Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/fs/nfs/direct.c
   4 *
   5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   6 *
   7 * High-performance uncached I/O for the Linux NFS client
   8 *
   9 * There are important applications whose performance or correctness
  10 * depends on uncached access to file data.  Database clusters
  11 * (multiple copies of the same instance running on separate hosts)
  12 * implement their own cache coherency protocol that subsumes file
  13 * system cache protocols.  Applications that process datasets
  14 * considerably larger than the client's memory do not always benefit
  15 * from a local cache.  A streaming video server, for instance, has no
  16 * need to cache the contents of a file.
  17 *
  18 * When an application requests uncached I/O, all read and write requests
  19 * are made directly to the server; data stored or fetched via these
  20 * requests is not cached in the Linux page cache.  The client does not
  21 * correct unaligned requests from applications.  All requested bytes are
  22 * held on permanent storage before a direct write system call returns to
  23 * an application.
  24 *
  25 * Solaris implements an uncached I/O facility called directio() that
  26 * is used for backups and sequential I/O to very large files.  Solaris
  27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  28 * an undocumented mount option.
  29 *
  30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  31 * help from Andrew Morton.
  32 *
  33 * 18 Dec 2001	Initial implementation for 2.4  --cel
  34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  35 * 08 Jun 2003	Port to 2.5 APIs  --cel
  36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  37 * 15 Sep 2004	Parallel async reads  --cel
  38 * 04 May 2005	support O_DIRECT with aio  --cel
  39 *
  40 */
  41
  42#include <linux/errno.h>
  43#include <linux/sched.h>
  44#include <linux/kernel.h>
  45#include <linux/file.h>
  46#include <linux/pagemap.h>
  47#include <linux/kref.h>
  48#include <linux/slab.h>
  49#include <linux/task_io_accounting_ops.h>
  50#include <linux/module.h>
  51
  52#include <linux/nfs_fs.h>
  53#include <linux/nfs_page.h>
  54#include <linux/sunrpc/clnt.h>
  55
  56#include <linux/uaccess.h>
 
  57#include <linux/atomic.h>
  58
  59#include "delegation.h"
  60#include "internal.h"
  61#include "iostat.h"
  62#include "pnfs.h"
  63#include "fscache.h"
  64#include "nfstrace.h"
  65
  66#define NFSDBG_FACILITY		NFSDBG_VFS
  67
  68static struct kmem_cache *nfs_direct_cachep;
  69
  70static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
  71static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
  72static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
  73static void nfs_direct_write_schedule_work(struct work_struct *work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74
  75static inline void get_dreq(struct nfs_direct_req *dreq)
  76{
  77	atomic_inc(&dreq->io_count);
  78}
  79
  80static inline int put_dreq(struct nfs_direct_req *dreq)
  81{
  82	return atomic_dec_and_test(&dreq->io_count);
  83}
  84
  85static void
  86nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
  87			    const struct nfs_pgio_header *hdr,
  88			    ssize_t dreq_len)
  89{
  90	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
  91	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
  92		return;
  93	if (dreq->max_count >= dreq_len) {
  94		dreq->max_count = dreq_len;
  95		if (dreq->count > dreq_len)
  96			dreq->count = dreq_len;
  97	}
  98
  99	if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
 100		dreq->error = hdr->error;
 101}
 102
 103static void
 104nfs_direct_count_bytes(struct nfs_direct_req *dreq,
 105		       const struct nfs_pgio_header *hdr)
 106{
 107	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
 108	ssize_t dreq_len = 0;
 109
 110	if (hdr_end > dreq->io_start)
 111		dreq_len = hdr_end - dreq->io_start;
 112
 113	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
 114
 115	if (dreq_len > dreq->max_count)
 116		dreq_len = dreq->max_count;
 117
 118	if (dreq->count < dreq_len)
 119		dreq->count = dreq_len;
 120}
 121
 122static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
 123					struct nfs_page *req)
 124{
 125	loff_t offs = req_offset(req);
 126	size_t req_start = (size_t)(offs - dreq->io_start);
 127
 128	if (req_start < dreq->max_count)
 129		dreq->max_count = req_start;
 130	if (req_start < dreq->count)
 131		dreq->count = req_start;
 132}
 133
 134static void nfs_direct_file_adjust_size_locked(struct inode *inode,
 135					       loff_t offset, size_t count)
 136{
 137	loff_t newsize = offset + (loff_t)count;
 138	loff_t oldsize = i_size_read(inode);
 139
 140	if (newsize > oldsize) {
 141		i_size_write(inode, newsize);
 142		NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
 143		trace_nfs_size_grow(inode, newsize);
 144		nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
 145	}
 146}
 147
 148/**
 149 * nfs_swap_rw - NFS address space operation for swap I/O
 
 150 * @iocb: target I/O control block
 151 * @iter: I/O buffer
 
 
 152 *
 153 * Perform IO to the swap-file.  This is much like direct IO.
 
 
 
 154 */
 155int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
 156{
 157	ssize_t ret;
 
 
 158
 159	if (iov_iter_rw(iter) == READ)
 160		ret = nfs_file_direct_read(iocb, iter, true);
 161	else
 162		ret = nfs_file_direct_write(iocb, iter, true);
 163	if (ret < 0)
 164		return ret;
 165	return 0;
 166}
 167
 168static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 169{
 
 170	unsigned int i;
 171	for (i = 0; i < npages; i++)
 172		put_page(pages[i]);
 
 
 
 
 
 
 
 
 173}
 174
 175void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
 176			      struct nfs_direct_req *dreq)
 177{
 178	cinfo->inode = dreq->inode;
 179	cinfo->mds = &dreq->mds_cinfo;
 180	cinfo->ds = &dreq->ds_cinfo;
 181	cinfo->dreq = dreq;
 182	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
 183}
 184
 185static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 186{
 187	struct nfs_direct_req *dreq;
 188
 189	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
 190	if (!dreq)
 191		return NULL;
 192
 193	kref_init(&dreq->kref);
 194	kref_get(&dreq->kref);
 195	init_completion(&dreq->completion);
 196	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
 197	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
 198	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
 
 199	spin_lock_init(&dreq->lock);
 
 
 
 
 200
 201	return dreq;
 202}
 203
 204static void nfs_direct_req_free(struct kref *kref)
 205{
 206	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 207
 208	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
 209	if (dreq->l_ctx != NULL)
 210		nfs_put_lock_context(dreq->l_ctx);
 211	if (dreq->ctx != NULL)
 212		put_nfs_open_context(dreq->ctx);
 213	kmem_cache_free(nfs_direct_cachep, dreq);
 214}
 215
 216static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 217{
 218	kref_put(&dreq->kref, nfs_direct_req_free);
 219}
 220
 221ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
 222{
 223	loff_t start = offset - dreq->io_start;
 224	return dreq->max_count - start;
 225}
 226EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
 227
 228/*
 229 * Collects and returns the final error value/byte-count.
 230 */
 231static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 232{
 233	ssize_t result = -EIOCBQUEUED;
 234
 235	/* Async requests don't wait here */
 236	if (dreq->iocb)
 237		goto out;
 238
 239	result = wait_for_completion_killable(&dreq->completion);
 240
 241	if (!result) {
 242		result = dreq->count;
 243		WARN_ON_ONCE(dreq->count < 0);
 244	}
 245	if (!result)
 246		result = dreq->error;
 
 
 247
 248out:
 249	return (ssize_t) result;
 250}
 251
 252/*
 253 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 254 * the iocb is still valid here if this is a synchronous request.
 255 */
 256static void nfs_direct_complete(struct nfs_direct_req *dreq)
 257{
 258	struct inode *inode = dreq->inode;
 259
 260	inode_dio_end(inode);
 261
 262	if (dreq->iocb) {
 263		long res = (long) dreq->error;
 264		if (dreq->count != 0) {
 265			res = (long) dreq->count;
 266			WARN_ON_ONCE(dreq->count < 0);
 267		}
 268		dreq->iocb->ki_complete(dreq->iocb, res);
 269	}
 270
 271	complete(&dreq->completion);
 272
 273	nfs_direct_req_release(dreq);
 274}
 275
 276static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
 
 
 
 
 
