Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data. Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols. Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache. A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache. The client does not
21 * correct unaligned requests from applications. All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files. Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001 Initial implementation for 2.4 --cel
34 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003 Port to 2.5 APIs --cel
36 * 31 Mar 2004 Handle direct I/O without VFS support --cel
37 * 15 Sep 2004 Parallel async reads --cel
38 * 04 May 2005 support O_DIRECT with aio --cel
39 *
40 */
41
42#include <linux/errno.h>
43#include <linux/sched.h>
44#include <linux/kernel.h>
45#include <linux/file.h>
46#include <linux/pagemap.h>
47#include <linux/kref.h>
48#include <linux/slab.h>
49#include <linux/task_io_accounting_ops.h>
50#include <linux/module.h>
51
52#include <linux/nfs_fs.h>
53#include <linux/nfs_page.h>
54#include <linux/sunrpc/clnt.h>
55
56#include <linux/uaccess.h>
57#include <linux/atomic.h>
58
59#include "delegation.h"
60#include "internal.h"
61#include "iostat.h"
62#include "pnfs.h"
63#include "fscache.h"
64#include "nfstrace.h"
65
66#define NFSDBG_FACILITY NFSDBG_VFS
67
68static struct kmem_cache *nfs_direct_cachep;
69
70static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
71static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
72static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
73static void nfs_direct_write_schedule_work(struct work_struct *work);
74
75static inline void get_dreq(struct nfs_direct_req *dreq)
76{
77 atomic_inc(&dreq->io_count);
78}
79
80static inline int put_dreq(struct nfs_direct_req *dreq)
81{
82 return atomic_dec_and_test(&dreq->io_count);
83}
84
85static void
86nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
87 const struct nfs_pgio_header *hdr,
88 ssize_t dreq_len)
89{
90 if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
91 test_bit(NFS_IOHDR_EOF, &hdr->flags)))
92 return;
93 if (dreq->max_count >= dreq_len) {
94 dreq->max_count = dreq_len;
95 if (dreq->count > dreq_len)
96 dreq->count = dreq_len;
97 }
98
99 if (test_bit(NFS_IOHDR_ERROR, &hdr->flags) && !dreq->error)
100 dreq->error = hdr->error;
101}
102
103static void
104nfs_direct_count_bytes(struct nfs_direct_req *dreq,
105 const struct nfs_pgio_header *hdr)
106{
107 loff_t hdr_end = hdr->io_start + hdr->good_bytes;
108 ssize_t dreq_len = 0;
109
110 if (hdr_end > dreq->io_start)
111 dreq_len = hdr_end - dreq->io_start;
112
113 nfs_direct_handle_truncated(dreq, hdr, dreq_len);
114
115 if (dreq_len > dreq->max_count)
116 dreq_len = dreq->max_count;
117
118 if (dreq->count < dreq_len)
119 dreq->count = dreq_len;
120}
121
122static void nfs_direct_truncate_request(struct nfs_direct_req *dreq,
123 struct nfs_page *req)
124{
125 loff_t offs = req_offset(req);
126 size_t req_start = (size_t)(offs - dreq->io_start);
127
128 if (req_start < dreq->max_count)
129 dreq->max_count = req_start;
130 if (req_start < dreq->count)
131 dreq->count = req_start;
132}
133
134static void nfs_direct_file_adjust_size_locked(struct inode *inode,
135 loff_t offset, size_t count)
136{
137 loff_t newsize = offset + (loff_t)count;
138 loff_t oldsize = i_size_read(inode);
139
140 if (newsize > oldsize) {
141 i_size_write(inode, newsize);
142 NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_SIZE;
143 trace_nfs_size_grow(inode, newsize);
144 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
145 }
146}
147
148/**
149 * nfs_swap_rw - NFS address space operation for swap I/O
150 * @iocb: target I/O control block
151 * @iter: I/O buffer
152 *
153 * Perform IO to the swap-file. This is much like direct IO.
154 */
155int nfs_swap_rw(struct kiocb *iocb, struct iov_iter *iter)
156{
157 ssize_t ret;
158
159 if (iov_iter_rw(iter) == READ)
160 ret = nfs_file_direct_read(iocb, iter, true);
161 else
162 ret = nfs_file_direct_write(iocb, iter, true);
163 if (ret < 0)
164 return ret;
165 return 0;
166}
167
168static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
169{
170 unsigned int i;
171 for (i = 0; i < npages; i++)
172 put_page(pages[i]);
173}
174
175void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
176 struct nfs_direct_req *dreq)
177{
178 cinfo->inode = dreq->inode;
179 cinfo->mds = &dreq->mds_cinfo;
180 cinfo->ds = &dreq->ds_cinfo;
181 cinfo->dreq = dreq;
182 cinfo->completion_ops = &nfs_direct_commit_completion_ops;
183}
184
185static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
186{
187 struct nfs_direct_req *dreq;
188
189 dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
190 if (!dreq)
191 return NULL;
192
193 kref_init(&dreq->kref);
194 kref_get(&dreq->kref);
195 init_completion(&dreq->completion);
196 INIT_LIST_HEAD(&dreq->mds_cinfo.list);
197 pnfs_init_ds_commit_info(&dreq->ds_cinfo);
198 INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
199 spin_lock_init(&dreq->lock);
200
201 return dreq;
202}
203
204static void nfs_direct_req_free(struct kref *kref)
205{
206 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
207
208 pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
209 if (dreq->l_ctx != NULL)
210 nfs_put_lock_context(dreq->l_ctx);
211 if (dreq->ctx != NULL)
212 put_nfs_open_context(dreq->ctx);
213 kmem_cache_free(nfs_direct_cachep, dreq);
214}
215
216static void nfs_direct_req_release(struct nfs_direct_req *dreq)
217{
218 kref_put(&dreq->kref, nfs_direct_req_free);
219}
220
221ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq, loff_t offset)
222{
223 loff_t start = offset - dreq->io_start;
224 return dreq->max_count - start;
225}
226EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
227
228/*
229 * Collects and returns the final error value/byte-count.
230 */
231static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
232{
233 ssize_t result = -EIOCBQUEUED;
234
235 /* Async requests don't wait here */
236 if (dreq->iocb)
237 goto out;
238
239 result = wait_for_completion_killable(&dreq->completion);
240
241 if (!result) {
242 result = dreq->count;
243 WARN_ON_ONCE(dreq->count < 0);
244 }
245 if (!result)
246 result = dreq->error;
247
248out:
249 return (ssize_t) result;
250}
251
252/*
253 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
254 * the iocb is still valid here if this is a synchronous request.
255 */
256static void nfs_direct_complete(struct nfs_direct_req *dreq)
257{
258 struct inode *inode = dreq->inode;
259
260 inode_dio_end(inode);
261
262 if (dreq->iocb) {
263 long res = (long) dreq->error;
264 if (dreq->count != 0) {
265 res = (long) dreq->count;
266 WARN_ON_ONCE(dreq->count < 0);
267 }
268 dreq->iocb->ki_complete(dreq->iocb, res);
269 }
270
271 complete(&dreq->completion);
272
273 nfs_direct_req_release(dreq);
274}
275
276static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
277{
278 unsigned long bytes = 0;
279 struct nfs_direct_req *dreq = hdr->dreq;
280
281 spin_lock(&dreq->lock);
282 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
283 spin_unlock(&dreq->lock);
284 goto out_put;
285 }
286
287 nfs_direct_count_bytes(dreq, hdr);
288 spin_unlock(&dreq->lock);
289
290 nfs_update_delegated_atime(dreq->inode);
291
292 while (!list_empty(&hdr->pages)) {
293 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
294 struct page *page = req->wb_page;
295
296 if (!PageCompound(page) && bytes < hdr->good_bytes &&
297 (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
298 set_page_dirty(page);
299 bytes += req->wb_bytes;
300 nfs_list_remove_request(req);
301 nfs_release_request(req);
302 }
303out_put:
304 if (put_dreq(dreq))
305 nfs_direct_complete(dreq);
306 hdr->release(hdr);
307}
308
309static void nfs_read_sync_pgio_error(struct list_head *head, int error)
310{
311 struct nfs_page *req;
312
313 while (!list_empty(head)) {
314 req = nfs_list_entry(head->next);
315 nfs_list_remove_request(req);
316 nfs_release_request(req);
317 }
318}
319
320static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
321{
322 get_dreq(hdr->dreq);
323}
324
325static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
326 .error_cleanup = nfs_read_sync_pgio_error,
327 .init_hdr = nfs_direct_pgio_init,
328 .completion = nfs_direct_read_completion,
329};
330
331/*
332 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
333 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
334 * bail and stop sending more reads. Read length accounting is
335 * handled automatically by nfs_direct_read_result(). Otherwise, if
336 * no requests have been sent, just return an error.
