Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
  4 * Copyright (c) 2016-2018 Christoph Hellwig.
  5 * All Rights Reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
  6 */
  7#include "xfs.h"
  8#include "xfs_shared.h"
  9#include "xfs_format.h"
 10#include "xfs_log_format.h"
 11#include "xfs_trans_resv.h"
 
 
 12#include "xfs_mount.h"
 
 
 13#include "xfs_inode.h"
 14#include "xfs_trans.h"
 
 
 15#include "xfs_iomap.h"
 
 16#include "xfs_trace.h"
 17#include "xfs_bmap.h"
 18#include "xfs_bmap_util.h"
 19#include "xfs_reflink.h"
 20#include "xfs_errortag.h"
 21#include "xfs_error.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 22
 23struct xfs_writepage_ctx {
 24	struct iomap_writepage_ctx ctx;
 25	unsigned int		data_seq;
 26	unsigned int		cow_seq;
 27};
 
 
 
 
 
 28
 29static inline struct xfs_writepage_ctx *
 30XFS_WPC(struct iomap_writepage_ctx *ctx)
 
 31{
 32	return container_of(ctx, struct xfs_writepage_ctx, ctx);
 
 
 
 
 
 
 33}
 34
 35/*
 36 * Fast and loose check if this write could update the on-disk inode size.
 
 
 
 37 */
 38static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend)
 
 
 39{
 40	return ioend->io_offset + ioend->io_size >
 41		XFS_I(ioend->io_inode)->i_disk_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 42}
 43
 44/*
 45 * Update on-disk file size now that data has been written to disk.
 
 46 */
 47int
 48xfs_setfilesize(
 49	struct xfs_inode	*ip,
 50	xfs_off_t		offset,
 51	size_t			size)
 52{
 53	struct xfs_mount	*mp = ip->i_mount;
 54	struct xfs_trans	*tp;
 55	xfs_fsize_t		isize;
 56	int			error;
 57
 58	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp);
 59	if (error)
 60		return error;
 
 
 61
 62	xfs_ilock(ip, XFS_ILOCK_EXCL);
 63	isize = xfs_new_eof(ip, offset + size);
 64	if (!isize) {
 65		xfs_iunlock(ip, XFS_ILOCK_EXCL);
 66		xfs_trans_cancel(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 67		return 0;
 68	}
 69
 70	trace_xfs_setfilesize(ip, offset, size);
 
 71
 72	ip->i_disk_size = isize;
 73	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
 74	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
 
 
 
 75
 76	return xfs_trans_commit(tp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77}
 78
 79/*
 80 * IO write completion.
 81 */
 82STATIC void
 83xfs_end_ioend(
 84	struct iomap_ioend	*ioend)
 85{
 86	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 87	struct xfs_mount	*mp = ip->i_mount;
 88	xfs_off_t		offset = ioend->io_offset;
 89	size_t			size = ioend->io_size;
 90	unsigned int		nofs_flag;
 91	int			error;
 
 
 
 
 
 
 
 
 
 
 92
 93	/*
 94	 * We can allocate memory here while doing writeback on behalf of
 95	 * memory reclaim.  To avoid memory allocation deadlocks set the
 96	 * task-wide nofs context for the following operations.
 97	 */
 98	nofs_flag = memalloc_nofs_save();
 
 99
100	/*
101	 * Just clean up the in-memory structures if the fs has been shut down.
 
 
102	 */
103	if (xfs_is_shutdown(mp)) {
104		error = -EIO;
105		goto done;
 
 
 
 
 
 
106	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
107
108	/*
109	 * Clean up all COW blocks and underlying data fork delalloc blocks on
110	 * I/O error. The delalloc punch is required because this ioend was
111	 * mapped to blocks in the COW fork and the associated pages are no
112	 * longer dirty. If we don't remove delalloc blocks here, they become
113	 * stale and can corrupt free space accounting on unmount.
114	 */
115	error = blk_status_to_errno(ioend->io_bio.bi_status);
116	if (unlikely(error)) {
117		if (ioend->io_flags & IOMAP_F_SHARED) {
118			xfs_reflink_cancel_cow_range(ip, offset, size, true);
119			xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, offset,
120					offset + size);
121		}
122		goto done;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
123	}
124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
125	/*
126	 * Success: commit the COW or unwritten blocks if needed.
 
127	 */
128	if (ioend->io_flags & IOMAP_F_SHARED)
129		error = xfs_reflink_end_cow(ip, offset, size);
130	else if (ioend->io_type == IOMAP_UNWRITTEN)
131		error = xfs_iomap_write_unwritten(ip, offset, size, false);
132
133	if (!error && xfs_ioend_is_append(ioend))
134		error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
135done:
136	iomap_finish_ioends(ioend, error);
137	memalloc_nofs_restore(nofs_flag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
138}
139
140/*
141 * Finish all pending IO completions that require transactional modifications.
 
142 *
143 * We try to merge physical and logically contiguous ioends before completion to
144 * minimise the number of transactions we need to perform during IO completion.
145 * Both unwritten extent conversion and COW remapping need to iterate and modify
146 * one physical extent at a time, so we gain nothing by merging physically
147 * discontiguous extents here.
148 *
149 * The ioend chain length that we can be processing here is largely unbound in
150 * length and we may have to perform significant amounts of work on each ioend
151 * to complete it. Hence we have to be careful about holding the CPU for too
152 * long in this loop.
 
 
153 */
154void
155xfs_end_io(
156	struct work_struct	*work)
 
157{
158	struct xfs_inode	*ip =
159		container_of(work, struct xfs_inode, i_ioend_work);
160	struct iomap_ioend	*ioend;
161	struct list_head	tmp;
162	unsigned long		flags;
163
164	spin_lock_irqsave(&ip->i_ioend_lock, flags);
165	list_replace_init(&ip->i_ioend_list, &tmp);
166	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
167
168	iomap_sort_ioends(&tmp);
169	while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend,
170			io_list))) {
171		list_del_init(&ioend->io_list);
172		iomap_ioend_try_merge(ioend, &tmp);
173		xfs_end_ioend(ioend);
174		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175	}
 
 
 
176}
177
178STATIC void
179xfs_end_bio(
180	struct bio		*bio)
 
 
 
181{
182	struct iomap_ioend	*ioend = iomap_ioend_from_bio(bio);
183	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
184	unsigned long		flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185
186	spin_lock_irqsave(&ip->i_ioend_lock, flags);
187	if (list_empty(&ip->i_ioend_list))
188		WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue,
189					 &ip->i_ioend_work));
190	list_add_tail(&ioend->io_list, &ip->i_ioend_list);
191	spin_unlock_irqrestore(&ip->i_ioend_lock, flags);
192}
193
194/*
195 * Fast revalidation of the cached writeback mapping. Return true if the current
196 * mapping is valid, false otherwise.
197 */
198static bool
199xfs_imap_valid(
200	struct iomap_writepage_ctx	*wpc,
201	struct xfs_inode		*ip,
202	loff_t				offset)
203{
204	if (offset < wpc->iomap.offset ||
205	    offset >= wpc->iomap.offset + wpc->iomap.length)
206		return false;
207	/*
208	 * If this is a COW mapping, it is sufficient to check that the mapping
209	 * covers the offset. Be careful to check this first because the caller
210	 * can revalidate a COW mapping without updating the data seqno.
211	 */
212	if (wpc->iomap.flags & IOMAP_F_SHARED)
213		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214
215	/*
216	 * This is not a COW mapping. Check the sequence number of the data fork
217	 * because concurrent changes could have invalidated the extent. Check
218	 * the COW fork because concurrent changes since the last time we
219	 * checked (and found nothing at this offset) could have added
220	 * overlapping blocks.
 
