Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Polling/bitbanging SPI host controller controller driver utilities
4 */
5
6#include <linux/spinlock.h>
7#include <linux/workqueue.h>
8#include <linux/interrupt.h>
9#include <linux/module.h>
10#include <linux/delay.h>
11#include <linux/errno.h>
12#include <linux/platform_device.h>
13#include <linux/slab.h>
14#include <linux/time64.h>
15
16#include <linux/spi/spi.h>
17#include <linux/spi/spi_bitbang.h>
18
19#define SPI_BITBANG_CS_DELAY 100
20
21
22/*----------------------------------------------------------------------*/
23
24/*
25 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
26 * Use this for GPIO or shift-register level hardware APIs.
27 *
28 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
29 * to glue code. These bitbang setup() and cleanup() routines are always
30 * used, though maybe they're called from controller-aware code.
31 *
32 * chipselect() and friends may use spi_device->controller_data and
33 * controller registers as appropriate.
34 *
35 *
36 * NOTE: SPI controller pins can often be used as GPIO pins instead,
37 * which means you could use a bitbang driver either to get hardware
38 * working quickly, or testing for differences that aren't speed related.
39 */
40
41typedef unsigned int (*spi_bb_txrx_bufs_fn)(struct spi_device *, spi_bb_txrx_word_fn,
42 unsigned int, struct spi_transfer *,
43 unsigned int);
44
45struct spi_bitbang_cs {
46 unsigned int nsecs; /* (clock cycle time) / 2 */
47 spi_bb_txrx_word_fn txrx_word;
48 spi_bb_txrx_bufs_fn txrx_bufs;
49};
50
51static unsigned int bitbang_txrx_8(struct spi_device *spi,
52 spi_bb_txrx_word_fn txrx_word,
53 unsigned int ns,
54 struct spi_transfer *t,
55 unsigned int flags)
56{
57 struct spi_bitbang *bitbang;
58 unsigned int bits = t->bits_per_word;
59 unsigned int count = t->len;
60 const u8 *tx = t->tx_buf;
61 u8 *rx = t->rx_buf;
62
63 bitbang = spi_controller_get_devdata(spi->controller);
64 while (likely(count > 0)) {
65 u8 word = 0;
66
67 if (tx)
68 word = *tx++;
69 else
70 word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFF : 0;
71 word = txrx_word(spi, ns, word, bits, flags);
72 if (rx)
73 *rx++ = word;
74 count -= 1;
75 }
76 if (bitbang->set_mosi_idle)
77 bitbang->set_mosi_idle(spi);
78
79 return t->len - count;
80}
81
82static unsigned int bitbang_txrx_16(struct spi_device *spi,
83 spi_bb_txrx_word_fn txrx_word,
84 unsigned int ns,
85 struct spi_transfer *t,
86 unsigned int flags)
87{
88 struct spi_bitbang *bitbang;
89 unsigned int bits = t->bits_per_word;
90 unsigned int count = t->len;
91 const u16 *tx = t->tx_buf;
92 u16 *rx = t->rx_buf;
93
94 bitbang = spi_controller_get_devdata(spi->controller);
95 while (likely(count > 1)) {
96 u16 word = 0;
97
98 if (tx)
99 word = *tx++;
100 else
101 word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFF : 0;
102 word = txrx_word(spi, ns, word, bits, flags);
103 if (rx)
104 *rx++ = word;
105 count -= 2;
106 }
107 if (bitbang->set_mosi_idle)
108 bitbang->set_mosi_idle(spi);
109
110 return t->len - count;
111}
112
113static unsigned int bitbang_txrx_32(struct spi_device *spi,
114 spi_bb_txrx_word_fn txrx_word,
115 unsigned int ns,
116 struct spi_transfer *t,
117 unsigned int flags)
118{
119 struct spi_bitbang *bitbang;
120 unsigned int bits = t->bits_per_word;
121 unsigned int count = t->len;
122 const u32 *tx = t->tx_buf;
123 u32 *rx = t->rx_buf;
124
125 bitbang = spi_controller_get_devdata(spi->controller);
