Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
   1// SPDX-License-Identifier: GPL-2.0
   2
   3/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
   4 * Copyright (C) 2019-2024 Linaro Ltd.
   5 */
   6
   7#include <linux/bitfield.h>
   8#include <linux/bits.h>
   9#include <linux/device.h>
  10#include <linux/dma-direction.h>
  11#include <linux/if_rmnet.h>
  12#include <linux/types.h>
  13
  14#include "gsi.h"
  15#include "gsi_trans.h"
  16#include "ipa.h"
  17#include "ipa_cmd.h"
  18#include "ipa_data.h"
  19#include "ipa_endpoint.h"
  20#include "ipa_gsi.h"
  21#include "ipa_interrupt.h"
  22#include "ipa_mem.h"
  23#include "ipa_modem.h"
  24#include "ipa_power.h"
  25#include "ipa_reg.h"
  26#include "ipa_table.h"
  27#include "ipa_version.h"
  28
  29/* Hardware is told about receive buffers once a "batch" has been queued */
  30#define IPA_REPLENISH_BATCH	16		/* Must be non-zero */
  31
  32/* The amount of RX buffer space consumed by standard skb overhead */
  33#define IPA_RX_BUFFER_OVERHEAD	(PAGE_SIZE - SKB_MAX_ORDER(NET_SKB_PAD, 0))
  34
  35/* Where to find the QMAP mux_id for a packet within modem-supplied metadata */
  36#define IPA_ENDPOINT_QMAP_METADATA_MASK		0x000000ff /* host byte order */
  37
  38#define IPA_ENDPOINT_RESET_AGGR_RETRY_MAX	3
  39
  40/** enum ipa_status_opcode - IPA status opcode field hardware values */
  41enum ipa_status_opcode {				/* *Not* a bitmask */
  42	IPA_STATUS_OPCODE_PACKET		= 1,
  43	IPA_STATUS_OPCODE_NEW_RULE_PACKET	= 2,
  44	IPA_STATUS_OPCODE_DROPPED_PACKET	= 4,
  45	IPA_STATUS_OPCODE_SUSPENDED_PACKET	= 8,
  46	IPA_STATUS_OPCODE_LOG			= 16,
  47	IPA_STATUS_OPCODE_DCMP			= 32,
  48	IPA_STATUS_OPCODE_PACKET_2ND_PASS	= 64,
  49};
  50
  51/** enum ipa_status_exception - IPA status exception field hardware values */
  52enum ipa_status_exception {				/* *Not* a bitmask */
  53	/* 0 means no exception */
  54	IPA_STATUS_EXCEPTION_DEAGGR		= 1,
  55	IPA_STATUS_EXCEPTION_IPTYPE		= 4,
  56	IPA_STATUS_EXCEPTION_PACKET_LENGTH	= 8,
  57	IPA_STATUS_EXCEPTION_FRAG_RULE_MISS	= 16,
  58	IPA_STATUS_EXCEPTION_SW_FILTER		= 32,
  59	IPA_STATUS_EXCEPTION_NAT		= 64,		/* IPv4 */
  60	IPA_STATUS_EXCEPTION_IPV6_CONN_TRACK	= 64,		/* IPv6 */
  61	IPA_STATUS_EXCEPTION_UC			= 128,
  62	IPA_STATUS_EXCEPTION_INVALID_ENDPOINT	= 129,
  63	IPA_STATUS_EXCEPTION_HEADER_INSERT	= 136,
  64	IPA_STATUS_EXCEPTION_CHEKCSUM		= 229,
  65};
  66
  67/** enum ipa_status_mask - IPA status mask field bitmask hardware values */
  68enum ipa_status_mask {
  69	IPA_STATUS_MASK_FRAG_PROCESS		= BIT(0),
  70	IPA_STATUS_MASK_FILT_PROCESS		= BIT(1),
  71	IPA_STATUS_MASK_NAT_PROCESS		= BIT(2),
  72	IPA_STATUS_MASK_ROUTE_PROCESS		= BIT(3),
  73	IPA_STATUS_MASK_TAG_VALID		= BIT(4),
  74	IPA_STATUS_MASK_FRAGMENT		= BIT(5),
  75	IPA_STATUS_MASK_FIRST_FRAGMENT		= BIT(6),
  76	IPA_STATUS_MASK_V4			= BIT(7),
  77	IPA_STATUS_MASK_CKSUM_PROCESS		= BIT(8),
  78	IPA_STATUS_MASK_AGGR_PROCESS		= BIT(9),
  79	IPA_STATUS_MASK_DEST_EOT		= BIT(10),
  80	IPA_STATUS_MASK_DEAGGR_PROCESS		= BIT(11),
  81	IPA_STATUS_MASK_DEAGG_FIRST		= BIT(12),
  82	IPA_STATUS_MASK_SRC_EOT			= BIT(13),
  83	IPA_STATUS_MASK_PREV_EOT		= BIT(14),
  84	IPA_STATUS_MASK_BYTE_LIMIT		= BIT(15),
  85};
  86
  87/* Special IPA filter/router rule field value indicating "rule miss" */
  88#define IPA_STATUS_RULE_MISS	0x3ff	/* 10-bit filter/router rule fields */
  89
  90/** The IPA status nat_type field uses enum ipa_nat_type hardware values */
  91
  92/* enum ipa_status_field_id - IPA packet status structure field identifiers */
  93enum ipa_status_field_id {
  94	STATUS_OPCODE,			/* enum ipa_status_opcode */
  95	STATUS_EXCEPTION,		/* enum ipa_status_exception */
  96	STATUS_MASK,			/* enum ipa_status_mask (bitmask) */
  97	STATUS_LENGTH,
  98	STATUS_SRC_ENDPOINT,
  99	STATUS_DST_ENDPOINT,
 100	STATUS_METADATA,
 101	STATUS_FILTER_LOCAL,		/* Boolean */
 102	STATUS_FILTER_HASH,		/* Boolean */
 103	STATUS_FILTER_GLOBAL,		/* Boolean */
 104	STATUS_FILTER_RETAIN,		/* Boolean */
 105	STATUS_FILTER_RULE_INDEX,
 106	STATUS_ROUTER_LOCAL,		/* Boolean */
 107	STATUS_ROUTER_HASH,		/* Boolean */
 108	STATUS_UCP,			/* Boolean */
 109	STATUS_ROUTER_TABLE,
 110	STATUS_ROUTER_RULE_INDEX,
 111	STATUS_NAT_HIT,			/* Boolean */
 112	STATUS_NAT_INDEX,
 113	STATUS_NAT_TYPE,		/* enum ipa_nat_type */
 114	STATUS_TAG_LOW32,		/* Low-order 32 bits of 48-bit tag */
 115	STATUS_TAG_HIGH16,		/* High-order 16 bits of 48-bit tag */
 116	STATUS_SEQUENCE,
 117	STATUS_TIME_OF_DAY,
 118	STATUS_HEADER_LOCAL,		/* Boolean */
 119	STATUS_HEADER_OFFSET,
 120	STATUS_FRAG_HIT,		/* Boolean */
 121	STATUS_FRAG_RULE_INDEX,
 122};
 123
 124/* Size in bytes of an IPA packet status structure */
 125#define IPA_STATUS_SIZE			sizeof(__le32[8])
 126
 127/* IPA status structure decoder; looks up field values for a structure */
 128static u32 ipa_status_extract(struct ipa *ipa, const void *data,
 129			      enum ipa_status_field_id field)
 130{
 131	enum ipa_version version = ipa->version;
 132	const __le32 *word = data;
 133
 134	switch (field) {
 135	case STATUS_OPCODE:
 136		return le32_get_bits(word[0], GENMASK(7, 0));
 137	case STATUS_EXCEPTION:
 138		return le32_get_bits(word[0], GENMASK(15, 8));
 139	case STATUS_MASK:
 140		return le32_get_bits(word[0], GENMASK(31, 16));
 141	case STATUS_LENGTH:
 142		return le32_get_bits(word[1], GENMASK(15, 0));
 143	case STATUS_SRC_ENDPOINT:
 144		if (version < IPA_VERSION_5_0)
 145			return le32_get_bits(word[1], GENMASK(20, 16));
 146		return le32_get_bits(word[1], GENMASK(23, 16));
 147	/* Status word 1, bits 21-23 are reserved (not IPA v5.0+) */
 148	/* Status word 1, bits 24-26 are reserved (IPA v5.0+) */
 149	case STATUS_DST_ENDPOINT:
 150		if (version < IPA_VERSION_5_0)
 151			return le32_get_bits(word[1], GENMASK(28, 24));
 152		return le32_get_bits(word[7], GENMASK(23, 16));
 153	/* Status word 1, bits 29-31 are reserved */
 154	case STATUS_METADATA:
 155		return le32_to_cpu(word[2]);
 156	case STATUS_FILTER_LOCAL:
 157		return le32_get_bits(word[3], GENMASK(0, 0));
 158	case STATUS_FILTER_HASH:
 159		return le32_get_bits(word[3], GENMASK(1, 1));
 160	case STATUS_FILTER_GLOBAL:
 161		return le32_get_bits(word[3], GENMASK(2, 2));
 162	case STATUS_FILTER_RETAIN:
 163		return le32_get_bits(word[3], GENMASK(3, 3));
 164	case STATUS_FILTER_RULE_INDEX:
 165		return le32_get_bits(word[3], GENMASK(13, 4));
 166	/* ROUTER_TABLE is in word 3, bits 14-21 (IPA v5.0+) */
 167	case STATUS_ROUTER_LOCAL:
 168		if (version < IPA_VERSION_5_0)
 169			return le32_get_bits(word[3], GENMASK(14, 14));
 170		return le32_get_bits(word[1], GENMASK(27, 27));
 171	case STATUS_ROUTER_HASH:
 172		if (version < IPA_VERSION_5_0)
 173			return le32_get_bits(word[3], GENMASK(15, 15));
 174		return le32_get_bits(word[1], GENMASK(28, 28));
 175	case STATUS_UCP:
 176		if (version < IPA_VERSION_5_0)
 177			return le32_get_bits(word[3], GENMASK(16, 16));
 178		return le32_get_bits(word[7], GENMASK(31, 31));
 179	case STATUS_ROUTER_TABLE:
 180		if (version < IPA_VERSION_5_0)
 181			return le32_get_bits(word[3], GENMASK(21, 17));
 182		return le32_get_bits(word[3], GENMASK(21, 14));
 183	case STATUS_ROUTER_RULE_INDEX:
 184		return le32_get_bits(word[3], GENMASK(31, 22));
 185	case STATUS_NAT_HIT:
 186		return le32_get_bits(word[4], GENMASK(0, 0));
 187	case STATUS_NAT_INDEX:
 188		return le32_get_bits(word[4], GENMASK(13, 1));
 189	case STATUS_NAT_TYPE:
 190		return le32_get_bits(word[4], GENMASK(15, 14));
 191	case STATUS_TAG_LOW32:
 192		return le32_get_bits(word[4], GENMASK(31, 16)) |
 193			(le32_get_bits(word[5], GENMASK(15, 0)) << 16);
 194	case STATUS_TAG_HIGH16:
 195		return le32_get_bits(word[5], GENMASK(31, 16));
 196	case STATUS_SEQUENCE:
 197		return le32_get_bits(word[6], GENMASK(7, 0));
 198	case STATUS_TIME_OF_DAY:
 199		return le32_get_bits(word[6], GENMASK(31, 8));
 200	case STATUS_HEADER_LOCAL:
 201		return le32_get_bits(word[7], GENMASK(0, 0));
 202	case STATUS_HEADER_OFFSET:
 203		return le32_get_bits(word[7], GENMASK(10, 1));
 204	case STATUS_FRAG_HIT:
 205		return le32_get_bits(word[7], GENMASK(11, 11));
 206	case STATUS_FRAG_RULE_INDEX:
 207		return le32_get_bits(word[7], GENMASK(15, 12));
 208	/* Status word 7, bits 16-30 are reserved */
 209	/* Status word 7, bit 31 is reserved (not IPA v5.0+) */
 210	default:
 211		WARN(true, "%s: bad field_id %u\n", __func__, field);
 212		return 0;
 213	}
 214}
 215
 216/* Compute the aggregation size value to use for a given buffer size */
 217static u32 ipa_aggr_size_kb(u32 rx_buffer_size, bool aggr_hard_limit)
 218{
 219	/* A hard aggregation limit will not be crossed; aggregation closes
 220	 * if saving incoming data would cross the hard byte limit boundary.