 
 
 
 
 
221	 */
222	if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) {
223		trace_xfs_wb_data_iomap_invalid(ip, &wpc->iomap,
224				XFS_WPC(wpc)->data_seq, XFS_DATA_FORK);
225		return false;
226	}
227	if (xfs_inode_has_cow_data(ip) &&
228	    XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) {
229		trace_xfs_wb_cow_iomap_invalid(ip, &wpc->iomap,
230				XFS_WPC(wpc)->cow_seq, XFS_COW_FORK);
231		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
232	}
233	return true;
 
 
 
 
 
 
234}
235
236static int
237xfs_map_blocks(
238	struct iomap_writepage_ctx *wpc,
 
 
 
239	struct inode		*inode,
240	loff_t			offset,
241	unsigned int		len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
242{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
243	struct xfs_inode	*ip = XFS_I(inode);
244	struct xfs_mount	*mp = ip->i_mount;
245	ssize_t			count = i_blocksize(inode);
246	xfs_fileoff_t		offset_fsb = XFS_B_TO_FSBT(mp, offset);
247	xfs_fileoff_t		end_fsb = XFS_B_TO_FSB(mp, offset + count);
248	xfs_fileoff_t		cow_fsb;
249	int			whichfork;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
250	struct xfs_bmbt_irec	imap;
251	struct xfs_iext_cursor	icur;
252	int			retries = 0;
253	int			error = 0;
254	unsigned int		*seq;
 
 
 
 
 
255
256	if (xfs_is_shutdown(mp))
257		return -EIO;
258
259	XFS_ERRORTAG_DELAY(mp, XFS_ERRTAG_WB_DELAY_MS);
260
261	/*
262	 * COW fork blocks can overlap data fork blocks even if the blocks
263	 * aren't shared.  COW I/O always takes precedent, so we must always
264	 * check for overlap on reflink inodes unless the mapping is already a
265	 * COW one, or the COW fork hasn't changed from the last time we looked
266	 * at it.
267	 *
268	 * It's safe to check the COW fork if_seq here without the ILOCK because
269	 * we've indirectly protected against concurrent updates: writeback has
270	 * the page locked, which prevents concurrent invalidations by reflink
271	 * and directio and prevents concurrent buffered writes to the same
272	 * page.  Changes to if_seq always happen under i_lock, which protects
273	 * against concurrent updates and provides a memory barrier on the way
274	 * out that ensures that we always see the current value.
275	 */
276	if (xfs_imap_valid(wpc, ip, offset))
277		return 0;
278
279	/*
280	 * If we don't have a valid map, now it's time to get a new one for this
281	 * offset.  This will convert delayed allocations (including COW ones)
282	 * into real extents.  If we return without a valid map, it means we
283	 * landed in a hole and we skip the block.
284	 */
285retry:
286	cow_fsb = NULLFILEOFF;
287	whichfork = XFS_DATA_FORK;
288	xfs_ilock(ip, XFS_ILOCK_SHARED);
289	ASSERT(!xfs_need_iread_extents(&ip->i_df));
290
291	/*
292	 * Check if this is offset is covered by a COW extents, and if yes use
293	 * it directly instead of looking up anything in the data fork.
294	 */
295	if (xfs_inode_has_cow_data(ip) &&
296	    xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap))
297		cow_fsb = imap.br_startoff;
298	if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) {
299		XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq);
300		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
301
302		whichfork = XFS_COW_FORK;
303		goto allocate_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304	}
305
306	/*
307	 * No COW extent overlap. Revalidate now that we may have updated
308	 * ->cow_seq. If the data mapping is still valid, we're done.
309	 */
310	if (xfs_imap_valid(wpc, ip, offset)) {
311		xfs_iunlock(ip, XFS_ILOCK_SHARED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
312		return 0;
313	}
314
315	/*
316	 * If we don't have a valid map, now it's time to get a new one for this
317	 * offset.  This will convert delayed allocations (including COW ones)
318	 * into real extents.
319	 */
320	if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap))
321		imap.br_startoff = end_fsb;	/* fake a hole past EOF */
322	XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq);
323	xfs_iunlock(ip, XFS_ILOCK_SHARED);
324
325	/* landed in a hole or beyond EOF? */
326	if (imap.br_startoff > offset_fsb) {
327		imap.br_blockcount = imap.br_startoff - offset_fsb;
328		imap.br_startoff = offset_fsb;
329		imap.br_startblock = HOLESTARTBLOCK;
330		imap.br_state = XFS_EXT_NORM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331	}
332
333	/*
334	 * Truncate to the next COW extent if there is one.  This is the only
335	 * opportunity to do this because we can skip COW fork lookups for the
336	 * subsequent blocks in the mapping; however, the requirement to treat
337	 * the COW range separately remains.
338	 */
339	if (cow_fsb != NULLFILEOFF &&
340	    cow_fsb < imap.br_startoff + imap.br_blockcount)
341		imap.br_blockcount = cow_fsb - imap.br_startoff;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342
343	/* got a delalloc extent? */
344	if (imap.br_startblock != HOLESTARTBLOCK &&
345	    isnullstartblock(imap.br_startblock))
346		goto allocate_blocks;
 
 
 
 
 
 
 
 
 
 
 
347
348	xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0, 0, XFS_WPC(wpc)->data_seq);
349	trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap);
350	return 0;
351allocate_blocks:
352	/*
353	 * Convert a dellalloc extent to a real one. The current page is held
354	 * locked so nothing could have removed the block backing offset_fsb,
355	 * although it could have moved from the COW to the data fork by another
356	 * thread.
357	 */
358	if (whichfork == XFS_COW_FORK)
359		seq = &XFS_WPC(wpc)->cow_seq;
360	else
361		seq = &XFS_WPC(wpc)->data_seq;
362
363	error = xfs_bmapi_convert_delalloc(ip, whichfork, offset,
364				&wpc->iomap, seq);
365	if (error) {
366		/*
367		 * If we failed to find the extent in the COW fork we might have
368		 * raced with a COW to data fork conversion or truncate.
369		 * Restart the lookup to catch the extent in the data fork for
370		 * the former case, but prevent additional retries to avoid
371		 * looping forever for the latter case.
372		 */
373		if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++)
374			goto retry;
375		ASSERT(error != -EAGAIN);
376		return error;
 
 
 
 
 
 
 
 
377	}
378
379	/*
380	 * Due to merging the return real extent might be larger than the
381	 * original delalloc one.  Trim the return extent to the next COW
382	 * boundary again to force a re-lookup.
383	 */
384	if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) {
385		loff_t		cow_offset = XFS_FSB_TO_B(mp, cow_fsb);
 
 
 
 
 
 
 
 
 
386
387		if (cow_offset < wpc->iomap.offset + wpc->iomap.length)
388			wpc->iomap.length = cow_offset - wpc->iomap.offset;
389	}
390
391	ASSERT(wpc->iomap.offset <= offset);
392	ASSERT(wpc->iomap.offset + wpc->iomap.length > offset);
393	trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap);
394	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395}
396
397static int
398xfs_prepare_ioend(
399	struct iomap_ioend	*ioend,
400	int			status)
 
 
401{
402	unsigned int		nofs_flag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
403
404	/*
405	 * We can allocate memory here while doing writeback on behalf of
406	 * memory reclaim.  To avoid memory allocation deadlocks set the
407	 * task-wide nofs context for the following operations.
408	 */
409	nofs_flag = memalloc_nofs_save();
410
411	/* Convert CoW extents to regular */
412	if (!status && (ioend->io_flags & IOMAP_F_SHARED)) {
413		status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode),
414				ioend->io_offset, ioend->io_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415	}
416
417	memalloc_nofs_restore(nofs_flag);
 
 
418
419	/* send ioends that might require a transaction to the completion wq */
420	if (xfs_ioend_is_append(ioend) || ioend->io_type == IOMAP_UNWRITTEN ||
421	    (ioend->io_flags & IOMAP_F_SHARED))
422		ioend->io_bio.bi_end_io = xfs_end_bio;
423	return status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
424}
425
426/*
427 * If the folio has delalloc blocks on it, the caller is asking us to punch them
428 * out. If we don't, we can leave a stale delalloc mapping covered by a clean
429 * page that needs to be dirtied again before the delalloc mapping can be
430 * converted. This stale delalloc mapping can trip up a later direct I/O read
431 * operation on the same region.
432 *
433 * We prevent this by truncating away the delalloc regions on the folio. Because
434 * they are delalloc, we can do this without needing a transaction. Indeed - if
435 * we get ENOSPC errors, we have to be able to do this truncation without a
436 * transaction as there is no space left for block reservation (typically why
437 * we see a ENOSPC in writeback).
438 */
439static void
440xfs_discard_folio(
441	struct folio		*folio,
442	loff_t			pos)
443{
444	struct xfs_inode	*ip = XFS_I(folio->mapping->host);
445	struct xfs_mount	*mp = ip->i_mount;
446
447	if (xfs_is_shutdown(mp))
448		return;
 
 
 
 
 
 
 
 
 
 
 
