Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.1.
    1// SPDX-License-Identifier: GPL-2.0
    2/* Copyright(c) 2007 - 2018 Intel Corporation. */
    3
    4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
    5
    6#include <linux/module.h>
    7#include <linux/types.h>
    8#include <linux/init.h>
    9#include <linux/bitops.h>
   10#include <linux/vmalloc.h>
   11#include <linux/pagemap.h>
   12#include <linux/netdevice.h>
   13#include <linux/ipv6.h>
   14#include <linux/slab.h>
   15#include <net/checksum.h>
   16#include <net/ip6_checksum.h>
   17#include <net/pkt_sched.h>
   18#include <net/pkt_cls.h>
   19#include <linux/net_tstamp.h>
   20#include <linux/mii.h>
   21#include <linux/ethtool.h>
   22#include <linux/if.h>
   23#include <linux/if_vlan.h>
   24#include <linux/pci.h>
   25#include <linux/delay.h>
   26#include <linux/interrupt.h>
   27#include <linux/ip.h>
   28#include <linux/tcp.h>
   29#include <linux/sctp.h>
   30#include <linux/if_ether.h>
   31#include <linux/prefetch.h>
   32#include <linux/bpf.h>
   33#include <linux/bpf_trace.h>
   34#include <linux/pm_runtime.h>
   35#include <linux/etherdevice.h>
   36#include <linux/lockdep.h>
   37#ifdef CONFIG_IGB_DCA
   38#include <linux/dca.h>
   39#endif
   40#include <linux/i2c.h>
   41#include "igb.h"
   42
   43enum queue_mode {
   44	QUEUE_MODE_STRICT_PRIORITY,
   45	QUEUE_MODE_STREAM_RESERVATION,
   46};
   47
   48enum tx_queue_prio {
   49	TX_QUEUE_PRIO_HIGH,
   50	TX_QUEUE_PRIO_LOW,
   51};
   52
   53char igb_driver_name[] = "igb";
   54static const char igb_driver_string[] =
   55				"Intel(R) Gigabit Ethernet Network Driver";
   56static const char igb_copyright[] =
   57				"Copyright (c) 2007-2014 Intel Corporation.";
   58
   59static const struct e1000_info *igb_info_tbl[] = {
   60	[board_82575] = &e1000_82575_info,
   61};
   62
   63static const struct pci_device_id igb_pci_tbl[] = {
   64	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
   65	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
   66	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
   67	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
   68	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
   69	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
   70	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
   71	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
   72	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER_FLASHLESS), board_82575 },
   73	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES_FLASHLESS), board_82575 },
   74	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
   75	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
   76	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
   77	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
   78	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
   79	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
   80	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
   81	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
   82	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
   83	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
   84	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
   85	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
   86	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
   87	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
   88	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
   89	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
   90	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
   91	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
   92	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
   93	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
   94	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
   95	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
   96	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
   97	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
   98	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
   99	/* required last entry */
  100	{0, }
  101};
  102
  103MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
  104
  105static int igb_setup_all_tx_resources(struct igb_adapter *);
  106static int igb_setup_all_rx_resources(struct igb_adapter *);
  107static void igb_free_all_tx_resources(struct igb_adapter *);
  108static void igb_free_all_rx_resources(struct igb_adapter *);
  109static void igb_setup_mrqc(struct igb_adapter *);
  110static void igb_init_queue_configuration(struct igb_adapter *adapter);
  111static int igb_sw_init(struct igb_adapter *);
  112int igb_open(struct net_device *);
  113int igb_close(struct net_device *);
  114static void igb_configure(struct igb_adapter *);
  115static void igb_configure_tx(struct igb_adapter *);
  116static void igb_configure_rx(struct igb_adapter *);
  117static void igb_clean_all_tx_rings(struct igb_adapter *);
  118static void igb_clean_all_rx_rings(struct igb_adapter *);
  119static void igb_clean_tx_ring(struct igb_ring *);
  120static void igb_clean_rx_ring(struct igb_ring *);
  121static void igb_set_rx_mode(struct net_device *);
  122static void igb_update_phy_info(struct timer_list *);
  123static void igb_watchdog(struct timer_list *);
  124static void igb_watchdog_task(struct work_struct *);
  125static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
  126static void igb_get_stats64(struct net_device *dev,
  127			    struct rtnl_link_stats64 *stats);
  128static int igb_change_mtu(struct net_device *, int);
  129static int igb_set_mac(struct net_device *, void *);
  130static void igb_set_uta(struct igb_adapter *adapter, bool set);
  131static irqreturn_t igb_intr(int irq, void *);
  132static irqreturn_t igb_intr_msi(int irq, void *);
  133static irqreturn_t igb_msix_other(int irq, void *);
  134static irqreturn_t igb_msix_ring(int irq, void *);
  135#ifdef CONFIG_IGB_DCA
  136static void igb_update_dca(struct igb_q_vector *);
  137static void igb_setup_dca(struct igb_adapter *);
  138#endif /* CONFIG_IGB_DCA */
  139static int igb_poll(struct napi_struct *, int);
  140static bool igb_clean_tx_irq(struct igb_q_vector *, int);
  141static int igb_clean_rx_irq(struct igb_q_vector *, int);
  142static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
  143static void igb_tx_timeout(struct net_device *, unsigned int txqueue);
  144static void igb_reset_task(struct work_struct *);
  145static void igb_vlan_mode(struct net_device *netdev,
  146			  netdev_features_t features);
  147static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
  148static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
  149static void igb_restore_vlan(struct igb_adapter *);
  150static void igb_rar_set_index(struct igb_adapter *, u32);
  151static void igb_ping_all_vfs(struct igb_adapter *);
  152static void igb_msg_task(struct igb_adapter *);
  153static void igb_vmm_control(struct igb_adapter *);
  154static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
  155static void igb_flush_mac_table(struct igb_adapter *);
  156static int igb_available_rars(struct igb_adapter *, u8);
  157static void igb_set_default_mac_filter(struct igb_adapter *);
  158static int igb_uc_sync(struct net_device *, const unsigned char *);
  159static int igb_uc_unsync(struct net_device *, const unsigned char *);
  160static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
  161static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
  162static int igb_ndo_set_vf_vlan(struct net_device *netdev,
  163			       int vf, u16 vlan, u8 qos, __be16 vlan_proto);
  164static int igb_ndo_set_vf_bw(struct net_device *, int, int, int);
  165static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
  166				   bool setting);
  167static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf,
  168				bool setting);
  169static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
  170				 struct ifla_vf_info *ivi);
  171static void igb_check_vf_rate_limit(struct igb_adapter *);
  172static void igb_nfc_filter_exit(struct igb_adapter *adapter);
  173static void igb_nfc_filter_restore(struct igb_adapter *adapter);
  174
  175#ifdef CONFIG_PCI_IOV
  176static int igb_vf_configure(struct igb_adapter *adapter, int vf);
  177static int igb_disable_sriov(struct pci_dev *dev, bool reinit);
  178#endif
  179
  180#ifdef CONFIG_IGB_DCA
  181static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
  182static struct notifier_block dca_notifier = {
  183	.notifier_call	= igb_notify_dca,
  184	.next		= NULL,
  185	.priority	= 0
  186};
  187#endif
  188#ifdef CONFIG_PCI_IOV
  189static unsigned int max_vfs;
  190module_param(max_vfs, uint, 0444);
  191MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate per physical function");
  192#endif /* CONFIG_PCI_IOV */
  193
  194static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
  195		     pci_channel_state_t);
  196static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
  197static void igb_io_resume(struct pci_dev *);
  198
  199static const struct pci_error_handlers igb_err_handler = {
  200	.error_detected = igb_io_error_detected,
  201	.slot_reset = igb_io_slot_reset,
  202	.resume = igb_io_resume,
  203};
  204
  205static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
  206
  207MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
  208MODULE_LICENSE("GPL v2");
  209
  210#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  211static int debug = -1;
  212module_param(debug, int, 0);
  213MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  214
  215struct igb_reg_info {
  216	u32 ofs;
  217	char *name;
  218};
  219
  220static const struct igb_reg_info igb_reg_info_tbl[] = {
  221
  222	/* General Registers */
  223	{E1000_CTRL, "CTRL"},
  224	{E1000_STATUS, "STATUS"},
  225	{E1000_CTRL_EXT, "CTRL_EXT"},
  226
  227	/* Interrupt Registers */
  228	{E1000_ICR, "ICR"},
  229
  230	/* RX Registers */
  231	{E1000_RCTL, "RCTL"},
  232	{E1000_RDLEN(0), "RDLEN"},
  233	{E1000_RDH(0), "RDH"},
  234	{E1000_RDT(0), "RDT"},
  235	{E1000_RXDCTL(0), "RXDCTL"},
  236	{E1000_RDBAL(0), "RDBAL"},
  237	{E1000_RDBAH(0), "RDBAH"},
  238
  239	/* TX Registers */
  240	{E1000_TCTL, "TCTL"},
  241	{E1000_TDBAL(0), "TDBAL"},
  242	{E1000_TDBAH(0), "TDBAH"},
  243	{E1000_TDLEN(0), "TDLEN"},
  244	{E1000_TDH(0), "TDH"},
  245	{E1000_TDT(0), "TDT"},
  246	{E1000_TXDCTL(0), "TXDCTL"},
  247	{E1000_TDFH, "TDFH"},
  248	{E1000_TDFT, "TDFT"},
  249	{E1000_TDFHS, "TDFHS"},
  250	{E1000_TDFPC, "TDFPC"},
  251
  252	/* List Terminator */
  253	{}
  254};
  255
  256/* igb_regdump - register printout routine */
  257static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
  258{
  259	int n = 0;
  260	char rname[16];
  261	u32 regs[8];
  262
  263	switch (reginfo->ofs) {
  264	case E1000_RDLEN(0):
  265		for (n = 0; n < 4; n++)
  266			regs[n] = rd32(E1000_RDLEN(n));
  267		break;
  268	case E1000_RDH(0):
  269		for (n = 0; n < 4; n++)
  270			regs[n] = rd32(E1000_RDH(n));
  271		break;
  272	case E1000_RDT(0):
  273		for (n = 0; n < 4; n++)
  274			regs[n] = rd32(E1000_RDT(n));
  275		break;
  276	case E1000_RXDCTL(0):
  277		for (n = 0; n < 4; n++)
  278			regs[n] = rd32(E1000_RXDCTL(n));
  279		break;
  280	case E1000_RDBAL(0):
  281		for (n = 0; n < 4; n++)
  282			regs[n] = rd32(E1000_RDBAL(n));
  283		break;
  284	case E1000_RDBAH(0):
  285		for (n = 0; n < 4; n++)
  286			regs[n] = rd32(E1000_RDBAH(n));
  287		break;
  288	case E1000_TDBAL(0):
  289		for (n = 0; n < 4; n++)
  290			regs[n] = rd32(E1000_TDBAL(n));
  291		break;
  292	case E1000_TDBAH(0):
  293		for (n = 0; n < 4; n++)
  294			regs[n] = rd32(E1000_TDBAH(n));
  295		break;
  296	case E1000_TDLEN(0):
  297		for (n = 0; n < 4; n++)
  298			regs[n] = rd32(E1000_TDLEN(n));
  299		break;
  300	case E1000_TDH(0):
  301		for (n = 0; n < 4; n++)
  302			regs[n] = rd32(E1000_TDH(n));
  303		break;
  304	case E1000_TDT(0):
  305		for (n = 0; n < 4; n++)
  306			regs[n] = rd32(E1000_TDT(n));
  307		break;
  308	case E1000_TXDCTL(0):
  309		for (n = 0; n < 4; n++)
  310			regs[n] = rd32(E1000_TXDCTL(n));
  311		break;
  312	default:
  313		pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
  314		return;
  315	}
  316
  317	snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
  318	pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
  319		regs[2], regs[3]);
  320}
  321
  322/* igb_dump - Print registers, Tx-rings and Rx-rings */
  323static void igb_dump(struct igb_adapter *adapter)
  324{
  325	struct net_device *netdev = adapter->netdev;
  326	struct e1000_hw *hw = &adapter->hw;
  327	struct igb_reg_info *reginfo;
  328	struct igb_ring *tx_ring;
  329	union e1000_adv_tx_desc *tx_desc;
  330	struct my_u0 { __le64 a; __le64 b; } *u0;
  331	struct igb_ring *rx_ring;
  332	union e1000_adv_rx_desc *rx_desc;
  333	u32 staterr;
  334	u16 i, n;
  335
  336	if (!netif_msg_hw(adapter))
  337		return;
  338
  339	/* Print netdevice Info */
  340	if (netdev) {
  341		dev_info(&adapter->pdev->dev, "Net device Info\n");
  342		pr_info("Device Name     state            trans_start\n");
  343		pr_info("%-15s %016lX %016lX\n", netdev->name,
  344			netdev->state, dev_trans_start(netdev));
  345	}
  346
  347	/* Print Registers */
  348	dev_info(&adapter->pdev->dev, "Register Dump\n");
  349	pr_info(" Register Name   Value\n");
  350	for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
  351	     reginfo->name; reginfo++) {
  352		igb_regdump(hw, reginfo);
  353	}
  354
  355	/* Print TX Ring Summary */
  356	if (!netdev || !netif_running(netdev))
  357		goto exit;
  358
  359	dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
  360	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
  361	for (n = 0; n < adapter->num_tx_queues; n++) {
  362		struct igb_tx_buffer *buffer_info;
  363		tx_ring = adapter->tx_ring[n];
  364		buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
  365		pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
  366			n, tx_ring->next_to_use, tx_ring->next_to_clean,
  367			(u64)dma_unmap_addr(buffer_info, dma),
  368			dma_unmap_len(buffer_info, len),
  369			buffer_info->next_to_watch,
  370			(u64)buffer_info->time_stamp);
  371	}
  372
  373	/* Print TX Rings */
  374	if (!netif_msg_tx_done(adapter))
  375		goto rx_ring_summary;
  376
  377	dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
  378
  379	/* Transmit Descriptor Formats
  380	 *
  381	 * Advanced Transmit Descriptor
  382	 *   +--------------------------------------------------------------+
  383	 * 0 |         Buffer Address [63:0]                                |
  384	 *   +--------------------------------------------------------------+
  385	 * 8 | PAYLEN  | PORTS  |CC|IDX | STA | DCMD  |DTYP|MAC|RSV| DTALEN |
  386	 *   +--------------------------------------------------------------+
  387	 *   63      46 45    40 39 38 36 35 32 31   24             15       0
  388	 */
  389
  390	for (n = 0; n < adapter->num_tx_queues; n++) {
  391		tx_ring = adapter->tx_ring[n];
  392		pr_info("------------------------------------\n");
  393		pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
  394		pr_info("------------------------------------\n");
  395		pr_info("T [desc]     [address 63:0  ] [PlPOCIStDDM Ln] [bi->dma       ] leng  ntw timestamp        bi->skb\n");
  396
  397		for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
  398			const char *next_desc;
  399			struct igb_tx_buffer *buffer_info;
  400			tx_desc = IGB_TX_DESC(tx_ring, i);
  401			buffer_info = &tx_ring->tx_buffer_info[i];
  402			u0 = (struct my_u0 *)tx_desc;
  403			if (i == tx_ring->next_to_use &&
  404			    i == tx_ring->next_to_clean)
  405				next_desc = " NTC/U";
  406			else if (i == tx_ring->next_to_use)
  407				next_desc = " NTU";
  408			else if (i == tx_ring->next_to_clean)
  409				next_desc = " NTC";
  410			else
  411				next_desc = "";
  412
  413			pr_info("T [0x%03X]    %016llX %016llX %016llX %04X  %p %016llX %p%s\n",
  414				i, le64_to_cpu(u0->a),
  415				le64_to_cpu(u0->b),
  416				(u64)dma_unmap_addr(buffer_info, dma),
  417				dma_unmap_len(buffer_info, len),
  418				buffer_info->next_to_watch,
  419				(u64)buffer_info->time_stamp,
  420				buffer_info->skb, next_desc);
  421
  422			if (netif_msg_pktdata(adapter) && buffer_info->skb)
  423				print_hex_dump(KERN_INFO, "",
  424					DUMP_PREFIX_ADDRESS,
  425					16, 1, buffer_info->skb->data,
  426					dma_unmap_len(buffer_info, len),
  427					true);
  428		}
  429	}
  430
  431	/* Print RX Rings Summary */
  432rx_ring_summary:
  433	dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
  434	pr_info("Queue [NTU] [NTC]\n");
  435	for (n = 0; n < adapter->num_rx_queues; n++) {
  436		rx_ring = adapter->rx_ring[n];
  437		pr_info(" %5d %5X %5X\n",
  438			n, rx_ring->next_to_use, rx_ring->next_to_clean);
  439	}
  440
  441	/* Print RX Rings */
  442	if (!netif_msg_rx_status(adapter))
  443		goto exit;
  444
  445	dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
  446
  447	/* Advanced Receive Descriptor (Read) Format
  448	 *    63                                           1        0
  449	 *    +-----------------------------------------------------+
  450	 *  0 |       Packet Buffer Address [63:1]           |A0/NSE|
  451	 *    +----------------------------------------------+------+
  452	 *  8 |       Header Buffer Address [63:1]           |  DD  |
  453	 *    +-----------------------------------------------------+
  454	 *
  455	 *
  456	 * Advanced Receive Descriptor (Write-Back) Format
  457	 *
  458	 *   63       48 47    32 31  30      21 20 17 16   4 3     0
  459	 *   +------------------------------------------------------+
  460	 * 0 | Packet     IP     |SPH| HDR_LEN   | RSV|Packet|  RSS |
  461	 *   | Checksum   Ident  |   |           |    | Type | Type |
  462	 *   +------------------------------------------------------+
  463	 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
  464	 *   +------------------------------------------------------+
  465	 *   63       48 47    32 31            20 19               0
  466	 */
  467
  468	for (n = 0; n < adapter->num_rx_queues; n++) {
  469		rx_ring = adapter->rx_ring[n];
  470		pr_info("------------------------------------\n");
  471		pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
  472		pr_info("------------------------------------\n");
  473		pr_info("R  [desc]      [ PktBuf     A0] [  HeadBuf   DD] [bi->dma       ] [bi->skb] <-- Adv Rx Read format\n");
  474		pr_info("RWB[desc]      [PcsmIpSHl PtRs] [vl er S cks ln] ---------------- [bi->skb] <-- Adv Rx Write-Back format\n");
  475
  476		for (i = 0; i < rx_ring->count; i++) {
  477			const char *next_desc;
  478			struct igb_rx_buffer *buffer_info;
  479			buffer_info = &rx_ring->rx_buffer_info[i];
  480			rx_desc = IGB_RX_DESC(rx_ring, i);
  481			u0 = (struct my_u0 *)rx_desc;
  482			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
  483
  484			if (i == rx_ring->next_to_use)
  485				next_desc = " NTU";
  486			else if (i == rx_ring->next_to_clean)
  487				next_desc = " NTC";
  488			else
  489				next_desc = "";
  490
  491			if (staterr & E1000_RXD_STAT_DD) {
  492				/* Descriptor Done */
  493				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %s\n",
  494					"RWB", i,
  495					le64_to_cpu(u0->a),
  496					le64_to_cpu(u0->b),
  497					next_desc);
  498			} else {
  499				pr_info("%s[0x%03X]     %016llX %016llX %016llX %s\n",
  500					"R  ", i,
  501					le64_to_cpu(u0->a),
  502					le64_to_cpu(u0->b),
  503					(u64)buffer_info->dma,
  504					next_desc);
  505
  506				if (netif_msg_pktdata(adapter) &&
  507				    buffer_info->dma && buffer_info->page) {
  508					print_hex_dump(KERN_INFO, "",
  509					  DUMP_PREFIX_ADDRESS,
  510					  16, 1,
  511					  page_address(buffer_info->page) +
  512						      buffer_info->page_offset,
  513					  igb_rx_bufsz(rx_ring), true);
  514				}
  515			}
  516		}
  517	}
  518
  519exit:
  520	return;
  521}
  522
  523/**
  524 *  igb_get_i2c_data - Reads the I2C SDA data bit
  525 *  @data: opaque pointer to adapter struct
  526 *
  527 *  Returns the I2C data bit value
  528 **/
  529static int igb_get_i2c_data(void *data)
  530{
  531	struct igb_adapter *adapter = (struct igb_adapter *)data;
  532	struct e1000_hw *hw = &adapter->hw;
  533	s32 i2cctl = rd32(E1000_I2CPARAMS);
  534
  535	return !!(i2cctl & E1000_I2C_DATA_IN);
  536}
  537
  538/**
  539 *  igb_set_i2c_data - Sets the I2C data bit
  540 *  @data: pointer to hardware structure
  541 *  @state: I2C data value (0 or 1) to set
  542 *
  543 *  Sets the I2C data bit
  544 **/
  545static void igb_set_i2c_data(void *data, int state)
  546{
  547	struct igb_adapter *adapter = (struct igb_adapter *)data;
  548	struct e1000_hw *hw = &adapter->hw;
  549	s32 i2cctl = rd32(E1000_I2CPARAMS);
  550
  551	if (state) {
  552		i2cctl |= E1000_I2C_DATA_OUT | E1000_I2C_DATA_OE_N;
  553	} else {
  554		i2cctl &= ~E1000_I2C_DATA_OE_N;
  555		i2cctl &= ~E1000_I2C_DATA_OUT;
  556	}
  557
  558	wr32(E1000_I2CPARAMS, i2cctl);
  559	wrfl();
  560}
  561
  562/**
  563 *  igb_set_i2c_clk - Sets the I2C SCL clock
  564 *  @data: pointer to hardware structure
  565 *  @state: state to set clock
  566 *
  567 *  Sets the I2C clock line to state
  568 **/
  569static void igb_set_i2c_clk(void *data, int state)
  570{
  571	struct igb_adapter *adapter = (struct igb_adapter *)data;
  572	struct e1000_hw *hw = &adapter->hw;
  573	s32 i2cctl = rd32(E1000_I2CPARAMS);
  574
  575	if (state) {
  576		i2cctl |= E1000_I2C_CLK_OUT | E1000_I2C_CLK_OE_N;
  577	} else {
  578		i2cctl &= ~E1000_I2C_CLK_OUT;
  579		i2cctl &= ~E1000_I2C_CLK_OE_N;
  580	}
  581	wr32(E1000_I2CPARAMS, i2cctl);
  582	wrfl();
  583}
  584
  585/**
  586 *  igb_get_i2c_clk - Gets the I2C SCL clock state
  587 *  @data: pointer to hardware structure
  588 *
  589 *  Gets the I2C clock state
  590 **/
  591static int igb_get_i2c_clk(void *data)
  592{
  593	struct igb_adapter *adapter = (struct igb_adapter *)data;
  594	struct e1000_hw *hw = &adapter->hw;
  595	s32 i2cctl = rd32(E1000_I2CPARAMS);
  596
  597	return !!(i2cctl & E1000_I2C_CLK_IN);
  598}
  599
  600static const struct i2c_algo_bit_data igb_i2c_algo = {
  601	.setsda		= igb_set_i2c_data,
  602	.setscl		= igb_set_i2c_clk,
  603	.getsda		= igb_get_i2c_data,
  604	.getscl		= igb_get_i2c_clk,
  605	.udelay		= 5,
  606	.timeout	= 20,
  607};
  608
  609/**
  610 *  igb_get_hw_dev - return device
  611 *  @hw: pointer to hardware structure
  612 *
  613 *  used by hardware layer to print debugging information
  614 **/
  615struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
  616{
  617	struct igb_adapter *adapter = hw->back;
  618	return adapter->netdev;
  619}
  620
  621static struct pci_driver igb_driver;
  622
  623/**
  624 *  igb_init_module - Driver Registration Routine
  625 *
  626 *  igb_init_module is the first routine called when the driver is
  627 *  loaded. All it does is register with the PCI subsystem.
  628 **/
  629static int __init igb_init_module(void)
  630{
  631	int ret;
  632
  633	pr_info("%s\n", igb_driver_string);
  634	pr_info("%s\n", igb_copyright);
  635
  636#ifdef CONFIG_IGB_DCA
  637	dca_register_notify(&dca_notifier);
  638#endif
  639	ret = pci_register_driver(&igb_driver);
  640#ifdef CONFIG_IGB_DCA
  641	if (ret)
  642		dca_unregister_notify(&dca_notifier);
  643#endif
  644	return ret;
  645}
  646
  647module_init(igb_init_module);
  648
  649/**
  650 *  igb_exit_module - Driver Exit Cleanup Routine
  651 *
  652 *  igb_exit_module is called just before the driver is removed
  653 *  from memory.
  654 **/
  655static void __exit igb_exit_module(void)
  656{
  657#ifdef CONFIG_IGB_DCA
  658	dca_unregister_notify(&dca_notifier);
  659#endif
  660	pci_unregister_driver(&igb_driver);
  661}
  662
  663module_exit(igb_exit_module);
  664
  665#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
  666/**
  667 *  igb_cache_ring_register - Descriptor ring to register mapping
  668 *  @adapter: board private structure to initialize
  669 *
  670 *  Once we know the feature-set enabled for the device, we'll cache
  671 *  the register offset the descriptor ring is assigned to.
  672 **/
  673static void igb_cache_ring_register(struct igb_adapter *adapter)
  674{
  675	int i = 0, j = 0;
  676	u32 rbase_offset = adapter->vfs_allocated_count;
  677
  678	switch (adapter->hw.mac.type) {
  679	case e1000_82576:
  680		/* The queues are allocated for virtualization such that VF 0
  681		 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
  682		 * In order to avoid collision we start at the first free queue
  683		 * and continue consuming queues in the same sequence
  684		 */
  685		if (adapter->vfs_allocated_count) {
  686			for (; i < adapter->rss_queues; i++)
  687				adapter->rx_ring[i]->reg_idx = rbase_offset +
  688							       Q_IDX_82576(i);
  689		}
  690		fallthrough;
  691	case e1000_82575:
  692	case e1000_82580:
  693	case e1000_i350:
  694	case e1000_i354:
  695	case e1000_i210:
  696	case e1000_i211:
  697	default:
  698		for (; i < adapter->num_rx_queues; i++)
  699			adapter->rx_ring[i]->reg_idx = rbase_offset + i;
  700		for (; j < adapter->num_tx_queues; j++)
  701			adapter->tx_ring[j]->reg_idx = rbase_offset + j;
  702		break;
  703	}
  704}
  705
  706u32 igb_rd32(struct e1000_hw *hw, u32 reg)
  707{
  708	struct igb_adapter *igb = container_of(hw, struct igb_adapter, hw);
  709	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
  710	u32 value = 0;
  711
  712	if (E1000_REMOVED(hw_addr))
  713		return ~value;
  714
  715	value = readl(&hw_addr[reg]);
  716
  717	/* reads should not return all F's */
  718	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
  719		struct net_device *netdev = igb->netdev;
  720		hw->hw_addr = NULL;
  721		netdev_err(netdev, "PCIe link lost\n");
  722		WARN(pci_device_is_present(igb->pdev),
  723		     "igb: Failed to read reg 0x%x!\n", reg);
  724	}
  725
  726	return value;
  727}
  728
  729/**
  730 *  igb_write_ivar - configure ivar for given MSI-X vector
  731 *  @hw: pointer to the HW structure
  732 *  @msix_vector: vector number we are allocating to a given ring
  733 *  @index: row index of IVAR register to write within IVAR table
  734 *  @offset: column offset of in IVAR, should be multiple of 8
  735 *
  736 *  This function is intended to handle the writing of the IVAR register
  737 *  for adapters 82576 and newer.  The IVAR table consists of 2 columns,
  738 *  each containing an cause allocation for an Rx and Tx ring, and a
  739 *  variable number of rows depending on the number of queues supported.
  740 **/
  741static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
  742			   int index, int offset)
  743{
  744	u32 ivar = array_rd32(E1000_IVAR0, index);
  745
  746	/* clear any bits that are currently set */
  747	ivar &= ~((u32)0xFF << offset);
  748
  749	/* write vector and valid bit */
  750	ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
  751
  752	array_wr32(E1000_IVAR0, index, ivar);
  753}
  754
  755#define IGB_N0_QUEUE -1
  756static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
  757{
  758	struct igb_adapter *adapter = q_vector->adapter;
  759	struct e1000_hw *hw = &adapter->hw;
  760	int rx_queue = IGB_N0_QUEUE;
  761	int tx_queue = IGB_N0_QUEUE;
  762	u32 msixbm = 0;
  763
  764	if (q_vector->rx.ring)
  765		rx_queue = q_vector->rx.ring->reg_idx;
  766	if (q_vector->tx.ring)
  767		tx_queue = q_vector->tx.ring->reg_idx;
  768
  769	switch (hw->mac.type) {
  770	case e1000_82575:
  771		/* The 82575 assigns vectors using a bitmask, which matches the
  772		 * bitmask for the EICR/EIMS/EIMC registers.  To assign one
  773		 * or more queues to a vector, we write the appropriate bits
  774		 * into the MSIXBM register for that vector.
  775		 */
  776		if (rx_queue > IGB_N0_QUEUE)
  777			msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
  778		if (tx_queue > IGB_N0_QUEUE)
  779			msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
  780		if (!(adapter->flags & IGB_FLAG_HAS_MSIX) && msix_vector == 0)
  781			msixbm |= E1000_EIMS_OTHER;
  782		array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
  783		q_vector->eims_value = msixbm;
  784		break;
  785	case e1000_82576:
  786		/* 82576 uses a table that essentially consists of 2 columns
  787		 * with 8 rows.  The ordering is column-major so we use the
  788		 * lower 3 bits as the row index, and the 4th bit as the
  789		 * column offset.
  790		 */
  791		if (rx_queue > IGB_N0_QUEUE)
  792			igb_write_ivar(hw, msix_vector,
  793				       rx_queue & 0x7,
  794				       (rx_queue & 0x8) << 1);
  795		if (tx_queue > IGB_N0_QUEUE)
  796			igb_write_ivar(hw, msix_vector,
  797				       tx_queue & 0x7,
  798				       ((tx_queue & 0x8) << 1) + 8);
  799		q_vector->eims_value = BIT(msix_vector);
  800		break;
  801	case e1000_82580:
  802	case e1000_i350:
  803	case e1000_i354:
  804	case e1000_i210:
  805	case e1000_i211:
  806		/* On 82580 and newer adapters the scheme is similar to 82576
  807		 * however instead of ordering column-major we have things
  808		 * ordered row-major.  So we traverse the table by using
  809		 * bit 0 as the column offset, and the remaining bits as the
  810		 * row index.
  811		 */
  812		if (rx_queue > IGB_N0_QUEUE)
  813			igb_write_ivar(hw, msix_vector,
  814				       rx_queue >> 1,
  815				       (rx_queue & 0x1) << 4);
  816		if (tx_queue > IGB_N0_QUEUE)
  817			igb_write_ivar(hw, msix_vector,
  818				       tx_queue >> 1,
  819				       ((tx_queue & 0x1) << 4) + 8);
  820		q_vector->eims_value = BIT(msix_vector);
  821		break;
  822	default:
  823		BUG();
  824		break;
  825	}
  826
  827	/* add q_vector eims value to global eims_enable_mask */
  828	adapter->eims_enable_mask |= q_vector->eims_value;
  829
  830	/* configure q_vector to set itr on first interrupt */
  831	q_vector->set_itr = 1;
  832}
  833
  834/**
  835 *  igb_configure_msix - Configure MSI-X hardware
  836 *  @adapter: board private structure to initialize
  837 *
  838 *  igb_configure_msix sets up the hardware to properly
  839 *  generate MSI-X interrupts.