 221	 *
 222	 * With a soft limit, aggregation closes *after* the size boundary
 223	 * has been crossed.  In that case the limit must leave enough space
 224	 * after that limit to receive a full MTU of data plus overhead.
 225	 */
 226	if (!aggr_hard_limit)
 227		rx_buffer_size -= IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
 228
 229	/* The byte limit is encoded as a number of kilobytes */
 230
 231	return rx_buffer_size / SZ_1K;
 232}
 233
 234static bool ipa_endpoint_data_valid_one(struct ipa *ipa, u32 count,
 235			    const struct ipa_gsi_endpoint_data *all_data,
 236			    const struct ipa_gsi_endpoint_data *data)
 237{
 238	const struct ipa_gsi_endpoint_data *other_data;
 239	enum ipa_endpoint_name other_name;
 240	struct device *dev = ipa->dev;
 241
 242	if (ipa_gsi_endpoint_data_empty(data))
 243		return true;
 244
 245	if (!data->toward_ipa) {
 246		const struct ipa_endpoint_rx *rx_config;
 247		const struct reg *reg;
 248		u32 buffer_size;
 249		u32 aggr_size;
 250		u32 limit;
 251
 252		if (data->endpoint.filter_support) {
 253			dev_err(dev, "filtering not supported for "
 254					"RX endpoint %u\n",
 255				data->endpoint_id);
 256			return false;
 257		}
 258
 259		/* Nothing more to check for non-AP RX */
 260		if (data->ee_id != GSI_EE_AP)
 261			return true;
 262
 263		rx_config = &data->endpoint.config.rx;
 264
 265		/* The buffer size must hold an MTU plus overhead */
 266		buffer_size = rx_config->buffer_size;
 267		limit = IPA_MTU + IPA_RX_BUFFER_OVERHEAD;
 268		if (buffer_size < limit) {
 269			dev_err(dev, "RX buffer size too small for RX endpoint %u (%u < %u)\n",
 270				data->endpoint_id, buffer_size, limit);
 271			return false;
 272		}
 273
 274		if (!data->endpoint.config.aggregation) {
 275			bool result = true;
 276
 277			/* No aggregation; check for bogus aggregation data */
 278			if (rx_config->aggr_time_limit) {
 279				dev_err(dev,
 280					"time limit with no aggregation for RX endpoint %u\n",
 281					data->endpoint_id);
 282				result = false;
 283			}
 284
 285			if (rx_config->aggr_hard_limit) {
 286				dev_err(dev, "hard limit with no aggregation for RX endpoint %u\n",
 287					data->endpoint_id);
 288				result = false;
 289			}
 290
 291			if (rx_config->aggr_close_eof) {
 292				dev_err(dev, "close EOF with no aggregation for RX endpoint %u\n",
 293					data->endpoint_id);
 294				result = false;
 295			}
 296
 297			return result;	/* Nothing more to check */
 298		}
 299
 300		/* For an endpoint supporting receive aggregation, the byte
 301		 * limit defines the point at which aggregation closes.  This
 302		 * check ensures the receive buffer size doesn't result in a
 303		 * limit that exceeds what's representable in the aggregation
 304		 * byte limit field.
 305		 */
 306		aggr_size = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
 307					     rx_config->aggr_hard_limit);
 308		reg = ipa_reg(ipa, ENDP_INIT_AGGR);
 309
 310		limit = reg_field_max(reg, BYTE_LIMIT);
 311		if (aggr_size > limit) {
 312			dev_err(dev, "aggregated size too large for RX endpoint %u (%u KB > %u KB)\n",
 313				data->endpoint_id, aggr_size, limit);
 314
 315			return false;
 316		}
 317
 318		return true;	/* Nothing more to check for RX */
 319	}
 320
 321	/* Starting with IPA v4.5 sequencer replication is obsolete */
 322	if (ipa->version >= IPA_VERSION_4_5) {
 323		if (data->endpoint.config.tx.seq_rep_type) {
 324			dev_err(dev, "no-zero seq_rep_type TX endpoint %u\n",
 325				data->endpoint_id);
 326			return false;
 327		}
 328	}
 329
 330	if (data->endpoint.config.status_enable) {
 331		other_name = data->endpoint.config.tx.status_endpoint;
 332		if (other_name >= count) {
 333			dev_err(dev, "status endpoint name %u out of range "
 334					"for endpoint %u\n",
 335				other_name, data->endpoint_id);
 336			return false;
 337		}
 338
 339		/* Status endpoint must be defined... */
 340		other_data = &all_data[other_name];
 341		if (ipa_gsi_endpoint_data_empty(other_data)) {
 342			dev_err(dev, "DMA endpoint name %u undefined "
 343					"for endpoint %u\n",
 344				other_name, data->endpoint_id);
 345			return false;
 346		}
 347
 348		/* ...and has to be an RX endpoint... */
 349		if (other_data->toward_ipa) {
 350			dev_err(dev,
 351				"status endpoint for endpoint %u not RX\n",
 352				data->endpoint_id);
 353			return false;
 354		}
 355
 356		/* ...and if it's to be an AP endpoint... */
 357		if (other_data->ee_id == GSI_EE_AP) {
 358			/* ...make sure it has status enabled. */
 359			if (!other_data->endpoint.config.status_enable) {
 360				dev_err(dev,
 361					"status not enabled for endpoint %u\n",
 362					other_data->endpoint_id);
 363				return false;
 364			}
 365		}
 366	}
 367
 368	if (data->endpoint.config.dma_mode) {
 369		other_name = data->endpoint.config.dma_endpoint;
 370		if (other_name >= count) {
 371			dev_err(dev, "DMA endpoint name %u out of range "
 372					"for endpoint %u\n",
 373				other_name, data->endpoint_id);
 374			return false;
 375		}
 376
 377		other_data = &all_data[other_name];
 378		if (ipa_gsi_endpoint_data_empty(other_data)) {
 379			dev_err(dev, "DMA endpoint name %u undefined "
 380					"for endpoint %u\n",
 381				other_name, data->endpoint_id);
 382			return false;
 383		}
 384	}
 385
 386	return true;
 387}
 388
 389/* Validate endpoint configuration data.  Return max defined endpoint ID */
 390static u32 ipa_endpoint_max(struct ipa *ipa, u32 count,
 391			    const struct ipa_gsi_endpoint_data *data)
 392{
 393	const struct ipa_gsi_endpoint_data *dp = data;
 394	struct device *dev = ipa->dev;
 395	enum ipa_endpoint_name name;
 396	u32 max;
 397
 398	if (count > IPA_ENDPOINT_COUNT) {
 399		dev_err(dev, "too many endpoints specified (%u > %u)\n",
 400			count, IPA_ENDPOINT_COUNT);
 401		return 0;
 402	}
 403
 404	/* Make sure needed endpoints have defined data */
 405	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_COMMAND_TX])) {
 406		dev_err(dev, "command TX endpoint not defined\n");
 407		return 0;
 408	}
 409	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_LAN_RX])) {
 410		dev_err(dev, "LAN RX endpoint not defined\n");
 411		return 0;
 412	}
 413	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_TX])) {
 414		dev_err(dev, "AP->modem TX endpoint not defined\n");
 415		return 0;
 416	}
 417	if (ipa_gsi_endpoint_data_empty(&data[IPA_ENDPOINT_AP_MODEM_RX])) {
 418		dev_err(dev, "AP<-modem RX endpoint not defined\n");
 419		return 0;
 420	}
 421
 422	max = 0;
 423	for (name = 0; name < count; name++, dp++) {
 424		if (!ipa_endpoint_data_valid_one(ipa, count, data, dp))
 425			return 0;
 426		max = max_t(u32, max, dp->endpoint_id);
 427	}
 428
 429	return max;
 430}
 431
 432/* Allocate a transaction to use on a non-command endpoint */
 433static struct gsi_trans *ipa_endpoint_trans_alloc(struct ipa_endpoint *endpoint,
 434						  u32 tre_count)
 435{
 436	struct gsi *gsi = &endpoint->ipa->gsi;
 437	u32 channel_id = endpoint->channel_id;
 438	enum dma_data_direction direction;
 439
 440	direction = endpoint->toward_ipa ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
 441
 442	return gsi_channel_trans_alloc(gsi, channel_id, tre_count, direction);
 443}
 444
 445/* suspend_delay represents suspend for RX, delay for TX endpoints.
 446 * Note that suspend is not supported starting with IPA v4.0, and
 447 * delay mode should not be used starting with IPA v4.2.
 448 */
 449static bool
 450ipa_endpoint_init_ctrl(struct ipa_endpoint *endpoint, bool suspend_delay)
 451{
 452	struct ipa *ipa = endpoint->ipa;
 453	const struct reg *reg;
 454	u32 field_id;
 455	u32 offset;
 456	bool state;
 457	u32 mask;
 458	u32 val;
 459
 460	if (endpoint->toward_ipa)
 461		WARN_ON(ipa->version >= IPA_VERSION_4_2);
 462	else
 463		WARN_ON(ipa->version >= IPA_VERSION_4_0);
 464
 465	reg = ipa_reg(ipa, ENDP_INIT_CTRL);
 466	offset = reg_n_offset(reg, endpoint->endpoint_id);
 467	val = ioread32(ipa->reg_virt + offset);
 468
 469	field_id = endpoint->toward_ipa ? ENDP_DELAY : ENDP_SUSPEND;
 470	mask = reg_bit(reg, field_id);
 471
 472	state = !!(val & mask);
 473
 474	/* Don't bother if it's already in the requested state */
 475	if (suspend_delay != state) {
 476		val ^= mask;
 477		iowrite32(val, ipa->reg_virt + offset);
 478	}
 479
 480	return state;
 481}
 482
 483/* We don't care what the previous state was for delay mode */
 484static void
 485ipa_endpoint_program_delay(struct ipa_endpoint *endpoint, bool enable)
 486{
 487	/* Delay mode should not be used for IPA v4.2+ */
 488	WARN_ON(endpoint->ipa->version >= IPA_VERSION_4_2);
 489	WARN_ON(!endpoint->toward_ipa);
 490
 491	(void)ipa_endpoint_init_ctrl(endpoint, enable);
 492}
 493
 494static bool ipa_endpoint_aggr_active(struct ipa_endpoint *endpoint)
 495{
 496	u32 endpoint_id = endpoint->endpoint_id;
 497	struct ipa *ipa = endpoint->ipa;
 498	u32 unit = endpoint_id / 32;
 499	const struct reg *reg;
 500	u32 val;
 501
 502	WARN_ON(!test_bit(endpoint_id, ipa->available));
 503
 504	reg = ipa_reg(ipa, STATE_AGGR_ACTIVE);
 505	val = ioread32(ipa->reg_virt + reg_n_offset(reg, unit));
 506
 507	return !!(val & BIT(endpoint_id % 32));
 508}
 509
 510static void ipa_endpoint_force_close(struct ipa_endpoint *endpoint)
 511{
 512	u32 endpoint_id = endpoint->endpoint_id;
 513	u32 mask = BIT(endpoint_id % 32);
 514	struct ipa *ipa = endpoint->ipa;
 515	u32 unit = endpoint_id / 32;
 516	const struct reg *reg;
 517
 518	WARN_ON(!test_bit(endpoint_id, ipa->available));
 519
 520	reg = ipa_reg(ipa, AGGR_FORCE_CLOSE);
 521	iowrite32(mask, ipa->reg_virt + reg_n_offset(reg, unit));
 522}
 523
 524/**
 525 * ipa_endpoint_suspend_aggr() - Emulate suspend interrupt
 526 * @endpoint:	Endpoint on which to emulate a suspend
 527 *
 528 *  Emulate suspend IPA interrupt to unsuspend an endpoint suspended
 529 *  with an open aggregation frame.  This is to work around a hardware
 530 *  issue in IPA version 3.5.1 where the suspend interrupt will not be
 531 *  generated when it should be.