 277{
 278	unsigned long bytes = 0;
 279	struct nfs_direct_req *dreq = hdr->dreq;
 280
 281	spin_lock(&dreq->lock);
 282	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 283		spin_unlock(&dreq->lock);
 284		goto out_put;
 285	}
 286
 287	nfs_direct_count_bytes(dreq, hdr);
 288	spin_unlock(&dreq->lock);
 289
 290	nfs_update_delegated_atime(dreq->inode);
 291
 292	while (!list_empty(&hdr->pages)) {
 293		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 294		struct page *page = req->wb_page;
 295
 296		if (!PageCompound(page) && bytes < hdr->good_bytes &&
 297		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
 298			set_page_dirty(page);
 299		bytes += req->wb_bytes;
 300		nfs_list_remove_request(req);
 301		nfs_release_request(req);
 302	}
 303out_put:
 304	if (put_dreq(dreq))
 305		nfs_direct_complete(dreq);
 306	hdr->release(hdr);
 307}
 308
 309static void nfs_read_sync_pgio_error(struct list_head *head, int error)
 310{
 311	struct nfs_page *req;
 312
 313	while (!list_empty(head)) {
 314		req = nfs_list_entry(head->next);
 315		nfs_list_remove_request(req);
 316		nfs_release_request(req);
 
 
 
 
 
 
 
 
 
 
 317	}
 318}
 319
 320static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
 321{
 322	get_dreq(hdr->dreq);
 323}
 324
 325static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
 326	.error_cleanup = nfs_read_sync_pgio_error,
 327	.init_hdr = nfs_direct_pgio_init,
 328	.completion = nfs_direct_read_completion,
 
 
 329};
 330
 331/*
 332 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 333 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 334 * bail and stop sending more reads.  Read length accounting is
 335 * handled automatically by nfs_direct_read_result().  Otherwise, if
 336 * no requests have been sent, just return an error.
 337 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 338
 339static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 340					      struct iov_iter *iter,
 
 341					      loff_t pos)
 342{
 343	struct nfs_pageio_descriptor desc;
 344	struct inode *inode = dreq->inode;
 345	ssize_t result = -EINVAL;
 346	size_t requested_bytes = 0;
 347	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
 348
 349	nfs_pageio_init_read(&desc, dreq->inode, false,
 350			     &nfs_direct_read_completion_ops);
 351	get_dreq(dreq);
 352	desc.pg_dreq = dreq;
 353	inode_dio_begin(inode);
 354
 355	while (iov_iter_count(iter)) {
 356		struct page **pagevec;
 357		size_t bytes;
 358		size_t pgbase;
 359		unsigned npages, i;
 360
 361		result = iov_iter_get_pages_alloc2(iter, &pagevec,
 362						  rsize, &pgbase);
 363		if (result < 0)
 364			break;
 365	
 366		bytes = result;
 367		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 368		for (i = 0; i < npages; i++) {
 369			struct nfs_page *req;
 370			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 371			/* XXX do we need to do the eof zeroing found in async_filler? */
 372			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
 373							pgbase, pos, req_len);
 374			if (IS_ERR(req)) {
 375				result = PTR_ERR(req);
 376				break;
 377			}
 378			if (!nfs_pageio_add_request(&desc, req)) {
 379				result = desc.pg_error;
 380				nfs_release_request(req);
 381				break;
 382			}
 383			pgbase = 0;
 384			bytes -= req_len;
 385			requested_bytes += req_len;
 386			pos += req_len;
 387		}
 388		nfs_direct_release_pages(pagevec, npages);
 389		kvfree(pagevec);
 390		if (result < 0)
 391			break;
 
 392	}
 393
 394	nfs_pageio_complete(&desc);
 395
 396	/*
 397	 * If no bytes were started, return the error, and let the
 398	 * generic layer handle the completion.
 399	 */
 400	if (requested_bytes == 0) {
 401		inode_dio_end(inode);
 402		nfs_direct_req_release(dreq);
 403		return result < 0 ? result : -EIO;
 404	}
 405
 406	if (put_dreq(dreq))
 407		nfs_direct_complete(dreq);
 408	return requested_bytes;
 409}
 410
 411/**
 412 * nfs_file_direct_read - file direct read operation for NFS files
 413 * @iocb: target I/O control block
 414 * @iter: vector of user buffers into which to read data
 415 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 416 *
 417 * We use this function for direct reads instead of calling
 418 * generic_file_aio_read() in order to avoid gfar's check to see if
 419 * the request starts before the end of the file.  For that check
 420 * to work, we must generate a GETATTR before each direct read, and
 421 * even then there is a window between the GETATTR and the subsequent
 422 * READ where the file size could change.  Our preference is simply
 423 * to do all reads the application wants, and the server will take
 424 * care of managing the end of file boundary.
 425 *
 426 * This function also eliminates unnecessarily updating the file's
 427 * atime locally, as the NFS server sets the file's atime, and this
 428 * client must read the updated atime from the server back into its
 429 * cache.
 430 */
 431ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
 432			     bool swap)
 433{
 434	struct file *file = iocb->ki_filp;
 435	struct address_space *mapping = file->f_mapping;
 436	struct inode *inode = mapping->host;
 437	struct nfs_direct_req *dreq;
 438	struct nfs_lock_context *l_ctx;
 439	ssize_t result, requested;
 440	size_t count = iov_iter_count(iter);
 441	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 442
 443	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
 444		file, count, (long long) iocb->ki_pos);
 445
 446	result = 0;
 447	if (!count)
 448		goto out;
 449
 450	task_io_account_read(count);
 451
 452	result = -ENOMEM;
 453	dreq = nfs_direct_req_alloc();
 454	if (dreq == NULL)
 455		goto out;
 456
 457	dreq->inode = inode;
 458	dreq->max_count = count;
 459	dreq->io_start = iocb->ki_pos;
 460	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 461	l_ctx = nfs_get_lock_context(dreq->ctx);
 462	if (IS_ERR(l_ctx)) {
 463		result = PTR_ERR(l_ctx);
 464		nfs_direct_req_release(dreq);
 465		goto out_release;
 466	}
 467	dreq->l_ctx = l_ctx;
 468	if (!is_sync_kiocb(iocb))
 469		dreq->iocb = iocb;
 470
 471	if (user_backed_iter(iter))
 472		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
 473
 474	if (!swap) {
 475		result = nfs_start_io_direct(inode);
 476		if (result) {
 477			/* release the reference that would usually be
 478			 * consumed by nfs_direct_read_schedule_iovec()
 479			 */
 480			nfs_direct_req_release(dreq);
 481			goto out_release;
 482		}
 483	}
 484
 485	NFS_I(inode)->read_io += count;
 486	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
 487
 488	if (!swap)
 489		nfs_end_io_direct(inode);
 490
 491	if (requested > 0) {
 492		result = nfs_direct_wait(dreq);
 493		if (result > 0) {
 494			requested -= result;
 495			iocb->ki_pos += result;
 496		}
 497		iov_iter_revert(iter, requested);
 498	} else {
 499		result = requested;
 500	}
 501
 502out_release:
 503	nfs_direct_req_release(dreq);
 504out:
 505	return result;
 506}
 507
 508static void nfs_direct_add_page_head(struct list_head *list,
 509				     struct nfs_page *req)
 510{
 511	struct nfs_page *head = req->wb_head;
 512
 513	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
 514		return;
 515	if (!list_empty(&head->wb_list)) {
 516		nfs_unlock_request(head);
 517		return;
 518	}
 519	list_add(&head->wb_list, list);
 520	kref_get(&head->wb_kref);
 521	kref_get(&head->wb_kref);
 522}
 523
 524static void nfs_direct_join_group(struct list_head *list,
 525				  struct nfs_commit_info *cinfo,
 526				  struct inode *inode)
 527{
 528	struct nfs_page *req, *subreq;
 529
 530	list_for_each_entry(req, list, wb_list) {
 531		if (req->wb_head != req) {
 532			nfs_direct_add_page_head(&req->wb_list, req);
 533			continue;
 534		}
 535		subreq = req->wb_this_page;
 536		if (subreq == req)
 537			continue;
 538		do {
 539			/*
 540			 * Remove subrequests from this list before freeing
 541			 * them in the call to nfs_join_page_group().
 542			 */
 543			if (!list_empty(&subreq->wb_list)) {
 544				nfs_list_remove_request(subreq);
 545				nfs_release_request(subreq);
 546			}
 547		} while ((subreq = subreq->wb_this_page) != req);
 548		nfs_join_page_group(req, cinfo, inode);
 549	}
 550}
 551
 552static void
 553nfs_direct_write_scan_commit_list(struct inode *inode,
 554				  struct list_head *list,
 555				  struct nfs_commit_info *cinfo)
 556{
 557	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
 558	pnfs_recover_commit_reqs(list, cinfo);
 559	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
 560	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
 561}
 562
 
 563static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 564{
 565	struct nfs_pageio_descriptor desc;
 566	struct nfs_page *req;
 567	LIST_HEAD(reqs);
 568	struct nfs_commit_info cinfo;
 