337 */
338
339static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
340 struct iov_iter *iter,
341 loff_t pos)
342{
343 struct nfs_pageio_descriptor desc;
344 struct inode *inode = dreq->inode;
345 ssize_t result = -EINVAL;
346 size_t requested_bytes = 0;
347 size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
348
349 nfs_pageio_init_read(&desc, dreq->inode, false,
350 &nfs_direct_read_completion_ops);
351 get_dreq(dreq);
352 desc.pg_dreq = dreq;
353 inode_dio_begin(inode);
354
355 while (iov_iter_count(iter)) {
356 struct page **pagevec;
357 size_t bytes;
358 size_t pgbase;
359 unsigned npages, i;
360
361 result = iov_iter_get_pages_alloc2(iter, &pagevec,
362 rsize, &pgbase);
363 if (result < 0)
364 break;
365
366 bytes = result;
367 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
368 for (i = 0; i < npages; i++) {
369 struct nfs_page *req;
370 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
371 /* XXX do we need to do the eof zeroing found in async_filler? */
372 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
373 pgbase, pos, req_len);
374 if (IS_ERR(req)) {
375 result = PTR_ERR(req);
376 break;
377 }
378 if (!nfs_pageio_add_request(&desc, req)) {
379 result = desc.pg_error;
380 nfs_release_request(req);
381 break;
382 }
383 pgbase = 0;
384 bytes -= req_len;
385 requested_bytes += req_len;
386 pos += req_len;
387 }
388 nfs_direct_release_pages(pagevec, npages);
389 kvfree(pagevec);
390 if (result < 0)
391 break;
392 }
393
394 nfs_pageio_complete(&desc);
395
396 /*
397 * If no bytes were started, return the error, and let the
398 * generic layer handle the completion.
399 */
400 if (requested_bytes == 0) {
401 inode_dio_end(inode);
402 nfs_direct_req_release(dreq);
403 return result < 0 ? result : -EIO;
404 }
405
406 if (put_dreq(dreq))
407 nfs_direct_complete(dreq);
408 return requested_bytes;
409}
410
411/**
412 * nfs_file_direct_read - file direct read operation for NFS files
413 * @iocb: target I/O control block
414 * @iter: vector of user buffers into which to read data
415 * @swap: flag indicating this is swap IO, not O_DIRECT IO
416 *
417 * We use this function for direct reads instead of calling
418 * generic_file_aio_read() in order to avoid gfar's check to see if
419 * the request starts before the end of the file. For that check
420 * to work, we must generate a GETATTR before each direct read, and
421 * even then there is a window between the GETATTR and the subsequent
422 * READ where the file size could change. Our preference is simply
423 * to do all reads the application wants, and the server will take
424 * care of managing the end of file boundary.
425 *
426 * This function also eliminates unnecessarily updating the file's
427 * atime locally, as the NFS server sets the file's atime, and this
428 * client must read the updated atime from the server back into its
429 * cache.
430 */
431ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
432 bool swap)
433{
434 struct file *file = iocb->ki_filp;
435 struct address_space *mapping = file->f_mapping;
436 struct inode *inode = mapping->host;
437 struct nfs_direct_req *dreq;
438 struct nfs_lock_context *l_ctx;
439 ssize_t result, requested;
440 size_t count = iov_iter_count(iter);
441 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
442
443 dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
444 file, count, (long long) iocb->ki_pos);
445
446 result = 0;
447 if (!count)
448 goto out;
449
450 task_io_account_read(count);
451
452 result = -ENOMEM;
453 dreq = nfs_direct_req_alloc();
454 if (dreq == NULL)
455 goto out;
456
457 dreq->inode = inode;
458 dreq->max_count = count;
459 dreq->io_start = iocb->ki_pos;
460 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
461 l_ctx = nfs_get_lock_context(dreq->ctx);
462 if (IS_ERR(l_ctx)) {
463 result = PTR_ERR(l_ctx);
464 nfs_direct_req_release(dreq);
465 goto out_release;
466 }
467 dreq->l_ctx = l_ctx;
468 if (!is_sync_kiocb(iocb))
469 dreq->iocb = iocb;
470
471 if (user_backed_iter(iter))
472 dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
473
474 if (!swap) {
475 result = nfs_start_io_direct(inode);
476 if (result) {
477 /* release the reference that would usually be
478 * consumed by nfs_direct_read_schedule_iovec()
479 */
480 nfs_direct_req_release(dreq);
481 goto out_release;
482 }
483 }
484
485 NFS_I(inode)->read_io += count;
486 requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
487
488 if (!swap)
489 nfs_end_io_direct(inode);
490
491 if (requested > 0) {
492 result = nfs_direct_wait(dreq);
493 if (result > 0) {
494 requested -= result;
495 iocb->ki_pos += result;
496 }
497 iov_iter_revert(iter, requested);
498 } else {
499 result = requested;
500 }
501
502out_release:
503 nfs_direct_req_release(dreq);
504out:
505 return result;
506}
507
508static void nfs_direct_add_page_head(struct list_head *list,
509 struct nfs_page *req)
510{
511 struct nfs_page *head = req->wb_head;
512
513 if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
514 return;
515 if (!list_empty(&head->wb_list)) {
516 nfs_unlock_request(head);
517 return;
518 }
519 list_add(&head->wb_list, list);
520 kref_get(&head->wb_kref);
521 kref_get(&head->wb_kref);
522}
523
524static void nfs_direct_join_group(struct list_head *list,
525 struct nfs_commit_info *cinfo,
526 struct inode *inode)
527{
528 struct nfs_page *req, *subreq;
529
530 list_for_each_entry(req, list, wb_list) {
531 if (req->wb_head != req) {
532 nfs_direct_add_page_head(&req->wb_list, req);
533 continue;
534 }
535 subreq = req->wb_this_page;
536 if (subreq == req)
537 continue;
538 do {
539 /*
540 * Remove subrequests from this list before freeing
541 * them in the call to nfs_join_page_group().
542 */
543 if (!list_empty(&subreq->wb_list)) {
544 nfs_list_remove_request(subreq);
545 nfs_release_request(subreq);
546 }
547 } while ((subreq = subreq->wb_this_page) != req);
548 nfs_join_page_group(req, cinfo, inode);
549 }
550}
551
552static void
553nfs_direct_write_scan_commit_list(struct inode *inode,
554 struct list_head *list,
555 struct nfs_commit_info *cinfo)
556{
557 mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
558 pnfs_recover_commit_reqs(list, cinfo);
559 nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
560 mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
561}
562
563static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
564{
565 struct nfs_pageio_descriptor desc;
566 struct nfs_page *req;
567 LIST_HEAD(reqs);
568 struct nfs_commit_info cinfo;
569
570 nfs_init_cinfo_from_dreq(&cinfo, dreq);
571 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
572
573 nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
574
575 nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
576 get_dreq(dreq);
577
578 nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
579 &nfs_direct_write_completion_ops);
580 desc.pg_dreq = dreq;
581
582 while (!list_empty(&reqs)) {
583 req = nfs_list_entry(reqs.next);
584 /* Bump the transmission count */
585 req->wb_nio++;
586 if (!nfs_pageio_add_request(&desc, req)) {
587 spin_lock(&dreq->lock);
588 if (dreq->error < 0) {
589 desc.pg_error = dreq->error;
590 } else if (desc.pg_error != -EAGAIN) {
591 dreq->flags = 0;
592 if (!desc.pg_error)
593 desc.pg_error = -EIO;
594 dreq->error = desc.pg_error;
595 } else
596 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
597 spin_unlock(&dreq->lock);
598 break;
599 }
600 nfs_release_request(req);
601 }
602 nfs_pageio_complete(&desc);
603
604 while (!list_empty(&reqs)) {
605 req = nfs_list_entry(reqs.next);
606 nfs_list_remove_request(req);
607 nfs_unlock_and_release_request(req);
608 if (desc.pg_error == -EAGAIN) {
609 nfs_mark_request_commit(req, NULL, &cinfo, 0);
610 } else {
611 spin_lock(&dreq->lock);
612 nfs_direct_truncate_request(dreq, req);
613 spin_unlock(&dreq->lock);
614 nfs_release_request(req);
615 }
616 }
617
618 if (put_dreq(dreq))
619 nfs_direct_write_complete(dreq);
620}
621
622static void nfs_direct_commit_complete(struct nfs_commit_data *data)
623{
624 const struct nfs_writeverf *verf = data->res.verf;
625 struct nfs_direct_req *dreq = data->dreq;
626 struct nfs_commit_info cinfo;
627 struct nfs_page *req;
628 int status = data->task.tk_status;
629
630 trace_nfs_direct_commit_complete(dreq);
631
632 spin_lock(&dreq->lock);
633 if (status < 0) {
634 /* Errors in commit are fatal */
635 dreq->error = status;
636 dreq->flags = NFS_ODIRECT_DONE;
637 } else {
638 status = dreq->error;
639 }
640 spin_unlock(&dreq->lock);
641
642 nfs_init_cinfo_from_dreq(&cinfo, dreq);
643
644 while (!list_empty(&data->pages)) {
645 req = nfs_list_entry(data->pages.next);
646 nfs_list_remove_request(req);
647 if (status < 0) {
648 spin_lock(&dreq->lock);
649 nfs_direct_truncate_request(dreq, req);
650 spin_unlock(&dreq->lock);
651 nfs_release_request(req);
652 } else if (!nfs_write_match_verf(verf, req)) {
653 spin_lock(&dreq->lock);
654 if (dreq->flags == 0)
655 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
656 spin_unlock(&dreq->lock);
657 /*
658 * Despite the reboot, the write was successful,
659 * so reset wb_nio.