 532 */
 533static void ipa_endpoint_suspend_aggr(struct ipa_endpoint *endpoint)
 534{
 535	struct ipa *ipa = endpoint->ipa;
 536
 537	if (!endpoint->config.aggregation)
 538		return;
 539
 540	/* Nothing to do if the endpoint doesn't have aggregation open */
 541	if (!ipa_endpoint_aggr_active(endpoint))
 542		return;
 543
 544	/* Force close aggregation */
 545	ipa_endpoint_force_close(endpoint);
 546
 547	ipa_interrupt_simulate_suspend(ipa->interrupt);
 548}
 549
 550/* Returns previous suspend state (true means suspend was enabled) */
 551static bool
 552ipa_endpoint_program_suspend(struct ipa_endpoint *endpoint, bool enable)
 553{
 554	bool suspended;
 555
 556	if (endpoint->ipa->version >= IPA_VERSION_4_0)
 557		return enable;	/* For IPA v4.0+, no change made */
 558
 559	WARN_ON(endpoint->toward_ipa);
 560
 561	suspended = ipa_endpoint_init_ctrl(endpoint, enable);
 562
 563	/* A client suspended with an open aggregation frame will not
 564	 * generate a SUSPEND IPA interrupt.  If enabling suspend, have
 565	 * ipa_endpoint_suspend_aggr() handle this.
 566	 */
 567	if (enable && !suspended)
 568		ipa_endpoint_suspend_aggr(endpoint);
 569
 570	return suspended;
 571}
 572
 573/* Put all modem RX endpoints into suspend mode, and stop transmission
 574 * on all modem TX endpoints.  Prior to IPA v4.2, endpoint DELAY mode is
 575 * used for TX endpoints; starting with IPA v4.2 we use GSI channel flow
 576 * control instead.
 577 */
 578void ipa_endpoint_modem_pause_all(struct ipa *ipa, bool enable)
 579{
 580	u32 endpoint_id = 0;
 581
 582	while (endpoint_id < ipa->endpoint_count) {
 583		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
 584
 585		if (endpoint->ee_id != GSI_EE_MODEM)
 586			continue;
 587
 588		if (!endpoint->toward_ipa)
 589			(void)ipa_endpoint_program_suspend(endpoint, enable);
 590		else if (ipa->version < IPA_VERSION_4_2)
 591			ipa_endpoint_program_delay(endpoint, enable);
 592		else
 593			gsi_modem_channel_flow_control(&ipa->gsi,
 594						       endpoint->channel_id,
 595						       enable);
 596	}
 597}
 598
 599/* Reset all modem endpoints to use the default exception endpoint */
 600int ipa_endpoint_modem_exception_reset_all(struct ipa *ipa)
 601{
 602	struct gsi_trans *trans;
 603	u32 endpoint_id;
 604	u32 count;
 605
 606	/* We need one command per modem TX endpoint, plus the commands
 607	 * that clear the pipeline.
 608	 */
 609	count = ipa->modem_tx_count + ipa_cmd_pipeline_clear_count();
 610	trans = ipa_cmd_trans_alloc(ipa, count);
 611	if (!trans) {
 612		dev_err(ipa->dev,
 613			"no transaction to reset modem exception endpoints\n");
 614		return -EBUSY;
 615	}
 616
 617	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
 618		struct ipa_endpoint *endpoint;
 619		const struct reg *reg;
 620		u32 offset;
 621
 622		/* We only reset modem TX endpoints */
 623		endpoint = &ipa->endpoint[endpoint_id];
 624		if (!(endpoint->ee_id == GSI_EE_MODEM && endpoint->toward_ipa))
 625			continue;
 626
 627		reg = ipa_reg(ipa, ENDP_STATUS);
 628		offset = reg_n_offset(reg, endpoint_id);
 629
 630		/* Value written is 0, and all bits are updated.  That
 631		 * means status is disabled on the endpoint, and as a
 632		 * result all other fields in the register are ignored.
 633		 */
 634		ipa_cmd_register_write_add(trans, offset, 0, ~0, false);
 635	}
 636
 637	ipa_cmd_pipeline_clear_add(trans);
 638
 639	gsi_trans_commit_wait(trans);
 640
 641	ipa_cmd_pipeline_clear_wait(ipa);
 642
 643	return 0;
 644}
 645
 646static void ipa_endpoint_init_cfg(struct ipa_endpoint *endpoint)
 647{
 648	u32 endpoint_id = endpoint->endpoint_id;
 649	struct ipa *ipa = endpoint->ipa;
 650	enum ipa_cs_offload_en enabled;
 651	const struct reg *reg;
 652	u32 val = 0;
 653
 654	reg = ipa_reg(ipa, ENDP_INIT_CFG);
 655	/* FRAG_OFFLOAD_EN is 0 */
 656	if (endpoint->config.checksum) {
 657		enum ipa_version version = ipa->version;
 658
 659		if (endpoint->toward_ipa) {
 660			u32 off;
 661
 662			/* Checksum header offset is in 4-byte units */
 663			off = sizeof(struct rmnet_map_header) / sizeof(u32);
 664			val |= reg_encode(reg, CS_METADATA_HDR_OFFSET, off);
 665
 666			enabled = version < IPA_VERSION_4_5
 667					? IPA_CS_OFFLOAD_UL
 668					: IPA_CS_OFFLOAD_INLINE;
 669		} else {
 670			enabled = version < IPA_VERSION_4_5
 671					? IPA_CS_OFFLOAD_DL
 672					: IPA_CS_OFFLOAD_INLINE;
 673		}
 674	} else {
 675		enabled = IPA_CS_OFFLOAD_NONE;
 676	}
 677	val |= reg_encode(reg, CS_OFFLOAD_EN, enabled);
 678	/* CS_GEN_QMB_MASTER_SEL is 0 */
 679
 680	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
 681}
 682
 683static void ipa_endpoint_init_nat(struct ipa_endpoint *endpoint)
 684{
 685	u32 endpoint_id = endpoint->endpoint_id;
 686	struct ipa *ipa = endpoint->ipa;
 687	const struct reg *reg;
 688	u32 val;
 689
 690	if (!endpoint->toward_ipa)
 691		return;
 692
 693	reg = ipa_reg(ipa, ENDP_INIT_NAT);
 694	val = reg_encode(reg, NAT_EN, IPA_NAT_TYPE_BYPASS);
 695
 696	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
 697}
 698
 699static u32
 700ipa_qmap_header_size(enum ipa_version version, struct ipa_endpoint *endpoint)
 701{
 702	u32 header_size = sizeof(struct rmnet_map_header);
 703
 704	/* Without checksum offload, we just have the MAP header */
 705	if (!endpoint->config.checksum)
 706		return header_size;
 707
 708	if (version < IPA_VERSION_4_5) {
 709		/* Checksum header inserted for AP TX endpoints only */
 710		if (endpoint->toward_ipa)
 711			header_size += sizeof(struct rmnet_map_ul_csum_header);
 712	} else {
 713		/* Checksum header is used in both directions */
 714		header_size += sizeof(struct rmnet_map_v5_csum_header);
 715	}
 716
 717	return header_size;
 718}
 719
 720/* Encoded value for ENDP_INIT_HDR register HDR_LEN* field(s) */
 721static u32 ipa_header_size_encode(enum ipa_version version,
 722				  const struct reg *reg, u32 header_size)
 723{
 724	u32 field_max = reg_field_max(reg, HDR_LEN);
 725	u32 val;
 726
 727	/* We know field_max can be used as a mask (2^n - 1) */
 728	val = reg_encode(reg, HDR_LEN, header_size & field_max);
 729	if (version < IPA_VERSION_4_5) {
 730		WARN_ON(header_size > field_max);
 731		return val;
 732	}
 733
 734	/* IPA v4.5 adds a few more most-significant bits */
 735	header_size >>= hweight32(field_max);
 736	WARN_ON(header_size > reg_field_max(reg, HDR_LEN_MSB));
 737	val |= reg_encode(reg, HDR_LEN_MSB, header_size);
 738
 739	return val;
 740}
 741
 742/* Encoded value for ENDP_INIT_HDR register OFST_METADATA* field(s) */
 743static u32 ipa_metadata_offset_encode(enum ipa_version version,
 744				      const struct reg *reg, u32 offset)
 745{
 746	u32 field_max = reg_field_max(reg, HDR_OFST_METADATA);
 747	u32 val;
 748
 749	/* We know field_max can be used as a mask (2^n - 1) */
 750	val = reg_encode(reg, HDR_OFST_METADATA, offset);
 751	if (version < IPA_VERSION_4_5) {
 752		WARN_ON(offset > field_max);
 753		return val;
 754	}
 755
 756	/* IPA v4.5 adds a few more most-significant bits */
 757	offset >>= hweight32(field_max);
 758	WARN_ON(offset > reg_field_max(reg, HDR_OFST_METADATA_MSB));
 759	val |= reg_encode(reg, HDR_OFST_METADATA_MSB, offset);
 760
 761	return val;
 762}
 763
 764/**
 765 * ipa_endpoint_init_hdr() - Initialize HDR endpoint configuration register
 766 * @endpoint:	Endpoint pointer
 767 *
 768 * We program QMAP endpoints so each packet received is preceded by a QMAP
 769 * header structure.  The QMAP header contains a 1-byte mux_id and 2-byte
 770 * packet size field, and we have the IPA hardware populate both for each
 771 * received packet.  The header is configured (in the HDR_EXT register)
 772 * to use big endian format.
 773 *
 774 * The packet size is written into the QMAP header's pkt_len field.  That
 775 * location is defined here using the HDR_OFST_PKT_SIZE field.