 
 
 
 
 
 
 
 
 
 569
 570	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 571	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 572
 573	nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
 
 574
 575	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
 576	get_dreq(dreq);
 577
 578	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
 579			      &nfs_direct_write_completion_ops);
 580	desc.pg_dreq = dreq;
 581
 582	while (!list_empty(&reqs)) {
 583		req = nfs_list_entry(reqs.next);
 584		/* Bump the transmission count */
 585		req->wb_nio++;
 586		if (!nfs_pageio_add_request(&desc, req)) {
 587			spin_lock(&dreq->lock);
 588			if (dreq->error < 0) {
 589				desc.pg_error = dreq->error;
 590			} else if (desc.pg_error != -EAGAIN) {
 591				dreq->flags = 0;
 592				if (!desc.pg_error)
 593					desc.pg_error = -EIO;
 594				dreq->error = desc.pg_error;
 595			} else
 596				dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 597			spin_unlock(&dreq->lock);
 598			break;
 599		}
 600		nfs_release_request(req);
 601	}
 602	nfs_pageio_complete(&desc);
 603
 604	while (!list_empty(&reqs)) {
 605		req = nfs_list_entry(reqs.next);
 606		nfs_list_remove_request(req);
 607		nfs_unlock_and_release_request(req);
 608		if (desc.pg_error == -EAGAIN) {
 609			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 610		} else {
 611			spin_lock(&dreq->lock);
 612			nfs_direct_truncate_request(dreq, req);
 613			spin_unlock(&dreq->lock);
 614			nfs_release_request(req);
 615		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616	}
 617
 618	if (put_dreq(dreq))
 619		nfs_direct_write_complete(dreq);
 620}
 621
 622static void nfs_direct_commit_complete(struct nfs_commit_data *data)
 623{
 624	const struct nfs_writeverf *verf = data->res.verf;
 625	struct nfs_direct_req *dreq = data->dreq;
 626	struct nfs_commit_info cinfo;
 627	struct nfs_page *req;
 628	int status = data->task.tk_status;
 629
 630	trace_nfs_direct_commit_complete(dreq);
 631
 632	spin_lock(&dreq->lock);
 633	if (status < 0) {
 634		/* Errors in commit are fatal */
 635		dreq->error = status;
 636		dreq->flags = NFS_ODIRECT_DONE;
 637	} else {
 638		status = dreq->error;
 639	}
 640	spin_unlock(&dreq->lock);
 641
 642	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 643
 644	while (!list_empty(&data->pages)) {
 645		req = nfs_list_entry(data->pages.next);
 646		nfs_list_remove_request(req);
 647		if (status < 0) {
 648			spin_lock(&dreq->lock);
 649			nfs_direct_truncate_request(dreq, req);
 650			spin_unlock(&dreq->lock);
 651			nfs_release_request(req);
 652		} else if (!nfs_write_match_verf(verf, req)) {
 653			spin_lock(&dreq->lock);
 654			if (dreq->flags == 0)
 655				dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 656			spin_unlock(&dreq->lock);
 657			/*
 658			 * Despite the reboot, the write was successful,
 659			 * so reset wb_nio.
 660			 */
 661			req->wb_nio = 0;
 662			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 663		} else
 664			nfs_release_request(req);
 665		nfs_unlock_and_release_request(req);
 666	}
 667
 668	if (nfs_commit_end(cinfo.mds))
 669		nfs_direct_write_complete(dreq);
 670}
 671
 672static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
 673		struct nfs_page *req)
 674{
 675	struct nfs_direct_req *dreq = cinfo->dreq;
 676
 677	trace_nfs_direct_resched_write(dreq);
 678
 679	spin_lock(&dreq->lock);
 680	if (dreq->flags != NFS_ODIRECT_DONE)
 
 681		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 682	spin_unlock(&dreq->lock);
 683	nfs_mark_request_commit(req, NULL, cinfo, 0);
 
 
 
 
 
 
 684}
 685
 686static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
 687	.completion = nfs_direct_commit_complete,
 688	.resched_write = nfs_direct_resched_write,
 
 
 
 689};
 690
 691static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 692{
 693	int res;
 694	struct nfs_commit_info cinfo;
 695	LIST_HEAD(mds_list);
 696
 697	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 698	nfs_commit_begin(cinfo.mds);
 699	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
 700	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
 701	if (res < 0) { /* res == -ENOMEM */
 702		spin_lock(&dreq->lock);
 703		if (dreq->flags == 0)
 704			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 705		spin_unlock(&dreq->lock);
 706	}
 707	if (nfs_commit_end(cinfo.mds))
 708		nfs_direct_write_complete(dreq);
 709}
 710
 711static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
 712{
 713	struct nfs_commit_info cinfo;
 714	struct nfs_page *req;
 715	LIST_HEAD(reqs);
 716
 717	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 718	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
 719
 720	while (!list_empty(&reqs)) {
 721		req = nfs_list_entry(reqs.next);
 722		nfs_list_remove_request(req);
 723		nfs_direct_truncate_request(dreq, req);
 724		nfs_release_request(req);
 725		nfs_unlock_and_release_request(req);
 726	}
 
 
 
 
 
 
 727}
 728
 729static void nfs_direct_write_schedule_work(struct work_struct *work)
 730{
 731	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
 732	int flags = dreq->flags;
 733
 734	dreq->flags = 0;
 735	switch (flags) {
 736		case NFS_ODIRECT_DO_COMMIT:
 737			nfs_direct_commit_schedule(dreq);
 738			break;
 739		case NFS_ODIRECT_RESCHED_WRITES:
 740			nfs_direct_write_reschedule(dreq);
 741			break;
 742		default:
 743			nfs_direct_write_clear_reqs(dreq);
 744			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
 
 
 745			nfs_direct_complete(dreq);
 746	}
 747}
 748
 749static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
 750{
 751	trace_nfs_direct_write_complete(dreq);
 752	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
 
 
 
 
 
 
 753}
 754
 755static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
 756{
 757	struct nfs_direct_req *dreq = hdr->dreq;
 758	struct nfs_commit_info cinfo;
 759	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
 760	struct inode *inode = dreq->inode;
 761	int flags = NFS_ODIRECT_DONE;
 762
 763	trace_nfs_direct_write_completion(dreq);
 
 
 764
 765	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 
 
 
 
 
 
 
 
 
 
 
 766
 767	spin_lock(&dreq->lock);
 768	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
 769		spin_unlock(&dreq->lock);
 770		goto out_put;
 771	}
 772
 773	nfs_direct_count_bytes(dreq, hdr);
 774	if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
 775	    !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
 776		if (!dreq->flags)
 777			dreq->flags = NFS_ODIRECT_DO_COMMIT;
 778		flags = dreq->flags;
 779	}
 780	spin_unlock(&dreq->lock);
 
 781
 782	spin_lock(&inode->i_lock);
 783	nfs_direct_file_adjust_size_locked(inode, dreq->io_start, dreq->count);
 784	nfs_update_delegated_mtime_locked(dreq->inode);
 785	spin_unlock(&inode->i_lock);
 786
 787	while (!list_empty(&hdr->pages)) {
 788
 789		req = nfs_list_entry(hdr->pages.next);
 790		nfs_list_remove_request(req);
 791		if (flags == NFS_ODIRECT_DO_COMMIT) {
 792			kref_get(&req->wb_kref);
 793			memcpy(&req->wb_verf, &hdr->verf.verifier,
 794			       sizeof(req->wb_verf));
 795			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
 796				hdr->ds_commit_idx);
 797		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
 798			kref_get(&req->wb_kref);
 799			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 800		}
 801		nfs_unlock_and_release_request(req);
 802	}
 
 
 803
 804out_put:
 805	if (put_dreq(dreq))
 806		nfs_direct_write_complete(dreq);
 807	hdr->release(hdr);
 808}
 809
 810static void nfs_write_sync_pgio_error(struct list_head *head, int error)
 811{
 812	struct nfs_page *req;
 813
 814	while (!list_empty(head)) {
 815		req = nfs_list_entry(head->next);
 816		nfs_list_remove_request(req);
 817		nfs_unlock_and_release_request(req);
 818	}
 819}
 820
 821static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
 822{
 823	struct nfs_direct_req *dreq = hdr->dreq;
 824	struct nfs_page *req;
 825	struct nfs_commit_info cinfo;
 826
 827	trace_nfs_direct_write_reschedule_io(dreq);
 828
 829	nfs_init_cinfo_from_dreq(&cinfo, dreq);
 830	spin_lock(&dreq->lock);
 831	if (dreq->error == 0)
 832		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 833	set_bit(NFS_IOHDR_REDO, &hdr->flags);
 834	spin_unlock(&dreq->lock);
 835	while (!list_empty(&hdr->pages)) {
 836		req = nfs_list_entry(hdr->pages.next);
 837		nfs_list_remove_request(req);
 838		nfs_unlock_request(req);
 839		nfs_mark_request_commit(req, NULL, &cinfo, 0);
 840	}
 841}
 842
 843static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
 844	.error_cleanup = nfs_write_sync_pgio_error,
 845	.init_hdr = nfs_direct_pgio_init,
 846	.completion = nfs_direct_write_completion,
 847	.reschedule_io = nfs_direct_write_reschedule_io,
 
