Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  4 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  5 */
  6#include "xfs.h"
  7#include "xfs_fs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 12#include "xfs_mount.h"
 13#include "xfs_trans.h"
 
 
 
 
 
 
 
 
 14#include "xfs_buf_item.h"
 15#include "xfs_trans_priv.h"
 
 
 16#include "xfs_trace.h"
 17
 18/*
 19 * Check to see if a buffer matching the given parameters is already
 20 * a part of the given transaction.
 21 */
 22STATIC struct xfs_buf *
 23xfs_trans_buf_item_match(
 24	struct xfs_trans	*tp,
 25	struct xfs_buftarg	*target,
 26	struct xfs_buf_map	*map,
 27	int			nmaps)
 28{
 29	struct xfs_log_item	*lip;
 30	struct xfs_buf_log_item	*blip;
 31	int			len = 0;
 32	int			i;
 33
 34	for (i = 0; i < nmaps; i++)
 35		len += map[i].bm_len;
 36
 37	list_for_each_entry(lip, &tp->t_items, li_trans) {
 38		blip = (struct xfs_buf_log_item *)lip;
 
 39		if (blip->bli_item.li_type == XFS_LI_BUF &&
 40		    blip->bli_buf->b_target == target &&
 41		    xfs_buf_daddr(blip->bli_buf) == map[0].bm_bn &&
 42		    blip->bli_buf->b_length == len) {
 43			ASSERT(blip->bli_buf->b_map_count == nmaps);
 44			return blip->bli_buf;
 45		}
 46	}
 47
 48	return NULL;
 49}
 50
 51/*
 52 * Add the locked buffer to the transaction.
 53 *
 54 * The buffer must be locked, and it cannot be associated with any
 55 * transaction.
 56 *
 57 * If the buffer does not yet have a buf log item associated with it,
 58 * then allocate one for it.  Then add the buf item to the transaction.
 59 */
 60STATIC void
 61_xfs_trans_bjoin(
 62	struct xfs_trans	*tp,
 63	struct xfs_buf		*bp,
 64	int			reset_recur)
 65{
 66	struct xfs_buf_log_item	*bip;
 67
 68	ASSERT(bp->b_transp == NULL);
 69
 70	/*
 71	 * The xfs_buf_log_item pointer is stored in b_log_item.  If
 72	 * it doesn't have one yet, then allocate one and initialize it.
 73	 * The checks to see if one is there are in xfs_buf_item_init().
 74	 */
 75	xfs_buf_item_init(bp, tp->t_mountp);
 76	bip = bp->b_log_item;
 77	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 78	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
 79	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 80	if (reset_recur)
 81		bip->bli_recur = 0;
 82
 83	/*
 84	 * Take a reference for this transaction on the buf item.
 85	 */
 86	atomic_inc(&bip->bli_refcount);
 87
 88	/*
 89	 * Attach the item to the transaction so we can find it in
 90	 * xfs_trans_get_buf() and friends.
 91	 */
 92	xfs_trans_add_item(tp, &bip->bli_item);
 
 
 
 
 
 93	bp->b_transp = tp;
 94
 95}
 96
 97void
 98xfs_trans_bjoin(
 99	struct xfs_trans	*tp,
100	struct xfs_buf		*bp)
101{
102	_xfs_trans_bjoin(tp, bp, 0);
103	trace_xfs_trans_bjoin(bp->b_log_item);
104}
105
106/*
107 * Get and lock the buffer for the caller if it is not already
108 * locked within the given transaction.  If it is already locked
109 * within the transaction, just increment its lock recursion count
110 * and return a pointer to it.
111 *
112 * If the transaction pointer is NULL, make this just a normal
113 * get_buf() call.
114 */
115int
116xfs_trans_get_buf_map(
117	struct xfs_trans	*tp,
118	struct xfs_buftarg	*target,
119	struct xfs_buf_map	*map,
120	int			nmaps,
121	xfs_buf_flags_t		flags,
122	struct xfs_buf		**bpp)
123{
124	struct xfs_buf		*bp;
125	struct xfs_buf_log_item	*bip;
126	int			error;
127
128	*bpp = NULL;
129	if (!tp)
130		return xfs_buf_get_map(target, map, nmaps, flags, bpp);
 
 
 
 
 
 
131
132	/*
133	 * If we find the buffer in the cache with this transaction
134	 * pointer in its b_fsprivate2 field, then we know we already
135	 * have it locked.  In this case we just increment the lock
136	 * recursion count and return the buffer to the caller.
137	 */
138	bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
139	if (bp != NULL) {
140		ASSERT(xfs_buf_islocked(bp));
141		if (xfs_is_shutdown(tp->t_mountp)) {
142			xfs_buf_stale(bp);
143			bp->b_flags |= XBF_DONE;
144		}
 
 
 
 
 
 
145
146		ASSERT(bp->b_transp == tp);
147		bip = bp->b_log_item;
148		ASSERT(bip != NULL);
149		ASSERT(atomic_read(&bip->bli_refcount) > 0);
150		bip->bli_recur++;
151		trace_xfs_trans_get_buf_recur(bip);
152		*bpp = bp;
153		return 0;
154	}
155
156	error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
157	if (error)
158		return error;
 
 
 
 
 
 
 
 
 
159
160	ASSERT(!bp->b_error);
161
162	_xfs_trans_bjoin(tp, bp, 1);
163	trace_xfs_trans_get_buf(bp->b_log_item);
164	*bpp = bp;
165	return 0;
166}
167
168/*
169 * Get and lock the superblock buffer for the given transaction.
 
 
 
 
 
170 */
171static struct xfs_buf *
172__xfs_trans_getsb(
173	struct xfs_trans	*tp,
174	struct xfs_buf		*bp)
175{
 
 
 
176	/*
177	 * Just increment the lock recursion count if the buffer is already
178	 * attached to this transaction.
179	 */
180	if (bp->b_transp == tp) {
181		struct xfs_buf_log_item	*bip = bp->b_log_item;
 
182
 
 
 
 
 
 
 
 
 
183		ASSERT(bip != NULL);
184		ASSERT(atomic_read(&bip->bli_refcount) > 0);
185		bip->bli_recur++;
186
187		trace_xfs_trans_getsb_recur(bip);
188	} else {
189		xfs_buf_lock(bp);
190		xfs_buf_hold(bp);
191		_xfs_trans_bjoin(tp, bp, 1);
192
193		trace_xfs_trans_getsb(bp->b_log_item);
194	}
195
196	return bp;
197}
 