 776 *
 777 * The mux_id comes from a 4-byte metadata value supplied with each packet
 778 * by the modem.  It is *not* a QMAP header, but it does contain the mux_id
 779 * value that we want, in its low-order byte.  A bitmask defined in the
 780 * endpoint's METADATA_MASK register defines which byte within the modem
 781 * metadata contains the mux_id.  And the OFST_METADATA field programmed
 782 * here indicates where the extracted byte should be placed within the QMAP
 783 * header.
 784 */
 785static void ipa_endpoint_init_hdr(struct ipa_endpoint *endpoint)
 786{
 787	u32 endpoint_id = endpoint->endpoint_id;
 788	struct ipa *ipa = endpoint->ipa;
 789	const struct reg *reg;
 790	u32 val = 0;
 791
 792	reg = ipa_reg(ipa, ENDP_INIT_HDR);
 793	if (endpoint->config.qmap) {
 794		enum ipa_version version = ipa->version;
 795		size_t header_size;
 796
 797		header_size = ipa_qmap_header_size(version, endpoint);
 798		val = ipa_header_size_encode(version, reg, header_size);
 799
 800		/* Define how to fill fields in a received QMAP header */
 801		if (!endpoint->toward_ipa) {
 802			u32 off;     /* Field offset within header */
 803
 804			/* Where IPA will write the metadata value */
 805			off = offsetof(struct rmnet_map_header, mux_id);
 806			val |= ipa_metadata_offset_encode(version, reg, off);
 807
 808			/* Where IPA will write the length */
 809			off = offsetof(struct rmnet_map_header, pkt_len);
 810			/* Upper bits are stored in HDR_EXT with IPA v4.5 */
 811			if (version >= IPA_VERSION_4_5)
 812				off &= reg_field_max(reg, HDR_OFST_PKT_SIZE);
 813
 814			val |= reg_bit(reg, HDR_OFST_PKT_SIZE_VALID);
 815			val |= reg_encode(reg, HDR_OFST_PKT_SIZE, off);
 816		}
 817		/* For QMAP TX, metadata offset is 0 (modem assumes this) */
 818		val |= reg_bit(reg, HDR_OFST_METADATA_VALID);
 819
 820		/* HDR_ADDITIONAL_CONST_LEN is 0; (RX only) */
 821		/* HDR_A5_MUX is 0 */
 822		/* HDR_LEN_INC_DEAGG_HDR is 0 */
 823		/* HDR_METADATA_REG_VALID is 0 (TX only, version < v4.5) */
 824	}
 825
 826	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
 827}
 828
 829static void ipa_endpoint_init_hdr_ext(struct ipa_endpoint *endpoint)
 830{
 831	u32 pad_align = endpoint->config.rx.pad_align;
 832	u32 endpoint_id = endpoint->endpoint_id;
 833	struct ipa *ipa = endpoint->ipa;
 834	const struct reg *reg;
 835	u32 val = 0;
 836
 837	reg = ipa_reg(ipa, ENDP_INIT_HDR_EXT);
 838	if (endpoint->config.qmap) {
 839		/* We have a header, so we must specify its endianness */
 840		val |= reg_bit(reg, HDR_ENDIANNESS);	/* big endian */
 841
 842		/* A QMAP header contains a 6 bit pad field at offset 0.
 843		 * The RMNet driver assumes this field is meaningful in
 844		 * packets it receives, and assumes the header's payload
 845		 * length includes that padding.  The RMNet driver does
 846		 * *not* pad packets it sends, however, so the pad field
 847		 * (although 0) should be ignored.
 848		 */
 849		if (!endpoint->toward_ipa) {
 850			val |= reg_bit(reg, HDR_TOTAL_LEN_OR_PAD_VALID);
 851			/* HDR_TOTAL_LEN_OR_PAD is 0 (pad, not total_len) */
 852			val |= reg_bit(reg, HDR_PAYLOAD_LEN_INC_PADDING);
 853			/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0 */
 854		}
 855	}
 856
 857	/* HDR_PAYLOAD_LEN_INC_PADDING is 0 */
 858	if (!endpoint->toward_ipa)
 859		val |= reg_encode(reg, HDR_PAD_TO_ALIGNMENT, pad_align);
 860
 861	/* IPA v4.5 adds some most-significant bits to a few fields,
 862	 * two of which are defined in the HDR (not HDR_EXT) register.
 863	 */
 864	if (ipa->version >= IPA_VERSION_4_5) {
 865		/* HDR_TOTAL_LEN_OR_PAD_OFFSET is 0, so MSB is 0 */
 866		if (endpoint->config.qmap && !endpoint->toward_ipa) {
 867			u32 mask = reg_field_max(reg, HDR_OFST_PKT_SIZE);
 868			u32 off;     /* Field offset within header */
 869
 870			off = offsetof(struct rmnet_map_header, pkt_len);
 871			/* Low bits are in the ENDP_INIT_HDR register */
 872			off >>= hweight32(mask);
 873			val |= reg_encode(reg, HDR_OFST_PKT_SIZE_MSB, off);
 874			/* HDR_ADDITIONAL_CONST_LEN is 0 so MSB is 0 */
 875		}
 876	}
 877
 878	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
 879}
 880
 881static void ipa_endpoint_init_hdr_metadata_mask(struct ipa_endpoint *endpoint)
 882{
 883	u32 endpoint_id = endpoint->endpoint_id;
 884	struct ipa *ipa = endpoint->ipa;
 885	const struct reg *reg;
 886	u32 val = 0;
 887	u32 offset;
 888
 889	if (endpoint->toward_ipa)
 890		return;		/* Register not valid for TX endpoints */
 891
 892	reg = ipa_reg(ipa,  ENDP_INIT_HDR_METADATA_MASK);
 893	offset = reg_n_offset(reg, endpoint_id);
 894
 895	/* Note that HDR_ENDIANNESS indicates big endian header fields */
 896	if (endpoint->config.qmap)
 897		val = (__force u32)cpu_to_be32(IPA_ENDPOINT_QMAP_METADATA_MASK);
 898
 899	iowrite32(val, ipa->reg_virt + offset);
 900}
 901
 902static void ipa_endpoint_init_mode(struct ipa_endpoint *endpoint)
 903{
 904	struct ipa *ipa = endpoint->ipa;
 905	const struct reg *reg;
 906	u32 offset;
 907	u32 val;
 908
 909	if (!endpoint->toward_ipa)
 910		return;		/* Register not valid for RX endpoints */
 911
 912	reg = ipa_reg(ipa, ENDP_INIT_MODE);
 913	if (endpoint->config.dma_mode) {
 914		enum ipa_endpoint_name name = endpoint->config.dma_endpoint;
 915		u32 dma_endpoint_id = ipa->name_map[name]->endpoint_id;
 916
 917		val = reg_encode(reg, ENDP_MODE, IPA_DMA);
 918		val |= reg_encode(reg, DEST_PIPE_INDEX, dma_endpoint_id);
 919	} else {
 920		val = reg_encode(reg, ENDP_MODE, IPA_BASIC);
 921	}
 922	/* All other bits unspecified (and 0) */
 923
 924	offset = reg_n_offset(reg, endpoint->endpoint_id);
 925	iowrite32(val, ipa->reg_virt + offset);
 926}
 927
 928/* For IPA v4.5+, times are expressed using Qtime.  A time is represented
 929 * at one of several available granularities, which are configured in
 930 * ipa_qtime_config().  Three (or, starting with IPA v5.0, four) pulse
 931 * generators are set up with different "tick" periods.  A Qtime value
 932 * encodes a tick count along with an indication of a pulse generator
 933 * (which has a fixed tick period).  Two pulse generators are always
 934 * available to the AP; a third is available starting with IPA v5.0.
 935 * This function determines which pulse generator most accurately
 936 * represents the time period provided, and returns the tick count to
 937 * use to represent that time.
 938 */
 939static u32
 940ipa_qtime_val(struct ipa *ipa, u32 microseconds, u32 max, u32 *select)
 941{
 942	u32 which = 0;
 943	u32 ticks;
 944
 945	/* Pulse generator 0 has 100 microsecond granularity */
 946	ticks = DIV_ROUND_CLOSEST(microseconds, 100);
 947	if (ticks <= max)
 948		goto out;
 949
 950	/* Pulse generator 1 has millisecond granularity */
 951	which = 1;
 952	ticks = DIV_ROUND_CLOSEST(microseconds, 1000);
 953	if (ticks <= max)
 954		goto out;
 955
 956	if (ipa->version >= IPA_VERSION_5_0) {
 957		/* Pulse generator 2 has 10 millisecond granularity */
 958		which = 2;
 959		ticks = DIV_ROUND_CLOSEST(microseconds, 100);
 960	}
 961	WARN_ON(ticks > max);
 962out:
 963	*select = which;
 964
 965	return ticks;
 966}
 967
 968/* Encode the aggregation timer limit (microseconds) based on IPA version */
 969static u32 aggr_time_limit_encode(struct ipa *ipa, const struct reg *reg,
 970				  u32 microseconds)
 971{
 972	u32 ticks;
 973	u32 max;
 974
 975	if (!microseconds)
 976		return 0;	/* Nothing to compute if time limit is 0 */
 977
 978	max = reg_field_max(reg, TIME_LIMIT);
 979	if (ipa->version >= IPA_VERSION_4_5) {
 980		u32 select;
 981
 982		ticks = ipa_qtime_val(ipa, microseconds, max, &select);
 983
 984		return reg_encode(reg, AGGR_GRAN_SEL, select) |
 985		       reg_encode(reg, TIME_LIMIT, ticks);
 986	}
 987
 988	/* We program aggregation granularity in ipa_hardware_config() */
 989	ticks = DIV_ROUND_CLOSEST(microseconds, IPA_AGGR_GRANULARITY);
 990	WARN(ticks > max, "aggr_time_limit too large (%u > %u usec)\n",
 991	     microseconds, max * IPA_AGGR_GRANULARITY);
 992
 993	return reg_encode(reg, TIME_LIMIT, ticks);
 994}
 995
 996static void ipa_endpoint_init_aggr(struct ipa_endpoint *endpoint)
 997{
 998	u32 endpoint_id = endpoint->endpoint_id;
 999	struct ipa *ipa = endpoint->ipa;
1000	const struct reg *reg;
1001	u32 val = 0;
1002
1003	reg = ipa_reg(ipa, ENDP_INIT_AGGR);
1004	if (endpoint->config.aggregation) {
1005		if (!endpoint->toward_ipa) {
1006			const struct ipa_endpoint_rx *rx_config;
1007			u32 buffer_size;
1008			u32 limit;
1009
1010			rx_config = &endpoint->config.rx;
1011			val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_AGGR);
1012			val |= reg_encode(reg, AGGR_TYPE, IPA_GENERIC);
1013
1014			buffer_size = rx_config->buffer_size;
1015			limit = ipa_aggr_size_kb(buffer_size - NET_SKB_PAD,
1016						 rx_config->aggr_hard_limit);
1017			val |= reg_encode(reg, BYTE_LIMIT, limit);
1018
1019			limit = rx_config->aggr_time_limit;
1020			val |= aggr_time_limit_encode(ipa, reg, limit);
1021
1022			/* AGGR_PKT_LIMIT is 0 (unlimited) */
1023
1024			if (rx_config->aggr_close_eof)
1025				val |= reg_bit(reg, SW_EOF_ACTIVE);
1026		} else {
1027			val |= reg_encode(reg, AGGR_EN, IPA_ENABLE_DEAGGR);
1028			val |= reg_encode(reg, AGGR_TYPE, IPA_QCMAP);
1029			/* other fields ignored */
1030		}
1031		/* AGGR_FORCE_CLOSE is 0 */
1032		/* AGGR_GRAN_SEL is 0 for IPA v4.5 */
1033	} else {
1034		val |= reg_encode(reg, AGGR_EN, IPA_BYPASS_AGGR);
1035		/* other fields ignored */
1036	}
1037
1038	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1039}
1040
1041/* The head-of-line blocking timer is defined as a tick count.  For
1042 * IPA version 4.5 the tick count is based on the Qtimer, which is
1043 * derived from the 19.2 MHz SoC XO clock.  For older IPA versions
1044 * each tick represents 128 cycles of the IPA core clock.