  840 **/
  841static void igb_configure_msix(struct igb_adapter *adapter)
  842{
  843	u32 tmp;
  844	int i, vector = 0;
  845	struct e1000_hw *hw = &adapter->hw;
  846
  847	adapter->eims_enable_mask = 0;
  848
  849	/* set vector for other causes, i.e. link changes */
  850	switch (hw->mac.type) {
  851	case e1000_82575:
  852		tmp = rd32(E1000_CTRL_EXT);
  853		/* enable MSI-X PBA support*/
  854		tmp |= E1000_CTRL_EXT_PBA_CLR;
  855
  856		/* Auto-Mask interrupts upon ICR read. */
  857		tmp |= E1000_CTRL_EXT_EIAME;
  858		tmp |= E1000_CTRL_EXT_IRCA;
  859
  860		wr32(E1000_CTRL_EXT, tmp);
  861
  862		/* enable msix_other interrupt */
  863		array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
  864		adapter->eims_other = E1000_EIMS_OTHER;
  865
  866		break;
  867
  868	case e1000_82576:
  869	case e1000_82580:
  870	case e1000_i350:
  871	case e1000_i354:
  872	case e1000_i210:
  873	case e1000_i211:
  874		/* Turn on MSI-X capability first, or our settings
  875		 * won't stick.  And it will take days to debug.
  876		 */
  877		wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
  878		     E1000_GPIE_PBA | E1000_GPIE_EIAME |
  879		     E1000_GPIE_NSICR);
  880
  881		/* enable msix_other interrupt */
  882		adapter->eims_other = BIT(vector);
  883		tmp = (vector++ | E1000_IVAR_VALID) << 8;
  884
  885		wr32(E1000_IVAR_MISC, tmp);
  886		break;
  887	default:
  888		/* do nothing, since nothing else supports MSI-X */
  889		break;
  890	} /* switch (hw->mac.type) */
  891
  892	adapter->eims_enable_mask |= adapter->eims_other;
  893
  894	for (i = 0; i < adapter->num_q_vectors; i++)
  895		igb_assign_vector(adapter->q_vector[i], vector++);
  896
  897	wrfl();
  898}
  899
  900/**
  901 *  igb_request_msix - Initialize MSI-X interrupts
  902 *  @adapter: board private structure to initialize
  903 *
  904 *  igb_request_msix allocates MSI-X vectors and requests interrupts from the
  905 *  kernel.
  906 **/
  907static int igb_request_msix(struct igb_adapter *adapter)
  908{
  909	unsigned int num_q_vectors = adapter->num_q_vectors;
  910	struct net_device *netdev = adapter->netdev;
  911	int i, err = 0, vector = 0, free_vector = 0;
  912
  913	err = request_irq(adapter->msix_entries[vector].vector,
  914			  igb_msix_other, 0, netdev->name, adapter);
  915	if (err)
  916		goto err_out;
  917
  918	if (num_q_vectors > MAX_Q_VECTORS) {
  919		num_q_vectors = MAX_Q_VECTORS;
  920		dev_warn(&adapter->pdev->dev,
  921			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
  922			 adapter->num_q_vectors, MAX_Q_VECTORS);
  923	}
  924	for (i = 0; i < num_q_vectors; i++) {
  925		struct igb_q_vector *q_vector = adapter->q_vector[i];
  926
  927		vector++;
  928
  929		q_vector->itr_register = adapter->io_addr + E1000_EITR(vector);
  930
  931		if (q_vector->rx.ring && q_vector->tx.ring)
  932			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
  933				q_vector->rx.ring->queue_index);
  934		else if (q_vector->tx.ring)
  935			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
  936				q_vector->tx.ring->queue_index);
  937		else if (q_vector->rx.ring)
  938			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
  939				q_vector->rx.ring->queue_index);
  940		else
  941			sprintf(q_vector->name, "%s-unused", netdev->name);
  942
  943		err = request_irq(adapter->msix_entries[vector].vector,
  944				  igb_msix_ring, 0, q_vector->name,
  945				  q_vector);
  946		if (err)
  947			goto err_free;
  948	}
  949
  950	igb_configure_msix(adapter);
  951	return 0;
  952
  953err_free:
  954	/* free already assigned IRQs */
  955	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
  956
  957	vector--;
  958	for (i = 0; i < vector; i++) {
  959		free_irq(adapter->msix_entries[free_vector++].vector,
  960			 adapter->q_vector[i]);
  961	}
  962err_out:
  963	return err;
  964}
  965
  966/**
  967 *  igb_free_q_vector - Free memory allocated for specific interrupt vector
  968 *  @adapter: board private structure to initialize
  969 *  @v_idx: Index of vector to be freed
  970 *
  971 *  This function frees the memory allocated to the q_vector.
  972 **/
  973static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
  974{
  975	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  976
  977	adapter->q_vector[v_idx] = NULL;
  978
  979	/* igb_get_stats64() might access the rings on this vector,
  980	 * we must wait a grace period before freeing it.
  981	 */
  982	if (q_vector)
  983		kfree_rcu(q_vector, rcu);
  984}
  985
  986/**
  987 *  igb_reset_q_vector - Reset config for interrupt vector
  988 *  @adapter: board private structure to initialize
  989 *  @v_idx: Index of vector to be reset
  990 *
  991 *  If NAPI is enabled it will delete any references to the
  992 *  NAPI struct. This is preparation for igb_free_q_vector.
  993 **/
  994static void igb_reset_q_vector(struct igb_adapter *adapter, int v_idx)
  995{
  996	struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
  997
  998	/* Coming from igb_set_interrupt_capability, the vectors are not yet
  999	 * allocated. So, q_vector is NULL so we should stop here.
 1000	 */
 1001	if (!q_vector)
 1002		return;
 1003
 1004	if (q_vector->tx.ring)
 1005		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
 1006
 1007	if (q_vector->rx.ring)
 1008		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
 1009
 1010	netif_napi_del(&q_vector->napi);
 1011
 1012}
 1013
 1014static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
 1015{
 1016	int v_idx = adapter->num_q_vectors;
 1017
 1018	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 1019		pci_disable_msix(adapter->pdev);
 1020	else if (adapter->flags & IGB_FLAG_HAS_MSI)
 1021		pci_disable_msi(adapter->pdev);
 1022
 1023	while (v_idx--)
 1024		igb_reset_q_vector(adapter, v_idx);
 1025}
 1026
 1027/**
 1028 *  igb_free_q_vectors - Free memory allocated for interrupt vectors
 1029 *  @adapter: board private structure to initialize
 1030 *
 1031 *  This function frees the memory allocated to the q_vectors.  In addition if
 1032 *  NAPI is enabled it will delete any references to the NAPI struct prior
 1033 *  to freeing the q_vector.
 1034 **/
 1035static void igb_free_q_vectors(struct igb_adapter *adapter)
 1036{
 1037	int v_idx = adapter->num_q_vectors;
 1038
 1039	adapter->num_tx_queues = 0;
 1040	adapter->num_rx_queues = 0;
 1041	adapter->num_q_vectors = 0;
 1042
 1043	while (v_idx--) {
 1044		igb_reset_q_vector(adapter, v_idx);
 1045		igb_free_q_vector(adapter, v_idx);
 1046	}
 1047}
 1048
 1049/**
 1050 *  igb_clear_interrupt_scheme - reset the device to a state of no interrupts
 1051 *  @adapter: board private structure to initialize
 1052 *
 1053 *  This function resets the device so that it has 0 Rx queues, Tx queues, and
 1054 *  MSI-X interrupts allocated.
 1055 */
 1056static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
 1057{
 1058	igb_free_q_vectors(adapter);
 1059	igb_reset_interrupt_capability(adapter);
 1060}
 1061
 1062/**
 1063 *  igb_set_interrupt_capability - set MSI or MSI-X if supported
 1064 *  @adapter: board private structure to initialize
 1065 *  @msix: boolean value of MSIX capability
 1066 *
 1067 *  Attempt to configure interrupts using the best available
 1068 *  capabilities of the hardware and kernel.
 1069 **/
 1070static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
 1071{
 1072	int err;
 1073	int numvecs, i;
 1074
 1075	if (!msix)
 1076		goto msi_only;
 1077	adapter->flags |= IGB_FLAG_HAS_MSIX;
 1078
 1079	/* Number of supported queues. */
 1080	adapter->num_rx_queues = adapter->rss_queues;
 1081	if (adapter->vfs_allocated_count)
 1082		adapter->num_tx_queues = 1;
 1083	else
 1084		adapter->num_tx_queues = adapter->rss_queues;
 1085
 1086	/* start with one vector for every Rx queue */
 1087	numvecs = adapter->num_rx_queues;
 1088
 1089	/* if Tx handler is separate add 1 for every Tx queue */
 1090	if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
 1091		numvecs += adapter->num_tx_queues;
 1092
 1093	/* store the number of vectors reserved for queues */
 1094	adapter->num_q_vectors = numvecs;
 1095
 1096	/* add 1 vector for link status interrupts */
 1097	numvecs++;
 1098	for (i = 0; i < numvecs; i++)
 1099		adapter->msix_entries[i].entry = i;
 1100
 1101	err = pci_enable_msix_range(adapter->pdev,
 1102				    adapter->msix_entries,
 1103				    numvecs,
 1104				    numvecs);
 1105	if (err > 0)
 1106		return;
 1107
 1108	igb_reset_interrupt_capability(adapter);
 1109
 1110	/* If we can't do MSI-X, try MSI */
 1111msi_only:
 1112	adapter->flags &= ~IGB_FLAG_HAS_MSIX;
 1113#ifdef CONFIG_PCI_IOV
 1114	/* disable SR-IOV for non MSI-X configurations */
 1115	if (adapter->vf_data) {
 1116		struct e1000_hw *hw = &adapter->hw;
 1117		/* disable iov and allow time for transactions to clear */
 1118		pci_disable_sriov(adapter->pdev);
 1119		msleep(500);
 1120
 1121		kfree(adapter->vf_mac_list);
 1122		adapter->vf_mac_list = NULL;
 1123		kfree(adapter->vf_data);
 1124		adapter->vf_data = NULL;
 1125		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 1126		wrfl();
 1127		msleep(100);
 1128		dev_info(&adapter->pdev->dev, "IOV Disabled\n");
 1129	}
 1130#endif
 1131	adapter->vfs_allocated_count = 0;
 1132	adapter->rss_queues = 1;
 1133	adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 1134	adapter->num_rx_queues = 1;
 1135	adapter->num_tx_queues = 1;
 1136	adapter->num_q_vectors = 1;
 1137	if (!pci_enable_msi(adapter->pdev))
 1138		adapter->flags |= IGB_FLAG_HAS_MSI;
 1139}
 1140
 1141static void igb_add_ring(struct igb_ring *ring,
 1142			 struct igb_ring_container *head)
 1143{
 1144	head->ring = ring;
 1145	head->count++;
 1146}
 1147
 1148/**
 1149 *  igb_alloc_q_vector - Allocate memory for a single interrupt vector
 1150 *  @adapter: board private structure to initialize
 1151 *  @v_count: q_vectors allocated on adapter, used for ring interleaving
 1152 *  @v_idx: index of vector in adapter struct
 1153 *  @txr_count: total number of Tx rings to allocate
 1154 *  @txr_idx: index of first Tx ring to allocate
 1155 *  @rxr_count: total number of Rx rings to allocate
 1156 *  @rxr_idx: index of first Rx ring to allocate
 1157 *
 1158 *  We allocate one q_vector.  If allocation fails we return -ENOMEM.
 1159 **/
 1160static int igb_alloc_q_vector(struct igb_adapter *adapter,
 1161			      int v_count, int v_idx,
 1162			      int txr_count, int txr_idx,
 1163			      int rxr_count, int rxr_idx)
 1164{
 1165	struct igb_q_vector *q_vector;
 1166	struct igb_ring *ring;
 1167	int ring_count;
 1168	size_t size;
 1169
 1170	/* igb only supports 1 Tx and/or 1 Rx queue per vector */
 1171	if (txr_count > 1 || rxr_count > 1)
 1172		return -ENOMEM;
 1173
 1174	ring_count = txr_count + rxr_count;
 1175	size = kmalloc_size_roundup(struct_size(q_vector, ring, ring_count));
 1176
 1177	/* allocate q_vector and rings */
 1178	q_vector = adapter->q_vector[v_idx];
 1179	if (!q_vector) {
 1180		q_vector = kzalloc(size, GFP_KERNEL);
 1181	} else if (size > ksize(q_vector)) {
 1182		struct igb_q_vector *new_q_vector;
 1183
 1184		new_q_vector = kzalloc(size, GFP_KERNEL);
 1185		if (new_q_vector)
 1186			kfree_rcu(q_vector, rcu);
 1187		q_vector = new_q_vector;
 1188	} else {
 1189		memset(q_vector, 0, size);
 1190	}
 1191	if (!q_vector)
 1192		return -ENOMEM;
 1193
 1194	/* initialize NAPI */
 1195	netif_napi_add(adapter->netdev, &q_vector->napi, igb_poll);
 1196
 1197	/* tie q_vector and adapter together */
 1198	adapter->q_vector[v_idx] = q_vector;
 1199	q_vector->adapter = adapter;
 1200
 1201	/* initialize work limits */
 1202	q_vector->tx.work_limit = adapter->tx_work_limit;
 1203
 1204	/* initialize ITR configuration */
 1205	q_vector->itr_register = adapter->io_addr + E1000_EITR(0);
 1206	q_vector->itr_val = IGB_START_ITR;
 1207
 1208	/* initialize pointer to rings */
 1209	ring = q_vector->ring;
 1210
 1211	/* initialize ITR */
 1212	if (rxr_count) {
 1213		/* rx or rx/tx vector */
 1214		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
 1215			q_vector->itr_val = adapter->rx_itr_setting;
 1216	} else {
 1217		/* tx only vector */
 1218		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
 1219			q_vector->itr_val = adapter->tx_itr_setting;
 1220	}
 1221
 1222	if (txr_count) {
 1223		/* assign generic ring traits */
 1224		ring->dev = &adapter->pdev->dev;
 1225		ring->netdev = adapter->netdev;
 1226
 1227		/* configure backlink on ring */
 1228		ring->q_vector = q_vector;
 1229
 1230		/* update q_vector Tx values */
 1231		igb_add_ring(ring, &q_vector->tx);
 1232
 1233		/* For 82575, context index must be unique per ring. */
 1234		if (adapter->hw.mac.type == e1000_82575)
 1235			set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
 1236
 1237		/* apply Tx specific ring traits */
 1238		ring->count = adapter->tx_ring_count;
 1239		ring->queue_index = txr_idx;
 1240
 1241		ring->cbs_enable = false;
 1242		ring->idleslope = 0;
 1243		ring->sendslope = 0;
 1244		ring->hicredit = 0;
 1245		ring->locredit = 0;
 1246
 1247		u64_stats_init(&ring->tx_syncp);
 1248		u64_stats_init(&ring->tx_syncp2);
 1249
 1250		/* assign ring to adapter */
 1251		adapter->tx_ring[txr_idx] = ring;
 1252
 1253		/* push pointer to next ring */
 1254		ring++;
 1255	}
 1256
 1257	if (rxr_count) {
 1258		/* assign generic ring traits */
 1259		ring->dev = &adapter->pdev->dev;
 1260		ring->netdev = adapter->netdev;
 1261
 1262		/* configure backlink on ring */
 1263		ring->q_vector = q_vector;
 1264
 1265		/* update q_vector Rx values */
 1266		igb_add_ring(ring, &q_vector->rx);
 1267
 1268		/* set flag indicating ring supports SCTP checksum offload */
 1269		if (adapter->hw.mac.type >= e1000_82576)
 1270			set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
 1271
 1272		/* On i350, i354, i210, and i211, loopback VLAN packets
 1273		 * have the tag byte-swapped.
 1274		 */
 1275		if (adapter->hw.mac.type >= e1000_i350)
 1276			set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
 1277
 1278		/* apply Rx specific ring traits */
 1279		ring->count = adapter->rx_ring_count;
 1280		ring->queue_index = rxr_idx;
 1281
 1282		u64_stats_init(&ring->rx_syncp);
 1283
 1284		/* assign ring to adapter */
 1285		adapter->rx_ring[rxr_idx] = ring;
 1286	}
 1287
 1288	return 0;
 1289}
 1290
 1291
 1292/**
 1293 *  igb_alloc_q_vectors - Allocate memory for interrupt vectors
 1294 *  @adapter: board private structure to initialize
 1295 *
 1296 *  We allocate one q_vector per queue interrupt.  If allocation fails we
 1297 *  return -ENOMEM.
 1298 **/
 1299static int igb_alloc_q_vectors(struct igb_adapter *adapter)
 1300{
 1301	int q_vectors = adapter->num_q_vectors;
 1302	int rxr_remaining = adapter->num_rx_queues;
 1303	int txr_remaining = adapter->num_tx_queues;
 1304	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
 1305	int err;
 1306
 1307	if (q_vectors >= (rxr_remaining + txr_remaining)) {
 1308		for (; rxr_remaining; v_idx++) {
 1309			err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1310						 0, 0, 1, rxr_idx);
 1311
 1312			if (err)
 1313				goto err_out;
 1314
 1315			/* update counts and index */
 1316			rxr_remaining--;
 1317			rxr_idx++;
 1318		}
 1319	}
 1320
 1321	for (; v_idx < q_vectors; v_idx++) {
 1322		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
 1323		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
 1324
 1325		err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
 1326					 tqpv, txr_idx, rqpv, rxr_idx);
 1327
 1328		if (err)
 1329			goto err_out;
 1330
 1331		/* update counts and index */
 1332		rxr_remaining -= rqpv;
 1333		txr_remaining -= tqpv;
 1334		rxr_idx++;
 1335		txr_idx++;
 1336	}
 1337
 1338	return 0;
 1339
 1340err_out:
 1341	adapter->num_tx_queues = 0;
 1342	adapter->num_rx_queues = 0;
 1343	adapter->num_q_vectors = 0;
 1344
 1345	while (v_idx--)
 1346		igb_free_q_vector(adapter, v_idx);
 1347
 1348	return -ENOMEM;
 1349}
 1350
 1351/**
 1352 *  igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
 1353 *  @adapter: board private structure to initialize
 1354 *  @msix: boolean value of MSIX capability
 1355 *
 1356 *  This function initializes the interrupts and allocates all of the queues.
 1357 **/
 1358static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
 1359{
 1360	struct pci_dev *pdev = adapter->pdev;
 1361	int err;
 1362
 1363	igb_set_interrupt_capability(adapter, msix);
 1364
 1365	err = igb_alloc_q_vectors(adapter);
 1366	if (err) {
 1367		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
 1368		goto err_alloc_q_vectors;
 1369	}
 1370
 1371	igb_cache_ring_register(adapter);
 1372
 1373	return 0;
 1374
 1375err_alloc_q_vectors:
 1376	igb_reset_interrupt_capability(adapter);
 1377	return err;
 1378}
 1379
 1380/**
 1381 *  igb_request_irq - initialize interrupts
 1382 *  @adapter: board private structure to initialize
 1383 *
 1384 *  Attempts to configure interrupts using the best available
 1385 *  capabilities of the hardware and kernel.
 1386 **/
 1387static int igb_request_irq(struct igb_adapter *adapter)
 1388{
 1389	struct net_device *netdev = adapter->netdev;
 1390	struct pci_dev *pdev = adapter->pdev;
 1391	int err = 0;
 1392
 1393	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1394		err = igb_request_msix(adapter);
 1395		if (!err)
 1396			goto request_done;
 1397		/* fall back to MSI */
 1398		igb_free_all_tx_resources(adapter);
 1399		igb_free_all_rx_resources(adapter);
 1400
 1401		igb_clear_interrupt_scheme(adapter);
 1402		err = igb_init_interrupt_scheme(adapter, false);
 1403		if (err)
 1404			goto request_done;
 1405
 1406		igb_setup_all_tx_resources(adapter);
 1407		igb_setup_all_rx_resources(adapter);
 1408		igb_configure(adapter);
 1409	}
 1410
 1411	igb_assign_vector(adapter->q_vector[0], 0);
 1412
 1413	if (adapter->flags & IGB_FLAG_HAS_MSI) {
 1414		err = request_irq(pdev->irq, igb_intr_msi, 0,
 1415				  netdev->name, adapter);
 1416		if (!err)
 1417			goto request_done;
 1418
 1419		/* fall back to legacy interrupts */
 1420		igb_reset_interrupt_capability(adapter);
 1421		adapter->flags &= ~IGB_FLAG_HAS_MSI;
 1422	}
 1423
 1424	err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
 1425			  netdev->name, adapter);
 1426
 1427	if (err)
 1428		dev_err(&pdev->dev, "Error %d getting interrupt\n",
 1429			err);
 1430
 1431request_done:
 1432	return err;
 1433}
 1434
 1435static void igb_free_irq(struct igb_adapter *adapter)
 1436{
 1437	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1438		int vector = 0, i;
 1439
 1440		free_irq(adapter->msix_entries[vector++].vector, adapter);
 1441
 1442		for (i = 0; i < adapter->num_q_vectors; i++)
 1443			free_irq(adapter->msix_entries[vector++].vector,
 1444				 adapter->q_vector[i]);
 1445	} else {
 1446		free_irq(adapter->pdev->irq, adapter);
 1447	}
 1448}
 1449
 1450/**
 1451 *  igb_irq_disable - Mask off interrupt generation on the NIC
 1452 *  @adapter: board private structure
 1453 **/
 1454static void igb_irq_disable(struct igb_adapter *adapter)
 1455{
 1456	struct e1000_hw *hw = &adapter->hw;
 1457
 1458	/* we need to be careful when disabling interrupts.  The VFs are also
 1459	 * mapped into these registers and so clearing the bits can cause
 1460	 * issues on the VF drivers so we only need to clear what we set
 1461	 */
 1462	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1463		u32 regval = rd32(E1000_EIAM);
 1464
 1465		wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
 1466		wr32(E1000_EIMC, adapter->eims_enable_mask);
 1467		regval = rd32(E1000_EIAC);
 1468		wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
 1469	}
 1470
 1471	wr32(E1000_IAM, 0);
 1472	wr32(E1000_IMC, ~0);
 1473	wrfl();
 1474	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1475		int i;
 1476
 1477		for (i = 0; i < adapter->num_q_vectors; i++)
 1478			synchronize_irq(adapter->msix_entries[i].vector);
 1479	} else {
 1480		synchronize_irq(adapter->pdev->irq);
 1481	}
 1482}
 1483
 1484/**
 1485 *  igb_irq_enable - Enable default interrupt generation settings
 1486 *  @adapter: board private structure
 1487 **/
 1488static void igb_irq_enable(struct igb_adapter *adapter)
 1489{
 1490	struct e1000_hw *hw = &adapter->hw;
 1491
 1492	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 1493		u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
 1494		u32 regval = rd32(E1000_EIAC);
 1495
 1496		wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
 1497		regval = rd32(E1000_EIAM);
 1498		wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
 1499		wr32(E1000_EIMS, adapter->eims_enable_mask);
 1500		if (adapter->vfs_allocated_count) {
 1501			wr32(E1000_MBVFIMR, 0xFF);
 1502			ims |= E1000_IMS_VMMB;
 1503		}
 1504		wr32(E1000_IMS, ims);
 1505	} else {
 1506		wr32(E1000_IMS, IMS_ENABLE_MASK |
 1507				E1000_IMS_DRSTA);
 1508		wr32(E1000_IAM, IMS_ENABLE_MASK |
 1509				E1000_IMS_DRSTA);
 1510	}
 1511}
 1512
 1513static void igb_update_mng_vlan(struct igb_adapter *adapter)
 1514{
 1515	struct e1000_hw *hw = &adapter->hw;
 1516	u16 pf_id = adapter->vfs_allocated_count;
 1517	u16 vid = adapter->hw.mng_cookie.vlan_id;
 1518	u16 old_vid = adapter->mng_vlan_id;
 1519
 1520	if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
 1521		/* add VID to filter table */
 1522		igb_vfta_set(hw, vid, pf_id, true, true);
 1523		adapter->mng_vlan_id = vid;
 1524	} else {
 1525		adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
 1526	}
 1527
 1528	if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
 1529	    (vid != old_vid) &&
 1530	    !test_bit(old_vid, adapter->active_vlans)) {
 1531		/* remove VID from filter table */
 1532		igb_vfta_set(hw, vid, pf_id, false, true);
 1533	}
 1534}
 1535
 1536/**
 1537 *  igb_release_hw_control - release control of the h/w to f/w
 1538 *  @adapter: address of board private structure
 1539 *
 1540 *  igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 1541 *  For ASF and Pass Through versions of f/w this means that the
 1542 *  driver is no longer loaded.
 1543 **/
 1544static void igb_release_hw_control(struct igb_adapter *adapter)
 1545{
 1546	struct e1000_hw *hw = &adapter->hw;
 1547	u32 ctrl_ext;
 1548
 1549	/* Let firmware take over control of h/w */
 1550	ctrl_ext = rd32(E1000_CTRL_EXT);
 1551	wr32(E1000_CTRL_EXT,
 1552			ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
 1553}
 1554
 1555/**
 1556 *  igb_get_hw_control - get control of the h/w from f/w
 1557 *  @adapter: address of board private structure
 1558 *
 1559 *  igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 1560 *  For ASF and Pass Through versions of f/w this means that
 1561 *  the driver is loaded.
 1562 **/
 1563static void igb_get_hw_control(struct igb_adapter *adapter)
 1564{
 1565	struct e1000_hw *hw = &adapter->hw;
 1566	u32 ctrl_ext;
 1567
 1568	/* Let firmware know the driver has taken over */
 1569	ctrl_ext = rd32(E1000_CTRL_EXT);
 1570	wr32(E1000_CTRL_EXT,
 1571			ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
 1572}
 1573
 1574static void enable_fqtss(struct igb_adapter *adapter, bool enable)
 1575{
 1576	struct net_device *netdev = adapter->netdev;
 1577	struct e1000_hw *hw = &adapter->hw;
 1578
 1579	WARN_ON(hw->mac.type != e1000_i210);
 1580
 1581	if (enable)
 1582		adapter->flags |= IGB_FLAG_FQTSS;
 1583	else
 1584		adapter->flags &= ~IGB_FLAG_FQTSS;
 1585
 1586	if (netif_running(netdev))
 1587		schedule_work(&adapter->reset_task);
 1588}
 1589
 1590static bool is_fqtss_enabled(struct igb_adapter *adapter)
 1591{
 1592	return (adapter->flags & IGB_FLAG_FQTSS) ? true : false;
 1593}
 1594
 1595static void set_tx_desc_fetch_prio(struct e1000_hw *hw, int queue,
 1596				   enum tx_queue_prio prio)
 1597{
 1598	u32 val;
 1599
 1600	WARN_ON(hw->mac.type != e1000_i210);
 1601	WARN_ON(queue < 0 || queue > 4);
 1602
 1603	val = rd32(E1000_I210_TXDCTL(queue));
 1604
 1605	if (prio == TX_QUEUE_PRIO_HIGH)
 1606		val |= E1000_TXDCTL_PRIORITY;
 1607	else
 1608		val &= ~E1000_TXDCTL_PRIORITY;
 1609
 1610	wr32(E1000_I210_TXDCTL(queue), val);
 1611}
 1612
 1613static void set_queue_mode(struct e1000_hw *hw, int queue, enum queue_mode mode)
 1614{
 1615	u32 val;
 1616
 1617	WARN_ON(hw->mac.type != e1000_i210);
 1618	WARN_ON(queue < 0 || queue > 1);
 1619
 1620	val = rd32(E1000_I210_TQAVCC(queue));
 1621
 1622	if (mode == QUEUE_MODE_STREAM_RESERVATION)
 1623		val |= E1000_TQAVCC_QUEUEMODE;
 1624	else
 1625		val &= ~E1000_TQAVCC_QUEUEMODE;
 1626
 1627	wr32(E1000_I210_TQAVCC(queue), val);
 1628}
 1629
 1630static bool is_any_cbs_enabled(struct igb_adapter *adapter)
 1631{
 1632	int i;
 1633
 1634	for (i = 0; i < adapter->num_tx_queues; i++) {
 1635		if (adapter->tx_ring[i]->cbs_enable)
 1636			return true;
 1637	}
 1638
 1639	return false;
 1640}
 1641
 1642static bool is_any_txtime_enabled(struct igb_adapter *adapter)
 1643{
 1644	int i;
 1645
 1646	for (i = 0; i < adapter->num_tx_queues; i++) {
 1647		if (adapter->tx_ring[i]->launchtime_enable)
 1648			return true;
 1649	}
 1650
 1651	return false;
 1652}
 1653
 1654/**
 1655 *  igb_config_tx_modes - Configure "Qav Tx mode" features on igb
 1656 *  @adapter: pointer to adapter struct
 1657 *  @queue: queue number
 1658 *
 1659 *  Configure CBS and Launchtime for a given hardware queue.
 1660 *  Parameters are retrieved from the correct Tx ring, so
 1661 *  igb_save_cbs_params() and igb_save_txtime_params() should be used
 1662 *  for setting those correctly prior to this function being called.
 1663 **/
 1664static void igb_config_tx_modes(struct igb_adapter *adapter, int queue)
 1665{
 1666	struct net_device *netdev = adapter->netdev;
 1667	struct e1000_hw *hw = &adapter->hw;
 1668	struct igb_ring *ring;
 1669	u32 tqavcc, tqavctrl;
 1670	u16 value;
 1671
 1672	WARN_ON(hw->mac.type != e1000_i210);
 1673	WARN_ON(queue < 0 || queue > 1);
 1674	ring = adapter->tx_ring[queue];
 1675
 1676	/* If any of the Qav features is enabled, configure queues as SR and
 1677	 * with HIGH PRIO. If none is, then configure them with LOW PRIO and
 1678	 * as SP.
 1679	 */
 1680	if (ring->cbs_enable || ring->launchtime_enable) {
 1681		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_HIGH);
 1682		set_queue_mode(hw, queue, QUEUE_MODE_STREAM_RESERVATION);
 1683	} else {
 1684		set_tx_desc_fetch_prio(hw, queue, TX_QUEUE_PRIO_LOW);
 1685		set_queue_mode(hw, queue, QUEUE_MODE_STRICT_PRIORITY);
 1686	}
 1687
 1688	/* If CBS is enabled, set DataTranARB and config its parameters. */
 1689	if (ring->cbs_enable || queue == 0) {
 1690		/* i210 does not allow the queue 0 to be in the Strict
 1691		 * Priority mode while the Qav mode is enabled, so,
 1692		 * instead of disabling strict priority mode, we give
 1693		 * queue 0 the maximum of credits possible.
 1694		 *
 1695		 * See section 8.12.19 of the i210 datasheet, "Note:
 1696		 * Queue0 QueueMode must be set to 1b when
 1697		 * TransmitMode is set to Qav."
 1698		 */
 1699		if (queue == 0 && !ring->cbs_enable) {
 1700			/* max "linkspeed" idleslope in kbps */
 1701			ring->idleslope = 1000000;
 1702			ring->hicredit = ETH_FRAME_LEN;
 1703		}
 1704
 1705		/* Always set data transfer arbitration to credit-based
 1706		 * shaper algorithm on TQAVCTRL if CBS is enabled for any of
 1707		 * the queues.
 1708		 */
 1709		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1710		tqavctrl |= E1000_TQAVCTRL_DATATRANARB;
 1711		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1712
 1713		/* According to i210 datasheet section 7.2.7.7, we should set
 1714		 * the 'idleSlope' field from TQAVCC register following the
 1715		 * equation:
 1716		 *
 1717		 * For 100 Mbps link speed:
 1718		 *
 1719		 *     value = BW * 0x7735 * 0.2                          (E1)
 1720		 *
 1721		 * For 1000Mbps link speed:
 1722		 *
 1723		 *     value = BW * 0x7735 * 2                            (E2)
 1724		 *
 1725		 * E1 and E2 can be merged into one equation as shown below.
 1726		 * Note that 'link-speed' is in Mbps.