660 */
661 req->wb_nio = 0;
662 nfs_mark_request_commit(req, NULL, &cinfo, 0);
663 } else
664 nfs_release_request(req);
665 nfs_unlock_and_release_request(req);
666 }
667
668 if (nfs_commit_end(cinfo.mds))
669 nfs_direct_write_complete(dreq);
670}
671
672static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
673 struct nfs_page *req)
674{
675 struct nfs_direct_req *dreq = cinfo->dreq;
676
677 trace_nfs_direct_resched_write(dreq);
678
679 spin_lock(&dreq->lock);
680 if (dreq->flags != NFS_ODIRECT_DONE)
681 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
682 spin_unlock(&dreq->lock);
683 nfs_mark_request_commit(req, NULL, cinfo, 0);
684}
685
686static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
687 .completion = nfs_direct_commit_complete,
688 .resched_write = nfs_direct_resched_write,
689};
690
691static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
692{
693 int res;
694 struct nfs_commit_info cinfo;
695 LIST_HEAD(mds_list);
696
697 nfs_init_cinfo_from_dreq(&cinfo, dreq);
698 nfs_commit_begin(cinfo.mds);
699 nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
700 res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
701 if (res < 0) { /* res == -ENOMEM */
702 spin_lock(&dreq->lock);
703 if (dreq->flags == 0)
704 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
705 spin_unlock(&dreq->lock);
706 }
707 if (nfs_commit_end(cinfo.mds))
708 nfs_direct_write_complete(dreq);
709}
710
711static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
712{
713 struct nfs_commit_info cinfo;
714 struct nfs_page *req;
715 LIST_HEAD(reqs);
716
717 nfs_init_cinfo_from_dreq(&cinfo, dreq);
718 nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
719
720 while (!list_empty(&reqs)) {
721 req = nfs_list_entry(reqs.next);
722 nfs_list_remove_request(req);
723 nfs_direct_truncate_request(dreq, req);
724 nfs_release_request(req);
725 nfs_unlock_and_release_request(req);
726 }
727}
728
729static void nfs_direct_write_schedule_work(struct work_struct *work)
730{
731 struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
732 int flags = dreq->flags;
733
734 dreq->flags = 0;
735 switch (flags) {
736 case NFS_ODIRECT_DO_COMMIT:
737 nfs_direct_commit_schedule(dreq);
738 break;
739 case NFS_ODIRECT_RESCHED_WRITES:
740 nfs_direct_write_reschedule(dreq);
741 break;
742 default:
743 nfs_direct_write_clear_reqs(dreq);
744 nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
745 nfs_direct_complete(dreq);
746 }
747}
748
749static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
750{
751 trace_nfs_direct_write_complete(dreq);
752 queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
753}
754
755static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
756{
757 struct nfs_direct_req *dreq = hdr->dreq;
758 struct nfs_commit_info cinfo;
759 struct nfs_page *req = nfs_list_entry(hdr->pages.next);
760 struct inode *inode = dreq->inode;
761 int flags = NFS_ODIRECT_DONE;
762
763 trace_nfs_direct_write_completion(dreq);
764
765 nfs_init_cinfo_from_dreq(&cinfo, dreq);
766
767 spin_lock(&dreq->lock);
768 if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
769 spin_unlock(&dreq->lock);
770 goto out_put;
771 }
772
773 nfs_direct_count_bytes(dreq, hdr);
774 if (test_bit(NFS_IOHDR_UNSTABLE_WRITES, &hdr->flags) &&
775 !test_bit(NFS_IOHDR_ERROR, &hdr->flags)) {
776 if (!dreq->flags)
777 dreq->flags = NFS_ODIRECT_DO_COMMIT;
778 flags = dreq->flags;
779 }
780 spin_unlock(&dreq->lock);
781
782 spin_lock(&inode->i_lock);
783 nfs_direct_file_adjust_size_locked(inode, dreq->io_start, dreq->count);
784 nfs_update_delegated_mtime_locked(dreq->inode);
785 spin_unlock(&inode->i_lock);
786
787 while (!list_empty(&hdr->pages)) {
788
789 req = nfs_list_entry(hdr->pages.next);
790 nfs_list_remove_request(req);
791 if (flags == NFS_ODIRECT_DO_COMMIT) {
792 kref_get(&req->wb_kref);
793 memcpy(&req->wb_verf, &hdr->verf.verifier,
794 sizeof(req->wb_verf));
795 nfs_mark_request_commit(req, hdr->lseg, &cinfo,
796 hdr->ds_commit_idx);
797 } else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
798 kref_get(&req->wb_kref);
799 nfs_mark_request_commit(req, NULL, &cinfo, 0);
800 }
801 nfs_unlock_and_release_request(req);
802 }
803
804out_put:
805 if (put_dreq(dreq))
806 nfs_direct_write_complete(dreq);
807 hdr->release(hdr);
808}
809
810static void nfs_write_sync_pgio_error(struct list_head *head, int error)
811{
812 struct nfs_page *req;
813
814 while (!list_empty(head)) {
815 req = nfs_list_entry(head->next);
816 nfs_list_remove_request(req);
817 nfs_unlock_and_release_request(req);
818 }
819}
820
821static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
822{
823 struct nfs_direct_req *dreq = hdr->dreq;
824 struct nfs_page *req;
825 struct nfs_commit_info cinfo;
826
827 trace_nfs_direct_write_reschedule_io(dreq);
828
829 nfs_init_cinfo_from_dreq(&cinfo, dreq);
830 spin_lock(&dreq->lock);
831 if (dreq->error == 0)
832 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
833 set_bit(NFS_IOHDR_REDO, &hdr->flags);
834 spin_unlock(&dreq->lock);
835 while (!list_empty(&hdr->pages)) {
836 req = nfs_list_entry(hdr->pages.next);
837 nfs_list_remove_request(req);
838 nfs_unlock_request(req);
839 nfs_mark_request_commit(req, NULL, &cinfo, 0);
840 }
841}
842
843static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
844 .error_cleanup = nfs_write_sync_pgio_error,
845 .init_hdr = nfs_direct_pgio_init,
846 .completion = nfs_direct_write_completion,
847 .reschedule_io = nfs_direct_write_reschedule_io,
848};
849
850
851/*
852 * NB: Return the value of the first error return code. Subsequent
853 * errors after the first one are ignored.
854 */
855/*
856 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
857 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
858 * bail and stop sending more writes. Write length accounting is
859 * handled automatically by nfs_direct_write_result(). Otherwise, if
860 * no requests have been sent, just return an error.