126 while (likely(count > 3)) {
127 u32 word = 0;
128
129 if (tx)
130 word = *tx++;
131 else
132 word = spi->mode & SPI_MOSI_IDLE_HIGH ? 0xFFFFFFFF : 0;
133 word = txrx_word(spi, ns, word, bits, flags);
134 if (rx)
135 *rx++ = word;
136 count -= 4;
137 }
138 if (bitbang->set_mosi_idle)
139 bitbang->set_mosi_idle(spi);
140
141 return t->len - count;
142}
143
144int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
145{
146 struct spi_bitbang_cs *cs = spi->controller_state;
147 u8 bits_per_word;
148 u32 hz;
149
150 if (t) {
151 bits_per_word = t->bits_per_word;
152 hz = t->speed_hz;
153 } else {
154 bits_per_word = 0;
155 hz = 0;
156 }
157
158 /* spi_transfer level calls that work per-word */
159 if (!bits_per_word)
160 bits_per_word = spi->bits_per_word;
161 if (bits_per_word <= 8)
162 cs->txrx_bufs = bitbang_txrx_8;
163 else if (bits_per_word <= 16)
164 cs->txrx_bufs = bitbang_txrx_16;
165 else if (bits_per_word <= 32)
166 cs->txrx_bufs = bitbang_txrx_32;
167 else
168 return -EINVAL;
169
170 /* nsecs = (clock period)/2 */
171 if (!hz)
172 hz = spi->max_speed_hz;
173 if (hz) {
174 cs->nsecs = (NSEC_PER_SEC / 2) / hz;
175 if (cs->nsecs > (MAX_UDELAY_MS * NSEC_PER_MSEC))
176 return -EINVAL;
177 }
178
179 return 0;
180}
181EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
182
183/*
184 * spi_bitbang_setup - default setup for per-word I/O loops
185 */
186int spi_bitbang_setup(struct spi_device *spi)
187{
188 struct spi_bitbang_cs *cs = spi->controller_state;
189 struct spi_bitbang *bitbang;
190 bool initial_setup = false;
191 int retval;
192
193 bitbang = spi_controller_get_devdata(spi->controller);
194
195 if (!cs) {
196 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
197 if (!cs)
198 return -ENOMEM;
199 spi->controller_state = cs;
200 initial_setup = true;
201 }
202
203 /* per-word shift register access, in hardware or bitbanging */
204 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
205 if (!cs->txrx_word) {
206 retval = -EINVAL;
207 goto err_free;
208 }
209
210 if (bitbang->setup_transfer) {
211 retval = bitbang->setup_transfer(spi, NULL);
212 if (retval < 0)
213 goto err_free;
214 }
215
216 if (bitbang->set_mosi_idle)
217 bitbang->set_mosi_idle(spi);
218
219 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
220
221 return 0;
222
223err_free:
224 if (initial_setup)
225 kfree(cs);
226 return retval;
227}
228EXPORT_SYMBOL_GPL(spi_bitbang_setup);
229
230/*
231 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
232 */
233void spi_bitbang_cleanup(struct spi_device *spi)
234{
235 kfree(spi->controller_state);
236}
237EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
238
239static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
240{
241 struct spi_bitbang_cs *cs = spi->controller_state;
242 unsigned int nsecs = cs->nsecs;
243 struct spi_bitbang *bitbang;
244
245 bitbang = spi_controller_get_devdata(spi->controller);
246 if (bitbang->set_line_direction) {
247 int err;
248
249 err = bitbang->set_line_direction(spi, !!(t->tx_buf));
250 if (err < 0)
251 return err;
252 }
253
254 if (spi->mode & SPI_3WIRE) {
255 unsigned int flags;
256
257 flags = t->tx_buf ? SPI_CONTROLLER_NO_RX : SPI_CONTROLLER_NO_TX;
258 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, flags);
259 }
260 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t, 0);
261}
262
263/*----------------------------------------------------------------------*/
264
265/*
266 * SECOND PART ... simple transfer queue runner.