 1727		 *
 1728		 *     value = BW * 0x7735 * 2 * link-speed
 1729		 *                           --------------               (E3)
 1730		 *                                1000
 1731		 *
 1732		 * 'BW' is the percentage bandwidth out of full link speed
 1733		 * which can be found with the following equation. Note that
 1734		 * idleSlope here is the parameter from this function which
 1735		 * is in kbps.
 1736		 *
 1737		 *     BW =     idleSlope
 1738		 *          -----------------                             (E4)
 1739		 *          link-speed * 1000
 1740		 *
 1741		 * That said, we can come up with a generic equation to
 1742		 * calculate the value we should set it TQAVCC register by
 1743		 * replacing 'BW' in E3 by E4. The resulting equation is:
 1744		 *
 1745		 * value =     idleSlope     * 0x7735 * 2 * link-speed
 1746		 *         -----------------            --------------    (E5)
 1747		 *         link-speed * 1000                 1000
 1748		 *
 1749		 * 'link-speed' is present in both sides of the fraction so
 1750		 * it is canceled out. The final equation is the following:
 1751		 *
 1752		 *     value = idleSlope * 61034
 1753		 *             -----------------                          (E6)
 1754		 *                  1000000
 1755		 *
 1756		 * NOTE: For i210, given the above, we can see that idleslope
 1757		 *       is represented in 16.38431 kbps units by the value at
 1758		 *       the TQAVCC register (1Gbps / 61034), which reduces
 1759		 *       the granularity for idleslope increments.
 1760		 *       For instance, if you want to configure a 2576kbps
 1761		 *       idleslope, the value to be written on the register
 1762		 *       would have to be 157.23. If rounded down, you end
 1763		 *       up with less bandwidth available than originally
 1764		 *       required (~2572 kbps). If rounded up, you end up
 1765		 *       with a higher bandwidth (~2589 kbps). Below the
 1766		 *       approach we take is to always round up the
 1767		 *       calculated value, so the resulting bandwidth might
 1768		 *       be slightly higher for some configurations.
 1769		 */
 1770		value = DIV_ROUND_UP_ULL(ring->idleslope * 61034ULL, 1000000);
 1771
 1772		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1773		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1774		tqavcc |= value;
 1775		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1776
 1777		wr32(E1000_I210_TQAVHC(queue),
 1778		     0x80000000 + ring->hicredit * 0x7735);
 1779	} else {
 1780
 1781		/* Set idleSlope to zero. */
 1782		tqavcc = rd32(E1000_I210_TQAVCC(queue));
 1783		tqavcc &= ~E1000_TQAVCC_IDLESLOPE_MASK;
 1784		wr32(E1000_I210_TQAVCC(queue), tqavcc);
 1785
 1786		/* Set hiCredit to zero. */
 1787		wr32(E1000_I210_TQAVHC(queue), 0);
 1788
 1789		/* If CBS is not enabled for any queues anymore, then return to
 1790		 * the default state of Data Transmission Arbitration on
 1791		 * TQAVCTRL.
 1792		 */
 1793		if (!is_any_cbs_enabled(adapter)) {
 1794			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1795			tqavctrl &= ~E1000_TQAVCTRL_DATATRANARB;
 1796			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1797		}
 1798	}
 1799
 1800	/* If LaunchTime is enabled, set DataTranTIM. */
 1801	if (ring->launchtime_enable) {
 1802		/* Always set DataTranTIM on TQAVCTRL if LaunchTime is enabled
 1803		 * for any of the SR queues, and configure fetchtime delta.
 1804		 * XXX NOTE:
 1805		 *     - LaunchTime will be enabled for all SR queues.
 1806		 *     - A fixed offset can be added relative to the launch
 1807		 *       time of all packets if configured at reg LAUNCH_OS0.
 1808		 *       We are keeping it as 0 for now (default value).
 1809		 */
 1810		tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1811		tqavctrl |= E1000_TQAVCTRL_DATATRANTIM |
 1812		       E1000_TQAVCTRL_FETCHTIME_DELTA;
 1813		wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1814	} else {
 1815		/* If Launchtime is not enabled for any SR queues anymore,
 1816		 * then clear DataTranTIM on TQAVCTRL and clear fetchtime delta,
 1817		 * effectively disabling Launchtime.
 1818		 */
 1819		if (!is_any_txtime_enabled(adapter)) {
 1820			tqavctrl = rd32(E1000_I210_TQAVCTRL);
 1821			tqavctrl &= ~E1000_TQAVCTRL_DATATRANTIM;
 1822			tqavctrl &= ~E1000_TQAVCTRL_FETCHTIME_DELTA;
 1823			wr32(E1000_I210_TQAVCTRL, tqavctrl);
 1824		}
 1825	}
 1826
 1827	/* XXX: In i210 controller the sendSlope and loCredit parameters from
 1828	 * CBS are not configurable by software so we don't do any 'controller
 1829	 * configuration' in respect to these parameters.
 1830	 */
 1831
 1832	netdev_dbg(netdev, "Qav Tx mode: cbs %s, launchtime %s, queue %d idleslope %d sendslope %d hiCredit %d locredit %d\n",
 1833		   ring->cbs_enable ? "enabled" : "disabled",
 1834		   ring->launchtime_enable ? "enabled" : "disabled",
 1835		   queue,
 1836		   ring->idleslope, ring->sendslope,
 1837		   ring->hicredit, ring->locredit);
 1838}
 1839
 1840static int igb_save_txtime_params(struct igb_adapter *adapter, int queue,
 1841				  bool enable)
 1842{
 1843	struct igb_ring *ring;
 1844
 1845	if (queue < 0 || queue > adapter->num_tx_queues)
 1846		return -EINVAL;
 1847
 1848	ring = adapter->tx_ring[queue];
 1849	ring->launchtime_enable = enable;
 1850
 1851	return 0;
 1852}
 1853
 1854static int igb_save_cbs_params(struct igb_adapter *adapter, int queue,
 1855			       bool enable, int idleslope, int sendslope,
 1856			       int hicredit, int locredit)
 1857{
 1858	struct igb_ring *ring;
 1859
 1860	if (queue < 0 || queue > adapter->num_tx_queues)
 1861		return -EINVAL;
 1862
 1863	ring = adapter->tx_ring[queue];
 1864
 1865	ring->cbs_enable = enable;
 1866	ring->idleslope = idleslope;
 1867	ring->sendslope = sendslope;
 1868	ring->hicredit = hicredit;
 1869	ring->locredit = locredit;
 1870
 1871	return 0;
 1872}
 1873
 1874/**
 1875 *  igb_setup_tx_mode - Switch to/from Qav Tx mode when applicable
 1876 *  @adapter: pointer to adapter struct
 1877 *
 1878 *  Configure TQAVCTRL register switching the controller's Tx mode
 1879 *  if FQTSS mode is enabled or disabled. Additionally, will issue
 1880 *  a call to igb_config_tx_modes() per queue so any previously saved
 1881 *  Tx parameters are applied.
 1882 **/
 1883static void igb_setup_tx_mode(struct igb_adapter *adapter)
 1884{
 1885	struct net_device *netdev = adapter->netdev;
 1886	struct e1000_hw *hw = &adapter->hw;
 1887	u32 val;
 1888
 1889	/* Only i210 controller supports changing the transmission mode. */
 1890	if (hw->mac.type != e1000_i210)
 1891		return;
 1892
 1893	if (is_fqtss_enabled(adapter)) {
 1894		int i, max_queue;
 1895
 1896		/* Configure TQAVCTRL register: set transmit mode to 'Qav',
 1897		 * set data fetch arbitration to 'round robin', set SP_WAIT_SR
 1898		 * so SP queues wait for SR ones.
 1899		 */
 1900		val = rd32(E1000_I210_TQAVCTRL);
 1901		val |= E1000_TQAVCTRL_XMIT_MODE | E1000_TQAVCTRL_SP_WAIT_SR;
 1902		val &= ~E1000_TQAVCTRL_DATAFETCHARB;
 1903		wr32(E1000_I210_TQAVCTRL, val);
 1904
 1905		/* Configure Tx and Rx packet buffers sizes as described in
 1906		 * i210 datasheet section 7.2.7.7.
 1907		 */
 1908		val = rd32(E1000_TXPBS);
 1909		val &= ~I210_TXPBSIZE_MASK;
 1910		val |= I210_TXPBSIZE_PB0_6KB | I210_TXPBSIZE_PB1_6KB |
 1911			I210_TXPBSIZE_PB2_6KB | I210_TXPBSIZE_PB3_6KB;
 1912		wr32(E1000_TXPBS, val);
 1913
 1914		val = rd32(E1000_RXPBS);
 1915		val &= ~I210_RXPBSIZE_MASK;
 1916		val |= I210_RXPBSIZE_PB_30KB;
 1917		wr32(E1000_RXPBS, val);
 1918
 1919		/* Section 8.12.9 states that MAX_TPKT_SIZE from DTXMXPKTSZ
 1920		 * register should not exceed the buffer size programmed in
 1921		 * TXPBS. The smallest buffer size programmed in TXPBS is 4kB
 1922		 * so according to the datasheet we should set MAX_TPKT_SIZE to
 1923		 * 4kB / 64.
 1924		 *
 1925		 * However, when we do so, no frame from queue 2 and 3 are
 1926		 * transmitted.  It seems the MAX_TPKT_SIZE should not be great
 1927		 * or _equal_ to the buffer size programmed in TXPBS. For this
 1928		 * reason, we set MAX_ TPKT_SIZE to (4kB - 1) / 64.
 1929		 */
 1930		val = (4096 - 1) / 64;
 1931		wr32(E1000_I210_DTXMXPKTSZ, val);
 1932
 1933		/* Since FQTSS mode is enabled, apply any CBS configuration
 1934		 * previously set. If no previous CBS configuration has been
 1935		 * done, then the initial configuration is applied, which means
 1936		 * CBS is disabled.
 1937		 */
 1938		max_queue = (adapter->num_tx_queues < I210_SR_QUEUES_NUM) ?
 1939			    adapter->num_tx_queues : I210_SR_QUEUES_NUM;
 1940
 1941		for (i = 0; i < max_queue; i++) {
 1942			igb_config_tx_modes(adapter, i);
 1943		}
 1944	} else {
 1945		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 1946		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 1947		wr32(E1000_I210_DTXMXPKTSZ, I210_DTXMXPKTSZ_DEFAULT);
 1948
 1949		val = rd32(E1000_I210_TQAVCTRL);
 1950		/* According to Section 8.12.21, the other flags we've set when
 1951		 * enabling FQTSS are not relevant when disabling FQTSS so we
 1952		 * don't set they here.
 1953		 */
 1954		val &= ~E1000_TQAVCTRL_XMIT_MODE;
 1955		wr32(E1000_I210_TQAVCTRL, val);
 1956	}
 1957
 1958	netdev_dbg(netdev, "FQTSS %s\n", (is_fqtss_enabled(adapter)) ?
 1959		   "enabled" : "disabled");
 1960}
 1961
 1962/**
 1963 *  igb_configure - configure the hardware for RX and TX
 1964 *  @adapter: private board structure
 1965 **/
 1966static void igb_configure(struct igb_adapter *adapter)
 1967{
 1968	struct net_device *netdev = adapter->netdev;
 1969	int i;
 1970
 1971	igb_get_hw_control(adapter);
 1972	igb_set_rx_mode(netdev);
 1973	igb_setup_tx_mode(adapter);
 1974
 1975	igb_restore_vlan(adapter);
 1976
 1977	igb_setup_tctl(adapter);
 1978	igb_setup_mrqc(adapter);
 1979	igb_setup_rctl(adapter);
 1980
 1981	igb_nfc_filter_restore(adapter);
 1982	igb_configure_tx(adapter);
 1983	igb_configure_rx(adapter);
 1984
 1985	igb_rx_fifo_flush_82575(&adapter->hw);
 1986
 1987	/* call igb_desc_unused which always leaves
 1988	 * at least 1 descriptor unused to make sure
 1989	 * next_to_use != next_to_clean
 1990	 */
 1991	for (i = 0; i < adapter->num_rx_queues; i++) {
 1992		struct igb_ring *ring = adapter->rx_ring[i];
 1993		igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
 1994	}
 1995}
 1996
 1997/**
 1998 *  igb_power_up_link - Power up the phy/serdes link
 1999 *  @adapter: address of board private structure
 2000 **/
 2001void igb_power_up_link(struct igb_adapter *adapter)
 2002{
 2003	igb_reset_phy(&adapter->hw);
 2004
 2005	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2006		igb_power_up_phy_copper(&adapter->hw);
 2007	else
 2008		igb_power_up_serdes_link_82575(&adapter->hw);
 2009
 2010	igb_setup_link(&adapter->hw);
 2011}
 2012
 2013/**
 2014 *  igb_power_down_link - Power down the phy/serdes link
 2015 *  @adapter: address of board private structure
 2016 */
 2017static void igb_power_down_link(struct igb_adapter *adapter)
 2018{
 2019	if (adapter->hw.phy.media_type == e1000_media_type_copper)
 2020		igb_power_down_phy_copper_82575(&adapter->hw);
 2021	else
 2022		igb_shutdown_serdes_link_82575(&adapter->hw);
 2023}
 2024
 2025/**
 2026 * igb_check_swap_media -  Detect and switch function for Media Auto Sense
 2027 * @adapter: address of the board private structure
 2028 **/
 2029static void igb_check_swap_media(struct igb_adapter *adapter)
 2030{
 2031	struct e1000_hw *hw = &adapter->hw;
 2032	u32 ctrl_ext, connsw;
 2033	bool swap_now = false;
 2034
 2035	ctrl_ext = rd32(E1000_CTRL_EXT);
 2036	connsw = rd32(E1000_CONNSW);
 2037
 2038	/* need to live swap if current media is copper and we have fiber/serdes
 2039	 * to go to.
 2040	 */
 2041
 2042	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2043	    (!(connsw & E1000_CONNSW_AUTOSENSE_EN))) {
 2044		swap_now = true;
 2045	} else if ((hw->phy.media_type != e1000_media_type_copper) &&
 2046		   !(connsw & E1000_CONNSW_SERDESD)) {
 2047		/* copper signal takes time to appear */
 2048		if (adapter->copper_tries < 4) {
 2049			adapter->copper_tries++;
 2050			connsw |= E1000_CONNSW_AUTOSENSE_CONF;
 2051			wr32(E1000_CONNSW, connsw);
 2052			return;
 2053		} else {
 2054			adapter->copper_tries = 0;
 2055			if ((connsw & E1000_CONNSW_PHYSD) &&
 2056			    (!(connsw & E1000_CONNSW_PHY_PDN))) {
 2057				swap_now = true;
 2058				connsw &= ~E1000_CONNSW_AUTOSENSE_CONF;
 2059				wr32(E1000_CONNSW, connsw);
 2060			}
 2061		}
 2062	}
 2063
 2064	if (!swap_now)
 2065		return;
 2066
 2067	switch (hw->phy.media_type) {
 2068	case e1000_media_type_copper:
 2069		netdev_info(adapter->netdev,
 2070			"MAS: changing media to fiber/serdes\n");
 2071		ctrl_ext |=
 2072			E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2073		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2074		adapter->copper_tries = 0;
 2075		break;
 2076	case e1000_media_type_internal_serdes:
 2077	case e1000_media_type_fiber:
 2078		netdev_info(adapter->netdev,
 2079			"MAS: changing media to copper\n");
 2080		ctrl_ext &=
 2081			~E1000_CTRL_EXT_LINK_MODE_PCIE_SERDES;
 2082		adapter->flags |= IGB_FLAG_MEDIA_RESET;
 2083		break;
 2084	default:
 2085		/* shouldn't get here during regular operation */
 2086		netdev_err(adapter->netdev,
 2087			"AMS: Invalid media type found, returning\n");
 2088		break;
 2089	}
 2090	wr32(E1000_CTRL_EXT, ctrl_ext);
 2091}
 2092
 2093/**
 2094 *  igb_up - Open the interface and prepare it to handle traffic
 2095 *  @adapter: board private structure
 2096 **/
 2097int igb_up(struct igb_adapter *adapter)
 2098{
 2099	struct e1000_hw *hw = &adapter->hw;
 2100	int i;
 2101
 2102	/* hardware has been reset, we need to reload some things */
 2103	igb_configure(adapter);
 2104
 2105	clear_bit(__IGB_DOWN, &adapter->state);
 2106
 2107	for (i = 0; i < adapter->num_q_vectors; i++)
 2108		napi_enable(&(adapter->q_vector[i]->napi));
 2109
 2110	if (adapter->flags & IGB_FLAG_HAS_MSIX)
 2111		igb_configure_msix(adapter);
 2112	else
 2113		igb_assign_vector(adapter->q_vector[0], 0);
 2114
 2115	/* Clear any pending interrupts. */
 2116	rd32(E1000_TSICR);
 2117	rd32(E1000_ICR);
 2118	igb_irq_enable(adapter);
 2119
 2120	/* notify VFs that reset has been completed */
 2121	if (adapter->vfs_allocated_count) {
 2122		u32 reg_data = rd32(E1000_CTRL_EXT);
 2123
 2124		reg_data |= E1000_CTRL_EXT_PFRSTD;
 2125		wr32(E1000_CTRL_EXT, reg_data);
 2126	}
 2127
 2128	netif_tx_start_all_queues(adapter->netdev);
 2129
 2130	/* start the watchdog. */
 2131	hw->mac.get_link_status = 1;
 2132	schedule_work(&adapter->watchdog_task);
 2133
 2134	if ((adapter->flags & IGB_FLAG_EEE) &&
 2135	    (!hw->dev_spec._82575.eee_disable))
 2136		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
 2137
 2138	return 0;
 2139}
 2140
 2141void igb_down(struct igb_adapter *adapter)
 2142{
 2143	struct net_device *netdev = adapter->netdev;
 2144	struct e1000_hw *hw = &adapter->hw;
 2145	u32 tctl, rctl;
 2146	int i;
 2147
 2148	/* signal that we're down so the interrupt handler does not
 2149	 * reschedule our watchdog timer
 2150	 */
 2151	set_bit(__IGB_DOWN, &adapter->state);
 2152
 2153	/* disable receives in the hardware */
 2154	rctl = rd32(E1000_RCTL);
 2155	wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
 2156	/* flush and sleep below */
 2157
 2158	igb_nfc_filter_exit(adapter);
 2159
 2160	netif_carrier_off(netdev);
 2161	netif_tx_stop_all_queues(netdev);
 2162
 2163	/* disable transmits in the hardware */
 2164	tctl = rd32(E1000_TCTL);
 2165	tctl &= ~E1000_TCTL_EN;
 2166	wr32(E1000_TCTL, tctl);
 2167	/* flush both disables and wait for them to finish */
 2168	wrfl();
 2169	usleep_range(10000, 11000);
 2170
 2171	igb_irq_disable(adapter);
 2172
 2173	adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 2174
 2175	for (i = 0; i < adapter->num_q_vectors; i++) {
 2176		if (adapter->q_vector[i]) {
 2177			napi_synchronize(&adapter->q_vector[i]->napi);
 2178			napi_disable(&adapter->q_vector[i]->napi);
 2179		}
 2180	}
 2181
 2182	del_timer_sync(&adapter->watchdog_timer);
 2183	del_timer_sync(&adapter->phy_info_timer);
 2184
 2185	/* record the stats before reset*/
 2186	spin_lock(&adapter->stats64_lock);
 2187	igb_update_stats(adapter);
 2188	spin_unlock(&adapter->stats64_lock);
 2189
 2190	adapter->link_speed = 0;
 2191	adapter->link_duplex = 0;
 2192
 2193	if (!pci_channel_offline(adapter->pdev))
 2194		igb_reset(adapter);
 2195
 2196	/* clear VLAN promisc flag so VFTA will be updated if necessary */
 2197	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 2198
 2199	igb_clean_all_tx_rings(adapter);
 2200	igb_clean_all_rx_rings(adapter);
 2201#ifdef CONFIG_IGB_DCA
 2202
 2203	/* since we reset the hardware DCA settings were cleared */
 2204	igb_setup_dca(adapter);
 2205#endif
 2206}
 2207
 2208void igb_reinit_locked(struct igb_adapter *adapter)
 2209{
 2210	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 2211		usleep_range(1000, 2000);
 2212	igb_down(adapter);
 2213	igb_up(adapter);
 2214	clear_bit(__IGB_RESETTING, &adapter->state);
 2215}
 2216
 2217/** igb_enable_mas - Media Autosense re-enable after swap
 2218 *
 2219 * @adapter: adapter struct
 2220 **/
 2221static void igb_enable_mas(struct igb_adapter *adapter)
 2222{
 2223	struct e1000_hw *hw = &adapter->hw;
 2224	u32 connsw = rd32(E1000_CONNSW);
 2225
 2226	/* configure for SerDes media detect */
 2227	if ((hw->phy.media_type == e1000_media_type_copper) &&
 2228	    (!(connsw & E1000_CONNSW_SERDESD))) {
 2229		connsw |= E1000_CONNSW_ENRGSRC;
 2230		connsw |= E1000_CONNSW_AUTOSENSE_EN;
 2231		wr32(E1000_CONNSW, connsw);
 2232		wrfl();
 2233	}
 2234}
 2235
 2236#ifdef CONFIG_IGB_HWMON
 2237/**
 2238 *  igb_set_i2c_bb - Init I2C interface
 2239 *  @hw: pointer to hardware structure
 2240 **/
 2241static void igb_set_i2c_bb(struct e1000_hw *hw)
 2242{
 2243	u32 ctrl_ext;
 2244	s32 i2cctl;
 2245
 2246	ctrl_ext = rd32(E1000_CTRL_EXT);
 2247	ctrl_ext |= E1000_CTRL_I2C_ENA;
 2248	wr32(E1000_CTRL_EXT, ctrl_ext);
 2249	wrfl();
 2250
 2251	i2cctl = rd32(E1000_I2CPARAMS);
 2252	i2cctl |= E1000_I2CBB_EN
 2253		| E1000_I2C_CLK_OE_N
 2254		| E1000_I2C_DATA_OE_N;
 2255	wr32(E1000_I2CPARAMS, i2cctl);
 2256	wrfl();
 2257}
 2258#endif
 2259
 2260void igb_reset(struct igb_adapter *adapter)
 2261{
 2262	struct pci_dev *pdev = adapter->pdev;
 2263	struct e1000_hw *hw = &adapter->hw;
 2264	struct e1000_mac_info *mac = &hw->mac;
 2265	struct e1000_fc_info *fc = &hw->fc;
 2266	u32 pba, hwm;
 2267
 2268	/* Repartition Pba for greater than 9k mtu
 2269	 * To take effect CTRL.RST is required.
 2270	 */
 2271	switch (mac->type) {
 2272	case e1000_i350:
 2273	case e1000_i354:
 2274	case e1000_82580:
 2275		pba = rd32(E1000_RXPBS);
 2276		pba = igb_rxpbs_adjust_82580(pba);
 2277		break;
 2278	case e1000_82576:
 2279		pba = rd32(E1000_RXPBS);
 2280		pba &= E1000_RXPBS_SIZE_MASK_82576;
 2281		break;
 2282	case e1000_82575:
 2283	case e1000_i210:
 2284	case e1000_i211:
 2285	default:
 2286		pba = E1000_PBA_34K;
 2287		break;
 2288	}
 2289
 2290	if (mac->type == e1000_82575) {
 2291		u32 min_rx_space, min_tx_space, needed_tx_space;
 2292
 2293		/* write Rx PBA so that hardware can report correct Tx PBA */
 2294		wr32(E1000_PBA, pba);
 2295
 2296		/* To maintain wire speed transmits, the Tx FIFO should be
 2297		 * large enough to accommodate two full transmit packets,
 2298		 * rounded up to the next 1KB and expressed in KB.  Likewise,
 2299		 * the Rx FIFO should be large enough to accommodate at least
 2300		 * one full receive packet and is similarly rounded up and
 2301		 * expressed in KB.
 2302		 */
 2303		min_rx_space = DIV_ROUND_UP(MAX_JUMBO_FRAME_SIZE, 1024);
 2304
 2305		/* The Tx FIFO also stores 16 bytes of information about the Tx
 2306		 * but don't include Ethernet FCS because hardware appends it.
 2307		 * We only need to round down to the nearest 512 byte block
 2308		 * count since the value we care about is 2 frames, not 1.
 2309		 */
 2310		min_tx_space = adapter->max_frame_size;
 2311		min_tx_space += sizeof(union e1000_adv_tx_desc) - ETH_FCS_LEN;
 2312		min_tx_space = DIV_ROUND_UP(min_tx_space, 512);
 2313
 2314		/* upper 16 bits has Tx packet buffer allocation size in KB */
 2315		needed_tx_space = min_tx_space - (rd32(E1000_PBA) >> 16);
 2316
 2317		/* If current Tx allocation is less than the min Tx FIFO size,
 2318		 * and the min Tx FIFO size is less than the current Rx FIFO
 2319		 * allocation, take space away from current Rx allocation.
 2320		 */
 2321		if (needed_tx_space < pba) {
 2322			pba -= needed_tx_space;
 2323
 2324			/* if short on Rx space, Rx wins and must trump Tx
 2325			 * adjustment
 2326			 */
 2327			if (pba < min_rx_space)
 2328				pba = min_rx_space;
 2329		}
 2330
 2331		/* adjust PBA for jumbo frames */
 2332		wr32(E1000_PBA, pba);
 2333	}
 2334
 2335	/* flow control settings
 2336	 * The high water mark must be low enough to fit one full frame
 2337	 * after transmitting the pause frame.  As such we must have enough
 2338	 * space to allow for us to complete our current transmit and then
 2339	 * receive the frame that is in progress from the link partner.
 2340	 * Set it to:
 2341	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
 2342	 */
 2343	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
 2344
 2345	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
 2346	fc->low_water = fc->high_water - 16;
 2347	fc->pause_time = 0xFFFF;
 2348	fc->send_xon = 1;
 2349	fc->current_mode = fc->requested_mode;
 2350
 2351	/* disable receive for all VFs and wait one second */
 2352	if (adapter->vfs_allocated_count) {
 2353		int i;
 2354
 2355		for (i = 0 ; i < adapter->vfs_allocated_count; i++)
 2356			adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
 2357
 2358		/* ping all the active vfs to let them know we are going down */
 2359		igb_ping_all_vfs(adapter);
 2360
 2361		/* disable transmits and receives */
 2362		wr32(E1000_VFRE, 0);
 2363		wr32(E1000_VFTE, 0);
 2364	}
 2365
 2366	/* Allow time for pending master requests to run */
 2367	hw->mac.ops.reset_hw(hw);
 2368	wr32(E1000_WUC, 0);
 2369
 2370	if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 2371		/* need to resetup here after media swap */
 2372		adapter->ei.get_invariants(hw);
 2373		adapter->flags &= ~IGB_FLAG_MEDIA_RESET;
 2374	}
 2375	if ((mac->type == e1000_82575 || mac->type == e1000_i350) &&
 2376	    (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 2377		igb_enable_mas(adapter);
 2378	}
 2379	if (hw->mac.ops.init_hw(hw))
 2380		dev_err(&pdev->dev, "Hardware Error\n");
 2381
 2382	/* RAR registers were cleared during init_hw, clear mac table */
 2383	igb_flush_mac_table(adapter);
 2384	__dev_uc_unsync(adapter->netdev, NULL);
 2385
 2386	/* Recover default RAR entry */
 2387	igb_set_default_mac_filter(adapter);
 2388
 2389	/* Flow control settings reset on hardware reset, so guarantee flow
 2390	 * control is off when forcing speed.
 2391	 */
 2392	if (!hw->mac.autoneg)
 2393		igb_force_mac_fc(hw);
 2394
 2395	igb_init_dmac(adapter, pba);
 2396#ifdef CONFIG_IGB_HWMON
 2397	/* Re-initialize the thermal sensor on i350 devices. */
 2398	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 2399		if (mac->type == e1000_i350 && hw->bus.func == 0) {
 2400			/* If present, re-initialize the external thermal sensor
 2401			 * interface.
 2402			 */
 2403			if (adapter->ets)
 2404				igb_set_i2c_bb(hw);
 2405			mac->ops.init_thermal_sensor_thresh(hw);
 2406		}
 2407	}
 2408#endif
 2409	/* Re-establish EEE setting */
 2410	if (hw->phy.media_type == e1000_media_type_copper) {
 2411		switch (mac->type) {
 2412		case e1000_i350:
 2413		case e1000_i210:
 2414		case e1000_i211:
 2415			igb_set_eee_i350(hw, true, true);
 2416			break;
 2417		case e1000_i354:
 2418			igb_set_eee_i354(hw, true, true);
 2419			break;
 2420		default:
 2421			break;
 2422		}
 2423	}
 2424	if (!netif_running(adapter->netdev))
 2425		igb_power_down_link(adapter);
 2426
 2427	igb_update_mng_vlan(adapter);
 2428
 2429	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
 2430	wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
 2431
 2432	/* Re-enable PTP, where applicable. */
 2433	if (adapter->ptp_flags & IGB_PTP_ENABLED)
 2434		igb_ptp_reset(adapter);
 2435
 2436	igb_get_phy_info(hw);
 2437}
 2438
 2439static netdev_features_t igb_fix_features(struct net_device *netdev,
 2440	netdev_features_t features)
 2441{
 2442	/* Since there is no support for separate Rx/Tx vlan accel
 2443	 * enable/disable make sure Tx flag is always in same state as Rx.