861 */
862static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
863 struct iov_iter *iter,
864 loff_t pos, int ioflags)
865{
866 struct nfs_pageio_descriptor desc;
867 struct inode *inode = dreq->inode;
868 struct nfs_commit_info cinfo;
869 ssize_t result = 0;
870 size_t requested_bytes = 0;
871 size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
872 bool defer = false;
873
874 trace_nfs_direct_write_schedule_iovec(dreq);
875
876 nfs_pageio_init_write(&desc, inode, ioflags, false,
877 &nfs_direct_write_completion_ops);
878 desc.pg_dreq = dreq;
879 get_dreq(dreq);
880 inode_dio_begin(inode);
881
882 NFS_I(inode)->write_io += iov_iter_count(iter);
883 while (iov_iter_count(iter)) {
884 struct page **pagevec;
885 size_t bytes;
886 size_t pgbase;
887 unsigned npages, i;
888
889 result = iov_iter_get_pages_alloc2(iter, &pagevec,
890 wsize, &pgbase);
891 if (result < 0)
892 break;
893
894 bytes = result;
895 npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
896 for (i = 0; i < npages; i++) {
897 struct nfs_page *req;
898 unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
899
900 req = nfs_page_create_from_page(dreq->ctx, pagevec[i],
901 pgbase, pos, req_len);
902 if (IS_ERR(req)) {
903 result = PTR_ERR(req);
904 break;
905 }
906
907 if (desc.pg_error < 0) {
908 nfs_free_request(req);
909 result = desc.pg_error;
910 break;
911 }
912
913 pgbase = 0;
914 bytes -= req_len;
915 requested_bytes += req_len;
916 pos += req_len;
917
918 if (defer) {
919 nfs_mark_request_commit(req, NULL, &cinfo, 0);
920 continue;
921 }
922
923 nfs_lock_request(req);
924 if (nfs_pageio_add_request(&desc, req))
925 continue;
926
927 /* Exit on hard errors */
928 if (desc.pg_error < 0 && desc.pg_error != -EAGAIN) {
929 result = desc.pg_error;
930 nfs_unlock_and_release_request(req);
931 break;
932 }
933
934 /* If the error is soft, defer remaining requests */
935 nfs_init_cinfo_from_dreq(&cinfo, dreq);
936 spin_lock(&dreq->lock);
937 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
938 spin_unlock(&dreq->lock);
939 nfs_unlock_request(req);
940 nfs_mark_request_commit(req, NULL, &cinfo, 0);
941 desc.pg_error = 0;
942 defer = true;
943 }
944 nfs_direct_release_pages(pagevec, npages);
945 kvfree(pagevec);
946 if (result < 0)
947 break;
948 }
949 nfs_pageio_complete(&desc);
950
951 /*
952 * If no bytes were started, return the error, and let the
953 * generic layer handle the completion.
954 */
955 if (requested_bytes == 0) {
956 inode_dio_end(inode);
957 nfs_direct_req_release(dreq);
958 return result < 0 ? result : -EIO;
959 }
960
961 if (put_dreq(dreq))
962 nfs_direct_write_complete(dreq);
963 return requested_bytes;
964}
965
966/**
967 * nfs_file_direct_write - file direct write operation for NFS files
968 * @iocb: target I/O control block
969 * @iter: vector of user buffers from which to write data
970 * @swap: flag indicating this is swap IO, not O_DIRECT IO
971 *
972 * We use this function for direct writes instead of calling
973 * generic_file_aio_write() in order to avoid taking the inode
974 * semaphore and updating the i_size. The NFS server will set
975 * the new i_size and this client must read the updated size
976 * back into its cache. We let the server do generic write
977 * parameter checking and report problems.
978 *
979 * We eliminate local atime updates, see direct read above.
980 *
981 * We avoid unnecessary page cache invalidations for normal cached
982 * readers of this file.
983 *
984 * Note that O_APPEND is not supported for NFS direct writes, as there
985 * is no atomic O_APPEND write facility in the NFS protocol.
986 */
987ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
988 bool swap)
989{
990 ssize_t result, requested;
991 size_t count;
992 struct file *file = iocb->ki_filp;
993 struct address_space *mapping = file->f_mapping;
994 struct inode *inode = mapping->host;
995 struct nfs_direct_req *dreq;
996 struct nfs_lock_context *l_ctx;
997 loff_t pos, end;
998
999 dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
1000 file, iov_iter_count(iter), (long long) iocb->ki_pos);
1001
1002 if (swap)
1003 /* bypass generic checks */
1004 result = iov_iter_count(iter);
1005 else
1006 result = generic_write_checks(iocb, iter);
1007 if (result <= 0)
1008 return result;
1009 count = result;
1010 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
1011
1012 pos = iocb->ki_pos;
1013 end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
1014
1015 task_io_account_write(count);
1016
1017 result = -ENOMEM;
1018 dreq = nfs_direct_req_alloc();
1019 if (!dreq)
1020 goto out;
1021
1022 dreq->inode = inode;
1023 dreq->max_count = count;
1024 dreq->io_start = pos;
1025 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
1026 l_ctx = nfs_get_lock_context(dreq->ctx);
1027 if (IS_ERR(l_ctx)) {
1028 result = PTR_ERR(l_ctx);
1029 nfs_direct_req_release(dreq);
1030 goto out_release;
1031 }
1032 dreq->l_ctx = l_ctx;
1033 if (!is_sync_kiocb(iocb))
1034 dreq->iocb = iocb;
1035 pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
1036
1037 if (swap) {
1038 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1039 FLUSH_STABLE);
1040 } else {
1041 result = nfs_start_io_direct(inode);
1042 if (result) {
1043 /* release the reference that would usually be
1044 * consumed by nfs_direct_write_schedule_iovec()
1045 */
1046 nfs_direct_req_release(dreq);
1047 goto out_release;
1048 }
1049
1050 requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
1051 FLUSH_COND_STABLE);
1052
1053 if (mapping->nrpages) {
1054 invalidate_inode_pages2_range(mapping,
1055 pos >> PAGE_SHIFT, end);
1056 }
1057
1058 nfs_end_io_direct(inode);
1059 }
1060
1061 if (requested > 0) {
1062 result = nfs_direct_wait(dreq);
1063 if (result > 0) {
1064 requested -= result;
1065 iocb->ki_pos = pos + result;
1066 /* XXX: should check the generic_write_sync retval */
1067 generic_write_sync(iocb, result);
1068 }
1069 iov_iter_revert(iter, requested);
1070 } else {
1071 result = requested;
1072 }
1073 nfs_fscache_invalidate(inode, FSCACHE_INVAL_DIO_WRITE);
1074out_release:
1075 nfs_direct_req_release(dreq);
1076out:
1077 return result;
1078}
1079
1080/**
1081 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1082 *
1083 */
1084int __init nfs_init_directcache(void)
1085{
1086 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1087 sizeof(struct nfs_direct_req),
1088 0, SLAB_RECLAIM_ACCOUNT,
1089 NULL);
1090 if (nfs_direct_cachep == NULL)
1091 return -ENOMEM;
1092
1093 return 0;
1094}
1095
1096/**
1097 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1098 *
1099 */
1100void nfs_destroy_directcache(void)
1101{
1102 kmem_cache_destroy(nfs_direct_cachep);
1103}
1/*
2 * linux/fs/nfs/direct.c
3 *
4 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
5 *
6 * High-performance uncached I/O for the Linux NFS client
7 *
8 * There are important applications whose performance or correctness
9 * depends on uncached access to file data. Database clusters
10 * (multiple copies of the same instance running on separate hosts)
11 * implement their own cache coherency protocol that subsumes file
12 * system cache protocols. Applications that process datasets
13 * considerably larger than the client's memory do not always benefit
14 * from a local cache. A streaming video server, for instance, has no
15 * need to cache the contents of a file.
16 *
17 * When an application requests uncached I/O, all read and write requests
18 * are made directly to the server; data stored or fetched via these
19 * requests is not cached in the Linux page cache. The client does not
20 * correct unaligned requests from applications. All requested bytes are
21 * held on permanent storage before a direct write system call returns to
22 * an application.
23 *
24 * Solaris implements an uncached I/O facility called directio() that
25 * is used for backups and sequential I/O to very large files. Solaris
26 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
27 * an undocumented mount option.
28 *
29 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
30 * help from Andrew Morton.