267 *
268 * This costs a task context per controller, running the queue by
269 * performing each transfer in sequence. Smarter hardware can queue
270 * several DMA transfers at once, and process several controller queues
271 * in parallel; this driver doesn't match such hardware very well.
272 *
273 * Drivers can provide word-at-a-time i/o primitives, or provide
274 * transfer-at-a-time ones to leverage dma or fifo hardware.
275 */
276
277static int spi_bitbang_prepare_hardware(struct spi_controller *spi)
278{
279 struct spi_bitbang *bitbang;
280
281 bitbang = spi_controller_get_devdata(spi);
282
283 mutex_lock(&bitbang->lock);
284 bitbang->busy = 1;
285 mutex_unlock(&bitbang->lock);
286
287 return 0;
288}
289
290static int spi_bitbang_transfer_one(struct spi_controller *ctlr,
291 struct spi_device *spi,
292 struct spi_transfer *transfer)
293{
294 struct spi_bitbang *bitbang = spi_controller_get_devdata(ctlr);
295 int status = 0;
296
297 if (bitbang->setup_transfer) {
298 status = bitbang->setup_transfer(spi, transfer);
299 if (status < 0)
300 goto out;
301 }
302
303 if (transfer->len)
304 status = bitbang->txrx_bufs(spi, transfer);
305
306 if (status == transfer->len)
307 status = 0;
308 else if (status >= 0)
309 status = -EREMOTEIO;
310
311out:
312 spi_finalize_current_transfer(ctlr);
313
314 return status;
315}
316
317static int spi_bitbang_unprepare_hardware(struct spi_controller *spi)
318{
319 struct spi_bitbang *bitbang;
320
321 bitbang = spi_controller_get_devdata(spi);
322
323 mutex_lock(&bitbang->lock);
324 bitbang->busy = 0;
325 mutex_unlock(&bitbang->lock);
326
327 return 0;
328}
329
330static void spi_bitbang_set_cs(struct spi_device *spi, bool enable)
331{
332 struct spi_bitbang *bitbang = spi_controller_get_devdata(spi->controller);
333
334 /* SPI core provides CS high / low, but bitbang driver
335 * expects CS active
336 * spi device driver takes care of handling SPI_CS_HIGH
337 */
338 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
339
340 ndelay(SPI_BITBANG_CS_DELAY);
341 bitbang->chipselect(spi, enable ? BITBANG_CS_ACTIVE :
342 BITBANG_CS_INACTIVE);
343 ndelay(SPI_BITBANG_CS_DELAY);
344}
345
346/*----------------------------------------------------------------------*/
347
348int spi_bitbang_init(struct spi_bitbang *bitbang)
349{
350 struct spi_controller *ctlr = bitbang->ctlr;
351 bool custom_cs;
352
353 if (!ctlr)
354 return -EINVAL;
355 /*
356 * We only need the chipselect callback if we are actually using it.
357 * If we just use GPIO descriptors, it is surplus. If the
358 * SPI_CONTROLLER_GPIO_SS flag is set, we always need to call the
359 * driver-specific chipselect routine.
360 */
361 custom_cs = (!ctlr->use_gpio_descriptors ||
362 (ctlr->flags & SPI_CONTROLLER_GPIO_SS));
363
364 if (custom_cs && !bitbang->chipselect)
365 return -EINVAL;
366
367 mutex_init(&bitbang->lock);
368
369 if (!ctlr->mode_bits)
370 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
371
372 if (ctlr->transfer || ctlr->transfer_one_message)
373 return -EINVAL;
374
375 ctlr->prepare_transfer_hardware = spi_bitbang_prepare_hardware;
376 ctlr->unprepare_transfer_hardware = spi_bitbang_unprepare_hardware;
377 ctlr->transfer_one = spi_bitbang_transfer_one;
378 /*
379 * When using GPIO descriptors, the ->set_cs() callback doesn't even
380 * get called unless SPI_CONTROLLER_GPIO_SS is set.