 2444	 */
 2445	if (features & NETIF_F_HW_VLAN_CTAG_RX)
 2446		features |= NETIF_F_HW_VLAN_CTAG_TX;
 2447	else
 2448		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
 2449
 2450	return features;
 2451}
 2452
 2453static int igb_set_features(struct net_device *netdev,
 2454	netdev_features_t features)
 2455{
 2456	netdev_features_t changed = netdev->features ^ features;
 2457	struct igb_adapter *adapter = netdev_priv(netdev);
 2458
 2459	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
 2460		igb_vlan_mode(netdev, features);
 2461
 2462	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
 2463		return 0;
 2464
 2465	if (!(features & NETIF_F_NTUPLE)) {
 2466		struct hlist_node *node2;
 2467		struct igb_nfc_filter *rule;
 2468
 2469		spin_lock(&adapter->nfc_lock);
 2470		hlist_for_each_entry_safe(rule, node2,
 2471					  &adapter->nfc_filter_list, nfc_node) {
 2472			igb_erase_filter(adapter, rule);
 2473			hlist_del(&rule->nfc_node);
 2474			kfree(rule);
 2475		}
 2476		spin_unlock(&adapter->nfc_lock);
 2477		adapter->nfc_filter_count = 0;
 2478	}
 2479
 2480	netdev->features = features;
 2481
 2482	if (netif_running(netdev))
 2483		igb_reinit_locked(adapter);
 2484	else
 2485		igb_reset(adapter);
 2486
 2487	return 1;
 2488}
 2489
 2490static int igb_ndo_fdb_add(struct ndmsg *ndm, struct nlattr *tb[],
 2491			   struct net_device *dev,
 2492			   const unsigned char *addr, u16 vid,
 2493			   u16 flags, bool *notified,
 2494			   struct netlink_ext_ack *extack)
 2495{
 2496	/* guarantee we can provide a unique filter for the unicast address */
 2497	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr)) {
 2498		struct igb_adapter *adapter = netdev_priv(dev);
 2499		int vfn = adapter->vfs_allocated_count;
 2500
 2501		if (netdev_uc_count(dev) >= igb_available_rars(adapter, vfn))
 2502			return -ENOMEM;
 2503	}
 2504
 2505	return ndo_dflt_fdb_add(ndm, tb, dev, addr, vid, flags);
 2506}
 2507
 2508#define IGB_MAX_MAC_HDR_LEN	127
 2509#define IGB_MAX_NETWORK_HDR_LEN	511
 2510
 2511static netdev_features_t
 2512igb_features_check(struct sk_buff *skb, struct net_device *dev,
 2513		   netdev_features_t features)
 2514{
 2515	unsigned int network_hdr_len, mac_hdr_len;
 2516
 2517	/* Make certain the headers can be described by a context descriptor */
 2518	mac_hdr_len = skb_network_offset(skb);
 2519	if (unlikely(mac_hdr_len > IGB_MAX_MAC_HDR_LEN))
 2520		return features & ~(NETIF_F_HW_CSUM |
 2521				    NETIF_F_SCTP_CRC |
 2522				    NETIF_F_GSO_UDP_L4 |
 2523				    NETIF_F_HW_VLAN_CTAG_TX |
 2524				    NETIF_F_TSO |
 2525				    NETIF_F_TSO6);
 2526
 2527	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
 2528	if (unlikely(network_hdr_len >  IGB_MAX_NETWORK_HDR_LEN))
 2529		return features & ~(NETIF_F_HW_CSUM |
 2530				    NETIF_F_SCTP_CRC |
 2531				    NETIF_F_GSO_UDP_L4 |
 2532				    NETIF_F_TSO |
 2533				    NETIF_F_TSO6);
 2534
 2535	/* We can only support IPV4 TSO in tunnels if we can mangle the
 2536	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
 2537	 */
 2538	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
 2539		features &= ~NETIF_F_TSO;
 2540
 2541	return features;
 2542}
 2543
 2544static void igb_offload_apply(struct igb_adapter *adapter, s32 queue)
 2545{
 2546	if (!is_fqtss_enabled(adapter)) {
 2547		enable_fqtss(adapter, true);
 2548		return;
 2549	}
 2550
 2551	igb_config_tx_modes(adapter, queue);
 2552
 2553	if (!is_any_cbs_enabled(adapter) && !is_any_txtime_enabled(adapter))
 2554		enable_fqtss(adapter, false);
 2555}
 2556
 2557static int igb_offload_cbs(struct igb_adapter *adapter,
 2558			   struct tc_cbs_qopt_offload *qopt)
 2559{
 2560	struct e1000_hw *hw = &adapter->hw;
 2561	int err;
 2562
 2563	/* CBS offloading is only supported by i210 controller. */
 2564	if (hw->mac.type != e1000_i210)
 2565		return -EOPNOTSUPP;
 2566
 2567	/* CBS offloading is only supported by queue 0 and queue 1. */
 2568	if (qopt->queue < 0 || qopt->queue > 1)
 2569		return -EINVAL;
 2570
 2571	err = igb_save_cbs_params(adapter, qopt->queue, qopt->enable,
 2572				  qopt->idleslope, qopt->sendslope,
 2573				  qopt->hicredit, qopt->locredit);
 2574	if (err)
 2575		return err;
 2576
 2577	igb_offload_apply(adapter, qopt->queue);
 2578
 2579	return 0;
 2580}
 2581
 2582#define ETHER_TYPE_FULL_MASK ((__force __be16)~0)
 2583#define VLAN_PRIO_FULL_MASK (0x07)
 2584
 2585static int igb_parse_cls_flower(struct igb_adapter *adapter,
 2586				struct flow_cls_offload *f,
 2587				int traffic_class,
 2588				struct igb_nfc_filter *input)
 2589{
 2590	struct flow_rule *rule = flow_cls_offload_flow_rule(f);
 2591	struct flow_dissector *dissector = rule->match.dissector;
 2592	struct netlink_ext_ack *extack = f->common.extack;
 2593
 2594	if (dissector->used_keys &
 2595	    ~(BIT_ULL(FLOW_DISSECTOR_KEY_BASIC) |
 2596	      BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL) |
 2597	      BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS) |
 2598	      BIT_ULL(FLOW_DISSECTOR_KEY_VLAN))) {
 2599		NL_SET_ERR_MSG_MOD(extack,
 2600				   "Unsupported key used, only BASIC, CONTROL, ETH_ADDRS and VLAN are supported");
 2601		return -EOPNOTSUPP;
 2602	}
 2603
 2604	if (flow_rule_match_has_control_flags(rule, extack))
 2605		return -EOPNOTSUPP;
 2606
 2607	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS)) {
 2608		struct flow_match_eth_addrs match;
 2609
 2610		flow_rule_match_eth_addrs(rule, &match);
 2611		if (!is_zero_ether_addr(match.mask->dst)) {
 2612			if (!is_broadcast_ether_addr(match.mask->dst)) {
 2613				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for destination MAC address");
 2614				return -EINVAL;
 2615			}
 2616
 2617			input->filter.match_flags |=
 2618				IGB_FILTER_FLAG_DST_MAC_ADDR;
 2619			ether_addr_copy(input->filter.dst_addr, match.key->dst);
 2620		}
 2621
 2622		if (!is_zero_ether_addr(match.mask->src)) {
 2623			if (!is_broadcast_ether_addr(match.mask->src)) {
 2624				NL_SET_ERR_MSG_MOD(extack, "Only full masks are supported for source MAC address");
 2625				return -EINVAL;
 2626			}
 2627
 2628			input->filter.match_flags |=
 2629				IGB_FILTER_FLAG_SRC_MAC_ADDR;
 2630			ether_addr_copy(input->filter.src_addr, match.key->src);
 2631		}
 2632	}
 2633
 2634	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC)) {
 2635		struct flow_match_basic match;
 2636
 2637		flow_rule_match_basic(rule, &match);
 2638		if (match.mask->n_proto) {
 2639			if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
 2640				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for EtherType filter");
 2641				return -EINVAL;
 2642			}
 2643
 2644			input->filter.match_flags |= IGB_FILTER_FLAG_ETHER_TYPE;
 2645			input->filter.etype = match.key->n_proto;
 2646		}
 2647	}
 2648
 2649	if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
 2650		struct flow_match_vlan match;
 2651
 2652		flow_rule_match_vlan(rule, &match);
 2653		if (match.mask->vlan_priority) {
 2654			if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
 2655				NL_SET_ERR_MSG_MOD(extack, "Only full mask is supported for VLAN priority");
 2656				return -EINVAL;
 2657			}
 2658
 2659			input->filter.match_flags |= IGB_FILTER_FLAG_VLAN_TCI;
 2660			input->filter.vlan_tci =
 2661				(__force __be16)match.key->vlan_priority;
 2662		}
 2663	}
 2664
 2665	input->action = traffic_class;
 2666	input->cookie = f->cookie;
 2667
 2668	return 0;
 2669}
 2670
 2671static int igb_configure_clsflower(struct igb_adapter *adapter,
 2672				   struct flow_cls_offload *cls_flower)
 2673{
 2674	struct netlink_ext_ack *extack = cls_flower->common.extack;
 2675	struct igb_nfc_filter *filter, *f;
 2676	int err, tc;
 2677
 2678	tc = tc_classid_to_hwtc(adapter->netdev, cls_flower->classid);
 2679	if (tc < 0) {
 2680		NL_SET_ERR_MSG_MOD(extack, "Invalid traffic class");
 2681		return -EINVAL;
 2682	}
 2683
 2684	filter = kzalloc(sizeof(*filter), GFP_KERNEL);
 2685	if (!filter)
 2686		return -ENOMEM;
 2687
 2688	err = igb_parse_cls_flower(adapter, cls_flower, tc, filter);
 2689	if (err < 0)
 2690		goto err_parse;
 2691
 2692	spin_lock(&adapter->nfc_lock);
 2693
 2694	hlist_for_each_entry(f, &adapter->nfc_filter_list, nfc_node) {
 2695		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2696			err = -EEXIST;
 2697			NL_SET_ERR_MSG_MOD(extack,
 2698					   "This filter is already set in ethtool");
 2699			goto err_locked;
 2700		}
 2701	}
 2702
 2703	hlist_for_each_entry(f, &adapter->cls_flower_list, nfc_node) {
 2704		if (!memcmp(&f->filter, &filter->filter, sizeof(f->filter))) {
 2705			err = -EEXIST;
 2706			NL_SET_ERR_MSG_MOD(extack,
 2707					   "This filter is already set in cls_flower");
 2708			goto err_locked;
 2709		}
 2710	}
 2711
 2712	err = igb_add_filter(adapter, filter);
 2713	if (err < 0) {
 2714		NL_SET_ERR_MSG_MOD(extack, "Could not add filter to the adapter");
 2715		goto err_locked;
 2716	}
 2717
 2718	hlist_add_head(&filter->nfc_node, &adapter->cls_flower_list);
 2719
 2720	spin_unlock(&adapter->nfc_lock);
 2721
 2722	return 0;
 2723
 2724err_locked:
 2725	spin_unlock(&adapter->nfc_lock);
 2726
 2727err_parse:
 2728	kfree(filter);
 2729
 2730	return err;
 2731}
 2732
 2733static int igb_delete_clsflower(struct igb_adapter *adapter,
 2734				struct flow_cls_offload *cls_flower)
 2735{
 2736	struct igb_nfc_filter *filter;
 2737	int err;
 2738
 2739	spin_lock(&adapter->nfc_lock);
 2740
 2741	hlist_for_each_entry(filter, &adapter->cls_flower_list, nfc_node)
 2742		if (filter->cookie == cls_flower->cookie)
 2743			break;
 2744
 2745	if (!filter) {
 2746		err = -ENOENT;
 2747		goto out;
 2748	}
 2749
 2750	err = igb_erase_filter(adapter, filter);
 2751	if (err < 0)
 2752		goto out;
 2753
 2754	hlist_del(&filter->nfc_node);
 2755	kfree(filter);
 2756
 2757out:
 2758	spin_unlock(&adapter->nfc_lock);
 2759
 2760	return err;
 2761}
 2762
 2763static int igb_setup_tc_cls_flower(struct igb_adapter *adapter,
 2764				   struct flow_cls_offload *cls_flower)
 2765{
 2766	switch (cls_flower->command) {
 2767	case FLOW_CLS_REPLACE:
 2768		return igb_configure_clsflower(adapter, cls_flower);
 2769	case FLOW_CLS_DESTROY:
 2770		return igb_delete_clsflower(adapter, cls_flower);
 2771	case FLOW_CLS_STATS:
 2772		return -EOPNOTSUPP;
 2773	default:
 2774		return -EOPNOTSUPP;
 2775	}
 2776}
 2777
 2778static int igb_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
 2779				 void *cb_priv)
 2780{
 2781	struct igb_adapter *adapter = cb_priv;
 2782
 2783	if (!tc_cls_can_offload_and_chain0(adapter->netdev, type_data))
 2784		return -EOPNOTSUPP;
 2785
 2786	switch (type) {
 2787	case TC_SETUP_CLSFLOWER:
 2788		return igb_setup_tc_cls_flower(adapter, type_data);
 2789
 2790	default:
 2791		return -EOPNOTSUPP;
 2792	}
 2793}
 2794
 2795static int igb_offload_txtime(struct igb_adapter *adapter,
 2796			      struct tc_etf_qopt_offload *qopt)
 2797{
 2798	struct e1000_hw *hw = &adapter->hw;
 2799	int err;
 2800
 2801	/* Launchtime offloading is only supported by i210 controller. */
 2802	if (hw->mac.type != e1000_i210)
 2803		return -EOPNOTSUPP;
 2804
 2805	/* Launchtime offloading is only supported by queues 0 and 1. */
 2806	if (qopt->queue < 0 || qopt->queue > 1)
 2807		return -EINVAL;
 2808
 2809	err = igb_save_txtime_params(adapter, qopt->queue, qopt->enable);
 2810	if (err)
 2811		return err;
 2812
 2813	igb_offload_apply(adapter, qopt->queue);
 2814
 2815	return 0;
 2816}
 2817
 2818static int igb_tc_query_caps(struct igb_adapter *adapter,
 2819			     struct tc_query_caps_base *base)
 2820{
 2821	switch (base->type) {
 2822	case TC_SETUP_QDISC_TAPRIO: {
 2823		struct tc_taprio_caps *caps = base->caps;
 2824
 2825		caps->broken_mqprio = true;
 2826
 2827		return 0;
 2828	}
 2829	default:
 2830		return -EOPNOTSUPP;
 2831	}
 2832}
 2833
 2834static LIST_HEAD(igb_block_cb_list);
 2835
 2836static int igb_setup_tc(struct net_device *dev, enum tc_setup_type type,
 2837			void *type_data)
 2838{
 2839	struct igb_adapter *adapter = netdev_priv(dev);
 2840
 2841	switch (type) {
 2842	case TC_QUERY_CAPS:
 2843		return igb_tc_query_caps(adapter, type_data);
 2844	case TC_SETUP_QDISC_CBS:
 2845		return igb_offload_cbs(adapter, type_data);
 2846	case TC_SETUP_BLOCK:
 2847		return flow_block_cb_setup_simple(type_data,
 2848						  &igb_block_cb_list,
 2849						  igb_setup_tc_block_cb,
 2850						  adapter, adapter, true);
 2851
 2852	case TC_SETUP_QDISC_ETF:
 2853		return igb_offload_txtime(adapter, type_data);
 2854
 2855	default:
 2856		return -EOPNOTSUPP;
 2857	}
 2858}
 2859
 2860static int igb_xdp_setup(struct net_device *dev, struct netdev_bpf *bpf)
 2861{
 2862	int i, frame_size = dev->mtu + IGB_ETH_PKT_HDR_PAD;
 2863	struct igb_adapter *adapter = netdev_priv(dev);
 2864	struct bpf_prog *prog = bpf->prog, *old_prog;
 2865	bool running = netif_running(dev);
 2866	bool need_reset;
 2867
 2868	/* verify igb ring attributes are sufficient for XDP */
 2869	for (i = 0; i < adapter->num_rx_queues; i++) {
 2870		struct igb_ring *ring = adapter->rx_ring[i];
 2871
 2872		if (frame_size > igb_rx_bufsz(ring)) {
 2873			NL_SET_ERR_MSG_MOD(bpf->extack,
 2874					   "The RX buffer size is too small for the frame size");
 2875			netdev_warn(dev, "XDP RX buffer size %d is too small for the frame size %d\n",
 2876				    igb_rx_bufsz(ring), frame_size);
 2877			return -EINVAL;
 2878		}
 2879	}
 2880
 2881	old_prog = xchg(&adapter->xdp_prog, prog);
 2882	need_reset = (!!prog != !!old_prog);
 2883
 2884	/* device is up and bpf is added/removed, must setup the RX queues */
 2885	if (need_reset && running) {
 2886		igb_close(dev);
 2887	} else {
 2888		for (i = 0; i < adapter->num_rx_queues; i++)
 2889			(void)xchg(&adapter->rx_ring[i]->xdp_prog,
 2890			    adapter->xdp_prog);
 2891	}
 2892
 2893	if (old_prog)
 2894		bpf_prog_put(old_prog);
 2895
 2896	/* bpf is just replaced, RXQ and MTU are already setup */
 2897	if (!need_reset) {
 2898		return 0;
 2899	} else {
 2900		if (prog)
 2901			xdp_features_set_redirect_target(dev, true);
 2902		else
 2903			xdp_features_clear_redirect_target(dev);
 2904	}
 2905
 2906	if (running)
 2907		igb_open(dev);
 2908
 2909	return 0;
 2910}
 2911
 2912static int igb_xdp(struct net_device *dev, struct netdev_bpf *xdp)
 2913{
 2914	switch (xdp->command) {
 2915	case XDP_SETUP_PROG:
 2916		return igb_xdp_setup(dev, xdp);
 2917	default:
 2918		return -EINVAL;
 2919	}
 2920}
 2921
 2922/* This function assumes __netif_tx_lock is held by the caller. */
 2923static void igb_xdp_ring_update_tail(struct igb_ring *ring)
 2924{
 2925	lockdep_assert_held(&txring_txq(ring)->_xmit_lock);
 2926
 2927	/* Force memory writes to complete before letting h/w know there
 2928	 * are new descriptors to fetch.
 2929	 */
 2930	wmb();
 2931	writel(ring->next_to_use, ring->tail);
 2932}
 2933
 2934static struct igb_ring *igb_xdp_tx_queue_mapping(struct igb_adapter *adapter)
 2935{
 2936	unsigned int r_idx = smp_processor_id();
 2937
 2938	if (r_idx >= adapter->num_tx_queues)
 2939		r_idx = r_idx % adapter->num_tx_queues;
 2940
 2941	return adapter->tx_ring[r_idx];
 2942}
 2943
 2944static int igb_xdp_xmit_back(struct igb_adapter *adapter, struct xdp_buff *xdp)
 2945{
 2946	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
 2947	int cpu = smp_processor_id();
 2948	struct igb_ring *tx_ring;
 2949	struct netdev_queue *nq;
 2950	u32 ret;
 2951
 2952	if (unlikely(!xdpf))
 2953		return IGB_XDP_CONSUMED;
 2954
 2955	/* During program transitions its possible adapter->xdp_prog is assigned
 2956	 * but ring has not been configured yet. In this case simply abort xmit.
 2957	 */
 2958	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 2959	if (unlikely(!tx_ring))
 2960		return IGB_XDP_CONSUMED;
 2961
 2962	nq = txring_txq(tx_ring);
 2963	__netif_tx_lock(nq, cpu);
 2964	/* Avoid transmit queue timeout since we share it with the slow path */
 2965	txq_trans_cond_update(nq);
 2966	ret = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 2967	__netif_tx_unlock(nq);
 2968
 2969	return ret;
 2970}
 2971
 2972static int igb_xdp_xmit(struct net_device *dev, int n,
 2973			struct xdp_frame **frames, u32 flags)
 2974{
 2975	struct igb_adapter *adapter = netdev_priv(dev);
 2976	int cpu = smp_processor_id();
 2977	struct igb_ring *tx_ring;
 2978	struct netdev_queue *nq;
 2979	int nxmit = 0;
 2980	int i;
 2981
 2982	if (unlikely(test_bit(__IGB_DOWN, &adapter->state)))
 2983		return -ENETDOWN;
 2984
 2985	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
 2986		return -EINVAL;
 2987
 2988	/* During program transitions its possible adapter->xdp_prog is assigned
 2989	 * but ring has not been configured yet. In this case simply abort xmit.
 2990	 */
 2991	tx_ring = adapter->xdp_prog ? igb_xdp_tx_queue_mapping(adapter) : NULL;
 2992	if (unlikely(!tx_ring))
 2993		return -ENXIO;
 2994
 2995	nq = txring_txq(tx_ring);
 2996	__netif_tx_lock(nq, cpu);
 2997
 2998	/* Avoid transmit queue timeout since we share it with the slow path */
 2999	txq_trans_cond_update(nq);
 3000
 3001	for (i = 0; i < n; i++) {
 3002		struct xdp_frame *xdpf = frames[i];
 3003		int err;
 3004
 3005		err = igb_xmit_xdp_ring(adapter, tx_ring, xdpf);
 3006		if (err != IGB_XDP_TX)
 3007			break;
 3008		nxmit++;
 3009	}
 3010
 3011	if (unlikely(flags & XDP_XMIT_FLUSH))
 3012		igb_xdp_ring_update_tail(tx_ring);
 3013
 3014	__netif_tx_unlock(nq);
 3015
 3016	return nxmit;
 3017}
 3018
 3019static const struct net_device_ops igb_netdev_ops = {
 3020	.ndo_open		= igb_open,
 3021	.ndo_stop		= igb_close,
 3022	.ndo_start_xmit		= igb_xmit_frame,
 3023	.ndo_get_stats64	= igb_get_stats64,
 3024	.ndo_set_rx_mode	= igb_set_rx_mode,
 3025	.ndo_set_mac_address	= igb_set_mac,
 3026	.ndo_change_mtu		= igb_change_mtu,
 3027	.ndo_eth_ioctl		= igb_ioctl,
 3028	.ndo_tx_timeout		= igb_tx_timeout,
 3029	.ndo_validate_addr	= eth_validate_addr,
 3030	.ndo_vlan_rx_add_vid	= igb_vlan_rx_add_vid,
 3031	.ndo_vlan_rx_kill_vid	= igb_vlan_rx_kill_vid,
 3032	.ndo_set_vf_mac		= igb_ndo_set_vf_mac,
 3033	.ndo_set_vf_vlan	= igb_ndo_set_vf_vlan,
 3034	.ndo_set_vf_rate	= igb_ndo_set_vf_bw,
 3035	.ndo_set_vf_spoofchk	= igb_ndo_set_vf_spoofchk,
 3036	.ndo_set_vf_trust	= igb_ndo_set_vf_trust,
 3037	.ndo_get_vf_config	= igb_ndo_get_vf_config,
 3038	.ndo_fix_features	= igb_fix_features,
 3039	.ndo_set_features	= igb_set_features,
 3040	.ndo_fdb_add		= igb_ndo_fdb_add,
 3041	.ndo_features_check	= igb_features_check,
 3042	.ndo_setup_tc		= igb_setup_tc,
 3043	.ndo_bpf		= igb_xdp,
 3044	.ndo_xdp_xmit		= igb_xdp_xmit,
 3045};
 3046
 3047/**
 3048 * igb_set_fw_version - Configure version string for ethtool
 3049 * @adapter: adapter struct
 3050 **/
 3051void igb_set_fw_version(struct igb_adapter *adapter)
 3052{
 3053	struct e1000_hw *hw = &adapter->hw;
 3054	struct e1000_fw_version fw;
 3055
 3056	igb_get_fw_version(hw, &fw);
 3057
 3058	switch (hw->mac.type) {
 3059	case e1000_i210:
 3060	case e1000_i211:
 3061		if (!(igb_get_flash_presence_i210(hw))) {
 3062			snprintf(adapter->fw_version,
 3063				 sizeof(adapter->fw_version),
 3064				 "%2d.%2d-%d",
 3065				 fw.invm_major, fw.invm_minor,
 3066				 fw.invm_img_type);
 3067			break;
 3068		}
 3069		fallthrough;
 3070	default:
 3071		/* if option rom is valid, display its version too */
 3072		if (fw.or_valid) {
 3073			snprintf(adapter->fw_version,
 3074				 sizeof(adapter->fw_version),
 3075				 "%d.%d, 0x%08x, %d.%d.%d",
 3076				 fw.eep_major, fw.eep_minor, fw.etrack_id,
 3077				 fw.or_major, fw.or_build, fw.or_patch);
 3078		/* no option rom */
 3079		} else if (fw.etrack_id != 0X0000) {
 3080			snprintf(adapter->fw_version,
 3081				 sizeof(adapter->fw_version),
 3082				 "%d.%d, 0x%08x",
 3083				 fw.eep_major, fw.eep_minor, fw.etrack_id);
 3084		} else {
 3085			snprintf(adapter->fw_version,
 3086				 sizeof(adapter->fw_version),
 3087				 "%d.%d.%d",
 3088				 fw.eep_major, fw.eep_minor, fw.eep_build);
 3089		}
 3090		break;
 3091	}
 3092}
 3093
 3094/**
 3095 * igb_init_mas - init Media Autosense feature if enabled in the NVM
 3096 *
 3097 * @adapter: adapter struct
 3098 **/
 3099static void igb_init_mas(struct igb_adapter *adapter)
 3100{
 3101	struct e1000_hw *hw = &adapter->hw;
 3102	u16 eeprom_data;
 3103
 3104	hw->nvm.ops.read(hw, NVM_COMPAT, 1, &eeprom_data);
 3105	switch (hw->bus.func) {
 3106	case E1000_FUNC_0:
 3107		if (eeprom_data & IGB_MAS_ENABLE_0) {
 3108			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3109			netdev_info(adapter->netdev,
 3110				"MAS: Enabling Media Autosense for port %d\n",
 3111				hw->bus.func);
 3112		}
 3113		break;
 3114	case E1000_FUNC_1:
 3115		if (eeprom_data & IGB_MAS_ENABLE_1) {
 3116			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3117			netdev_info(adapter->netdev,
 3118				"MAS: Enabling Media Autosense for port %d\n",
 3119				hw->bus.func);
 3120		}
 3121		break;
 3122	case E1000_FUNC_2:
 3123		if (eeprom_data & IGB_MAS_ENABLE_2) {
 3124			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3125			netdev_info(adapter->netdev,
 3126				"MAS: Enabling Media Autosense for port %d\n",
 3127				hw->bus.func);
 3128		}
 3129		break;
 3130	case E1000_FUNC_3:
 3131		if (eeprom_data & IGB_MAS_ENABLE_3) {
 3132			adapter->flags |= IGB_FLAG_MAS_ENABLE;
 3133			netdev_info(adapter->netdev,
 3134				"MAS: Enabling Media Autosense for port %d\n",
 3135				hw->bus.func);
 3136		}
 3137		break;
 3138	default:
 3139		/* Shouldn't get here */
 3140		netdev_err(adapter->netdev,
 3141			"MAS: Invalid port configuration, returning\n");
 3142		break;
 3143	}
 3144}
 3145
 3146/**
 3147 *  igb_init_i2c - Init I2C interface
 3148 *  @adapter: pointer to adapter structure
 3149 **/
 3150static s32 igb_init_i2c(struct igb_adapter *adapter)
 3151{
 3152	s32 status = 0;
 3153
 3154	/* I2C interface supported on i350 devices */
 3155	if (adapter->hw.mac.type != e1000_i350)
 3156		return 0;
 3157
 3158	/* Initialize the i2c bus which is controlled by the registers.
 3159	 * This bus will use the i2c_algo_bit structure that implements
 3160	 * the protocol through toggling of the 4 bits in the register.
 3161	 */
 3162	adapter->i2c_adap.owner = THIS_MODULE;
 3163	adapter->i2c_algo = igb_i2c_algo;
 3164	adapter->i2c_algo.data = adapter;
 3165	adapter->i2c_adap.algo_data = &adapter->i2c_algo;
 3166	adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
 3167	strscpy(adapter->i2c_adap.name, "igb BB",
 3168		sizeof(adapter->i2c_adap.name));
 3169	status = i2c_bit_add_bus(&adapter->i2c_adap);
 3170	return status;
 3171}
 3172
 3173/**
 3174 *  igb_probe - Device Initialization Routine
 3175 *  @pdev: PCI device information struct
 3176 *  @ent: entry in igb_pci_tbl
 3177 *
 3178 *  Returns 0 on success, negative on failure
 3179 *
 3180 *  igb_probe initializes an adapter identified by a pci_dev structure.
 3181 *  The OS initialization, configuring of the adapter private structure,
 3182 *  and a hardware reset occur.
 3183 **/
 3184static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 3185{
 3186	struct net_device *netdev;
 3187	struct igb_adapter *adapter;
 3188	struct e1000_hw *hw;
 3189	u16 eeprom_data = 0;
 3190	s32 ret_val;
 3191	static int global_quad_port_a; /* global quad port a indication */
 3192	const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
 3193	u8 part_str[E1000_PBANUM_LENGTH];
 3194	int err;
 3195
 3196	/* Catch broken hardware that put the wrong VF device ID in
 3197	 * the PCIe SR-IOV capability.
 3198	 */
 3199	if (pdev->is_virtfn) {
 3200		WARN(1, KERN_ERR "%s (%x:%x) should not be a VF!\n",
 3201			pci_name(pdev), pdev->vendor, pdev->device);
 3202		return -EINVAL;
 3203	}
 3204
 3205	err = pci_enable_device_mem(pdev);
 3206	if (err)
 3207		return err;
 3208
 3209	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
 3210	if (err) {
 3211		dev_err(&pdev->dev,
 3212			"No usable DMA configuration, aborting\n");
 3213		goto err_dma;
 3214	}
 3215
 3216	err = pci_request_mem_regions(pdev, igb_driver_name);
 3217	if (err)
 3218		goto err_pci_reg;
 3219
 3220	pci_set_master(pdev);
 3221	pci_save_state(pdev);
 3222
 3223	err = -ENOMEM;
 3224	netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
 3225				   IGB_MAX_TX_QUEUES);
 3226	if (!netdev)
 3227		goto err_alloc_etherdev;
 3228
 3229	SET_NETDEV_DEV(netdev, &pdev->dev);
 3230
 3231	pci_set_drvdata(pdev, netdev);
 3232	adapter = netdev_priv(netdev);
 3233	adapter->netdev = netdev;
 3234	adapter->pdev = pdev;
 3235	hw = &adapter->hw;
 3236	hw->back = adapter;
 3237	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
 3238
 3239	err = -EIO;
 3240	adapter->io_addr = pci_iomap(pdev, 0, 0);
 3241	if (!adapter->io_addr)
 3242		goto err_ioremap;
 3243	/* hw->hw_addr can be altered, we'll use adapter->io_addr for unmap */
 3244	hw->hw_addr = adapter->io_addr;
 3245
 3246	netdev->netdev_ops = &igb_netdev_ops;
 3247	igb_set_ethtool_ops(netdev);
 3248	netdev->watchdog_timeo = 5 * HZ;
 3249
 3250	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
 3251
 3252	netdev->mem_start = pci_resource_start(pdev, 0);
 3253	netdev->mem_end = pci_resource_end(pdev, 0);
 3254
 3255	/* PCI config space info */
 3256	hw->vendor_id = pdev->vendor;
 3257	hw->device_id = pdev->device;
 3258	hw->revision_id = pdev->revision;
 3259	hw->subsystem_vendor_id = pdev->subsystem_vendor;
 3260	hw->subsystem_device_id = pdev->subsystem_device;
 3261
 3262	/* Copy the default MAC, PHY and NVM function pointers */
 3263	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
 3264	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
 3265	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
 3266	/* Initialize skew-specific constants */
 3267	err = ei->get_invariants(hw);
 3268	if (err)
 3269		goto err_sw_init;
 3270
 3271	/* setup the private structure */
 3272	err = igb_sw_init(adapter);
 3273	if (err)
 3274		goto err_sw_init;
 3275
 3276	igb_get_bus_info_pcie(hw);
 3277
 3278	hw->phy.autoneg_wait_to_complete = false;
 3279
 3280	/* Copper options */
 3281	if (hw->phy.media_type == e1000_media_type_copper) {
 3282		hw->phy.mdix = AUTO_ALL_MODES;
 3283		hw->phy.disable_polarity_correction = false;
 3284		hw->phy.ms_type = e1000_ms_hw_default;
 3285	}
 3286
 3287	if (igb_check_reset_block(hw))
 3288		dev_info(&pdev->dev,
 3289			"PHY reset is blocked due to SOL/IDER session.\n");
 3290
 3291	/* features is initialized to 0 in allocation, it might have bits
 3292	 * set by igb_sw_init so we should use an or instead of an
 3293	 * assignment.