31 *
32 * 18 Dec 2001 Initial implementation for 2.4 --cel
33 * 08 Jul 2002 Version for 2.4.19, with bug fixes --trondmy
34 * 08 Jun 2003 Port to 2.5 APIs --cel
35 * 31 Mar 2004 Handle direct I/O without VFS support --cel
36 * 15 Sep 2004 Parallel async reads --cel
37 * 04 May 2005 support O_DIRECT with aio --cel
38 *
39 */
40
41#include <linux/errno.h>
42#include <linux/sched.h>
43#include <linux/kernel.h>
44#include <linux/file.h>
45#include <linux/pagemap.h>
46#include <linux/kref.h>
47#include <linux/slab.h>
48#include <linux/task_io_accounting_ops.h>
49
50#include <linux/nfs_fs.h>
51#include <linux/nfs_page.h>
52#include <linux/sunrpc/clnt.h>
53
54#include <asm/system.h>
55#include <asm/uaccess.h>
56#include <linux/atomic.h>
57
58#include "internal.h"
59#include "iostat.h"
60
61#define NFSDBG_FACILITY NFSDBG_VFS
62
63static struct kmem_cache *nfs_direct_cachep;
64
65/*
66 * This represents a set of asynchronous requests that we're waiting on
67 */
68struct nfs_direct_req {
69 struct kref kref; /* release manager */
70
71 /* I/O parameters */
72 struct nfs_open_context *ctx; /* file open context info */
73 struct nfs_lock_context *l_ctx; /* Lock context info */
74 struct kiocb * iocb; /* controlling i/o request */
75 struct inode * inode; /* target file of i/o */
76
77 /* completion state */
78 atomic_t io_count; /* i/os we're waiting for */
79 spinlock_t lock; /* protect completion state */
80 ssize_t count, /* bytes actually processed */
81 error; /* any reported error */
82 struct completion completion; /* wait for i/o completion */
83
84 /* commit state */
85 struct list_head rewrite_list; /* saved nfs_write_data structs */
86 struct nfs_write_data * commit_data; /* special write_data for commits */
87 int flags;
88#define NFS_ODIRECT_DO_COMMIT (1) /* an unstable reply was received */
89#define NFS_ODIRECT_RESCHED_WRITES (2) /* write verification failed */
90 struct nfs_writeverf verf; /* unstable write verifier */
91};
92
93static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode);
94static const struct rpc_call_ops nfs_write_direct_ops;
95
96static inline void get_dreq(struct nfs_direct_req *dreq)
97{
98 atomic_inc(&dreq->io_count);
99}
100
101static inline int put_dreq(struct nfs_direct_req *dreq)
102{
103 return atomic_dec_and_test(&dreq->io_count);
104}
105
106/**
107 * nfs_direct_IO - NFS address space operation for direct I/O
108 * @rw: direction (read or write)
109 * @iocb: target I/O control block
110 * @iov: array of vectors that define I/O buffer
111 * @pos: offset in file to begin the operation
112 * @nr_segs: size of iovec array
113 *
114 * The presence of this routine in the address space ops vector means
115 * the NFS client supports direct I/O. However, we shunt off direct
116 * read and write requests before the VFS gets them, so this method
117 * should never be called.
118 */
119ssize_t nfs_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, loff_t pos, unsigned long nr_segs)
120{
121 dprintk("NFS: nfs_direct_IO (%s) off/no(%Ld/%lu) EINVAL\n",
122 iocb->ki_filp->f_path.dentry->d_name.name,
123 (long long) pos, nr_segs);
124
125 return -EINVAL;
126}
127
128static void nfs_direct_dirty_pages(struct page **pages, unsigned int pgbase, size_t count)
129{
130 unsigned int npages;
131 unsigned int i;
132
133 if (count == 0)
134 return;
135 pages += (pgbase >> PAGE_SHIFT);
136 npages = (count + (pgbase & ~PAGE_MASK) + PAGE_SIZE - 1) >> PAGE_SHIFT;
137 for (i = 0; i < npages; i++) {
138 struct page *page = pages[i];
139 if (!PageCompound(page))
140 set_page_dirty(page);
141 }
142}
143
144static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
145{
146 unsigned int i;
147 for (i = 0; i < npages; i++)
148 page_cache_release(pages[i]);
149}
150
151static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
152{
153 struct nfs_direct_req *dreq;
154
155 dreq = kmem_cache_alloc(nfs_direct_cachep, GFP_KERNEL);
156 if (!dreq)
157 return NULL;
158
159 kref_init(&dreq->kref);
160 kref_get(&dreq->kref);
161 init_completion(&dreq->completion);
162 INIT_LIST_HEAD(&dreq->rewrite_list);
163 dreq->iocb = NULL;
164 dreq->ctx = NULL;
165 dreq->l_ctx = NULL;
166 spin_lock_init(&dreq->lock);
167 atomic_set(&dreq->io_count, 0);
168 dreq->count = 0;
169 dreq->error = 0;
170 dreq->flags = 0;
171
172 return dreq;
173}
174
175static void nfs_direct_req_free(struct kref *kref)
176{
177 struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
178
179 if (dreq->l_ctx != NULL)
180 nfs_put_lock_context(dreq->l_ctx);
181 if (dreq->ctx != NULL)
182 put_nfs_open_context(dreq->ctx);
183 kmem_cache_free(nfs_direct_cachep, dreq);
184}
185
186static void nfs_direct_req_release(struct nfs_direct_req *dreq)
187{
188 kref_put(&dreq->kref, nfs_direct_req_free);
189}
190
191/*
192 * Collects and returns the final error value/byte-count.
193 */
194static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
195{
196 ssize_t result = -EIOCBQUEUED;
197
198 /* Async requests don't wait here */
199 if (dreq->iocb)
200 goto out;
201
202 result = wait_for_completion_killable(&dreq->completion);
203
204 if (!result)
205 result = dreq->error;
206 if (!result)
207 result = dreq->count;
208
209out:
210 return (ssize_t) result;
211}
212
213/*
214 * Synchronous I/O uses a stack-allocated iocb. Thus we can't trust
215 * the iocb is still valid here if this is a synchronous request.
216 */
217static void nfs_direct_complete(struct nfs_direct_req *dreq)
218{
219 if (dreq->iocb) {
220 long res = (long) dreq->error;
221 if (!res)
222 res = (long) dreq->count;
223 aio_complete(dreq->iocb, res, 0);
224 }
225 complete_all(&dreq->completion);
226
227 nfs_direct_req_release(dreq);
228}
229
230/*
231 * We must hold a reference to all the pages in this direct read request
232 * until the RPCs complete. This could be long *after* we are woken up in
233 * nfs_direct_wait (for instance, if someone hits ^C on a slow server).
234 */
235static void nfs_direct_read_result(struct rpc_task *task, void *calldata)
236{
237 struct nfs_read_data *data = calldata;
238
239 nfs_readpage_result(task, data);
240}
241
242static void nfs_direct_read_release(void *calldata)
243{
244
245 struct nfs_read_data *data = calldata;
246 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
247 int status = data->task.tk_status;
248
249 spin_lock(&dreq->lock);
250 if (unlikely(status < 0)) {
251 dreq->error = status;
252 spin_unlock(&dreq->lock);
253 } else {
254 dreq->count += data->res.count;
255 spin_unlock(&dreq->lock);
256 nfs_direct_dirty_pages(data->pagevec,
257 data->args.pgbase,
258 data->res.count);
259 }
260 nfs_direct_release_pages(data->pagevec, data->npages);
261
262 if (put_dreq(dreq))
263 nfs_direct_complete(dreq);
264 nfs_readdata_free(data);
265}
266
267static const struct rpc_call_ops nfs_read_direct_ops = {
268#if defined(CONFIG_NFS_V4_1)
269 .rpc_call_prepare = nfs_read_prepare,
270#endif /* CONFIG_NFS_V4_1 */
271 .rpc_call_done = nfs_direct_read_result,
272 .rpc_release = nfs_direct_read_release,
273};
274
275/*
276 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
277 * operation. If nfs_readdata_alloc() or get_user_pages() fails,
278 * bail and stop sending more reads. Read length accounting is
279 * handled automatically by nfs_direct_read_result(). Otherwise, if
280 * no requests have been sent, just return an error.
