kprobe_aggrprobe(p)) {
1230		p->nmissed++;
1231	} else {
1232		list_for_each_entry_rcu(kp, &p->list, list)
1233			kp->nmissed++;
1234	}
 
1235}
1236NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1237
1238static struct kprobe kprobe_busy = {
1239	.addr = (void *) get_kprobe,
1240};
 
1241
1242void kprobe_busy_begin(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243{
1244	struct kprobe_ctlblk *kcb;
 
1245
1246	preempt_disable();
1247	__this_cpu_write(current_kprobe, &kprobe_busy);
1248	kcb = get_kprobe_ctlblk();
1249	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1250}
1251
1252void kprobe_busy_end(void)
 
 
1253{
1254	__this_cpu_write(current_kprobe, NULL);
1255	preempt_enable();
1256}
1257
1258/* Add the new probe to 'ap->list'. */
1259static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
 
1260{
1261	if (p->post_handler)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1263
1264	list_add_rcu(&p->list, &ap->list);
 
 
 
 
 
 
1265	if (p->post_handler && !ap->post_handler)
1266		ap->post_handler = aggr_post_handler;
1267
 
 
 
 
 
 
1268	return 0;
1269}
1270
1271/*
1272 * Fill in the required fields of the aggregator kprobe. Replace the
1273 * earlier kprobe in the hlist with the aggregator kprobe.
1274 */
1275static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1276{
1277	/* Copy the insn slot of 'p' to 'ap'. */
1278	copy_kprobe(p, ap);
1279	flush_insn_slot(ap);
1280	ap->addr = p->addr;
1281	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1282	ap->pre_handler = aggr_pre_handler;
 
1283	/* We don't care the kprobe which has gone. */
1284	if (p->post_handler && !kprobe_gone(p))
1285		ap->post_handler = aggr_post_handler;
 
 
1286
1287	INIT_LIST_HEAD(&ap->list);
1288	INIT_HLIST_NODE(&ap->hlist);
1289
1290	list_add_rcu(&p->list, &ap->list);
1291	hlist_replace_rcu(&p->hlist, &ap->hlist);
1292}
1293
1294/*
1295 * This registers the second or subsequent kprobe at the same address.
 
1296 */
1297static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
 
1298{
1299	int ret = 0;
1300	struct kprobe *ap = orig_p;
1301
1302	cpus_read_lock();
1303
1304	/* For preparing optimization, jump_label_text_reserved() is called */
1305	jump_label_lock();
1306	mutex_lock(&text_mutex);
1307
1308	if (!kprobe_aggrprobe(orig_p)) {
1309		/* If 'orig_p' is not an 'aggr_kprobe', create new one. */
1310		ap = alloc_aggr_kprobe(orig_p);
1311		if (!ap) {
1312			ret = -ENOMEM;
1313			goto out;
1314		}
1315		init_aggr_kprobe(ap, orig_p);
1316	} else if (kprobe_unused(ap)) {
1317		/* This probe is going to die. Rescue it */
1318		ret = reuse_unused_kprobe(ap);
1319		if (ret)
1320			goto out;
1321	}
1322
1323	if (kprobe_gone(ap)) {
1324		/*
1325		 * Attempting to insert new probe at the same location that
1326		 * had a probe in the module vaddr area which already
1327		 * freed. So, the instruction slot has already been
1328		 * released. We need a new slot for the new probe.
1329		 */
1330		ret = arch_prepare_kprobe(ap);
1331		if (ret)
1332			/*
1333			 * Even if fail to allocate new slot, don't need to
1334			 * free the 'ap'. It will be used next time, or
1335			 * freed by unregister_kprobe().
1336			 */
1337			goto out;
1338
1339		/* Prepare optimized instructions if possible. */
1340		prepare_optimized_kprobe(ap);
1341
1342		/*
1343		 * Clear gone flag to prevent allocating new slot again, and
1344		 * set disabled flag because it is not armed yet.
1345		 */
1346		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1347			    | KPROBE_FLAG_DISABLED;
1348	}
1349
1350	/* Copy the insn slot of 'p' to 'ap'. */
1351	copy_kprobe(ap, p);
1352	ret = add_new_kprobe(ap, p);
1353
1354out:
1355	mutex_unlock(&text_mutex);
1356	jump_label_unlock();
1357	cpus_read_unlock();
1358
1359	if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1360		ap->flags &= ~KPROBE_FLAG_DISABLED;
1361		if (!kprobes_all_disarmed) {
1362			/* Arm the breakpoint again. */
1363			ret = arm_kprobe(ap);
1364			if (ret) {
1365				ap->flags |= KPROBE_FLAG_DISABLED;
1366				list_del_rcu(&p->list);
1367				synchronize_rcu();
1368			}
1369		}
1370	}
1371	return ret;
1372}
1373
1374bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1375{
1376	/* The '__kprobes' functions and entry code must not be probed. */
1377	return addr >= (unsigned long)__kprobes_text_start &&
1378	       addr < (unsigned long)__kprobes_text_end;
1379}
1380
1381static bool __within_kprobe_blacklist(unsigned long addr)
1382{
1383	struct kprobe_blacklist_entry *ent;
1384
1385	if (arch_within_kprobe_blacklist(addr))
1386		return true;
1387	/*
1388	 * If 'kprobe_blacklist' is defined, check the address and
1389	 * reject any probe registration in the prohibited area.
1390	 */
1391	list_for_each_entry(ent, &kprobe_blacklist, list) {
1392		if (addr >= ent->start_addr && addr < ent->end_addr)
1393			return true;
1394	}
1395	return false;
1396}
1397
1398bool within_kprobe_blacklist(unsigned long addr)
1399{
1400	char symname[KSYM_NAME_LEN], *p;
1401
1402	if (__within_kprobe_blacklist(addr))
1403		return true;
1404
1405	/* Check if the address is on a suffixed-symbol */
1406	if (!lookup_symbol_name(addr, symname)) {
1407		p = strchr(symname, '.');
1408		if (!p)
1409			return false;
1410		*p = '\0';
1411		addr = (unsigned long)kprobe_lookup_name(symname, 0);
1412		if (addr)
1413			return __within_kprobe_blacklist(addr);
1414	}
1415	return false;
1416}
1417
1418/*
1419 * arch_adjust_kprobe_addr - adjust the address
1420 * @addr: symbol base address
1421 * @offset: offset within the symbol
1422 * @on_func_entry: was this @addr+@offset on the function entry
1423 *
1424 * Typically returns @addr + @offset, except for special cases where the
1425 * function might be prefixed by a CFI landing pad, in that case any offset
1426 * inside the landing pad is mapped to the first 'real' instruction of the
1427 * symbol.
1428 *
1429 * Specifically, for things like IBT/BTI, skip the resp. ENDBR/BTI.C
1430 * instruction at +0.
1431 */
1432kprobe_opcode_t *__weak arch_adjust_kprobe_addr(unsigned long addr,
1433						unsigned long offset,
1434						bool *on_func_entry)
1435{
1436	*on_func_entry = !offset;
1437	return (kprobe_opcode_t *)(addr + offset);
1438}
1439
1440/*
1441 * If 'symbol_name' is specified, look it up and add the 'offset'
1442 * to it. This way, we can specify a relative address to a symbol.
1443 * This returns encoded errors if it fails to look up symbol or invalid
1444 * combination of parameters.
1445 */
1446static kprobe_opcode_t *
1447_kprobe_addr(kprobe_opcode_t *addr, const char *symbol_name,
1448	     unsigned long offset, bool *on_func_entry)
1449{
1450	if ((symbol_name && addr) || (!symbol_name && !addr))
 
 
 
1451		goto invalid;
1452
1453	if (symbol_name) {
1454		/*
1455		 * Input: @sym + @offset
1456		 * Output: @addr + @offset
1457		 *
1458		 * NOTE: kprobe_lookup_name() does *NOT* fold the offset
1459		 *       argument into it's output!
1460		 */
1461		addr = kprobe_lookup_name(symbol_name, offset);
1462		if (!addr)
1463			return ERR_PTR(-ENOENT);
1464	}
1465
1466	/*
1467	 * So here we have @addr + @offset, displace it into a new
1468	 * @addr' + @offset' where @addr' is the symbol start address.
1469	 */
1470	addr = (void *)addr + offset;
1471	if (!kallsyms_lookup_size_offset((unsigned long)addr, NULL, &offset))
1472		return ERR_PTR(-ENOENT);
1473	addr = (void *)addr - offset;
1474
1475	/*
1476	 * Then ask the architecture to re-combine them, taking care of
1477	 * magical function entry details while telling us if this was indeed
1478	 * at the start of the function.
1479	 */
1480	addr = arch_adjust_kprobe_addr((unsigned long)addr, offset, on_func_entry);
1481	if (addr)
1482		return addr;
1483
1484invalid:
1485	return ERR_PTR(-EINVAL);
1486}
1487
1488static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1489{
1490	bool on_func_entry;
1491	return _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1492}
1493
1494/*
1495 * Check the 'p' is valid and return the aggregator kprobe
1496 * at the same address.
1497 */
1498static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1499{
1500	struct kprobe *ap, *list_p;
1501
1502	lockdep_assert_held(&kprobe_mutex);
1503
1504	ap = get_kprobe(p->addr);
1505	if (unlikely(!ap))
1506		return NULL;
1507
1508	if (p != ap) {
1509		list_for_each_entry(list_p, &ap->list, list)
1510			if (list_p == p)
1511			/* kprobe p is a valid probe */
1512				goto valid;
1513		return NULL;
1514	}
1515valid:
1516	return ap;
1517}
1518
1519/*
1520 * Warn and return error if the kprobe is being re-registered since
1521 * there must be a software bug.
1522 */
1523static inline int warn_kprobe_rereg(struct kprobe *p)
1524{
1525	int ret = 0;
1526
1527	mutex_lock(&kprobe_mutex);
1528	if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1529		ret = -EINVAL;
1530	mutex_unlock(&kprobe_mutex);
1531
1532	return ret;
1533}
1534
1535static int check_ftrace_location(struct kprobe *p)
1536{
1537	unsigned long addr = (unsigned long)p->addr;
1538
1539	if (ftrace_location(addr) == addr) {
1540#ifdef CONFIG_KPROBES_ON_FTRACE
1541		p->flags |= KPROBE_FLAG_FTRACE;
1542#else
1543		return -EINVAL;
1544#endif
1545	}
1546	return 0;
1547}
1548
1549static bool is_cfi_preamble_symbol(unsigned long addr)
1550{
1551	char symbuf[KSYM_NAME_LEN];
1552
1553	if (lookup_symbol_name(addr, symbuf))
1554		return false;
1555
1556	return str_has_prefix(symbuf, "__cfi_") ||
1557		str_has_prefix(symbuf, "__pfx_");
1558}
1559
1560static int check_kprobe_address_safe(struct kprobe *p,
1561				     struct module **probed_mod)
1562{
1563	int ret;
1564
1565	ret = check_ftrace_location(p);
1566	if (ret)
1567		return ret;
 
1568	jump_label_lock();
1569	preempt_disable();
 
 
 
 
 
1570
1571	/* Ensure the address is in a text area, and find a module if exists. */
1572	*probed_mod = NULL;
1573	if (!core_kernel_text((unsigned long) p->addr)) {
1574		*probed_mod = __module_text_address((unsigned long) p->addr);
1575		if (!(*probed_mod)) {
1576			ret = -EINVAL;
1577			goto out;
1578		}
1579	}
1580	/* Ensure it is not in reserved area. */
1581	if (in_gate_area_no_mm((unsigned long) p->addr) ||
1582	    within_kprobe_blacklist((unsigned long) p->addr) ||
1583	    jump_label_text_reserved(p->addr, p->addr) ||
1584	    static_call_text_reserved(p->addr, p->addr) ||
1585	    find_bug((unsigned long)p->addr) ||
1586	    is_cfi_preamble_symbol((unsigned long)p->addr)) {
1587		ret = -EINVAL;
1588		goto out;
1589	}
1590
1591	/* Get module refcount and reject __init functions for loaded modules. */
1592	if (IS_ENABLED(CONFIG_MODULES) && *probed_mod) {
 
 
 
 
 
1593		/*
1594		 * We must hold a refcount of the probed module while updating
1595		 * its code to prohibit unexpected unloading.
1596		 */
1597		if (unlikely(!try_module_get(*probed_mod))) {
1598			ret = -ENOENT;
1599			goto out;
1600		}
1601
1602		/*
1603		 * If the module freed '.init.text', we couldn't insert
1604		 * kprobes in there.
1605		 */
1606		if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1607		    !module_is_coming(*probed_mod)) {
1608			module_put(*probed_mod);
1609			*probed_mod = NULL;
1610			ret = -ENOENT;
1611		}
 
1612	}
1613
1614out:
1615	preempt_enable();
1616	jump_label_unlock();
1617
1618	return ret;
1619}
1620
1621int register_kprobe(struct kprobe *p)
1622{
1623	int ret;
1624	struct kprobe *old_p;
1625	struct module *probed_mod;
1626	kprobe_opcode_t *addr;
1627	bool on_func_entry;
1628
1629	/* Adjust probe address from symbol */
1630	addr = _kprobe_addr(p->addr, p->symbol_name, p->offset, &on_func_entry);
1631	if (IS_ERR(addr))
1632		return PTR_ERR(addr);
1633	p->addr = addr;
1634
1635	ret = warn_kprobe_rereg(p);
1636	if (ret)
1637		return ret;
1638
1639	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1640	p->flags &= KPROBE_FLAG_DISABLED;
1641	p->nmissed = 0;
1642	INIT_LIST_HEAD(&p->list);
1643
1644	ret = check_kprobe_address_safe(p, &probed_mod);
1645	if (ret)
1646		return ret;
1647
1648	mutex_lock(&kprobe_mutex);
1649
1650	if (on_func_entry)
1651		p->flags |= KPROBE_FLAG_ON_FUNC_ENTRY;
 
 
1652
1653	old_p = get_kprobe(p->addr);
1654	if (old_p) {
1655		/* Since this may unoptimize 'old_p', locking 'text_mutex'. */
1656		ret = register_aggr_kprobe(old_p, p);
1657		goto out;
1658	}
1659
1660	cpus_read_lock();
1661	/* Prevent text modification */
1662	mutex_lock(&text_mutex);
1663	ret = prepare_kprobe(p);
1664	mutex_unlock(&text_mutex);
1665	cpus_read_unlock();
1666	if (ret)
1667		goto out;
1668
1669	INIT_HLIST_NODE(&p->hlist);
1670	hlist_add_head_rcu(&p->hlist,
1671		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1672
1673	if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1674		ret = arm_kprobe(p);
1675		if (ret) {
1676			hlist_del_rcu(&p->hlist);
1677			synchronize_rcu();
1678			goto out;
1679		}
1680	}
1681
1682	/* Try to optimize kprobe */
1683	try_to_optimize_kprobe(p);
 
1684out:
 
 
 
1685	mutex_unlock(&kprobe_mutex);
1686
1687	if (probed_mod)
1688		module_put(probed_mod);
1689
1690	return ret;
 
 
 
 
 
1691}
1692EXPORT_SYMBOL_GPL(register_kprobe);
1693
1694/* Check if all probes on the 'ap' are disabled. */
1695static bool aggr_kprobe_disabled(struct kprobe *ap)
1696{
1697	struct kprobe *kp;
1698
1699	lockdep_assert_held(&kprobe_mutex);
1700
1701	list_for_each_entry(kp, &ap->list, list)
1702		if (!kprobe_disabled(kp))
1703			/*
1704			 * Since there is an active probe on the list,
1705			 * we can't disable this 'ap'.
1706			 */
1707			return false;
1708
1709	return true;
1710}
1711
1712static struct kprobe *__disable_kprobe(struct kprobe *p)
 
1713{
1714	struct kprobe *orig_p;
1715	int ret;
1716
1717	lockdep_assert_held(&kprobe_mutex);
1718
1719	/* Get an original kprobe for return */
1720	orig_p = __get_valid_kprobe(p);
1721	if (unlikely(orig_p == NULL))
1722		return ERR_PTR(-EINVAL);
1723
1724	if (kprobe_disabled(p))
1725		return orig_p;
1726
1727	/* Disable probe if it is a child probe */
1728	if (p != orig_p)
1729		p->flags |= KPROBE_FLAG_DISABLED;
 