381 */
382 if (custom_cs)
383 ctlr->set_cs = spi_bitbang_set_cs;
384
385 if (!bitbang->txrx_bufs) {
386 bitbang->use_dma = 0;
387 bitbang->txrx_bufs = spi_bitbang_bufs;
388 if (!ctlr->setup) {
389 if (!bitbang->setup_transfer)
390 bitbang->setup_transfer =
391 spi_bitbang_setup_transfer;
392 ctlr->setup = spi_bitbang_setup;
393 ctlr->cleanup = spi_bitbang_cleanup;
394 }
395 }
396
397 return 0;
398}
399EXPORT_SYMBOL_GPL(spi_bitbang_init);
400
401/**
402 * spi_bitbang_start - start up a polled/bitbanging SPI host controller driver
403 * @bitbang: driver handle
404 *
405 * Caller should have zero-initialized all parts of the structure, and then
406 * provided callbacks for chip selection and I/O loops. If the host controller has
407 * a transfer method, its final step should call spi_bitbang_transfer(); or,
408 * that's the default if the transfer routine is not initialized. It should
409 * also set up the bus number and number of chipselects.
410 *
411 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
412 * hardware that basically exposes a shift register) or per-spi_transfer
413 * (which takes better advantage of hardware like fifos or DMA engines).
414 *
415 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup(),
416 * spi_bitbang_cleanup() and spi_bitbang_setup_transfer() to handle those SPI
417 * host controller methods. Those methods are the defaults if the bitbang->txrx_bufs
418 * routine isn't initialized.
419 *
420 * This routine registers the spi_controller, which will process requests in a
421 * dedicated task, keeping IRQs unblocked most of the time. To stop
422 * processing those requests, call spi_bitbang_stop().
423 *
424 * On success, this routine will take a reference to the controller. The caller
425 * is responsible for calling spi_bitbang_stop() to decrement the reference and
426 * spi_controller_put() as counterpart of spi_alloc_host() to prevent a memory
427 * leak.
428 */
429int spi_bitbang_start(struct spi_bitbang *bitbang)
430{
431 struct spi_controller *ctlr = bitbang->ctlr;
432 int ret;
433
434 ret = spi_bitbang_init(bitbang);
435 if (ret)
436 return ret;
437
438 /* driver may get busy before register() returns, especially
439 * if someone registered boardinfo for devices
440 */
441 ret = spi_register_controller(spi_controller_get(ctlr));
442 if (ret)
443 spi_controller_put(ctlr);
444
445 return ret;
446}
447EXPORT_SYMBOL_GPL(spi_bitbang_start);
448
449/*
450 * spi_bitbang_stop - stops the task providing spi communication
451 */
452void spi_bitbang_stop(struct spi_bitbang *bitbang)
453{
454 spi_unregister_controller(bitbang->ctlr);
455}
456EXPORT_SYMBOL_GPL(spi_bitbang_stop);
457
458MODULE_LICENSE("GPL");
459MODULE_DESCRIPTION("Utilities for Bitbanging SPI host controllers");
1/*
2 * polling/bitbanging SPI master controller driver utilities
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19#include <linux/init.h>
20#include <linux/spinlock.h>
21#include <linux/workqueue.h>
22#include <linux/interrupt.h>
23#include <linux/delay.h>
24#include <linux/errno.h>
25#include <linux/platform_device.h>
26#include <linux/slab.h>
27
28#include <linux/spi/spi.h>
29#include <linux/spi/spi_bitbang.h>
30
31
32/*----------------------------------------------------------------------*/
33
34/*
35 * FIRST PART (OPTIONAL): word-at-a-time spi_transfer support.
36 * Use this for GPIO or shift-register level hardware APIs.