281 */
282static ssize_t nfs_direct_read_schedule_segment(struct nfs_direct_req *dreq,
283 const struct iovec *iov,
284 loff_t pos)
285{
286 struct nfs_open_context *ctx = dreq->ctx;
287 struct inode *inode = ctx->dentry->d_inode;
288 unsigned long user_addr = (unsigned long)iov->iov_base;
289 size_t count = iov->iov_len;
290 size_t rsize = NFS_SERVER(inode)->rsize;
291 struct rpc_task *task;
292 struct rpc_message msg = {
293 .rpc_cred = ctx->cred,
294 };
295 struct rpc_task_setup task_setup_data = {
296 .rpc_client = NFS_CLIENT(inode),
297 .rpc_message = &msg,
298 .callback_ops = &nfs_read_direct_ops,
299 .workqueue = nfsiod_workqueue,
300 .flags = RPC_TASK_ASYNC,
301 };
302 unsigned int pgbase;
303 int result;
304 ssize_t started = 0;
305
306 do {
307 struct nfs_read_data *data;
308 size_t bytes;
309
310 pgbase = user_addr & ~PAGE_MASK;
311 bytes = min(rsize,count);
312
313 result = -ENOMEM;
314 data = nfs_readdata_alloc(nfs_page_array_len(pgbase, bytes));
315 if (unlikely(!data))
316 break;
317
318 down_read(¤t->mm->mmap_sem);
319 result = get_user_pages(current, current->mm, user_addr,
320 data->npages, 1, 0, data->pagevec, NULL);
321 up_read(¤t->mm->mmap_sem);
322 if (result < 0) {
323 nfs_readdata_free(data);
324 break;
325 }
326 if ((unsigned)result < data->npages) {
327 bytes = result * PAGE_SIZE;
328 if (bytes <= pgbase) {
329 nfs_direct_release_pages(data->pagevec, result);
330 nfs_readdata_free(data);
331 break;
332 }
333 bytes -= pgbase;
334 data->npages = result;
335 }
336
337 get_dreq(dreq);
338
339 data->req = (struct nfs_page *) dreq;
340 data->inode = inode;
341 data->cred = msg.rpc_cred;
342 data->args.fh = NFS_FH(inode);
343 data->args.context = ctx;
344 data->args.lock_context = dreq->l_ctx;
345 data->args.offset = pos;
346 data->args.pgbase = pgbase;
347 data->args.pages = data->pagevec;
348 data->args.count = bytes;
349 data->res.fattr = &data->fattr;
350 data->res.eof = 0;
351 data->res.count = bytes;
352 nfs_fattr_init(&data->fattr);
353 msg.rpc_argp = &data->args;
354 msg.rpc_resp = &data->res;
355
356 task_setup_data.task = &data->task;
357 task_setup_data.callback_data = data;
358 NFS_PROTO(inode)->read_setup(data, &msg);
359
360 task = rpc_run_task(&task_setup_data);
361 if (IS_ERR(task))
362 break;
363 rpc_put_task(task);
364
365 dprintk("NFS: %5u initiated direct read call "
366 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
367 data->task.tk_pid,
368 inode->i_sb->s_id,
369 (long long)NFS_FILEID(inode),
370 bytes,
371 (unsigned long long)data->args.offset);
372
373 started += bytes;
374 user_addr += bytes;
375 pos += bytes;
376 /* FIXME: Remove this unnecessary math from final patch */
377 pgbase += bytes;
378 pgbase &= ~PAGE_MASK;
379 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
380
381 count -= bytes;
382 } while (count != 0);
383
384 if (started)
385 return started;
386 return result < 0 ? (ssize_t) result : -EFAULT;
387}
388
389static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
390 const struct iovec *iov,
391 unsigned long nr_segs,
392 loff_t pos)
393{
394 ssize_t result = -EINVAL;
395 size_t requested_bytes = 0;
396 unsigned long seg;
397
398 get_dreq(dreq);
399
400 for (seg = 0; seg < nr_segs; seg++) {
401 const struct iovec *vec = &iov[seg];
402 result = nfs_direct_read_schedule_segment(dreq, vec, pos);
403 if (result < 0)
404 break;
405 requested_bytes += result;
406 if ((size_t)result < vec->iov_len)
407 break;
408 pos += vec->iov_len;
409 }
410
411 /*
412 * If no bytes were started, return the error, and let the
413 * generic layer handle the completion.
414 */
415 if (requested_bytes == 0) {
416 nfs_direct_req_release(dreq);
417 return result < 0 ? result : -EIO;
418 }
419
420 if (put_dreq(dreq))
421 nfs_direct_complete(dreq);
422 return 0;
423}
424
425static ssize_t nfs_direct_read(struct kiocb *iocb, const struct iovec *iov,
426 unsigned long nr_segs, loff_t pos)
427{
428 ssize_t result = -ENOMEM;
429 struct inode *inode = iocb->ki_filp->f_mapping->host;
430 struct nfs_direct_req *dreq;
431
432 dreq = nfs_direct_req_alloc();
433 if (dreq == NULL)
434 goto out;
435
436 dreq->inode = inode;
437 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
438 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
439 if (dreq->l_ctx == NULL)
440 goto out_release;
441 if (!is_sync_kiocb(iocb))
442 dreq->iocb = iocb;
443
444 result = nfs_direct_read_schedule_iovec(dreq, iov, nr_segs, pos);
445 if (!result)
446 result = nfs_direct_wait(dreq);
447out_release:
448 nfs_direct_req_release(dreq);
449out:
450 return result;
451}
452
453static void nfs_direct_free_writedata(struct nfs_direct_req *dreq)
454{
455 while (!list_empty(&dreq->rewrite_list)) {
456 struct nfs_write_data *data = list_entry(dreq->rewrite_list.next, struct nfs_write_data, pages);
457 list_del(&data->pages);
458 nfs_direct_release_pages(data->pagevec, data->npages);
459 nfs_writedata_free(data);
460 }
461}
462
463#if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
464static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
465{
466 struct inode *inode = dreq->inode;
467 struct list_head *p;
468 struct nfs_write_data *data;
469 struct rpc_task *task;
470 struct rpc_message msg = {
471 .rpc_cred = dreq->ctx->cred,
472 };
473 struct rpc_task_setup task_setup_data = {
474 .rpc_client = NFS_CLIENT(inode),
475 .rpc_message = &msg,
476 .callback_ops = &nfs_write_direct_ops,
477 .workqueue = nfsiod_workqueue,
478 .flags = RPC_TASK_ASYNC,
479 };
480
481 dreq->count = 0;
482 get_dreq(dreq);
483
484 list_for_each(p, &dreq->rewrite_list) {
485 data = list_entry(p, struct nfs_write_data, pages);
486
487 get_dreq(dreq);
488
489 /* Use stable writes */
490 data->args.stable = NFS_FILE_SYNC;
491
492 /*
493 * Reset data->res.
494 */
495 nfs_fattr_init(&data->fattr);
496 data->res.count = data->args.count;
497 memset(&data->verf, 0, sizeof(data->verf));
498
499 /*
500 * Reuse data->task; data->args should not have changed
501 * since the original request was sent.
502 */
503 task_setup_data.task = &data->task;
504 task_setup_data.callback_data = data;
505 msg.rpc_argp = &data->args;
506 msg.rpc_resp = &data->res;
507 NFS_PROTO(inode)->write_setup(data, &msg);
508
509 /*
510 * We're called via an RPC callback, so BKL is already held.