449
450	xfs_alert_ratelimited(mp,
451		"page discard on page "PTR_FMT", inode 0x%llx, pos %llu.",
452			folio, ip->i_ino, pos);
453
454	/*
455	 * The end of the punch range is always the offset of the first
456	 * byte of the next folio. Hence the end offset is only dependent on the
457	 * folio itself and not the start offset that is passed in.
458	 */
459	xfs_bmap_punch_delalloc_range(ip, XFS_DATA_FORK, pos,
460				folio_pos(folio) + folio_size(folio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
461}
462
463static const struct iomap_writeback_ops xfs_writeback_ops = {
464	.map_blocks		= xfs_map_blocks,
465	.prepare_ioend		= xfs_prepare_ioend,
466	.discard_folio		= xfs_discard_folio,
467};
468
469STATIC int
470xfs_vm_writepages(
 
471	struct address_space	*mapping,
472	struct writeback_control *wbc)
 
 
 
 
473{
474	struct xfs_writepage_ctx wpc = { };
475
476	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
477	return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops);
 
 
 
478}
479
480STATIC int
481xfs_dax_writepages(
 
482	struct address_space	*mapping,
483	struct writeback_control *wbc)
 
 
 
 
484{
485	struct xfs_inode	*ip = XFS_I(mapping->host);
486
487	xfs_iflags_clear(ip, XFS_ITRUNCATED);
488	return dax_writeback_mapping_range(mapping,
489			xfs_inode_buftarg(ip)->bt_daxdev, wbc);
 
490}
491
492STATIC sector_t
493xfs_vm_bmap(
494	struct address_space	*mapping,
495	sector_t		block)
496{
497	struct xfs_inode	*ip = XFS_I(mapping->host);
498
499	trace_xfs_vm_bmap(ip);
500
501	/*
502	 * The swap code (ab-)uses ->bmap to get a block mapping and then
503	 * bypasses the file system for actual I/O.  We really can't allow
504	 * that on reflinks inodes, so we have to skip out here.  And yes,
505	 * 0 is the magic code for a bmap error.
506	 *
507	 * Since we don't pass back blockdev info, we can't return bmap
508	 * information for rt files either.
509	 */
510	if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip))
511		return 0;
512	return iomap_bmap(mapping, block, &xfs_read_iomap_ops);
513}
514
515STATIC int
516xfs_vm_read_folio(
517	struct file		*unused,
518	struct folio		*folio)
519{
520	return iomap_read_folio(folio, &xfs_read_iomap_ops);
521}
522
523STATIC void
524xfs_vm_readahead(
525	struct readahead_control	*rac)
526{
527	iomap_readahead(rac, &xfs_read_iomap_ops);
528}
529
530static int
531xfs_iomap_swapfile_activate(
532	struct swap_info_struct		*sis,
533	struct file			*swap_file,
534	sector_t			*span)
 
535{
536	sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev;
537	return iomap_swapfile_activate(sis, swap_file, span,
538			&xfs_read_iomap_ops);
539}
540
541const struct address_space_operations xfs_address_space_operations = {
542	.read_folio		= xfs_vm_read_folio,
543	.readahead		= xfs_vm_readahead,
 
544	.writepages		= xfs_vm_writepages,
545	.dirty_folio		= iomap_dirty_folio,
546	.release_folio		= iomap_release_folio,
547	.invalidate_folio	= iomap_invalidate_folio,
 
548	.bmap			= xfs_vm_bmap,
549	.migrate_folio		= filemap_migrate_folio,
550	.is_partially_uptodate  = iomap_is_partially_uptodate,
551	.error_remove_folio	= generic_error_remove_folio,
552	.swap_activate		= xfs_iomap_swapfile_activate,
553};
554
555const struct address_space_operations xfs_dax_aops = {
556	.writepages		= xfs_dax_writepages,
557	.dirty_folio		= noop_dirty_folio,
558	.swap_activate		= xfs_iomap_swapfile_activate,
559};
v3.1
 
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
 
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_bit.h"
  20#include "xfs_log.h"
  21#include "xfs_inum.h"
  22#include "xfs_sb.h"
  23#include "xfs_ag.h"
  24#include "xfs_trans.h"
  25#include "xfs_mount.h"
  26#include "xfs_bmap_btree.h"
  27#include "xfs_dinode.h"
  28#include "xfs_inode.h"
  29#include "xfs_alloc.h"
  30#include "xfs_error.h"
  31#include "xfs_rw.h"
  32#include "xfs_iomap.h"
  33#include "xfs_vnodeops.h"
  34#include "xfs_trace.h"
  35#include "xfs_bmap.h"
  36#include <linux/gfp.h>
  37#include <linux/mpage.h>
  38#include <linux/pagevec.h>
  39#include <linux/writeback.h>
  40
  41
  42/*
  43 * Prime number of hash buckets since address is used as the key.
  44 */
  45#define NVSYNC		37
  46#define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  48
  49void __init
  50xfs_ioend_init(void)
  51{
  52	int i;
  53
  54	for (i = 0; i < NVSYNC; i++)
  55		init_waitqueue_head(&xfs_ioend_wq[i]);
  56}
  57
  58void
  59xfs_ioend_wait(
  60	xfs_inode_t	*ip)
  61{
  62	wait_queue_head_t *wq = to_ioend_wq(ip);
  63
  64	wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  65}
  66
  67STATIC void
  68xfs_ioend_wake(
  69	xfs_inode_t	*ip)
  70{
  71	if (atomic_dec_and_test(&ip->i_iocount))
  72		wake_up(to_ioend_wq(ip));
  73}
  74
  75void
  76xfs_count_page_state(
  77	struct page		*page,
  78	int			*delalloc,
  79	int			*unwritten)
  80{
  81	struct buffer_head	*bh, *head;
  82
  83	*delalloc = *unwritten = 0;
  84
  85	bh = head = page_buffers(page);
  86	do {
  87		if (buffer_unwritten(bh))
  88			(*unwritten) = 1;
  89		else if (buffer_delay(bh))
  90			(*delalloc) = 1;
  91	} while ((bh = bh->b_this_page) != head);
  92}
  93
  94STATIC struct block_device *
  95xfs_find_bdev_for_inode(
  96	struct inode		*inode)
  97{
  98	struct xfs_inode	*ip = XFS_I(inode);
  99	struct xfs_mount	*mp = ip->i_mount;
 100
 101	if (XFS_IS_REALTIME_INODE(ip))
 102		return mp->m_rtdev_targp->bt_bdev;
 103	else
 104		return mp->m_ddev_targp->bt_bdev;
 105}
 106
 107/*
 108 * We're now finished for good with this ioend structure.
 109 * Update the page state via the associated buffer_heads,
 110 * release holds on the inode and bio, and finally free
 111 * up memory.  Do not use the ioend after this.
 112 */
 113STATIC void
 114xfs_destroy_ioend(
 115	xfs_ioend_t		*ioend)
 116{
 117	struct buffer_head	*bh, *next;
 118	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
 119
 120	for (bh = ioend->io_buffer_head; bh; bh = next) {
 121		next = bh->b_private;
 122		bh->b_end_io(bh, !ioend->io_error);
 123	}
 124
 125	/*
 126	 * Volume managers supporting multiple paths can send back ENODEV
 127	 * when the final path disappears.  In this case continuing to fill
 128	 * the page cache with dirty data which cannot be written out is
 129	 * evil, so prevent that.
 130	 */
 131	if (unlikely(ioend->io_error == -ENODEV)) {
 132		xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
 133				      __FILE__, __LINE__);
 134	}
 135
 136	xfs_ioend_wake(ip);
 137	mempool_free(ioend, xfs_ioend_pool);
 138}
 139
 140/*
 141 * If the end of the current ioend is beyond the current EOF,
 142 * return the new EOF value, otherwise zero.
 143 */
 144STATIC xfs_fsize_t
 145xfs_ioend_new_eof(
 146	xfs_ioend_t		*ioend)
 