1045 *
1046 * Return the encoded value representing the timeout period provided
1047 * that should be written to the ENDP_INIT_HOL_BLOCK_TIMER register.
1048 */
1049static u32 hol_block_timer_encode(struct ipa *ipa, const struct reg *reg,
1050				  u32 microseconds)
1051{
1052	u32 width;
1053	u32 scale;
1054	u64 ticks;
1055	u64 rate;
1056	u32 high;
1057	u32 val;
1058
1059	if (!microseconds)
1060		return 0;	/* Nothing to compute if timer period is 0 */
1061
1062	if (ipa->version >= IPA_VERSION_4_5) {
1063		u32 max = reg_field_max(reg, TIMER_LIMIT);
1064		u32 select;
1065		u32 ticks;
1066
1067		ticks = ipa_qtime_val(ipa, microseconds, max, &select);
1068
1069		return reg_encode(reg, TIMER_GRAN_SEL, 1) |
1070		       reg_encode(reg, TIMER_LIMIT, ticks);
1071	}
1072
1073	/* Use 64 bit arithmetic to avoid overflow */
1074	rate = ipa_core_clock_rate(ipa);
1075	ticks = DIV_ROUND_CLOSEST(microseconds * rate, 128 * USEC_PER_SEC);
1076
1077	/* We still need the result to fit into the field */
1078	WARN_ON(ticks > reg_field_max(reg, TIMER_BASE_VALUE));
1079
1080	/* IPA v3.5.1 through v4.1 just record the tick count */
1081	if (ipa->version < IPA_VERSION_4_2)
1082		return reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks);
1083
1084	/* For IPA v4.2, the tick count is represented by base and
1085	 * scale fields within the 32-bit timer register, where:
1086	 *     ticks = base << scale;
1087	 * The best precision is achieved when the base value is as
1088	 * large as possible.  Find the highest set bit in the tick
1089	 * count, and extract the number of bits in the base field
1090	 * such that high bit is included.
1091	 */
1092	high = fls(ticks);		/* 1..32 (or warning above) */
1093	width = hweight32(reg_fmask(reg, TIMER_BASE_VALUE));
1094	scale = high > width ? high - width : 0;
1095	if (scale) {
1096		/* If we're scaling, round up to get a closer result */
1097		ticks += 1 << (scale - 1);
1098		/* High bit was set, so rounding might have affected it */
1099		if (fls(ticks) != high)
1100			scale++;
1101	}
1102
1103	val = reg_encode(reg, TIMER_SCALE, scale);
1104	val |= reg_encode(reg, TIMER_BASE_VALUE, (u32)ticks >> scale);
1105
1106	return val;
1107}
1108
1109/* If microseconds is 0, timeout is immediate */
1110static void ipa_endpoint_init_hol_block_timer(struct ipa_endpoint *endpoint,
1111					      u32 microseconds)
1112{
1113	u32 endpoint_id = endpoint->endpoint_id;
1114	struct ipa *ipa = endpoint->ipa;
1115	const struct reg *reg;
1116	u32 val;
1117
1118	/* This should only be changed when HOL_BLOCK_EN is disabled */
1119	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_TIMER);
1120	val = hol_block_timer_encode(ipa, reg, microseconds);
1121
1122	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1123}
1124
1125static void
1126ipa_endpoint_init_hol_block_en(struct ipa_endpoint *endpoint, bool enable)
1127{
1128	u32 endpoint_id = endpoint->endpoint_id;
1129	struct ipa *ipa = endpoint->ipa;
1130	const struct reg *reg;
1131	u32 offset;
1132	u32 val;
1133
1134	reg = ipa_reg(ipa, ENDP_INIT_HOL_BLOCK_EN);
1135	offset = reg_n_offset(reg, endpoint_id);
1136	val = enable ? reg_bit(reg, HOL_BLOCK_EN) : 0;
1137
1138	iowrite32(val, ipa->reg_virt + offset);
1139
1140	/* When enabling, the register must be written twice for IPA v4.5+ */
1141	if (enable && ipa->version >= IPA_VERSION_4_5)
1142		iowrite32(val, ipa->reg_virt + offset);
1143}
1144
1145/* Assumes HOL_BLOCK is in disabled state */
1146static void ipa_endpoint_init_hol_block_enable(struct ipa_endpoint *endpoint,
1147					       u32 microseconds)
1148{
1149	ipa_endpoint_init_hol_block_timer(endpoint, microseconds);
1150	ipa_endpoint_init_hol_block_en(endpoint, true);
1151}
1152
1153static void ipa_endpoint_init_hol_block_disable(struct ipa_endpoint *endpoint)
1154{
1155	ipa_endpoint_init_hol_block_en(endpoint, false);
1156}
1157
1158void ipa_endpoint_modem_hol_block_clear_all(struct ipa *ipa)
1159{
1160	u32 endpoint_id = 0;
1161
1162	while (endpoint_id < ipa->endpoint_count) {
1163		struct ipa_endpoint *endpoint = &ipa->endpoint[endpoint_id++];
1164
1165		if (endpoint->toward_ipa || endpoint->ee_id != GSI_EE_MODEM)
1166			continue;
1167
1168		ipa_endpoint_init_hol_block_disable(endpoint);
1169		ipa_endpoint_init_hol_block_enable(endpoint, 0);
1170	}
1171}
1172
1173static void ipa_endpoint_init_deaggr(struct ipa_endpoint *endpoint)
1174{
1175	u32 endpoint_id = endpoint->endpoint_id;
1176	struct ipa *ipa = endpoint->ipa;
1177	const struct reg *reg;
1178	u32 val = 0;
1179
1180	if (!endpoint->toward_ipa)
1181		return;		/* Register not valid for RX endpoints */
1182
1183	reg = ipa_reg(ipa, ENDP_INIT_DEAGGR);
1184	/* DEAGGR_HDR_LEN is 0 */
1185	/* PACKET_OFFSET_VALID is 0 */
1186	/* PACKET_OFFSET_LOCATION is ignored (not valid) */
1187	/* MAX_PACKET_LEN is 0 (not enforced) */
1188
1189	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1190}
1191
1192static void ipa_endpoint_init_rsrc_grp(struct ipa_endpoint *endpoint)
1193{
1194	u32 resource_group = endpoint->config.resource_group;
1195	u32 endpoint_id = endpoint->endpoint_id;
1196	struct ipa *ipa = endpoint->ipa;
1197	const struct reg *reg;
1198	u32 val;
1199
1200	reg = ipa_reg(ipa, ENDP_INIT_RSRC_GRP);
1201	val = reg_encode(reg, ENDP_RSRC_GRP, resource_group);
1202
1203	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1204}
1205
1206static void ipa_endpoint_init_seq(struct ipa_endpoint *endpoint)
1207{
1208	u32 endpoint_id = endpoint->endpoint_id;
1209	struct ipa *ipa = endpoint->ipa;
1210	const struct reg *reg;
1211	u32 val;
1212
1213	if (!endpoint->toward_ipa)
1214		return;		/* Register not valid for RX endpoints */
1215
1216	reg = ipa_reg(ipa, ENDP_INIT_SEQ);
1217
1218	/* Low-order byte configures primary packet processing */
1219	val = reg_encode(reg, SEQ_TYPE, endpoint->config.tx.seq_type);
1220
1221	/* Second byte (if supported) configures replicated packet processing */
1222	if (ipa->version < IPA_VERSION_4_5)
1223		val |= reg_encode(reg, SEQ_REP_TYPE,
1224				  endpoint->config.tx.seq_rep_type);
1225
1226	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1227}
1228
1229/**
1230 * ipa_endpoint_skb_tx() - Transmit a socket buffer
1231 * @endpoint:	Endpoint pointer
1232 * @skb:	Socket buffer to send
1233 *
1234 * Returns:	0 if successful, or a negative error code
1235 */
1236int ipa_endpoint_skb_tx(struct ipa_endpoint *endpoint, struct sk_buff *skb)
1237{
1238	struct gsi_trans *trans;
1239	u32 nr_frags;
1240	int ret;
1241
1242	/* Make sure source endpoint's TLV FIFO has enough entries to
1243	 * hold the linear portion of the skb and all its fragments.
1244	 * If not, see if we can linearize it before giving up.
1245	 */
1246	nr_frags = skb_shinfo(skb)->nr_frags;
1247	if (nr_frags > endpoint->skb_frag_max) {
1248		if (skb_linearize(skb))
1249			return -E2BIG;
1250		nr_frags = 0;
1251	}
1252
1253	trans = ipa_endpoint_trans_alloc(endpoint, 1 + nr_frags);
1254	if (!trans)
1255		return -EBUSY;
1256
1257	ret = gsi_trans_skb_add(trans, skb);
1258	if (ret)
1259		goto err_trans_free;
1260	trans->data = skb;	/* transaction owns skb now */
1261
1262	gsi_trans_commit(trans, !netdev_xmit_more());
1263
1264	return 0;
1265
1266err_trans_free:
1267	gsi_trans_free(trans);
1268
1269	return -ENOMEM;
1270}
1271
1272static void ipa_endpoint_status(struct ipa_endpoint *endpoint)
1273{
1274	u32 endpoint_id = endpoint->endpoint_id;
1275	struct ipa *ipa = endpoint->ipa;
1276	const struct reg *reg;
1277	u32 val = 0;
1278
1279	reg = ipa_reg(ipa, ENDP_STATUS);
1280	if (endpoint->config.status_enable) {
1281		val |= reg_bit(reg, STATUS_EN);
1282		if (endpoint->toward_ipa) {
1283			enum ipa_endpoint_name name;
1284			u32 status_endpoint_id;
1285
1286			name = endpoint->config.tx.status_endpoint;
1287			status_endpoint_id = ipa->name_map[name]->endpoint_id;
1288
1289			val |= reg_encode(reg, STATUS_ENDP, status_endpoint_id);
1290		}
1291		/* STATUS_LOCATION is 0, meaning IPA packet status
1292		 * precedes the packet (not present for IPA v4.5+)
1293		 */
1294		/* STATUS_PKT_SUPPRESS_FMASK is 0 (not present for v4.0+) */
1295	}
1296
1297	iowrite32(val, ipa->reg_virt + reg_n_offset(reg, endpoint_id));
1298}
1299
1300static int ipa_endpoint_replenish_one(struct ipa_endpoint *endpoint,
1301				      struct gsi_trans *trans)
1302{
1303	struct page *page;
1304	u32 buffer_size;
1305	u32 offset;
1306	u32 len;
1307	int ret;
1308
1309	buffer_size = endpoint->config.rx.buffer_size;
1310	page = dev_alloc_pages(get_order(buffer_size));
1311	if (!page)
1312		return -ENOMEM;
1313
1314	/* Offset the buffer to make space for skb headroom */
1315	offset = NET_SKB_PAD;
1316	len = buffer_size - offset;
1317
1318	ret = gsi_trans_page_add(trans, page, len, offset);
1319	if (ret)
1320		put_page(page);
1321	else
1322		trans->data = page;	/* transaction owns page now */
1323
1324	return ret;
1325}
1326
1327/**
1328 * ipa_endpoint_replenish() - Replenish endpoint receive buffers
1329 * @endpoint:	Endpoint to be replenished
1330 *
1331 * The IPA hardware can hold a fixed number of receive buffers for an RX
1332 * endpoint, based on the number of entries in the underlying channel ring
1333 * buffer.  If an endpoint's "backlog" is non-zero, it indicates how many
1334 * more receive buffers can be supplied to the hardware.  Replenishing for
1335 * an endpoint can be disabled, in which case buffers are not queued to
1336 * the hardware.