198
199struct xfs_buf *
200xfs_trans_getsb(
201	struct xfs_trans	*tp)
202{
203	return __xfs_trans_getsb(tp, tp->t_mountp->m_sb_bp);
204}
205
206struct xfs_buf *
207xfs_trans_getrtsb(
208	struct xfs_trans	*tp)
209{
210	if (!tp->t_mountp->m_rtsb_bp)
211		return NULL;
212	return __xfs_trans_getsb(tp, tp->t_mountp->m_rtsb_bp);
213}
214
215/*
216 * Get and lock the buffer for the caller if it is not already
217 * locked within the given transaction.  If it has not yet been
218 * read in, read it from disk. If it is already locked
219 * within the transaction and already read in, just increment its
220 * lock recursion count and return a pointer to it.
221 *
222 * If the transaction pointer is NULL, make this just a normal
223 * read_buf() call.
224 */
225int
226xfs_trans_read_buf_map(
227	struct xfs_mount	*mp,
228	struct xfs_trans	*tp,
229	struct xfs_buftarg	*target,
230	struct xfs_buf_map	*map,
231	int			nmaps,
232	xfs_buf_flags_t		flags,
233	struct xfs_buf		**bpp,
234	const struct xfs_buf_ops *ops)
235{
236	struct xfs_buf		*bp = NULL;
237	struct xfs_buf_log_item	*bip;
238	int			error;
239
240	*bpp = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241	/*
242	 * If we find the buffer in the cache with this transaction
243	 * pointer in its b_fsprivate2 field, then we know we already
244	 * have it locked.  If it is already read in we just increment
245	 * the lock recursion count and return the buffer to the caller.
246	 * If the buffer is not yet read in, then we read it in, increment
247	 * the lock recursion count, and return it to the caller.
248	 */
249	if (tp)
250		bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
251	if (bp) {
252		ASSERT(xfs_buf_islocked(bp));
253		ASSERT(bp->b_transp == tp);
254		ASSERT(bp->b_log_item != NULL);
255		ASSERT(!bp->b_error);
256		ASSERT(bp->b_flags & XBF_DONE);
257
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
258		/*
259		 * We never locked this buf ourselves, so we shouldn't
260		 * brelse it either. Just get out.
261		 */
262		if (xfs_is_shutdown(mp)) {
263			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
264			return -EIO;
 
265		}
266
267		/*
268		 * Check if the caller is trying to read a buffer that is
269		 * already attached to the transaction yet has no buffer ops
270		 * assigned.  Ops are usually attached when the buffer is
271		 * attached to the transaction, or by the read caller if
272		 * special circumstances.  That didn't happen, which is not
273		 * how this is supposed to go.
274		 *
275		 * If the buffer passes verification we'll let this go, but if
276		 * not we have to shut down.  Let the transaction cleanup code
277		 * release this buffer when it kills the tranaction.
278		 */
279		ASSERT(bp->b_ops != NULL);
280		error = xfs_buf_reverify(bp, ops);
281		if (error) {
282			xfs_buf_ioerror_alert(bp, __return_address);
283
284			if (tp->t_flags & XFS_TRANS_DIRTY)
285				xfs_force_shutdown(tp->t_mountp,
286						SHUTDOWN_META_IO_ERROR);
287
288			/* bad CRC means corrupted metadata */
289			if (error == -EFSBADCRC)
290				error = -EFSCORRUPTED;
291			return error;
292		}
293
294		bip = bp->b_log_item;
295		bip->bli_recur++;
296
297		ASSERT(atomic_read(&bip->bli_refcount) > 0);
298		trace_xfs_trans_read_buf_recur(bip);
299		ASSERT(bp->b_ops != NULL || ops == NULL);
300		*bpp = bp;
301		return 0;
302	}
303
304	error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
305			__return_address);
306	switch (error) {
307	case 0:
308		break;
309	default:
310		if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
 
 
 
 
 
 
 
 
 
 
 
 
 
311			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
312		fallthrough;
313	case -ENOMEM:
314	case -EAGAIN:
315		return error;
316	}
317
318	if (xfs_is_shutdown(mp)) {
319		xfs_buf_relse(bp);
320		trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
321		return -EIO;
 
 
 
 
 
 
322	}
 
 
 
 
 
 
323
324	if (tp) {
325		_xfs_trans_bjoin(tp, bp, 1);
326		trace_xfs_trans_read_buf(bp->b_log_item);
327	}
328	ASSERT(bp->b_ops != NULL || ops == NULL);
329	*bpp = bp;
330	return 0;
331
332}
333
334/* Has this buffer been dirtied by anyone? */
335bool
336xfs_trans_buf_is_dirty(
337	struct xfs_buf		*bp)
338{
339	struct xfs_buf_log_item	*bip = bp->b_log_item;
 
 
 
 
 
340
341	if (!bip)
342		return false;
343	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
344	return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
345}
346
 
347/*
348 * Release a buffer previously joined to the transaction. If the buffer is
349 * modified within this transaction, decrement the recursion count but do not
350 * release the buffer even if the count goes to 0. If the buffer is not modified
351 * within the transaction, decrement the recursion count and release the buffer
352 * if the recursion count goes to 0.
 
 
353 *
354 * If the buffer is to be released and it was not already dirty before this
355 * transaction began, then also free the buf_log_item associated with it.
356 *
357 * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
 
358 */
359void
360xfs_trans_brelse(
361	struct xfs_trans	*tp,
362	struct xfs_buf		*bp)
363{
364	struct xfs_buf_log_item	*bip = bp->b_log_item;
365
366	ASSERT(bp->b_transp == tp);
 
 
 
 
367
368	if (!tp) {
 
 
 
 
 
 
 
 
 
 
369		xfs_buf_relse(bp);
370		return;
371	}
372
373	trace_xfs_trans_brelse(bip);
 
374	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
 
 
375	ASSERT(atomic_read(&bip->bli_refcount) > 0);
376
 
 
377	/*
378	 * If the release is for a recursive lookup, then decrement the count
379	 * and return.
380	 */
381	if (bip->bli_recur > 0) {
382		bip->bli_recur--;
383		return;
384	}
385
386	/*
387	 * If the buffer is invalidated or dirty in this transaction, we can't
388	 * release it until we commit.
389	 */
390	if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
391		return;
 
 
 
 
 
 
 
392	if (bip->bli_flags & XFS_BLI_STALE)
393		return;
394
 
 
395	/*
396	 * Unlink the log item from the transaction and clear the hold flag, if
397	 * set. We wouldn't want the next user of the buffer to get confused.
398	 */
399	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
400	xfs_trans_del_item(&bip->bli_item);
401	bip->bli_flags &= ~XFS_BLI_HOLD;
402
403	/* drop the reference to the bli */
404	xfs_buf_item_put(bip);
405
406	bp->b_transp = NULL;
407	xfs_buf_relse(bp);
408}
409
410/*
411 * Forcibly detach a buffer previously joined to the transaction.  The caller
412 * will retain its locked reference to the buffer after this function returns.
413 * The buffer must be completely clean and must not be held to the transaction.
414 */
415void
416xfs_trans_bdetach(
417	struct xfs_trans	*tp,
418	struct xfs_buf		*bp)
419{
420	struct xfs_buf_log_item	*bip = bp->b_log_item;
421
422	ASSERT(tp != NULL);
423	ASSERT(bp->b_transp == tp);
424	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
425	ASSERT(atomic_read(&bip->bli_refcount) > 0);
426
427	trace_xfs_trans_bdetach(bip);
 
 
 
428
429	/*
430	 * Erase all recursion count, since we're removing this buffer from the
431	 * transaction.
 