37 *
38 * spi_bitbang_cs is in spi_device->controller_state, which is unavailable
39 * to glue code. These bitbang setup() and cleanup() routines are always
40 * used, though maybe they're called from controller-aware code.
41 *
42 * chipselect() and friends may use use spi_device->controller_data and
43 * controller registers as appropriate.
44 *
45 *
46 * NOTE: SPI controller pins can often be used as GPIO pins instead,
47 * which means you could use a bitbang driver either to get hardware
48 * working quickly, or testing for differences that aren't speed related.
49 */
50
51struct spi_bitbang_cs {
52 unsigned nsecs; /* (clock cycle time)/2 */
53 u32 (*txrx_word)(struct spi_device *spi, unsigned nsecs,
54 u32 word, u8 bits);
55 unsigned (*txrx_bufs)(struct spi_device *,
56 u32 (*txrx_word)(
57 struct spi_device *spi,
58 unsigned nsecs,
59 u32 word, u8 bits),
60 unsigned, struct spi_transfer *);
61};
62
63static unsigned bitbang_txrx_8(
64 struct spi_device *spi,
65 u32 (*txrx_word)(struct spi_device *spi,
66 unsigned nsecs,
67 u32 word, u8 bits),
68 unsigned ns,
69 struct spi_transfer *t
70) {
71 unsigned bits = t->bits_per_word ? : spi->bits_per_word;
72 unsigned count = t->len;
73 const u8 *tx = t->tx_buf;
74 u8 *rx = t->rx_buf;
75
76 while (likely(count > 0)) {
77 u8 word = 0;
78
79 if (tx)
80 word = *tx++;
81 word = txrx_word(spi, ns, word, bits);
82 if (rx)
83 *rx++ = word;
84 count -= 1;
85 }
86 return t->len - count;
87}
88
89static unsigned bitbang_txrx_16(
90 struct spi_device *spi,
91 u32 (*txrx_word)(struct spi_device *spi,
92 unsigned nsecs,
93 u32 word, u8 bits),
94 unsigned ns,
95 struct spi_transfer *t
96) {
97 unsigned bits = t->bits_per_word ? : spi->bits_per_word;
98 unsigned count = t->len;
99 const u16 *tx = t->tx_buf;
100 u16 *rx = t->rx_buf;
101
102 while (likely(count > 1)) {
103 u16 word = 0;
104
105 if (tx)
106 word = *tx++;
107 word = txrx_word(spi, ns, word, bits);
108 if (rx)
109 *rx++ = word;
110 count -= 2;
111 }
112 return t->len - count;
113}
114
115static unsigned bitbang_txrx_32(
116 struct spi_device *spi,
117 u32 (*txrx_word)(struct spi_device *spi,
118 unsigned nsecs,
119 u32 word, u8 bits),
120 unsigned ns,
121 struct spi_transfer *t
122) {
123 unsigned bits = t->bits_per_word ? : spi->bits_per_word;
124 unsigned count = t->len;
125 const u32 *tx = t->tx_buf;
126 u32 *rx = t->rx_buf;
127
128 while (likely(count > 3)) {
129 u32 word = 0;
130
131 if (tx)
132 word = *tx++;
133 word = txrx_word(spi, ns, word, bits);
134 if (rx)
135 *rx++ = word;
136 count -= 4;
137 }
138 return t->len - count;
139}
140
141int spi_bitbang_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
142{
143 struct spi_bitbang_cs *cs = spi->controller_state;
144 u8 bits_per_word;
145 u32 hz;
146
147 if (t) {
148 bits_per_word = t->bits_per_word;
149 hz = t->speed_hz;
150 } else {
151 bits_per_word = 0;
152 hz = 0;
153 }
154
155 /* spi_transfer level calls that work per-word */