1337 */
1338static void ipa_endpoint_replenish(struct ipa_endpoint *endpoint)
1339{
1340	struct gsi_trans *trans;
1341
1342	if (!test_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags))
1343		return;
1344
1345	/* Skip it if it's already active */
1346	if (test_and_set_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags))
1347		return;
1348
1349	while ((trans = ipa_endpoint_trans_alloc(endpoint, 1))) {
1350		bool doorbell;
1351
1352		if (ipa_endpoint_replenish_one(endpoint, trans))
1353			goto try_again_later;
1354
1355
1356		/* Ring the doorbell if we've got a full batch */
1357		doorbell = !(++endpoint->replenish_count % IPA_REPLENISH_BATCH);
1358		gsi_trans_commit(trans, doorbell);
1359	}
1360
1361	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1362
1363	return;
1364
1365try_again_later:
1366	gsi_trans_free(trans);
1367	clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1368
1369	/* Whenever a receive buffer transaction completes we'll try to
1370	 * replenish again.  It's unlikely, but if we fail to supply even
1371	 * one buffer, nothing will trigger another replenish attempt.
1372	 * If the hardware has no receive buffers queued, schedule work to
1373	 * try replenishing again.
1374	 */
1375	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1376		schedule_delayed_work(&endpoint->replenish_work,
1377				      msecs_to_jiffies(1));
1378}
1379
1380static void ipa_endpoint_replenish_enable(struct ipa_endpoint *endpoint)
1381{
1382	set_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1383
1384	/* Start replenishing if hardware currently has no buffers */
1385	if (gsi_channel_trans_idle(&endpoint->ipa->gsi, endpoint->channel_id))
1386		ipa_endpoint_replenish(endpoint);
1387}
1388
1389static void ipa_endpoint_replenish_disable(struct ipa_endpoint *endpoint)
1390{
1391	clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1392}
1393
1394static void ipa_endpoint_replenish_work(struct work_struct *work)
1395{
1396	struct delayed_work *dwork = to_delayed_work(work);
1397	struct ipa_endpoint *endpoint;
1398
1399	endpoint = container_of(dwork, struct ipa_endpoint, replenish_work);
1400
1401	ipa_endpoint_replenish(endpoint);
1402}
1403
1404static void ipa_endpoint_skb_copy(struct ipa_endpoint *endpoint,
1405				  void *data, u32 len, u32 extra)
1406{
1407	struct sk_buff *skb;
1408
1409	if (!endpoint->netdev)
1410		return;
1411
1412	skb = __dev_alloc_skb(len, GFP_ATOMIC);
1413	if (skb) {
1414		/* Copy the data into the socket buffer and receive it */
1415		skb_put(skb, len);
1416		memcpy(skb->data, data, len);
1417		skb->truesize += extra;
1418	}
1419
1420	ipa_modem_skb_rx(endpoint->netdev, skb);
1421}
1422
1423static bool ipa_endpoint_skb_build(struct ipa_endpoint *endpoint,
1424				   struct page *page, u32 len)
1425{
1426	u32 buffer_size = endpoint->config.rx.buffer_size;
1427	struct sk_buff *skb;
1428
1429	/* Nothing to do if there's no netdev */
1430	if (!endpoint->netdev)
1431		return false;
1432
1433	WARN_ON(len > SKB_WITH_OVERHEAD(buffer_size - NET_SKB_PAD));
1434
1435	skb = build_skb(page_address(page), buffer_size);
1436	if (skb) {
1437		/* Reserve the headroom and account for the data */
1438		skb_reserve(skb, NET_SKB_PAD);
1439		skb_put(skb, len);
1440	}
1441
1442	/* Receive the buffer (or record drop if unable to build it) */
1443	ipa_modem_skb_rx(endpoint->netdev, skb);
1444
1445	return skb != NULL;
1446}
1447
1448 /* The format of an IPA packet status structure is the same for several
1449  * status types (opcodes).  Other types aren't currently supported.
1450 */
1451static bool ipa_status_format_packet(enum ipa_status_opcode opcode)
1452{
1453	switch (opcode) {
1454	case IPA_STATUS_OPCODE_PACKET:
1455	case IPA_STATUS_OPCODE_DROPPED_PACKET:
1456	case IPA_STATUS_OPCODE_SUSPENDED_PACKET:
1457	case IPA_STATUS_OPCODE_PACKET_2ND_PASS:
1458		return true;
1459	default:
1460		return false;
1461	}
1462}
1463
1464static bool
1465ipa_endpoint_status_skip(struct ipa_endpoint *endpoint, const void *data)
1466{
1467	struct ipa *ipa = endpoint->ipa;
1468	enum ipa_status_opcode opcode;
1469	u32 endpoint_id;
1470
1471	opcode = ipa_status_extract(ipa, data, STATUS_OPCODE);
1472	if (!ipa_status_format_packet(opcode))
1473		return true;
1474
1475	endpoint_id = ipa_status_extract(ipa, data, STATUS_DST_ENDPOINT);
1476	if (endpoint_id != endpoint->endpoint_id)
1477		return true;
1478
1479	return false;	/* Don't skip this packet, process it */
1480}
1481
1482static bool
1483ipa_endpoint_status_tag_valid(struct ipa_endpoint *endpoint, const void *data)
1484{
1485	struct ipa_endpoint *command_endpoint;
1486	enum ipa_status_mask status_mask;
1487	struct ipa *ipa = endpoint->ipa;
1488	u32 endpoint_id;
1489
1490	status_mask = ipa_status_extract(ipa, data, STATUS_MASK);
1491	if (!status_mask)
1492		return false;	/* No valid tag */
1493
1494	/* The status contains a valid tag.  We know the packet was sent to
1495	 * this endpoint (already verified by ipa_endpoint_status_skip()).
1496	 * If the packet came from the AP->command TX endpoint we know
1497	 * this packet was sent as part of the pipeline clear process.
1498	 */
1499	endpoint_id = ipa_status_extract(ipa, data, STATUS_SRC_ENDPOINT);
1500	command_endpoint = ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX];
1501	if (endpoint_id == command_endpoint->endpoint_id) {
1502		complete(&ipa->completion);
1503	} else {
1504		dev_err(ipa->dev, "unexpected tagged packet from endpoint %u\n",
1505			endpoint_id);
1506	}
1507
1508	return true;
1509}
1510
1511/* Return whether the status indicates the packet should be dropped */
1512static bool
1513ipa_endpoint_status_drop(struct ipa_endpoint *endpoint, const void *data)
1514{
1515	enum ipa_status_exception exception;
1516	struct ipa *ipa = endpoint->ipa;
1517	u32 rule;
1518
1519	/* If the status indicates a tagged transfer, we'll drop the packet */
1520	if (ipa_endpoint_status_tag_valid(endpoint, data))
1521		return true;
1522
1523	/* Deaggregation exceptions we drop; all other types we consume */
1524	exception = ipa_status_extract(ipa, data, STATUS_EXCEPTION);
1525	if (exception)
1526		return exception == IPA_STATUS_EXCEPTION_DEAGGR;
1527
1528	/* Drop the packet if it fails to match a routing rule; otherwise no */
1529	rule = ipa_status_extract(ipa, data, STATUS_ROUTER_RULE_INDEX);
1530
1531	return rule == IPA_STATUS_RULE_MISS;
1532}
1533
1534static void ipa_endpoint_status_parse(struct ipa_endpoint *endpoint,
1535				      struct page *page, u32 total_len)
1536{
1537	u32 buffer_size = endpoint->config.rx.buffer_size;
1538	void *data = page_address(page) + NET_SKB_PAD;
1539	u32 unused = buffer_size - total_len;
1540	struct ipa *ipa = endpoint->ipa;
1541	struct device *dev = ipa->dev;
1542	u32 resid = total_len;
1543
1544	while (resid) {
1545		u32 length;
1546		u32 align;
1547		u32 len;
1548
1549		if (resid < IPA_STATUS_SIZE) {
1550			dev_err(dev,
1551				"short message (%u bytes < %zu byte status)\n",
1552				resid, IPA_STATUS_SIZE);
1553			break;
1554		}
1555
1556		/* Skip over status packets that lack packet data */
1557		length = ipa_status_extract(ipa, data, STATUS_LENGTH);
1558		if (!length || ipa_endpoint_status_skip(endpoint, data)) {
1559			data += IPA_STATUS_SIZE;
1560			resid -= IPA_STATUS_SIZE;
1561			continue;
1562		}
1563
1564		/* Compute the amount of buffer space consumed by the packet,
1565		 * including the status.  If the hardware is configured to
1566		 * pad packet data to an aligned boundary, account for that.
1567		 * And if checksum offload is enabled a trailer containing
1568		 * computed checksum information will be appended.
1569		 */
1570		align = endpoint->config.rx.pad_align ? : 1;
1571		len = IPA_STATUS_SIZE + ALIGN(length, align);
1572		if (endpoint->config.checksum)
1573			len += sizeof(struct rmnet_map_dl_csum_trailer);
1574
1575		if (!ipa_endpoint_status_drop(endpoint, data)) {
1576			void *data2;
1577			u32 extra;
1578
1579			/* Client receives only packet data (no status) */
1580			data2 = data + IPA_STATUS_SIZE;
1581
1582			/* Have the true size reflect the extra unused space in
1583			 * the original receive buffer.  Distribute the "cost"
1584			 * proportionately across all aggregated packets in the
1585			 * buffer.