 3294	 */
 3295	netdev->features |= NETIF_F_SG |
 3296			    NETIF_F_TSO |
 3297			    NETIF_F_TSO6 |
 3298			    NETIF_F_RXHASH |
 3299			    NETIF_F_RXCSUM |
 3300			    NETIF_F_HW_CSUM;
 3301
 3302	if (hw->mac.type >= e1000_82576)
 3303		netdev->features |= NETIF_F_SCTP_CRC | NETIF_F_GSO_UDP_L4;
 3304
 3305	if (hw->mac.type >= e1000_i350)
 3306		netdev->features |= NETIF_F_HW_TC;
 3307
 3308#define IGB_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
 3309				  NETIF_F_GSO_GRE_CSUM | \
 3310				  NETIF_F_GSO_IPXIP4 | \
 3311				  NETIF_F_GSO_IPXIP6 | \
 3312				  NETIF_F_GSO_UDP_TUNNEL | \
 3313				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
 3314
 3315	netdev->gso_partial_features = IGB_GSO_PARTIAL_FEATURES;
 3316	netdev->features |= NETIF_F_GSO_PARTIAL | IGB_GSO_PARTIAL_FEATURES;
 3317
 3318	/* copy netdev features into list of user selectable features */
 3319	netdev->hw_features |= netdev->features |
 3320			       NETIF_F_HW_VLAN_CTAG_RX |
 3321			       NETIF_F_HW_VLAN_CTAG_TX |
 3322			       NETIF_F_RXALL;
 3323
 3324	if (hw->mac.type >= e1000_i350)
 3325		netdev->hw_features |= NETIF_F_NTUPLE;
 3326
 3327	netdev->features |= NETIF_F_HIGHDMA;
 3328
 3329	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
 3330	netdev->mpls_features |= NETIF_F_HW_CSUM;
 3331	netdev->hw_enc_features |= netdev->vlan_features;
 3332
 3333	/* set this bit last since it cannot be part of vlan_features */
 3334	netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER |
 3335			    NETIF_F_HW_VLAN_CTAG_RX |
 3336			    NETIF_F_HW_VLAN_CTAG_TX;
 3337
 3338	netdev->priv_flags |= IFF_SUPP_NOFCS;
 3339
 3340	netdev->priv_flags |= IFF_UNICAST_FLT;
 3341	netdev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT;
 3342
 3343	/* MTU range: 68 - 9216 */
 3344	netdev->min_mtu = ETH_MIN_MTU;
 3345	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
 3346
 3347	adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
 3348
 3349	/* before reading the NVM, reset the controller to put the device in a
 3350	 * known good starting state
 3351	 */
 3352	hw->mac.ops.reset_hw(hw);
 3353
 3354	/* make sure the NVM is good , i211/i210 parts can have special NVM
 3355	 * that doesn't contain a checksum
 3356	 */
 3357	switch (hw->mac.type) {
 3358	case e1000_i210:
 3359	case e1000_i211:
 3360		if (igb_get_flash_presence_i210(hw)) {
 3361			if (hw->nvm.ops.validate(hw) < 0) {
 3362				dev_err(&pdev->dev,
 3363					"The NVM Checksum Is Not Valid\n");
 3364				err = -EIO;
 3365				goto err_eeprom;
 3366			}
 3367		}
 3368		break;
 3369	default:
 3370		if (hw->nvm.ops.validate(hw) < 0) {
 3371			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
 3372			err = -EIO;
 3373			goto err_eeprom;
 3374		}
 3375		break;
 3376	}
 3377
 3378	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
 3379		/* copy the MAC address out of the NVM */
 3380		if (hw->mac.ops.read_mac_addr(hw))
 3381			dev_err(&pdev->dev, "NVM Read Error\n");
 3382	}
 3383
 3384	eth_hw_addr_set(netdev, hw->mac.addr);
 3385
 3386	if (!is_valid_ether_addr(netdev->dev_addr)) {
 3387		dev_err(&pdev->dev, "Invalid MAC Address\n");
 3388		err = -EIO;
 3389		goto err_eeprom;
 3390	}
 3391
 3392	igb_set_default_mac_filter(adapter);
 3393
 3394	/* get firmware version for ethtool -i */
 3395	igb_set_fw_version(adapter);
 3396
 3397	/* configure RXPBSIZE and TXPBSIZE */
 3398	if (hw->mac.type == e1000_i210) {
 3399		wr32(E1000_RXPBS, I210_RXPBSIZE_DEFAULT);
 3400		wr32(E1000_TXPBS, I210_TXPBSIZE_DEFAULT);
 3401	}
 3402
 3403	timer_setup(&adapter->watchdog_timer, igb_watchdog, 0);
 3404	timer_setup(&adapter->phy_info_timer, igb_update_phy_info, 0);
 3405
 3406	INIT_WORK(&adapter->reset_task, igb_reset_task);
 3407	INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
 3408
 3409	/* Initialize link properties that are user-changeable */
 3410	adapter->fc_autoneg = true;
 3411	hw->mac.autoneg = true;
 3412	hw->phy.autoneg_advertised = 0x2f;
 3413
 3414	hw->fc.requested_mode = e1000_fc_default;
 3415	hw->fc.current_mode = e1000_fc_default;
 3416
 3417	igb_validate_mdi_setting(hw);
 3418
 3419	/* By default, support wake on port A */
 3420	if (hw->bus.func == 0)
 3421		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3422
 3423	/* Check the NVM for wake support on non-port A ports */
 3424	if (hw->mac.type >= e1000_82580)
 3425		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
 3426				 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
 3427				 &eeprom_data);
 3428	else if (hw->bus.func == 1)
 3429		hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
 3430
 3431	if (eeprom_data & IGB_EEPROM_APME)
 3432		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3433
 3434	/* now that we have the eeprom settings, apply the special cases where
 3435	 * the eeprom may be wrong or the board simply won't support wake on
 3436	 * lan on a particular port
 3437	 */
 3438	switch (pdev->device) {
 3439	case E1000_DEV_ID_82575GB_QUAD_COPPER:
 3440		adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3441		break;
 3442	case E1000_DEV_ID_82575EB_FIBER_SERDES:
 3443	case E1000_DEV_ID_82576_FIBER:
 3444	case E1000_DEV_ID_82576_SERDES:
 3445		/* Wake events only supported on port A for dual fiber
 3446		 * regardless of eeprom setting
 3447		 */
 3448		if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
 3449			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3450		break;
 3451	case E1000_DEV_ID_82576_QUAD_COPPER:
 3452	case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
 3453		/* if quad port adapter, disable WoL on all but port A */
 3454		if (global_quad_port_a != 0)
 3455			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3456		else
 3457			adapter->flags |= IGB_FLAG_QUAD_PORT_A;
 3458		/* Reset for multiple quad port adapters */
 3459		if (++global_quad_port_a == 4)
 3460			global_quad_port_a = 0;
 3461		break;
 3462	default:
 3463		/* If the device can't wake, don't set software support */
 3464		if (!device_can_wakeup(&adapter->pdev->dev))
 3465			adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
 3466	}
 3467
 3468	/* initialize the wol settings based on the eeprom settings */
 3469	if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
 3470		adapter->wol |= E1000_WUFC_MAG;
 3471
 3472	/* Some vendors want WoL disabled by default, but still supported */
 3473	if ((hw->mac.type == e1000_i350) &&
 3474	    (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
 3475		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3476		adapter->wol = 0;
 3477	}
 3478
 3479	/* Some vendors want the ability to Use the EEPROM setting as
 3480	 * enable/disable only, and not for capability
 3481	 */
 3482	if (((hw->mac.type == e1000_i350) ||
 3483	     (hw->mac.type == e1000_i354)) &&
 3484	    (pdev->subsystem_vendor == PCI_VENDOR_ID_DELL)) {
 3485		adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3486		adapter->wol = 0;
 3487	}
 3488	if (hw->mac.type == e1000_i350) {
 3489		if (((pdev->subsystem_device == 0x5001) ||
 3490		     (pdev->subsystem_device == 0x5002)) &&
 3491				(hw->bus.func == 0)) {
 3492			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3493			adapter->wol = 0;
 3494		}
 3495		if (pdev->subsystem_device == 0x1F52)
 3496			adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
 3497	}
 3498
 3499	device_set_wakeup_enable(&adapter->pdev->dev,
 3500				 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
 3501
 3502	/* reset the hardware with the new settings */
 3503	igb_reset(adapter);
 3504
 3505	/* Init the I2C interface */
 3506	err = igb_init_i2c(adapter);
 3507	if (err) {
 3508		dev_err(&pdev->dev, "failed to init i2c interface\n");
 3509		goto err_eeprom;
 3510	}
 3511
 3512	/* let the f/w know that the h/w is now under the control of the
 3513	 * driver.
 3514	 */
 3515	igb_get_hw_control(adapter);
 3516
 3517	strcpy(netdev->name, "eth%d");
 3518	err = register_netdev(netdev);
 3519	if (err)
 3520		goto err_register;
 3521
 3522	/* carrier off reporting is important to ethtool even BEFORE open */
 3523	netif_carrier_off(netdev);
 3524
 3525#ifdef CONFIG_IGB_DCA
 3526	if (dca_add_requester(&pdev->dev) == 0) {
 3527		adapter->flags |= IGB_FLAG_DCA_ENABLED;
 3528		dev_info(&pdev->dev, "DCA enabled\n");
 3529		igb_setup_dca(adapter);
 3530	}
 3531
 3532#endif
 3533#ifdef CONFIG_IGB_HWMON
 3534	/* Initialize the thermal sensor on i350 devices. */
 3535	if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
 3536		u16 ets_word;
 3537
 3538		/* Read the NVM to determine if this i350 device supports an
 3539		 * external thermal sensor.
 3540		 */
 3541		hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
 3542		if (ets_word != 0x0000 && ets_word != 0xFFFF)
 3543			adapter->ets = true;
 3544		else
 3545			adapter->ets = false;
 3546		/* Only enable I2C bit banging if an external thermal
 3547		 * sensor is supported.
 3548		 */
 3549		if (adapter->ets)
 3550			igb_set_i2c_bb(hw);
 3551		hw->mac.ops.init_thermal_sensor_thresh(hw);
 3552		if (igb_sysfs_init(adapter))
 3553			dev_err(&pdev->dev,
 3554				"failed to allocate sysfs resources\n");
 3555	} else {
 3556		adapter->ets = false;
 3557	}
 3558#endif
 3559	/* Check if Media Autosense is enabled */
 3560	adapter->ei = *ei;
 3561	if (hw->dev_spec._82575.mas_capable)
 3562		igb_init_mas(adapter);
 3563
 3564	/* do hw tstamp init after resetting */
 3565	igb_ptp_init(adapter);
 3566
 3567	dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
 3568	/* print bus type/speed/width info, not applicable to i354 */
 3569	if (hw->mac.type != e1000_i354) {
 3570		dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
 3571			 netdev->name,
 3572			 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
 3573			  (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
 3574			   "unknown"),
 3575			 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
 3576			  "Width x4" :
 3577			  (hw->bus.width == e1000_bus_width_pcie_x2) ?
 3578			  "Width x2" :
 3579			  (hw->bus.width == e1000_bus_width_pcie_x1) ?
 3580			  "Width x1" : "unknown"), netdev->dev_addr);
 3581	}
 3582
 3583	if ((hw->mac.type == e1000_82576 &&
 3584	     rd32(E1000_EECD) & E1000_EECD_PRES) ||
 3585	    (hw->mac.type >= e1000_i210 ||
 3586	     igb_get_flash_presence_i210(hw))) {
 3587		ret_val = igb_read_part_string(hw, part_str,
 3588					       E1000_PBANUM_LENGTH);
 3589	} else {
 3590		ret_val = -E1000_ERR_INVM_VALUE_NOT_FOUND;
 3591	}
 3592
 3593	if (ret_val)
 3594		strcpy(part_str, "Unknown");
 3595	dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
 3596	dev_info(&pdev->dev,
 3597		"Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
 3598		(adapter->flags & IGB_FLAG_HAS_MSIX) ? "MSI-X" :
 3599		(adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
 3600		adapter->num_rx_queues, adapter->num_tx_queues);
 3601	if (hw->phy.media_type == e1000_media_type_copper) {
 3602		switch (hw->mac.type) {
 3603		case e1000_i350:
 3604		case e1000_i210:
 3605		case e1000_i211:
 3606			/* Enable EEE for internal copper PHY devices */
 3607			err = igb_set_eee_i350(hw, true, true);
 3608			if ((!err) &&
 3609			    (!hw->dev_spec._82575.eee_disable)) {
 3610				adapter->eee_advert =
 3611					MDIO_EEE_100TX | MDIO_EEE_1000T;
 3612				adapter->flags |= IGB_FLAG_EEE;
 3613			}
 3614			break;
 3615		case e1000_i354:
 3616			if ((rd32(E1000_CTRL_EXT) &
 3617			    E1000_CTRL_EXT_LINK_MODE_SGMII)) {
 3618				err = igb_set_eee_i354(hw, true, true);
 3619				if ((!err) &&
 3620					(!hw->dev_spec._82575.eee_disable)) {
 3621					adapter->eee_advert =
 3622					   MDIO_EEE_100TX | MDIO_EEE_1000T;
 3623					adapter->flags |= IGB_FLAG_EEE;
 3624				}
 3625			}
 3626			break;
 3627		default:
 3628			break;
 3629		}
 3630	}
 3631
 3632	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
 3633
 3634	pm_runtime_put_noidle(&pdev->dev);
 3635	return 0;
 3636
 3637err_register:
 3638	igb_release_hw_control(adapter);
 3639	memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
 3640err_eeprom:
 3641	if (!igb_check_reset_block(hw))
 3642		igb_reset_phy(hw);
 3643
 3644	if (hw->flash_address)
 3645		iounmap(hw->flash_address);
 3646err_sw_init:
 3647	kfree(adapter->mac_table);
 3648	kfree(adapter->shadow_vfta);
 3649	igb_clear_interrupt_scheme(adapter);
 3650#ifdef CONFIG_PCI_IOV
 3651	igb_disable_sriov(pdev, false);
 3652#endif
 3653	pci_iounmap(pdev, adapter->io_addr);
 3654err_ioremap:
 3655	free_netdev(netdev);
 3656err_alloc_etherdev:
 3657	pci_release_mem_regions(pdev);
 3658err_pci_reg:
 3659err_dma:
 3660	pci_disable_device(pdev);
 3661	return err;
 3662}
 3663
 3664#ifdef CONFIG_PCI_IOV
 3665static int igb_sriov_reinit(struct pci_dev *dev)
 3666{
 3667	struct net_device *netdev = pci_get_drvdata(dev);
 3668	struct igb_adapter *adapter = netdev_priv(netdev);
 3669	struct pci_dev *pdev = adapter->pdev;
 3670
 3671	rtnl_lock();
 3672
 3673	if (netif_running(netdev))
 3674		igb_close(netdev);
 3675	else
 3676		igb_reset(adapter);
 3677
 3678	igb_clear_interrupt_scheme(adapter);
 3679
 3680	igb_init_queue_configuration(adapter);
 3681
 3682	if (igb_init_interrupt_scheme(adapter, true)) {
 3683		rtnl_unlock();
 3684		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 3685		return -ENOMEM;
 3686	}
 3687
 3688	if (netif_running(netdev))
 3689		igb_open(netdev);
 3690
 3691	rtnl_unlock();
 3692
 3693	return 0;
 3694}
 3695
 3696static int igb_disable_sriov(struct pci_dev *pdev, bool reinit)
 3697{
 3698	struct net_device *netdev = pci_get_drvdata(pdev);
 3699	struct igb_adapter *adapter = netdev_priv(netdev);
 3700	struct e1000_hw *hw = &adapter->hw;
 3701	unsigned long flags;
 3702
 3703	/* reclaim resources allocated to VFs */
 3704	if (adapter->vf_data) {
 3705		/* disable iov and allow time for transactions to clear */
 3706		if (pci_vfs_assigned(pdev)) {
 3707			dev_warn(&pdev->dev,
 3708				 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
 3709			return -EPERM;
 3710		} else {
 3711			pci_disable_sriov(pdev);
 3712			msleep(500);
 3713		}
 3714		spin_lock_irqsave(&adapter->vfs_lock, flags);
 3715		kfree(adapter->vf_mac_list);
 3716		adapter->vf_mac_list = NULL;
 3717		kfree(adapter->vf_data);
 3718		adapter->vf_data = NULL;
 3719		adapter->vfs_allocated_count = 0;
 3720		spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 3721		wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
 3722		wrfl();
 3723		msleep(100);
 3724		dev_info(&pdev->dev, "IOV Disabled\n");
 3725
 3726		/* Re-enable DMA Coalescing flag since IOV is turned off */
 3727		adapter->flags |= IGB_FLAG_DMAC;
 3728	}
 3729
 3730	return reinit ? igb_sriov_reinit(pdev) : 0;
 3731}
 3732
 3733static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs, bool reinit)
 3734{
 3735	struct net_device *netdev = pci_get_drvdata(pdev);
 3736	struct igb_adapter *adapter = netdev_priv(netdev);
 3737	int old_vfs = pci_num_vf(pdev);
 3738	struct vf_mac_filter *mac_list;
 3739	int err = 0;
 3740	int num_vf_mac_filters, i;
 3741
 3742	if (!(adapter->flags & IGB_FLAG_HAS_MSIX) || num_vfs > 7) {
 3743		err = -EPERM;
 3744		goto out;
 3745	}
 3746	if (!num_vfs)
 3747		goto out;
 3748
 3749	if (old_vfs) {
 3750		dev_info(&pdev->dev, "%d pre-allocated VFs found - override max_vfs setting of %d\n",
 3751			 old_vfs, max_vfs);
 3752		adapter->vfs_allocated_count = old_vfs;
 3753	} else
 3754		adapter->vfs_allocated_count = num_vfs;
 3755
 3756	adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
 3757				sizeof(struct vf_data_storage), GFP_KERNEL);
 3758
 3759	/* if allocation failed then we do not support SR-IOV */
 3760	if (!adapter->vf_data) {
 3761		adapter->vfs_allocated_count = 0;
 3762		err = -ENOMEM;
 3763		goto out;
 3764	}
 3765
 3766	/* Due to the limited number of RAR entries calculate potential
 3767	 * number of MAC filters available for the VFs. Reserve entries
 3768	 * for PF default MAC, PF MAC filters and at least one RAR entry
 3769	 * for each VF for VF MAC.
 3770	 */
 3771	num_vf_mac_filters = adapter->hw.mac.rar_entry_count -
 3772			     (1 + IGB_PF_MAC_FILTERS_RESERVED +
 3773			      adapter->vfs_allocated_count);
 3774
 3775	adapter->vf_mac_list = kcalloc(num_vf_mac_filters,
 3776				       sizeof(struct vf_mac_filter),
 3777				       GFP_KERNEL);
 3778
 3779	mac_list = adapter->vf_mac_list;
 3780	INIT_LIST_HEAD(&adapter->vf_macs.l);
 3781
 3782	if (adapter->vf_mac_list) {
 3783		/* Initialize list of VF MAC filters */
 3784		for (i = 0; i < num_vf_mac_filters; i++) {
 3785			mac_list->vf = -1;
 3786			mac_list->free = true;
 3787			list_add(&mac_list->l, &adapter->vf_macs.l);
 3788			mac_list++;
 3789		}
 3790	} else {
 3791		/* If we could not allocate memory for the VF MAC filters
 3792		 * we can continue without this feature but warn user.
 3793		 */
 3794		dev_err(&pdev->dev,
 3795			"Unable to allocate memory for VF MAC filter list\n");
 3796	}
 3797
 3798	dev_info(&pdev->dev, "%d VFs allocated\n",
 3799		 adapter->vfs_allocated_count);
 3800	for (i = 0; i < adapter->vfs_allocated_count; i++)
 3801		igb_vf_configure(adapter, i);
 3802
 3803	/* DMA Coalescing is not supported in IOV mode. */
 3804	adapter->flags &= ~IGB_FLAG_DMAC;
 3805
 3806	if (reinit) {
 3807		err = igb_sriov_reinit(pdev);
 3808		if (err)
 3809			goto err_out;
 3810	}
 3811
 3812	/* only call pci_enable_sriov() if no VFs are allocated already */
 3813	if (!old_vfs) {
 3814		err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
 3815		if (err)
 3816			goto err_out;
 3817	}
 3818
 3819	goto out;
 3820
 3821err_out:
 3822	kfree(adapter->vf_mac_list);
 3823	adapter->vf_mac_list = NULL;
 3824	kfree(adapter->vf_data);
 3825	adapter->vf_data = NULL;
 3826	adapter->vfs_allocated_count = 0;
 3827out:
 3828	return err;
 3829}
 3830
 3831#endif
 3832/**
 3833 *  igb_remove_i2c - Cleanup  I2C interface
 3834 *  @adapter: pointer to adapter structure
 3835 **/
 3836static void igb_remove_i2c(struct igb_adapter *adapter)
 3837{
 3838	/* free the adapter bus structure */
 3839	i2c_del_adapter(&adapter->i2c_adap);
 3840}
 3841
 3842/**
 3843 *  igb_remove - Device Removal Routine
 3844 *  @pdev: PCI device information struct
 3845 *
 3846 *  igb_remove is called by the PCI subsystem to alert the driver
 3847 *  that it should release a PCI device.  The could be caused by a
 3848 *  Hot-Plug event, or because the driver is going to be removed from
 3849 *  memory.
 3850 **/
 3851static void igb_remove(struct pci_dev *pdev)
 3852{
 3853	struct net_device *netdev = pci_get_drvdata(pdev);
 3854	struct igb_adapter *adapter = netdev_priv(netdev);
 3855	struct e1000_hw *hw = &adapter->hw;
 3856
 3857	pm_runtime_get_noresume(&pdev->dev);
 3858#ifdef CONFIG_IGB_HWMON
 3859	igb_sysfs_exit(adapter);
 3860#endif
 3861	igb_remove_i2c(adapter);
 3862	igb_ptp_stop(adapter);
 3863	/* The watchdog timer may be rescheduled, so explicitly
 3864	 * disable watchdog from being rescheduled.
 3865	 */
 3866	set_bit(__IGB_DOWN, &adapter->state);
 3867	del_timer_sync(&adapter->watchdog_timer);
 3868	del_timer_sync(&adapter->phy_info_timer);
 3869
 3870	cancel_work_sync(&adapter->reset_task);
 3871	cancel_work_sync(&adapter->watchdog_task);
 3872
 3873#ifdef CONFIG_IGB_DCA
 3874	if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 3875		dev_info(&pdev->dev, "DCA disabled\n");
 3876		dca_remove_requester(&pdev->dev);
 3877		adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 3878		wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 3879	}
 3880#endif
 3881
 3882	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 3883	 * would have already happened in close and is redundant.
 3884	 */
 3885	igb_release_hw_control(adapter);
 3886
 3887#ifdef CONFIG_PCI_IOV
 3888	igb_disable_sriov(pdev, false);
 3889#endif
 3890
 3891	unregister_netdev(netdev);
 3892
 3893	igb_clear_interrupt_scheme(adapter);
 3894
 3895	pci_iounmap(pdev, adapter->io_addr);
 3896	if (hw->flash_address)
 3897		iounmap(hw->flash_address);
 3898	pci_release_mem_regions(pdev);
 3899
 3900	kfree(adapter->mac_table);
 3901	kfree(adapter->shadow_vfta);
 3902	free_netdev(netdev);
 3903
 3904	pci_disable_device(pdev);
 3905}
 3906
 3907/**
 3908 *  igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
 3909 *  @adapter: board private structure to initialize
 3910 *
 3911 *  This function initializes the vf specific data storage and then attempts to
 3912 *  allocate the VFs.  The reason for ordering it this way is because it is much
 3913 *  more expensive time wise to disable SR-IOV than it is to allocate and free
 3914 *  the memory for the VFs.
 3915 **/
 3916static void igb_probe_vfs(struct igb_adapter *adapter)
 3917{
 3918#ifdef CONFIG_PCI_IOV
 3919	struct pci_dev *pdev = adapter->pdev;
 3920	struct e1000_hw *hw = &adapter->hw;
 3921
 3922	/* Virtualization features not supported on i210 and 82580 family. */
 3923	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211) ||
 3924	    (hw->mac.type == e1000_82580))
 3925		return;
 3926
 3927	/* Of the below we really only want the effect of getting
 3928	 * IGB_FLAG_HAS_MSIX set (if available), without which
 3929	 * igb_enable_sriov() has no effect.
 3930	 */
 3931	igb_set_interrupt_capability(adapter, true);
 3932	igb_reset_interrupt_capability(adapter);
 3933
 3934	pci_sriov_set_totalvfs(pdev, 7);
 3935	igb_enable_sriov(pdev, max_vfs, false);
 3936
 3937#endif /* CONFIG_PCI_IOV */
 3938}
 3939
 3940unsigned int igb_get_max_rss_queues(struct igb_adapter *adapter)
 3941{
 3942	struct e1000_hw *hw = &adapter->hw;
 3943	unsigned int max_rss_queues;
 3944
 3945	/* Determine the maximum number of RSS queues supported. */
 3946	switch (hw->mac.type) {
 3947	case e1000_i211:
 3948		max_rss_queues = IGB_MAX_RX_QUEUES_I211;
 3949		break;
 3950	case e1000_82575:
 3951	case e1000_i210:
 3952		max_rss_queues = IGB_MAX_RX_QUEUES_82575;
 3953		break;
 3954	case e1000_i350:
 3955		/* I350 cannot do RSS and SR-IOV at the same time */
 3956		if (!!adapter->vfs_allocated_count) {
 3957			max_rss_queues = 1;
 3958			break;
 3959		}
 3960		fallthrough;
 3961	case e1000_82576:
 3962		if (!!adapter->vfs_allocated_count) {
 3963			max_rss_queues = 2;
 3964			break;
 3965		}
 3966		fallthrough;
 3967	case e1000_82580:
 3968	case e1000_i354:
 3969	default:
 3970		max_rss_queues = IGB_MAX_RX_QUEUES;
 3971		break;
 3972	}
 3973
 3974	return max_rss_queues;
 3975}
 3976
 3977static void igb_init_queue_configuration(struct igb_adapter *adapter)
 3978{
 3979	u32 max_rss_queues;
 3980
 3981	max_rss_queues = igb_get_max_rss_queues(adapter);
 3982	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
 3983
 3984	igb_set_flag_queue_pairs(adapter, max_rss_queues);
 3985}
 3986
 3987void igb_set_flag_queue_pairs(struct igb_adapter *adapter,
 3988			      const u32 max_rss_queues)
 3989{
 3990	struct e1000_hw *hw = &adapter->hw;
 3991
 3992	/* Determine if we need to pair queues. */
 3993	switch (hw->mac.type) {
 3994	case e1000_82575:
 3995	case e1000_i211:
 3996		/* Device supports enough interrupts without queue pairing. */
 3997		break;
 3998	case e1000_82576:
 3999	case e1000_82580:
 4000	case e1000_i350:
 4001	case e1000_i354:
 4002	case e1000_i210:
 4003	default:
 4004		/* If rss_queues > half of max_rss_queues, pair the queues in
 4005		 * order to conserve interrupts due to limited supply.
 4006		 */
 4007		if (adapter->rss_queues > (max_rss_queues / 2))
 4008			adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
 4009		else
 4010			adapter->flags &= ~IGB_FLAG_QUEUE_PAIRS;
 4011		break;
 4012	}
 4013}
 4014
 4015/**
 4016 *  igb_sw_init - Initialize general software structures (struct igb_adapter)
 4017 *  @adapter: board private structure to initialize
 4018 *
 4019 *  igb_sw_init initializes the Adapter private data structure.
 4020 *  Fields are initialized based on PCI device information and
 4021 *  OS network device settings (MTU size).
 4022 **/
 4023static int igb_sw_init(struct igb_adapter *adapter)
 4024{
 4025	struct e1000_hw *hw = &adapter->hw;
 4026	struct net_device *netdev = adapter->netdev;
 4027	struct pci_dev *pdev = adapter->pdev;
 4028
 4029	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
 4030
 4031	/* set default ring sizes */
 4032	adapter->tx_ring_count = IGB_DEFAULT_TXD;
 4033	adapter->rx_ring_count = IGB_DEFAULT_RXD;
 4034
 4035	/* set default ITR values */
 4036	adapter->rx_itr_setting = IGB_DEFAULT_ITR;
 4037	adapter->tx_itr_setting = IGB_DEFAULT_ITR;
 4038
 4039	/* set default work limits */
 4040	adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
 4041
 4042	adapter->max_frame_size = netdev->mtu + IGB_ETH_PKT_HDR_PAD;
 4043	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
 4044
 4045	spin_lock_init(&adapter->nfc_lock);
 4046	spin_lock_init(&adapter->stats64_lock);
 4047
 4048	/* init spinlock to avoid concurrency of VF resources */
 4049	spin_lock_init(&adapter->vfs_lock);
 4050#ifdef CONFIG_PCI_IOV
 4051	switch (hw->mac.type) {
 4052	case e1000_82576:
 4053	case e1000_i350:
 4054		if (max_vfs > 7) {
 4055			dev_warn(&pdev->dev,
 4056				 "Maximum of 7 VFs per PF, using max\n");
 4057			max_vfs = adapter->vfs_allocated_count = 7;
 4058		} else
 4059			adapter->vfs_allocated_count = max_vfs;
 4060		if (adapter->vfs_allocated_count)
 4061			dev_warn(&pdev->dev,
 4062				 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
 4063		break;
 4064	default:
 4065		break;
 4066	}
 4067#endif /* CONFIG_PCI_IOV */
 4068
 4069	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
 4070	adapter->flags |= IGB_FLAG_HAS_MSIX;
 4071
 4072	adapter->mac_table = kcalloc(hw->mac.rar_entry_count,
 4073				     sizeof(struct igb_mac_addr),
 4074				     GFP_KERNEL);
 4075	if (!adapter->mac_table)
 4076		return -ENOMEM;
 4077
 4078	igb_probe_vfs(adapter);
 4079
 4080	igb_init_queue_configuration(adapter);
 4081
 4082	/* Setup and initialize a copy of the hw vlan table array */
 4083	adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
 4084				       GFP_KERNEL);
 4085	if (!adapter->shadow_vfta)
 4086		return -ENOMEM;
 4087
 4088	/* This call may decrease the number of queues */
 4089	if (igb_init_interrupt_scheme(adapter, true)) {
 4090		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 4091		return -ENOMEM;
 4092	}
 4093
 4094	/* Explicitly disable IRQ since the NIC can be in any state. */
 4095	igb_irq_disable(adapter);
 4096
 4097	if (hw->mac.type >= e1000_i350)
 4098		adapter->flags &= ~IGB_FLAG_DMAC;
 4099
 4100	set_bit(__IGB_DOWN, &adapter->state);
 4101	return 0;
 4102}
 4103
 4104/**
 4105 *  __igb_open - Called when a network interface is made active
 4106 *  @netdev: network interface device structure
 4107 *  @resuming: indicates whether we are in a resume call
 4108 *
 4109 *  Returns 0 on success, negative value on failure
 4110 *
 4111 *  The open entry point is called when a network interface is made
 4112 *  active by the system (IFF_UP).  At this point all resources needed
 4113 *  for transmit and receive operations are allocated, the interrupt
 4114 *  handler is registered with the OS, the watchdog timer is started,
 4115 *  and the stack is notified that the interface is ready.
 4116 **/
 4117static int __igb_open(struct net_device *netdev, bool resuming)
 4118{
 4119	struct igb_adapter *adapter = netdev_priv(netdev);
 4120	struct e1000_hw *hw = &adapter->hw;
 4121	struct pci_dev *pdev = adapter->pdev;
 4122	int err;
 4123	int i;
 4124
 4125	/* disallow open during test */
 4126	if (test_bit(__IGB_TESTING, &adapter->state)) {
 4127		WARN_ON(resuming);
 4128		return -EBUSY;
 4129	}
 4130
 4131	if (!resuming)
 4132		pm_runtime_get_sync(&pdev->dev);
 4133
 4134	netif_carrier_off(netdev);
 4135
 4136	/* allocate transmit descriptors */
 4137	err = igb_setup_all_tx_resources(adapter);
 4138	if (err)
 4139		goto err_setup_tx;
 4140
 4141	/* allocate receive descriptors */
 4142	err = igb_setup_all_rx_resources(adapter);
 4143	if (err)
 4144		goto err_setup_rx;
 4145
 4146	igb_power_up_link(adapter);
 4147
 4148	/* before we allocate an interrupt, we must be ready to handle it.
 4149	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
 4150	 * as soon as we call pci_request_irq, so we have to setup our
 4151	 * clean_rx handler before we do so.