 
 147{
 148	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 
 149	xfs_fsize_t		isize;
 150	xfs_fsize_t		bsize;
 151
 152	bsize = ioend->io_offset + ioend->io_size;
 153	isize = MAX(ip->i_size, ip->i_new_size);
 154	isize = MIN(isize, bsize);
 155	return isize > ip->i_d.di_size ? isize : 0;
 156}
 157
 158/*
 159 * Update on-disk file size now that data has been written to disk.  The
 160 * current in-memory file size is i_size.  If a write is beyond eof i_new_size
 161 * will be the intended file size until i_size is updated.  If this write does
 162 * not extend all the way to the valid file size then restrict this update to
 163 * the end of the write.
 164 *
 165 * This function does not block as blocking on the inode lock in IO completion
 166 * can lead to IO completion order dependency deadlocks.. If it can't get the
 167 * inode ilock it will return EAGAIN. Callers must handle this.
 168 */
 169STATIC int
 170xfs_setfilesize(
 171	xfs_ioend_t		*ioend)
 172{
 173	xfs_inode_t		*ip = XFS_I(ioend->io_inode);
 174	xfs_fsize_t		isize;
 175
 176	if (unlikely(ioend->io_error))
 177		return 0;
 
 178
 179	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 180		return EAGAIN;
 181
 182	isize = xfs_ioend_new_eof(ioend);
 183	if (isize) {
 184		trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 185		ip->i_d.di_size = isize;
 186		xfs_mark_inode_dirty(ip);
 187	}
 188
 189	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 190	return 0;
 191}
 192
 193/*
 194 * Schedule IO completion handling on the final put of an ioend.
 195 */
 196STATIC void
 197xfs_finish_ioend(
 198	struct xfs_ioend	*ioend)
 199{
 200	if (atomic_dec_and_test(&ioend->io_remaining)) {
 201		if (ioend->io_type == IO_UNWRITTEN)
 202			queue_work(xfsconvertd_workqueue, &ioend->io_work);
 203		else
 204			queue_work(xfsdatad_workqueue, &ioend->io_work);
 205	}
 206}
 207
 208/*
 209 * IO write completion.
 210 */
 211STATIC void
 212xfs_end_io(
 213	struct work_struct *work)
 214{
 215	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
 216	struct xfs_inode *ip = XFS_I(ioend->io_inode);
 217	int		error = 0;
 218
 219	/*
 220	 * For unwritten extents we need to issue transactions to convert a
 221	 * range to normal written extens after the data I/O has finished.
 222	 */
 223	if (ioend->io_type == IO_UNWRITTEN &&
 224	    likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
 225
 226		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 227						 ioend->io_size);
 228		if (error)
 229			ioend->io_error = error;
 230	}
 231
 232	/*
 233	 * We might have to update the on-disk file size after extending
 234	 * writes.
 
 235	 */
 236	error = xfs_setfilesize(ioend);
 237	ASSERT(!error || error == EAGAIN);
 238
 239	/*
 240	 * If we didn't complete processing of the ioend, requeue it to the
 241	 * tail of the workqueue for another attempt later. Otherwise destroy
 242	 * it.
 243	 */
 244	if (error == EAGAIN) {
 245		atomic_inc(&ioend->io_remaining);
 246		xfs_finish_ioend(ioend);
 247		/* ensure we don't spin on blocked ioends */
 248		delay(1);
 249	} else {
 250		if (ioend->io_iocb)
 251			aio_complete(ioend->io_iocb, ioend->io_result, 0);
 252		xfs_destroy_ioend(ioend);
 253	}
 254}
 255
 256/*
 257 * Call IO completion handling in caller context on the final put of an ioend.
 258 */
 259STATIC void
 260xfs_finish_ioend_sync(
 261	struct xfs_ioend	*ioend)
 262{
 263	if (atomic_dec_and_test(&ioend->io_remaining))
 264		xfs_end_io(&ioend->io_work);
 265}
 266
 267/*
 268 * Allocate and initialise an IO completion structure.
 269 * We need to track unwritten extent write completion here initially.
 270 * We'll need to extend this for updating the ondisk inode size later
 271 * (vs. incore size).
 272 */
 273STATIC xfs_ioend_t *
 274xfs_alloc_ioend(
 275	struct inode		*inode,
 276	unsigned int		type)
 277{
 278	xfs_ioend_t		*ioend;
 279
 280	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 281
 282	/*
 283	 * Set the count to 1 initially, which will prevent an I/O
 284	 * completion callback from happening before we have started
 285	 * all the I/O from calling the completion routine too early.
 
 
 286	 */
 287	atomic_set(&ioend->io_remaining, 1);
 288	ioend->io_error = 0;
 289	ioend->io_list = NULL;
 290	ioend->io_type = type;
 291	ioend->io_inode = inode;
 292	ioend->io_buffer_head = NULL;
 293	ioend->io_buffer_tail = NULL;
 294	atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
 295	ioend->io_offset = 0;
 296	ioend->io_size = 0;
 297	ioend->io_iocb = NULL;
 298	ioend->io_result = 0;
 299
 300	INIT_WORK(&ioend->io_work, xfs_end_io);
 301	return ioend;
 302}
 303
 304STATIC int
 305xfs_map_blocks(
 306	struct inode		*inode,
 307	loff_t			offset,
 308	struct xfs_bmbt_irec	*imap,
 309	int			type,
 310	int			nonblocking)
 311{
 312	struct xfs_inode	*ip = XFS_I(inode);
 313	struct xfs_mount	*mp = ip->i_mount;
 314	ssize_t			count = 1 << inode->i_blkbits;
 315	xfs_fileoff_t		offset_fsb, end_fsb;
 316	int			error = 0;
 317	int			bmapi_flags = XFS_BMAPI_ENTIRE;
 318	int			nimaps = 1;
 319
 320	if (XFS_FORCED_SHUTDOWN(mp))
 321		return -XFS_ERROR(EIO);
 322
 323	if (type == IO_UNWRITTEN)
 324		bmapi_flags |= XFS_BMAPI_IGSTATE;
 325
 326	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 327		if (nonblocking)
 328			return -XFS_ERROR(EAGAIN);
 329		xfs_ilock(ip, XFS_ILOCK_SHARED);
 330	}
 331
 332	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 333	       (ip->i_df.if_flags & XFS_IFEXTENTS));
 334	ASSERT(offset <= mp->m_maxioffset);
 335
 336	if (offset + count > mp->m_maxioffset)
 337		count = mp->m_maxioffset - offset;
 338	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 339	offset_fsb = XFS_B_TO_FSBT(mp, offset);
 340	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
 341			  bmapi_flags,  NULL, 0, imap, &nimaps, NULL);
 342	xfs_iunlock(ip, XFS_ILOCK_SHARED);
 343
 344	if (error)
 345		return -XFS_ERROR(error);
 346
 347	if (type == IO_DELALLOC &&
 348	    (!nimaps || isnullstartblock(imap->br_startblock))) {
 349		error = xfs_iomap_write_allocate(ip, offset, count, imap);
 350		if (!error)
 351			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 352		return -XFS_ERROR(error);
 353	}
 354
 355#ifdef DEBUG
 356	if (type == IO_UNWRITTEN) {
 357		ASSERT(nimaps);
 358		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 359		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 360	}
 361#endif
 362	if (nimaps)
 363		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 364	return 0;
 365}
 366
 367STATIC int
 368xfs_imap_valid(
 369	struct inode		*inode,
 370	struct xfs_bmbt_irec	*imap,
 371	xfs_off_t		offset)
 372{
 373	offset >>= inode->i_blkbits;
 374
 375	return offset >= imap->br_startoff &&
 376		offset < imap->br_startoff + imap->br_blockcount;
 377}
 378
 379/*
 380 * BIO completion handler for buffered IO.
 381 */
 382STATIC void
 383xfs_end_bio(
 384	struct bio		*bio,
 385	int			error)
 386{
 387	xfs_ioend_t		*ioend = bio->bi_private;
 388
 389	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 390	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 391
 392	/* Toss bio and pass work off to an xfsdatad thread */
 393	bio->bi_private = NULL;
 394	bio->bi_end_io = NULL;
 395	bio_put(bio);
 396
 397	xfs_finish_ioend(ioend);
 398}
 399
 400STATIC void
 401xfs_submit_ioend_bio(
 402	struct writeback_control *wbc,
 403	xfs_ioend_t		*ioend,
 404	struct bio		*bio)
 405{
 406	atomic_inc(&ioend->io_remaining);
 407	bio->bi_private = ioend;
 408	bio->bi_end_io = xfs_end_bio;
 409
 410	/*
 411	 * If the I/O is beyond EOF we mark the inode dirty immediately
 412	 * but don't update the inode size until I/O completion.
 413	 */
 414	if (xfs_ioend_new_eof(ioend))
 415		xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
 