1586			 */
1587			extra = DIV_ROUND_CLOSEST(unused * len, total_len);
1588			ipa_endpoint_skb_copy(endpoint, data2, length, extra);
1589		}
1590
1591		/* Consume status and the full packet it describes */
1592		data += len;
1593		resid -= len;
1594	}
1595}
1596
1597void ipa_endpoint_trans_complete(struct ipa_endpoint *endpoint,
1598				 struct gsi_trans *trans)
1599{
1600	struct page *page;
1601
1602	if (endpoint->toward_ipa)
1603		return;
1604
1605	if (trans->cancelled)
1606		goto done;
1607
1608	/* Parse or build a socket buffer using the actual received length */
1609	page = trans->data;
1610	if (endpoint->config.status_enable)
1611		ipa_endpoint_status_parse(endpoint, page, trans->len);
1612	else if (ipa_endpoint_skb_build(endpoint, page, trans->len))
1613		trans->data = NULL;	/* Pages have been consumed */
1614done:
1615	ipa_endpoint_replenish(endpoint);
1616}
1617
1618void ipa_endpoint_trans_release(struct ipa_endpoint *endpoint,
1619				struct gsi_trans *trans)
1620{
1621	if (endpoint->toward_ipa) {
1622		struct ipa *ipa = endpoint->ipa;
1623
1624		/* Nothing to do for command transactions */
1625		if (endpoint != ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]) {
1626			struct sk_buff *skb = trans->data;
1627
1628			if (skb)
1629				dev_kfree_skb_any(skb);
1630		}
1631	} else {
1632		struct page *page = trans->data;
1633
1634		if (page)
1635			put_page(page);
1636	}
1637}
1638
1639void ipa_endpoint_default_route_set(struct ipa *ipa, u32 endpoint_id)
1640{
1641	const struct reg *reg;
1642	u32 val;
1643
1644	reg = ipa_reg(ipa, ROUTE);
1645	/* ROUTE_DIS is 0 */
1646	val = reg_encode(reg, ROUTE_DEF_PIPE, endpoint_id);
1647	val |= reg_bit(reg, ROUTE_DEF_HDR_TABLE);
1648	/* ROUTE_DEF_HDR_OFST is 0 */
1649	val |= reg_encode(reg, ROUTE_FRAG_DEF_PIPE, endpoint_id);
1650	val |= reg_bit(reg, ROUTE_DEF_RETAIN_HDR);
1651
1652	iowrite32(val, ipa->reg_virt + reg_offset(reg));
1653}
1654
1655void ipa_endpoint_default_route_clear(struct ipa *ipa)
1656{
1657	ipa_endpoint_default_route_set(ipa, 0);
1658}
1659
1660/**
1661 * ipa_endpoint_reset_rx_aggr() - Reset RX endpoint with aggregation active
1662 * @endpoint:	Endpoint to be reset
1663 *
1664 * If aggregation is active on an RX endpoint when a reset is performed
1665 * on its underlying GSI channel, a special sequence of actions must be
1666 * taken to ensure the IPA pipeline is properly cleared.
1667 *
1668 * Return:	0 if successful, or a negative error code
1669 */
1670static int ipa_endpoint_reset_rx_aggr(struct ipa_endpoint *endpoint)
1671{
1672	struct ipa *ipa = endpoint->ipa;
1673	struct device *dev = ipa->dev;
1674	struct gsi *gsi = &ipa->gsi;
1675	bool suspended = false;
1676	dma_addr_t addr;
1677	u32 retries;
1678	u32 len = 1;
1679	void *virt;
1680	int ret;
1681
1682	virt = kzalloc(len, GFP_KERNEL);
1683	if (!virt)
1684		return -ENOMEM;
1685
1686	addr = dma_map_single(dev, virt, len, DMA_FROM_DEVICE);
1687	if (dma_mapping_error(dev, addr)) {
1688		ret = -ENOMEM;
1689		goto out_kfree;
1690	}
1691
1692	/* Force close aggregation before issuing the reset */
1693	ipa_endpoint_force_close(endpoint);
1694
1695	/* Reset and reconfigure the channel with the doorbell engine
1696	 * disabled.  Then poll until we know aggregation is no longer
1697	 * active.  We'll re-enable the doorbell (if appropriate) when
1698	 * we reset again below.
1699	 */
1700	gsi_channel_reset(gsi, endpoint->channel_id, false);
1701
1702	/* Make sure the channel isn't suspended */
1703	suspended = ipa_endpoint_program_suspend(endpoint, false);
1704
1705	/* Start channel and do a 1 byte read */
1706	ret = gsi_channel_start(gsi, endpoint->channel_id);
1707	if (ret)
1708		goto out_suspend_again;
1709
1710	ret = gsi_trans_read_byte(gsi, endpoint->channel_id, addr);
1711	if (ret)
1712		goto err_endpoint_stop;
1713
1714	/* Wait for aggregation to be closed on the channel */
1715	retries = IPA_ENDPOINT_RESET_AGGR_RETRY_MAX;
1716	do {
1717		if (!ipa_endpoint_aggr_active(endpoint))
1718			break;
1719		usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1720	} while (retries--);
1721
1722	/* Check one last time */
1723	if (ipa_endpoint_aggr_active(endpoint))
1724		dev_err(dev, "endpoint %u still active during reset\n",
1725			endpoint->endpoint_id);
1726
1727	gsi_trans_read_byte_done(gsi, endpoint->channel_id);
1728
1729	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1730	if (ret)
1731		goto out_suspend_again;
1732
1733	/* Finally, reset and reconfigure the channel again (re-enabling
1734	 * the doorbell engine if appropriate).  Sleep for 1 millisecond to
1735	 * complete the channel reset sequence.  Finish by suspending the
1736	 * channel again (if necessary).
1737	 */
1738	gsi_channel_reset(gsi, endpoint->channel_id, true);
1739
1740	usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
1741
1742	goto out_suspend_again;
1743
1744err_endpoint_stop:
1745	(void)gsi_channel_stop(gsi, endpoint->channel_id);
1746out_suspend_again:
1747	if (suspended)
1748		(void)ipa_endpoint_program_suspend(endpoint, true);
1749	dma_unmap_single(dev, addr, len, DMA_FROM_DEVICE);
1750out_kfree:
1751	kfree(virt);
1752
1753	return ret;
1754}
1755
1756static void ipa_endpoint_reset(struct ipa_endpoint *endpoint)
1757{
1758	u32 channel_id = endpoint->channel_id;
1759	struct ipa *ipa = endpoint->ipa;
1760	bool special;
1761	int ret = 0;
1762
1763	/* On IPA v3.5.1, if an RX endpoint is reset while aggregation
1764	 * is active, we need to handle things specially to recover.
1765	 * All other cases just need to reset the underlying GSI channel.
1766	 */
1767	special = ipa->version < IPA_VERSION_4_0 && !endpoint->toward_ipa &&
1768			endpoint->config.aggregation;
1769	if (special && ipa_endpoint_aggr_active(endpoint))
1770		ret = ipa_endpoint_reset_rx_aggr(endpoint);
1771	else
1772		gsi_channel_reset(&ipa->gsi, channel_id, true);
1773
1774	if (ret)
1775		dev_err(ipa->dev,
1776			"error %d resetting channel %u for endpoint %u\n",
1777			ret, endpoint->channel_id, endpoint->endpoint_id);
1778}
1779
1780static void ipa_endpoint_program(struct ipa_endpoint *endpoint)
1781{
1782	if (endpoint->toward_ipa) {
1783		/* Newer versions of IPA use GSI channel flow control
1784		 * instead of endpoint DELAY mode to prevent sending data.
1785		 * Flow control is disabled for newly-allocated channels,
1786		 * and we can assume flow control is not (ever) enabled
1787		 * for AP TX channels.
1788		 */
1789		if (endpoint->ipa->version < IPA_VERSION_4_2)
1790			ipa_endpoint_program_delay(endpoint, false);
1791	} else {
1792		/* Ensure suspend mode is off on all AP RX endpoints */
1793		(void)ipa_endpoint_program_suspend(endpoint, false);
1794	}
1795	ipa_endpoint_init_cfg(endpoint);
1796	ipa_endpoint_init_nat(endpoint);
1797	ipa_endpoint_init_hdr(endpoint);
1798	ipa_endpoint_init_hdr_ext(endpoint);
1799	ipa_endpoint_init_hdr_metadata_mask(endpoint);
1800	ipa_endpoint_init_mode(endpoint);
1801	ipa_endpoint_init_aggr(endpoint);
1802	if (!endpoint->toward_ipa) {
1803		if (endpoint->config.rx.holb_drop)
1804			ipa_endpoint_init_hol_block_enable(endpoint, 0);
1805		else
1806			ipa_endpoint_init_hol_block_disable(endpoint);
1807	}
1808	ipa_endpoint_init_deaggr(endpoint);
1809	ipa_endpoint_init_rsrc_grp(endpoint);
1810	ipa_endpoint_init_seq(endpoint);
1811	ipa_endpoint_status(endpoint);
1812}
1813
1814int ipa_endpoint_enable_one(struct ipa_endpoint *endpoint)
1815{
1816	u32 endpoint_id = endpoint->endpoint_id;
1817	struct ipa *ipa = endpoint->ipa;
1818	struct gsi *gsi = &ipa->gsi;
1819	int ret;
1820
1821	ret = gsi_channel_start(gsi, endpoint->channel_id);
1822	if (ret) {
1823		dev_err(ipa->dev,
1824			"error %d starting %cX channel %u for endpoint %u\n",
1825			ret, endpoint->toward_ipa ? 'T' : 'R',
1826			endpoint->channel_id, endpoint_id);
1827		return ret;
1828	}
1829
1830	if (!endpoint->toward_ipa) {
1831		ipa_interrupt_suspend_enable(ipa->interrupt, endpoint_id);
1832		ipa_endpoint_replenish_enable(endpoint);
1833	}
1834
1835	__set_bit(endpoint_id, ipa->enabled);
1836
1837	return 0;
1838}
1839
1840void ipa_endpoint_disable_one(struct ipa_endpoint *endpoint)
1841{
1842	u32 endpoint_id = endpoint->endpoint_id;
1843	struct ipa *ipa = endpoint->ipa;
1844	struct gsi *gsi = &ipa->gsi;
1845	int ret;
1846
1847	if (!test_bit(endpoint_id, ipa->enabled))
1848		return;
1849
1850	__clear_bit(endpoint_id, endpoint->ipa->enabled);
1851
1852	if (!endpoint->toward_ipa) {
1853		ipa_endpoint_replenish_disable(endpoint);
1854		ipa_interrupt_suspend_disable(ipa->interrupt, endpoint_id);
1855	}
1856
1857	/* Note that if stop fails, the channel's state is not well-defined */
1858	ret = gsi_channel_stop(gsi, endpoint->channel_id);
1859	if (ret)
1860		dev_err(ipa->dev, "error %d attempting to stop endpoint %u\n",
1861			ret, endpoint_id);
1862}
1863
1864void ipa_endpoint_suspend_one(struct ipa_endpoint *endpoint)
1865{
1866	struct device *dev = endpoint->ipa->dev;
1867	struct gsi *gsi = &endpoint->ipa->gsi;
1868	int ret;
1869
1870	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1871		return;
1872
1873	if (!endpoint->toward_ipa) {
1874		ipa_endpoint_replenish_disable(endpoint);
1875		(void)ipa_endpoint_program_suspend(endpoint, true);
1876	}
1877
1878	ret = gsi_channel_suspend(gsi, endpoint->channel_id);
1879	if (ret)
1880		dev_err(dev, "error %d suspending channel %u\n", ret,
1881			endpoint->channel_id);
1882}
1883
1884void ipa_endpoint_resume_one(struct ipa_endpoint *endpoint)
1885{
1886	struct device *dev = endpoint->ipa->dev;
1887	struct gsi *gsi = &endpoint->ipa->gsi;
1888	int ret;
1889
1890	if (!test_bit(endpoint->endpoint_id, endpoint->ipa->enabled))
1891		return;
1892
1893	if (!endpoint->toward_ipa)
1894		(void)ipa_endpoint_program_suspend(endpoint, false);
1895
1896	ret = gsi_channel_resume(gsi, endpoint->channel_id);
1897	if (ret)
1898		dev_err(dev, "error %d resuming channel %u\n", ret,
1899			endpoint->channel_id);
1900	else if (!endpoint->toward_ipa)
1901		ipa_endpoint_replenish_enable(endpoint);
1902}
1903
1904void ipa_endpoint_suspend(struct ipa *ipa)
1905{
1906	if (!ipa->setup_complete)
1907		return;
1908
1909	if (ipa->modem_netdev)
1910		ipa_modem_suspend(ipa->modem_netdev);
1911
1912	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1913	ipa_endpoint_suspend_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1914}
1915
1916void ipa_endpoint_resume(struct ipa *ipa)
1917{
1918	if (!ipa->setup_complete)
1919		return;
1920
1921	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_COMMAND_TX]);
1922	ipa_endpoint_resume_one(ipa->name_map[IPA_ENDPOINT_AP_LAN_RX]);
1923
1924	if (ipa->modem_netdev)
1925		ipa_modem_resume(ipa->modem_netdev);
1926}
1927
1928static void ipa_endpoint_setup_one(struct ipa_endpoint *endpoint)
1929{
1930	struct gsi *gsi = &endpoint->ipa->gsi;
1931	u32 channel_id = endpoint->channel_id;
1932
1933	/* Only AP endpoints get set up */
1934	if (endpoint->ee_id != GSI_EE_AP)
1935		return;
1936
1937	endpoint->skb_frag_max = gsi->channel[channel_id].trans_tre_max - 1;
1938	if (!endpoint->toward_ipa) {
1939		/* RX transactions require a single TRE, so the maximum
1940		 * backlog is the same as the maximum outstanding TREs.