 
 
432	 */
433	bip->bli_recur = 0;
 
 
 
 
 
 
 
 
 
 
434
435	/*
436	 * The buffer must be completely clean.  Specifically, it had better
437	 * not be dirty, stale, logged, ordered, or held to the transaction.
438	 */
439	ASSERT(!test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
440	ASSERT(!(bip->bli_flags & XFS_BLI_DIRTY));
441	ASSERT(!(bip->bli_flags & XFS_BLI_HOLD));
442	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
443	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
444	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
445
446	/* Unlink the log item from the transaction and drop the log item. */
447	xfs_trans_del_item(&bip->bli_item);
448	xfs_buf_item_put(bip);
449	bp->b_transp = NULL;
450}
451
452/*
453 * Mark the buffer as not needing to be unlocked when the buf item's
454 * iop_committing() routine is called.  The buffer must already be locked
455 * and associated with the given transaction.
456 */
457/* ARGSUSED */
458void
459xfs_trans_bhold(
460	xfs_trans_t		*tp,
461	struct xfs_buf		*bp)
462{
463	struct xfs_buf_log_item	*bip = bp->b_log_item;
464
465	ASSERT(bp->b_transp == tp);
466	ASSERT(bip != NULL);
467	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
468	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
469	ASSERT(atomic_read(&bip->bli_refcount) > 0);
470
471	bip->bli_flags |= XFS_BLI_HOLD;
472	trace_xfs_trans_bhold(bip);
473}
474
475/*
476 * Cancel the previous buffer hold request made on this buffer
477 * for this transaction.
478 */
479void
480xfs_trans_bhold_release(
481	xfs_trans_t		*tp,
482	struct xfs_buf		*bp)
483{
484	struct xfs_buf_log_item	*bip = bp->b_log_item;
485
486	ASSERT(bp->b_transp == tp);
487	ASSERT(bip != NULL);
488	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
489	ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
490	ASSERT(atomic_read(&bip->bli_refcount) > 0);
491	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
492
493	bip->bli_flags &= ~XFS_BLI_HOLD;
494	trace_xfs_trans_bhold_release(bip);
495}
496
497/*
498 * Mark a buffer dirty in the transaction.
 
 
 
 
 
 
499 */
500void
501xfs_trans_dirty_buf(
502	struct xfs_trans	*tp,
503	struct xfs_buf		*bp)
 
504{
505	struct xfs_buf_log_item	*bip = bp->b_log_item;
506
507	ASSERT(bp->b_transp == tp);
508	ASSERT(bip != NULL);
 
 
 
509
510	/*
511	 * Mark the buffer as needing to be written out eventually,
512	 * and set its iodone function to remove the buffer's buf log
513	 * item from the AIL and free it when the buffer is flushed
514	 * to disk.
 
 
 
 
515	 */
516	bp->b_flags |= XBF_DONE;
 
517
518	ASSERT(atomic_read(&bip->bli_refcount) > 0);
 
 
 
 
519
520	/*
521	 * If we invalidated the buffer within this transaction, then
522	 * cancel the invalidation now that we're dirtying the buffer
523	 * again.  There are no races with the code in xfs_buf_item_unpin(),
524	 * because we have a reference to the buffer this entire time.
525	 */
526	if (bip->bli_flags & XFS_BLI_STALE) {
527		bip->bli_flags &= ~XFS_BLI_STALE;
528		ASSERT(bp->b_flags & XBF_STALE);
529		bp->b_flags &= ~XBF_STALE;
530		bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
531	}
532	bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
533
534	tp->t_flags |= XFS_TRANS_DIRTY;
535	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
536}
537
538/*
539 * This is called to mark bytes first through last inclusive of the given
540 * buffer as needing to be logged when the transaction is committed.
541 * The buffer must already be associated with the given transaction.
542 *
543 * First and last are numbers relative to the beginning of this buffer,
544 * so the first byte in the buffer is numbered 0 regardless of the
545 * value of b_blkno.
546 */
547void
548xfs_trans_log_buf(
549	struct xfs_trans	*tp,
550	struct xfs_buf		*bp,
551	uint			first,
552	uint			last)
553{
554	struct xfs_buf_log_item	*bip = bp->b_log_item;
555
556	ASSERT(first <= last && last < BBTOB(bp->b_length));
557	ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
558
559	xfs_trans_dirty_buf(tp, bp);
560
561	trace_xfs_trans_log_buf(bip);
562	xfs_buf_item_log(bip, first, last);
563}
564
565
566/*
567 * Invalidate a buffer that is being used within a transaction.
568 *
569 * Typically this is because the blocks in the buffer are being freed, so we
570 * need to prevent it from being written out when we're done.  Allowing it
571 * to be written again might overwrite data in the free blocks if they are
572 * reallocated to a file.
573 *
574 * We prevent the buffer from being written out by marking it stale.  We can't
575 * get rid of the buf log item at this point because the buffer may still be
576 * pinned by another transaction.  If that is the case, then we'll wait until
577 * the buffer is committed to disk for the last time (we can tell by the ref
578 * count) and free it in xfs_buf_item_unpin().  Until that happens we will
579 * keep the buffer locked so that the buffer and buf log item are not reused.
580 *
581 * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
582 * the buf item.  This will be used at recovery time to determine that copies
583 * of the buffer in the log before this should not be replayed.
584 *
585 * We mark the item descriptor and the transaction dirty so that we'll hold
586 * the buffer until after the commit.
587 *
588 * Since we're invalidating the buffer, we also clear the state about which
589 * parts of the buffer have been logged.  We also clear the flag indicating
590 * that this is an inode buffer since the data in the buffer will no longer
591 * be valid.
592 *
593 * We set the stale bit in the buffer as well since we're getting rid of it.
594 */
595void
596xfs_trans_binval(
597	xfs_trans_t		*tp,
598	struct xfs_buf		*bp)
599{
600	struct xfs_buf_log_item	*bip = bp->b_log_item;
601	int			i;
602
603	ASSERT(bp->b_transp == tp);
604	ASSERT(bip != NULL);
605	ASSERT(atomic_read(&bip->bli_refcount) > 0);
606
607	trace_xfs_trans_binval(bip);
608
609	if (bip->bli_flags & XFS_BLI_STALE) {
610		/*
611		 * If the buffer is already invalidated, then
612		 * just return.
613		 */
614		ASSERT(bp->b_flags & XBF_STALE);
 