 848};
 849
 850
 851/*
 852 * NB: Return the value of the first error return code.  Subsequent
 853 *     errors after the first one are ignored.
 854 */
 855/*
 856 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 857 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 858 * bail and stop sending more writes.  Write length accounting is
 859 * handled automatically by nfs_direct_write_result().  Otherwise, if
 860 * no requests have been sent, just return an error.
 861 */
 862static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 863					       struct iov_iter *iter,
 864					       loff_t pos, int ioflags)
 865{
 866	struct nfs_pageio_descriptor desc;
 867	struct inode *inode = dreq->inode;
 868	struct nfs_commit_info cinfo;
 869	ssize_t result = 0;
 870	size_t requested_bytes = 0;
 871	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
 872	bool defer = false;
 873
 874	trace_nfs_direct_write_schedule_iovec(dreq);
 875
 876	nfs_pageio_init_write(&desc, inode, ioflags, false,
 877			      &nfs_direct_write_completion_ops);
 878	desc.pg_dreq = dreq;
 879	get_dreq(dreq);
 880	inode_dio_begin(inode);
 
 
 
 
 881
 882	NFS_I(inode)->write_io += iov_iter_count(iter);
 883	while (iov_iter_count(iter)) {
 884		struct page **pagevec;
 885		size_t bytes;
 886		size_t pgbase;
 887		unsigned npages, i;
 888
 889		result = iov_iter_get_pages_alloc2(iter, &pagevec,
 890						  wsize, &pgbase);
 891		if (result < 0)
 
 
 
 892			break;
 893
 894		bytes = result;
 895		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
 896		for (i = 0; i < npages; i++) {
 897			struct nfs_page *req;
 898			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
 899
 900			req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
 901							pgbase, pos, req_len);
 902			if (IS_ERR(req)) {
 903				result = PTR_ERR(req);
 
 
 
 904				break;
 905			}
 
 
 
 906
 907			if (desc.pg_error < 0) {
 908				nfs_free_request(req);
 909				result = desc.pg_error;
 910				break;
 911			}
 912
 913			pgbase = 0;
 914			bytes -= req_len;
 915			requested_bytes += req_len;
 916			pos += req_len;
 917
 918			if (defer) {
 919				nfs_mark_request_commit(req, NULL, &cinfo, 0);
 920				continue;
 921			}
 922
 923			nfs_lock_request(req);
 924			if (nfs_pageio_add_request(&desc, req))
 925				continue;
 926
 927			/* Exit on hard errors */
 928			if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
 929				result = desc.pg_error;
 930				nfs_unlock_and_release_request(req);
 931				break;
 932			}
 
 
 
 
 
 
 
 
 
 
 
 933
 934			/* If the error is soft, defer remaining requests */
 935			nfs_init_cinfo_from_dreq(&cinfo, dreq);
 936			spin_lock(&dreq->lock);
 937			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 938			spin_unlock(&dreq->lock);
 939			nfs_unlock_request(req);
 940			nfs_mark_request_commit(req, NULL, &cinfo, 0);
 941			desc.pg_error = 0;
 942			defer = true;
 943		}
 944		nfs_direct_release_pages(pagevec, npages);
 945		kvfree(pagevec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 946		if (result < 0)
 947			break;
 
 
 
 
 948	}
 949	nfs_pageio_complete(&desc);
 950
 951	/*
 952	 * If no bytes were started, return the error, and let the
 953	 * generic layer handle the completion.
 954	 */
 955	if (requested_bytes == 0) {
 956		inode_dio_end(inode);
 957		nfs_direct_req_release(dreq);
 958		return result < 0 ? result : -EIO;
 959	}
 960
 961	if (put_dreq(dreq))
 962		nfs_direct_write_complete(dreq);
 963	return requested_bytes;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 964}
 965
 966/**
 967 * nfs_file_direct_write - file direct write operation for NFS files
 968 * @iocb: target I/O control block
 969 * @iter: vector of user buffers from which to write data
 970 * @swap: flag indicating this is swap IO, not O_DIRECT IO
 
 971 *
 972 * We use this function for direct writes instead of calling
 973 * generic_file_aio_write() in order to avoid taking the inode
 974 * semaphore and updating the i_size.  The NFS server will set
 975 * the new i_size and this client must read the updated size
 976 * back into its cache.  We let the server do generic write
 977 * parameter checking and report problems.
 978 *
 979 * We eliminate local atime updates, see direct read above.
 980 *
 981 * We avoid unnecessary page cache invalidations for normal cached
 982 * readers of this file.
 983 *
 984 * Note that O_APPEND is not supported for NFS direct writes, as there
 985 * is no atomic O_APPEND write facility in the NFS protocol.
 986 */
 987ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
 988			      bool swap)
 989{
 990	ssize_t result, requested;
 991	size_t count;
 992	struct file *file = iocb->ki_filp;
 993	struct address_space *mapping = file->f_mapping;
 994	struct inode *inode = mapping->host;
 995	struct nfs_direct_req *dreq;
 996	struct nfs_lock_context *l_ctx;
 997	loff_t pos, end;
 998
 999	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1000		file, iov_iter_count(iter), (long long) iocb->ki_pos);
1001
1002	if (swap)
1003		/* bypass generic checks */
1004		result =  iov_iter_count(iter);
1005	else
1006		result = generic_write_checks(iocb, iter);
1007	if (result <= 0)
1008		return result;
1009	count = result;
1010	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
1011
1012	pos = iocb->ki_pos;
1013	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
 
 
1014
1015	task_io_account_write(count);
1016
1017	result = -ENOMEM;
1018	dreq = nfs_direct_req_alloc();
1019	if (!dreq)
1020		goto out;
1021
1022	dreq->inode = inode;
1023	dreq->max_count = count;
1024	dreq->io_start = pos;
1025	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1026	l_ctx = nfs_get_lock_context(dreq->ctx);
1027	if (IS_ERR(l_ctx)) {
1028		result = PTR_ERR(l_ctx);
1029		nfs_direct_req_release(dreq);
1030		goto out_release;
1031	}
1032	dreq->l_ctx = l_ctx;
1033	if (!is_sync_kiocb(iocb))
1034		dreq->iocb = iocb;
1035	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
1036
1037	if (swap) {
1038		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1039							    FLUSH_STABLE);
1040	} else {
1041		result = nfs_start_io_direct(inode);
1042		if (result) {
1043			/* release the reference that would usually be
1044			 * consumed by nfs_direct_write_schedule_iovec()
1045			 */
1046			nfs_direct_req_release(dreq);
1047			goto out_release;
1048		}
1049
1050		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1051							    FLUSH_COND_STABLE);
1052
1053		if (mapping->nrpages) {
1054			invalidate_inode_pages2_range(mapping,
1055						      pos >> PAGE_SHIFT, end);
1056		}
1057
1058		nfs_end_io_direct(inode);
1059	}
1060
1061	if (requested > 0) {
1062		result = nfs_direct_wait(dreq);
1063		if (result > 0) {
1064			requested -= result;
1065			iocb->ki_pos = pos + result;
1066			/* XXX: should check the generic_write_sync retval */
1067			generic_write_sync(iocb, result);
1068		}
1069		iov_iter_revert(iter, requested);
1070	} else {
1071		result = requested;
1072	}
1073	nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1074out_release:
1075	nfs_direct_req_release(dreq);
1076out:
1077	return result;
1078}
1079
1080/**
1081 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1082 *
1083 */
1084int __init nfs_init_directcache(void)
1085{
1086	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1087						sizeof(struct nfs_direct_req),
1088						0, SLAB_RECLAIM_ACCOUNT,
 
1089						NULL);
1090	if (nfs_direct_cachep == NULL)
1091		return -ENOMEM;
1092
1093	return 0;
1094}
1095
1096/**
1097 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1098 *
1099 */
1100void nfs_destroy_directcache(void)
1101{
1102	kmem_cache_destroy(nfs_direct_cachep);
1103}
v3.1
 