511 */
512 task = rpc_run_task(&task_setup_data);
513 if (!IS_ERR(task))
514 rpc_put_task(task);
515
516 dprintk("NFS: %5u rescheduled direct write call (req %s/%Ld, %u bytes @ offset %Lu)\n",
517 data->task.tk_pid,
518 inode->i_sb->s_id,
519 (long long)NFS_FILEID(inode),
520 data->args.count,
521 (unsigned long long)data->args.offset);
522 }
523
524 if (put_dreq(dreq))
525 nfs_direct_write_complete(dreq, inode);
526}
527
528static void nfs_direct_commit_result(struct rpc_task *task, void *calldata)
529{
530 struct nfs_write_data *data = calldata;
531
532 /* Call the NFS version-specific code */
533 NFS_PROTO(data->inode)->commit_done(task, data);
534}
535
536static void nfs_direct_commit_release(void *calldata)
537{
538 struct nfs_write_data *data = calldata;
539 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
540 int status = data->task.tk_status;
541
542 if (status < 0) {
543 dprintk("NFS: %5u commit failed with error %d.\n",
544 data->task.tk_pid, status);
545 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
546 } else if (memcmp(&dreq->verf, &data->verf, sizeof(data->verf))) {
547 dprintk("NFS: %5u commit verify failed\n", data->task.tk_pid);
548 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
549 }
550
551 dprintk("NFS: %5u commit returned %d\n", data->task.tk_pid, status);
552 nfs_direct_write_complete(dreq, data->inode);
553 nfs_commit_free(data);
554}
555
556static const struct rpc_call_ops nfs_commit_direct_ops = {
557#if defined(CONFIG_NFS_V4_1)
558 .rpc_call_prepare = nfs_write_prepare,
559#endif /* CONFIG_NFS_V4_1 */
560 .rpc_call_done = nfs_direct_commit_result,
561 .rpc_release = nfs_direct_commit_release,
562};
563
564static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
565{
566 struct nfs_write_data *data = dreq->commit_data;
567 struct rpc_task *task;
568 struct rpc_message msg = {
569 .rpc_argp = &data->args,
570 .rpc_resp = &data->res,
571 .rpc_cred = dreq->ctx->cred,
572 };
573 struct rpc_task_setup task_setup_data = {
574 .task = &data->task,
575 .rpc_client = NFS_CLIENT(dreq->inode),
576 .rpc_message = &msg,
577 .callback_ops = &nfs_commit_direct_ops,
578 .callback_data = data,
579 .workqueue = nfsiod_workqueue,
580 .flags = RPC_TASK_ASYNC,
581 };
582
583 data->inode = dreq->inode;
584 data->cred = msg.rpc_cred;
585
586 data->args.fh = NFS_FH(data->inode);
587 data->args.offset = 0;
588 data->args.count = 0;
589 data->args.context = dreq->ctx;
590 data->args.lock_context = dreq->l_ctx;
591 data->res.count = 0;
592 data->res.fattr = &data->fattr;
593 data->res.verf = &data->verf;
594 nfs_fattr_init(&data->fattr);
595
596 NFS_PROTO(data->inode)->commit_setup(data, &msg);
597
598 /* Note: task.tk_ops->rpc_release will free dreq->commit_data */
599 dreq->commit_data = NULL;
600
601 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
602
603 task = rpc_run_task(&task_setup_data);
604 if (!IS_ERR(task))
605 rpc_put_task(task);
606}
607
608static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
609{
610 int flags = dreq->flags;
611
612 dreq->flags = 0;
613 switch (flags) {
614 case NFS_ODIRECT_DO_COMMIT:
615 nfs_direct_commit_schedule(dreq);
616 break;
617 case NFS_ODIRECT_RESCHED_WRITES:
618 nfs_direct_write_reschedule(dreq);
619 break;
620 default:
621 if (dreq->commit_data != NULL)
622 nfs_commit_free(dreq->commit_data);
623 nfs_direct_free_writedata(dreq);
624 nfs_zap_mapping(inode, inode->i_mapping);
625 nfs_direct_complete(dreq);
626 }
627}
628
629static void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
630{
631 dreq->commit_data = nfs_commitdata_alloc();
632 if (dreq->commit_data != NULL)
633 dreq->commit_data->req = (struct nfs_page *) dreq;
634}
635#else
636static inline void nfs_alloc_commit_data(struct nfs_direct_req *dreq)
637{
638 dreq->commit_data = NULL;
639}
640
641static void nfs_direct_write_complete(struct nfs_direct_req *dreq, struct inode *inode)
642{
643 nfs_direct_free_writedata(dreq);
644 nfs_zap_mapping(inode, inode->i_mapping);
645 nfs_direct_complete(dreq);
646}
647#endif
648
649static void nfs_direct_write_result(struct rpc_task *task, void *calldata)
650{
651 struct nfs_write_data *data = calldata;
652
653 nfs_writeback_done(task, data);
654}
655
656/*
657 * NB: Return the value of the first error return code. Subsequent
658 * errors after the first one are ignored.
659 */
660static void nfs_direct_write_release(void *calldata)
661{
662 struct nfs_write_data *data = calldata;
663 struct nfs_direct_req *dreq = (struct nfs_direct_req *) data->req;
664 int status = data->task.tk_status;
665
666 spin_lock(&dreq->lock);
667
668 if (unlikely(status < 0)) {
669 /* An error has occurred, so we should not commit */
670 dreq->flags = 0;
671 dreq->error = status;
672 }
673 if (unlikely(dreq->error != 0))
674 goto out_unlock;
675
676 dreq->count += data->res.count;
677
678 if (data->res.verf->committed != NFS_FILE_SYNC) {
679 switch (dreq->flags) {
680 case 0:
681 memcpy(&dreq->verf, &data->verf, sizeof(dreq->verf));
682 dreq->flags = NFS_ODIRECT_DO_COMMIT;
683 break;
684 case NFS_ODIRECT_DO_COMMIT:
685 if (memcmp(&dreq->verf, &data->verf, sizeof(dreq->verf))) {
686 dprintk("NFS: %5u write verify failed\n", data->task.tk_pid);
687 dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
688 }
689 }
690 }
691out_unlock:
692 spin_unlock(&dreq->lock);
693
694 if (put_dreq(dreq))
695 nfs_direct_write_complete(dreq, data->inode);
696}
697
698static const struct rpc_call_ops nfs_write_direct_ops = {
699#if defined(CONFIG_NFS_V4_1)
700 .rpc_call_prepare = nfs_write_prepare,
701#endif /* CONFIG_NFS_V4_1 */
702 .rpc_call_done = nfs_direct_write_result,
703 .rpc_release = nfs_direct_write_release,
704};
705
706/*
707 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
708 * operation. If nfs_writedata_alloc() or get_user_pages() fails,
709 * bail and stop sending more writes. Write length accounting is
710 * handled automatically by nfs_direct_write_result(). Otherwise, if
711 * no requests have been sent, just return an error.
712 */
713static ssize_t nfs_direct_write_schedule_segment(struct nfs_direct_req *dreq,
714 const struct iovec *iov,
715 loff_t pos, int sync)
716{
717 struct nfs_open_context *ctx = dreq->ctx;
718 struct inode *inode = ctx->dentry->d_inode;
719 unsigned long user_addr = (unsigned long)iov->iov_base;
720 size_t count = iov->iov_len;
721 struct rpc_task *task;
722 struct rpc_message msg = {
723 .rpc_cred = ctx->cred,
724 };
725 struct rpc_task_setup task_setup_data = {
726 .rpc_client = NFS_CLIENT(inode),
727 .rpc_message = &msg,
728 .callback_ops = &nfs_write_direct_ops,
729 .workqueue = nfsiod_workqueue,
730 .flags = RPC_TASK_ASYNC,
731 };
732 size_t wsize = NFS_SERVER(inode)->wsize;
733 unsigned int pgbase;
734 int result;
735 ssize_t started = 0;
736
737 do {
738 struct nfs_write_data *data;
739 size_t bytes;
740
741 pgbase = user_addr & ~PAGE_MASK;
742 bytes = min(wsize,count);
743
744 result = -ENOMEM;
745 data = nfs_writedata_alloc(nfs_page_array_len(pgbase, bytes));
746 if (unlikely(!data))
747 break;
748
749 down_read(¤t->mm->mmap_sem);
750 result = get_user_pages(current, current->mm, user_addr,
751 data->npages, 0, 0, data->pagevec, NULL);
752 up_read(¤t->mm->mmap_sem);
753 if (result < 0) {
754 nfs_writedata_free(data);
755 break;
756 }
757 if ((unsigned)result < data->npages) {
758 bytes = result * PAGE_SIZE;
759 if (bytes <= pgbase) {
760 nfs_direct_release_pages(data->pagevec, result);
761 nfs_writedata_free(data);
762 break;
763 }
764 bytes -= pgbase;
765 data->npages = result;
766 }
767
768 get_dreq(dreq);
769
770 list_move_tail(&data->pages, &dreq->rewrite_list);
771
772 data->req = (struct nfs_page *) dreq;
773 data->inode = inode;
774 data->cred = msg.rpc_cred;
775 data->args.fh = NFS_FH(inode);
776 data->args.context = ctx;
777 data->args.lock_context = dreq->l_ctx;
778 data->args.offset = pos;
779 data->args.pgbase = pgbase;
780 data->args.pages = data->pagevec;
781 data->args.count = bytes;
782 data->args.stable = sync;
783 data->res.fattr = &data->fattr;
784 data->res.count = bytes;
785 data->res.verf = &data->verf;
786 nfs_fattr_init(&data->fattr);
787
788 task_setup_data.task = &data->task;
789 task_setup_data.callback_data = data;
790 msg.rpc_argp = &data->args;
791 msg.rpc_resp = &data->res;
792 NFS_PROTO(inode)->write_setup(data, &msg);
793
794 task = rpc_run_task(&task_setup_data);
795 if (IS_ERR(task))
796 break;
797 rpc_put_task(task);
798
799 dprintk("NFS: %5u initiated direct write call "
800 "(req %s/%Ld, %zu bytes @ offset %Lu)\n",
801 data->task.tk_pid,
802 inode->i_sb->s_id,
803 (long long)NFS_FILEID(inode),
804 bytes,
805 (unsigned long long)data->args.offset);
806
807 started += bytes;
808 user_addr += bytes;
809 pos += bytes;
810
811 /* FIXME: Remove this useless math from the final patch */
812 pgbase += bytes;
813 pgbase &= ~PAGE_MASK;
814 BUG_ON(pgbase != (user_addr & ~PAGE_MASK));
815
816 count -= bytes;
817 } while (count != 0);
818
819 if (started)
820 return started;
821 return result < 0 ? (ssize_t) result : -EFAULT;
822}
823
824static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
825 const struct iovec *iov,
826 unsigned long nr_segs,
827 loff_t pos, int sync)
828{
829 ssize_t result = 0;
830 size_t requested_bytes = 0;
831 unsigned long seg;
832
833 get_dreq(dreq);
834
835 for (seg = 0; seg < nr_segs; seg++) {
836 const struct iovec *vec = &iov[seg];
837 result = nfs_direct_write_schedule_segment(dreq, vec,
838 pos, sync);
839 if (result < 0)
840 break;
841 requested_bytes += result;
842 if ((size_t)result < vec->iov_len)
843 break;
844 pos += vec->iov_len;
845 }
846
847 /*
848 * If no bytes were started, return the error, and let the
849 * generic layer handle the completion.