615		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
616		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
617		ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
618		ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
619		ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
620		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
621		return;
622	}
623
624	xfs_buf_stale(bp);
625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626	bip->bli_flags |= XFS_BLI_STALE;
627	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
628	bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
629	bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
630	bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
631	for (i = 0; i < bip->bli_format_count; i++) {
632		memset(bip->bli_formats[i].blf_data_map, 0,
633		       (bip->bli_formats[i].blf_map_size * sizeof(uint)));
634	}
635	set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
636	tp->t_flags |= XFS_TRANS_DIRTY;
637}
638
639/*
640 * This call is used to indicate that the buffer contains on-disk inodes which
641 * must be handled specially during recovery.  They require special handling
642 * because only the di_next_unlinked from the inodes in the buffer should be
643 * recovered.  The rest of the data in the buffer is logged via the inodes
644 * themselves.
645 *
646 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
647 * transferred to the buffer's log format structure so that we'll know what to
648 * do at recovery time.
649 */
650void
651xfs_trans_inode_buf(
652	xfs_trans_t		*tp,
653	struct xfs_buf		*bp)
654{
655	struct xfs_buf_log_item	*bip = bp->b_log_item;
656
657	ASSERT(bp->b_transp == tp);
658	ASSERT(bip != NULL);
659	ASSERT(atomic_read(&bip->bli_refcount) > 0);
660
661	bip->bli_flags |= XFS_BLI_INODE_BUF;
662	bp->b_flags |= _XBF_INODES;
663	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
664}
665
666/*
667 * This call is used to indicate that the buffer is going to
668 * be staled and was an inode buffer. This means it gets
669 * special processing during unpin - where any inodes
670 * associated with the buffer should be removed from ail.
671 * There is also special processing during recovery,
672 * any replay of the inodes in the buffer needs to be
673 * prevented as the buffer may have been reused.
674 */
675void
676xfs_trans_stale_inode_buf(
677	xfs_trans_t		*tp,
678	struct xfs_buf		*bp)
679{
680	struct xfs_buf_log_item	*bip = bp->b_log_item;
681
682	ASSERT(bp->b_transp == tp);
683	ASSERT(bip != NULL);
684	ASSERT(atomic_read(&bip->bli_refcount) > 0);
685
686	bip->bli_flags |= XFS_BLI_STALE_INODE;
687	bp->b_flags |= _XBF_INODES;
688	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
689}
690
691/*
692 * Mark the buffer as being one which contains newly allocated
693 * inodes.  We need to make sure that even if this buffer is
694 * relogged as an 'inode buf' we still recover all of the inode
695 * images in the face of a crash.  This works in coordination with
696 * xfs_buf_item_committed() to ensure that the buffer remains in the
697 * AIL at its original location even after it has been relogged.
698 */
699/* ARGSUSED */
700void
701xfs_trans_inode_alloc_buf(
702	xfs_trans_t		*tp,
703	struct xfs_buf		*bp)
704{
705	struct xfs_buf_log_item	*bip = bp->b_log_item;
706
707	ASSERT(bp->b_transp == tp);
708	ASSERT(bip != NULL);
709	ASSERT(atomic_read(&bip->bli_refcount) > 0);
710
711	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
712	bp->b_flags |= _XBF_INODES;
713	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
714}
715
716/*
717 * Mark the buffer as ordered for this transaction. This means that the contents
718 * of the buffer are not recorded in the transaction but it is tracked in the
719 * AIL as though it was. This allows us to record logical changes in
720 * transactions rather than the physical changes we make to the buffer without
721 * changing writeback ordering constraints of metadata buffers.
722 */
723bool
724xfs_trans_ordered_buf(
725	struct xfs_trans	*tp,
726	struct xfs_buf		*bp)
727{
728	struct xfs_buf_log_item	*bip = bp->b_log_item;
729
730	ASSERT(bp->b_transp == tp);
731	ASSERT(bip != NULL);
732	ASSERT(atomic_read(&bip->bli_refcount) > 0);
733
734	if (xfs_buf_item_dirty_format(bip))
735		return false;
736
737	bip->bli_flags |= XFS_BLI_ORDERED;
738	trace_xfs_buf_item_ordered(bip);
739
740	/*
741	 * We don't log a dirty range of an ordered buffer but it still needs
742	 * to be marked dirty and that it has been logged.
743	 */
744	xfs_trans_dirty_buf(tp, bp);
745	return true;
746}
747
748/*
749 * Set the type of the buffer for log recovery so that it can correctly identify
750 * and hence attach the correct buffer ops to the buffer after replay.
751 */
752void
753xfs_trans_buf_set_type(
754	struct xfs_trans	*tp,
755	struct xfs_buf		*bp,
756	enum xfs_blft		type)
757{
758	struct xfs_buf_log_item	*bip = bp->b_log_item;
759
760	if (!tp)
761		return;
762
763	ASSERT(bp->b_transp == tp);
764	ASSERT(bip != NULL);
765	ASSERT(atomic_read(&bip->bli_refcount) > 0);
766
767	xfs_blft_to_flags(&bip->__bli_format, type);
768}
769
770void
771xfs_trans_buf_copy_type(
772	struct xfs_buf		*dst_bp,
773	struct xfs_buf		*src_bp)
774{
775	struct xfs_buf_log_item	*sbip = src_bp->b_log_item;
776	struct xfs_buf_log_item	*dbip = dst_bp->b_log_item;
777	enum xfs_blft		type;
778
779	type = xfs_blft_from_flags(&sbip->__bli_format);
780	xfs_blft_to_flags(&dbip->__bli_format, type);
781}
782
783/*
784 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
785 * dquots. However, unlike in inode buffer recovery, dquot buffers get
786 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
787 * The only thing that makes dquot buffers different from regular
788 * buffers is that we must not replay dquot bufs when recovering
789 * if a _corresponding_ quotaoff has happened. We also have to distinguish
790 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
791 * can be turned off independently.
792 */
793/* ARGSUSED */
794void
795xfs_trans_dquot_buf(
796	xfs_trans_t		*tp,
797	struct xfs_buf		*bp,
798	uint			type)
799{
800	struct xfs_buf_log_item	*bip = bp->b_log_item;
801
 
 
802	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
803	       type == XFS_BLF_PDQUOT_BUF ||
804	       type == XFS_BLF_GDQUOT_BUF);
 
805
806	bip->__bli_format.blf_flags |= type;
807
808	switch (type) {
809	case XFS_BLF_UDQUOT_BUF:
810		type = XFS_BLFT_UDQUOT_BUF;
811		break;
812	case XFS_BLF_PDQUOT_BUF:
813		type = XFS_BLFT_PDQUOT_BUF;
814		break;
815	case XFS_BLF_GDQUOT_BUF:
816		type = XFS_BLFT_GDQUOT_BUF;
817		break;
818	default:
819		type = XFS_BLFT_UNKNOWN_BUF;
820		break;
821	}
822
823	bp->b_flags |= _XBF_DQUOTS;
824	xfs_trans_buf_set_type(tp, bp, type);
825}
v3.1
 
  1/*
  2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
  3 * All Rights Reserved.
  4 *
  5 * This program is free software; you can redistribute it and/or
  6 * modify it under the terms of the GNU General Public License as
  7 * published by the Free Software Foundation.
  8 *
  9 * This program is distributed in the hope that it would be useful,
 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 12 * GNU General Public License for more details.
 13 *
 14 * You should have received a copy of the GNU General Public License
 15 * along with this program; if not, write the Free Software Foundation,
 16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 17 */
 18#include "xfs.h"
 19#include "xfs_fs.h"
 20#include "xfs_types.h"
 21#include "xfs_bit.h"
 22#include "xfs_log.h"
 23#include "xfs_inum.h"
 
 24#include "xfs_trans.h"
 25#include "xfs_sb.h"
 26#include "xfs_ag.h"
 27#include "xfs_mount.h"
 28#include "xfs_bmap_btree.h"
 29#include "xfs_alloc_btree.h"
 30#include "xfs_ialloc_btree.h"
 31#include "xfs_dinode.h"
 32#include "xfs_inode.h"
 33#include "xfs_buf_item.h"
 34#include "xfs_trans_priv.h"
 35#include "xfs_error.h"
 36#include "xfs_rw.h"
 37#include "xfs_trace.h"
 38
 39/*
 40 * Check to see if a buffer matching the given parameters is already
 41 * a part of the given transaction.
 42 */
 43STATIC struct xfs_buf *
 44xfs_trans_buf_item_match(
 45	struct xfs_trans	*tp,
 46	struct xfs_buftarg	*target,
 47	xfs_daddr_t		blkno,
 48	int			len)
 49{
 50	struct xfs_log_item_desc *lidp;
 51	struct xfs_buf_log_item	*blip;
 
 
 
 
 