 
 416
 417	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 418}
 419
 420STATIC struct bio *
 421xfs_alloc_ioend_bio(
 422	struct buffer_head	*bh)
 423{
 424	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
 425	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
 426
 427	ASSERT(bio->bi_private == NULL);
 428	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 429	bio->bi_bdev = bh->b_bdev;
 430	return bio;
 431}
 432
 433STATIC void
 434xfs_start_buffer_writeback(
 435	struct buffer_head	*bh)
 436{
 437	ASSERT(buffer_mapped(bh));
 438	ASSERT(buffer_locked(bh));
 439	ASSERT(!buffer_delay(bh));
 440	ASSERT(!buffer_unwritten(bh));
 441
 442	mark_buffer_async_write(bh);
 443	set_buffer_uptodate(bh);
 444	clear_buffer_dirty(bh);
 445}
 446
 447STATIC void
 448xfs_start_page_writeback(
 449	struct page		*page,
 450	int			clear_dirty,
 451	int			buffers)
 452{
 453	ASSERT(PageLocked(page));
 454	ASSERT(!PageWriteback(page));
 455	if (clear_dirty)
 456		clear_page_dirty_for_io(page);
 457	set_page_writeback(page);
 458	unlock_page(page);
 459	/* If no buffers on the page are to be written, finish it here */
 460	if (!buffers)
 461		end_page_writeback(page);
 462}
 463
 464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 465{
 466	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 467}
 468
 469/*
 470 * Submit all of the bios for all of the ioends we have saved up, covering the
 471 * initial writepage page and also any probed pages.
 472 *
 473 * Because we may have multiple ioends spanning a page, we need to start
 474 * writeback on all the buffers before we submit them for I/O. If we mark the
 475 * buffers as we got, then we can end up with a page that only has buffers
 476 * marked async write and I/O complete on can occur before we mark the other
 477 * buffers async write.
 478 *
 479 * The end result of this is that we trip a bug in end_page_writeback() because
 480 * we call it twice for the one page as the code in end_buffer_async_write()
 481 * assumes that all buffers on the page are started at the same time.
 482 *
 483 * The fix is two passes across the ioend list - one to start writeback on the
 484 * buffer_heads, and then submit them for I/O on the second pass.
 485 */
 486STATIC void
 487xfs_submit_ioend(
 488	struct writeback_control *wbc,
 489	xfs_ioend_t		*ioend)
 490{
 491	xfs_ioend_t		*head = ioend;
 492	xfs_ioend_t		*next;
 493	struct buffer_head	*bh;
 494	struct bio		*bio;
 495	sector_t		lastblock = 0;
 496
 497	/* Pass 1 - start writeback */
 498	do {
 499		next = ioend->io_list;
 500		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 501			xfs_start_buffer_writeback(bh);
 502	} while ((ioend = next) != NULL);
 503
 504	/* Pass 2 - submit I/O */
 505	ioend = head;
 506	do {
 507		next = ioend->io_list;
 508		bio = NULL;
 509
 510		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 511
 512			if (!bio) {
 513 retry:
 514				bio = xfs_alloc_ioend_bio(bh);
 515			} else if (bh->b_blocknr != lastblock + 1) {
 516				xfs_submit_ioend_bio(wbc, ioend, bio);
 517				goto retry;
 518			}
 519
 520			if (bio_add_buffer(bio, bh) != bh->b_size) {
 521				xfs_submit_ioend_bio(wbc, ioend, bio);
 522				goto retry;
 523			}
 524
 525			lastblock = bh->b_blocknr;
 526		}
 527		if (bio)
 528			xfs_submit_ioend_bio(wbc, ioend, bio);
 529		xfs_finish_ioend(ioend);
 530	} while ((ioend = next) != NULL);
 531}
 532
 533/*
 534 * Cancel submission of all buffer_heads so far in this endio.
 535 * Toss the endio too.  Only ever called for the initial page
 536 * in a writepage request, so only ever one page.
 537 */
 538STATIC void
 539xfs_cancel_ioend(
 540	xfs_ioend_t		*ioend)
 541{
 542	xfs_ioend_t		*next;
 543	struct buffer_head	*bh, *next_bh;
 544
 545	do {
 546		next = ioend->io_list;
 547		bh = ioend->io_buffer_head;
 548		do {
 549			next_bh = bh->b_private;
 550			clear_buffer_async_write(bh);
 551			unlock_buffer(bh);
 552		} while ((bh = next_bh) != NULL);
 553
 554		xfs_ioend_wake(XFS_I(ioend->io_inode));
 555		mempool_free(ioend, xfs_ioend_pool);
 556	} while ((ioend = next) != NULL);
 557}
 558
 559/*
 560 * Test to see if we've been building up a completion structure for
 561 * earlier buffers -- if so, we try to append to this ioend if we
 562 * can, otherwise we finish off any current ioend and start another.
 563 * Return true if we've finished the given ioend.
 564 */
 565STATIC void
 566xfs_add_to_ioend(
 567	struct inode		*inode,
 568	struct buffer_head	*bh,
 569	xfs_off_t		offset,
 570	unsigned int		type,
 571	xfs_ioend_t		**result,
 572	int			need_ioend)
 573{
 574	xfs_ioend_t		*ioend = *result;
 575
 576	if (!ioend || need_ioend || type != ioend->io_type) {
 577		xfs_ioend_t	*previous = *result;
 578
 579		ioend = xfs_alloc_ioend(inode, type);
 580		ioend->io_offset = offset;
 581		ioend->io_buffer_head = bh;
 582		ioend->io_buffer_tail = bh;
 583		if (previous)
 584			previous->io_list = ioend;
 585		*result = ioend;
 586	} else {
 587		ioend->io_buffer_tail->b_private = bh;
 588		ioend->io_buffer_tail = bh;
 589	}
 590
 591	bh->b_private = NULL;
 592	ioend->io_size += bh->b_size;
 593}
 594
 595STATIC void
 596xfs_map_buffer(
 597	struct inode		*inode,
 598	struct buffer_head	*bh,
 599	struct xfs_bmbt_irec	*imap,
 600	xfs_off_t		offset)
 601{
 602	sector_t		bn;
 603	struct xfs_mount	*m = XFS_I(inode)->i_mount;
 604	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 605	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 606
 607	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 608	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 609
 610	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 611	      ((offset - iomap_offset) >> inode->i_blkbits);
 612
 613	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 614
 615	bh->b_blocknr = bn;
 616	set_buffer_mapped(bh);
 617}
 618
 619STATIC void
 620xfs_map_at_offset(
 621	struct inode		*inode,
 622	struct buffer_head	*bh,
 623	struct xfs_bmbt_irec	*imap,
 624	xfs_off_t		offset)
 625{
 626	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 627	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 628
 629	xfs_map_buffer(inode, bh, imap, offset);
 630	set_buffer_mapped(bh);
 631	clear_buffer_delay(bh);
 632	clear_buffer_unwritten(bh);
 
 
 633}
 634
 635/*
 636 * Test if a given page is suitable for writing as part of an unwritten
 637 * or delayed allocate extent.
 638 */
 639STATIC int
 640xfs_is_delayed_page(
 641	struct page		*page,
 642	unsigned int		type)
 