156 if (!bits_per_word)
157 bits_per_word = spi->bits_per_word;
158 if (bits_per_word <= 8)
159 cs->txrx_bufs = bitbang_txrx_8;
160 else if (bits_per_word <= 16)
161 cs->txrx_bufs = bitbang_txrx_16;
162 else if (bits_per_word <= 32)
163 cs->txrx_bufs = bitbang_txrx_32;
164 else
165 return -EINVAL;
166
167 /* nsecs = (clock period)/2 */
168 if (!hz)
169 hz = spi->max_speed_hz;
170 if (hz) {
171 cs->nsecs = (1000000000/2) / hz;
172 if (cs->nsecs > (MAX_UDELAY_MS * 1000 * 1000))
173 return -EINVAL;
174 }
175
176 return 0;
177}
178EXPORT_SYMBOL_GPL(spi_bitbang_setup_transfer);
179
180/**
181 * spi_bitbang_setup - default setup for per-word I/O loops
182 */
183int spi_bitbang_setup(struct spi_device *spi)
184{
185 struct spi_bitbang_cs *cs = spi->controller_state;
186 struct spi_bitbang *bitbang;
187 int retval;
188 unsigned long flags;
189
190 bitbang = spi_master_get_devdata(spi->master);
191
192 if (!cs) {
193 cs = kzalloc(sizeof *cs, GFP_KERNEL);
194 if (!cs)
195 return -ENOMEM;
196 spi->controller_state = cs;
197 }
198
199 /* per-word shift register access, in hardware or bitbanging */
200 cs->txrx_word = bitbang->txrx_word[spi->mode & (SPI_CPOL|SPI_CPHA)];
201 if (!cs->txrx_word)
202 return -EINVAL;
203
204 retval = bitbang->setup_transfer(spi, NULL);
205 if (retval < 0)
206 return retval;
207
208 dev_dbg(&spi->dev, "%s, %u nsec/bit\n", __func__, 2 * cs->nsecs);
209
210 /* NOTE we _need_ to call chipselect() early, ideally with adapter
211 * setup, unless the hardware defaults cooperate to avoid confusion
212 * between normal (active low) and inverted chipselects.
213 */
214
215 /* deselect chip (low or high) */
216 spin_lock_irqsave(&bitbang->lock, flags);
217 if (!bitbang->busy) {
218 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
219 ndelay(cs->nsecs);
220 }
221 spin_unlock_irqrestore(&bitbang->lock, flags);
222
223 return 0;
224}
225EXPORT_SYMBOL_GPL(spi_bitbang_setup);
226
227/**
228 * spi_bitbang_cleanup - default cleanup for per-word I/O loops
229 */
230void spi_bitbang_cleanup(struct spi_device *spi)
231{
232 kfree(spi->controller_state);
233}
234EXPORT_SYMBOL_GPL(spi_bitbang_cleanup);
235
236static int spi_bitbang_bufs(struct spi_device *spi, struct spi_transfer *t)
237{
238 struct spi_bitbang_cs *cs = spi->controller_state;
239 unsigned nsecs = cs->nsecs;
240
241 return cs->txrx_bufs(spi, cs->txrx_word, nsecs, t);
242}
243
244/*----------------------------------------------------------------------*/
245
246/*
247 * SECOND PART ... simple transfer queue runner.
248 *
249 * This costs a task context per controller, running the queue by
250 * performing each transfer in sequence. Smarter hardware can queue
251 * several DMA transfers at once, and process several controller queues
252 * in parallel; this driver doesn't match such hardware very well.
253 *
254 * Drivers can provide word-at-a-time i/o primitives, or provide
255 * transfer-at-a-time ones to leverage dma or fifo hardware.