1941		 */
1942		clear_bit(IPA_REPLENISH_ENABLED, endpoint->replenish_flags);
1943		clear_bit(IPA_REPLENISH_ACTIVE, endpoint->replenish_flags);
1944		INIT_DELAYED_WORK(&endpoint->replenish_work,
1945				  ipa_endpoint_replenish_work);
1946	}
1947
1948	ipa_endpoint_program(endpoint);
1949
1950	__set_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1951}
1952
1953static void ipa_endpoint_teardown_one(struct ipa_endpoint *endpoint)
1954{
1955	__clear_bit(endpoint->endpoint_id, endpoint->ipa->set_up);
1956
1957	if (!endpoint->toward_ipa)
1958		cancel_delayed_work_sync(&endpoint->replenish_work);
1959
1960	ipa_endpoint_reset(endpoint);
1961}
1962
1963void ipa_endpoint_setup(struct ipa *ipa)
1964{
1965	u32 endpoint_id;
1966
1967	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
1968		ipa_endpoint_setup_one(&ipa->endpoint[endpoint_id]);
1969}
1970
1971void ipa_endpoint_teardown(struct ipa *ipa)
1972{
1973	u32 endpoint_id;
1974
1975	for_each_set_bit(endpoint_id, ipa->set_up, ipa->endpoint_count)
1976		ipa_endpoint_teardown_one(&ipa->endpoint[endpoint_id]);
1977}
1978
1979void ipa_endpoint_deconfig(struct ipa *ipa)
1980{
1981	ipa->available_count = 0;
1982	bitmap_free(ipa->available);
1983	ipa->available = NULL;
1984}
1985
1986int ipa_endpoint_config(struct ipa *ipa)
1987{
1988	struct device *dev = ipa->dev;
1989	const struct reg *reg;
1990	u32 endpoint_id;
1991	u32 hw_limit;
1992	u32 tx_count;
1993	u32 rx_count;
1994	u32 rx_base;
1995	u32 limit;
1996	u32 val;
1997
1998	/* Prior to IPA v3.5, the FLAVOR_0 register was not supported.
1999	 * Furthermore, the endpoints were not grouped such that TX
2000	 * endpoint numbers started with 0 and RX endpoints had numbers
2001	 * higher than all TX endpoints, so we can't do the simple
2002	 * direction check used for newer hardware below.
2003	 *
2004	 * For hardware that doesn't support the FLAVOR_0 register,
2005	 * just set the available mask to support any endpoint, and
2006	 * assume the configuration is valid.
2007	 */
2008	if (ipa->version < IPA_VERSION_3_5) {
2009		ipa->available = bitmap_zalloc(IPA_ENDPOINT_MAX, GFP_KERNEL);
2010		if (!ipa->available)
2011			return -ENOMEM;
2012		ipa->available_count = IPA_ENDPOINT_MAX;
2013
2014		bitmap_set(ipa->available, 0, IPA_ENDPOINT_MAX);
2015
2016		return 0;
2017	}
2018
2019	/* Find out about the endpoints supplied by the hardware, and ensure
2020	 * the highest one doesn't exceed the number supported by software.
2021	 */
2022	reg = ipa_reg(ipa, FLAVOR_0);
2023	val = ioread32(ipa->reg_virt + reg_offset(reg));
2024
2025	/* Our RX is an IPA producer; our TX is an IPA consumer. */
2026	tx_count = reg_decode(reg, MAX_CONS_PIPES, val);
2027	rx_count = reg_decode(reg, MAX_PROD_PIPES, val);
2028	rx_base = reg_decode(reg, PROD_LOWEST, val);
2029
2030	limit = rx_base + rx_count;
2031	if (limit > IPA_ENDPOINT_MAX) {
2032		dev_err(dev, "too many endpoints, %u > %u\n",
2033			limit, IPA_ENDPOINT_MAX);
2034		return -EINVAL;
2035	}
2036
2037	/* Until IPA v5.0, the max endpoint ID was 32 */
2038	hw_limit = ipa->version < IPA_VERSION_5_0 ? 32 : U8_MAX + 1;
2039	if (limit > hw_limit) {
2040		dev_err(dev, "unexpected endpoint count, %u > %u\n",
2041			limit, hw_limit);
2042		return -EINVAL;
2043	}
2044
2045	/* Allocate and initialize the available endpoint bitmap */
2046	ipa->available = bitmap_zalloc(limit, GFP_KERNEL);
2047	if (!ipa->available)
2048		return -ENOMEM;
2049	ipa->available_count = limit;
2050
2051	/* Mark all supported RX and TX endpoints as available */
2052	bitmap_set(ipa->available, 0, tx_count);
2053	bitmap_set(ipa->available, rx_base, rx_count);
2054
2055	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count) {
2056		struct ipa_endpoint *endpoint;
2057
2058		if (endpoint_id >= limit) {
2059			dev_err(dev, "invalid endpoint id, %u > %u\n",
2060				endpoint_id, limit - 1);
2061			goto err_free_bitmap;
2062		}
2063
2064		if (!test_bit(endpoint_id, ipa->available)) {
2065			dev_err(dev, "unavailable endpoint id %u\n",
2066				endpoint_id);
2067			goto err_free_bitmap;
2068		}
2069
2070		/* Make sure it's pointing in the right direction */
2071		endpoint = &ipa->endpoint[endpoint_id];
2072		if (endpoint->toward_ipa) {
2073			if (endpoint_id < tx_count)
2074				continue;
2075		} else if (endpoint_id >= rx_base) {
2076			continue;
2077		}
2078
2079		dev_err(dev, "endpoint id %u wrong direction\n", endpoint_id);
2080		goto err_free_bitmap;
2081	}
2082
2083	return 0;
2084
2085err_free_bitmap:
2086	ipa_endpoint_deconfig(ipa);
2087
2088	return -EINVAL;
2089}
2090
2091static void ipa_endpoint_init_one(struct ipa *ipa, enum ipa_endpoint_name name,
2092				  const struct ipa_gsi_endpoint_data *data)
2093{
2094	struct ipa_endpoint *endpoint;
2095
2096	endpoint = &ipa->endpoint[data->endpoint_id];
2097
2098	if (data->ee_id == GSI_EE_AP)
2099		ipa->channel_map[data->channel_id] = endpoint;
2100	ipa->name_map[name] = endpoint;
2101
2102	endpoint->ipa = ipa;
2103	endpoint->ee_id = data->ee_id;
2104	endpoint->channel_id = data->channel_id;
2105	endpoint->endpoint_id = data->endpoint_id;
2106	endpoint->toward_ipa = data->toward_ipa;
2107	endpoint->config = data->endpoint.config;
2108
2109	__set_bit(endpoint->endpoint_id, ipa->defined);
2110}
2111
2112static void ipa_endpoint_exit_one(struct ipa_endpoint *endpoint)
2113{
2114	__clear_bit(endpoint->endpoint_id, endpoint->ipa->defined);
2115
2116	memset(endpoint, 0, sizeof(*endpoint));
2117}
2118
2119void ipa_endpoint_exit(struct ipa *ipa)
2120{
2121	u32 endpoint_id;
2122
2123	ipa->filtered = 0;
2124
2125	for_each_set_bit(endpoint_id, ipa->defined, ipa->endpoint_count)
2126		ipa_endpoint_exit_one(&ipa->endpoint[endpoint_id]);
2127
2128	bitmap_free(ipa->enabled);
2129	ipa->enabled = NULL;
2130	bitmap_free(ipa->set_up);
2131	ipa->set_up = NULL;
2132	bitmap_free(ipa->defined);
2133	ipa->defined = NULL;
2134
2135	memset(ipa->name_map, 0, sizeof(ipa->name_map));
2136	memset(ipa->channel_map, 0, sizeof(ipa->channel_map));
2137}
2138
2139/* Returns a bitmask of endpoints that support filtering, or 0 on error */
2140int ipa_endpoint_init(struct ipa *ipa, u32 count,
2141		      const struct ipa_gsi_endpoint_data *data)
2142{
2143	enum ipa_endpoint_name name;
2144	u32 filtered;
2145
2146	BUILD_BUG_ON(!IPA_REPLENISH_BATCH);
2147
2148	/* Number of endpoints is one more than the maximum ID */
2149	ipa->endpoint_count = ipa_endpoint_max(ipa, count, data) + 1;
2150	if (!ipa->endpoint_count)
2151		return -EINVAL;
2152
2153	/* Initialize endpoint state bitmaps */
2154	ipa->defined = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2155	if (!ipa->defined)
2156		return -ENOMEM;
2157
2158	ipa->set_up = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2159	if (!ipa->set_up)
2160		goto err_free_defined;
2161
2162	ipa->enabled = bitmap_zalloc(ipa->endpoint_count, GFP_KERNEL);
2163	if (!ipa->enabled)
2164		goto err_free_set_up;
2165
2166	filtered = 0;
2167	for (name = 0; name < count; name++, data++) {
2168		if (ipa_gsi_endpoint_data_empty(data))
2169			continue;	/* Skip over empty slots */
2170
2171		ipa_endpoint_init_one(ipa, name, data);
2172
2173		if (data->endpoint.filter_support)
2174			filtered |= BIT(data->endpoint_id);
2175		if (data->ee_id == GSI_EE_MODEM && data->toward_ipa)
2176			ipa->modem_tx_count++;
2177	}
2178
2179	/* Make sure the set of filtered endpoints is valid */
2180	if (!ipa_filtered_valid(ipa, filtered)) {
2181		ipa_endpoint_exit(ipa);
2182
2183		return -EINVAL;
2184	}
2185
2186	ipa->filtered = filtered;
2187
2188	return 0;
2189
2190err_free_set_up:
2191	bitmap_free(ipa->set_up);
2192	ipa->set_up = NULL;
2193err_free_defined:
2194	bitmap_free(ipa->defined);
2195	ipa->defined = NULL;
2196
2197	return -ENOMEM;
2198}