 52
 53	len = BBTOB(len);
 54	list_for_each_entry(lidp, &tp->t_items, lid_trans) {
 55		blip = (struct xfs_buf_log_item *)lidp->lid_item;
 56		if (blip->bli_item.li_type == XFS_LI_BUF &&
 57		    blip->bli_buf->b_target == target &&
 58		    XFS_BUF_ADDR(blip->bli_buf) == blkno &&
 59		    XFS_BUF_COUNT(blip->bli_buf) == len)
 
 60			return blip->bli_buf;
 
 61	}
 62
 63	return NULL;
 64}
 65
 66/*
 67 * Add the locked buffer to the transaction.
 68 *
 69 * The buffer must be locked, and it cannot be associated with any
 70 * transaction.
 71 *
 72 * If the buffer does not yet have a buf log item associated with it,
 73 * then allocate one for it.  Then add the buf item to the transaction.
 74 */
 75STATIC void
 76_xfs_trans_bjoin(
 77	struct xfs_trans	*tp,
 78	struct xfs_buf		*bp,
 79	int			reset_recur)
 80{
 81	struct xfs_buf_log_item	*bip;
 82
 83	ASSERT(bp->b_transp == NULL);
 84
 85	/*
 86	 * The xfs_buf_log_item pointer is stored in b_fsprivate.  If
 87	 * it doesn't have one yet, then allocate one and initialize it.
 88	 * The checks to see if one is there are in xfs_buf_item_init().
 89	 */
 90	xfs_buf_item_init(bp, tp->t_mountp);
 91	bip = bp->b_fspriv;
 92	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
 93	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
 94	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
 95	if (reset_recur)
 96		bip->bli_recur = 0;
 97
 98	/*
 99	 * Take a reference for this transaction on the buf item.
100	 */
101	atomic_inc(&bip->bli_refcount);
102
103	/*
104	 * Get a log_item_desc to point at the new item.
 
105	 */
106	xfs_trans_add_item(tp, &bip->bli_item);
107
108	/*
109	 * Initialize b_fsprivate2 so we can find it with incore_match()
110	 * in xfs_trans_get_buf() and friends above.
111	 */
112	bp->b_transp = tp;
113
114}
115
116void
117xfs_trans_bjoin(
118	struct xfs_trans	*tp,
119	struct xfs_buf		*bp)
120{
121	_xfs_trans_bjoin(tp, bp, 0);
122	trace_xfs_trans_bjoin(bp->b_fspriv);
123}
124
125/*
126 * Get and lock the buffer for the caller if it is not already
127 * locked within the given transaction.  If it is already locked
128 * within the transaction, just increment its lock recursion count
129 * and return a pointer to it.
130 *
131 * If the transaction pointer is NULL, make this just a normal
132 * get_buf() call.
133 */
134xfs_buf_t *
135xfs_trans_get_buf(xfs_trans_t	*tp,
136		  xfs_buftarg_t	*target_dev,
137		  xfs_daddr_t	blkno,
138		  int		len,
139		  uint		flags)
 
 
140{
141	xfs_buf_t		*bp;
142	xfs_buf_log_item_t	*bip;
 
143
144	if (flags == 0)
145		flags = XBF_LOCK | XBF_MAPPED;
146
147	/*
148	 * Default to a normal get_buf() call if the tp is NULL.
149	 */
150	if (tp == NULL)
151		return xfs_buf_get(target_dev, blkno, len,
152				   flags | XBF_DONT_BLOCK);
153
154	/*
155	 * If we find the buffer in the cache with this transaction
156	 * pointer in its b_fsprivate2 field, then we know we already
157	 * have it locked.  In this case we just increment the lock
158	 * recursion count and return the buffer to the caller.
159	 */
160	bp = xfs_trans_buf_item_match(tp, target_dev, blkno, len);
161	if (bp != NULL) {
162		ASSERT(xfs_buf_islocked(bp));
163		if (XFS_FORCED_SHUTDOWN(tp->t_mountp))
164			XFS_BUF_SUPER_STALE(bp);
165
166		/*
167		 * If the buffer is stale then it was binval'ed
168		 * since last read.  This doesn't matter since the
169		 * caller isn't allowed to use the data anyway.
170		 */
171		else if (XFS_BUF_ISSTALE(bp))
172			ASSERT(!XFS_BUF_ISDELAYWRITE(bp));
173
174		ASSERT(bp->b_transp == tp);
175		bip = bp->b_fspriv;
176		ASSERT(bip != NULL);
177		ASSERT(atomic_read(&bip->bli_refcount) > 0);
178		bip->bli_recur++;
179		trace_xfs_trans_get_buf_recur(bip);
180		return (bp);
 
181	}
182
183	/*
184	 * We always specify the XBF_DONT_BLOCK flag within a transaction
185	 * so that get_buf does not try to push out a delayed write buffer
186	 * which might cause another transaction to take place (if the
187	 * buffer was delayed alloc).  Such recursive transactions can
188	 * easily deadlock with our current transaction as well as cause
189	 * us to run out of stack space.
190	 */
191	bp = xfs_buf_get(target_dev, blkno, len, flags | XBF_DONT_BLOCK);
192	if (bp == NULL) {
193		return NULL;
194	}
195
196	ASSERT(!bp->b_error);
197
198	_xfs_trans_bjoin(tp, bp, 1);
199	trace_xfs_trans_get_buf(bp->b_fspriv);
200	return (bp);
 
201}
202
203/*
204 * Get and lock the superblock buffer of this file system for the
205 * given transaction.
206 *
207 * We don't need to use incore_match() here, because the superblock
208 * buffer is a private buffer which we keep a pointer to in the
209 * mount structure.
210 */
211xfs_buf_t *
212xfs_trans_getsb(xfs_trans_t	*tp,
213		struct xfs_mount *mp,
214		int		flags)
215{
216	xfs_buf_t		*bp;
217	xfs_buf_log_item_t	*bip;
218
219	/*
220	 * Default to just trying to lock the superblock buffer
221	 * if tp is NULL.
222	 */
223	if (tp == NULL) {
224		return (xfs_getsb(mp, flags));
225	}
226
227	/*
228	 * If the superblock buffer already has this transaction
229	 * pointer in its b_fsprivate2 field, then we know we already
230	 * have it locked.  In this case we just increment the lock
231	 * recursion count and return the buffer to the caller.
232	 */
233	bp = mp->m_sb_bp;
234	if (bp->b_transp == tp) {
235		bip = bp->b_fspriv;
236		ASSERT(bip != NULL);
237		ASSERT(atomic_read(&bip->bli_refcount) > 0);
238		bip->bli_recur++;
 
239		trace_xfs_trans_getsb_recur(bip);
240		return (bp);
 
 
 
 
 
241	}
242
243	bp = xfs_getsb(mp, flags);
244	if (bp == NULL)
245		return NULL;
246
247	_xfs_trans_bjoin(tp, bp, 1);
248	trace_xfs_trans_getsb(bp->b_fspriv);
249	return (bp);
 
 
250}
251
252#ifdef DEBUG
253xfs_buftarg_t *xfs_error_target;
254int	xfs_do_error;
255int	xfs_req_num;
256int	xfs_error_mod = 33;
257#endif
 