256 */
257static void bitbang_work(struct work_struct *work)
258{
259 struct spi_bitbang *bitbang =
260 container_of(work, struct spi_bitbang, work);
261 unsigned long flags;
262
263 spin_lock_irqsave(&bitbang->lock, flags);
264 bitbang->busy = 1;
265 while (!list_empty(&bitbang->queue)) {
266 struct spi_message *m;
267 struct spi_device *spi;
268 unsigned nsecs;
269 struct spi_transfer *t = NULL;
270 unsigned tmp;
271 unsigned cs_change;
272 int status;
273 int do_setup = -1;
274
275 m = container_of(bitbang->queue.next, struct spi_message,
276 queue);
277 list_del_init(&m->queue);
278 spin_unlock_irqrestore(&bitbang->lock, flags);
279
280 /* FIXME this is made-up ... the correct value is known to
281 * word-at-a-time bitbang code, and presumably chipselect()
282 * should enforce these requirements too?
283 */
284 nsecs = 100;
285
286 spi = m->spi;
287 tmp = 0;
288 cs_change = 1;
289 status = 0;
290
291 list_for_each_entry (t, &m->transfers, transfer_list) {
292
293 /* override speed or wordsize? */
294 if (t->speed_hz || t->bits_per_word)
295 do_setup = 1;
296
297 /* init (-1) or override (1) transfer params */
298 if (do_setup != 0) {
299 status = bitbang->setup_transfer(spi, t);
300 if (status < 0)
301 break;
302 if (do_setup == -1)
303 do_setup = 0;
304 }
305
306 /* set up default clock polarity, and activate chip;
307 * this implicitly updates clock and spi modes as
308 * previously recorded for this device via setup().
309 * (and also deselects any other chip that might be
310 * selected ...)
311 */
312 if (cs_change) {
313 bitbang->chipselect(spi, BITBANG_CS_ACTIVE);
314 ndelay(nsecs);
315 }
316 cs_change = t->cs_change;
317 if (!t->tx_buf && !t->rx_buf && t->len) {
318 status = -EINVAL;
319 break;
320 }
321
322 /* transfer data. the lower level code handles any
323 * new dma mappings it needs. our caller always gave
324 * us dma-safe buffers.
325 */
326 if (t->len) {
327 /* REVISIT dma API still needs a designated
328 * DMA_ADDR_INVALID; ~0 might be better.
329 */
330 if (!m->is_dma_mapped)
331 t->rx_dma = t->tx_dma = 0;
332 status = bitbang->txrx_bufs(spi, t);
333 }
334 if (status > 0)
335 m->actual_length += status;
336 if (status != t->len) {
337 /* always report some kind of error */
338 if (status >= 0)
339 status = -EREMOTEIO;
340 break;
341 }
342 status = 0;
343
344 /* protocol tweaks before next transfer */
345 if (t->delay_usecs)
346 udelay(t->delay_usecs);
347
348 if (!cs_change)
349 continue;
350 if (t->transfer_list.next == &m->transfers)
351 break;
352
353 /* sometimes a short mid-message deselect of the chip
354 * may be needed to terminate a mode or command
355 */
356 ndelay(nsecs);
357 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
358 ndelay(nsecs);
359 }
360
361 m->status = status;
362 m->complete(m->context);
363
364 /* normally deactivate chipselect ... unless no error and
365 * cs_change has hinted that the next message will probably
366 * be for this chip too.
367 */
368 if (!(status == 0 && cs_change)) {
369 ndelay(nsecs);
370 bitbang->chipselect(spi, BITBANG_CS_INACTIVE);
371 ndelay(nsecs);
372 }
373
374 spin_lock_irqsave(&bitbang->lock, flags);
375 }
376 bitbang->busy = 0;
377 spin_unlock_irqrestore(&bitbang->lock, flags);
378}
379
380/**
381 * spi_bitbang_transfer - default submit to transfer queue
382 */
383int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
384{
385 struct spi_bitbang *bitbang;
386 unsigned long flags;
387 int status = 0;
388
389 m->actual_length = 0;
390 m->status = -EINPROGRESS;
391
392 bitbang = spi_master_get_devdata(spi->master);
393
394 spin_lock_irqsave(&bitbang->lock, flags);
395 if (!spi->max_speed_hz)
396 status = -ENETDOWN;
397 else {
398 list_add_tail(&m->queue, &bitbang->queue);
399 queue_work(bitbang->workqueue, &bitbang->work);
400 }
401 spin_unlock_irqrestore(&bitbang->lock, flags);
402
403 return status;
404}
405EXPORT_SYMBOL_GPL(spi_bitbang_transfer);
406
407/*----------------------------------------------------------------------*/
408
409/**
410 * spi_bitbang_start - start up a polled/bitbanging SPI master driver
411 * @bitbang: driver handle
412 *
413 * Caller should have zero-initialized all parts of the structure, and then
414 * provided callbacks for chip selection and I/O loops. If the master has
415 * a transfer method, its final step should call spi_bitbang_transfer; or,
416 * that's the default if the transfer routine is not initialized. It should
417 * also set up the bus number and number of chipselects.