   1/*
   2 * linux/fs/nfs/direct.c
   3 *
   4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
   5 *
   6 * High-performance uncached I/O for the Linux NFS client
   7 *
   8 * There are important applications whose performance or correctness
   9 * depends on uncached access to file data.  Database clusters
  10 * (multiple copies of the same instance running on separate hosts)
  11 * implement their own cache coherency protocol that subsumes file
  12 * system cache protocols.  Applications that process datasets
  13 * considerably larger than the client's memory do not always benefit
  14 * from a local cache.  A streaming video server, for instance, has no
  15 * need to cache the contents of a file.
  16 *
  17 * When an application requests uncached I/O, all read and write requests
  18 * are made directly to the server; data stored or fetched via these
  19 * requests is not cached in the Linux page cache.  The client does not
  20 * correct unaligned requests from applications.  All requested bytes are
  21 * held on permanent storage before a direct write system call returns to
  22 * an application.
  23 *
  24 * Solaris implements an uncached I/O facility called directio() that
  25 * is used for backups and sequential I/O to very large files.  Solaris
  26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
  27 * an undocumented mount option.
  28 *
  29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
  30 * help from Andrew Morton.
  31 *
  32 * 18 Dec 2001	Initial implementation for 2.4  --cel
  33 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
  34 * 08 Jun 2003	Port to 2.5 APIs  --cel
  35 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
  36 * 15 Sep 2004	Parallel async reads  --cel
  37 * 04 May 2005	support O_DIRECT with aio  --cel
  38 *
  39 */
  40
  41#include <linux/errno.h>
  42#include <linux/sched.h>
  43#include <linux/kernel.h>
  44#include <linux/file.h>
  45#include <linux/pagemap.h>
  46#include <linux/kref.h>
  47#include <linux/slab.h>
  48#include <linux/task_io_accounting_ops.h>
 
  49
  50#include <linux/nfs_fs.h>
  51#include <linux/nfs_page.h>
  52#include <linux/sunrpc/clnt.h>
  53
  54#include <asm/system.h>
  55#include <asm/uaccess.h>
  56#include <linux/atomic.h>
  57
 
  58#include "internal.h"
  59#include "iostat.h"
 
 
 
  60
  61#define NFSDBG_FACILITY		NFSDBG_VFS
  62
  63static struct kmem_cache *nfs_direct_cachep;
  64
  65/*
  66 * This represents a set of asynchronous requests that we're waiting on
  67 */
  68struct nfs_direct_req {
  69	struct kref		kref;		/* release manager */
  70
  71	/* I/O parameters */
  72	struct nfs_open_context	*ctx;		/* file open context info */
  73	struct nfs_lock_context *l_ctx;		/* Lock context info */
  74	struct kiocb *		iocb;		/* controlling i/o request */
  75	struct inode *		inode;		/* target file of i/o */
  76
  77	/* completion state */
  78	atomic_t		io_count;	/* i/os we're waiting for */
  79	spinlock_t		lock;		/* protect completion state */
  80	ssize_t			count,		/* bytes actually processed */
  81				error;		/* any reported error */
  82	struct completion	completion;	/* wait for i/o completion */
  83
  84	/* commit state */
  85	struct list_head	rewrite_list;	/* saved nfs_write_data structs */
  86	struct nfs_write_data *	commit_data;	/* special write_data for commits */
  87	int			flags;
  88#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
  89#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
  90	struct nfs_writeverf	verf;		/* unstable write verifier */
  91};
  92
  93static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
  94static const struct rpc_call_ops nfs_write_direct_ops;
  95
  96static inline void get_dreq(struct nfs_direct_req *dreq)
  97{
  98	atomic_inc(&dreq->io_count);
  99}
 100
 101static inline int put_dreq(struct nfs_direct_req *dreq)
 102{
 103	return atomic_dec_and_test(&dreq->io_count);
 104}
 105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106/**
 107 * nfs_direct_IO - NFS address space operation for direct I/O
 108 * @rw: direction (read or write)
 109 * @iocb: target I/O control block
 110 * @iov: array of vectors that define I/O buffer
 111 * @pos: offset in file to begin the operation
 112 * @nr_segs: size of iovec array
 113 *
 114 * The presence of this routine in the address space ops vector means
 115 * the NFS client supports direct I/O.  However, we shunt off direct
 116 * read and write requests before the VFS gets them, so this method
 117 * should never be called.
 118 */
 119ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
 120{
 121	dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
 122			iocb->ki_filp->f_path.dentry->d_name.name,
 123			(long long) pos, nr_segs);
 124
 125	return -EINVAL;
 
 
 
 
 
 
 126}
 127
 128static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
 129{
 130	unsigned int npages;
 131	unsigned int i;
 132
 133	if (count == 0)
 134		return;
 135	pages += (pgbase >> PAGE_SHIFT);
 136	npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
 137	for (i = 0; i < npages; i++) {
 138		struct page *page = pages[i];
 139		if (!PageCompound(page))
 140			set_page_dirty(page);
 141	}
 142}
 143
 144static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
 
 145{
 146	unsigned int i;
 147	for (i = 0; i < npages; i++)
 148		page_cache_release(pages[i]);
 
 
 149}
 150
 151static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
 152{
 153	struct nfs_direct_req *dreq;
 154
 155	dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
 156	if (!dreq)
 157		return NULL;
 158
 159	kref_init(&dreq->kref);
 160	kref_get(&dreq->kref);
 161	init_completion(&dreq->completion);
 162	INIT_LIST_HEAD(&dreq->rewrite_list);
 163	dreq->iocb = NULL;
 164	dreq->ctx = NULL;
 165	dreq->l_ctx = NULL;
 166	spin_lock_init(&dreq->lock);
 167	atomic_set(&dreq->io_count, 0);
 168	dreq->count = 0;
 169	dreq->error = 0;
 170	dreq->flags = 0;
 171
 172	return dreq;
 173}
 174
 175static void nfs_direct_req_free(struct kref *kref)
 176{
 177	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
 178
 
 179	if (dreq->l_ctx != NULL)
 180		nfs_put_lock_context(dreq->l_ctx);
 181	if (dreq->ctx != NULL)
 182		put_nfs_open_context(dreq->ctx);
 183	kmem_cache_free(nfs_direct_cachep, dreq);
 184}
 185
 186static void nfs_direct_req_release(struct nfs_direct_req *dreq)
 187{
 188	kref_put(&dreq->kref, nfs_direct_req_free);
 189}
 190
 
 
 
 
 
 
 
 191/*
 192 * Collects and returns the final error value/byte-count.
 193 */
 194static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
 195{
 196	ssize_t result = -EIOCBQUEUED;
 197
 198	/* Async requests don't wait here */
 199	if (dreq->iocb)
 200		goto out;
 201
 202	result = wait_for_completion_killable(&dreq->completion);
 203
 
 
 
 
 204	if (!result)
 205		result = dreq->error;
 206	if (!result)
 207		result = dreq->count;
 208
 209out:
 210	return (ssize_t) result;
 211}
 212
 213/*
 214 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
 215 * the iocb is still valid here if this is a synchronous request.
 216 */
 217static void nfs_direct_complete(struct nfs_direct_req *dreq)
 218{
 
 
 
 
 219	if (dreq->iocb) {
 220		long res = (long) dreq->error;
 221		if (!res)
 222			res = (long) dreq->count;
 223		aio_complete(dreq->iocb, res, 0);
 
 
 224	}
 225	complete_all(&dreq->completion);
 
 226
 227	nfs_direct_req_release(dreq);
 228}
 229
 230/*
 231 * We must hold a reference to all the pages in this direct read request
 232 * until the RPCs complete.  This could be long *after* we are woken up in
 233 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
 234 */
 235static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
 236{
 237	struct nfs_read_data *data = calldata;
 
 
 
 
 
 
 
 
 
 
 238
 239	nfs_readpage_result(task, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240}
 241
 242static void nfs_direct_read_release(void *calldata)
 243{
 