 
258
259/*
260 * Get and lock the buffer for the caller if it is not already
261 * locked within the given transaction.  If it has not yet been
262 * read in, read it from disk. If it is already locked
263 * within the transaction and already read in, just increment its
264 * lock recursion count and return a pointer to it.
265 *
266 * If the transaction pointer is NULL, make this just a normal
267 * read_buf() call.
268 */
269int
270xfs_trans_read_buf(
271	xfs_mount_t	*mp,
272	xfs_trans_t	*tp,
273	xfs_buftarg_t	*target,
274	xfs_daddr_t	blkno,
275	int		len,
276	uint		flags,
277	xfs_buf_t	**bpp)
 
278{
279	xfs_buf_t		*bp;
280	xfs_buf_log_item_t	*bip;
281	int			error;
282
283	if (flags == 0)
284		flags = XBF_LOCK | XBF_MAPPED;
285
286	/*
287	 * Default to a normal get_buf() call if the tp is NULL.
288	 */
289	if (tp == NULL) {
290		bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
291		if (!bp)
292			return (flags & XBF_TRYLOCK) ?
293					EAGAIN : XFS_ERROR(ENOMEM);
294
295		if (bp->b_error) {
296			error = bp->b_error;
297			xfs_ioerror_alert("xfs_trans_read_buf", mp,
298					  bp, blkno);
299			xfs_buf_relse(bp);
300			return error;
301		}
302#ifdef DEBUG
303		if (xfs_do_error) {
304			if (xfs_error_target == target) {
305				if (((xfs_req_num++) % xfs_error_mod) == 0) {
306					xfs_buf_relse(bp);
307					xfs_debug(mp, "Returning error!");
308					return XFS_ERROR(EIO);
309				}
310			}
311		}
312#endif
313		if (XFS_FORCED_SHUTDOWN(mp))
314			goto shutdown_abort;
315		*bpp = bp;
316		return 0;
317	}
318
319	/*
320	 * If we find the buffer in the cache with this transaction
321	 * pointer in its b_fsprivate2 field, then we know we already
322	 * have it locked.  If it is already read in we just increment
323	 * the lock recursion count and return the buffer to the caller.
324	 * If the buffer is not yet read in, then we read it in, increment
325	 * the lock recursion count, and return it to the caller.
326	 */
327	bp = xfs_trans_buf_item_match(tp, target, blkno, len);
328	if (bp != NULL) {
 
329		ASSERT(xfs_buf_islocked(bp));
330		ASSERT(bp->b_transp == tp);
331		ASSERT(bp->b_fspriv != NULL);
332		ASSERT(!bp->b_error);
333		if (!(XFS_BUF_ISDONE(bp))) {
334			trace_xfs_trans_read_buf_io(bp, _RET_IP_);
335			ASSERT(!XFS_BUF_ISASYNC(bp));
336			XFS_BUF_READ(bp);
337			xfsbdstrat(tp->t_mountp, bp);
338			error = xfs_buf_iowait(bp);
339			if (error) {
340				xfs_ioerror_alert("xfs_trans_read_buf", mp,
341						  bp, blkno);
342				xfs_buf_relse(bp);
343				/*
344				 * We can gracefully recover from most read
345				 * errors. Ones we can't are those that happen
346				 * after the transaction's already dirty.
347				 */
348				if (tp->t_flags & XFS_TRANS_DIRTY)
349					xfs_force_shutdown(tp->t_mountp,
350							SHUTDOWN_META_IO_ERROR);
351				return error;
352			}
353		}
354		/*
355		 * We never locked this buf ourselves, so we shouldn't
356		 * brelse it either. Just get out.
357		 */
358		if (XFS_FORCED_SHUTDOWN(mp)) {
359			trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
360			*bpp = NULL;
361			return XFS_ERROR(EIO);
362		}
363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
364
365		bip = bp->b_fspriv;
366		bip->bli_recur++;
367
368		ASSERT(atomic_read(&bip->bli_refcount) > 0);
369		trace_xfs_trans_read_buf_recur(bip);
 
370		*bpp = bp;
371		return 0;
372	}
373
374	/*
375	 * We always specify the XBF_DONT_BLOCK flag within a transaction
376	 * so that get_buf does not try to push out a delayed write buffer
377	 * which might cause another transaction to take place (if the
378	 * buffer was delayed alloc).  Such recursive transactions can
379	 * easily deadlock with our current transaction as well as cause
380	 * us to run out of stack space.
381	 */
382	bp = xfs_buf_read(target, blkno, len, flags | XBF_DONT_BLOCK);
383	if (bp == NULL) {
384		*bpp = NULL;
385		return (flags & XBF_TRYLOCK) ?
386					0 : XFS_ERROR(ENOMEM);
387	}
388	if (bp->b_error) {
389		error = bp->b_error;
390		XFS_BUF_SUPER_STALE(bp);
391		xfs_ioerror_alert("xfs_trans_read_buf", mp,
392				  bp, blkno);
393		if (tp->t_flags & XFS_TRANS_DIRTY)
394			xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
395		xfs_buf_relse(bp);
 
 
396		return error;
397	}
398#ifdef DEBUG
399	if (xfs_do_error && !(tp->t_flags & XFS_TRANS_DIRTY)) {
400		if (xfs_error_target == target) {
401			if (((xfs_req_num++) % xfs_error_mod) == 0) {
402				xfs_force_shutdown(tp->t_mountp,
403						   SHUTDOWN_META_IO_ERROR);
404				xfs_buf_relse(bp);
405				xfs_debug(mp, "Returning trans error!");
406				return XFS_ERROR(EIO);
407			}
408		}
409	}
410#endif
411	if (XFS_FORCED_SHUTDOWN(mp))
412		goto shutdown_abort;
413
414	_xfs_trans_bjoin(tp, bp, 1);
415	trace_xfs_trans_read_buf(bp->b_fspriv);
416
 
 
 
 
 
417	*bpp = bp;
418	return 0;
419
420shutdown_abort:
421	/*
422	 * the theory here is that buffer is good but we're
423	 * bailing out because the filesystem is being forcibly
424	 * shut down.  So we should leave the b_flags alone since
425	 * the buffer's not staled and just get out.
426	 */
427#if defined(DEBUG)
428	if (XFS_BUF_ISSTALE(bp) && XFS_BUF_ISDELAYWRITE(bp))
429		xfs_notice(mp, "about to pop assert, bp == 0x%p", bp);
430#endif
431	ASSERT((bp->b_flags & (XBF_STALE|XBF_DELWRI)) !=
432				     (XBF_STALE|XBF_DELWRI));
433
434	trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
435	xfs_buf_relse(bp);
436	*bpp = NULL;
437	return XFS_ERROR(EIO);
438}
439
440
441/*
442 * Release the buffer bp which was previously acquired with one of the
443 * xfs_trans_... buffer allocation routines if the buffer has not
444 * been modified within this transaction.  If the buffer is modified
445 * within this transaction, do decrement the recursion count but do
446 * not release the buffer even if the count goes to 0.  If the buffer is not
447 * modified within the transaction, decrement the recursion count and
448 * release the buffer if the recursion count goes to 0.
449 *
450 * If the buffer is to be released and it was not modified before
451 * this transaction began, then free the buf_log_item associated with it.
452 *
453 * If the transaction pointer is NULL, make this just a normal
454 * brelse() call.
455 */
456void
457xfs_trans_brelse(xfs_trans_t	*tp,
458		 xfs_buf_t	*bp)
 