1730
1731	/* Try to disarm and disable this/parent probe */
1732	if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1733		/*
1734		 * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1735		 * is false, 'orig_p' might not have been armed yet.
1736		 * Note arm_all_kprobes() __tries__ to arm all kprobes
1737		 * on the best effort basis.
1738		 */
1739		if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1740			ret = disarm_kprobe(orig_p, true);
1741			if (ret) {
1742				p->flags &= ~KPROBE_FLAG_DISABLED;
1743				return ERR_PTR(ret);
1744			}
1745		}
1746		orig_p->flags |= KPROBE_FLAG_DISABLED;
1747	}
1748
1749	return orig_p;
1750}
1751
1752/*
1753 * Unregister a kprobe without a scheduler synchronization.
1754 */
1755static int __unregister_kprobe_top(struct kprobe *p)
1756{
1757	struct kprobe *ap, *list_p;
1758
1759	/* Disable kprobe. This will disarm it if needed. */
1760	ap = __disable_kprobe(p);
1761	if (IS_ERR(ap))
1762		return PTR_ERR(ap);
1763
1764	if (ap == p)
1765		/*
1766		 * This probe is an independent(and non-optimized) kprobe
1767		 * (not an aggrprobe). Remove from the hash list.
1768		 */
1769		goto disarmed;
1770
1771	/* Following process expects this probe is an aggrprobe */
1772	WARN_ON(!kprobe_aggrprobe(ap));
1773
1774	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1775		/*
1776		 * !disarmed could be happen if the probe is under delayed
1777		 * unoptimizing.
1778		 */
1779		goto disarmed;
1780	else {
1781		/* If disabling probe has special handlers, update aggrprobe */
 
 
1782		if (p->post_handler && !kprobe_gone(p)) {
1783			list_for_each_entry(list_p, &ap->list, list) {
1784				if ((list_p != p) && (list_p->post_handler))
1785					goto noclean;
1786			}
1787			/*
1788			 * For the kprobe-on-ftrace case, we keep the
1789			 * post_handler setting to identify this aggrprobe
1790			 * armed with kprobe_ipmodify_ops.
1791			 */
1792			if (!kprobe_ftrace(ap))
1793				ap->post_handler = NULL;
1794		}
1795noclean:
1796		/*
1797		 * Remove from the aggrprobe: this path will do nothing in
1798		 * __unregister_kprobe_bottom().
1799		 */
1800		list_del_rcu(&p->list);
1801		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1802			/*
1803			 * Try to optimize this probe again, because post
1804			 * handler may have been changed.
1805			 */
1806			optimize_kprobe(ap);
1807	}
1808	return 0;
1809
1810disarmed:
 
1811	hlist_del_rcu(&ap->hlist);
1812	return 0;
1813}
1814
1815static void __unregister_kprobe_bottom(struct kprobe *p)
1816{
1817	struct kprobe *ap;
1818
1819	if (list_empty(&p->list))
1820		/* This is an independent kprobe */
1821		arch_remove_kprobe(p);
1822	else if (list_is_singular(&p->list)) {
1823		/* This is the last child of an aggrprobe */
1824		ap = list_entry(p->list.next, struct kprobe, list);
1825		list_del(&p->list);
1826		free_aggr_kprobe(ap);
1827	}
1828	/* Otherwise, do nothing. */
1829}
1830
1831int register_kprobes(struct kprobe **kps, int num)
1832{
1833	int i, ret = 0;
1834
1835	if (num <= 0)
1836		return -EINVAL;
1837	for (i = 0; i < num; i++) {
1838		ret = register_kprobe(kps[i]);
1839		if (ret < 0) {
1840			if (i > 0)
1841				unregister_kprobes(kps, i);
1842			break;
1843		}
1844	}
1845	return ret;
1846}
1847EXPORT_SYMBOL_GPL(register_kprobes);
1848
1849void unregister_kprobe(struct kprobe *p)
1850{
1851	unregister_kprobes(&p, 1);
1852}
1853EXPORT_SYMBOL_GPL(unregister_kprobe);
1854
1855void unregister_kprobes(struct kprobe **kps, int num)
1856{
1857	int i;
1858
1859	if (num <= 0)
1860		return;
1861	mutex_lock(&kprobe_mutex);
1862	for (i = 0; i < num; i++)
1863		if (__unregister_kprobe_top(kps[i]) < 0)
1864			kps[i]->addr = NULL;
1865	mutex_unlock(&kprobe_mutex);
1866
1867	synchronize_rcu();
1868	for (i = 0; i < num; i++)
1869		if (kps[i]->addr)
1870			__unregister_kprobe_bottom(kps[i]);
1871}
1872EXPORT_SYMBOL_GPL(unregister_kprobes);
1873
1874int __weak kprobe_exceptions_notify(struct notifier_block *self,
1875					unsigned long val, void *data)
1876{
1877	return NOTIFY_DONE;
1878}
1879NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1880
1881static struct notifier_block kprobe_exceptions_nb = {
1882	.notifier_call = kprobe_exceptions_notify,
1883	.priority = 0x7fffffff /* we need to be notified first */
1884};
1885
1886#ifdef CONFIG_KRETPROBES
1887
1888#if !defined(CONFIG_KRETPROBE_ON_RETHOOK)
1889
1890/* callbacks for objpool of kretprobe instances */
1891static int kretprobe_init_inst(void *nod, void *context)
1892{
1893	struct kretprobe_instance *ri = nod;
1894
1895	ri->rph = context;
1896	return 0;
1897}
1898static int kretprobe_fini_pool(struct objpool_head *head, void *context)
1899{
1900	kfree(context);
1901	return 0;
1902}
1903
1904static void free_rp_inst_rcu(struct rcu_head *head)
1905{
1906	struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1907	struct kretprobe_holder *rph = ri->rph;
1908
1909	objpool_drop(ri, &rph->pool);
1910}
1911NOKPROBE_SYMBOL(free_rp_inst_rcu);
1912
1913static void recycle_rp_inst(struct kretprobe_instance *ri)
1914{
1915	struct kretprobe *rp = get_kretprobe(ri);
1916
1917	if (likely(rp))
1918		objpool_push(ri, &rp->rph->pool);
1919	else
1920		call_rcu(&ri->rcu, free_rp_inst_rcu);
1921}
1922NOKPROBE_SYMBOL(recycle_rp_inst);
1923
1924/*
1925 * This function is called from delayed_put_task_struct() when a task is
1926 * dead and cleaned up to recycle any kretprobe instances associated with
1927 * this task. These left over instances represent probed functions that
1928 * have been called but will never return.
1929 */
1930void kprobe_flush_task(struct task_struct *tk)
1931{
1932	struct kretprobe_instance *ri;
1933	struct llist_node *node;
1934
1935	/* Early boot, not yet initialized. */
1936	if (unlikely(!kprobes_initialized))
1937		return;
1938
1939	kprobe_busy_begin();
1940
1941	node = __llist_del_all(&tk->kretprobe_instances);
1942	while (node) {
1943		ri = container_of(node, struct kretprobe_instance, llist);
1944		node = node->next;
1945
1946		recycle_rp_inst(ri);
1947	}
1948
1949	kprobe_busy_end();
1950}
1951NOKPROBE_SYMBOL(kprobe_flush_task);
1952
1953static inline void free_rp_inst(struct kretprobe *rp)
1954{
1955	struct kretprobe_holder *rph = rp->rph;
1956
1957	if (!rph)
1958		return;
1959	rp->rph = NULL;
1960	objpool_fini(&rph->pool);
1961}
1962
1963/* This assumes the 'tsk' is the current task or the is not running. */
1964static kprobe_opcode_t *__kretprobe_find_ret_addr(struct task_struct *tsk,
1965						  struct llist_node **cur)
1966{
1967	struct kretprobe_instance *ri = NULL;
1968	struct llist_node *node = *cur;
1969
1970	if (!node)
1971		node = tsk->kretprobe_instances.first;
1972	else
1973		node = node->next;
 
 
 
 
 
 
 
 
 
 
 
1974
1975	while (node) {
1976		ri = container_of(node, struct kretprobe_instance, llist);
1977		if (ri->ret_addr != kretprobe_trampoline_addr()) {
1978			*cur = node;
1979			return ri->ret_addr;
1980		}
1981		node = node->next;
1982	}
1983	return NULL;
1984}
1985NOKPROBE_SYMBOL(__kretprobe_find_ret_addr);
1986
1987/**
1988 * kretprobe_find_ret_addr -- Find correct return address modified by kretprobe
1989 * @tsk: Target task
1990 * @fp: A frame pointer
1991 * @cur: a storage of the loop cursor llist_node pointer for next call
1992 *
1993 * Find the correct return address modified by a kretprobe on @tsk in unsigned
1994 * long type. If it finds the return address, this returns that address value,
1995 * or this returns 0.
1996 * The @tsk must be 'current' or a task which is not running. @fp is a hint
1997 * to get the currect return address - which is compared with the
1998 * kretprobe_instance::fp field. The @cur is a loop cursor for searching the
1999 * kretprobe return addresses on the @tsk. The '*@cur' should be NULL at the
2000 * first call, but '@cur' itself must NOT NULL.
2001 */
2002unsigned long kretprobe_find_ret_addr(struct task_struct *tsk, void *fp,
2003				      struct llist_node **cur)
2004{
2005	struct kretprobe_instance *ri;
2006	kprobe_opcode_t *ret;
2007
2008	if (WARN_ON_ONCE(!cur))
2009		return 0;
2010
2011	do {
2012		ret = __kretprobe_find_ret_addr(tsk, cur);
2013		if (!ret)
2014			break;
2015		ri = container_of(*cur, struct kretprobe_instance, llist);
2016	} while (ri->fp != fp);
2017
2018	return (unsigned long)ret;
2019}
2020NOKPROBE_SYMBOL(kretprobe_find_ret_addr);
2021
2022void __weak arch_kretprobe_fixup_return(struct pt_regs *regs,
2023					kprobe_opcode_t *correct_ret_addr)
2024{
2025	/*
2026	 * Do nothing by default. Please fill this to update the fake return
2027	 * address on the stack with the correct one on each arch if possible.
2028	 */
2029}
 
2030
2031unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
2032					     void *frame_pointer)
2033{
2034	struct kretprobe_instance *ri = NULL;
2035	struct llist_node *first, *node = NULL;
2036	kprobe_opcode_t *correct_ret_addr;
2037	struct kretprobe *rp;
2038
2039	/* Find correct address and all nodes for this frame. */
2040	correct_ret_addr = __kretprobe_find_ret_addr(current, &node);
2041	if (!correct_ret_addr) {
2042		pr_err("kretprobe: Return address not found, not execute handler. Maybe there is a bug in the kernel.\n");
2043		BUG_ON(1);
2044	}
2045
2046	/*
2047	 * Set the return address as the instruction pointer, because if the
2048	 * user handler calls stack_trace_save_regs() with this 'regs',
2049	 * the stack trace will start from the instruction pointer.
2050	 */
2051	instruction_pointer_set(regs, (unsigned long)correct_ret_addr);
2052
2053	/* Run the user handler of the nodes. */
2054	first = current->kretprobe_instances.first;
2055	while (first) {
2056		ri = container_of(first, struct kretprobe_instance, llist);
2057
2058		if (WARN_ON_ONCE(ri->fp != frame_pointer))
2059			break;
2060
2061		rp = get_kretprobe(ri);
2062		if (rp && rp->handler) {
2063			struct kprobe *prev = kprobe_running();
2064
2065			__this_cpu_write(current_kprobe, &rp->kp);
2066			ri->ret_addr = correct_ret_addr;
2067			rp->handler(ri, regs);
2068			__this_cpu_write(current_kprobe, prev);
2069		}
2070		if (first == node)
2071			break;
2072
2073		first = first->next;
2074	}
2075
2076	arch_kretprobe_fixup_return(regs, correct_ret_addr);
2077
2078	/* Unlink all nodes for this frame. */
2079	first = current->kretprobe_instances.first;
2080	current->kretprobe_instances.first = node->next;
2081	node->next = NULL;
2082
2083	/* Recycle free instances. */
2084	while (first) {
2085		ri = container_of(first, struct kretprobe_instance, llist);
2086		first = first->next;
 
 
 
2087
2088		recycle_rp_inst(ri);
 
 
 
2089	}
2090
2091	return (unsigned long)correct_ret_addr;
2092}
2093NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
2094
 
2095/*
2096 * This kprobe pre_handler is registered with every kretprobe. When probe
2097 * hits it will set up the return probe.
2098 */
2099static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
2100{
2101	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2102	struct kretprobe_holder *rph = rp->rph;
2103	struct kretprobe_instance *ri;
2104
2105	ri = objpool_pop(&rph->pool);
2106	if (!ri) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107		rp->nmissed++;
2108		return 0;
2109	}
2110
2111	if (rp->entry_handler && rp->entry_handler(ri, regs)) {
2112		objpool_push(ri, &rph->pool);
2113		return 0;
2114	}
2115
2116	arch_prepare_kretprobe(ri, regs);
2117
2118	__llist_add(&ri->llist, &current->kretprobe_instances);
2119
2120	return 0;
2121}
2122NOKPROBE_SYMBOL(pre_handler_kretprobe);
2123#else /* CONFIG_KRETPROBE_ON_RETHOOK */
2124/*
2125 * This kprobe pre_handler is registered with every kretprobe. When probe
2126 * hits it will set up the return probe.
2127 */
2128static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2129{
2130	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
2131	struct kretprobe_instance *ri;
2132	struct rethook_node *rhn;
2133
2134	rhn = rethook_try_get(rp->rh);
2135	if (!rhn) {
2136		rp->nmissed++;
2137		return 0;
2138	}
2139
2140	ri = container_of(rhn, struct kretprobe_instance, node);
2141
2142	if (rp->entry_handler && rp->entry_handler(ri, regs))
2143		rethook_recycle(rhn);
2144	else
2145		rethook_hook(rhn, regs, kprobe_ftrace(p));
2146
2147	return 0;
2148}
2149NOKPROBE_SYMBOL(pre_handler_kretprobe);
2150
2151static void kretprobe_rethook_handler(struct rethook_node *rh, void *data,
2152				      unsigned long ret_addr,
2153				      struct pt_regs *regs)
2154{
2155	struct kretprobe *rp = (struct kretprobe *)data;
2156	struct kretprobe_instance *ri;
2157	struct kprobe_ctlblk *kcb;
2158
2159	/* The data must NOT be null. This means rethook data structure is broken. */
2160	if (WARN_ON_ONCE(!data) || !rp->handler)
2161		return;
2162
2163	__this_cpu_write(current_kprobe, &rp->kp);
2164	kcb = get_kprobe_ctlblk();
2165	kcb->kprobe_status = KPROBE_HIT_ACTIVE;
2166
2167	ri = container_of(rh, struct kretprobe_instance, node);
2168	rp->handler(ri, regs);
2169
2170	__this_cpu_write(current_kprobe, NULL);
2171}
2172NOKPROBE_SYMBOL(kretprobe_rethook_handler);
2173
2174#endif /* !CONFIG_KRETPROBE_ON_RETHOOK */
2175
2176/**
2177 * kprobe_on_func_entry() -- check whether given address is function entry
2178 * @addr: Target address
2179 * @sym:  Target symbol name
2180 * @offset: The offset from the symbol or the address
2181 *
2182 * This checks whether the given @addr+@offset or @sym+@offset is on the
2183 * function entry address or not.
2184 * This returns 0 if it is the function entry, or -EINVAL if it is not.
2185 * And also it returns -ENOENT if it fails the symbol or address lookup.
2186 * Caller must pass @addr or @sym (either one must be NULL), or this
2187 * returns -EINVAL.
2188 */
2189int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
2190{
2191	bool on_func_entry;
2192	kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset, &on_func_entry);
2193
2194	if (IS_ERR(kp_addr))
2195		return PTR_ERR(kp_addr);
2196
2197	if (!on_func_entry)
2198		return -EINVAL;
2199
2200	return 0;
2201}
2202
2203int register_kretprobe(struct kretprobe *rp)
2204{
2205	int ret;
2206	int i;
2207	void *addr;
2208
2209	ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2210	if (ret)
2211		return ret;
2212
2213	/* If only 'rp->kp.addr' is specified, check reregistering kprobes */
2214	if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2215		return -EINVAL;
2216
2217	if (kretprobe_blacklist_size) {
2218		addr = kprobe_addr(&rp->kp);
2219		if (IS_ERR(addr))
2220			return PTR_ERR(addr);
2221
2222		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2223			if (kretprobe_blacklist[i].addr == addr)
2224				return -EINVAL;
2225		}
2226	}
2227
2228	if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2229		return -E2BIG;
2230
2231	rp->kp.pre_handler = pre_handler_kretprobe;
2232	rp->kp.post_handler = NULL;
 
 
2233
2234	/* Pre-allocate memory for max kretprobe instances */
2235	if (rp->maxactive <= 0)
 