 244
 245	struct nfs_read_data *data = calldata;
 246	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 247	int status = data->task.tk_status;
 248
 249	spin_lock(&dreq->lock);
 250	if (unlikely(status < 0)) {
 251		dreq->error = status;
 252		spin_unlock(&dreq->lock);
 253	} else {
 254		dreq->count += data->res.count;
 255		spin_unlock(&dreq->lock);
 256		nfs_direct_dirty_pages(data->pagevec,
 257				data->args.pgbase,
 258				data->res.count);
 259	}
 260	nfs_direct_release_pages(data->pagevec, data->npages);
 261
 262	if (put_dreq(dreq))
 263		nfs_direct_complete(dreq);
 264	nfs_readdata_free(data);
 265}
 266
 267static const struct rpc_call_ops nfs_read_direct_ops = {
 268#if defined(CONFIG_NFS_V4_1)
 269	.rpc_call_prepare = nfs_read_prepare,
 270#endif /* CONFIG_NFS_V4_1 */
 271	.rpc_call_done = nfs_direct_read_result,
 272	.rpc_release = nfs_direct_read_release,
 273};
 274
 275/*
 276 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
 277 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
 278 * bail and stop sending more reads.  Read length accounting is
 279 * handled automatically by nfs_direct_read_result().  Otherwise, if
 280 * no requests have been sent, just return an error.
 281 */
 282static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
 283						const struct iovec *iov,
 284						loff_t pos)
 285{
 286	struct nfs_open_context *ctx = dreq->ctx;
 287	struct inode *inode = ctx->dentry->d_inode;
 288	unsigned long user_addr = (unsigned long)iov->iov_base;
 289	size_t count = iov->iov_len;
 290	size_t rsize = NFS_SERVER(inode)->rsize;
 291	struct rpc_task *task;
 292	struct rpc_message msg = {
 293		.rpc_cred = ctx->cred,
 294	};
 295	struct rpc_task_setup task_setup_data = {
 296		.rpc_client = NFS_CLIENT(inode),
 297		.rpc_message = &msg,
 298		.callback_ops = &nfs_read_direct_ops,
 299		.workqueue = nfsiod_workqueue,
 300		.flags = RPC_TASK_ASYNC,
 301	};
 302	unsigned int pgbase;
 303	int result;
 304	ssize_t started = 0;
 305
 306	do {
 307		struct nfs_read_data *data;
 308		size_t bytes;
 309
 310		pgbase = user_addr & ~PAGE_MASK;
 311		bytes = min(rsize,count);
 312
 313		result = -ENOMEM;
 314		data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
 315		if (unlikely(!data))
 316			break;
 317
 318		down_read(&current->mm->mmap_sem);
 319		result = get_user_pages(current, current->mm, user_addr,
 320					data->npages, 1, 0, data->pagevec, NULL);
 321		up_read(&current->mm->mmap_sem);
 322		if (result < 0) {
 323			nfs_readdata_free(data);
 324			break;
 325		}
 326		if ((unsigned)result < data->npages) {
 327			bytes = result * PAGE_SIZE;
 328			if (bytes <= pgbase) {
 329				nfs_direct_release_pages(data->pagevec, result);
 330				nfs_readdata_free(data);
 331				break;
 332			}
 333			bytes -= pgbase;
 334			data->npages = result;
 335		}
 336
 337		get_dreq(dreq);
 338
 339		data->req = (struct nfs_page *) dreq;
 340		data->inode = inode;
 341		data->cred = msg.rpc_cred;
 342		data->args.fh = NFS_FH(inode);
 343		data->args.context = ctx;
 344		data->args.lock_context = dreq->l_ctx;
 345		data->args.offset = pos;
 346		data->args.pgbase = pgbase;
 347		data->args.pages = data->pagevec;
 348		data->args.count = bytes;
 349		data->res.fattr = &data->fattr;
 350		data->res.eof = 0;
 351		data->res.count = bytes;
 352		nfs_fattr_init(&data->fattr);
 353		msg.rpc_argp = &data->args;
 354		msg.rpc_resp = &data->res;
 355
 356		task_setup_data.task = &data->task;
 357		task_setup_data.callback_data = data;
 358		NFS_PROTO(inode)->read_setup(data, &msg);
 359
 360		task = rpc_run_task(&task_setup_data);
 361		if (IS_ERR(task))
 362			break;
 363		rpc_put_task(task);
 364
 365		dprintk("NFS: %5u initiated direct read call "
 366			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
 367				data->task.tk_pid,
 368				inode->i_sb->s_id,
 369				(long long)NFS_FILEID(inode),
 370				bytes,
 371				(unsigned long long)data->args.offset);
 372
 373		started += bytes;
 374		user_addr += bytes;
 375		pos += bytes;
 376		/* FIXME: Remove this unnecessary math from final patch */
 377		pgbase += bytes;
 378		pgbase &= ~PAGE_MASK;
 379		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
 380
 381		count -= bytes;
 382	} while (count != 0);
 383
 384	if (started)
 385		return started;
 386	return result < 0 ? (ssize_t) result : -EFAULT;
 387}
 388
 389static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
 390					      const struct iovec *iov,
 391					      unsigned long nr_segs,
 392					      loff_t pos)
 393{
 
 
 394	ssize_t result = -EINVAL;
 395	size_t requested_bytes = 0;
 396	unsigned long seg;
 397
 
 
 398	get_dreq(dreq);
 
 
 399
 400	for (seg = 0; seg < nr_segs; seg++) {
 401		const struct iovec *vec = &iov[seg];
 402		result = nfs_direct_read_schedule_segment(dreq, vec, pos);
 
 
 
 
 
 403		if (result < 0)
 404			break;
 405		requested_bytes += result;
 406		if ((size_t)result < vec->iov_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407			break;
 408		pos += vec->iov_len;
 409	}
 410
 
 
 411	/*
 412	 * If no bytes were started, return the error, and let the
 413	 * generic layer handle the completion.
 414	 */
 415	if (requested_bytes == 0) {
 
 416		nfs_direct_req_release(dreq);
 417		return result < 0 ? result : -EIO;
 418	}
 419
 420	if (put_dreq(dreq))
 421		nfs_direct_complete(dreq);
 422	return 0;
 423}
 424
 425static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
 426			       unsigned long nr_segs, loff_t pos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427{
 428	ssize_t result = -ENOMEM;
 429	struct inode *inode = iocb->ki_filp->f_mapping->host;
 
 430	struct nfs_direct_req *dreq;
 
 
 
 
 431
 
 
 
 
 
 
 
 
 
 
 432	dreq = nfs_direct_req_alloc();
 433	if (dreq == NULL)
 434		goto out;
 435
 436	dreq->inode = inode;
 
 
 437	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 438	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
 439	if (dreq->l_ctx == NULL)
 
 
 440		goto out_release;
 
 
 441	if (!is_sync_kiocb(iocb))
 442		dreq->iocb = iocb;
 443
 444	result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
 445	if (!result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 446		result = nfs_direct_wait(dreq);
 
 
 
 
 
 
 
 
 
 447out_release:
 448	nfs_direct_req_release(dreq);
 449out:
 450	return result;
 451}
 452
 453static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
 
 454{
 455	while (!list_empty(&dreq->rewrite_list)) {
 456		struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
 457		list_del(&data->pages);
 458		nfs_direct_release_pages(data->pagevec, data->npages);
 459		nfs_writedata_free(data);
 
 
 460	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 461}
 462
 463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
 464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
 465{
 466	struct inode *inode = dreq->inode;
 467	struct list_head *p;
 468	struct nfs_write_data *data;
 469	struct rpc_task *task;
 470	struct rpc_message msg = {
 471		.rpc_cred = dreq->ctx->cred,
 472	};
 473	struct rpc_task_setup task_setup_data = {
 474		.rpc_client = NFS_CLIENT(inode),
 475		.rpc_message = &msg,
 476		.callback_ops = &nfs_write_direct_ops,
 477		.workqueue = nfsiod_workqueue,
 478		.flags = RPC_TASK_ASYNC,
 479	};
 480
 481	dreq->count = 0;
 482	get_dreq(dreq);
 483
 484	list_for_each(p, &dreq->rewrite_list) {
 485		data = list_entry(p, struct nfs_write_data, pages);
 486
 487		get_dreq(dreq);
 
 488
 489		/* Use stable writes */
 490		data->args.stable = NFS_FILE_SYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 491
 492		/*
 493		 * Reset data->res.
 494		 */
 495		nfs_fattr_init(&data->fattr);
 496		data->res.count = data->args.count;
 497		memset(&data->verf, 0, sizeof(data->verf));
 498
 499		/*
 500		 * Reuse data->task; data->args should not have changed
 501		 * since the original request was sent.
 502		 */
 503		task_setup_data.task = &data->task;
 504		task_setup_data.callback_data = data;
 505		msg.rpc_argp = &data->args;
 506		msg.rpc_resp = &data->res;
 507		NFS_PROTO(inode)->write_setup(data, &msg);
 508
 509		/*
 510		 * We're called via an RPC callback, so BKL is already held.
 511		 */
 512		task = rpc_run_task(&task_setup_data);
 513		if (!IS_ERR(task))
 514			rpc_put_task(task);
 515
 516		dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
 517				data->task.tk_pid,
 518				inode->i_sb->s_id,
 519				(long long)NFS_FILEID(inode),
 520				data->args.count,
 521				(unsigned long long)data->args.offset);
 522	}
 523
 524	if (put_dreq(dreq))
 525		nfs_direct_write_complete(dreq, inode);
 526}
 527
 528static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
 529{
 530	struct nfs_write_data *data = calldata;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532	/* Call the NFS version-specific code */
 533	NFS_PROTO(data->inode)->commit_done(task, data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 534}
 535
 536static void nfs_direct_commit_release(void *calldata)
 