459{
460	xfs_buf_log_item_t	*bip;
461
462	/*
463	 * Default to a normal brelse() call if the tp is NULL.
464	 */
465	if (tp == NULL) {
466		struct xfs_log_item	*lip = bp->b_fspriv;
467
468		ASSERT(bp->b_transp == NULL);
469
470		/*
471		 * If there's a buf log item attached to the buffer,
472		 * then let the AIL know that the buffer is being
473		 * unlocked.
474		 */
475		if (lip != NULL && lip->li_type == XFS_LI_BUF) {
476			bip = bp->b_fspriv;
477			xfs_trans_unlocked_item(bip->bli_item.li_ailp, lip);
478		}
479		xfs_buf_relse(bp);
480		return;
481	}
482
483	ASSERT(bp->b_transp == tp);
484	bip = bp->b_fspriv;
485	ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
486	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
487	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
488	ASSERT(atomic_read(&bip->bli_refcount) > 0);
489
490	trace_xfs_trans_brelse(bip);
491
492	/*
493	 * If the release is just for a recursive lock,
494	 * then decrement the count and return.
495	 */
496	if (bip->bli_recur > 0) {
497		bip->bli_recur--;
498		return;
499	}
500
501	/*
502	 * If the buffer is dirty within this transaction, we can't
503	 * release it until we commit.
504	 */
505	if (bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY)
506		return;
507
508	/*
509	 * If the buffer has been invalidated, then we can't release
510	 * it until the transaction commits to disk unless it is re-dirtied
511	 * as part of this transaction.  This prevents us from pulling
512	 * the item from the AIL before we should.
513	 */
514	if (bip->bli_flags & XFS_BLI_STALE)
515		return;
516
517	ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
518
519	/*
520	 * Free up the log item descriptor tracking the released item.
 
521	 */
 
522	xfs_trans_del_item(&bip->bli_item);
 
 
 
 
 
 
 
 
523
524	/*
525	 * Clear the hold flag in the buf log item if it is set.
526	 * We wouldn't want the next user of the buffer to
527	 * get confused.
528	 */
529	if (bip->bli_flags & XFS_BLI_HOLD) {
530		bip->bli_flags &= ~XFS_BLI_HOLD;
531	}
 
 
 
 
 
 
 
 
532
533	/*
534	 * Drop our reference to the buf log item.
535	 */
536	atomic_dec(&bip->bli_refcount);
537
538	/*
539	 * If the buf item is not tracking data in the log, then
540	 * we must free it before releasing the buffer back to the
541	 * free pool.  Before releasing the buffer to the free pool,
542	 * clear the transaction pointer in b_fsprivate2 to dissolve
543	 * its relation to this transaction.
544	 */
545	if (!xfs_buf_item_dirty(bip)) {
546/***
547		ASSERT(bp->b_pincount == 0);
548***/
549		ASSERT(atomic_read(&bip->bli_refcount) == 0);
550		ASSERT(!(bip->bli_item.li_flags & XFS_LI_IN_AIL));
551		ASSERT(!(bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF));
552		xfs_buf_item_relse(bp);
553		bip = NULL;
554	}
555	bp->b_transp = NULL;
556
557	/*
558	 * If we've still got a buf log item on the buffer, then
559	 * tell the AIL that the buffer is being unlocked.
560	 */
561	if (bip != NULL) {
562		xfs_trans_unlocked_item(bip->bli_item.li_ailp,
563					(xfs_log_item_t*)bip);
564	}
 
 
565
566	xfs_buf_relse(bp);
567	return;
 
 
568}
569
570/*
571 * Mark the buffer as not needing to be unlocked when the buf item's
572 * IOP_UNLOCK() routine is called.  The buffer must already be locked
573 * and associated with the given transaction.
574 */
575/* ARGSUSED */
576void
577xfs_trans_bhold(xfs_trans_t	*tp,
578		xfs_buf_t	*bp)
 
579{
580	xfs_buf_log_item_t	*bip = bp->b_fspriv;
581
582	ASSERT(bp->b_transp == tp);
583	ASSERT(bip != NULL);
584	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
585	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
586	ASSERT(atomic_read(&bip->bli_refcount) > 0);
587
588	bip->bli_flags |= XFS_BLI_HOLD;
589	trace_xfs_trans_bhold(bip);
590}
591
592/*
593 * Cancel the previous buffer hold request made on this buffer
594 * for this transaction.
595 */
596void
597xfs_trans_bhold_release(xfs_trans_t	*tp,
598			xfs_buf_t	*bp)
 
599{
600	xfs_buf_log_item_t	*bip = bp->b_fspriv;
601
602	ASSERT(bp->b_transp == tp);
603	ASSERT(bip != NULL);
604	ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
605	ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_CANCEL));
606	ASSERT(atomic_read(&bip->bli_refcount) > 0);
607	ASSERT(bip->bli_flags & XFS_BLI_HOLD);
608
609	bip->bli_flags &= ~XFS_BLI_HOLD;
610	trace_xfs_trans_bhold_release(bip);
611}
612
613/*
614 * This is called to mark bytes first through last inclusive of the given
615 * buffer as needing to be logged when the transaction is committed.
616 * The buffer must already be associated with the given transaction.
617 *
618 * First and last are numbers relative to the beginning of this buffer,
619 * so the first byte in the buffer is numbered 0 regardless of the
620 * value of b_blkno.
621 */
622void
623xfs_trans_log_buf(xfs_trans_t	*tp,
624		  xfs_buf_t	*bp,
625		  uint		first,
626		  uint		last)
627{
628	xfs_buf_log_item_t	*bip = bp->b_fspriv;
629
630	ASSERT(bp->b_transp == tp);
631	ASSERT(bip != NULL);
632	ASSERT((first <= last) && (last < XFS_BUF_COUNT(bp)));
633	ASSERT(bp->b_iodone == NULL ||
634	       bp->b_iodone == xfs_buf_iodone_callbacks);
635
636	/*
637	 * Mark the buffer as needing to be written out eventually,
638	 * and set its iodone function to remove the buffer's buf log
639	 * item from the AIL and free it when the buffer is flushed
640	 * to disk.  See xfs_buf_attach_iodone() for more details
641	 * on li_cb and xfs_buf_iodone_callbacks().
642	 * If we end up aborting this transaction, we trap this buffer
643	 * inside the b_bdstrat callback so that this won't get written to
644	 * disk.
645	 */
646	XFS_BUF_DELAYWRITE(bp);
647	XFS_BUF_DONE(bp);
648
649	ASSERT(atomic_read(&bip->bli_refcount) > 0);
650	bp->b_iodone = xfs_buf_iodone_callbacks;
651	bip->bli_item.li_cb = xfs_buf_iodone;
652
653	trace_xfs_trans_log_buf(bip);
654
655	/*
656	 * If we invalidated the buffer within this transaction, then
657	 * cancel the invalidation now that we're dirtying the buffer
658	 * again.  There are no races with the code in xfs_buf_item_unpin(),
659	 * because we have a reference to the buffer this entire time.
660	 */
661	if (bip->bli_flags & XFS_BLI_STALE) {
662		bip->bli_flags &= ~XFS_BLI_STALE;
663		ASSERT(XFS_BUF_ISSTALE(bp));
664		XFS_BUF_UNSTALE(bp);
665		bip->bli_format.blf_flags &= ~XFS_BLF_CANCEL;
666	}
 
667
668	tp->t_flags |= XFS_TRANS_DIRTY;
669	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
670	bip->bli_flags |= XFS_BLI_LOGGED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671	xfs_buf_item_log(bip, first, last);
672}
673
674
675/*
676 * This called to invalidate a buffer that is being used within
677 * a transaction.  Typically this is because the blocks in the
678 * buffer are being freed, so we need to prevent it from being
679 * written out when we're done.  Allowing it to be written again
680 * might overwrite data in the free blocks if they are reallocated
681 * to a file.
682 *
683 * We prevent the buffer from being written out by clearing the
684 * B_DELWRI flag.  We can't always
685 * get rid of the buf log item at this point, though, because
686 * the buffer may still be pinned by another transaction.  If that
687 * is the case, then we'll wait until the buffer is committed to
688 * disk for the last time (we can tell by the ref count) and
689 * free it in xfs_buf_item_unpin().  Until it is cleaned up we
690 * will keep the buffer locked so that the buffer and buf log item
691 * are not reused.
 