2236		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2237
2238#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2239	rp->rh = rethook_alloc((void *)rp, kretprobe_rethook_handler,
2240				sizeof(struct kretprobe_instance) +
2241				rp->data_size, rp->maxactive);
2242	if (IS_ERR(rp->rh))
2243		return PTR_ERR(rp->rh);
2244
2245	rp->nmissed = 0;
2246	/* Establish function entry probe point */
2247	ret = register_kprobe(&rp->kp);
2248	if (ret != 0) {
2249		rethook_free(rp->rh);
2250		rp->rh = NULL;
2251	}
2252#else	/* !CONFIG_KRETPROBE_ON_RETHOOK */
2253	rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2254	if (!rp->rph)
2255		return -ENOMEM;
2256
2257	if (objpool_init(&rp->rph->pool, rp->maxactive, rp->data_size +
2258			sizeof(struct kretprobe_instance), GFP_KERNEL,
2259			rp->rph, kretprobe_init_inst, kretprobe_fini_pool)) {
2260		kfree(rp->rph);
2261		rp->rph = NULL;
2262		return -ENOMEM;
2263	}
2264	rcu_assign_pointer(rp->rph->rp, rp);
2265	rp->nmissed = 0;
2266	/* Establish function entry probe point */
2267	ret = register_kprobe(&rp->kp);
2268	if (ret != 0)
2269		free_rp_inst(rp);
2270#endif
2271	return ret;
2272}
2273EXPORT_SYMBOL_GPL(register_kretprobe);
2274
2275int register_kretprobes(struct kretprobe **rps, int num)
2276{
2277	int ret = 0, i;
2278
2279	if (num <= 0)
2280		return -EINVAL;
2281	for (i = 0; i < num; i++) {
2282		ret = register_kretprobe(rps[i]);
2283		if (ret < 0) {
2284			if (i > 0)
2285				unregister_kretprobes(rps, i);
2286			break;
2287		}
2288	}
2289	return ret;
2290}
2291EXPORT_SYMBOL_GPL(register_kretprobes);
2292
2293void unregister_kretprobe(struct kretprobe *rp)
2294{
2295	unregister_kretprobes(&rp, 1);
2296}
2297EXPORT_SYMBOL_GPL(unregister_kretprobe);
2298
2299void unregister_kretprobes(struct kretprobe **rps, int num)
2300{
2301	int i;
2302
2303	if (num <= 0)
2304		return;
2305	mutex_lock(&kprobe_mutex);
2306	for (i = 0; i < num; i++) {
2307		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2308			rps[i]->kp.addr = NULL;
2309#ifdef CONFIG_KRETPROBE_ON_RETHOOK
2310		rethook_free(rps[i]->rh);
2311#else
2312		rcu_assign_pointer(rps[i]->rph->rp, NULL);
2313#endif
2314	}
2315	mutex_unlock(&kprobe_mutex);
2316
2317	synchronize_rcu();
2318	for (i = 0; i < num; i++) {
2319		if (rps[i]->kp.addr) {
2320			__unregister_kprobe_bottom(&rps[i]->kp);
2321#ifndef CONFIG_KRETPROBE_ON_RETHOOK
2322			free_rp_inst(rps[i]);
2323#endif
2324		}
2325	}
2326}
2327EXPORT_SYMBOL_GPL(unregister_kretprobes);
2328
2329#else /* CONFIG_KRETPROBES */
2330int register_kretprobe(struct kretprobe *rp)
2331{
2332	return -EOPNOTSUPP;
2333}
2334EXPORT_SYMBOL_GPL(register_kretprobe);
2335
2336int register_kretprobes(struct kretprobe **rps, int num)
2337{
2338	return -EOPNOTSUPP;
2339}
2340EXPORT_SYMBOL_GPL(register_kretprobes);
2341
2342void unregister_kretprobe(struct kretprobe *rp)
2343{
2344}
2345EXPORT_SYMBOL_GPL(unregister_kretprobe);
2346
2347void unregister_kretprobes(struct kretprobe **rps, int num)
2348{
2349}
2350EXPORT_SYMBOL_GPL(unregister_kretprobes);
2351
2352static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
 
2353{
2354	return 0;
2355}
2356NOKPROBE_SYMBOL(pre_handler_kretprobe);
2357
2358#endif /* CONFIG_KRETPROBES */
2359
2360/* Set the kprobe gone and remove its instruction buffer. */
2361static void kill_kprobe(struct kprobe *p)
2362{
2363	struct kprobe *kp;
2364
2365	lockdep_assert_held(&kprobe_mutex);
2366
2367	/*
2368	 * The module is going away. We should disarm the kprobe which
2369	 * is using ftrace, because ftrace framework is still available at
2370	 * 'MODULE_STATE_GOING' notification.
2371	 */
2372	if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2373		disarm_kprobe_ftrace(p);
2374
2375	p->flags |= KPROBE_FLAG_GONE;
2376	if (kprobe_aggrprobe(p)) {
2377		/*
2378		 * If this is an aggr_kprobe, we have to list all the
2379		 * chained probes and mark them GONE.
2380		 */
2381		list_for_each_entry(kp, &p->list, list)
2382			kp->flags |= KPROBE_FLAG_GONE;
2383		p->post_handler = NULL;
 
2384		kill_optimized_kprobe(p);
2385	}
2386	/*
2387	 * Here, we can remove insn_slot safely, because no thread calls
2388	 * the original probed function (which will be freed soon) any more.
2389	 */
2390	arch_remove_kprobe(p);
2391}
2392
2393/* Disable one kprobe */
2394int disable_kprobe(struct kprobe *kp)
2395{
2396	int ret = 0;
2397	struct kprobe *p;
2398
2399	mutex_lock(&kprobe_mutex);
2400
2401	/* Disable this kprobe */
2402	p = __disable_kprobe(kp);
2403	if (IS_ERR(p))
2404		ret = PTR_ERR(p);
2405
2406	mutex_unlock(&kprobe_mutex);
2407	return ret;
2408}
2409EXPORT_SYMBOL_GPL(disable_kprobe);
2410
2411/* Enable one kprobe */
2412int enable_kprobe(struct kprobe *kp)
2413{
2414	int ret = 0;
2415	struct kprobe *p;
2416
2417	mutex_lock(&kprobe_mutex);
2418
2419	/* Check whether specified probe is valid. */
2420	p = __get_valid_kprobe(kp);
2421	if (unlikely(p == NULL)) {
2422		ret = -EINVAL;
2423		goto out;
2424	}
2425
2426	if (kprobe_gone(kp)) {
2427		/* This kprobe has gone, we couldn't enable it. */
2428		ret = -EINVAL;
2429		goto out;
2430	}
2431
2432	if (p != kp)
2433		kp->flags &= ~KPROBE_FLAG_DISABLED;
2434
2435	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2436		p->flags &= ~KPROBE_FLAG_DISABLED;
2437		ret = arm_kprobe(p);
2438		if (ret) {
2439			p->flags |= KPROBE_FLAG_DISABLED;
2440			if (p != kp)
2441				kp->flags |= KPROBE_FLAG_DISABLED;
2442		}
2443	}
2444out:
2445	mutex_unlock(&kprobe_mutex);
2446	return ret;
2447}
2448EXPORT_SYMBOL_GPL(enable_kprobe);
2449
2450/* Caller must NOT call this in usual path. This is only for critical case */
2451void dump_kprobe(struct kprobe *kp)
2452{
2453	pr_err("Dump kprobe:\n.symbol_name = %s, .offset = %x, .addr = %pS\n",
2454	       kp->symbol_name, kp->offset, kp->addr);
2455}
2456NOKPROBE_SYMBOL(dump_kprobe);
2457
2458int kprobe_add_ksym_blacklist(unsigned long entry)
2459{
2460	struct kprobe_blacklist_entry *ent;
2461	unsigned long offset = 0, size = 0;
2462
2463	if (!kernel_text_address(entry) ||
2464	    !kallsyms_lookup_size_offset(entry, &size, &offset))
2465		return -EINVAL;
2466
2467	ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2468	if (!ent)
2469		return -ENOMEM;
2470	ent->start_addr = entry;
2471	ent->end_addr = entry + size;
2472	INIT_LIST_HEAD(&ent->list);
2473	list_add_tail(&ent->list, &kprobe_blacklist);
2474
2475	return (int)size;
2476}
2477
2478/* Add all symbols in given area into kprobe blacklist */
2479int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2480{
2481	unsigned long entry;
2482	int ret = 0;
2483
2484	for (entry = start; entry < end; entry += ret) {
2485		ret = kprobe_add_ksym_blacklist(entry);
2486		if (ret < 0)
2487			return ret;
2488		if (ret == 0)	/* In case of alias symbol */
2489			ret = 1;
2490	}
2491	return 0;
2492}
2493
2494int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2495				   char *type, char *sym)
2496{
2497	return -ERANGE;
2498}
2499
2500int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2501		       char *sym)
2502{
2503#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2504	if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2505		return 0;
2506#ifdef CONFIG_OPTPROBES
2507	if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2508		return 0;
2509#endif
2510#endif
2511	if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2512		return 0;
2513	return -ERANGE;
2514}
2515
2516int __init __weak arch_populate_kprobe_blacklist(void)
2517{
2518	return 0;
2519}
2520
2521/*
2522 * Lookup and populate the kprobe_blacklist.
2523 *
2524 * Unlike the kretprobe blacklist, we'll need to determine
2525 * the range of addresses that belong to the said functions,
2526 * since a kprobe need not necessarily be at the beginning
2527 * of a function.
2528 */
2529static int __init populate_kprobe_blacklist(unsigned long *start,
2530					     unsigned long *end)
2531{
2532	unsigned long entry;
2533	unsigned long *iter;
2534	int ret;
2535
2536	for (iter = start; iter < end; iter++) {
2537		entry = (unsigned long)dereference_symbol_descriptor((void *)*iter);
2538		ret = kprobe_add_ksym_blacklist(entry);
2539		if (ret == -EINVAL)
2540			continue;
2541		if (ret < 0)
2542			return ret;
2543	}
2544
2545	/* Symbols in '__kprobes_text' are blacklisted */
2546	ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2547					(unsigned long)__kprobes_text_end);
2548	if (ret)
2549		return ret;
2550
2551	/* Symbols in 'noinstr' section are blacklisted */
2552	ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2553					(unsigned long)__noinstr_text_end);
2554
2555	return ret ? : arch_populate_kprobe_blacklist();
2556}
2557
2558#ifdef CONFIG_MODULES
2559/* Remove all symbols in given area from kprobe blacklist */
2560static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2561{
2562	struct kprobe_blacklist_entry *ent, *n;
2563
2564	list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2565		if (ent->start_addr < start || ent->start_addr >= end)
2566			continue;
2567		list_del(&ent->list);
2568		kfree(ent);
2569	}
2570}
2571
2572static void kprobe_remove_ksym_blacklist(unsigned long entry)
2573{
2574	kprobe_remove_area_blacklist(entry, entry + 1);
2575}
2576
2577static void add_module_kprobe_blacklist(struct module *mod)
2578{
2579	unsigned long start, end;
2580	int i;
2581
2582	if (mod->kprobe_blacklist) {
2583		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2584			kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2585	}
2586
2587	start = (unsigned long)mod->kprobes_text_start;
2588	if (start) {
2589		end = start + mod->kprobes_text_size;
2590		kprobe_add_area_blacklist(start, end);
2591	}
2592
2593	start = (unsigned long)mod->noinstr_text_start;
2594	if (start) {
2595		end = start + mod->noinstr_text_size;
2596		kprobe_add_area_blacklist(start, end);
2597	}
2598}
2599
2600static void remove_module_kprobe_blacklist(struct module *mod)
2601{
2602	unsigned long start, end;
2603	int i;
2604
2605	if (mod->kprobe_blacklist) {
2606		for (i = 0; i < mod->num_kprobe_blacklist; i++)
2607			kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2608	}
2609
2610	start = (unsigned long)mod->kprobes_text_start;
2611	if (start) {
2612		end = start + mod->kprobes_text_size;
2613		kprobe_remove_area_blacklist(start, end);
2614	}
2615
2616	start = (unsigned long)mod->noinstr_text_start;
2617	if (start) {
2618		end = start + mod->noinstr_text_size;
2619		kprobe_remove_area_blacklist(start, end);
2620	}
2621}
2622
2623/* Module notifier call back, checking kprobes on the module */
2624static int kprobes_module_callback(struct notifier_block *nb,
2625				   unsigned long val, void *data)
2626{
2627	struct module *mod = data;
2628	struct hlist_head *head;
 
2629	struct kprobe *p;
2630	unsigned int i;
2631	int checkcore = (val == MODULE_STATE_GOING);
2632
2633	if (val == MODULE_STATE_COMING) {
2634		mutex_lock(&kprobe_mutex);
2635		add_module_kprobe_blacklist(mod);
2636		mutex_unlock(&kprobe_mutex);
2637	}
2638	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2639		return NOTIFY_DONE;
2640
2641	/*
2642	 * When 'MODULE_STATE_GOING' was notified, both of module '.text' and
2643	 * '.init.text' sections would be freed. When 'MODULE_STATE_LIVE' was
2644	 * notified, only '.init.text' section would be freed. We need to
2645	 * disable kprobes which have been inserted in the sections.
2646	 */
2647	mutex_lock(&kprobe_mutex);
2648	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2649		head = &kprobe_table[i];
2650		hlist_for_each_entry(p, head, hlist)
2651			if (within_module_init((unsigned long)p->addr, mod) ||
2652			    (checkcore &&
2653			     within_module_core((unsigned long)p->addr, mod))) {
2654				/*
2655				 * The vaddr this probe is installed will soon
2656				 * be vfreed buy not synced to disk. Hence,
2657				 * disarming the breakpoint isn't needed.
2658				 *
2659				 * Note, this will also move any optimized probes
2660				 * that are pending to be removed from their
2661				 * corresponding lists to the 'freeing_list' and
2662				 * will not be touched by the delayed
2663				 * kprobe_optimizer() work handler.
2664				 */
2665				kill_kprobe(p);
2666			}
2667	}
2668	if (val == MODULE_STATE_GOING)
2669		remove_module_kprobe_blacklist(mod);
2670	mutex_unlock(&kprobe_mutex);
2671	return NOTIFY_DONE;
2672}
2673
2674static struct notifier_block kprobe_module_nb = {
2675	.notifier_call = kprobes_module_callback,
2676	.priority = 0
2677};
2678
2679static int kprobe_register_module_notifier(void)
2680{
2681	return register_module_notifier(&kprobe_module_nb);
2682}
2683#else
2684static int kprobe_register_module_notifier(void)
2685{
2686	return 0;
2687}
2688#endif /* CONFIG_MODULES */
2689
2690void kprobe_free_init_mem(void)
2691{
2692	void *start = (void *)(&__init_begin);
2693	void *end = (void *)(&__init_end);
2694	struct hlist_head *head;
2695	struct kprobe *p;
2696	int i;
2697
2698	mutex_lock(&kprobe_mutex);
2699
2700	/* Kill all kprobes on initmem because the target code has been freed. */
2701	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2702		head = &kprobe_table[i];
2703		hlist_for_each_entry(p, head, hlist) {
2704			if (start <= (void *)p->addr && (void *)p->addr < end)
2705				kill_kprobe(p);
2706		}
2707	}
2708
2709	mutex_unlock(&kprobe_mutex);
2710}
2711
2712static int __init init_kprobes(void)
2713{
2714	int i, err;
 
 
 
 
 
2715
2716	/* FIXME allocate the probe table, currently defined statically */
2717	/* initialize all list heads */
2718	for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2719		INIT_HLIST_HEAD(&kprobe_table[i]);
 
 
 
2720
2721	err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2722					__stop_kprobe_blacklist);
2723	if (err)
2724		pr_err("Failed to populate blacklist (error %d), kprobes not restricted, be careful using them!\n", err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2725
2726	if (kretprobe_blacklist_size) {
2727		/* lookup the function address from its name */
2728		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2729			kretprobe_blacklist[i].addr =
2730				kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2731			if (!kretprobe_blacklist[i].addr)
2732				pr_err("Failed to lookup symbol '%s' for kretprobe blacklist. Maybe the target function is removed or renamed.\n",
2733				       kretprobe_blacklist[i].name);
2734		}
2735	}
2736
2737	/* By default, kprobes are armed */
2738	kprobes_all_disarmed = false;
2739
2740#if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2741	/* Init 'kprobe_optinsn_slots' for allocation */
2742	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2743#endif
 
 
 
 
 
 
2744
2745	err = arch_init_kprobes();
2746	if (!err)
2747		err = register_die_notifier(&kprobe_exceptions_nb);
2748	if (!err)
2749		err = kprobe_register_module_notifier();
2750
2751	kprobes_initialized = (err == 0);
2752	kprobe_sysctls_init();
2753	return err;
2754}
2755early_initcall(init_kprobes);
2756
2757#if defined(CONFIG_OPTPROBES)
2758static int __init init_optprobes(void)
2759{
2760	/*
2761	 * Enable kprobe optimization - this kicks the optimizer which
2762	 * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2763	 * not spawned in early initcall. So delay the optimization.
2764	 */
2765	optimize_all_kprobes();
2766
2767	return 0;
2768}
2769subsys_initcall(init_optprobes);
2770#endif
2771
2772#ifdef CONFIG_DEBUG_FS
2773static void report_probe(struct seq_file *pi, struct kprobe *p,
2774		const char *sym, int offset, char *modname, struct kprobe *pp)
2775{
2776	char *kprobe_type;
2777	void *addr = p->addr;
2778
2779	if (p->pre_handler == pre_handler_kretprobe)
2780		kprobe_type = "r";
 