 4152	 */
 4153	igb_configure(adapter);
 4154
 4155	err = igb_request_irq(adapter);
 4156	if (err)
 4157		goto err_req_irq;
 4158
 4159	/* Notify the stack of the actual queue counts. */
 4160	err = netif_set_real_num_tx_queues(adapter->netdev,
 4161					   adapter->num_tx_queues);
 4162	if (err)
 4163		goto err_set_queues;
 4164
 4165	err = netif_set_real_num_rx_queues(adapter->netdev,
 4166					   adapter->num_rx_queues);
 4167	if (err)
 4168		goto err_set_queues;
 4169
 4170	/* From here on the code is the same as igb_up() */
 4171	clear_bit(__IGB_DOWN, &adapter->state);
 4172
 4173	for (i = 0; i < adapter->num_q_vectors; i++)
 4174		napi_enable(&(adapter->q_vector[i]->napi));
 4175
 4176	/* Clear any pending interrupts. */
 4177	rd32(E1000_TSICR);
 4178	rd32(E1000_ICR);
 4179
 4180	igb_irq_enable(adapter);
 4181
 4182	/* notify VFs that reset has been completed */
 4183	if (adapter->vfs_allocated_count) {
 4184		u32 reg_data = rd32(E1000_CTRL_EXT);
 4185
 4186		reg_data |= E1000_CTRL_EXT_PFRSTD;
 4187		wr32(E1000_CTRL_EXT, reg_data);
 4188	}
 4189
 4190	netif_tx_start_all_queues(netdev);
 4191
 4192	if (!resuming)
 4193		pm_runtime_put(&pdev->dev);
 4194
 4195	/* start the watchdog. */
 4196	hw->mac.get_link_status = 1;
 4197	schedule_work(&adapter->watchdog_task);
 4198
 4199	return 0;
 4200
 4201err_set_queues:
 4202	igb_free_irq(adapter);
 4203err_req_irq:
 4204	igb_release_hw_control(adapter);
 4205	igb_power_down_link(adapter);
 4206	igb_free_all_rx_resources(adapter);
 4207err_setup_rx:
 4208	igb_free_all_tx_resources(adapter);
 4209err_setup_tx:
 4210	igb_reset(adapter);
 4211	if (!resuming)
 4212		pm_runtime_put(&pdev->dev);
 4213
 4214	return err;
 4215}
 4216
 4217int igb_open(struct net_device *netdev)
 4218{
 4219	return __igb_open(netdev, false);
 4220}
 4221
 4222/**
 4223 *  __igb_close - Disables a network interface
 4224 *  @netdev: network interface device structure
 4225 *  @suspending: indicates we are in a suspend call
 4226 *
 4227 *  Returns 0, this is not allowed to fail
 4228 *
 4229 *  The close entry point is called when an interface is de-activated
 4230 *  by the OS.  The hardware is still under the driver's control, but
 4231 *  needs to be disabled.  A global MAC reset is issued to stop the
 4232 *  hardware, and all transmit and receive resources are freed.
 4233 **/
 4234static int __igb_close(struct net_device *netdev, bool suspending)
 4235{
 4236	struct igb_adapter *adapter = netdev_priv(netdev);
 4237	struct pci_dev *pdev = adapter->pdev;
 4238
 4239	WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
 4240
 4241	if (!suspending)
 4242		pm_runtime_get_sync(&pdev->dev);
 4243
 4244	igb_down(adapter);
 4245	igb_free_irq(adapter);
 4246
 4247	igb_free_all_tx_resources(adapter);
 4248	igb_free_all_rx_resources(adapter);
 4249
 4250	if (!suspending)
 4251		pm_runtime_put_sync(&pdev->dev);
 4252	return 0;
 4253}
 4254
 4255int igb_close(struct net_device *netdev)
 4256{
 4257	if (netif_device_present(netdev) || netdev->dismantle)
 4258		return __igb_close(netdev, false);
 4259	return 0;
 4260}
 4261
 4262/**
 4263 *  igb_setup_tx_resources - allocate Tx resources (Descriptors)
 4264 *  @tx_ring: tx descriptor ring (for a specific queue) to setup
 4265 *
 4266 *  Return 0 on success, negative on failure
 4267 **/
 4268int igb_setup_tx_resources(struct igb_ring *tx_ring)
 4269{
 4270	struct device *dev = tx_ring->dev;
 4271	int size;
 4272
 4273	size = sizeof(struct igb_tx_buffer) * tx_ring->count;
 4274
 4275	tx_ring->tx_buffer_info = vmalloc(size);
 4276	if (!tx_ring->tx_buffer_info)
 4277		goto err;
 4278
 4279	/* round up to nearest 4K */
 4280	tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
 4281	tx_ring->size = ALIGN(tx_ring->size, 4096);
 4282
 4283	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 4284					   &tx_ring->dma, GFP_KERNEL);
 4285	if (!tx_ring->desc)
 4286		goto err;
 4287
 4288	tx_ring->next_to_use = 0;
 4289	tx_ring->next_to_clean = 0;
 4290
 4291	return 0;
 4292
 4293err:
 4294	vfree(tx_ring->tx_buffer_info);
 4295	tx_ring->tx_buffer_info = NULL;
 4296	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
 4297	return -ENOMEM;
 4298}
 4299
 4300/**
 4301 *  igb_setup_all_tx_resources - wrapper to allocate Tx resources
 4302 *				 (Descriptors) for all queues
 4303 *  @adapter: board private structure
 4304 *
 4305 *  Return 0 on success, negative on failure
 4306 **/
 4307static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
 4308{
 4309	struct pci_dev *pdev = adapter->pdev;
 4310	int i, err = 0;
 4311
 4312	for (i = 0; i < adapter->num_tx_queues; i++) {
 4313		err = igb_setup_tx_resources(adapter->tx_ring[i]);
 4314		if (err) {
 4315			dev_err(&pdev->dev,
 4316				"Allocation for Tx Queue %u failed\n", i);
 4317			for (i--; i >= 0; i--)
 4318				igb_free_tx_resources(adapter->tx_ring[i]);
 4319			break;
 4320		}
 4321	}
 4322
 4323	return err;
 4324}
 4325
 4326/**
 4327 *  igb_setup_tctl - configure the transmit control registers
 4328 *  @adapter: Board private structure
 4329 **/
 4330void igb_setup_tctl(struct igb_adapter *adapter)
 4331{
 4332	struct e1000_hw *hw = &adapter->hw;
 4333	u32 tctl;
 4334
 4335	/* disable queue 0 which is enabled by default on 82575 and 82576 */
 4336	wr32(E1000_TXDCTL(0), 0);
 4337
 4338	/* Program the Transmit Control Register */
 4339	tctl = rd32(E1000_TCTL);
 4340	tctl &= ~E1000_TCTL_CT;
 4341	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
 4342		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
 4343
 4344	igb_config_collision_dist(hw);
 4345
 4346	/* Enable transmits */
 4347	tctl |= E1000_TCTL_EN;
 4348
 4349	wr32(E1000_TCTL, tctl);
 4350}
 4351
 4352/**
 4353 *  igb_configure_tx_ring - Configure transmit ring after Reset
 4354 *  @adapter: board private structure
 4355 *  @ring: tx ring to configure
 4356 *
 4357 *  Configure a transmit ring after a reset.
 4358 **/
 4359void igb_configure_tx_ring(struct igb_adapter *adapter,
 4360			   struct igb_ring *ring)
 4361{
 4362	struct e1000_hw *hw = &adapter->hw;
 4363	u32 txdctl = 0;
 4364	u64 tdba = ring->dma;
 4365	int reg_idx = ring->reg_idx;
 4366
 4367	wr32(E1000_TDLEN(reg_idx),
 4368	     ring->count * sizeof(union e1000_adv_tx_desc));
 4369	wr32(E1000_TDBAL(reg_idx),
 4370	     tdba & 0x00000000ffffffffULL);
 4371	wr32(E1000_TDBAH(reg_idx), tdba >> 32);
 4372
 4373	ring->tail = adapter->io_addr + E1000_TDT(reg_idx);
 4374	wr32(E1000_TDH(reg_idx), 0);
 4375	writel(0, ring->tail);
 4376
 4377	txdctl |= IGB_TX_PTHRESH;
 4378	txdctl |= IGB_TX_HTHRESH << 8;
 4379	txdctl |= IGB_TX_WTHRESH << 16;
 4380
 4381	/* reinitialize tx_buffer_info */
 4382	memset(ring->tx_buffer_info, 0,
 4383	       sizeof(struct igb_tx_buffer) * ring->count);
 4384
 4385	txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
 4386	wr32(E1000_TXDCTL(reg_idx), txdctl);
 4387}
 4388
 4389/**
 4390 *  igb_configure_tx - Configure transmit Unit after Reset
 4391 *  @adapter: board private structure
 4392 *
 4393 *  Configure the Tx unit of the MAC after a reset.
 4394 **/
 4395static void igb_configure_tx(struct igb_adapter *adapter)
 4396{
 4397	struct e1000_hw *hw = &adapter->hw;
 4398	int i;
 4399
 4400	/* disable the queues */
 4401	for (i = 0; i < adapter->num_tx_queues; i++)
 4402		wr32(E1000_TXDCTL(adapter->tx_ring[i]->reg_idx), 0);
 4403
 4404	wrfl();
 4405	usleep_range(10000, 20000);
 4406
 4407	for (i = 0; i < adapter->num_tx_queues; i++)
 4408		igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
 4409}
 4410
 4411/**
 4412 *  igb_setup_rx_resources - allocate Rx resources (Descriptors)
 4413 *  @rx_ring: Rx descriptor ring (for a specific queue) to setup
 4414 *
 4415 *  Returns 0 on success, negative on failure
 4416 **/
 4417int igb_setup_rx_resources(struct igb_ring *rx_ring)
 4418{
 4419	struct igb_adapter *adapter = netdev_priv(rx_ring->netdev);
 4420	struct device *dev = rx_ring->dev;
 4421	int size, res;
 4422
 4423	/* XDP RX-queue info */
 4424	if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
 4425		xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4426	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
 4427			       rx_ring->queue_index, 0);
 4428	if (res < 0) {
 4429		dev_err(dev, "Failed to register xdp_rxq index %u\n",
 4430			rx_ring->queue_index);
 4431		return res;
 4432	}
 4433
 4434	size = sizeof(struct igb_rx_buffer) * rx_ring->count;
 4435
 4436	rx_ring->rx_buffer_info = vmalloc(size);
 4437	if (!rx_ring->rx_buffer_info)
 4438		goto err;
 4439
 4440	/* Round up to nearest 4K */
 4441	rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
 4442	rx_ring->size = ALIGN(rx_ring->size, 4096);
 4443
 4444	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 4445					   &rx_ring->dma, GFP_KERNEL);
 4446	if (!rx_ring->desc)
 4447		goto err;
 4448
 4449	rx_ring->next_to_alloc = 0;
 4450	rx_ring->next_to_clean = 0;
 4451	rx_ring->next_to_use = 0;
 4452
 4453	rx_ring->xdp_prog = adapter->xdp_prog;
 4454
 4455	return 0;
 4456
 4457err:
 4458	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4459	vfree(rx_ring->rx_buffer_info);
 4460	rx_ring->rx_buffer_info = NULL;
 4461	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
 4462	return -ENOMEM;
 4463}
 4464
 4465/**
 4466 *  igb_setup_all_rx_resources - wrapper to allocate Rx resources
 4467 *				 (Descriptors) for all queues
 4468 *  @adapter: board private structure
 4469 *
 4470 *  Return 0 on success, negative on failure
 4471 **/
 4472static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
 4473{
 4474	struct pci_dev *pdev = adapter->pdev;
 4475	int i, err = 0;
 4476
 4477	for (i = 0; i < adapter->num_rx_queues; i++) {
 4478		err = igb_setup_rx_resources(adapter->rx_ring[i]);
 4479		if (err) {
 4480			dev_err(&pdev->dev,
 4481				"Allocation for Rx Queue %u failed\n", i);
 4482			for (i--; i >= 0; i--)
 4483				igb_free_rx_resources(adapter->rx_ring[i]);
 4484			break;
 4485		}
 4486	}
 4487
 4488	return err;
 4489}
 4490
 4491/**
 4492 *  igb_setup_mrqc - configure the multiple receive queue control registers
 4493 *  @adapter: Board private structure
 4494 **/
 4495static void igb_setup_mrqc(struct igb_adapter *adapter)
 4496{
 4497	struct e1000_hw *hw = &adapter->hw;
 4498	u32 mrqc, rxcsum;
 4499	u32 j, num_rx_queues;
 4500	u32 rss_key[10];
 4501
 4502	netdev_rss_key_fill(rss_key, sizeof(rss_key));
 4503	for (j = 0; j < 10; j++)
 4504		wr32(E1000_RSSRK(j), rss_key[j]);
 4505
 4506	num_rx_queues = adapter->rss_queues;
 4507
 4508	switch (hw->mac.type) {
 4509	case e1000_82576:
 4510		/* 82576 supports 2 RSS queues for SR-IOV */
 4511		if (adapter->vfs_allocated_count)
 4512			num_rx_queues = 2;
 4513		break;
 4514	default:
 4515		break;
 4516	}
 4517
 4518	if (adapter->rss_indir_tbl_init != num_rx_queues) {
 4519		for (j = 0; j < IGB_RETA_SIZE; j++)
 4520			adapter->rss_indir_tbl[j] =
 4521			(j * num_rx_queues) / IGB_RETA_SIZE;
 4522		adapter->rss_indir_tbl_init = num_rx_queues;
 4523	}
 4524	igb_write_rss_indir_tbl(adapter);
 4525
 4526	/* Disable raw packet checksumming so that RSS hash is placed in
 4527	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 4528	 * offloads as they are enabled by default
 4529	 */
 4530	rxcsum = rd32(E1000_RXCSUM);
 4531	rxcsum |= E1000_RXCSUM_PCSD;
 4532
 4533	if (adapter->hw.mac.type >= e1000_82576)
 4534		/* Enable Receive Checksum Offload for SCTP */
 4535		rxcsum |= E1000_RXCSUM_CRCOFL;
 4536
 4537	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 4538	wr32(E1000_RXCSUM, rxcsum);
 4539
 4540	/* Generate RSS hash based on packet types, TCP/UDP
 4541	 * port numbers and/or IPv4/v6 src and dst addresses
 4542	 */
 4543	mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
 4544	       E1000_MRQC_RSS_FIELD_IPV4_TCP |
 4545	       E1000_MRQC_RSS_FIELD_IPV6 |
 4546	       E1000_MRQC_RSS_FIELD_IPV6_TCP |
 4547	       E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
 4548
 4549	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
 4550		mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
 4551	if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
 4552		mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
 4553
 4554	/* If VMDq is enabled then we set the appropriate mode for that, else
 4555	 * we default to RSS so that an RSS hash is calculated per packet even
 4556	 * if we are only using one queue
 4557	 */
 4558	if (adapter->vfs_allocated_count) {
 4559		if (hw->mac.type > e1000_82575) {
 4560			/* Set the default pool for the PF's first queue */
 4561			u32 vtctl = rd32(E1000_VT_CTL);
 4562
 4563			vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
 4564				   E1000_VT_CTL_DISABLE_DEF_POOL);
 4565			vtctl |= adapter->vfs_allocated_count <<
 4566				E1000_VT_CTL_DEFAULT_POOL_SHIFT;
 4567			wr32(E1000_VT_CTL, vtctl);
 4568		}
 4569		if (adapter->rss_queues > 1)
 4570			mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_MQ;
 4571		else
 4572			mrqc |= E1000_MRQC_ENABLE_VMDQ;
 4573	} else {
 4574		mrqc |= E1000_MRQC_ENABLE_RSS_MQ;
 4575	}
 4576	igb_vmm_control(adapter);
 4577
 4578	wr32(E1000_MRQC, mrqc);
 4579}
 4580
 4581/**
 4582 *  igb_setup_rctl - configure the receive control registers
 4583 *  @adapter: Board private structure
 4584 **/
 4585void igb_setup_rctl(struct igb_adapter *adapter)
 4586{
 4587	struct e1000_hw *hw = &adapter->hw;
 4588	u32 rctl;
 4589
 4590	rctl = rd32(E1000_RCTL);
 4591
 4592	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
 4593	rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
 4594
 4595	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
 4596		(hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
 4597
 4598	/* enable stripping of CRC. It's unlikely this will break BMC
 4599	 * redirection as it did with e1000. Newer features require
 4600	 * that the HW strips the CRC.
 4601	 */
 4602	rctl |= E1000_RCTL_SECRC;
 4603
 4604	/* disable store bad packets and clear size bits. */
 4605	rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
 4606
 4607	/* enable LPE to allow for reception of jumbo frames */
 4608	rctl |= E1000_RCTL_LPE;
 4609
 4610	/* disable queue 0 to prevent tail write w/o re-config */
 4611	wr32(E1000_RXDCTL(0), 0);
 4612
 4613	/* Attention!!!  For SR-IOV PF driver operations you must enable
 4614	 * queue drop for all VF and PF queues to prevent head of line blocking
 4615	 * if an un-trusted VF does not provide descriptors to hardware.
 4616	 */
 4617	if (adapter->vfs_allocated_count) {
 4618		/* set all queue drop enable bits */
 4619		wr32(E1000_QDE, ALL_QUEUES);
 4620	}
 4621
 4622	/* This is useful for sniffing bad packets. */
 4623	if (adapter->netdev->features & NETIF_F_RXALL) {
 4624		/* UPE and MPE will be handled by normal PROMISC logic
 4625		 * in e1000e_set_rx_mode
 4626		 */
 4627		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
 4628			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
 4629			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 4630
 4631		rctl &= ~(E1000_RCTL_DPF | /* Allow filtered pause */
 4632			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 4633		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
 4634		 * and that breaks VLANs.
 4635		 */
 4636	}
 4637
 4638	wr32(E1000_RCTL, rctl);
 4639}
 4640
 4641static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
 4642				   int vfn)
 4643{
 4644	struct e1000_hw *hw = &adapter->hw;
 4645	u32 vmolr;
 4646
 4647	if (size > MAX_JUMBO_FRAME_SIZE)
 4648		size = MAX_JUMBO_FRAME_SIZE;
 4649
 4650	vmolr = rd32(E1000_VMOLR(vfn));
 4651	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 4652	vmolr |= size | E1000_VMOLR_LPE;
 4653	wr32(E1000_VMOLR(vfn), vmolr);
 4654
 4655	return 0;
 4656}
 4657
 4658static inline void igb_set_vf_vlan_strip(struct igb_adapter *adapter,
 4659					 int vfn, bool enable)
 4660{
 4661	struct e1000_hw *hw = &adapter->hw;
 4662	u32 val, reg;
 4663
 4664	if (hw->mac.type < e1000_82576)
 4665		return;
 4666
 4667	if (hw->mac.type == e1000_i350)
 4668		reg = E1000_DVMOLR(vfn);
 4669	else
 4670		reg = E1000_VMOLR(vfn);
 4671
 4672	val = rd32(reg);
 4673	if (enable)
 4674		val |= E1000_VMOLR_STRVLAN;
 4675	else
 4676		val &= ~(E1000_VMOLR_STRVLAN);
 4677	wr32(reg, val);
 4678}
 4679
 4680static inline void igb_set_vmolr(struct igb_adapter *adapter,
 4681				 int vfn, bool aupe)
 4682{
 4683	struct e1000_hw *hw = &adapter->hw;
 4684	u32 vmolr;
 4685
 4686	/* This register exists only on 82576 and newer so if we are older then
 4687	 * we should exit and do nothing
 4688	 */
 4689	if (hw->mac.type < e1000_82576)
 4690		return;
 4691
 4692	vmolr = rd32(E1000_VMOLR(vfn));
 4693	if (aupe)
 4694		vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
 4695	else
 4696		vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
 4697
 4698	/* clear all bits that might not be set */
 4699	vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
 4700
 4701	if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
 4702		vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
 4703	/* for VMDq only allow the VFs and pool 0 to accept broadcast and
 4704	 * multicast packets
 4705	 */
 4706	if (vfn <= adapter->vfs_allocated_count)
 4707		vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
 4708
 4709	wr32(E1000_VMOLR(vfn), vmolr);
 4710}
 4711
 4712/**
 4713 *  igb_setup_srrctl - configure the split and replication receive control
 4714 *                     registers
 4715 *  @adapter: Board private structure
 4716 *  @ring: receive ring to be configured
 4717 **/
 4718void igb_setup_srrctl(struct igb_adapter *adapter, struct igb_ring *ring)
 4719{
 4720	struct e1000_hw *hw = &adapter->hw;
 4721	int reg_idx = ring->reg_idx;
 4722	u32 srrctl = 0;
 4723
 4724	srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
 4725	if (ring_uses_large_buffer(ring))
 4726		srrctl |= IGB_RXBUFFER_3072 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4727	else
 4728		srrctl |= IGB_RXBUFFER_2048 >> E1000_SRRCTL_BSIZEPKT_SHIFT;
 4729	srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
 4730	if (hw->mac.type >= e1000_82580)
 4731		srrctl |= E1000_SRRCTL_TIMESTAMP;
 4732	/* Only set Drop Enable if VFs allocated, or we are supporting multiple
 4733	 * queues and rx flow control is disabled
 4734	 */
 4735	if (adapter->vfs_allocated_count ||
 4736	    (!(hw->fc.current_mode & e1000_fc_rx_pause) &&
 4737	     adapter->num_rx_queues > 1))
 4738		srrctl |= E1000_SRRCTL_DROP_EN;
 4739
 4740	wr32(E1000_SRRCTL(reg_idx), srrctl);
 4741}
 4742
 4743/**
 4744 *  igb_configure_rx_ring - Configure a receive ring after Reset
 4745 *  @adapter: board private structure
 4746 *  @ring: receive ring to be configured
 4747 *
 4748 *  Configure the Rx unit of the MAC after a reset.
 4749 **/
 4750void igb_configure_rx_ring(struct igb_adapter *adapter,
 4751			   struct igb_ring *ring)
 4752{
 4753	struct e1000_hw *hw = &adapter->hw;
 4754	union e1000_adv_rx_desc *rx_desc;
 4755	u64 rdba = ring->dma;
 4756	int reg_idx = ring->reg_idx;
 4757	u32 rxdctl = 0;
 4758
 4759	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 4760	WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 4761					   MEM_TYPE_PAGE_SHARED, NULL));
 4762
 4763	/* disable the queue */
 4764	wr32(E1000_RXDCTL(reg_idx), 0);
 4765
 4766	/* Set DMA base address registers */
 4767	wr32(E1000_RDBAL(reg_idx),
 4768	     rdba & 0x00000000ffffffffULL);
 4769	wr32(E1000_RDBAH(reg_idx), rdba >> 32);
 4770	wr32(E1000_RDLEN(reg_idx),
 4771	     ring->count * sizeof(union e1000_adv_rx_desc));
 4772
 4773	/* initialize head and tail */
 4774	ring->tail = adapter->io_addr + E1000_RDT(reg_idx);
 4775	wr32(E1000_RDH(reg_idx), 0);
 4776	writel(0, ring->tail);
 4777
 4778	/* set descriptor configuration */
 4779	igb_setup_srrctl(adapter, ring);
 4780
 4781	/* set filtering for VMDQ pools */
 4782	igb_set_vmolr(adapter, reg_idx & 0x7, true);
 4783
 4784	rxdctl |= IGB_RX_PTHRESH;
 4785	rxdctl |= IGB_RX_HTHRESH << 8;
 4786	rxdctl |= IGB_RX_WTHRESH << 16;
 4787
 4788	/* initialize rx_buffer_info */
 4789	memset(ring->rx_buffer_info, 0,
 4790	       sizeof(struct igb_rx_buffer) * ring->count);
 4791
 4792	/* initialize Rx descriptor 0 */
 4793	rx_desc = IGB_RX_DESC(ring, 0);
 4794	rx_desc->wb.upper.length = 0;
 4795
 4796	/* enable receive descriptor fetching */
 4797	rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
 4798	wr32(E1000_RXDCTL(reg_idx), rxdctl);
 4799}
 4800
 4801static void igb_set_rx_buffer_len(struct igb_adapter *adapter,
 4802				  struct igb_ring *rx_ring)
 4803{
 4804#if (PAGE_SIZE < 8192)
 4805	struct e1000_hw *hw = &adapter->hw;
 4806#endif
 4807
 4808	/* set build_skb and buffer size flags */
 4809	clear_ring_build_skb_enabled(rx_ring);
 4810	clear_ring_uses_large_buffer(rx_ring);
 4811
 4812	if (adapter->flags & IGB_FLAG_RX_LEGACY)
 4813		return;
 4814
 4815	set_ring_build_skb_enabled(rx_ring);
 4816
 4817#if (PAGE_SIZE < 8192)
 4818	if (adapter->max_frame_size > IGB_MAX_FRAME_BUILD_SKB ||
 4819	    IGB_2K_TOO_SMALL_WITH_PADDING ||
 4820	    rd32(E1000_RCTL) & E1000_RCTL_SBP)
 4821		set_ring_uses_large_buffer(rx_ring);
 4822#endif
 4823}
 4824
 4825/**
 4826 *  igb_configure_rx - Configure receive Unit after Reset
 4827 *  @adapter: board private structure
 4828 *
 4829 *  Configure the Rx unit of the MAC after a reset.
 4830 **/
 4831static void igb_configure_rx(struct igb_adapter *adapter)
 4832{
 4833	int i;
 4834
 4835	/* set the correct pool for the PF default MAC address in entry 0 */
 4836	igb_set_default_mac_filter(adapter);
 4837
 4838	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 4839	 * the Base and Length of the Rx Descriptor Ring
 4840	 */
 4841	for (i = 0; i < adapter->num_rx_queues; i++) {
 4842		struct igb_ring *rx_ring = adapter->rx_ring[i];
 4843
 4844		igb_set_rx_buffer_len(adapter, rx_ring);
 4845		igb_configure_rx_ring(adapter, rx_ring);
 4846	}
 4847}
 4848
 4849/**
 4850 *  igb_free_tx_resources - Free Tx Resources per Queue
 4851 *  @tx_ring: Tx descriptor ring for a specific queue
 4852 *
 4853 *  Free all transmit software resources
 4854 **/
 4855void igb_free_tx_resources(struct igb_ring *tx_ring)
 4856{
 4857	igb_clean_tx_ring(tx_ring);
 4858
 4859	vfree(tx_ring->tx_buffer_info);
 4860	tx_ring->tx_buffer_info = NULL;
 4861
 4862	/* if not set, then don't free */
 4863	if (!tx_ring->desc)
 4864		return;
 4865
 4866	dma_free_coherent(tx_ring->dev, tx_ring->size,
 4867			  tx_ring->desc, tx_ring->dma);
 4868
 4869	tx_ring->desc = NULL;
 4870}
 4871
 4872/**
 4873 *  igb_free_all_tx_resources - Free Tx Resources for All Queues
 4874 *  @adapter: board private structure
 4875 *
 4876 *  Free all transmit software resources
 4877 **/
 4878static void igb_free_all_tx_resources(struct igb_adapter *adapter)
 4879{
 4880	int i;
 4881
 4882	for (i = 0; i < adapter->num_tx_queues; i++)
 4883		if (adapter->tx_ring[i])
 4884			igb_free_tx_resources(adapter->tx_ring[i]);
 4885}
 4886
 4887/**
 4888 *  igb_clean_tx_ring - Free Tx Buffers
 4889 *  @tx_ring: ring to be cleaned
 4890 **/
 4891static void igb_clean_tx_ring(struct igb_ring *tx_ring)
 4892{
 4893	u16 i = tx_ring->next_to_clean;
 4894	struct igb_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 4895
 4896	while (i != tx_ring->next_to_use) {
 4897		union e1000_adv_tx_desc *eop_desc, *tx_desc;
 4898
 4899		/* Free all the Tx ring sk_buffs or xdp frames */
 4900		if (tx_buffer->type == IGB_TYPE_SKB)
 4901			dev_kfree_skb_any(tx_buffer->skb);
 4902		else
 4903			xdp_return_frame(tx_buffer->xdpf);
 4904
 4905		/* unmap skb header data */
 4906		dma_unmap_single(tx_ring->dev,
 4907				 dma_unmap_addr(tx_buffer, dma),
 4908				 dma_unmap_len(tx_buffer, len),
 4909				 DMA_TO_DEVICE);
 4910
 4911		/* check for eop_desc to determine the end of the packet */
 4912		eop_desc = tx_buffer->next_to_watch;
 4913		tx_desc = IGB_TX_DESC(tx_ring, i);
 4914
 4915		/* unmap remaining buffers */
 4916		while (tx_desc != eop_desc) {
 4917			tx_buffer++;
 4918			tx_desc++;
 4919			i++;
 4920			if (unlikely(i == tx_ring->count)) {
 4921				i = 0;
 4922				tx_buffer = tx_ring->tx_buffer_info;
 4923				tx_desc = IGB_TX_DESC(tx_ring, 0);
 4924			}
 4925
 4926			/* unmap any remaining paged data */
 4927			if (dma_unmap_len(tx_buffer, len))
 4928				dma_unmap_page(tx_ring->dev,
 4929					       dma_unmap_addr(tx_buffer, dma),
 4930					       dma_unmap_len(tx_buffer, len),
 4931					       DMA_TO_DEVICE);
 4932		}
 4933
 4934		tx_buffer->next_to_watch = NULL;
 4935
 4936		/* move us one more past the eop_desc for start of next pkt */
 4937		tx_buffer++;
 4938		i++;
 4939		if (unlikely(i == tx_ring->count)) {
 4940			i = 0;
 4941			tx_buffer = tx_ring->tx_buffer_info;
 4942		}
 4943	}
 4944
 4945	/* reset BQL for queue */
 4946	netdev_tx_reset_queue(txring_txq(tx_ring));
 4947
 4948	/* reset next_to_use and next_to_clean */
 4949	tx_ring->next_to_use = 0;
 4950	tx_ring->next_to_clean = 0;
 4951}
 4952
 4953/**
 4954 *  igb_clean_all_tx_rings - Free Tx Buffers for all queues
 4955 *  @adapter: board private structure
 4956 **/
 4957static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
 4958{
 4959	int i;
 4960
 4961	for (i = 0; i < adapter->num_tx_queues; i++)
 4962		if (adapter->tx_ring[i])
 4963			igb_clean_tx_ring(adapter->tx_ring[i]);
 4964}
 4965
 4966/**
 4967 *  igb_free_rx_resources - Free Rx Resources
 4968 *  @rx_ring: ring to clean the resources from
 4969 *
 4970 *  Free all receive software resources
 4971 **/
 4972void igb_free_rx_resources(struct igb_ring *rx_ring)
 4973{
 4974	igb_clean_rx_ring(rx_ring);
 4975
 4976	rx_ring->xdp_prog = NULL;
 4977	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 4978	vfree(rx_ring->rx_buffer_info);
 4979	rx_ring->rx_buffer_info = NULL;
 4980
 4981	/* if not set, then don't free */
 4982	if (!rx_ring->desc)
 4983		return;
 4984
 4985	dma_free_coherent(rx_ring->dev, rx_ring->size,
 4986			  rx_ring->desc, rx_ring->dma);
 4987
 4988	rx_ring->desc = NULL;
 4989}
 4990
 4991/**
 4992 *  igb_free_all_rx_resources - Free Rx Resources for All Queues
 4993 *  @adapter: board private structure
 4994 *
 4995 *  Free all receive software resources
 4996 **/
 4997static void igb_free_all_rx_resources(struct igb_adapter *adapter)
 4998{
 4999	int i;
 5000
 5001	for (i = 0; i < adapter->num_rx_queues; i++)
 5002		if (adapter->rx_ring[i])
 5003			igb_free_rx_resources(adapter->rx_ring[i]);
 5004}
 5005
 5006/**
 5007 *  igb_clean_rx_ring - Free Rx Buffers per Queue
 5008 *  @rx_ring: ring to free buffers from
 5009 **/
 5010static void igb_clean_rx_ring(struct igb_ring *rx_ring)
 5011{
 5012	u16 i = rx_ring->next_to_clean;
 5013
 5014	dev_kfree_skb(rx_ring->skb);
 5015	rx_ring->skb = NULL;
 5016
 5017	/* Free all the Rx ring sk_buffs */
 5018	while (i != rx_ring->next_to_alloc) {
 5019		struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 5020
 5021		/* Invalidate cache lines that may have been written to by
 5022		 * device so that we avoid corrupting memory.