 643{
 644	if (PageWriteback(page))
 645		return 0;
 646
 647	if (page->mapping && page_has_buffers(page)) {
 648		struct buffer_head	*bh, *head;
 649		int			acceptable = 0;
 650
 651		bh = head = page_buffers(page);
 652		do {
 653			if (buffer_unwritten(bh))
 654				acceptable = (type == IO_UNWRITTEN);
 655			else if (buffer_delay(bh))
 656				acceptable = (type == IO_DELALLOC);
 657			else if (buffer_dirty(bh) && buffer_mapped(bh))
 658				acceptable = (type == IO_OVERWRITE);
 659			else
 660				break;
 661		} while ((bh = bh->b_this_page) != head);
 662
 663		if (acceptable)
 664			return 1;
 665	}
 666
 667	return 0;
 668}
 669
 670/*
 671 * Allocate & map buffers for page given the extent map. Write it out.
 672 * except for the original page of a writepage, this is called on
 673 * delalloc/unwritten pages only, for the original page it is possible
 674 * that the page has no mapping at all.
 675 */
 676STATIC int
 677xfs_convert_page(
 678	struct inode		*inode,
 679	struct page		*page,
 680	loff_t			tindex,
 681	struct xfs_bmbt_irec	*imap,
 682	xfs_ioend_t		**ioendp,
 683	struct writeback_control *wbc)
 684{
 685	struct buffer_head	*bh, *head;
 686	xfs_off_t		end_offset;
 687	unsigned long		p_offset;
 688	unsigned int		type;
 689	int			len, page_dirty;
 690	int			count = 0, done = 0, uptodate = 1;
 691 	xfs_off_t		offset = page_offset(page);
 692
 693	if (page->index != tindex)
 694		goto fail;
 695	if (!trylock_page(page))
 696		goto fail;
 697	if (PageWriteback(page))
 698		goto fail_unlock_page;
 699	if (page->mapping != inode->i_mapping)
 700		goto fail_unlock_page;
 701	if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
 702		goto fail_unlock_page;
 703
 704	/*
 705	 * page_dirty is initially a count of buffers on the page before
 706	 * EOF and is decremented as we move each into a cleanable state.
 707	 *
 708	 * Derivation:
 709	 *
 710	 * End offset is the highest offset that this page should represent.
 711	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 712	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 713	 * hence give us the correct page_dirty count. On any other page,
 714	 * it will be zero and in that case we need page_dirty to be the
 715	 * count of buffers on the page.
 716	 */
 717	end_offset = min_t(unsigned long long,
 718			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 719			i_size_read(inode));
 720
 721	len = 1 << inode->i_blkbits;
 722	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 723					PAGE_CACHE_SIZE);
 724	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 725	page_dirty = p_offset / len;
 726
 727	bh = head = page_buffers(page);
 728	do {
 729		if (offset >= end_offset)
 730			break;
 731		if (!buffer_uptodate(bh))
 732			uptodate = 0;
 733		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 734			done = 1;
 735			continue;
 736		}
 737
 738		if (buffer_unwritten(bh) || buffer_delay(bh) ||
 739		    buffer_mapped(bh)) {
 740			if (buffer_unwritten(bh))
 741				type = IO_UNWRITTEN;
 742			else if (buffer_delay(bh))
 743				type = IO_DELALLOC;
 744			else
 745				type = IO_OVERWRITE;
 746
 747			if (!xfs_imap_valid(inode, imap, offset)) {
 748				done = 1;
 749				continue;
 750			}
 751
 752			lock_buffer(bh);
 753			if (type != IO_OVERWRITE)
 754				xfs_map_at_offset(inode, bh, imap, offset);
 755			xfs_add_to_ioend(inode, bh, offset, type,
 756					 ioendp, done);
 757
 758			page_dirty--;
 759			count++;
 760		} else {
 761			done = 1;
 762		}
 763	} while (offset += len, (bh = bh->b_this_page) != head);
 764
 765	if (uptodate && bh == head)
 766		SetPageUptodate(page);
 767
 768	if (count) {
 769		if (--wbc->nr_to_write <= 0 &&
 770		    wbc->sync_mode == WB_SYNC_NONE)
 771			done = 1;
 772	}
 773	xfs_start_page_writeback(page, !page_dirty, count);
 774
 775	return done;
 776 fail_unlock_page:
 777	unlock_page(page);
 778 fail:
 779	return 1;
 780}
 781
 782/*
 783 * Convert & write out a cluster of pages in the same extent as defined
 784 * by mp and following the start page.
 785 */
 786STATIC void
 787xfs_cluster_write(
 788	struct inode		*inode,
 789	pgoff_t			tindex,
 790	struct xfs_bmbt_irec	*imap,
 791	xfs_ioend_t		**ioendp,
 792	struct writeback_control *wbc,
 793	pgoff_t			tlast)
 794{
 795	struct pagevec		pvec;
 796	int			done = 0, i;
 797
 798	pagevec_init(&pvec, 0);
 799	while (!done && tindex <= tlast) {
 800		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 801
 802		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 803			break;
 804
 805		for (i = 0; i < pagevec_count(&pvec); i++) {
 806			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 807					imap, ioendp, wbc);
 808			if (done)
 809				break;
 810		}
 811
 812		pagevec_release(&pvec);
 813		cond_resched();
 814	}
 815}
 816
 817STATIC void
 818xfs_vm_invalidatepage(
 819	struct page		*page,
 820	unsigned long		offset)
 821{
 822	trace_xfs_invalidatepage(page->mapping->host, page, offset);
 823	block_invalidatepage(page, offset);
 824}
 825
 826/*
 827 * If the page has delalloc buffers on it, we need to punch them out before we
 828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 830 * is done on that same region - the delalloc extent is returned when none is
 831 * supposed to be there.
 832 *
 833 * We prevent this by truncating away the delalloc regions on the page before
 834 * invalidating it. Because they are delalloc, we can do this without needing a
 835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 836 * truncation without a transaction as there is no space left for block
 837 * reservation (typically why we see a ENOSPC in writeback).
 838 *
 839 * This is not a performance critical path, so for now just do the punching a
 840 * buffer head at a time.
 841 */
 842STATIC void
 843xfs_aops_discard_page(
 844	struct page		*page)
 845{
 846	struct inode		*inode = page->mapping->host;
 847	struct xfs_inode	*ip = XFS_I(inode);
 848	struct buffer_head	*bh, *head;
 849	loff_t			offset = page_offset(page);
 850
 851	if (!xfs_is_delayed_page(page, IO_DELALLOC))
 852		goto out_invalidate;
 853
 854	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 855		goto out_invalidate;
 856
 857	xfs_alert(ip->i_mount,
 858		"page discard on page %p, inode 0x%llx, offset %llu.",
 859			page, ip->i_ino, offset);
 860
 861	xfs_ilock(ip, XFS_ILOCK_EXCL);
 862	bh = head = page_buffers(page);
 863	do {
 864		int		error;
 865		xfs_fileoff_t	start_fsb;
 866
 867		if (!buffer_delay(bh))
 868			goto next_buffer;
 869
 870		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 871		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 872		if (error) {
 873			/* something screwed, just bail */
 874			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 875				xfs_alert(ip->i_mount,
 876			"page discard unable to remove delalloc mapping.");
 877			}
 878			break;
 879		}
 880next_buffer:
 881		offset += 1 << inode->i_blkbits;
 882
 883	} while ((bh = bh->b_this_page) != head);
 884
 885	xfs_iunlock(ip, XFS_ILOCK_EXCL);
 886out_invalidate:
 887	xfs_vm_invalidatepage(page, 0);
 888	return;
 889}
 890
 891/*
 892 * Write out a dirty page.
 893 *
 894 * For delalloc space on the page we need to allocate space and flush it.
 895 * For unwritten space on the page we need to start the conversion to
 896 * regular allocated space.
 897 * For any other dirty buffer heads on the page we should flush them.
 898 */
 899STATIC int
 900xfs_vm_writepage(
 901	struct page		*page,
 902	struct writeback_control *wbc)
 903{
 904	struct inode		*inode = page->mapping->host;
 905	struct buffer_head	*bh, *head;
 906	struct xfs_bmbt_irec	imap;
 907	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
 908	loff_t			offset;
 909	unsigned int		type;
 910	__uint64_t              end_offset;
 911	pgoff_t                 end_index, last_index;
 912	ssize_t			len;
 913	int			err, imap_valid = 0, uptodate = 1;
 914	int			count = 0;
 915	int			nonblocking = 0;
 916
 917	trace_xfs_writepage(inode, page, 0);
 
 918
 919	ASSERT(page_has_buffers(page));
 920
 921	/*
 922	 * Refuse to write the page out if we are called from reclaim context.
 923	 *
 924	 * This avoids stack overflows when called from deeply used stacks in
 925	 * random callers for direct reclaim or memcg reclaim.  We explicitly
 926	 * allow reclaim from kswapd as the stack usage there is relatively low.
 927	 *
 928	 * This should really be done by the core VM, but until that happens
 929	 * filesystems like XFS, btrfs and ext4 have to take care of this
 930	 * by themselves.
 
 
 
 
 931	 */
 932	if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
 933		goto redirty;
 934
 935	/*
 936	 * Given that we do not allow direct reclaim to call us, we should
 937	 * never be called while in a filesystem transaction.
 