 
2781	else
2782		kprobe_type = "k";
2783
2784	if (!kallsyms_show_value(pi->file->f_cred))
2785		addr = NULL;
2786
2787	if (sym)
2788		seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2789			addr, kprobe_type, sym, offset,
2790			(modname ? modname : " "));
2791	else	/* try to use %pS */
2792		seq_printf(pi, "%px  %s  %pS ",
2793			addr, kprobe_type, p->addr);
2794
2795	if (!pp)
2796		pp = p;
2797	seq_printf(pi, "%s%s%s%s\n",
2798		(kprobe_gone(p) ? "[GONE]" : ""),
2799		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2800		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2801		(kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2802}
2803
2804static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2805{
2806	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2807}
2808
2809static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2810{
2811	(*pos)++;
2812	if (*pos >= KPROBE_TABLE_SIZE)
2813		return NULL;
2814	return pos;
2815}
2816
2817static void kprobe_seq_stop(struct seq_file *f, void *v)
2818{
2819	/* Nothing to do */
2820}
2821
2822static int show_kprobe_addr(struct seq_file *pi, void *v)
2823{
2824	struct hlist_head *head;
 
2825	struct kprobe *p, *kp;
2826	const char *sym;
2827	unsigned int i = *(loff_t *) v;
2828	unsigned long offset = 0;
2829	char *modname, namebuf[KSYM_NAME_LEN];
2830
2831	head = &kprobe_table[i];
2832	preempt_disable();
2833	hlist_for_each_entry_rcu(p, head, hlist) {
2834		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2835					&offset, &modname, namebuf);
2836		if (kprobe_aggrprobe(p)) {
2837			list_for_each_entry_rcu(kp, &p->list, list)
2838				report_probe(pi, kp, sym, offset, modname, p);
2839		} else
2840			report_probe(pi, p, sym, offset, modname, NULL);
2841	}
2842	preempt_enable();
2843	return 0;
2844}
2845
2846static const struct seq_operations kprobes_sops = {
2847	.start = kprobe_seq_start,
2848	.next  = kprobe_seq_next,
2849	.stop  = kprobe_seq_stop,
2850	.show  = show_kprobe_addr
2851};
2852
2853DEFINE_SEQ_ATTRIBUTE(kprobes);
2854
2855/* kprobes/blacklist -- shows which functions can not be probed */
2856static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2857{
2858	mutex_lock(&kprobe_mutex);
2859	return seq_list_start(&kprobe_blacklist, *pos);
2860}
2861
2862static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2863{
2864	return seq_list_next(v, &kprobe_blacklist, pos);
2865}
2866
2867static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2868{
2869	struct kprobe_blacklist_entry *ent =
2870		list_entry(v, struct kprobe_blacklist_entry, list);
2871
2872	/*
2873	 * If '/proc/kallsyms' is not showing kernel address, we won't
2874	 * show them here either.
2875	 */
2876	if (!kallsyms_show_value(m->file->f_cred))
2877		seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2878			   (void *)ent->start_addr);
2879	else
2880		seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2881			   (void *)ent->end_addr, (void *)ent->start_addr);
2882	return 0;
2883}
2884
2885static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2886{
2887	mutex_unlock(&kprobe_mutex);
2888}
2889
2890static const struct seq_operations kprobe_blacklist_sops = {
2891	.start = kprobe_blacklist_seq_start,
2892	.next  = kprobe_blacklist_seq_next,
2893	.stop  = kprobe_blacklist_seq_stop,
2894	.show  = kprobe_blacklist_seq_show,
2895};
2896DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2897
2898static int arm_all_kprobes(void)
2899{
2900	struct hlist_head *head;
 
2901	struct kprobe *p;
2902	unsigned int i, total = 0, errors = 0;
2903	int err, ret = 0;
2904
2905	mutex_lock(&kprobe_mutex);
2906
2907	/* If kprobes are armed, just return */
2908	if (!kprobes_all_disarmed)
2909		goto already_enabled;
2910
2911	/*
2912	 * optimize_kprobe() called by arm_kprobe() checks
2913	 * kprobes_all_disarmed, so set kprobes_all_disarmed before
2914	 * arm_kprobe.
2915	 */
2916	kprobes_all_disarmed = false;
2917	/* Arming kprobes doesn't optimize kprobe itself */
 
2918	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2919		head = &kprobe_table[i];
2920		/* Arm all kprobes on a best-effort basis */
2921		hlist_for_each_entry(p, head, hlist) {
2922			if (!kprobe_disabled(p)) {
2923				err = arm_kprobe(p);
2924				if (err)  {
2925					errors++;
2926					ret = err;
2927				}
2928				total++;
2929			}
2930		}
2931	}
 
2932
2933	if (errors)
2934		pr_warn("Kprobes globally enabled, but failed to enable %d out of %d probes. Please check which kprobes are kept disabled via debugfs.\n",
2935			errors, total);
2936	else
2937		pr_info("Kprobes globally enabled\n");
2938
2939already_enabled:
2940	mutex_unlock(&kprobe_mutex);
2941	return ret;
2942}
2943
2944static int disarm_all_kprobes(void)
2945{
2946	struct hlist_head *head;
 
2947	struct kprobe *p;
2948	unsigned int i, total = 0, errors = 0;
2949	int err, ret = 0;
2950
2951	mutex_lock(&kprobe_mutex);
2952
2953	/* If kprobes are already disarmed, just return */
2954	if (kprobes_all_disarmed) {
2955		mutex_unlock(&kprobe_mutex);
2956		return 0;
2957	}
2958
2959	kprobes_all_disarmed = true;
 
2960
 
2961	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2962		head = &kprobe_table[i];
2963		/* Disarm all kprobes on a best-effort basis */
2964		hlist_for_each_entry(p, head, hlist) {
2965			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2966				err = disarm_kprobe(p, false);
2967				if (err) {
2968					errors++;
2969					ret = err;
2970				}
2971				total++;
2972			}
2973		}
2974	}
2975
2976	if (errors)
2977		pr_warn("Kprobes globally disabled, but failed to disable %d out of %d probes. Please check which kprobes are kept enabled via debugfs.\n",
2978			errors, total);
2979	else
2980		pr_info("Kprobes globally disabled\n");
2981
2982	mutex_unlock(&kprobe_mutex);
2983
2984	/* Wait for disarming all kprobes by optimizer */
2985	wait_for_kprobe_optimizer();
2986
2987	return ret;
2988}
2989
2990/*
2991 * XXX: The debugfs bool file interface doesn't allow for callbacks
2992 * when the bool state is switched. We can reuse that facility when
2993 * available
2994 */
2995static ssize_t read_enabled_file_bool(struct file *file,
2996	       char __user *user_buf, size_t count, loff_t *ppos)
2997{
2998	char buf[3];
2999
3000	if (!kprobes_all_disarmed)
3001		buf[0] = '1';
3002	else
3003		buf[0] = '0';
3004	buf[1] = '\n';
3005	buf[2] = 0x00;
3006	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
3007}
3008
3009static ssize_t write_enabled_file_bool(struct file *file,
3010	       const char __user *user_buf, size_t count, loff_t *ppos)
3011{
3012	bool enable;
3013	int ret;
3014
3015	ret = kstrtobool_from_user(user_buf, count, &enable);
3016	if (ret)
3017		return ret;
3018
3019	ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
3020	if (ret)
3021		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
3022
3023	return count;
3024}
3025
3026static const struct file_operations fops_kp = {
3027	.read =         read_enabled_file_bool,
3028	.write =        write_enabled_file_bool,
3029	.llseek =	default_llseek,
3030};
3031
3032static int __init debugfs_kprobe_init(void)
3033{
3034	struct dentry *dir;
 
3035
3036	dir = debugfs_create_dir("kprobes", NULL);
 
 
3037
3038	debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
3039
3040	debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
 
 
 
3041
3042	debugfs_create_file("blacklist", 0400, dir, NULL,
3043			    &kprobe_blacklist_fops);
 
 
 
 
3044
3045	return 0;
3046}
3047
3048late_initcall(debugfs_kprobe_init);
3049#endif /* CONFIG_DEBUG_FS */
v3.1
 
   1/*
   2 *  Kernel Probes (KProbes)
   3 *  kernel/kprobes.c
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  18 *
  19 * Copyright (C) IBM Corporation, 2002, 2004
  20 *
  21 * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
  22 *		Probes initial implementation (includes suggestions from
  23 *		Rusty Russell).
  24 * 2004-Aug	Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
  25 *		hlists and exceptions notifier as suggested by Andi Kleen.
  26 * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
  27 *		interface to access function arguments.
  28 * 2004-Sep	Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
  29 *		exceptions notifier to be first on the priority list.
  30 * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston
  31 *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi
  32 *		<prasanna@in.ibm.com> added function-return probes.
  33 */
 
 
 
  34#include <linux/kprobes.h>
  35#include <linux/hash.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/stddef.h>
  39#include <linux/module.h>
  40#include <linux/moduleloader.h>
  41#include <linux/kallsyms.h>
  42#include <linux/freezer.h>
  43#include <linux/seq_file.h>
  44#include <linux/debugfs.h>
  45#include <linux/sysctl.h>
  46#include <linux/kdebug.h>
  47#include <linux/memory.h>
  48#include <linux/ftrace.h>
  49#include <linux/cpu.h>
  50#include <linux/jump_label.h>
 
 
 
  51
  52#include <asm-generic/sections.h>
  53#include <asm/cacheflush.h>
  54#include <asm/errno.h>
  55#include <asm/uaccess.h>
  56
  57#define KPROBE_HASH_BITS 6
  58#define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
  59
  60
  61/*
  62 * Some oddball architectures like 64bit powerpc have function descriptors
  63 * so this must be overridable.
  64 */
  65#ifndef kprobe_lookup_name
  66#define kprobe_lookup_name(name, addr) \
  67	addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
  68#endif
  69
  70static int kprobes_initialized;
 
 
 
 
 
  71static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
  72static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
  73
  74/* NOTE: change this value only with kprobe_mutex held */
  75static bool kprobes_all_disarmed;
  76
  77/* This protects kprobe_table and optimizing_list */
  78static DEFINE_MUTEX(kprobe_mutex);
  79static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
  80static struct {
  81	spinlock_t lock ____cacheline_aligned_in_smp;
  82} kretprobe_table_locks[KPROBE_TABLE_SIZE];
  83
  84static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
 
  85{
  86	return &(kretprobe_table_locks[hash].lock);
  87}
  88
  89/*
  90 * Normally, functions that we'd want to prohibit kprobes in, are marked
  91 * __kprobes. But, there are cases where such functions already belong to
  92 * a different section (__sched for preempt_schedule)
  93 *
  94 * For such cases, we now have a blacklist
  95 */
  96static struct kprobe_blackpoint kprobe_blacklist[] = {
  97	{"preempt_schedule",},
  98	{"native_get_debugreg",},
  99	{"irq_entries_start",},
 100	{"common_interrupt",},
 101	{"mcount",},	/* mcount can be called from everywhere */
 102	{NULL}    /* Terminator */
 103};
 104
 105#ifdef __ARCH_WANT_KPROBES_INSN_SLOT
 106/*
 107 * kprobe->ainsn.insn points to the copy of the instruction to be
 108 * single-stepped. x86_64, POWER4 and above have no-exec support and
 109 * stepping on the instruction on a vmalloced/kmalloced/data page
 110 * is a recipe for disaster
 111 */
 112struct kprobe_insn_page {
 113	struct list_head list;
 114	kprobe_opcode_t *insns;		/* Page of instruction slots */
 
 115	int nused;
 116	int ngarbage;
 117	char slot_used[];
 118};
 119
 120#define KPROBE_INSN_PAGE_SIZE(slots)			\
 121	(offsetof(struct kprobe_insn_page, slot_used) +	\
 122	 (sizeof(char) * (slots)))
 123
 124struct kprobe_insn_cache {
 125	struct list_head pages;	/* list of kprobe_insn_page */
 126	size_t insn_size;	/* size of instruction slot */
 127	int nr_garbage;
 128};
 129
 130static int slots_per_page(struct kprobe_insn_cache *c)
 131{
 132	return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
 133}
 134
 135enum kprobe_slot_state {
 136	SLOT_CLEAN = 0,
 137	SLOT_DIRTY = 1,
 138	SLOT_USED = 2,
 139};
 140
 141static DEFINE_MUTEX(kprobe_insn_mutex);	/* Protects kprobe_insn_slots */
 142static struct kprobe_insn_cache kprobe_insn_slots = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143	.pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
 144	.insn_size = MAX_INSN_SIZE,
 145	.nr_garbage = 0,
 146};
 147static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c);
 148
 149/**
 150 * __get_insn_slot() - Find a slot on an executable page for an instruction.
 151 * We allocate an executable page if there's no room on existing ones.
 152 */
 153static kprobe_opcode_t __kprobes *__get_insn_slot(struct kprobe_insn_cache *c)
 154{
 155	struct kprobe_insn_page *kip;
 
 156
 
 
 157 retry:
 158	list_for_each_entry(kip, &c->pages, list) {
 
 159		if (kip->nused < slots_per_page(c)) {
 160			int i;
 
 161			for (i = 0; i < slots_per_page(c); i++) {
 162				if (kip->slot_used[i] == SLOT_CLEAN) {
 163					kip->slot_used[i] = SLOT_USED;
 164					kip->nused++;
 165					return kip->insns + (i * c->insn_size);
 
 
 166				}
 167			}
 168			/* kip->nused is broken. Fix it. */
 169			kip->nused = slots_per_page(c);
 170			WARN_ON(1);
 171		}
 172	}
 
 173
 174	/* If there are any garbage slots, collect it and try again. */
 175	if (c->nr_garbage && collect_garbage_slots(c) == 0)
 176		goto retry;
 177
 178	/* All out of space.  Need to allocate a new page. */
 179	kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
 180	if (!kip)
 181		return NULL;
 182
 183	/*
 184	 * Use module_alloc so this page is within +/- 2GB of where the
 185	 * kernel image and loaded module images reside. This is required
 186	 * so x86_64 can correctly handle the %rip-relative fixups.
 187	 */
 188	kip->insns = module_alloc(PAGE_SIZE);
 189	if (!kip->insns) {
 190		kfree(kip);
 191		return NULL;
 192	}
 193	INIT_LIST_HEAD(&kip->list);
 194	memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
 195	kip->slot_used[0] = SLOT_USED;
 196	kip->nused = 1;
 197	kip->ngarbage = 0;
 198	list_add(&kip->list, &c->pages);
 199	return kip->insns;
 
 
 
 
 
 
 
 
 200}
 201
 202
 203kprobe_opcode_t __kprobes *get_insn_slot(void)
 204{
 205	kprobe_opcode_t *ret = NULL;
 206
 207	mutex_lock(&kprobe_insn_mutex);
 208	ret = __get_insn_slot(&kprobe_insn_slots);
 209	mutex_unlock(&kprobe_insn_mutex);
 210
 211	return ret;
 212}
 213
 214/* Return 1 if all garbages are collected, otherwise 0. */
 215static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
 216{
 217	kip->slot_used[idx] = SLOT_CLEAN;
 218	kip->nused--;
 219	if (kip->nused == 0) {
 
 
 
 
 
 
 
 
 
 220		/*
 221		 * Page is no longer in use.  Free it unless
 222		 * it's the last one.  We keep the last one
 223		 * so as not to have to set it up again the
 224		 * next time somebody inserts a probe.
 225		 */
 226		if (!list_is_singular(&kip->list)) {
 227			list_del(&kip->list);
 228			module_free(NULL, kip->insns);
 229			kfree(kip);
 230		}
 231		return 1;
 
 232	}
 233	return 0;
 234}
 235
 236static int __kprobes collect_garbage_slots(struct kprobe_insn_cache *c)
 237{
 238	struct kprobe_insn_page *kip, *next;
 239
 240	/* Ensure no-one is interrupted on the garbages */
 241	synchronize_sched();
 242
 243	list_for_each_entry_safe(kip, next, &c->pages, list) {
 244		int i;
 
 245		if (kip->ngarbage == 0)
 246			continue;
 247		kip->ngarbage = 0;	/* we will collect all garbages */
 248		for (i = 0; i < slots_per_page(c); i++) {
 249			if (kip->slot_used[i] == SLOT_DIRTY &&
 250			    collect_one_slot(kip, i))
 251				break;
 252		}
 253	}
 254	c->nr_garbage = 0;
 255	return 0;
 256}
 257
 258static void __kprobes __free_insn_slot(struct kprobe_insn_cache *c,
 259				       kprobe_opcode_t *slot, int dirty)
 260{
 261	struct kprobe_insn_page *kip;
 