 5023		 */
 5024		dma_sync_single_range_for_cpu(rx_ring->dev,
 5025					      buffer_info->dma,
 5026					      buffer_info->page_offset,
 5027					      igb_rx_bufsz(rx_ring),
 5028					      DMA_FROM_DEVICE);
 5029
 5030		/* free resources associated with mapping */
 5031		dma_unmap_page_attrs(rx_ring->dev,
 5032				     buffer_info->dma,
 5033				     igb_rx_pg_size(rx_ring),
 5034				     DMA_FROM_DEVICE,
 5035				     IGB_RX_DMA_ATTR);
 5036		__page_frag_cache_drain(buffer_info->page,
 5037					buffer_info->pagecnt_bias);
 5038
 5039		i++;
 5040		if (i == rx_ring->count)
 5041			i = 0;
 5042	}
 5043
 5044	rx_ring->next_to_alloc = 0;
 5045	rx_ring->next_to_clean = 0;
 5046	rx_ring->next_to_use = 0;
 5047}
 5048
 5049/**
 5050 *  igb_clean_all_rx_rings - Free Rx Buffers for all queues
 5051 *  @adapter: board private structure
 5052 **/
 5053static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
 5054{
 5055	int i;
 5056
 5057	for (i = 0; i < adapter->num_rx_queues; i++)
 5058		if (adapter->rx_ring[i])
 5059			igb_clean_rx_ring(adapter->rx_ring[i]);
 5060}
 5061
 5062/**
 5063 *  igb_set_mac - Change the Ethernet Address of the NIC
 5064 *  @netdev: network interface device structure
 5065 *  @p: pointer to an address structure
 5066 *
 5067 *  Returns 0 on success, negative on failure
 5068 **/
 5069static int igb_set_mac(struct net_device *netdev, void *p)
 5070{
 5071	struct igb_adapter *adapter = netdev_priv(netdev);
 5072	struct e1000_hw *hw = &adapter->hw;
 5073	struct sockaddr *addr = p;
 5074
 5075	if (!is_valid_ether_addr(addr->sa_data))
 5076		return -EADDRNOTAVAIL;
 5077
 5078	eth_hw_addr_set(netdev, addr->sa_data);
 5079	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 5080
 5081	/* set the correct pool for the new PF MAC address in entry 0 */
 5082	igb_set_default_mac_filter(adapter);
 5083
 5084	return 0;
 5085}
 5086
 5087/**
 5088 *  igb_write_mc_addr_list - write multicast addresses to MTA
 5089 *  @netdev: network interface device structure
 5090 *
 5091 *  Writes multicast address list to the MTA hash table.
 5092 *  Returns: -ENOMEM on failure
 5093 *           0 on no addresses written
 5094 *           X on writing X addresses to MTA
 5095 **/
 5096static int igb_write_mc_addr_list(struct net_device *netdev)
 5097{
 5098	struct igb_adapter *adapter = netdev_priv(netdev);
 5099	struct e1000_hw *hw = &adapter->hw;
 5100	struct netdev_hw_addr *ha;
 5101	u8  *mta_list;
 5102	int i;
 5103
 5104	if (netdev_mc_empty(netdev)) {
 5105		/* nothing to program, so clear mc list */
 5106		igb_update_mc_addr_list(hw, NULL, 0);
 5107		igb_restore_vf_multicasts(adapter);
 5108		return 0;
 5109	}
 5110
 5111	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
 5112	if (!mta_list)
 5113		return -ENOMEM;
 5114
 5115	/* The shared function expects a packed array of only addresses. */
 5116	i = 0;
 5117	netdev_for_each_mc_addr(ha, netdev)
 5118		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 5119
 5120	igb_update_mc_addr_list(hw, mta_list, i);
 5121	kfree(mta_list);
 5122
 5123	return netdev_mc_count(netdev);
 5124}
 5125
 5126static int igb_vlan_promisc_enable(struct igb_adapter *adapter)
 5127{
 5128	struct e1000_hw *hw = &adapter->hw;
 5129	u32 i, pf_id;
 5130
 5131	switch (hw->mac.type) {
 5132	case e1000_i210:
 5133	case e1000_i211:
 5134	case e1000_i350:
 5135		/* VLAN filtering needed for VLAN prio filter */
 5136		if (adapter->netdev->features & NETIF_F_NTUPLE)
 5137			break;
 5138		fallthrough;
 5139	case e1000_82576:
 5140	case e1000_82580:
 5141	case e1000_i354:
 5142		/* VLAN filtering needed for pool filtering */
 5143		if (adapter->vfs_allocated_count)
 5144			break;
 5145		fallthrough;
 5146	default:
 5147		return 1;
 5148	}
 5149
 5150	/* We are already in VLAN promisc, nothing to do */
 5151	if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 5152		return 0;
 5153
 5154	if (!adapter->vfs_allocated_count)
 5155		goto set_vfta;
 5156
 5157	/* Add PF to all active pools */
 5158	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5159
 5160	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5161		u32 vlvf = rd32(E1000_VLVF(i));
 5162
 5163		vlvf |= BIT(pf_id);
 5164		wr32(E1000_VLVF(i), vlvf);
 5165	}
 5166
 5167set_vfta:
 5168	/* Set all bits in the VLAN filter table array */
 5169	for (i = E1000_VLAN_FILTER_TBL_SIZE; i--;)
 5170		hw->mac.ops.write_vfta(hw, i, ~0U);
 5171
 5172	/* Set flag so we don't redo unnecessary work */
 5173	adapter->flags |= IGB_FLAG_VLAN_PROMISC;
 5174
 5175	return 0;
 5176}
 5177
 5178#define VFTA_BLOCK_SIZE 8
 5179static void igb_scrub_vfta(struct igb_adapter *adapter, u32 vfta_offset)
 5180{
 5181	struct e1000_hw *hw = &adapter->hw;
 5182	u32 vfta[VFTA_BLOCK_SIZE] = { 0 };
 5183	u32 vid_start = vfta_offset * 32;
 5184	u32 vid_end = vid_start + (VFTA_BLOCK_SIZE * 32);
 5185	u32 i, vid, word, bits, pf_id;
 5186
 5187	/* guarantee that we don't scrub out management VLAN */
 5188	vid = adapter->mng_vlan_id;
 5189	if (vid >= vid_start && vid < vid_end)
 5190		vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5191
 5192	if (!adapter->vfs_allocated_count)
 5193		goto set_vfta;
 5194
 5195	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 5196
 5197	for (i = E1000_VLVF_ARRAY_SIZE; --i;) {
 5198		u32 vlvf = rd32(E1000_VLVF(i));
 5199
 5200		/* pull VLAN ID from VLVF */
 5201		vid = vlvf & VLAN_VID_MASK;
 5202
 5203		/* only concern ourselves with a certain range */
 5204		if (vid < vid_start || vid >= vid_end)
 5205			continue;
 5206
 5207		if (vlvf & E1000_VLVF_VLANID_ENABLE) {
 5208			/* record VLAN ID in VFTA */
 5209			vfta[(vid - vid_start) / 32] |= BIT(vid % 32);
 5210
 5211			/* if PF is part of this then continue */
 5212			if (test_bit(vid, adapter->active_vlans))
 5213				continue;
 5214		}
 5215
 5216		/* remove PF from the pool */
 5217		bits = ~BIT(pf_id);
 5218		bits &= rd32(E1000_VLVF(i));
 5219		wr32(E1000_VLVF(i), bits);
 5220	}
 5221
 5222set_vfta:
 5223	/* extract values from active_vlans and write back to VFTA */
 5224	for (i = VFTA_BLOCK_SIZE; i--;) {
 5225		vid = (vfta_offset + i) * 32;
 5226		word = vid / BITS_PER_LONG;
 5227		bits = vid % BITS_PER_LONG;
 5228
 5229		vfta[i] |= adapter->active_vlans[word] >> bits;
 5230
 5231		hw->mac.ops.write_vfta(hw, vfta_offset + i, vfta[i]);
 5232	}
 5233}
 5234
 5235static void igb_vlan_promisc_disable(struct igb_adapter *adapter)
 5236{
 5237	u32 i;
 5238
 5239	/* We are not in VLAN promisc, nothing to do */
 5240	if (!(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 5241		return;
 5242
 5243	/* Set flag so we don't redo unnecessary work */
 5244	adapter->flags &= ~IGB_FLAG_VLAN_PROMISC;
 5245
 5246	for (i = 0; i < E1000_VLAN_FILTER_TBL_SIZE; i += VFTA_BLOCK_SIZE)
 5247		igb_scrub_vfta(adapter, i);
 5248}
 5249
 5250/**
 5251 *  igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
 5252 *  @netdev: network interface device structure
 5253 *
 5254 *  The set_rx_mode entry point is called whenever the unicast or multicast
 5255 *  address lists or the network interface flags are updated.  This routine is
 5256 *  responsible for configuring the hardware for proper unicast, multicast,
 5257 *  promiscuous mode, and all-multi behavior.
 5258 **/
 5259static void igb_set_rx_mode(struct net_device *netdev)
 5260{
 5261	struct igb_adapter *adapter = netdev_priv(netdev);
 5262	struct e1000_hw *hw = &adapter->hw;
 5263	unsigned int vfn = adapter->vfs_allocated_count;
 5264	u32 rctl = 0, vmolr = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
 5265	int count;
 5266
 5267	/* Check for Promiscuous and All Multicast modes */
 5268	if (netdev->flags & IFF_PROMISC) {
 5269		rctl |= E1000_RCTL_UPE | E1000_RCTL_MPE;
 5270		vmolr |= E1000_VMOLR_MPME;
 5271
 5272		/* enable use of UTA filter to force packets to default pool */
 5273		if (hw->mac.type == e1000_82576)
 5274			vmolr |= E1000_VMOLR_ROPE;
 5275	} else {
 5276		if (netdev->flags & IFF_ALLMULTI) {
 5277			rctl |= E1000_RCTL_MPE;
 5278			vmolr |= E1000_VMOLR_MPME;
 5279		} else {
 5280			/* Write addresses to the MTA, if the attempt fails
 5281			 * then we should just turn on promiscuous mode so
 5282			 * that we can at least receive multicast traffic
 5283			 */
 5284			count = igb_write_mc_addr_list(netdev);
 5285			if (count < 0) {
 5286				rctl |= E1000_RCTL_MPE;
 5287				vmolr |= E1000_VMOLR_MPME;
 5288			} else if (count) {
 5289				vmolr |= E1000_VMOLR_ROMPE;
 5290			}
 5291		}
 5292	}
 5293
 5294	/* Write addresses to available RAR registers, if there is not
 5295	 * sufficient space to store all the addresses then enable
 5296	 * unicast promiscuous mode
 5297	 */
 5298	if (__dev_uc_sync(netdev, igb_uc_sync, igb_uc_unsync)) {
 5299		rctl |= E1000_RCTL_UPE;
 5300		vmolr |= E1000_VMOLR_ROPE;
 5301	}
 5302
 5303	/* enable VLAN filtering by default */
 5304	rctl |= E1000_RCTL_VFE;
 5305
 5306	/* disable VLAN filtering for modes that require it */
 5307	if ((netdev->flags & IFF_PROMISC) ||
 5308	    (netdev->features & NETIF_F_RXALL)) {
 5309		/* if we fail to set all rules then just clear VFE */
 5310		if (igb_vlan_promisc_enable(adapter))
 5311			rctl &= ~E1000_RCTL_VFE;
 5312	} else {
 5313		igb_vlan_promisc_disable(adapter);
 5314	}
 5315
 5316	/* update state of unicast, multicast, and VLAN filtering modes */
 5317	rctl |= rd32(E1000_RCTL) & ~(E1000_RCTL_UPE | E1000_RCTL_MPE |
 5318				     E1000_RCTL_VFE);
 5319	wr32(E1000_RCTL, rctl);
 5320
 5321#if (PAGE_SIZE < 8192)
 5322	if (!adapter->vfs_allocated_count) {
 5323		if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5324			rlpml = IGB_MAX_FRAME_BUILD_SKB;
 5325	}
 5326#endif
 5327	wr32(E1000_RLPML, rlpml);
 5328
 5329	/* In order to support SR-IOV and eventually VMDq it is necessary to set
 5330	 * the VMOLR to enable the appropriate modes.  Without this workaround
 5331	 * we will have issues with VLAN tag stripping not being done for frames
 5332	 * that are only arriving because we are the default pool
 5333	 */
 5334	if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
 5335		return;
 5336
 5337	/* set UTA to appropriate mode */
 5338	igb_set_uta(adapter, !!(vmolr & E1000_VMOLR_ROPE));
 5339
 5340	vmolr |= rd32(E1000_VMOLR(vfn)) &
 5341		 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
 5342
 5343	/* enable Rx jumbo frames, restrict as needed to support build_skb */
 5344	vmolr &= ~E1000_VMOLR_RLPML_MASK;
 5345#if (PAGE_SIZE < 8192)
 5346	if (adapter->max_frame_size <= IGB_MAX_FRAME_BUILD_SKB)
 5347		vmolr |= IGB_MAX_FRAME_BUILD_SKB;
 5348	else
 5349#endif
 5350		vmolr |= MAX_JUMBO_FRAME_SIZE;
 5351	vmolr |= E1000_VMOLR_LPE;
 5352
 5353	wr32(E1000_VMOLR(vfn), vmolr);
 5354
 5355	igb_restore_vf_multicasts(adapter);
 5356}
 5357
 5358static void igb_check_wvbr(struct igb_adapter *adapter)
 5359{
 5360	struct e1000_hw *hw = &adapter->hw;
 5361	u32 wvbr = 0;
 5362
 5363	switch (hw->mac.type) {
 5364	case e1000_82576:
 5365	case e1000_i350:
 5366		wvbr = rd32(E1000_WVBR);
 5367		if (!wvbr)
 5368			return;
 5369		break;
 5370	default:
 5371		break;
 5372	}
 5373
 5374	adapter->wvbr |= wvbr;
 5375}
 5376
 5377#define IGB_STAGGERED_QUEUE_OFFSET 8
 5378
 5379static void igb_spoof_check(struct igb_adapter *adapter)
 5380{
 5381	int j;
 5382
 5383	if (!adapter->wvbr)
 5384		return;
 5385
 5386	for (j = 0; j < adapter->vfs_allocated_count; j++) {
 5387		if (adapter->wvbr & BIT(j) ||
 5388		    adapter->wvbr & BIT(j + IGB_STAGGERED_QUEUE_OFFSET)) {
 5389			dev_warn(&adapter->pdev->dev,
 5390				"Spoof event(s) detected on VF %d\n", j);
 5391			adapter->wvbr &=
 5392				~(BIT(j) |
 5393				  BIT(j + IGB_STAGGERED_QUEUE_OFFSET));
 5394		}
 5395	}
 5396}
 5397
 5398/* Need to wait a few seconds after link up to get diagnostic information from
 5399 * the phy
 5400 */
 5401static void igb_update_phy_info(struct timer_list *t)
 5402{
 5403	struct igb_adapter *adapter = from_timer(adapter, t, phy_info_timer);
 5404	igb_get_phy_info(&adapter->hw);
 5405}
 5406
 5407/**
 5408 *  igb_has_link - check shared code for link and determine up/down
 5409 *  @adapter: pointer to driver private info
 5410 **/
 5411bool igb_has_link(struct igb_adapter *adapter)
 5412{
 5413	struct e1000_hw *hw = &adapter->hw;
 5414	bool link_active = false;
 5415
 5416	/* get_link_status is set on LSC (link status) interrupt or
 5417	 * rx sequence error interrupt.  get_link_status will stay
 5418	 * false until the e1000_check_for_link establishes link
 5419	 * for copper adapters ONLY
 5420	 */
 5421	switch (hw->phy.media_type) {
 5422	case e1000_media_type_copper:
 5423		if (!hw->mac.get_link_status)
 5424			return true;
 5425		fallthrough;
 5426	case e1000_media_type_internal_serdes:
 5427		hw->mac.ops.check_for_link(hw);
 5428		link_active = !hw->mac.get_link_status;
 5429		break;
 5430	default:
 5431	case e1000_media_type_unknown:
 5432		break;
 5433	}
 5434
 5435	if (((hw->mac.type == e1000_i210) ||
 5436	     (hw->mac.type == e1000_i211)) &&
 5437	     (hw->phy.id == I210_I_PHY_ID)) {
 5438		if (!netif_carrier_ok(adapter->netdev)) {
 5439			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5440		} else if (!(adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)) {
 5441			adapter->flags |= IGB_FLAG_NEED_LINK_UPDATE;
 5442			adapter->link_check_timeout = jiffies;
 5443		}
 5444	}
 5445
 5446	return link_active;
 5447}
 5448
 5449static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
 5450{
 5451	bool ret = false;
 5452	u32 ctrl_ext, thstat;
 5453
 5454	/* check for thermal sensor event on i350 copper only */
 5455	if (hw->mac.type == e1000_i350) {
 5456		thstat = rd32(E1000_THSTAT);
 5457		ctrl_ext = rd32(E1000_CTRL_EXT);
 5458
 5459		if ((hw->phy.media_type == e1000_media_type_copper) &&
 5460		    !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
 5461			ret = !!(thstat & event);
 5462	}
 5463
 5464	return ret;
 5465}
 5466
 5467/**
 5468 *  igb_check_lvmmc - check for malformed packets received
 5469 *  and indicated in LVMMC register
 5470 *  @adapter: pointer to adapter
 5471 **/
 5472static void igb_check_lvmmc(struct igb_adapter *adapter)
 5473{
 5474	struct e1000_hw *hw = &adapter->hw;
 5475	u32 lvmmc;
 5476
 5477	lvmmc = rd32(E1000_LVMMC);
 5478	if (lvmmc) {
 5479		if (unlikely(net_ratelimit())) {
 5480			netdev_warn(adapter->netdev,
 5481				    "malformed Tx packet detected and dropped, LVMMC:0x%08x\n",
 5482				    lvmmc);
 5483		}
 5484	}
 5485}
 5486
 5487/**
 5488 *  igb_watchdog - Timer Call-back
 5489 *  @t: pointer to timer_list containing our private info pointer
 5490 **/
 5491static void igb_watchdog(struct timer_list *t)
 5492{
 5493	struct igb_adapter *adapter = from_timer(adapter, t, watchdog_timer);
 5494	/* Do the rest outside of interrupt context */
 5495	schedule_work(&adapter->watchdog_task);
 5496}
 5497
 5498static void igb_watchdog_task(struct work_struct *work)
 5499{
 5500	struct igb_adapter *adapter = container_of(work,
 5501						   struct igb_adapter,
 5502						   watchdog_task);
 5503	struct e1000_hw *hw = &adapter->hw;
 5504	struct e1000_phy_info *phy = &hw->phy;
 5505	struct net_device *netdev = adapter->netdev;
 5506	u32 link;
 5507	int i;
 5508	u32 connsw;
 5509	u16 phy_data, retry_count = 20;
 5510
 5511	link = igb_has_link(adapter);
 5512
 5513	if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE) {
 5514		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
 5515			adapter->flags &= ~IGB_FLAG_NEED_LINK_UPDATE;
 5516		else
 5517			link = false;
 5518	}
 5519
 5520	/* Force link down if we have fiber to swap to */
 5521	if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5522		if (hw->phy.media_type == e1000_media_type_copper) {
 5523			connsw = rd32(E1000_CONNSW);
 5524			if (!(connsw & E1000_CONNSW_AUTOSENSE_EN))
 5525				link = 0;
 5526		}
 5527	}
 5528	if (link) {
 5529		/* Perform a reset if the media type changed. */
 5530		if (hw->dev_spec._82575.media_changed) {
 5531			hw->dev_spec._82575.media_changed = false;
 5532			adapter->flags |= IGB_FLAG_MEDIA_RESET;
 5533			igb_reset(adapter);
 5534		}
 5535		/* Cancel scheduled suspend requests. */
 5536		pm_runtime_resume(netdev->dev.parent);
 5537
 5538		if (!netif_carrier_ok(netdev)) {
 5539			u32 ctrl;
 5540
 5541			hw->mac.ops.get_speed_and_duplex(hw,
 5542							 &adapter->link_speed,
 5543							 &adapter->link_duplex);
 5544
 5545			ctrl = rd32(E1000_CTRL);
 5546			/* Links status message must follow this format */
 5547			netdev_info(netdev,
 5548			       "igb: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
 5549			       netdev->name,
 5550			       adapter->link_speed,
 5551			       adapter->link_duplex == FULL_DUPLEX ?
 5552			       "Full" : "Half",
 5553			       (ctrl & E1000_CTRL_TFCE) &&
 5554			       (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
 5555			       (ctrl & E1000_CTRL_RFCE) ?  "RX" :
 5556			       (ctrl & E1000_CTRL_TFCE) ?  "TX" : "None");
 5557
 5558			/* disable EEE if enabled */
 5559			if ((adapter->flags & IGB_FLAG_EEE) &&
 5560				(adapter->link_duplex == HALF_DUPLEX)) {
 5561				dev_info(&adapter->pdev->dev,
 5562				"EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex.\n");
 5563				adapter->hw.dev_spec._82575.eee_disable = true;
 5564				adapter->flags &= ~IGB_FLAG_EEE;
 5565			}
 5566
 5567			/* check if SmartSpeed worked */
 5568			igb_check_downshift(hw);
 5569			if (phy->speed_downgraded)
 5570				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
 5571
 5572			/* check for thermal sensor event */
 5573			if (igb_thermal_sensor_event(hw,
 5574			    E1000_THSTAT_LINK_THROTTLE))
 5575				netdev_info(netdev, "The network adapter link speed was downshifted because it overheated\n");
 5576
 5577			/* adjust timeout factor according to speed/duplex */
 5578			adapter->tx_timeout_factor = 1;
 5579			switch (adapter->link_speed) {
 5580			case SPEED_10:
 5581				adapter->tx_timeout_factor = 14;
 5582				break;
 5583			case SPEED_100:
 5584				/* maybe add some timeout factor ? */
 5585				break;
 5586			}
 5587
 5588			if (adapter->link_speed != SPEED_1000 ||
 5589			    !hw->phy.ops.read_reg)
 5590				goto no_wait;
 5591
 5592			/* wait for Remote receiver status OK */
 5593retry_read_status:
 5594			if (!igb_read_phy_reg(hw, PHY_1000T_STATUS,
 5595					      &phy_data)) {
 5596				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
 5597				    retry_count) {
 5598					msleep(100);
 5599					retry_count--;
 5600					goto retry_read_status;
 5601				} else if (!retry_count) {
 5602					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
 5603				}
 5604			} else {
 5605				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
 5606			}
 5607no_wait:
 5608			netif_carrier_on(netdev);
 5609
 5610			igb_ping_all_vfs(adapter);
 5611			igb_check_vf_rate_limit(adapter);
 5612
 5613			/* link state has changed, schedule phy info update */
 5614			if (!test_bit(__IGB_DOWN, &adapter->state))
 5615				mod_timer(&adapter->phy_info_timer,
 5616					  round_jiffies(jiffies + 2 * HZ));
 5617		}
 5618	} else {
 5619		if (netif_carrier_ok(netdev)) {
 5620			adapter->link_speed = 0;
 5621			adapter->link_duplex = 0;
 5622
 5623			/* check for thermal sensor event */
 5624			if (igb_thermal_sensor_event(hw,
 5625			    E1000_THSTAT_PWR_DOWN)) {
 5626				netdev_err(netdev, "The network adapter was stopped because it overheated\n");
 5627			}
 5628
 5629			/* Links status message must follow this format */
 5630			netdev_info(netdev, "igb: %s NIC Link is Down\n",
 5631			       netdev->name);
 5632			netif_carrier_off(netdev);
 5633
 5634			igb_ping_all_vfs(adapter);
 5635
 5636			/* link state has changed, schedule phy info update */
 5637			if (!test_bit(__IGB_DOWN, &adapter->state))
 5638				mod_timer(&adapter->phy_info_timer,
 5639					  round_jiffies(jiffies + 2 * HZ));
 5640
 5641			/* link is down, time to check for alternate media */
 5642			if (adapter->flags & IGB_FLAG_MAS_ENABLE) {
 5643				igb_check_swap_media(adapter);
 5644				if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5645					schedule_work(&adapter->reset_task);
 5646					/* return immediately */
 5647					return;
 5648				}
 5649			}
 5650			pm_schedule_suspend(netdev->dev.parent,
 5651					    MSEC_PER_SEC * 5);
 5652
 5653		/* also check for alternate media here */
 5654		} else if (!netif_carrier_ok(netdev) &&
 5655			   (adapter->flags & IGB_FLAG_MAS_ENABLE)) {
 5656			igb_check_swap_media(adapter);
 5657			if (adapter->flags & IGB_FLAG_MEDIA_RESET) {
 5658				schedule_work(&adapter->reset_task);
 5659				/* return immediately */
 5660				return;
 5661			}
 5662		}
 5663	}
 5664
 5665	spin_lock(&adapter->stats64_lock);
 5666	igb_update_stats(adapter);
 5667	spin_unlock(&adapter->stats64_lock);
 5668
 5669	for (i = 0; i < adapter->num_tx_queues; i++) {
 5670		struct igb_ring *tx_ring = adapter->tx_ring[i];
 5671		if (!netif_carrier_ok(netdev)) {
 5672			/* We've lost link, so the controller stops DMA,
 5673			 * but we've got queued Tx work that's never going
 5674			 * to get done, so reset controller to flush Tx.
 5675			 * (Do the reset outside of interrupt context).
 5676			 */
 5677			if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
 5678				adapter->tx_timeout_count++;
 5679				schedule_work(&adapter->reset_task);
 5680				/* return immediately since reset is imminent */
 5681				return;
 5682			}
 5683		}
 5684
 5685		/* Force detection of hung controller every watchdog period */
 5686		set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 5687	}
 5688
 5689	/* Cause software interrupt to ensure Rx ring is cleaned */
 5690	if (adapter->flags & IGB_FLAG_HAS_MSIX) {
 5691		u32 eics = 0;
 5692
 5693		for (i = 0; i < adapter->num_q_vectors; i++)
 5694			eics |= adapter->q_vector[i]->eims_value;
 5695		wr32(E1000_EICS, eics);
 5696	} else {
 5697		wr32(E1000_ICS, E1000_ICS_RXDMT0);
 5698	}
 5699
 5700	igb_spoof_check(adapter);
 5701	igb_ptp_rx_hang(adapter);
 5702	igb_ptp_tx_hang(adapter);
 5703
 5704	/* Check LVMMC register on i350/i354 only */
 5705	if ((adapter->hw.mac.type == e1000_i350) ||
 5706	    (adapter->hw.mac.type == e1000_i354))
 5707		igb_check_lvmmc(adapter);
 5708
 5709	/* Reset the timer */
 5710	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 5711		if (adapter->flags & IGB_FLAG_NEED_LINK_UPDATE)
 5712			mod_timer(&adapter->watchdog_timer,
 5713				  round_jiffies(jiffies +  HZ));
 5714		else
 5715			mod_timer(&adapter->watchdog_timer,
 5716				  round_jiffies(jiffies + 2 * HZ));
 5717	}
 5718}
 5719
 5720enum latency_range {
 5721	lowest_latency = 0,
 5722	low_latency = 1,
 5723	bulk_latency = 2,
 5724	latency_invalid = 255
 5725};
 5726
 5727/**
 5728 *  igb_update_ring_itr - update the dynamic ITR value based on packet size
 5729 *  @q_vector: pointer to q_vector
 5730 *
 5731 *  Stores a new ITR value based on strictly on packet size.  This
 5732 *  algorithm is less sophisticated than that used in igb_update_itr,
 5733 *  due to the difficulty of synchronizing statistics across multiple
 5734 *  receive rings.  The divisors and thresholds used by this function
 5735 *  were determined based on theoretical maximum wire speed and testing
 5736 *  data, in order to minimize response time while increasing bulk
 5737 *  throughput.
 5738 *  This functionality is controlled by ethtool's coalescing settings.
 5739 *  NOTE:  This function is called only when operating in a multiqueue
 5740 *         receive environment.
 5741 **/
 5742static void igb_update_ring_itr(struct igb_q_vector *q_vector)
 5743{
 5744	int new_val = q_vector->itr_val;
 5745	int avg_wire_size = 0;
 5746	struct igb_adapter *adapter = q_vector->adapter;
 5747	unsigned int packets;
 5748
 5749	/* For non-gigabit speeds, just fix the interrupt rate at 4000
 5750	 * ints/sec - ITR timer value of 120 ticks.
 5751	 */
 5752	if (adapter->link_speed != SPEED_1000) {
 5753		new_val = IGB_4K_ITR;
 5754		goto set_itr_val;
 5755	}
 5756
 5757	packets = q_vector->rx.total_packets;
 5758	if (packets)
 5759		avg_wire_size = q_vector->rx.total_bytes / packets;
 5760
 5761	packets = q_vector->tx.total_packets;
 5762	if (packets)
 5763		avg_wire_size = max_t(u32, avg_wire_size,
 5764				      q_vector->tx.total_bytes / packets);
 5765
 5766	/* if avg_wire_size isn't set no work was done */
 5767	if (!avg_wire_size)
 5768		goto clear_counts;
 5769
 5770	/* Add 24 bytes to size to account for CRC, preamble, and gap */
 5771	avg_wire_size += 24;
 5772
 5773	/* Don't starve jumbo frames */
 5774	avg_wire_size = min(avg_wire_size, 3000);
 5775
 5776	/* Give a little boost to mid-size frames */
 5777	if ((avg_wire_size > 300) && (avg_wire_size < 1200))
 5778		new_val = avg_wire_size / 3;
 5779	else
 5780		new_val = avg_wire_size / 2;
 5781
 5782	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5783	if (new_val < IGB_20K_ITR &&
 5784	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5785	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5786		new_val = IGB_20K_ITR;
 5787
 5788set_itr_val:
 5789	if (new_val != q_vector->itr_val) {
 5790		q_vector->itr_val = new_val;
 5791		q_vector->set_itr = 1;
 5792	}
 5793clear_counts:
 5794	q_vector->rx.total_bytes = 0;
 5795	q_vector->rx.total_packets = 0;
 5796	q_vector->tx.total_bytes = 0;
 5797	q_vector->tx.total_packets = 0;
 5798}
 5799
 5800/**
 5801 *  igb_update_itr - update the dynamic ITR value based on statistics
 5802 *  @q_vector: pointer to q_vector
 5803 *  @ring_container: ring info to update the itr for
 5804 *
 5805 *  Stores a new ITR value based on packets and byte
 5806 *  counts during the last interrupt.  The advantage of per interrupt
 5807 *  computation is faster updates and more accurate ITR for the current
 5808 *  traffic pattern.  Constants in this function were computed
 5809 *  based on theoretical maximum wire speed and thresholds were set based
 5810 *  on testing data as well as attempting to minimize response time
 5811 *  while increasing bulk throughput.
 5812 *  This functionality is controlled by ethtool's coalescing settings.
 5813 *  NOTE:  These calculations are only valid when operating in a single-
 5814 *         queue environment.