 
 938	 */
 939	if (WARN_ON(current->flags & PF_FSTRANS))
 940		goto redirty;
 
 
 
 941
 942	/* Is this page beyond the end of the file? */
 943	offset = i_size_read(inode);
 944	end_index = offset >> PAGE_CACHE_SHIFT;
 945	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 946	if (page->index >= end_index) {
 947		if ((page->index >= end_index + 1) ||
 948		    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
 949			unlock_page(page);
 950			return 0;
 951		}
 952	}
 953
 954	end_offset = min_t(unsigned long long,
 955			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 956			offset);
 957	len = 1 << inode->i_blkbits;
 958
 959	bh = head = page_buffers(page);
 960	offset = page_offset(page);
 961	type = IO_OVERWRITE;
 962
 963	if (wbc->sync_mode == WB_SYNC_NONE)
 964		nonblocking = 1;
 965
 966	do {
 967		int new_ioend = 0;
 968
 969		if (offset >= end_offset)
 970			break;
 971		if (!buffer_uptodate(bh))
 972			uptodate = 0;
 973
 974		/*
 975		 * set_page_dirty dirties all buffers in a page, independent
 976		 * of their state.  The dirty state however is entirely
 977		 * meaningless for holes (!mapped && uptodate), so skip
 978		 * buffers covering holes here.
 979		 */
 980		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 981			imap_valid = 0;
 982			continue;
 983		}
 984
 985		if (buffer_unwritten(bh)) {
 986			if (type != IO_UNWRITTEN) {
 987				type = IO_UNWRITTEN;
 988				imap_valid = 0;
 989			}
 990		} else if (buffer_delay(bh)) {
 991			if (type != IO_DELALLOC) {
 992				type = IO_DELALLOC;
 993				imap_valid = 0;
 994			}
 995		} else if (buffer_uptodate(bh)) {
 996			if (type != IO_OVERWRITE) {
 997				type = IO_OVERWRITE;
 998				imap_valid = 0;
 999			}
1000		} else {
1001			if (PageUptodate(page)) {
1002				ASSERT(buffer_mapped(bh));
1003				imap_valid = 0;
1004			}
1005			continue;
1006		}
1007
1008		if (imap_valid)
1009			imap_valid = xfs_imap_valid(inode, &imap, offset);
1010		if (!imap_valid) {
1011			/*
1012			 * If we didn't have a valid mapping then we need to
1013			 * put the new mapping into a separate ioend structure.
1014			 * This ensures non-contiguous extents always have
1015			 * separate ioends, which is particularly important
1016			 * for unwritten extent conversion at I/O completion
1017			 * time.
1018			 */
1019			new_ioend = 1;
1020			err = xfs_map_blocks(inode, offset, &imap, type,
1021					     nonblocking);
1022			if (err)
1023				goto error;
1024			imap_valid = xfs_imap_valid(inode, &imap, offset);
1025		}
1026		if (imap_valid) {
1027			lock_buffer(bh);
1028			if (type != IO_OVERWRITE)
1029				xfs_map_at_offset(inode, bh, &imap, offset);
1030			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031					 new_ioend);
1032			count++;
1033		}
1034
1035		if (!iohead)
1036			iohead = ioend;
1037
1038	} while (offset += len, ((bh = bh->b_this_page) != head));
1039
1040	if (uptodate && bh == head)
1041		SetPageUptodate(page);
1042
1043	xfs_start_page_writeback(page, 1, count);
1044
1045	if (ioend && imap_valid) {
1046		xfs_off_t		end_index;
1047
1048		end_index = imap.br_startoff + imap.br_blockcount;
1049
1050		/* to bytes */
1051		end_index <<= inode->i_blkbits;
1052
1053		/* to pages */
1054		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1055
1056		/* check against file size */
1057		if (end_index > last_index)
1058			end_index = last_index;
1059
1060		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1061				  wbc, end_index);
1062	}
1063
1064	if (iohead)
1065		xfs_submit_ioend(wbc, iohead);
1066
1067	return 0;
1068
1069error:
1070	if (iohead)
1071		xfs_cancel_ioend(iohead);
1072
1073	if (err == -EAGAIN)
1074		goto redirty;
1075
1076	xfs_aops_discard_page(page);
1077	ClearPageUptodate(page);
1078	unlock_page(page);
1079	return err;
1080
1081redirty:
1082	redirty_page_for_writepage(wbc, page);
1083	unlock_page(page);
1084	return 0;
1085}
1086
1087STATIC int
1088xfs_vm_writepages(
1089	struct address_space	*mapping,
1090	struct writeback_control *wbc)
1091{
1092	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093	return generic_writepages(mapping, wbc);
1094}
1095
1096/*
1097 * Called to move a page into cleanable state - and from there
1098 * to be released. The page should already be clean. We always
1099 * have buffer heads in this call.
1100 *
1101 * Returns 1 if the page is ok to release, 0 otherwise.
1102 */
1103STATIC int
1104xfs_vm_releasepage(
1105	struct page		*page,
1106	gfp_t			gfp_mask)
1107{
1108	int			delalloc, unwritten;
1109
1110	trace_xfs_releasepage(page->mapping->host, page, 0);
1111
1112	xfs_count_page_state(page, &delalloc, &unwritten);
1113
1114	if (WARN_ON(delalloc))
1115		return 0;
1116	if (WARN_ON(unwritten))
1117		return 0;
 
1118
1119	return try_to_free_buffers(page);
1120}
 
 
 
 
 
 
 
1121
1122STATIC int
1123__xfs_get_blocks(
1124	struct inode		*inode,
1125	sector_t		iblock,
1126	struct buffer_head	*bh_result,
1127	int			create,
1128	int			direct)
1129{
1130	struct xfs_inode	*ip = XFS_I(inode);
1131	struct xfs_mount	*mp = ip->i_mount;
1132	xfs_fileoff_t		offset_fsb, end_fsb;
1133	int			error = 0;
1134	int			lockmode = 0;
1135	struct xfs_bmbt_irec	imap;
1136	int			nimaps = 1;
1137	xfs_off_t		offset;
1138	ssize_t			size;
1139	int			new = 0;
1140
1141	if (XFS_FORCED_SHUTDOWN(mp))
1142		return -XFS_ERROR(EIO);
1143
1144	offset = (xfs_off_t)iblock << inode->i_blkbits;
1145	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146	size = bh_result->b_size;
1147
1148	if (!create && direct && offset >= i_size_read(inode))
1149		return 0;
1150
1151	if (create) {
1152		lockmode = XFS_ILOCK_EXCL;
1153		xfs_ilock(ip, lockmode);
1154	} else {
1155		lockmode = xfs_ilock_map_shared(ip);
1156	}
1157
1158	ASSERT(offset <= mp->m_maxioffset);
1159	if (offset + size > mp->m_maxioffset)
1160		size = mp->m_maxioffset - offset;
1161	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163
1164	error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165			  XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL);
1166	if (error)
1167		goto out_unlock;
1168
1169	if (create &&
1170	    (!nimaps ||
1171	     (imap.br_startblock == HOLESTARTBLOCK ||
1172	      imap.br_startblock == DELAYSTARTBLOCK))) {
1173		if (direct) {
1174			error = xfs_iomap_write_direct(ip, offset, size,
1175						       &imap, nimaps);
1176		} else {
1177			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178		}
1179		if (error)
1180			goto out_unlock;
1181
1182		trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1183	} else if (nimaps) {
1184		trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1185	} else {
1186		trace_xfs_get_blocks_notfound(ip, offset, size);
1187		goto out_unlock;
1188	}
1189	xfs_iunlock(ip, lockmode);
1190
 
1191	if (imap.br_startblock != HOLESTARTBLOCK &&
1192	    imap.br_startblock != DELAYSTARTBLOCK) {
1193		/*
1194		 * For unwritten extents do not report a disk address on
1195		 * the read case (treat as if we're reading into a hole).
1196		 */
1197		if (create || !ISUNWRITTEN(&imap))
1198			xfs_map_buffer(inode, bh_result, &imap, offset);
1199		if (create && ISUNWRITTEN(&imap)) {
1200			if (direct)
1201				bh_result->b_private = inode;
1202			set_buffer_unwritten(bh_result);
1203		}
1204	}
1205
 
 
 
 
1206	/*
1207	 * If this is a realtime file, data may be on a different device.
1208	 * to that pointed to from the buffer_head b_bdev currently.
 