 262
 263	list_for_each_entry(kip, &c->pages, list) {
 264		long idx = ((long)slot - (long)kip->insns) /
 265				(c->insn_size * sizeof(kprobe_opcode_t));
 266		if (idx >= 0 && idx < slots_per_page(c)) {
 267			WARN_ON(kip->slot_used[idx] != SLOT_USED);
 268			if (dirty) {
 269				kip->slot_used[idx] = SLOT_DIRTY;
 270				kip->ngarbage++;
 271				if (++c->nr_garbage > slots_per_page(c))
 272					collect_garbage_slots(c);
 273			} else
 274				collect_one_slot(kip, idx);
 275			return;
 
 
 
 
 
 
 
 
 
 
 
 276		}
 277	}
 278	/* Could not free this slot. */
 279	WARN_ON(1);
 280}
 281
 282void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
 
 
 
 
 
 283{
 284	mutex_lock(&kprobe_insn_mutex);
 285	__free_insn_slot(&kprobe_insn_slots, slot, dirty);
 286	mutex_unlock(&kprobe_insn_mutex);
 
 
 
 
 
 
 
 
 
 
 
 287}
 288#ifdef CONFIG_OPTPROBES
 289/* For optimized_kprobe buffer */
 290static DEFINE_MUTEX(kprobe_optinsn_mutex); /* Protects kprobe_optinsn_slots */
 291static struct kprobe_insn_cache kprobe_optinsn_slots = {
 292	.pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
 293	/* .insn_size is initialized later */
 294	.nr_garbage = 0,
 295};
 296/* Get a slot for optimized_kprobe buffer */
 297kprobe_opcode_t __kprobes *get_optinsn_slot(void)
 298{
 299	kprobe_opcode_t *ret = NULL;
 
 300
 301	mutex_lock(&kprobe_optinsn_mutex);
 302	ret = __get_insn_slot(&kprobe_optinsn_slots);
 303	mutex_unlock(&kprobe_optinsn_mutex);
 
 
 
 
 
 
 
 
 304
 305	return ret;
 306}
 307
 308void __kprobes free_optinsn_slot(kprobe_opcode_t * slot, int dirty)
 
 309{
 310	mutex_lock(&kprobe_optinsn_mutex);
 311	__free_insn_slot(&kprobe_optinsn_slots, slot, dirty);
 312	mutex_unlock(&kprobe_optinsn_mutex);
 313}
 314#endif
 315#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 316
 317/* We have preemption disabled.. so it is safe to use __ versions */
 318static inline void set_kprobe_instance(struct kprobe *kp)
 319{
 320	__this_cpu_write(kprobe_instance, kp);
 321}
 322
 323static inline void reset_kprobe_instance(void)
 324{
 325	__this_cpu_write(kprobe_instance, NULL);
 326}
 327
 328/*
 329 * This routine is called either:
 330 * 	- under the kprobe_mutex - during kprobe_[un]register()
 331 * 				OR
 332 * 	- with preemption disabled - from arch/xxx/kernel/kprobes.c
 333 */
 334struct kprobe __kprobes *get_kprobe(void *addr)
 335{
 336	struct hlist_head *head;
 337	struct hlist_node *node;
 338	struct kprobe *p;
 339
 340	head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
 341	hlist_for_each_entry_rcu(p, node, head, hlist) {
 
 342		if (p->addr == addr)
 343			return p;
 344	}
 345
 346	return NULL;
 347}
 
 348
 349static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
 350
 351/* Return true if the kprobe is an aggregator */
 352static inline int kprobe_aggrprobe(struct kprobe *p)
 353{
 354	return p->pre_handler == aggr_pre_handler;
 355}
 356
 357/* Return true(!0) if the kprobe is unused */
 358static inline int kprobe_unused(struct kprobe *p)
 359{
 360	return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
 361	       list_empty(&p->list);
 362}
 363
 364/*
 365 * Keep all fields in the kprobe consistent
 366 */
 367static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
 368{
 369	memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
 370	memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
 371}
 372
 373#ifdef CONFIG_OPTPROBES
 374/* NOTE: change this value only with kprobe_mutex held */
 375static bool kprobes_allow_optimization;
 376
 377/*
 378 * Call all pre_handler on the list, but ignores its return value.
 379 * This must be called from arch-dep optimized caller.
 380 */
 381void __kprobes opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
 382{
 383	struct kprobe *kp;
 384
 385	list_for_each_entry_rcu(kp, &p->list, list) {
 386		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 387			set_kprobe_instance(kp);
 388			kp->pre_handler(kp, regs);
 389		}
 390		reset_kprobe_instance();
 391	}
 392}
 
 393
 394/* Free optimized instructions and optimized_kprobe */
 395static __kprobes void free_aggr_kprobe(struct kprobe *p)
 396{
 397	struct optimized_kprobe *op;
 398
 399	op = container_of(p, struct optimized_kprobe, kp);
 400	arch_remove_optimized_kprobe(op);
 401	arch_remove_kprobe(p);
 402	kfree(op);
 403}
 404
 405/* Return true(!0) if the kprobe is ready for optimization. */
 406static inline int kprobe_optready(struct kprobe *p)
 407{
 408	struct optimized_kprobe *op;
 409
 410	if (kprobe_aggrprobe(p)) {
 411		op = container_of(p, struct optimized_kprobe, kp);
 412		return arch_prepared_optinsn(&op->optinsn);
 413	}
 414
 415	return 0;
 416}
 417
 418/* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
 419static inline int kprobe_disarmed(struct kprobe *p)
 420{
 421	struct optimized_kprobe *op;
 422
 423	/* If kprobe is not aggr/opt probe, just return kprobe is disabled */
 424	if (!kprobe_aggrprobe(p))
 425		return kprobe_disabled(p);
 426
 427	op = container_of(p, struct optimized_kprobe, kp);
 428
 429	return kprobe_disabled(p) && list_empty(&op->list);
 430}
 431
 432/* Return true(!0) if the probe is queued on (un)optimizing lists */
 433static int __kprobes kprobe_queued(struct kprobe *p)
 434{
 435	struct optimized_kprobe *op;
 436
 437	if (kprobe_aggrprobe(p)) {
 438		op = container_of(p, struct optimized_kprobe, kp);
 439		if (!list_empty(&op->list))
 440			return 1;
 441	}
 442	return 0;
 443}
 444
 445/*
 446 * Return an optimized kprobe whose optimizing code replaces
 447 * instructions including addr (exclude breakpoint).
 448 */
 449static struct kprobe *__kprobes get_optimized_kprobe(unsigned long addr)
 450{
 451	int i;
 452	struct kprobe *p = NULL;
 453	struct optimized_kprobe *op;
 454
 455	/* Don't check i == 0, since that is a breakpoint case. */
 456	for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
 457		p = get_kprobe((void *)(addr - i));
 458
 459	if (p && kprobe_optready(p)) {
 460		op = container_of(p, struct optimized_kprobe, kp);
 461		if (arch_within_optimized_kprobe(op, addr))
 462			return p;
 463	}
 464
 465	return NULL;
 466}
 467
 468/* Optimization staging list, protected by kprobe_mutex */
 469static LIST_HEAD(optimizing_list);
 470static LIST_HEAD(unoptimizing_list);
 
 471
 472static void kprobe_optimizer(struct work_struct *work);
 473static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
 474static DECLARE_COMPLETION(optimizer_comp);
 475#define OPTIMIZE_DELAY 5
 476
 477/*
 478 * Optimize (replace a breakpoint with a jump) kprobes listed on
 479 * optimizing_list.
 480 */
 481static __kprobes void do_optimize_kprobes(void)
 482{
 
 
 
 
 
 
 
 
 
 
 
 
 
 483	/* Optimization never be done when disarmed */
 484	if (kprobes_all_disarmed || !kprobes_allow_optimization ||
 485	    list_empty(&optimizing_list))
 486		return;
 487
 488	/*
 489	 * The optimization/unoptimization refers online_cpus via
 490	 * stop_machine() and cpu-hotplug modifies online_cpus.
 491	 * And same time, text_mutex will be held in cpu-hotplug and here.
 492	 * This combination can cause a deadlock (cpu-hotplug try to lock
 493	 * text_mutex but stop_machine can not be done because online_cpus
 494	 * has been changed)
 495	 * To avoid this deadlock, we need to call get_online_cpus()
 496	 * for preventing cpu-hotplug outside of text_mutex locking.
 497	 */
 498	get_online_cpus();
 499	mutex_lock(&text_mutex);
 500	arch_optimize_kprobes(&optimizing_list);
 501	mutex_unlock(&text_mutex);
 502	put_online_cpus();
 503}
 504
 505/*
 506 * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
 507 * if need) kprobes listed on unoptimizing_list.
 508 */
 509static __kprobes void do_unoptimize_kprobes(struct list_head *free_list)
 510{
 511	struct optimized_kprobe *op, *tmp;
 512
 513	/* Unoptimization must be done anytime */
 514	if (list_empty(&unoptimizing_list))
 515		return;
 516
 517	/* Ditto to do_optimize_kprobes */
 518	get_online_cpus();
 519	mutex_lock(&text_mutex);
 520	arch_unoptimize_kprobes(&unoptimizing_list, free_list);
 521	/* Loop free_list for disarming */
 522	list_for_each_entry_safe(op, tmp, free_list, list) {
 523		/* Disarm probes if marked disabled */
 524		if (kprobe_disabled(&op->kp))
 
 525			arch_disarm_kprobe(&op->kp);
 526		if (kprobe_unused(&op->kp)) {
 527			/*
 528			 * Remove unused probes from hash list. After waiting
 529			 * for synchronization, these probes are reclaimed.
 530			 * (reclaiming is done by do_free_cleaned_kprobes.)
 531			 */
 532			hlist_del_rcu(&op->kp.hlist);
 533		} else
 534			list_del_init(&op->list);
 535	}
 536	mutex_unlock(&text_mutex);
 537	put_online_cpus();
 538}
 539
 540/* Reclaim all kprobes on the free_list */
 541static __kprobes void do_free_cleaned_kprobes(struct list_head *free_list)
 542{
 543	struct optimized_kprobe *op, *tmp;
 544
 545	list_for_each_entry_safe(op, tmp, free_list, list) {
 546		BUG_ON(!kprobe_unused(&op->kp));
 547		list_del_init(&op->list);
 
 
 
 
 
 
 
 548		free_aggr_kprobe(&op->kp);
 549	}
 550}
 551
 552/* Start optimizer after OPTIMIZE_DELAY passed */
 553static __kprobes void kick_kprobe_optimizer(void)
 554{
 555	if (!delayed_work_pending(&optimizing_work))
 556		schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
 557}
 558
 559/* Kprobe jump optimizer */
 560static __kprobes void kprobe_optimizer(struct work_struct *work)
 561{
 562	LIST_HEAD(free_list);
 563
 564	/* Lock modules while optimizing kprobes */
 565	mutex_lock(&module_mutex);
 566	mutex_lock(&kprobe_mutex);
 
 
 567
 568	/*
 569	 * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
 570	 * kprobes before waiting for quiesence period.
 571	 */
 572	do_unoptimize_kprobes(&free_list);
 573
 574	/*
 575	 * Step 2: Wait for quiesence period to ensure all running interrupts
 576	 * are done. Because optprobe may modify multiple instructions
 577	 * there is a chance that Nth instruction is interrupted. In that
 578	 * case, running interrupt can return to 2nd-Nth byte of jump
 579	 * instruction. This wait is for avoiding it.
 
 
 580	 */
 581	synchronize_sched();
 582
 583	/* Step 3: Optimize kprobes after quiesence period */
 584	do_optimize_kprobes();
 585
 586	/* Step 4: Free cleaned kprobes after quiesence period */
 587	do_free_cleaned_kprobes(&free_list);
 588
 589	mutex_unlock(&kprobe_mutex);
 590	mutex_unlock(&module_mutex);
 591
 592	/* Step 5: Kick optimizer again if needed */
 593	if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
 594		kick_kprobe_optimizer();
 595	else
 596		/* Wake up all waiters */
 597		complete_all(&optimizer_comp);
 598}
 599
 600/* Wait for completing optimization and unoptimization */
 601static __kprobes void wait_for_kprobe_optimizer(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 602{
 603	if (delayed_work_pending(&optimizing_work))
 604		wait_for_completion(&optimizer_comp);
 
 
 
 
 
 
 605}
 606
 607/* Optimize kprobe if p is ready to be optimized */
 608static __kprobes void optimize_kprobe(struct kprobe *p)
 609{
 610	struct optimized_kprobe *op;
 611
 612	/* Check if the kprobe is disabled or not ready for optimization. */
 613	if (!kprobe_optready(p) || !kprobes_allow_optimization ||
 614	    (kprobe_disabled(p) || kprobes_all_disarmed))
 615		return;
 616
 617	/* Both of break_handler and post_handler are not supported. */
 618	if (p->break_handler || p->post_handler)
 619		return;
 620
 621	op = container_of(p, struct optimized_kprobe, kp);
 622
 623	/* Check there is no other kprobes at the optimized instructions */
 624	if (arch_check_optimized_kprobe(op) < 0)
 625		return;
 626
 627	/* Check if it is already optimized. */
 628	if (op->kp.flags & KPROBE_FLAG_OPTIMIZED)
 
 
 
 
 629		return;
 
 630	op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
 631
 632	if (!list_empty(&op->list))
 633		/* This is under unoptimizing. Just dequeue the probe */
 634		list_del_init(&op->list);
 635	else {
 636		list_add(&op->list, &optimizing_list);
 637		kick_kprobe_optimizer();
 638	}
 
 
 639}
 640
 641/* Short cut to direct unoptimizing */
 642static __kprobes void force_unoptimize_kprobe(struct optimized_kprobe *op)
 643{
 644	get_online_cpus();
 645	arch_unoptimize_kprobe(op);
 646	put_online_cpus();
 647	if (kprobe_disabled(&op->kp))
 648		arch_disarm_kprobe(&op->kp);
 649}
 650
 651/* Unoptimize a kprobe if p is optimized */
 652static __kprobes void unoptimize_kprobe(struct kprobe *p, bool force)
 653{
 654	struct optimized_kprobe *op;
 655
 656	if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
 657		return; /* This is not an optprobe nor optimized */
 658
 659	op = container_of(p, struct optimized_kprobe, kp);
 660	if (!kprobe_optimized(p)) {
 661		/* Unoptimized or unoptimizing case */
 662		if (force && !list_empty(&op->list)) {
 663			/*
 664			 * Only if this is unoptimizing kprobe and forced,
 665			 * forcibly unoptimize it. (No need to unoptimize
 666			 * unoptimized kprobe again :)
 667			 */
 
 
 
 
 
 
 
 
 668			list_del_init(&op->list);
 669			force_unoptimize_kprobe(op);
 670		}
 671		return;
 672	}
 673
 674	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 675	if (!list_empty(&op->list)) {
 676		/* Dequeue from the optimization queue */
 677		list_del_init(&op->list);
 678		return;
 679	}
 680	/* Optimized kprobe case */
 681	if (force)
 682		/* Forcibly update the code: this is a special case */
 683		force_unoptimize_kprobe(op);
 684	else {
 685		list_add(&op->list, &unoptimizing_list);
 686		kick_kprobe_optimizer();
 687	}
 688}
 689
 690/* Cancel unoptimizing for reusing */
 691static void reuse_unused_kprobe(struct kprobe *ap)
 692{
 693	struct optimized_kprobe *op;
 694
 695	BUG_ON(!kprobe_unused(ap));
 696	/*
 697	 * Unused kprobe MUST be on the way of delayed unoptimizing (means
 698	 * there is still a relative jump) and disabled.
 699	 */
 700	op = container_of(ap, struct optimized_kprobe, kp);
 701	if (unlikely(list_empty(&op->list)))
 702		printk(KERN_WARNING "Warning: found a stray unused "
 703			"aggrprobe@%p\n", ap->addr);
 704	/* Enable the probe again */
 705	ap->flags &= ~KPROBE_FLAG_DISABLED;
 706	/* Optimize it again (remove from op->list) */
 707	BUG_ON(!kprobe_optready(ap));
 
 
 708	optimize_kprobe(ap);
 
 709}
 710
 711/* Remove optimized instructions */
 712static void __kprobes kill_optimized_kprobe(struct kprobe *p)
 713{
 714	struct optimized_kprobe *op;
 715
 716	op = container_of(p, struct optimized_kprobe, kp);
 717	if (!list_empty(&op->list))
 718		/* Dequeue from the (un)optimization queue */
 719		list_del_init(&op->list);
 
 
 
 
 
 
 
 
 
 
 
 720
 721	op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
 722	/* Don't touch the code, because it is already freed. */
 723	arch_remove_optimized_kprobe(op);
 724}
 725
 
 
 
 
 
 
 