418 *
419 * For i/o loops, provide callbacks either per-word (for bitbanging, or for
420 * hardware that basically exposes a shift register) or per-spi_transfer
421 * (which takes better advantage of hardware like fifos or DMA engines).
422 *
423 * Drivers using per-word I/O loops should use (or call) spi_bitbang_setup,
424 * spi_bitbang_cleanup and spi_bitbang_setup_transfer to handle those spi
425 * master methods. Those methods are the defaults if the bitbang->txrx_bufs
426 * routine isn't initialized.
427 *
428 * This routine registers the spi_master, which will process requests in a
429 * dedicated task, keeping IRQs unblocked most of the time. To stop
430 * processing those requests, call spi_bitbang_stop().
431 */
432int spi_bitbang_start(struct spi_bitbang *bitbang)
433{
434 int status;
435
436 if (!bitbang->master || !bitbang->chipselect)
437 return -EINVAL;
438
439 INIT_WORK(&bitbang->work, bitbang_work);
440 spin_lock_init(&bitbang->lock);
441 INIT_LIST_HEAD(&bitbang->queue);
442
443 if (!bitbang->master->mode_bits)
444 bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;
445
446 if (!bitbang->master->transfer)
447 bitbang->master->transfer = spi_bitbang_transfer;
448 if (!bitbang->txrx_bufs) {
449 bitbang->use_dma = 0;
450 bitbang->txrx_bufs = spi_bitbang_bufs;
451 if (!bitbang->master->setup) {
452 if (!bitbang->setup_transfer)
453 bitbang->setup_transfer =
454 spi_bitbang_setup_transfer;
455 bitbang->master->setup = spi_bitbang_setup;
456 bitbang->master->cleanup = spi_bitbang_cleanup;
457 }
458 } else if (!bitbang->master->setup)
459 return -EINVAL;
460 if (bitbang->master->transfer == spi_bitbang_transfer &&
461 !bitbang->setup_transfer)
462 return -EINVAL;
463
464 /* this task is the only thing to touch the SPI bits */
465 bitbang->busy = 0;
466 bitbang->workqueue = create_singlethread_workqueue(
467 dev_name(bitbang->master->dev.parent));
468 if (bitbang->workqueue == NULL) {
469 status = -EBUSY;
470 goto err1;
471 }
472
473 /* driver may get busy before register() returns, especially
474 * if someone registered boardinfo for devices
475 */
476 status = spi_register_master(bitbang->master);
477 if (status < 0)
478 goto err2;
479
480 return status;
481
482err2:
483 destroy_workqueue(bitbang->workqueue);
484err1:
485 return status;
486}
487EXPORT_SYMBOL_GPL(spi_bitbang_start);
488
489/**
490 * spi_bitbang_stop - stops the task providing spi communication
491 */
492int spi_bitbang_stop(struct spi_bitbang *bitbang)
493{
494 spi_unregister_master(bitbang->master);
495
496 WARN_ON(!list_empty(&bitbang->queue));
497
498 destroy_workqueue(bitbang->workqueue);
499
500 return 0;
501}
502EXPORT_SYMBOL_GPL(spi_bitbang_stop);
503
504MODULE_LICENSE("GPL");
505