850 */
851 if (requested_bytes == 0) {
852 nfs_direct_req_release(dreq);
853 return result < 0 ? result : -EIO;
854 }
855
856 if (put_dreq(dreq))
857 nfs_direct_write_complete(dreq, dreq->inode);
858 return 0;
859}
860
861static ssize_t nfs_direct_write(struct kiocb *iocb, const struct iovec *iov,
862 unsigned long nr_segs, loff_t pos,
863 size_t count)
864{
865 ssize_t result = -ENOMEM;
866 struct inode *inode = iocb->ki_filp->f_mapping->host;
867 struct nfs_direct_req *dreq;
868 size_t wsize = NFS_SERVER(inode)->wsize;
869 int sync = NFS_UNSTABLE;
870
871 dreq = nfs_direct_req_alloc();
872 if (!dreq)
873 goto out;
874 nfs_alloc_commit_data(dreq);
875
876 if (dreq->commit_data == NULL || count <= wsize)
877 sync = NFS_FILE_SYNC;
878
879 dreq->inode = inode;
880 dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
881 dreq->l_ctx = nfs_get_lock_context(dreq->ctx);
882 if (dreq->l_ctx == NULL)
883 goto out_release;
884 if (!is_sync_kiocb(iocb))
885 dreq->iocb = iocb;
886
887 result = nfs_direct_write_schedule_iovec(dreq, iov, nr_segs, pos, sync);
888 if (!result)
889 result = nfs_direct_wait(dreq);
890out_release:
891 nfs_direct_req_release(dreq);
892out:
893 return result;
894}
895
896/**
897 * nfs_file_direct_read - file direct read operation for NFS files
898 * @iocb: target I/O control block
899 * @iov: vector of user buffers into which to read data
900 * @nr_segs: size of iov vector
901 * @pos: byte offset in file where reading starts
902 *
903 * We use this function for direct reads instead of calling
904 * generic_file_aio_read() in order to avoid gfar's check to see if
905 * the request starts before the end of the file. For that check
906 * to work, we must generate a GETATTR before each direct read, and
907 * even then there is a window between the GETATTR and the subsequent
908 * READ where the file size could change. Our preference is simply
909 * to do all reads the application wants, and the server will take
910 * care of managing the end of file boundary.
911 *
912 * This function also eliminates unnecessarily updating the file's
913 * atime locally, as the NFS server sets the file's atime, and this
914 * client must read the updated atime from the server back into its
915 * cache.
916 */
917ssize_t nfs_file_direct_read(struct kiocb *iocb, const struct iovec *iov,
918 unsigned long nr_segs, loff_t pos)
919{
920 ssize_t retval = -EINVAL;
921 struct file *file = iocb->ki_filp;
922 struct address_space *mapping = file->f_mapping;
923 size_t count;
924
925 count = iov_length(iov, nr_segs);
926 nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
927
928 dfprintk(FILE, "NFS: direct read(%s/%s, %zd@%Ld)\n",
929 file->f_path.dentry->d_parent->d_name.name,
930 file->f_path.dentry->d_name.name,
931 count, (long long) pos);
932
933 retval = 0;
934 if (!count)
935 goto out;
936
937 retval = nfs_sync_mapping(mapping);
938 if (retval)
939 goto out;
940
941 task_io_account_read(count);
942
943 retval = nfs_direct_read(iocb, iov, nr_segs, pos);
944 if (retval > 0)
945 iocb->ki_pos = pos + retval;
946
947out:
948 return retval;
949}
950
951/**
952 * nfs_file_direct_write - file direct write operation for NFS files
953 * @iocb: target I/O control block
954 * @iov: vector of user buffers from which to write data
955 * @nr_segs: size of iov vector
956 * @pos: byte offset in file where writing starts
957 *
958 * We use this function for direct writes instead of calling
959 * generic_file_aio_write() in order to avoid taking the inode
960 * semaphore and updating the i_size. The NFS server will set
961 * the new i_size and this client must read the updated size
962 * back into its cache. We let the server do generic write
963 * parameter checking and report problems.
964 *
965 * We eliminate local atime updates, see direct read above.
966 *
967 * We avoid unnecessary page cache invalidations for normal cached
968 * readers of this file.
969 *
970 * Note that O_APPEND is not supported for NFS direct writes, as there
971 * is no atomic O_APPEND write facility in the NFS protocol.
972 */
973ssize_t nfs_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
974 unsigned long nr_segs, loff_t pos)
975{
976 ssize_t retval = -EINVAL;
977 struct file *file = iocb->ki_filp;
978 struct address_space *mapping = file->f_mapping;
979 size_t count;
980
981 count = iov_length(iov, nr_segs);
982 nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
983
984 dfprintk(FILE, "NFS: direct write(%s/%s, %zd@%Ld)\n",
985 file->f_path.dentry->d_parent->d_name.name,
986 file->f_path.dentry->d_name.name,
987 count, (long long) pos);
988
989 retval = generic_write_checks(file, &pos, &count, 0);
990 if (retval)
991 goto out;
992
993 retval = -EINVAL;
994 if ((ssize_t) count < 0)
995 goto out;
996 retval = 0;
997 if (!count)
998 goto out;
999
1000 retval = nfs_sync_mapping(mapping);
1001 if (retval)
1002 goto out;
1003
1004 task_io_account_write(count);
1005
1006 retval = nfs_direct_write(iocb, iov, nr_segs, pos, count);
1007
1008 if (retval > 0)
1009 iocb->ki_pos = pos + retval;
1010
1011out:
1012 return retval;
1013}
1014
1015/**
1016 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1017 *
1018 */
1019int __init nfs_init_directcache(void)
1020{
1021 nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1022 sizeof(struct nfs_direct_req),
1023 0, (SLAB_RECLAIM_ACCOUNT|
1024 SLAB_MEM_SPREAD),
1025 NULL);
1026 if (nfs_direct_cachep == NULL)
1027 return -ENOMEM;
1028
1029 return 0;
1030}
1031
1032/**
1033 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1034 *
1035 */
1036void nfs_destroy_directcache(void)
1037{
1038 kmem_cache_destroy(nfs_direct_cachep);
1039}