 726/* Try to prepare optimized instructions */
 727static __kprobes void prepare_optimized_kprobe(struct kprobe *p)
 728{
 729	struct optimized_kprobe *op;
 730
 731	op = container_of(p, struct optimized_kprobe, kp);
 732	arch_prepare_optimized_kprobe(op);
 733}
 734
 735/* Allocate new optimized_kprobe and try to prepare optimized instructions */
 736static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 737{
 738	struct optimized_kprobe *op;
 739
 740	op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
 741	if (!op)
 742		return NULL;
 743
 744	INIT_LIST_HEAD(&op->list);
 745	op->kp.addr = p->addr;
 746	arch_prepare_optimized_kprobe(op);
 747
 748	return &op->kp;
 749}
 750
 751static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
 752
 753/*
 754 * Prepare an optimized_kprobe and optimize it
 755 * NOTE: p must be a normal registered kprobe
 756 */
 757static __kprobes void try_to_optimize_kprobe(struct kprobe *p)
 758{
 759	struct kprobe *ap;
 760	struct optimized_kprobe *op;
 761
 
 
 
 
 
 
 
 
 
 762	ap = alloc_aggr_kprobe(p);
 763	if (!ap)
 764		return;
 765
 766	op = container_of(ap, struct optimized_kprobe, kp);
 767	if (!arch_prepared_optinsn(&op->optinsn)) {
 768		/* If failed to setup optimizing, fallback to kprobe */
 769		arch_remove_optimized_kprobe(op);
 770		kfree(op);
 771		return;
 772	}
 773
 774	init_aggr_kprobe(ap, p);
 775	optimize_kprobe(ap);
 
 
 
 
 
 776}
 777
 778#ifdef CONFIG_SYSCTL
 779/* This should be called with kprobe_mutex locked */
 780static void __kprobes optimize_all_kprobes(void)
 781{
 782	struct hlist_head *head;
 783	struct hlist_node *node;
 784	struct kprobe *p;
 785	unsigned int i;
 786
 787	/* If optimization is already allowed, just return */
 
 788	if (kprobes_allow_optimization)
 789		return;
 790
 
 791	kprobes_allow_optimization = true;
 792	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 793		head = &kprobe_table[i];
 794		hlist_for_each_entry_rcu(p, node, head, hlist)
 795			if (!kprobe_disabled(p))
 796				optimize_kprobe(p);
 797	}
 798	printk(KERN_INFO "Kprobes globally optimized\n");
 
 
 
 799}
 800
 801/* This should be called with kprobe_mutex locked */
 802static void __kprobes unoptimize_all_kprobes(void)
 803{
 804	struct hlist_head *head;
 805	struct hlist_node *node;
 806	struct kprobe *p;
 807	unsigned int i;
 808
 809	/* If optimization is already prohibited, just return */
 810	if (!kprobes_allow_optimization)
 
 
 811		return;
 
 812
 
 813	kprobes_allow_optimization = false;
 814	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
 815		head = &kprobe_table[i];
 816		hlist_for_each_entry_rcu(p, node, head, hlist) {
 817			if (!kprobe_disabled(p))
 818				unoptimize_kprobe(p, false);
 819		}
 820	}
 821	/* Wait for unoptimizing completion */
 
 
 
 822	wait_for_kprobe_optimizer();
 823	printk(KERN_INFO "Kprobes globally unoptimized\n");
 824}
 825
 826int sysctl_kprobes_optimization;
 827int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
 828				      void __user *buffer, size_t *length,
 829				      loff_t *ppos)
 
 830{
 831	int ret;
 832
 833	mutex_lock(&kprobe_mutex);
 834	sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
 835	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
 836
 837	if (sysctl_kprobes_optimization)
 838		optimize_all_kprobes();
 839	else
 840		unoptimize_all_kprobes();
 841	mutex_unlock(&kprobe_mutex);
 842
 843	return ret;
 844}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 845#endif /* CONFIG_SYSCTL */
 846
 847/* Put a breakpoint for a probe. Must be called with text_mutex locked */
 848static void __kprobes __arm_kprobe(struct kprobe *p)
 849{
 850	struct kprobe *_p;
 851
 852	/* Check collision with other optimized kprobes */
 853	_p = get_optimized_kprobe((unsigned long)p->addr);
 
 
 854	if (unlikely(_p))
 855		/* Fallback to unoptimized kprobe */
 856		unoptimize_kprobe(_p, true);
 857
 858	arch_arm_kprobe(p);
 859	optimize_kprobe(p);	/* Try to optimize (add kprobe to a list) */
 860}
 861
 862/* Remove the breakpoint of a probe. Must be called with text_mutex locked */
 863static void __kprobes __disarm_kprobe(struct kprobe *p, bool reopt)
 864{
 865	struct kprobe *_p;
 866
 867	unoptimize_kprobe(p, false);	/* Try to unoptimize */
 
 
 
 868
 869	if (!kprobe_queued(p)) {
 870		arch_disarm_kprobe(p);
 871		/* If another kprobe was blocked, optimize it. */
 872		_p = get_optimized_kprobe((unsigned long)p->addr);
 873		if (unlikely(_p) && reopt)
 874			optimize_kprobe(_p);
 875	}
 876	/* TODO: reoptimize others after unoptimized this probe */
 
 
 
 
 
 877}
 878
 879#else /* !CONFIG_OPTPROBES */
 880
 881#define optimize_kprobe(p)			do {} while (0)
 882#define unoptimize_kprobe(p, f)			do {} while (0)
 883#define kill_optimized_kprobe(p)		do {} while (0)
 884#define prepare_optimized_kprobe(p)		do {} while (0)
 885#define try_to_optimize_kprobe(p)		do {} while (0)
 886#define __arm_kprobe(p)				arch_arm_kprobe(p)
 887#define __disarm_kprobe(p, o)			arch_disarm_kprobe(p)
 888#define kprobe_disarmed(p)			kprobe_disabled(p)
 889#define wait_for_kprobe_optimizer()		do {} while (0)
 890
 891/* There should be no unused kprobes can be reused without optimization */
 892static void reuse_unused_kprobe(struct kprobe *ap)
 893{
 894	printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
 895	BUG_ON(kprobe_unused(ap));
 
 
 
 
 
 
 896}
 897
 898static __kprobes void free_aggr_kprobe(struct kprobe *p)
 899{
 900	arch_remove_kprobe(p);
 901	kfree(p);
 902}
 903
 904static __kprobes struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
 905{
 906	return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
 907}
 908#endif /* CONFIG_OPTPROBES */
 909
 910/* Arm a kprobe with text_mutex */
 911static void __kprobes arm_kprobe(struct kprobe *kp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 912{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913	/*
 914	 * Here, since __arm_kprobe() doesn't use stop_machine(),
 915	 * this doesn't cause deadlock on text_mutex. So, we don't
 916	 * need get_online_cpus().
 917	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	mutex_lock(&text_mutex);
 919	__arm_kprobe(kp);
 920	mutex_unlock(&text_mutex);
 
 
 
 921}
 922
 923/* Disarm a kprobe with text_mutex */
 924static void __kprobes disarm_kprobe(struct kprobe *kp)
 925{
 926	/* Ditto */
 
 
 
 927	mutex_lock(&text_mutex);
 928	__disarm_kprobe(kp, true);
 929	mutex_unlock(&text_mutex);
 
 
 
 930}
 931
 932/*
 933 * Aggregate handlers for multiple kprobes support - these handlers
 934 * take care of invoking the individual kprobe handlers on p->list
 935 */
 936static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
 937{
 938	struct kprobe *kp;
 939
 940	list_for_each_entry_rcu(kp, &p->list, list) {
 941		if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
 942			set_kprobe_instance(kp);
 943			if (kp->pre_handler(kp, regs))
 944				return 1;
 945		}
 946		reset_kprobe_instance();
 947	}
 948	return 0;
 949}
 
 950
 951static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
 952					unsigned long flags)
 953{
 954	struct kprobe *kp;
 955
 956	list_for_each_entry_rcu(kp, &p->list, list) {
 957		if (kp->post_handler && likely(!kprobe_disabled(kp))) {
 958			set_kprobe_instance(kp);
 959			kp->post_handler(kp, regs, flags);
 960			reset_kprobe_instance();
 961		}
 962	}
 963}
 
 964
 965static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
 966					int trapnr)
 967{
 968	struct kprobe *cur = __this_cpu_read(kprobe_instance);
 969
 970	/*
 971	 * if we faulted "during" the execution of a user specified
 972	 * probe handler, invoke just that probe's fault handler
 973	 */
 974	if (cur && cur->fault_handler) {
 975		if (cur->fault_handler(cur, regs, trapnr))
 976			return 1;
 977	}
 978	return 0;
 979}
 980
 981static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
 982{
 983	struct kprobe *cur = __this_cpu_read(kprobe_instance);
 984	int ret = 0;
 985
 986	if (cur && cur->break_handler) {
 987		if (cur->break_handler(cur, regs))
 988			ret = 1;
 989	}
 990	reset_kprobe_instance();
 991	return ret;
 992}
 993
 994/* Walks the list and increments nmissed count for multiprobe case */
 995void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
 996{
 997	struct kprobe *kp;
 998	if (!kprobe_aggrprobe(p)) {
 999		p->nmissed++;
1000	} else {
1001		list_for_each_entry_rcu(kp, &p->list, list)
1002			kp->nmissed++;
1003	}
1004	return;
1005}
 
1006
1007void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
1008				struct hlist_head *head)
1009{
1010	struct kretprobe *rp = ri->rp;
1011
1012	/* remove rp inst off the rprobe_inst_table */
1013	hlist_del(&ri->hlist);
1014	INIT_HLIST_NODE(&ri->hlist);
1015	if (likely(rp)) {
1016		spin_lock(&rp->lock);
1017		hlist_add_head(&ri->hlist, &rp->free_instances);
1018		spin_unlock(&rp->lock);
1019	} else
1020		/* Unregistering */
1021		hlist_add_head(&ri->hlist, head);
1022}
1023
1024void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
1025			 struct hlist_head **head, unsigned long *flags)
1026__acquires(hlist_lock)
1027{
1028	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1029	spinlock_t *hlist_lock;
1030
1031	*head = &kretprobe_inst_table[hash];
1032	hlist_lock = kretprobe_table_lock_ptr(hash);
1033	spin_lock_irqsave(hlist_lock, *flags);
 
1034}
1035
1036static void __kprobes kretprobe_table_lock(unsigned long hash,
1037	unsigned long *flags)
1038__acquires(hlist_lock)
1039{
1040	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1041	spin_lock_irqsave(hlist_lock, *flags);
1042}
1043
1044void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
1045	unsigned long *flags)
1046__releases(hlist_lock)
1047{
1048	unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1049	spinlock_t *hlist_lock;
1050
1051	hlist_lock = kretprobe_table_lock_ptr(hash);
1052	spin_unlock_irqrestore(hlist_lock, *flags);
1053}
1054
1055static void __kprobes kretprobe_table_unlock(unsigned long hash,
1056       unsigned long *flags)
1057__releases(hlist_lock)
1058{
1059	spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1060	spin_unlock_irqrestore(hlist_lock, *flags);
1061}
1062
1063/*
1064 * This function is called from finish_task_switch when task tk becomes dead,
1065 * so that we can recycle any function-return probe instances associated
1066 * with this task. These left over instances represent probed functions
1067 * that have been called but will never return.
1068 */
1069void __kprobes kprobe_flush_task(struct task_struct *tk)
1070{
1071	struct kretprobe_instance *ri;
1072	struct hlist_head *head, empty_rp;
1073	struct hlist_node *node, *tmp;
1074	unsigned long hash, flags = 0;
1075
1076	if (unlikely(!kprobes_initialized))
1077		/* Early boot.  kretprobe_table_locks not yet initialized. */
1078		return;
1079
1080	hash = hash_ptr(tk, KPROBE_HASH_BITS);
1081	head = &kretprobe_inst_table[hash];
1082	kretprobe_table_lock(hash, &flags);
1083	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
1084		if (ri->task == tk)
1085			recycle_rp_inst(ri, &empty_rp);
1086	}
1087	kretprobe_table_unlock(hash, &flags);
1088	INIT_HLIST_HEAD(&empty_rp);
1089	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
1090		hlist_del(&ri->hlist);
1091		kfree(ri);
1092	}
1093}
1094
1095static inline void free_rp_inst(struct kretprobe *rp)
1096{
1097	struct kretprobe_instance *ri;
1098	struct hlist_node *pos, *next;
1099
1100	hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
1101		hlist_del(&ri->hlist);
1102		kfree(ri);
1103	}
1104}
1105
1106static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
1107{
1108	unsigned long flags, hash;
1109	struct kretprobe_instance *ri;
1110	struct hlist_node *pos, *next;
1111	struct hlist_head *head;
1112
1113	/* No race here */
1114	for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1115		kretprobe_table_lock(hash, &flags);
1116		head = &kretprobe_inst_table[hash];
1117		hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
1118			if (ri->rp == rp)
1119				ri->rp = NULL;
1120		}
1121		kretprobe_table_unlock(hash, &flags);
1122	}
1123	free_rp_inst(rp);
1124}
1125
1126/*
1127* Add the new probe to ap->list. Fail if this is the
1128* second jprobe at the address - two jprobes can't coexist
1129*/
1130static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1131{
1132	BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1133
1134	if (p->break_handler || p->post_handler)
1135		unoptimize_kprobe(ap, true);	/* Fall back to normal kprobe */
1136
1137	if (p->break_handler) {
1138		if (ap->break_handler)
1139			return -EEXIST;
1140		list_add_tail_rcu(&p->list, &ap->list);
1141		ap->break_handler = aggr_break_handler;
1142	} else
1143		list_add_rcu(&p->list, &ap->list);
1144	if (p->post_handler && !ap->post_handler)
1145		ap->post_handler = aggr_post_handler;
1146
1147	if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
1148		ap->flags &= ~KPROBE_FLAG_DISABLED;
1149		if (!kprobes_all_disarmed)
1150			/* Arm the breakpoint again. */
1151			__arm_kprobe(ap);
1152	}
1153	return 0;
1154}
1155
1156/*
1157 * Fill in the required fields of the "manager kprobe". Replace the
1158 * earlier kprobe in the hlist with the manager kprobe
1159 */
1160static void __kprobes init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1161{
1162	/* Copy p's insn slot to ap */
1163	copy_kprobe(p, ap);
1164	flush_insn_slot(ap);
1165	ap->addr = p->addr;
1166	ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1167	ap->pre_handler = aggr_pre_handler;
1168	ap->fault_handler = aggr_fault_handler;
1169	/* We don't care the kprobe which has gone. */
1170	if (p->post_handler && !kprobe_gone(p))
1171		ap->post_handler = aggr_post_handler;
1172	if (p->break_handler && !kprobe_gone(p))
1173		ap->break_handler = aggr_break_handler;
1174
1175	INIT_LIST_HEAD(&ap->list);
1176	INIT_HLIST_NODE(&ap->hlist);
1177
1178	list_add_rcu(&p->list, &ap->list);
1179	hlist_replace_rcu(&p->hlist, &ap->hlist);
1180}
1181
1182/*
1183 * This is the second or subsequent kprobe at the address - handle
1184 * the intricacies
1185 */
1186static int __kprobes register_aggr_kprobe(struct kprobe *orig_p,
1187					  struct kprobe *p)
1188{
1189	int ret = 0;
1190	struct kprobe *ap = orig_p;
1191
 
 
 
 
 
 
1192	if (!kprobe_aggrprobe(orig_p)) {
1193		/* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1194		ap = alloc_aggr_kprobe(orig_p);
1195		if (!ap)
1196			return -ENOMEM;
 
 
1197		init_aggr_kprobe(ap, orig_p);
1198	} else if (kprobe_unused(ap))
1199		/* This probe is going to die. Rescue it */
1200		reuse_unused_kprobe(ap);
 
 
 
1201
1202	if (kprobe_gone(ap)) {
1203		/*
1204		 * Attempting to insert new probe at the same location that
1205		 * had a probe in the module vaddr area which already
1206		 * freed. So, the instruction slot has already been
1207		 * released. We need a new slot for the new probe.
1208		 */
1209		ret = arch_prepare_kprobe(ap);
1210		if (ret)
1211			/*
1212			 * Even if fail to allocate new slot, don't need to
1213			 * free aggr_probe. It will be used next time, or
1214			 * freed by unregister_kprobe.
1215			 */
1216			return ret;
1217
1218		/* Prepare optimized instructions if possible. */
1219		prepare_optimized_kprobe(ap);
1220
1221		/*
1222		 * Clear gone flag to prevent allocating new slot again, and
1223		 * set disabled flag because it is not armed yet.
1224		 */
1225		ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1226			    | KPROBE_FLAG_DISABLED;
1227	}
1228
1229	/* Copy ap's insn slot to p */
1230	copy_kprobe(ap, p);
1231	return add_new_kprobe(ap, p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1232}
1233
1234static int __kprobes in_kprobes_functions(unsigned long addr)
1235{
1236	struct kprobe_blackpoint *kb;
 