 537{
 538	struct nfs_write_data *data = calldata;
 539	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 540	int status = data->task.tk_status;
 541
 542	if (status < 0) {
 543		dprintk("NFS: %5u commit failed with error %d.\n",
 544				data->task.tk_pid, status);
 545		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 546	} else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
 547		dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
 548		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 549	}
 550
 551	dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
 552	nfs_direct_write_complete(dreq, data->inode);
 553	nfs_commit_free(data);
 554}
 555
 556static const struct rpc_call_ops nfs_commit_direct_ops = {
 557#if defined(CONFIG_NFS_V4_1)
 558	.rpc_call_prepare = nfs_write_prepare,
 559#endif /* CONFIG_NFS_V4_1 */
 560	.rpc_call_done = nfs_direct_commit_result,
 561	.rpc_release = nfs_direct_commit_release,
 562};
 563
 564static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
 565{
 566	struct nfs_write_data *data = dreq->commit_data;
 567	struct rpc_task *task;
 568	struct rpc_message msg = {
 569		.rpc_argp = &data->args,
 570		.rpc_resp = &data->res,
 571		.rpc_cred = dreq->ctx->cred,
 572	};
 573	struct rpc_task_setup task_setup_data = {
 574		.task = &data->task,
 575		.rpc_client = NFS_CLIENT(dreq->inode),
 576		.rpc_message = &msg,
 577		.callback_ops = &nfs_commit_direct_ops,
 578		.callback_data = data,
 579		.workqueue = nfsiod_workqueue,
 580		.flags = RPC_TASK_ASYNC,
 581	};
 582
 583	data->inode = dreq->inode;
 584	data->cred = msg.rpc_cred;
 585
 586	data->args.fh = NFS_FH(data->inode);
 587	data->args.offset = 0;
 588	data->args.count = 0;
 589	data->args.context = dreq->ctx;
 590	data->args.lock_context = dreq->l_ctx;
 591	data->res.count = 0;
 592	data->res.fattr = &data->fattr;
 593	data->res.verf = &data->verf;
 594	nfs_fattr_init(&data->fattr);
 595
 596	NFS_PROTO(data->inode)->commit_setup(data, &msg);
 597
 598	/* Note: task.tk_ops->rpc_release will free dreq->commit_data */
 599	dreq->commit_data = NULL;
 600
 601	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
 602
 603	task = rpc_run_task(&task_setup_data);
 604	if (!IS_ERR(task))
 605		rpc_put_task(task);
 606}
 607
 608static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 609{
 
 610	int flags = dreq->flags;
 611
 612	dreq->flags = 0;
 613	switch (flags) {
 614		case NFS_ODIRECT_DO_COMMIT:
 615			nfs_direct_commit_schedule(dreq);
 616			break;
 617		case NFS_ODIRECT_RESCHED_WRITES:
 618			nfs_direct_write_reschedule(dreq);
 619			break;
 620		default:
 621			if (dreq->commit_data != NULL)
 622				nfs_commit_free(dreq->commit_data);
 623			nfs_direct_free_writedata(dreq);
 624			nfs_zap_mapping(inode, inode->i_mapping);
 625			nfs_direct_complete(dreq);
 626	}
 627}
 628
 629static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
 630{
 631	dreq->commit_data = nfs_commitdata_alloc();
 632	if (dreq->commit_data != NULL)
 633		dreq->commit_data->req = (struct nfs_page *) dreq;
 634}
 635#else
 636static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
 637{
 638	dreq->commit_data = NULL;
 639}
 640
 641static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
 642{
 643	nfs_direct_free_writedata(dreq);
 644	nfs_zap_mapping(inode, inode->i_mapping);
 645	nfs_direct_complete(dreq);
 646}
 647#endif
 648
 649static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
 650{
 651	struct nfs_write_data *data = calldata;
 652
 653	nfs_writeback_done(task, data);
 654}
 655
 656/*
 657 * NB: Return the value of the first error return code.  Subsequent
 658 *     errors after the first one are ignored.
 659 */
 660static void nfs_direct_write_release(void *calldata)
 661{
 662	struct nfs_write_data *data = calldata;
 663	struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
 664	int status = data->task.tk_status;
 665
 666	spin_lock(&dreq->lock);
 
 
 
 
 667
 668	if (unlikely(status < 0)) {
 669		/* An error has occurred, so we should not commit */
 670		dreq->flags = 0;
 671		dreq->error = status;
 
 
 672	}
 673	if (unlikely(dreq->error != 0))
 674		goto out_unlock;
 675
 676	dreq->count += data->res.count;
 677
 678	if (data->res.verf->committed != NFS_FILE_SYNC) {
 679		switch (dreq->flags) {
 680			case 0:
 681				memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
 682				dreq->flags = NFS_ODIRECT_DO_COMMIT;
 683				break;
 684			case NFS_ODIRECT_DO_COMMIT:
 685				if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
 686					dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
 687					dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
 688				}
 
 
 
 
 
 689		}
 
 690	}
 691out_unlock:
 692	spin_unlock(&dreq->lock);
 693
 
 694	if (put_dreq(dreq))
 695		nfs_direct_write_complete(dreq, data->inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696}
 697
 698static const struct rpc_call_ops nfs_write_direct_ops = {
 699#if defined(CONFIG_NFS_V4_1)
 700	.rpc_call_prepare = nfs_write_prepare,
 701#endif /* CONFIG_NFS_V4_1 */
 702	.rpc_call_done = nfs_direct_write_result,
 703	.rpc_release = nfs_direct_write_release,
 704};
 705
 
 
 
 
 
 706/*
 707 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
 708 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
 709 * bail and stop sending more writes.  Write length accounting is
 710 * handled automatically by nfs_direct_write_result().  Otherwise, if
 711 * no requests have been sent, just return an error.
 712 */
 713static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
 714						 const struct iovec *iov,
 715						 loff_t pos, int sync)
 716{
 717	struct nfs_open_context *ctx = dreq->ctx;
 718	struct inode *inode = ctx->dentry->d_inode;
 719	unsigned long user_addr = (unsigned long)iov->iov_base;
 720	size_t count = iov->iov_len;
 721	struct rpc_task *task;
 722	struct rpc_message msg = {
 723		.rpc_cred = ctx->cred,
 724	};
 725	struct rpc_task_setup task_setup_data = {
 726		.rpc_client = NFS_CLIENT(inode),
 727		.rpc_message = &msg,
 728		.callback_ops = &nfs_write_direct_ops,
 729		.workqueue = nfsiod_workqueue,
 730		.flags = RPC_TASK_ASYNC,
 731	};
 732	size_t wsize = NFS_SERVER(inode)->wsize;
 733	unsigned int pgbase;
 734	int result;
 735	ssize_t started = 0;
 736
 737	do {
 738		struct nfs_write_data *data;
 
 739		size_t bytes;
 
 
 740
 741		pgbase = user_addr & ~PAGE_MASK;
 742		bytes = min(wsize,count);
 743
 744		result = -ENOMEM;
 745		data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
 746		if (unlikely(!data))
 747			break;
 748
 749		down_read(&current->mm->mmap_sem);
 750		result = get_user_pages(current, current->mm, user_addr,
 751					data->npages, 0, 0, data->pagevec, NULL);
 752		up_read(&current->mm->mmap_sem);
 753		if (result < 0) {
 754			nfs_writedata_free(data);
 755			break;
 756		}
 757		if ((unsigned)result < data->npages) {
 758			bytes = result * PAGE_SIZE;
 759			if (bytes <= pgbase) {
 760				nfs_direct_release_pages(data->pagevec, result);
 761				nfs_writedata_free(data);
 762				break;
 763			}
 764			bytes -= pgbase;
 765			data->npages = result;
 766		}
 767
 768		get_dreq(dreq);
 
 
 
 
 769
 770		list_move_tail(&data->pages, &dreq->rewrite_list);
 
 
 
 
 
 
 