 
 
 
 
 
 
 
 
 
 
692 */
693void
694xfs_trans_binval(
695	xfs_trans_t	*tp,
696	xfs_buf_t	*bp)
697{
698	xfs_buf_log_item_t	*bip = bp->b_fspriv;
 
699
700	ASSERT(bp->b_transp == tp);
701	ASSERT(bip != NULL);
702	ASSERT(atomic_read(&bip->bli_refcount) > 0);
703
704	trace_xfs_trans_binval(bip);
705
706	if (bip->bli_flags & XFS_BLI_STALE) {
707		/*
708		 * If the buffer is already invalidated, then
709		 * just return.
710		 */
711		ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
712		ASSERT(XFS_BUF_ISSTALE(bp));
713		ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
714		ASSERT(!(bip->bli_format.blf_flags & XFS_BLF_INODE_BUF));
715		ASSERT(bip->bli_format.blf_flags & XFS_BLF_CANCEL);
716		ASSERT(bip->bli_item.li_desc->lid_flags & XFS_LID_DIRTY);
 
717		ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
718		return;
719	}
720
721	/*
722	 * Clear the dirty bit in the buffer and set the STALE flag
723	 * in the buf log item.  The STALE flag will be used in
724	 * xfs_buf_item_unpin() to determine if it should clean up
725	 * when the last reference to the buf item is given up.
726	 * We set the XFS_BLF_CANCEL flag in the buf log format structure
727	 * and log the buf item.  This will be used at recovery time
728	 * to determine that copies of the buffer in the log before
729	 * this should not be replayed.
730	 * We mark the item descriptor and the transaction dirty so
731	 * that we'll hold the buffer until after the commit.
732	 *
733	 * Since we're invalidating the buffer, we also clear the state
734	 * about which parts of the buffer have been logged.  We also
735	 * clear the flag indicating that this is an inode buffer since
736	 * the data in the buffer will no longer be valid.
737	 *
738	 * We set the stale bit in the buffer as well since we're getting
739	 * rid of it.
740	 */
741	XFS_BUF_UNDELAYWRITE(bp);
742	XFS_BUF_STALE(bp);
743	bip->bli_flags |= XFS_BLI_STALE;
744	bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
745	bip->bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
746	bip->bli_format.blf_flags |= XFS_BLF_CANCEL;
747	memset((char *)(bip->bli_format.blf_data_map), 0,
748	      (bip->bli_format.blf_map_size * sizeof(uint)));
749	bip->bli_item.li_desc->lid_flags |= XFS_LID_DIRTY;
 
 
 
750	tp->t_flags |= XFS_TRANS_DIRTY;
751}
752
753/*
754 * This call is used to indicate that the buffer contains on-disk inodes which
755 * must be handled specially during recovery.  They require special handling
756 * because only the di_next_unlinked from the inodes in the buffer should be
757 * recovered.  The rest of the data in the buffer is logged via the inodes
758 * themselves.
759 *
760 * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
761 * transferred to the buffer's log format structure so that we'll know what to
762 * do at recovery time.
763 */
764void
765xfs_trans_inode_buf(
766	xfs_trans_t	*tp,
767	xfs_buf_t	*bp)
768{
769	xfs_buf_log_item_t	*bip = bp->b_fspriv;
770
771	ASSERT(bp->b_transp == tp);
772	ASSERT(bip != NULL);
773	ASSERT(atomic_read(&bip->bli_refcount) > 0);
774
775	bip->bli_flags |= XFS_BLI_INODE_BUF;
 
 
776}
777
778/*
779 * This call is used to indicate that the buffer is going to
780 * be staled and was an inode buffer. This means it gets
781 * special processing during unpin - where any inodes 
782 * associated with the buffer should be removed from ail.
783 * There is also special processing during recovery,
784 * any replay of the inodes in the buffer needs to be
785 * prevented as the buffer may have been reused.
786 */
787void
788xfs_trans_stale_inode_buf(
789	xfs_trans_t	*tp,
790	xfs_buf_t	*bp)
791{
792	xfs_buf_log_item_t	*bip = bp->b_fspriv;
793
794	ASSERT(bp->b_transp == tp);
795	ASSERT(bip != NULL);
796	ASSERT(atomic_read(&bip->bli_refcount) > 0);
797
798	bip->bli_flags |= XFS_BLI_STALE_INODE;
799	bip->bli_item.li_cb = xfs_buf_iodone;
 
800}
801
802/*
803 * Mark the buffer as being one which contains newly allocated
804 * inodes.  We need to make sure that even if this buffer is
805 * relogged as an 'inode buf' we still recover all of the inode
806 * images in the face of a crash.  This works in coordination with
807 * xfs_buf_item_committed() to ensure that the buffer remains in the
808 * AIL at its original location even after it has been relogged.
809 */
810/* ARGSUSED */
811void
812xfs_trans_inode_alloc_buf(
813	xfs_trans_t	*tp,
814	xfs_buf_t	*bp)
815{
816	xfs_buf_log_item_t	*bip = bp->b_fspriv;
817
818	ASSERT(bp->b_transp == tp);
819	ASSERT(bip != NULL);
820	ASSERT(atomic_read(&bip->bli_refcount) > 0);
821
822	bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
823}
824
 
 
 
 
 
 
 
 
 
 
 
 
825
826/*
827 * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
828 * dquots. However, unlike in inode buffer recovery, dquot buffers get
829 * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
830 * The only thing that makes dquot buffers different from regular
831 * buffers is that we must not replay dquot bufs when recovering
832 * if a _corresponding_ quotaoff has happened. We also have to distinguish
833 * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
834 * can be turned off independently.
835 */
836/* ARGSUSED */
837void
838xfs_trans_dquot_buf(
839	xfs_trans_t	*tp,
840	xfs_buf_t	*bp,
841	uint		type)
842{
843	xfs_buf_log_item_t	*bip = bp->b_fspriv;
844
845	ASSERT(bp->b_transp == tp);
846	ASSERT(bip != NULL);
847	ASSERT(type == XFS_BLF_UDQUOT_BUF ||
848	       type == XFS_BLF_PDQUOT_BUF ||
849	       type == XFS_BLF_GDQUOT_BUF);
850	ASSERT(atomic_read(&bip->bli_refcount) > 0);
851
852	bip->bli_format.blf_flags |= type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
853}