 
 
1237
1238	if (addr >= (unsigned long)__kprobes_text_start &&
1239	    addr < (unsigned long)__kprobes_text_end)
1240		return -EINVAL;
 
 
 
1241	/*
1242	 * If there exists a kprobe_blacklist, verify and
1243	 * fail any probe registration in the prohibited area
1244	 */
1245	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1246		if (kb->start_addr) {
1247			if (addr >= kb->start_addr &&
1248			    addr < (kb->start_addr + kb->range))
1249				return -EINVAL;
1250		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251	}
1252	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1253}
1254
1255/*
1256 * If we have a symbol_name argument, look it up and add the offset field
1257 * to it. This way, we can specify a relative address to a symbol.
1258 * This returns encoded errors if it fails to look up symbol or invalid
1259 * combination of parameters.
1260 */
1261static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
 
 
1262{
1263	kprobe_opcode_t *addr = p->addr;
1264
1265	if ((p->symbol_name && p->addr) ||
1266	    (!p->symbol_name && !p->addr))
1267		goto invalid;
1268
1269	if (p->symbol_name) {
1270		kprobe_lookup_name(p->symbol_name, addr);
 
 
 
 
 
 
 
1271		if (!addr)
1272			return ERR_PTR(-ENOENT);
1273	}
1274
1275	addr = (kprobe_opcode_t *)(((char *)addr) + p->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1276	if (addr)
1277		return addr;
1278
1279invalid:
1280	return ERR_PTR(-EINVAL);
1281}
1282
1283/* Check passed kprobe is valid and return kprobe in kprobe_table. */
1284static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
1285{
1286	struct kprobe *ap, *list_p;
1287
 
 
1288	ap = get_kprobe(p->addr);
1289	if (unlikely(!ap))
1290		return NULL;
1291
1292	if (p != ap) {
1293		list_for_each_entry_rcu(list_p, &ap->list, list)
1294			if (list_p == p)
1295			/* kprobe p is a valid probe */
1296				goto valid;
1297		return NULL;
1298	}
1299valid:
1300	return ap;
1301}
1302
1303/* Return error if the kprobe is being re-registered */
1304static inline int check_kprobe_rereg(struct kprobe *p)
 
 
 
1305{
1306	int ret = 0;
1307
1308	mutex_lock(&kprobe_mutex);
1309	if (__get_valid_kprobe(p))
1310		ret = -EINVAL;
1311	mutex_unlock(&kprobe_mutex);
1312
1313	return ret;
1314}
1315
1316int __kprobes register_kprobe(struct kprobe *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1317{
1318	int ret = 0;
1319	struct kprobe *old_p;
1320	struct module *probed_mod;
1321	kprobe_opcode_t *addr;
 
 
 
 
1322
1323	addr = kprobe_addr(p);
1324	if (IS_ERR(addr))
1325		return PTR_ERR(addr);
1326	p->addr = addr;
1327
1328	ret = check_kprobe_rereg(p);
1329	if (ret)
1330		return ret;
1331
1332	jump_label_lock();
1333	preempt_disable();
1334	if (!kernel_text_address((unsigned long) p->addr) ||
1335	    in_kprobes_functions((unsigned long) p->addr) ||
1336	    ftrace_text_reserved(p->addr, p->addr) ||
1337	    jump_label_text_reserved(p->addr, p->addr))
1338		goto fail_with_jump_label;
1339
1340	/* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1341	p->flags &= KPROBE_FLAG_DISABLED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343	/*
1344	 * Check if are we probing a module.
1345	 */
1346	probed_mod = __module_text_address((unsigned long) p->addr);
1347	if (probed_mod) {
1348		/* Return -ENOENT if fail. */
1349		ret = -ENOENT;
1350		/*
1351		 * We must hold a refcount of the probed module while updating
1352		 * its code to prohibit unexpected unloading.
1353		 */
1354		if (unlikely(!try_module_get(probed_mod)))
1355			goto fail_with_jump_label;
 
 
1356
1357		/*
1358		 * If the module freed .init.text, we couldn't insert
1359		 * kprobes in there.
1360		 */
1361		if (within_module_init((unsigned long)p->addr, probed_mod) &&
1362		    probed_mod->state != MODULE_STATE_COMING) {
1363			module_put(probed_mod);
1364			goto fail_with_jump_label;
 
1365		}
1366		/* ret will be updated by following code */
1367	}
 
 
1368	preempt_enable();
1369	jump_label_unlock();
1370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371	p->nmissed = 0;
1372	INIT_LIST_HEAD(&p->list);
 
 
 
 
 
1373	mutex_lock(&kprobe_mutex);
1374
1375	jump_label_lock(); /* needed to call jump_label_text_reserved() */
1376
1377	get_online_cpus();	/* For avoiding text_mutex deadlock. */
1378	mutex_lock(&text_mutex);
1379
1380	old_p = get_kprobe(p->addr);
1381	if (old_p) {
1382		/* Since this may unoptimize old_p, locking text_mutex. */
1383		ret = register_aggr_kprobe(old_p, p);
1384		goto out;
1385	}
1386
1387	ret = arch_prepare_kprobe(p);
 
 
 
 
 
1388	if (ret)
1389		goto out;
1390
1391	INIT_HLIST_NODE(&p->hlist);
1392	hlist_add_head_rcu(&p->hlist,
1393		       &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1394
1395	if (!kprobes_all_disarmed && !kprobe_disabled(p))
1396		__arm_kprobe(p);
 
 
 
 
 
 
1397
1398	/* Try to optimize kprobe */
1399	try_to_optimize_kprobe(p);
1400
1401out:
1402	mutex_unlock(&text_mutex);
1403	put_online_cpus();
1404	jump_label_unlock();
1405	mutex_unlock(&kprobe_mutex);
1406
1407	if (probed_mod)
1408		module_put(probed_mod);
1409
1410	return ret;
1411
1412fail_with_jump_label:
1413	preempt_enable();
1414	jump_label_unlock();
1415	return ret;
1416}
1417EXPORT_SYMBOL_GPL(register_kprobe);
1418
1419/* Check if all probes on the aggrprobe are disabled */
1420static int __kprobes aggr_kprobe_disabled(struct kprobe *ap)
1421{
1422	struct kprobe *kp;
1423
1424	list_for_each_entry_rcu(kp, &ap->list, list)
 
 
1425		if (!kprobe_disabled(kp))
1426			/*
1427			 * There is an active probe on the list.
1428			 * We can't disable this ap.
1429			 */
1430			return 0;
1431
1432	return 1;
1433}
1434
1435/* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1436static struct kprobe *__kprobes __disable_kprobe(struct kprobe *p)
1437{
1438	struct kprobe *orig_p;
 
 
 
1439
1440	/* Get an original kprobe for return */
1441	orig_p = __get_valid_kprobe(p);
1442	if (unlikely(orig_p == NULL))
1443		return NULL;
 
 
 
1444
1445	if (!kprobe_disabled(p)) {
1446		/* Disable probe if it is a child probe */
1447		if (p != orig_p)
1448			p->flags |= KPROBE_FLAG_DISABLED;
1449
1450		/* Try to disarm and disable this/parent probe */
1451		if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1452			disarm_kprobe(orig_p);
1453			orig_p->flags |= KPROBE_FLAG_DISABLED;
 
 
 
 
 
 
 
 
 
 
1454		}
 
1455	}
1456
1457	return orig_p;
1458}
1459
1460/*
1461 * Unregister a kprobe without a scheduler synchronization.
1462 */
1463static int __kprobes __unregister_kprobe_top(struct kprobe *p)
1464{
1465	struct kprobe *ap, *list_p;
1466
1467	/* Disable kprobe. This will disarm it if needed. */
1468	ap = __disable_kprobe(p);
1469	if (ap == NULL)
1470		return -EINVAL;
1471
1472	if (ap == p)
1473		/*
1474		 * This probe is an independent(and non-optimized) kprobe
1475		 * (not an aggrprobe). Remove from the hash list.
1476		 */
1477		goto disarmed;
1478
1479	/* Following process expects this probe is an aggrprobe */
1480	WARN_ON(!kprobe_aggrprobe(ap));
1481
1482	if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1483		/*
1484		 * !disarmed could be happen if the probe is under delayed
1485		 * unoptimizing.
1486		 */
1487		goto disarmed;
1488	else {
1489		/* If disabling probe has special handlers, update aggrprobe */
1490		if (p->break_handler && !kprobe_gone(p))
1491			ap->break_handler = NULL;
1492		if (p->post_handler && !kprobe_gone(p)) {
1493			list_for_each_entry_rcu(list_p, &ap->list, list) {
1494				if ((list_p != p) && (list_p->post_handler))
1495					goto noclean;
1496			}
1497			ap->post_handler = NULL;
 
 
 
 
 
 
1498		}
1499noclean:
1500		/*
1501		 * Remove from the aggrprobe: this path will do nothing in
1502		 * __unregister_kprobe_bottom().
1503		 */
1504		list_del_rcu(&p->list);
1505		if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1506			/*
1507			 * Try to optimize this probe again, because post
1508			 * handler may have been changed.
1509			 */
1510			optimize_kprobe(ap);
1511	}
1512	return 0;
1513
1514disarmed:
1515	BUG_ON(!kprobe_disarmed(ap));
1516	hlist_del_rcu(&ap->hlist);
1517	return 0;
1518}
1519
1520static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
1521{
1522	struct kprobe *ap;
1523
1524	if (list_empty(&p->list))
1525		/* This is an independent kprobe */
1526		arch_remove_kprobe(p);
1527	else if (list_is_singular(&p->list)) {
1528		/* This is the last child of an aggrprobe */
1529		ap = list_entry(p->list.next, struct kprobe, list);
1530		list_del(&p->list);
1531		free_aggr_kprobe(ap);
1532	}
1533	/* Otherwise, do nothing. */
1534}
1535
1536int __kprobes register_kprobes(struct kprobe **kps, int num)
1537{
1538	int i, ret = 0;
1539
1540	if (num <= 0)
1541		return -EINVAL;
1542	for (i = 0; i < num; i++) {
1543		ret = register_kprobe(kps[i]);
1544		if (ret < 0) {
1545			if (i > 0)
1546				unregister_kprobes(kps, i);
1547			break;
1548		}
1549	}
1550	return ret;
1551}
1552EXPORT_SYMBOL_GPL(register_kprobes);
1553
1554void __kprobes unregister_kprobe(struct kprobe *p)
1555{
1556	unregister_kprobes(&p, 1);
1557}
1558EXPORT_SYMBOL_GPL(unregister_kprobe);
1559
1560void __kprobes unregister_kprobes(struct kprobe **kps, int num)
1561{
1562	int i;
1563
1564	if (num <= 0)
1565		return;
1566	mutex_lock(&kprobe_mutex);
1567	for (i = 0; i < num; i++)
1568		if (__unregister_kprobe_top(kps[i]) < 0)
1569			kps[i]->addr = NULL;
1570	mutex_unlock(&kprobe_mutex);
1571
1572	synchronize_sched();
1573	for (i = 0; i < num; i++)
1574		if (kps[i]->addr)
1575			__unregister_kprobe_bottom(kps[i]);
1576}
1577EXPORT_SYMBOL_GPL(unregister_kprobes);
1578
 
 
 
 
 
 
 
1579static struct notifier_block kprobe_exceptions_nb = {
1580	.notifier_call = kprobe_exceptions_notify,
1581	.priority = 0x7fffffff /* we need to be notified first */
1582};
1583
1584unsigned long __weak arch_deref_entry_point(void *entry)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1585{
1586	return (unsigned long)entry;
 
 
 
 
 
1587}
 
1588
1589int __kprobes register_jprobes(struct jprobe **jps, int num)
 
 
 
 
 
 
1590{
1591	struct jprobe *jp;
1592	int ret = 0, i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1593
1594	if (num <= 0)
1595		return -EINVAL;
1596	for (i = 0; i < num; i++) {
1597		unsigned long addr, offset;
1598		jp = jps[i];
1599		addr = arch_deref_entry_point(jp->entry);
1600
1601		/* Verify probepoint is a function entry point */
1602		if (kallsyms_lookup_size_offset(addr, NULL, &offset) &&
1603		    offset == 0) {
1604			jp->kp.pre_handler = setjmp_pre_handler;
1605			jp->kp.break_handler = longjmp_break_handler;
1606			ret = register_kprobe(&jp->kp);
1607		} else
1608			ret = -EINVAL;
1609
1610		if (ret < 0) {
1611			if (i > 0)
1612				unregister_jprobes(jps, i);
1613			break;
 
1614		}
 
1615	}
1616	return ret;
1617}
1618EXPORT_SYMBOL_GPL(register_jprobes);
1619
1620int __kprobes register_jprobe(struct jprobe *jp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1621{
1622	return register_jprobes(&jp, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
1623}
1624EXPORT_SYMBOL_GPL(register_jprobe);
1625
1626void __kprobes unregister_jprobe(struct jprobe *jp)
 
1627{
1628	unregister_jprobes(&jp, 1);
 
 
 
1629}
1630EXPORT_SYMBOL_GPL(unregister_jprobe);
1631
1632void __kprobes unregister_jprobes(struct jprobe **jps, int num)
 
1633{
1634	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635
1636	if (num <= 0)
1637		return;
1638	mutex_lock(&kprobe_mutex);
1639	for (i = 0; i < num; i++)
1640		if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1641			jps[i]->kp.addr = NULL;
1642	mutex_unlock(&kprobe_mutex);
1643
1644	synchronize_sched();
1645	for (i = 0; i < num; i++) {
1646		if (jps[i]->kp.addr)
1647			__unregister_kprobe_bottom(&jps[i]->kp);
1648	}
 
 
1649}
1650EXPORT_SYMBOL_GPL(unregister_jprobes);
1651
1652#ifdef CONFIG_KRETPROBES
1653/*
1654 * This kprobe pre_handler is registered with every kretprobe. When probe
1655 * hits it will set up the return probe.
1656 */
1657static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1658					   struct pt_regs *regs)
1659{
1660	struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1661	unsigned long hash, flags = 0;
1662	struct kretprobe_instance *ri;
1663
1664	/*TODO: consider to only swap the RA after the last pre_handler fired */
1665	hash = hash_ptr(current, KPROBE_HASH_BITS);
1666	spin_lock_irqsave(&rp->lock, flags);
1667	if (!hlist_empty(&rp->free_instances)) {
1668		ri = hlist_entry(rp->free_instances.first,
1669				struct kretprobe_instance, hlist);
1670		hlist_del(&ri->hlist);
1671		spin_unlock_irqrestore(&rp->lock, flags);
1672
1673		ri->rp = rp;
1674		ri->task = current;
1675
1676		if (rp->entry_handler && rp->entry_handler(ri, regs))
1677			return 0;
1678
1679		arch_prepare_kretprobe(ri, regs);
1680
1681		/* XXX(hch): why is there no hlist_move_head? */
1682		INIT_HLIST_NODE(&ri->hlist);
1683		kretprobe_table_lock(hash, &flags);
1684		hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1685		kretprobe_table_unlock(hash, &flags);
1686	} else {
1687		rp->nmissed++;
1688		spin_unlock_irqrestore(&rp->lock, flags);
1689	}
 
 
 
 
 
 
 
 
 
 
1690	return 0;
1691}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692
1693int __kprobes register_kretprobe(struct kretprobe *rp)
 
 
 
 
 
 
1694{
1695	int ret = 0;
1696	struct kretprobe_instance *inst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1697	int i;
1698	void *addr;
1699
 
 
 
 
 
 
 
 
1700	if (kretprobe_blacklist_size) {
1701		addr = kprobe_addr(&rp->kp);
1702		if (IS_ERR(addr))
1703			return PTR_ERR(addr);
1704
1705		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1706			if (kretprobe_blacklist[i].addr == addr)
1707				return -EINVAL;
1708		}
1709	}
1710
 
 
 
1711	rp->kp.pre_handler = pre_handler_kretprobe;
1712	rp->kp.post_handler = NULL;
1713	rp->kp.fault_handler = NULL;
1714	rp->kp.break_handler = NULL;
1715
1716	/* Pre-allocate memory for max kretprobe instances */
1717	if (rp->maxactive <= 0) {
1718#ifdef CONFIG_PREEMPT
1719		rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1720#else
1721		rp->maxactive = num_possible_cpus();
1722#endif
1723	}
1724	spin_lock_init(&rp->lock);
1725	INIT_HLIST_HEAD(&rp->free_instances);
1726	for (i = 0; i < rp->maxactive; i++) {
1727		inst = kmalloc(sizeof(struct kretprobe_instance) +
1728			       rp->data_size, GFP_KERNEL);
1729		if (inst == NULL) {
1730			free_rp_inst(rp);
1731			return -ENOMEM;
1732		}
1733		INIT_HLIST_NODE(&inst->hlist);
1734		hlist_add_head(&inst->hlist, &rp->free_instances);
 