 
 771
 772		data->req = (struct nfs_page *) dreq;
 773		data->inode = inode;
 774		data->cred = msg.rpc_cred;
 775		data->args.fh = NFS_FH(inode);
 776		data->args.context = ctx;
 777		data->args.lock_context = dreq->l_ctx;
 778		data->args.offset = pos;
 779		data->args.pgbase = pgbase;
 780		data->args.pages = data->pagevec;
 781		data->args.count = bytes;
 782		data->args.stable = sync;
 783		data->res.fattr = &data->fattr;
 784		data->res.count = bytes;
 785		data->res.verf = &data->verf;
 786		nfs_fattr_init(&data->fattr);
 787
 788		task_setup_data.task = &data->task;
 789		task_setup_data.callback_data = data;
 790		msg.rpc_argp = &data->args;
 791		msg.rpc_resp = &data->res;
 792		NFS_PROTO(inode)->write_setup(data, &msg);
 793
 794		task = rpc_run_task(&task_setup_data);
 795		if (IS_ERR(task))
 796			break;
 797		rpc_put_task(task);
 798
 799		dprintk("NFS: %5u initiated direct write call "
 800			"(req %s/%Ld, %zu bytes @ offset %Lu)\n",
 801				data->task.tk_pid,
 802				inode->i_sb->s_id,
 803				(long long)NFS_FILEID(inode),
 804				bytes,
 805				(unsigned long long)data->args.offset);
 806
 807		started += bytes;
 808		user_addr += bytes;
 809		pos += bytes;
 810
 811		/* FIXME: Remove this useless math from the final patch */
 812		pgbase += bytes;
 813		pgbase &= ~PAGE_MASK;
 814		BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
 815
 816		count -= bytes;
 817	} while (count != 0);
 818
 819	if (started)
 820		return started;
 821	return result < 0 ? (ssize_t) result : -EFAULT;
 822}
 823
 824static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
 825					       const struct iovec *iov,
 826					       unsigned long nr_segs,
 827					       loff_t pos, int sync)
 828{
 829	ssize_t result = 0;
 830	size_t requested_bytes = 0;
 831	unsigned long seg;
 832
 833	get_dreq(dreq);
 834
 835	for (seg = 0; seg < nr_segs; seg++) {
 836		const struct iovec *vec = &iov[seg];
 837		result = nfs_direct_write_schedule_segment(dreq, vec,
 838							   pos, sync);
 839		if (result < 0)
 840			break;
 841		requested_bytes += result;
 842		if ((size_t)result < vec->iov_len)
 843			break;
 844		pos += vec->iov_len;
 845	}
 
 846
 847	/*
 848	 * If no bytes were started, return the error, and let the
 849	 * generic layer handle the completion.
 850	 */
 851	if (requested_bytes == 0) {
 
 852		nfs_direct_req_release(dreq);
 853		return result < 0 ? result : -EIO;
 854	}
 855
 856	if (put_dreq(dreq))
 857		nfs_direct_write_complete(dreq, dreq->inode);
 858	return 0;
 859}
 860
 861static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
 862				unsigned long nr_segs, loff_t pos,
 863				size_t count)
 864{
 865	ssize_t result = -ENOMEM;
 866	struct inode *inode = iocb->ki_filp->f_mapping->host;
 867	struct nfs_direct_req *dreq;
 868	size_t wsize = NFS_SERVER(inode)->wsize;
 869	int sync = NFS_UNSTABLE;
 870
 871	dreq = nfs_direct_req_alloc();
 872	if (!dreq)
 873		goto out;
 874	nfs_alloc_commit_data(dreq);
 875
 876	if (dreq->commit_data == NULL || count <= wsize)
 877		sync = NFS_FILE_SYNC;
 878
 879	dreq->inode = inode;
 880	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
 881	dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
 882	if (dreq->l_ctx == NULL)
 883		goto out_release;
 884	if (!is_sync_kiocb(iocb))
 885		dreq->iocb = iocb;
 886
 887	result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
 888	if (!result)
 889		result = nfs_direct_wait(dreq);
 890out_release:
 891	nfs_direct_req_release(dreq);
 892out:
 893	return result;
 894}
 895
 896/**
 897 * nfs_file_direct_read - file direct read operation for NFS files
 898 * @iocb: target I/O control block
 899 * @iov: vector of user buffers into which to read data
 900 * @nr_segs: size of iov vector
 901 * @pos: byte offset in file where reading starts
 902 *
 903 * We use this function for direct reads instead of calling
 904 * generic_file_aio_read() in order to avoid gfar's check to see if
 905 * the request starts before the end of the file.  For that check
 906 * to work, we must generate a GETATTR before each direct read, and
 907 * even then there is a window between the GETATTR and the subsequent
 908 * READ where the file size could change.  Our preference is simply
 909 * to do all reads the application wants, and the server will take
 910 * care of managing the end of file boundary.
 911 *
 912 * This function also eliminates unnecessarily updating the file's
 913 * atime locally, as the NFS server sets the file's atime, and this
 914 * client must read the updated atime from the server back into its
 915 * cache.
 916 */
 917ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
 918				unsigned long nr_segs, loff_t pos)
 919{
 920	ssize_t retval = -EINVAL;
 921	struct file *file = iocb->ki_filp;
 922	struct address_space *mapping = file->f_mapping;
 923	size_t count;
 924
 925	count = iov_length(iov, nr_segs);
 926	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
 927
 928	dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
 929		file->f_path.dentry->d_parent->d_name.name,
 930		file->f_path.dentry->d_name.name,
 931		count, (long long) pos);
 932
 933	retval = 0;
 934	if (!count)
 935		goto out;
 936
 937	retval = nfs_sync_mapping(mapping);
 938	if (retval)
 939		goto out;
 940
 941	task_io_account_read(count);
 942
 943	retval = nfs_direct_read(iocb, iov, nr_segs, pos);
 944	if (retval > 0)
 945		iocb->ki_pos = pos + retval;
 946
 947out:
 948	return retval;
 949}
 950
 951/**
 952 * nfs_file_direct_write - file direct write operation for NFS files
 953 * @iocb: target I/O control block
 954 * @iov: vector of user buffers from which to write data
 955 * @nr_segs: size of iov vector
 956 * @pos: byte offset in file where writing starts
 957 *
 958 * We use this function for direct writes instead of calling
 959 * generic_file_aio_write() in order to avoid taking the inode
 960 * semaphore and updating the i_size.  The NFS server will set
 961 * the new i_size and this client must read the updated size
 962 * back into its cache.  We let the server do generic write
 963 * parameter checking and report problems.
 964 *
 965 * We eliminate local atime updates, see direct read above.
 966 *
 967 * We avoid unnecessary page cache invalidations for normal cached
 968 * readers of this file.
 969 *
 970 * Note that O_APPEND is not supported for NFS direct writes, as there
 971 * is no atomic O_APPEND write facility in the NFS protocol.
 972 */
 973ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
 974				unsigned long nr_segs, loff_t pos)
 975{
 976	ssize_t retval = -EINVAL;
 
 977	struct file *file = iocb->ki_filp;
 978	struct address_space *mapping = file->f_mapping;
 979	size_t count;
 
 
 
 
 
 
 980
 981	count = iov_length(iov, nr_segs);
 
 
 
 
 
 
 
 982	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
 983
 984	dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
 985		file->f_path.dentry->d_parent->d_name.name,
 986		file->f_path.dentry->d_name.name,
 987		count, (long long) pos);
 988
 989	retval = generic_write_checks(file, &pos, &count, 0);
 990	if (retval)
 
 
 
 991		goto out;
 992
 993	retval = -EINVAL;
 994	if ((ssize_t) count < 0)
 995		goto out;
 996	retval = 0;
 997	if (!count)
 998		goto out;
 
 
 
 
 
 
 
 
 999
1000	retval = nfs_sync_mapping(mapping);
1001	if (retval)
1002		goto out;
 
 
 
 
 
 
 
 
 
1003
1004	task_io_account_write(count);
 
1005
1006	retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
 
 
 
1007
1008	if (retval > 0)
1009		iocb->ki_pos = pos + retval;
1010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011out:
1012	return retval;
1013}
1014
1015/**
1016 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1017 *
1018 */
1019int __init nfs_init_directcache(void)
1020{
1021	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1022						sizeof(struct nfs_direct_req),
1023						0, (SLAB_RECLAIM_ACCOUNT|
1024							SLAB_MEM_SPREAD),
1025						NULL);
1026	if (nfs_direct_cachep == NULL)
1027		return -ENOMEM;
1028
1029	return 0;
1030}
1031
1032/**
1033 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1034 *
1035 */
1036void nfs_destroy_directcache(void)
1037{
1038	kmem_cache_destroy(nfs_direct_cachep);
1039}