 
1209	 */
1210	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
 
 
 
1211
1212	/*
1213	 * If we previously allocated a block out beyond eof and we are now
1214	 * coming back to use it then we will need to flag it as new even if it
1215	 * has a disk address.
1216	 *
1217	 * With sub-block writes into unwritten extents we also need to mark
1218	 * the buffer as new so that the unwritten parts of the buffer gets
1219	 * correctly zeroed.
1220	 */
1221	if (create &&
1222	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1223	     (offset >= i_size_read(inode)) ||
1224	     (new || ISUNWRITTEN(&imap))))
1225		set_buffer_new(bh_result);
1226
1227	if (imap.br_startblock == DELAYSTARTBLOCK) {
1228		BUG_ON(direct);
1229		if (create) {
1230			set_buffer_uptodate(bh_result);
1231			set_buffer_mapped(bh_result);
1232			set_buffer_delay(bh_result);
1233		}
1234	}
1235
1236	/*
1237	 * If this is O_DIRECT or the mpage code calling tell them how large
1238	 * the mapping is, so that we can avoid repeated get_blocks calls.
 
1239	 */
1240	if (direct || size > (1 << inode->i_blkbits)) {
1241		xfs_off_t		mapping_size;
1242
1243		mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244		mapping_size <<= inode->i_blkbits;
1245
1246		ASSERT(mapping_size > 0);
1247		if (mapping_size > size)
1248			mapping_size = size;
1249		if (mapping_size > LONG_MAX)
1250			mapping_size = LONG_MAX;
1251
1252		bh_result->b_size = mapping_size;
 
1253	}
1254
 
 
 
1255	return 0;
1256
1257out_unlock:
1258	xfs_iunlock(ip, lockmode);
1259	return -error;
1260}
1261
1262int
1263xfs_get_blocks(
1264	struct inode		*inode,
1265	sector_t		iblock,
1266	struct buffer_head	*bh_result,
1267	int			create)
1268{
1269	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1270}
1271
1272STATIC int
1273xfs_get_blocks_direct(
1274	struct inode		*inode,
1275	sector_t		iblock,
1276	struct buffer_head	*bh_result,
1277	int			create)
1278{
1279	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1280}
1281
1282/*
1283 * Complete a direct I/O write request.
1284 *
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1288 * to do this and we are done.  But in case this was a successful AIO
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions.  In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1292 */
1293STATIC void
1294xfs_end_io_direct_write(
1295	struct kiocb		*iocb,
1296	loff_t			offset,
1297	ssize_t			size,
1298	void			*private,
1299	int			ret,
1300	bool			is_async)
1301{
1302	struct xfs_ioend	*ioend = iocb->private;
1303	struct inode		*inode = ioend->io_inode;
1304
1305	/*
1306	 * blockdev_direct_IO can return an error even after the I/O
1307	 * completion handler was called.  Thus we need to protect
1308	 * against double-freeing.
1309	 */
1310	iocb->private = NULL;
1311
1312	ioend->io_offset = offset;
1313	ioend->io_size = size;
1314	if (private && size > 0)
1315		ioend->io_type = IO_UNWRITTEN;
1316
1317	if (is_async) {
1318		/*
1319		 * If we are converting an unwritten extent we need to delay
1320		 * the AIO completion until after the unwrittent extent
1321		 * conversion has completed, otherwise do it ASAP.
1322		 */
1323		if (ioend->io_type == IO_UNWRITTEN) {
1324			ioend->io_iocb = iocb;
1325			ioend->io_result = ret;
1326		} else {
1327			aio_complete(iocb, ret, 0);
1328		}
1329		xfs_finish_ioend(ioend);
1330	} else {
1331		xfs_finish_ioend_sync(ioend);
1332	}
1333
1334	/* XXX: probably should move into the real I/O completion handler */
1335	inode_dio_done(inode);
1336}
1337
1338STATIC ssize_t
1339xfs_vm_direct_IO(
1340	int			rw,
1341	struct kiocb		*iocb,
1342	const struct iovec	*iov,
1343	loff_t			offset,
1344	unsigned long		nr_segs)
1345{
1346	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1347	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1348	ssize_t			ret;
1349
1350	if (rw & WRITE) {
1351		iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1352
1353		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354					    offset, nr_segs,
1355					    xfs_get_blocks_direct,
1356					    xfs_end_io_direct_write, NULL, 0);
1357		if (ret != -EIOCBQUEUED && iocb->private)
1358			xfs_destroy_ioend(iocb->private);
1359	} else {
1360		ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361					    offset, nr_segs,
1362					    xfs_get_blocks_direct,
1363					    NULL, NULL, 0);
1364	}
1365
1366	return ret;
1367}
1368
1369STATIC void
1370xfs_vm_write_failed(
1371	struct address_space	*mapping,
1372	loff_t			to)
 
 
 
 
 
 
 
 
 
 
 
 
 
1373{
1374	struct inode		*inode = mapping->host;
 
1375
1376	if (to > inode->i_size) {
1377		/*
1378		 * punch out the delalloc blocks we have already allocated. We
1379		 * don't call xfs_setattr() to do this as we may be in the
1380		 * middle of a multi-iovec write and so the vfs inode->i_size
1381		 * will not match the xfs ip->i_size and so it will zero too
1382		 * much. Hence we jus truncate the page cache to zero what is
1383		 * necessary and punch the delalloc blocks directly.
1384		 */
1385		struct xfs_inode	*ip = XFS_I(inode);
1386		xfs_fileoff_t		start_fsb;
1387		xfs_fileoff_t		end_fsb;
1388		int			error;
1389
1390		truncate_pagecache(inode, to, inode->i_size);
 
 
1391
1392		/*
1393		 * Check if there are any blocks that are outside of i_size
1394		 * that need to be trimmed back.
1395		 */
1396		start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397		end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398		if (end_fsb <= start_fsb)
1399			return;
1400
1401		xfs_ilock(ip, XFS_ILOCK_EXCL);
1402		error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403							end_fsb - start_fsb);
1404		if (error) {
1405			/* something screwed, just bail */
1406			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1407				xfs_alert(ip->i_mount,
1408			"xfs_vm_write_failed: unable to clean up ino %lld",
1409						ip->i_ino);
1410			}
1411		}
1412		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1413	}
1414}
1415
 
 
 
 
 
 
1416STATIC int
1417xfs_vm_write_begin(
1418	struct file		*file,
1419	struct address_space	*mapping,
1420	loff_t			pos,
1421	unsigned		len,
1422	unsigned		flags,
1423	struct page		**pagep,
1424	void			**fsdata)
1425{
1426	int			ret;
1427
1428	ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429				pagep, xfs_get_blocks);
1430	if (unlikely(ret))
1431		xfs_vm_write_failed(mapping, pos + len);
1432	return ret;
1433}
1434
1435STATIC int
1436xfs_vm_write_end(
1437	struct file		*file,
1438	struct address_space	*mapping,
1439	loff_t			pos,
1440	unsigned		len,
1441	unsigned		copied,
1442	struct page		*page,
1443	void			*fsdata)
1444{
1445	int			ret;
1446
1447	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448	if (unlikely(ret < len))
1449		xfs_vm_write_failed(mapping, pos + len);
1450	return ret;
1451}
1452
1453STATIC sector_t
1454xfs_vm_bmap(
1455	struct address_space	*mapping,
1456	sector_t		block)
1457{
1458	struct inode		*inode = (struct inode *)mapping->host;
1459	struct xfs_inode	*ip = XFS_I(inode);
 
1460
1461	trace_xfs_vm_bmap(XFS_I(inode));
1462	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1463	xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1464	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1465	return generic_block_bmap(mapping, block, xfs_get_blocks);
 
 
 
 
 
 
 
1466}
1467
1468STATIC int
1469xfs_vm_readpage(
1470	struct file		*unused,
1471	struct page		*page)
 
 
 
 
 
 
 
1472{
1473	return mpage_readpage(page, xfs_get_blocks);
1474}
1475
1476STATIC int
1477xfs_vm_readpages(
1478	struct file		*unused,
1479	struct address_space	*mapping,
1480	struct list_head	*pages,
1481	unsigned		nr_pages)
1482{
1483	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
 
 
1484}
1485
1486const struct address_space_operations xfs_address_space_operations = {
1487	.readpage		= xfs_vm_readpage,
1488	.readpages		= xfs_vm_readpages,
1489	.writepage		= xfs_vm_writepage,
1490	.writepages		= xfs_vm_writepages,
1491	.releasepage		= xfs_vm_releasepage,
1492	.invalidatepage		= xfs_vm_invalidatepage,
1493	.write_begin		= xfs_vm_write_begin,
1494	.write_end		= xfs_vm_write_end,
1495	.bmap			= xfs_vm_bmap,
1496	.direct_IO		= xfs_vm_direct_IO,
1497	.migratepage		= buffer_migrate_page,
1498	.is_partially_uptodate  = block_is_partially_uptodate,
1499	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
1500};