 
 
 
 
 
 
 
 
 
 
1735	}
1736
1737	rp->nmissed = 0;
1738	/* Establish function entry probe point */
1739	ret = register_kprobe(&rp->kp);
1740	if (ret != 0)
1741		free_rp_inst(rp);
 
1742	return ret;
1743}
1744EXPORT_SYMBOL_GPL(register_kretprobe);
1745
1746int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1747{
1748	int ret = 0, i;
1749
1750	if (num <= 0)
1751		return -EINVAL;
1752	for (i = 0; i < num; i++) {
1753		ret = register_kretprobe(rps[i]);
1754		if (ret < 0) {
1755			if (i > 0)
1756				unregister_kretprobes(rps, i);
1757			break;
1758		}
1759	}
1760	return ret;
1761}
1762EXPORT_SYMBOL_GPL(register_kretprobes);
1763
1764void __kprobes unregister_kretprobe(struct kretprobe *rp)
1765{
1766	unregister_kretprobes(&rp, 1);
1767}
1768EXPORT_SYMBOL_GPL(unregister_kretprobe);
1769
1770void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1771{
1772	int i;
1773
1774	if (num <= 0)
1775		return;
1776	mutex_lock(&kprobe_mutex);
1777	for (i = 0; i < num; i++)
1778		if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1779			rps[i]->kp.addr = NULL;
 
 
 
 
 
 
1780	mutex_unlock(&kprobe_mutex);
1781
1782	synchronize_sched();
1783	for (i = 0; i < num; i++) {
1784		if (rps[i]->kp.addr) {
1785			__unregister_kprobe_bottom(&rps[i]->kp);
1786			cleanup_rp_inst(rps[i]);
 
 
1787		}
1788	}
1789}
1790EXPORT_SYMBOL_GPL(unregister_kretprobes);
1791
1792#else /* CONFIG_KRETPROBES */
1793int __kprobes register_kretprobe(struct kretprobe *rp)
1794{
1795	return -ENOSYS;
1796}
1797EXPORT_SYMBOL_GPL(register_kretprobe);
1798
1799int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1800{
1801	return -ENOSYS;
1802}
1803EXPORT_SYMBOL_GPL(register_kretprobes);
1804
1805void __kprobes unregister_kretprobe(struct kretprobe *rp)
1806{
1807}
1808EXPORT_SYMBOL_GPL(unregister_kretprobe);
1809
1810void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1811{
1812}
1813EXPORT_SYMBOL_GPL(unregister_kretprobes);
1814
1815static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1816					   struct pt_regs *regs)
1817{
1818	return 0;
1819}
 
1820
1821#endif /* CONFIG_KRETPROBES */
1822
1823/* Set the kprobe gone and remove its instruction buffer. */
1824static void __kprobes kill_kprobe(struct kprobe *p)
1825{
1826	struct kprobe *kp;
1827
 
 
 
 
 
 
 
 
 
 
1828	p->flags |= KPROBE_FLAG_GONE;
1829	if (kprobe_aggrprobe(p)) {
1830		/*
1831		 * If this is an aggr_kprobe, we have to list all the
1832		 * chained probes and mark them GONE.
1833		 */
1834		list_for_each_entry_rcu(kp, &p->list, list)
1835			kp->flags |= KPROBE_FLAG_GONE;
1836		p->post_handler = NULL;
1837		p->break_handler = NULL;
1838		kill_optimized_kprobe(p);
1839	}
1840	/*
1841	 * Here, we can remove insn_slot safely, because no thread calls
1842	 * the original probed function (which will be freed soon) any more.
1843	 */
1844	arch_remove_kprobe(p);
1845}
1846
1847/* Disable one kprobe */
1848int __kprobes disable_kprobe(struct kprobe *kp)
1849{
1850	int ret = 0;
 
1851
1852	mutex_lock(&kprobe_mutex);
1853
1854	/* Disable this kprobe */
1855	if (__disable_kprobe(kp) == NULL)
1856		ret = -EINVAL;
 
1857
1858	mutex_unlock(&kprobe_mutex);
1859	return ret;
1860}
1861EXPORT_SYMBOL_GPL(disable_kprobe);
1862
1863/* Enable one kprobe */
1864int __kprobes enable_kprobe(struct kprobe *kp)
1865{
1866	int ret = 0;
1867	struct kprobe *p;
1868
1869	mutex_lock(&kprobe_mutex);
1870
1871	/* Check whether specified probe is valid. */
1872	p = __get_valid_kprobe(kp);
1873	if (unlikely(p == NULL)) {
1874		ret = -EINVAL;
1875		goto out;
1876	}
1877
1878	if (kprobe_gone(kp)) {
1879		/* This kprobe has gone, we couldn't enable it. */
1880		ret = -EINVAL;
1881		goto out;
1882	}
1883
1884	if (p != kp)
1885		kp->flags &= ~KPROBE_FLAG_DISABLED;
1886
1887	if (!kprobes_all_disarmed && kprobe_disabled(p)) {
1888		p->flags &= ~KPROBE_FLAG_DISABLED;
1889		arm_kprobe(p);
 
 
 
 
 
1890	}
1891out:
1892	mutex_unlock(&kprobe_mutex);
1893	return ret;
1894}
1895EXPORT_SYMBOL_GPL(enable_kprobe);
1896
1897void __kprobes dump_kprobe(struct kprobe *kp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898{
1899	printk(KERN_WARNING "Dumping kprobe:\n");
1900	printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
1901	       kp->symbol_name, kp->addr, kp->offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1902}
1903
1904/* Module notifier call back, checking kprobes on the module */
1905static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1906					     unsigned long val, void *data)
1907{
1908	struct module *mod = data;
1909	struct hlist_head *head;
1910	struct hlist_node *node;
1911	struct kprobe *p;
1912	unsigned int i;
1913	int checkcore = (val == MODULE_STATE_GOING);
1914
 
 
 
 
 
1915	if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1916		return NOTIFY_DONE;
1917
1918	/*
1919	 * When MODULE_STATE_GOING was notified, both of module .text and
1920	 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1921	 * notified, only .init.text section would be freed. We need to
1922	 * disable kprobes which have been inserted in the sections.
1923	 */
1924	mutex_lock(&kprobe_mutex);
1925	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1926		head = &kprobe_table[i];
1927		hlist_for_each_entry_rcu(p, node, head, hlist)
1928			if (within_module_init((unsigned long)p->addr, mod) ||
1929			    (checkcore &&
1930			     within_module_core((unsigned long)p->addr, mod))) {
1931				/*
1932				 * The vaddr this probe is installed will soon
1933				 * be vfreed buy not synced to disk. Hence,
1934				 * disarming the breakpoint isn't needed.
 
 
 
 
 
 
1935				 */
1936				kill_kprobe(p);
1937			}
1938	}
 
 
1939	mutex_unlock(&kprobe_mutex);
1940	return NOTIFY_DONE;
1941}
1942
1943static struct notifier_block kprobe_module_nb = {
1944	.notifier_call = kprobes_module_callback,
1945	.priority = 0
1946};
1947
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948static int __init init_kprobes(void)
1949{
1950	int i, err = 0;
1951	unsigned long offset = 0, size = 0;
1952	char *modname, namebuf[128];
1953	const char *symbol_name;
1954	void *addr;
1955	struct kprobe_blackpoint *kb;
1956
1957	/* FIXME allocate the probe table, currently defined statically */
1958	/* initialize all list heads */
1959	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1960		INIT_HLIST_HEAD(&kprobe_table[i]);
1961		INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1962		spin_lock_init(&(kretprobe_table_locks[i].lock));
1963	}
1964
1965	/*
1966	 * Lookup and populate the kprobe_blacklist.
1967	 *
1968	 * Unlike the kretprobe blacklist, we'll need to determine
1969	 * the range of addresses that belong to the said functions,
1970	 * since a kprobe need not necessarily be at the beginning
1971	 * of a function.
1972	 */
1973	for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1974		kprobe_lookup_name(kb->name, addr);
1975		if (!addr)
1976			continue;
1977
1978		kb->start_addr = (unsigned long)addr;
1979		symbol_name = kallsyms_lookup(kb->start_addr,
1980				&size, &offset, &modname, namebuf);
1981		if (!symbol_name)
1982			kb->range = 0;
1983		else
1984			kb->range = size;
1985	}
1986
1987	if (kretprobe_blacklist_size) {
1988		/* lookup the function address from its name */
1989		for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1990			kprobe_lookup_name(kretprobe_blacklist[i].name,
1991					   kretprobe_blacklist[i].addr);
1992			if (!kretprobe_blacklist[i].addr)
1993				printk("kretprobe: lookup failed: %s\n",
1994				       kretprobe_blacklist[i].name);
1995		}
1996	}
1997
1998#if defined(CONFIG_OPTPROBES)
1999#if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2000	/* Init kprobe_optinsn_slots */
 
 
2001	kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2002#endif
2003	/* By default, kprobes can be optimized */
2004	kprobes_allow_optimization = true;
2005#endif
2006
2007	/* By default, kprobes are armed */
2008	kprobes_all_disarmed = false;
2009
2010	err = arch_init_kprobes();
2011	if (!err)
2012		err = register_die_notifier(&kprobe_exceptions_nb);
2013	if (!err)
2014		err = register_module_notifier(&kprobe_module_nb);
2015
2016	kprobes_initialized = (err == 0);
 
 
 
 
2017
2018	if (!err)
2019		init_test_probes();
2020	return err;
 
 
 
 
 
 
 
 
2021}
 
 
2022
2023#ifdef CONFIG_DEBUG_FS
2024static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
2025		const char *sym, int offset, char *modname, struct kprobe *pp)
2026{
2027	char *kprobe_type;
 
2028
2029	if (p->pre_handler == pre_handler_kretprobe)
2030		kprobe_type = "r";
2031	else if (p->pre_handler == setjmp_pre_handler)
2032		kprobe_type = "j";
2033	else
2034		kprobe_type = "k";
2035
 
 
 
2036	if (sym)
2037		seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2038			p->addr, kprobe_type, sym, offset,
2039			(modname ? modname : " "));
2040	else
2041		seq_printf(pi, "%p  %s  %p ",
2042			p->addr, kprobe_type, p->addr);
2043
2044	if (!pp)
2045		pp = p;
2046	seq_printf(pi, "%s%s%s\n",
2047		(kprobe_gone(p) ? "[GONE]" : ""),
2048		((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2049		(kprobe_optimized(pp) ? "[OPTIMIZED]" : ""));
 
2050}
2051
2052static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2053{
2054	return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2055}
2056
2057static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2058{
2059	(*pos)++;
2060	if (*pos >= KPROBE_TABLE_SIZE)
2061		return NULL;
2062	return pos;
2063}
2064
2065static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
2066{
2067	/* Nothing to do */
2068}
2069
2070static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
2071{
2072	struct hlist_head *head;
2073	struct hlist_node *node;
2074	struct kprobe *p, *kp;
2075	const char *sym = NULL;
2076	unsigned int i = *(loff_t *) v;
2077	unsigned long offset = 0;
2078	char *modname, namebuf[128];
2079
2080	head = &kprobe_table[i];
2081	preempt_disable();
2082	hlist_for_each_entry_rcu(p, node, head, hlist) {
2083		sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2084					&offset, &modname, namebuf);
2085		if (kprobe_aggrprobe(p)) {
2086			list_for_each_entry_rcu(kp, &p->list, list)
2087				report_probe(pi, kp, sym, offset, modname, p);
2088		} else
2089			report_probe(pi, p, sym, offset, modname, NULL);
2090	}
2091	preempt_enable();
2092	return 0;
2093}
2094
2095static const struct seq_operations kprobes_seq_ops = {
2096	.start = kprobe_seq_start,
2097	.next  = kprobe_seq_next,
2098	.stop  = kprobe_seq_stop,
2099	.show  = show_kprobe_addr
2100};
2101
2102static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
 
 
 
 
 
 
 
 
 
2103{
2104	return seq_open(filp, &kprobes_seq_ops);
2105}
2106
2107static const struct file_operations debugfs_kprobes_operations = {
2108	.open           = kprobes_open,
2109	.read           = seq_read,
2110	.llseek         = seq_lseek,
2111	.release        = seq_release,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2112};
 
2113
2114static void __kprobes arm_all_kprobes(void)
2115{
2116	struct hlist_head *head;
2117	struct hlist_node *node;
2118	struct kprobe *p;
2119	unsigned int i;
 
2120
2121	mutex_lock(&kprobe_mutex);
2122
2123	/* If kprobes are armed, just return */
2124	if (!kprobes_all_disarmed)
2125		goto already_enabled;
2126
 
 
 
 
 
 
2127	/* Arming kprobes doesn't optimize kprobe itself */
2128	mutex_lock(&text_mutex);
2129	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2130		head = &kprobe_table[i];
2131		hlist_for_each_entry_rcu(p, node, head, hlist)
2132			if (!kprobe_disabled(p))
2133				__arm_kprobe(p);
 
 
 
 
 
 
 
 
2134	}
2135	mutex_unlock(&text_mutex);
2136
2137	kprobes_all_disarmed = false;
2138	printk(KERN_INFO "Kprobes globally enabled\n");
 
 
 
2139
2140already_enabled:
2141	mutex_unlock(&kprobe_mutex);
2142	return;
2143}
2144
2145static void __kprobes disarm_all_kprobes(void)
2146{
2147	struct hlist_head *head;
2148	struct hlist_node *node;
2149	struct kprobe *p;
2150	unsigned int i;
 
2151
2152	mutex_lock(&kprobe_mutex);
2153
2154	/* If kprobes are already disarmed, just return */
2155	if (kprobes_all_disarmed) {
2156		mutex_unlock(&kprobe_mutex);
2157		return;
2158	}
2159
2160	kprobes_all_disarmed = true;
2161	printk(KERN_INFO "Kprobes globally disabled\n");
2162
2163	mutex_lock(&text_mutex);
2164	for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2165		head = &kprobe_table[i];
2166		hlist_for_each_entry_rcu(p, node, head, hlist) {
2167			if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2168				__disarm_kprobe(p, false);
 
 
 
 
 
 
 
2169		}
2170	}
2171	mutex_unlock(&text_mutex);
 
 
 
 
 
 
2172	mutex_unlock(&kprobe_mutex);
2173
2174	/* Wait for disarming all kprobes by optimizer */
2175	wait_for_kprobe_optimizer();
 
 
2176}
2177
2178/*
2179 * XXX: The debugfs bool file interface doesn't allow for callbacks
2180 * when the bool state is switched. We can reuse that facility when
2181 * available
2182 */
2183static ssize_t read_enabled_file_bool(struct file *file,
2184	       char __user *user_buf, size_t count, loff_t *ppos)
2185{
2186	char buf[3];
2187
2188	if (!kprobes_all_disarmed)
2189		buf[0] = '1';
2190	else
2191		buf[0] = '0';
2192	buf[1] = '\n';
2193	buf[2] = 0x00;
2194	return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2195}
2196
2197static ssize_t write_enabled_file_bool(struct file *file,
2198	       const char __user *user_buf, size_t count, loff_t *ppos)
2199{
2200	char buf[32];
2201	int buf_size;
 
 
 
 
2202
2203	buf_size = min(count, (sizeof(buf)-1));
2204	if (copy_from_user(buf, user_buf, buf_size))
2205		return -EFAULT;
2206
2207	switch (buf[0]) {
2208	case 'y':
2209	case 'Y':
2210	case '1':
2211		arm_all_kprobes();
2212		break;
2213	case 'n':
2214	case 'N':
2215	case '0':
2216		disarm_all_kprobes();
2217		break;
2218	}
2219
2220	return count;
2221}
2222
2223static const struct file_operations fops_kp = {
2224	.read =         read_enabled_file_bool,
2225	.write =        write_enabled_file_bool,
2226	.llseek =	default_llseek,
2227};
2228
2229static int __kprobes debugfs_kprobe_init(void)
2230{
2231	struct dentry *dir, *file;
2232	unsigned int value = 1;
2233
2234	dir = debugfs_create_dir("kprobes", NULL);
2235	if (!dir)
2236		return -ENOMEM;
2237
2238	file = debugfs_create_file("list", 0444, dir, NULL,
2239				&debugfs_kprobes_operations);
2240	if (!file) {
2241		debugfs_remove(dir);
2242		return -ENOMEM;
2243	}
2244
2245	file = debugfs_create_file("enabled", 0600, dir,
2246					&value, &fops_kp);
2247	if (!file) {
2248		debugfs_remove(dir);
2249		return -ENOMEM;
2250	}
2251
2252	return 0;
2253}
2254
2255late_initcall(debugfs_kprobe_init);
2256#endif /* CONFIG_DEBUG_FS */
2257
2258module_init(init_kprobes);
2259
2260/* defined in arch/.../kernel/kprobes.c */
2261EXPORT_SYMBOL_GPL(jprobe_return);