 5815 **/
 5816static void igb_update_itr(struct igb_q_vector *q_vector,
 5817			   struct igb_ring_container *ring_container)
 5818{
 5819	unsigned int packets = ring_container->total_packets;
 5820	unsigned int bytes = ring_container->total_bytes;
 5821	u8 itrval = ring_container->itr;
 5822
 5823	/* no packets, exit with status unchanged */
 5824	if (packets == 0)
 5825		return;
 5826
 5827	switch (itrval) {
 5828	case lowest_latency:
 5829		/* handle TSO and jumbo frames */
 5830		if (bytes/packets > 8000)
 5831			itrval = bulk_latency;
 5832		else if ((packets < 5) && (bytes > 512))
 5833			itrval = low_latency;
 5834		break;
 5835	case low_latency:  /* 50 usec aka 20000 ints/s */
 5836		if (bytes > 10000) {
 5837			/* this if handles the TSO accounting */
 5838			if (bytes/packets > 8000)
 5839				itrval = bulk_latency;
 5840			else if ((packets < 10) || ((bytes/packets) > 1200))
 5841				itrval = bulk_latency;
 5842			else if ((packets > 35))
 5843				itrval = lowest_latency;
 5844		} else if (bytes/packets > 2000) {
 5845			itrval = bulk_latency;
 5846		} else if (packets <= 2 && bytes < 512) {
 5847			itrval = lowest_latency;
 5848		}
 5849		break;
 5850	case bulk_latency: /* 250 usec aka 4000 ints/s */
 5851		if (bytes > 25000) {
 5852			if (packets > 35)
 5853				itrval = low_latency;
 5854		} else if (bytes < 1500) {
 5855			itrval = low_latency;
 5856		}
 5857		break;
 5858	}
 5859
 5860	/* clear work counters since we have the values we need */
 5861	ring_container->total_bytes = 0;
 5862	ring_container->total_packets = 0;
 5863
 5864	/* write updated itr to ring container */
 5865	ring_container->itr = itrval;
 5866}
 5867
 5868static void igb_set_itr(struct igb_q_vector *q_vector)
 5869{
 5870	struct igb_adapter *adapter = q_vector->adapter;
 5871	u32 new_itr = q_vector->itr_val;
 5872	u8 current_itr = 0;
 5873
 5874	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
 5875	if (adapter->link_speed != SPEED_1000) {
 5876		current_itr = 0;
 5877		new_itr = IGB_4K_ITR;
 5878		goto set_itr_now;
 5879	}
 5880
 5881	igb_update_itr(q_vector, &q_vector->tx);
 5882	igb_update_itr(q_vector, &q_vector->rx);
 5883
 5884	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
 5885
 5886	/* conservative mode (itr 3) eliminates the lowest_latency setting */
 5887	if (current_itr == lowest_latency &&
 5888	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
 5889	     (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
 5890		current_itr = low_latency;
 5891
 5892	switch (current_itr) {
 5893	/* counts and packets in update_itr are dependent on these numbers */
 5894	case lowest_latency:
 5895		new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
 5896		break;
 5897	case low_latency:
 5898		new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
 5899		break;
 5900	case bulk_latency:
 5901		new_itr = IGB_4K_ITR;  /* 4,000 ints/sec */
 5902		break;
 5903	default:
 5904		break;
 5905	}
 5906
 5907set_itr_now:
 5908	if (new_itr != q_vector->itr_val) {
 5909		/* this attempts to bias the interrupt rate towards Bulk
 5910		 * by adding intermediate steps when interrupt rate is
 5911		 * increasing
 5912		 */
 5913		new_itr = new_itr > q_vector->itr_val ?
 5914			  max((new_itr * q_vector->itr_val) /
 5915			  (new_itr + (q_vector->itr_val >> 2)),
 5916			  new_itr) : new_itr;
 5917		/* Don't write the value here; it resets the adapter's
 5918		 * internal timer, and causes us to delay far longer than
 5919		 * we should between interrupts.  Instead, we write the ITR
 5920		 * value at the beginning of the next interrupt so the timing
 5921		 * ends up being correct.
 5922		 */
 5923		q_vector->itr_val = new_itr;
 5924		q_vector->set_itr = 1;
 5925	}
 5926}
 5927
 5928static void igb_tx_ctxtdesc(struct igb_ring *tx_ring,
 5929			    struct igb_tx_buffer *first,
 5930			    u32 vlan_macip_lens, u32 type_tucmd,
 5931			    u32 mss_l4len_idx)
 5932{
 5933	struct e1000_adv_tx_context_desc *context_desc;
 5934	u16 i = tx_ring->next_to_use;
 5935	struct timespec64 ts;
 5936
 5937	context_desc = IGB_TX_CTXTDESC(tx_ring, i);
 5938
 5939	i++;
 5940	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 5941
 5942	/* set bits to identify this as an advanced context descriptor */
 5943	type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
 5944
 5945	/* For 82575, context index must be unique per ring. */
 5946	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 5947		mss_l4len_idx |= tx_ring->reg_idx << 4;
 5948
 5949	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
 5950	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
 5951	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 5952
 5953	/* We assume there is always a valid tx time available. Invalid times
 5954	 * should have been handled by the upper layers.
 5955	 */
 5956	if (tx_ring->launchtime_enable) {
 5957		ts = ktime_to_timespec64(first->skb->tstamp);
 5958		skb_txtime_consumed(first->skb);
 5959		context_desc->seqnum_seed = cpu_to_le32(ts.tv_nsec / 32);
 5960	} else {
 5961		context_desc->seqnum_seed = 0;
 5962	}
 5963}
 5964
 5965static int igb_tso(struct igb_ring *tx_ring,
 5966		   struct igb_tx_buffer *first,
 5967		   u8 *hdr_len)
 5968{
 5969	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
 5970	struct sk_buff *skb = first->skb;
 5971	union {
 5972		struct iphdr *v4;
 5973		struct ipv6hdr *v6;
 5974		unsigned char *hdr;
 5975	} ip;
 5976	union {
 5977		struct tcphdr *tcp;
 5978		struct udphdr *udp;
 5979		unsigned char *hdr;
 5980	} l4;
 5981	u32 paylen, l4_offset;
 5982	int err;
 5983
 5984	if (skb->ip_summed != CHECKSUM_PARTIAL)
 5985		return 0;
 5986
 5987	if (!skb_is_gso(skb))
 5988		return 0;
 5989
 5990	err = skb_cow_head(skb, 0);
 5991	if (err < 0)
 5992		return err;
 5993
 5994	ip.hdr = skb_network_header(skb);
 5995	l4.hdr = skb_checksum_start(skb);
 5996
 5997	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
 5998	type_tucmd = (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) ?
 5999		      E1000_ADVTXD_TUCMD_L4T_UDP : E1000_ADVTXD_TUCMD_L4T_TCP;
 6000
 6001	/* initialize outer IP header fields */
 6002	if (ip.v4->version == 4) {
 6003		unsigned char *csum_start = skb_checksum_start(skb);
 6004		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
 6005
 6006		/* IP header will have to cancel out any data that
 6007		 * is not a part of the outer IP header
 6008		 */
 6009		ip.v4->check = csum_fold(csum_partial(trans_start,
 6010						      csum_start - trans_start,
 6011						      0));
 6012		type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
 6013
 6014		ip.v4->tot_len = 0;
 6015		first->tx_flags |= IGB_TX_FLAGS_TSO |
 6016				   IGB_TX_FLAGS_CSUM |
 6017				   IGB_TX_FLAGS_IPV4;
 6018	} else {
 6019		ip.v6->payload_len = 0;
 6020		first->tx_flags |= IGB_TX_FLAGS_TSO |
 6021				   IGB_TX_FLAGS_CSUM;
 6022	}
 6023
 6024	/* determine offset of inner transport header */
 6025	l4_offset = l4.hdr - skb->data;
 6026
 6027	/* remove payload length from inner checksum */
 6028	paylen = skb->len - l4_offset;
 6029	if (type_tucmd & E1000_ADVTXD_TUCMD_L4T_TCP) {
 6030		/* compute length of segmentation header */
 6031		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
 6032		csum_replace_by_diff(&l4.tcp->check,
 6033			(__force __wsum)htonl(paylen));
 6034	} else {
 6035		/* compute length of segmentation header */
 6036		*hdr_len = sizeof(*l4.udp) + l4_offset;
 6037		csum_replace_by_diff(&l4.udp->check,
 6038				     (__force __wsum)htonl(paylen));
 6039	}
 6040
 6041	/* update gso size and bytecount with header size */
 6042	first->gso_segs = skb_shinfo(skb)->gso_segs;
 6043	first->bytecount += (first->gso_segs - 1) * *hdr_len;
 6044
 6045	/* MSS L4LEN IDX */
 6046	mss_l4len_idx = (*hdr_len - l4_offset) << E1000_ADVTXD_L4LEN_SHIFT;
 6047	mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
 6048
 6049	/* VLAN MACLEN IPLEN */
 6050	vlan_macip_lens = l4.hdr - ip.hdr;
 6051	vlan_macip_lens |= (ip.hdr - skb->data) << E1000_ADVTXD_MACLEN_SHIFT;
 6052	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6053
 6054	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
 6055			type_tucmd, mss_l4len_idx);
 6056
 6057	return 1;
 6058}
 6059
 6060static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
 6061{
 6062	struct sk_buff *skb = first->skb;
 6063	u32 vlan_macip_lens = 0;
 6064	u32 type_tucmd = 0;
 6065
 6066	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 6067csum_failed:
 6068		if (!(first->tx_flags & IGB_TX_FLAGS_VLAN) &&
 6069		    !tx_ring->launchtime_enable)
 6070			return;
 6071		goto no_csum;
 6072	}
 6073
 6074	switch (skb->csum_offset) {
 6075	case offsetof(struct tcphdr, check):
 6076		type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
 6077		fallthrough;
 6078	case offsetof(struct udphdr, check):
 6079		break;
 6080	case offsetof(struct sctphdr, checksum):
 6081		/* validate that this is actually an SCTP request */
 6082		if (skb_csum_is_sctp(skb)) {
 6083			type_tucmd = E1000_ADVTXD_TUCMD_L4T_SCTP;
 6084			break;
 6085		}
 6086		fallthrough;
 6087	default:
 6088		skb_checksum_help(skb);
 6089		goto csum_failed;
 6090	}
 6091
 6092	/* update TX checksum flag */
 6093	first->tx_flags |= IGB_TX_FLAGS_CSUM;
 6094	vlan_macip_lens = skb_checksum_start_offset(skb) -
 6095			  skb_network_offset(skb);
 6096no_csum:
 6097	vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
 6098	vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
 6099
 6100	igb_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
 6101}
 6102
 6103#define IGB_SET_FLAG(_input, _flag, _result) \
 6104	((_flag <= _result) ? \
 6105	 ((u32)(_input & _flag) * (_result / _flag)) : \
 6106	 ((u32)(_input & _flag) / (_flag / _result)))
 6107
 6108static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
 6109{
 6110	/* set type for advanced descriptor with frame checksum insertion */
 6111	u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
 6112		       E1000_ADVTXD_DCMD_DEXT |
 6113		       E1000_ADVTXD_DCMD_IFCS;
 6114
 6115	/* set HW vlan bit if vlan is present */
 6116	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
 6117				 (E1000_ADVTXD_DCMD_VLE));
 6118
 6119	/* set segmentation bits for TSO */
 6120	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
 6121				 (E1000_ADVTXD_DCMD_TSE));
 6122
 6123	/* set timestamp bit if present */
 6124	cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
 6125				 (E1000_ADVTXD_MAC_TSTAMP));
 6126
 6127	/* insert frame checksum */
 6128	cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
 6129
 6130	return cmd_type;
 6131}
 6132
 6133static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
 6134				 union e1000_adv_tx_desc *tx_desc,
 6135				 u32 tx_flags, unsigned int paylen)
 6136{
 6137	u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
 6138
 6139	/* 82575 requires a unique index per ring */
 6140	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6141		olinfo_status |= tx_ring->reg_idx << 4;
 6142
 6143	/* insert L4 checksum */
 6144	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6145				      IGB_TX_FLAGS_CSUM,
 6146				      (E1000_TXD_POPTS_TXSM << 8));
 6147
 6148	/* insert IPv4 checksum */
 6149	olinfo_status |= IGB_SET_FLAG(tx_flags,
 6150				      IGB_TX_FLAGS_IPV4,
 6151				      (E1000_TXD_POPTS_IXSM << 8));
 6152
 6153	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6154}
 6155
 6156static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6157{
 6158	struct net_device *netdev = tx_ring->netdev;
 6159
 6160	netif_stop_subqueue(netdev, tx_ring->queue_index);
 6161
 6162	/* Herbert's original patch had:
 6163	 *  smp_mb__after_netif_stop_queue();
 6164	 * but since that doesn't exist yet, just open code it.
 6165	 */
 6166	smp_mb();
 6167
 6168	/* We need to check again in a case another CPU has just
 6169	 * made room available.
 6170	 */
 6171	if (igb_desc_unused(tx_ring) < size)
 6172		return -EBUSY;
 6173
 6174	/* A reprieve! */
 6175	netif_wake_subqueue(netdev, tx_ring->queue_index);
 6176
 6177	u64_stats_update_begin(&tx_ring->tx_syncp2);
 6178	tx_ring->tx_stats.restart_queue2++;
 6179	u64_stats_update_end(&tx_ring->tx_syncp2);
 6180
 6181	return 0;
 6182}
 6183
 6184static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
 6185{
 6186	if (igb_desc_unused(tx_ring) >= size)
 6187		return 0;
 6188	return __igb_maybe_stop_tx(tx_ring, size);
 6189}
 6190
 6191static int igb_tx_map(struct igb_ring *tx_ring,
 6192		      struct igb_tx_buffer *first,
 6193		      const u8 hdr_len)
 6194{
 6195	struct sk_buff *skb = first->skb;
 6196	struct igb_tx_buffer *tx_buffer;
 6197	union e1000_adv_tx_desc *tx_desc;
 6198	skb_frag_t *frag;
 6199	dma_addr_t dma;
 6200	unsigned int data_len, size;
 6201	u32 tx_flags = first->tx_flags;
 6202	u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
 6203	u16 i = tx_ring->next_to_use;
 6204
 6205	tx_desc = IGB_TX_DESC(tx_ring, i);
 6206
 6207	igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
 6208
 6209	size = skb_headlen(skb);
 6210	data_len = skb->data_len;
 6211
 6212	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 6213
 6214	tx_buffer = first;
 6215
 6216	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 6217		if (dma_mapping_error(tx_ring->dev, dma))
 6218			goto dma_error;
 6219
 6220		/* record length, and DMA address */
 6221		dma_unmap_len_set(tx_buffer, len, size);
 6222		dma_unmap_addr_set(tx_buffer, dma, dma);
 6223
 6224		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6225
 6226		while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
 6227			tx_desc->read.cmd_type_len =
 6228				cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
 6229
 6230			i++;
 6231			tx_desc++;
 6232			if (i == tx_ring->count) {
 6233				tx_desc = IGB_TX_DESC(tx_ring, 0);
 6234				i = 0;
 6235			}
 6236			tx_desc->read.olinfo_status = 0;
 6237
 6238			dma += IGB_MAX_DATA_PER_TXD;
 6239			size -= IGB_MAX_DATA_PER_TXD;
 6240
 6241			tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6242		}
 6243
 6244		if (likely(!data_len))
 6245			break;
 6246
 6247		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
 6248
 6249		i++;
 6250		tx_desc++;
 6251		if (i == tx_ring->count) {
 6252			tx_desc = IGB_TX_DESC(tx_ring, 0);
 6253			i = 0;
 6254		}
 6255		tx_desc->read.olinfo_status = 0;
 6256
 6257		size = skb_frag_size(frag);
 6258		data_len -= size;
 6259
 6260		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
 6261				       size, DMA_TO_DEVICE);
 6262
 6263		tx_buffer = &tx_ring->tx_buffer_info[i];
 6264	}
 6265
 6266	/* write last descriptor with RS and EOP bits */
 6267	cmd_type |= size | IGB_TXD_DCMD;
 6268	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6269
 6270	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
 6271
 6272	/* set the timestamp */
 6273	first->time_stamp = jiffies;
 6274
 6275	skb_tx_timestamp(skb);
 6276
 6277	/* Force memory writes to complete before letting h/w know there
 6278	 * are new descriptors to fetch.  (Only applicable for weak-ordered
 6279	 * memory model archs, such as IA-64).
 6280	 *
 6281	 * We also need this memory barrier to make certain all of the
 6282	 * status bits have been updated before next_to_watch is written.
 6283	 */
 6284	dma_wmb();
 6285
 6286	/* set next_to_watch value indicating a packet is present */
 6287	first->next_to_watch = tx_desc;
 6288
 6289	i++;
 6290	if (i == tx_ring->count)
 6291		i = 0;
 6292
 6293	tx_ring->next_to_use = i;
 6294
 6295	/* Make sure there is space in the ring for the next send. */
 6296	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6297
 6298	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
 6299		writel(i, tx_ring->tail);
 6300	}
 6301	return 0;
 6302
 6303dma_error:
 6304	dev_err(tx_ring->dev, "TX DMA map failed\n");
 6305	tx_buffer = &tx_ring->tx_buffer_info[i];
 6306
 6307	/* clear dma mappings for failed tx_buffer_info map */
 6308	while (tx_buffer != first) {
 6309		if (dma_unmap_len(tx_buffer, len))
 6310			dma_unmap_page(tx_ring->dev,
 6311				       dma_unmap_addr(tx_buffer, dma),
 6312				       dma_unmap_len(tx_buffer, len),
 6313				       DMA_TO_DEVICE);
 6314		dma_unmap_len_set(tx_buffer, len, 0);
 6315
 6316		if (i-- == 0)
 6317			i += tx_ring->count;
 6318		tx_buffer = &tx_ring->tx_buffer_info[i];
 6319	}
 6320
 6321	if (dma_unmap_len(tx_buffer, len))
 6322		dma_unmap_single(tx_ring->dev,
 6323				 dma_unmap_addr(tx_buffer, dma),
 6324				 dma_unmap_len(tx_buffer, len),
 6325				 DMA_TO_DEVICE);
 6326	dma_unmap_len_set(tx_buffer, len, 0);
 6327
 6328	dev_kfree_skb_any(tx_buffer->skb);
 6329	tx_buffer->skb = NULL;
 6330
 6331	tx_ring->next_to_use = i;
 6332
 6333	return -1;
 6334}
 6335
 6336int igb_xmit_xdp_ring(struct igb_adapter *adapter,
 6337		      struct igb_ring *tx_ring,
 6338		      struct xdp_frame *xdpf)
 6339{
 6340	struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf);
 6341	u8 nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0;
 6342	u16 count, i, index = tx_ring->next_to_use;
 6343	struct igb_tx_buffer *tx_head = &tx_ring->tx_buffer_info[index];
 6344	struct igb_tx_buffer *tx_buffer = tx_head;
 6345	union e1000_adv_tx_desc *tx_desc = IGB_TX_DESC(tx_ring, index);
 6346	u32 len = xdpf->len, cmd_type, olinfo_status;
 6347	void *data = xdpf->data;
 6348
 6349	count = TXD_USE_COUNT(len);
 6350	for (i = 0; i < nr_frags; i++)
 6351		count += TXD_USE_COUNT(skb_frag_size(&sinfo->frags[i]));
 6352
 6353	if (igb_maybe_stop_tx(tx_ring, count + 3))
 6354		return IGB_XDP_CONSUMED;
 6355
 6356	i = 0;
 6357	/* record the location of the first descriptor for this packet */
 6358	tx_head->bytecount = xdp_get_frame_len(xdpf);
 6359	tx_head->type = IGB_TYPE_XDP;
 6360	tx_head->gso_segs = 1;
 6361	tx_head->xdpf = xdpf;
 6362
 6363	olinfo_status = tx_head->bytecount << E1000_ADVTXD_PAYLEN_SHIFT;
 6364	/* 82575 requires a unique index per ring */
 6365	if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 6366		olinfo_status |= tx_ring->reg_idx << 4;
 6367	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 6368
 6369	for (;;) {
 6370		dma_addr_t dma;
 6371
 6372		dma = dma_map_single(tx_ring->dev, data, len, DMA_TO_DEVICE);
 6373		if (dma_mapping_error(tx_ring->dev, dma))
 6374			goto unmap;
 6375
 6376		/* record length, and DMA address */
 6377		dma_unmap_len_set(tx_buffer, len, len);
 6378		dma_unmap_addr_set(tx_buffer, dma, dma);
 6379
 6380		/* put descriptor type bits */
 6381		cmd_type = E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_DEXT |
 6382			   E1000_ADVTXD_DCMD_IFCS | len;
 6383
 6384		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
 6385		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 6386
 6387		tx_buffer->protocol = 0;
 6388
 6389		if (++index == tx_ring->count)
 6390			index = 0;
 6391
 6392		if (i == nr_frags)
 6393			break;
 6394
 6395		tx_buffer = &tx_ring->tx_buffer_info[index];
 6396		tx_desc = IGB_TX_DESC(tx_ring, index);
 6397		tx_desc->read.olinfo_status = 0;
 6398
 6399		data = skb_frag_address(&sinfo->frags[i]);
 6400		len = skb_frag_size(&sinfo->frags[i]);
 6401		i++;
 6402	}
 6403	tx_desc->read.cmd_type_len |= cpu_to_le32(IGB_TXD_DCMD);
 6404
 6405	netdev_tx_sent_queue(txring_txq(tx_ring), tx_head->bytecount);
 6406	/* set the timestamp */
 6407	tx_head->time_stamp = jiffies;
 6408
 6409	/* Avoid any potential race with xdp_xmit and cleanup */
 6410	smp_wmb();
 6411
 6412	/* set next_to_watch value indicating a packet is present */
 6413	tx_head->next_to_watch = tx_desc;
 6414	tx_ring->next_to_use = index;
 6415
 6416	/* Make sure there is space in the ring for the next send. */
 6417	igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
 6418
 6419	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more())
 6420		writel(index, tx_ring->tail);
 6421
 6422	return IGB_XDP_TX;
 6423
 6424unmap:
 6425	for (;;) {
 6426		tx_buffer = &tx_ring->tx_buffer_info[index];
 6427		if (dma_unmap_len(tx_buffer, len))
 6428			dma_unmap_page(tx_ring->dev,
 6429				       dma_unmap_addr(tx_buffer, dma),
 6430				       dma_unmap_len(tx_buffer, len),
 6431				       DMA_TO_DEVICE);
 6432		dma_unmap_len_set(tx_buffer, len, 0);
 6433		if (tx_buffer == tx_head)
 6434			break;
 6435
 6436		if (!index)
 6437			index += tx_ring->count;
 6438		index--;
 6439	}
 6440
 6441	return IGB_XDP_CONSUMED;
 6442}
 6443
 6444netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
 6445				struct igb_ring *tx_ring)
 6446{
 6447	struct igb_tx_buffer *first;
 6448	int tso;
 6449	u32 tx_flags = 0;
 6450	unsigned short f;
 6451	u16 count = TXD_USE_COUNT(skb_headlen(skb));
 6452	__be16 protocol = vlan_get_protocol(skb);
 6453	u8 hdr_len = 0;
 6454
 6455	/* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
 6456	 *       + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
 6457	 *       + 2 desc gap to keep tail from touching head,
 6458	 *       + 1 desc for context descriptor,
 6459	 * otherwise try next time
 6460	 */
 6461	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
 6462		count += TXD_USE_COUNT(skb_frag_size(
 6463						&skb_shinfo(skb)->frags[f]));
 6464
 6465	if (igb_maybe_stop_tx(tx_ring, count + 3)) {
 6466		/* this is a hard error */
 6467		return NETDEV_TX_BUSY;
 6468	}
 6469
 6470	/* record the location of the first descriptor for this packet */
 6471	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
 6472	first->type = IGB_TYPE_SKB;
 6473	first->skb = skb;
 6474	first->bytecount = skb->len;
 6475	first->gso_segs = 1;
 6476
 6477	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
 6478		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6479
 6480		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
 6481		    !test_and_set_bit_lock(__IGB_PTP_TX_IN_PROGRESS,
 6482					   &adapter->state)) {
 6483			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
 6484			tx_flags |= IGB_TX_FLAGS_TSTAMP;
 6485
 6486			adapter->ptp_tx_skb = skb_get(skb);
 6487			adapter->ptp_tx_start = jiffies;
 6488			if (adapter->hw.mac.type == e1000_82576)
 6489				schedule_work(&adapter->ptp_tx_work);
 6490		} else {
 6491			adapter->tx_hwtstamp_skipped++;
 6492		}
 6493	}
 6494
 6495	if (skb_vlan_tag_present(skb)) {
 6496		tx_flags |= IGB_TX_FLAGS_VLAN;
 6497		tx_flags |= (skb_vlan_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
 6498	}
 6499
 6500	/* record initial flags and protocol */
 6501	first->tx_flags = tx_flags;
 6502	first->protocol = protocol;
 6503
 6504	tso = igb_tso(tx_ring, first, &hdr_len);
 6505	if (tso < 0)
 6506		goto out_drop;
 6507	else if (!tso)
 6508		igb_tx_csum(tx_ring, first);
 6509
 6510	if (igb_tx_map(tx_ring, first, hdr_len))
 6511		goto cleanup_tx_tstamp;
 6512
 6513	return NETDEV_TX_OK;
 6514
 6515out_drop:
 6516	dev_kfree_skb_any(first->skb);
 6517	first->skb = NULL;
 6518cleanup_tx_tstamp:
 6519	if (unlikely(tx_flags & IGB_TX_FLAGS_TSTAMP)) {
 6520		struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
 6521
 6522		dev_kfree_skb_any(adapter->ptp_tx_skb);
 6523		adapter->ptp_tx_skb = NULL;
 6524		if (adapter->hw.mac.type == e1000_82576)
 6525			cancel_work_sync(&adapter->ptp_tx_work);
 6526		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
 6527	}
 6528
 6529	return NETDEV_TX_OK;
 6530}
 6531
 6532static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
 6533						    struct sk_buff *skb)
 6534{
 6535	unsigned int r_idx = skb->queue_mapping;
 6536
 6537	if (r_idx >= adapter->num_tx_queues)
 6538		r_idx = r_idx % adapter->num_tx_queues;
 6539
 6540	return adapter->tx_ring[r_idx];
 6541}
 6542
 6543static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
 6544				  struct net_device *netdev)
 6545{
 6546	struct igb_adapter *adapter = netdev_priv(netdev);
 6547
 6548	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
 6549	 * in order to meet this minimum size requirement.
 6550	 */
 6551	if (skb_put_padto(skb, 17))
 6552		return NETDEV_TX_OK;
 6553
 6554	return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
 6555}
 6556
 6557/**
 6558 *  igb_tx_timeout - Respond to a Tx Hang
 6559 *  @netdev: network interface device structure
 6560 *  @txqueue: number of the Tx queue that hung (unused)
 6561 **/
 6562static void igb_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
 6563{
 6564	struct igb_adapter *adapter = netdev_priv(netdev);
 6565	struct e1000_hw *hw = &adapter->hw;
 6566
 6567	/* Do the reset outside of interrupt context */
 6568	adapter->tx_timeout_count++;
 6569
 6570	if (hw->mac.type >= e1000_82580)
 6571		hw->dev_spec._82575.global_device_reset = true;
 6572
 6573	schedule_work(&adapter->reset_task);
 6574	wr32(E1000_EICS,
 6575	     (adapter->eims_enable_mask & ~adapter->eims_other));
 6576}
 6577
 6578static void igb_reset_task(struct work_struct *work)
 6579{
 6580	struct igb_adapter *adapter;
 6581	adapter = container_of(work, struct igb_adapter, reset_task);
 6582
 6583	rtnl_lock();
 6584	/* If we're already down or resetting, just bail */
 6585	if (test_bit(__IGB_DOWN, &adapter->state) ||
 6586	    test_bit(__IGB_RESETTING, &adapter->state)) {
 6587		rtnl_unlock();
 6588		return;
 6589	}
 6590
 6591	igb_dump(adapter);
 6592	netdev_err(adapter->netdev, "Reset adapter\n");
 6593	igb_reinit_locked(adapter);
 6594	rtnl_unlock();
 6595}
 6596
 6597/**
 6598 *  igb_get_stats64 - Get System Network Statistics
 6599 *  @netdev: network interface device structure
 6600 *  @stats: rtnl_link_stats64 pointer
 6601 **/
 6602static void igb_get_stats64(struct net_device *netdev,
 6603			    struct rtnl_link_stats64 *stats)
 6604{
 6605	struct igb_adapter *adapter = netdev_priv(netdev);
 6606
 6607	spin_lock(&adapter->stats64_lock);
 6608	igb_update_stats(adapter);
 6609	memcpy(stats, &adapter->stats64, sizeof(*stats));
 6610	spin_unlock(&adapter->stats64_lock);
 6611}
 6612
 6613/**
 6614 *  igb_change_mtu - Change the Maximum Transfer Unit
 6615 *  @netdev: network interface device structure
 6616 *  @new_mtu: new value for maximum frame size
 6617 *
 6618 *  Returns 0 on success, negative on failure
 6619 **/
 6620static int igb_change_mtu(struct net_device *netdev, int new_mtu)
 6621{
 6622	struct igb_adapter *adapter = netdev_priv(netdev);
 6623	int max_frame = new_mtu + IGB_ETH_PKT_HDR_PAD;
 6624
 6625	if (adapter->xdp_prog) {
 6626		int i;
 6627
 6628		for (i = 0; i < adapter->num_rx_queues; i++) {
 6629			struct igb_ring *ring = adapter->rx_ring[i];
 6630
 6631			if (max_frame > igb_rx_bufsz(ring)) {
 6632				netdev_warn(adapter->netdev,
 6633					    "Requested MTU size is not supported with XDP. Max frame size is %d\n",
 6634					    max_frame);
 6635				return -EINVAL;
 6636			}
 6637		}
 6638	}
 6639
 6640	/* adjust max frame to be at least the size of a standard frame */
 6641	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
 6642		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
 6643
 6644	while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
 6645		usleep_range(1000, 2000);
 6646
 6647	/* igb_down has a dependency on max_frame_size */
 6648	adapter->max_frame_size = max_frame;
 6649
 6650	if (netif_running(netdev))
 6651		igb_down(adapter);
 6652
 6653	netdev_dbg(netdev, "changing MTU from %d to %d\n",
 6654		   netdev->mtu, new_mtu);
 6655	WRITE_ONCE(netdev->mtu, new_mtu);
 6656
 6657	if (netif_running(netdev))
 6658		igb_up(adapter);
 6659	else
 6660		igb_reset(adapter);
 6661
 6662	clear_bit(__IGB_RESETTING, &adapter->state);
 6663
 6664	return 0;
 6665}
 6666
 6667/**
 6668 *  igb_update_stats - Update the board statistics counters
 6669 *  @adapter: board private structure
 6670 **/
 6671void igb_update_stats(struct igb_adapter *adapter)
 6672{
 6673	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
 6674	struct e1000_hw *hw = &adapter->hw;
 6675	struct pci_dev *pdev = adapter->pdev;
 6676	u32 reg, mpc;
 6677	int i;
 6678	u64 bytes, packets;
 6679	unsigned int start;
 6680	u64 _bytes, _packets;
 6681
 6682	/* Prevent stats update while adapter is being reset, or if the pci
 6683	 * connection is down.
 6684	 */
 6685	if (adapter->link_speed == 0)
 6686		return;
 6687	if (pci_channel_offline(pdev))
 6688		return;
 6689
 6690	bytes = 0;
 6691	packets = 0;
 6692
 6693	rcu_read_lock();
 6694	for (i = 0; i < adapter->num_rx_queues; i++) {
 6695		struct igb_ring *ring = adapter->rx_ring[i];
 6696		u32 rqdpc = rd32(E1000_RQDPC(i));
 6697		if (hw->mac.type >= e1000_i210)
 6698			wr32(E1000_RQDPC(i), 0);
 6699
 6700		if (rqdpc) {
 6701			ring->rx_stats.drops += rqdpc;
 6702			net_stats->rx_fifo_errors += rqdpc;
 6703		}
 6704
 6705		do {
 6706			start = u64_stats_fetch_begin(&ring->rx_syncp);
 6707			_bytes = ring->rx_stats.bytes;
 6708			_packets = ring->rx_stats.packets;
 6709		} while (u64_stats_fetch_retry(&ring->rx_syncp, start));
 6710		bytes += _bytes;
 6711		packets += _packets;
 6712	}
 6713
 6714	net_stats->rx_bytes = bytes;
 6715	net_stats->rx_packets = packets;
 6716
 6717	bytes = 0;
 6718	packets = 0;
 6719	for (i = 0; i < adapter->num_tx_queues; i++) {
 6720		struct igb_ring *ring = adapter->tx_ring[i];
 6721		do {
 6722			start = u64_stats_fetch_begin(&ring->tx_syncp);
 6723			_bytes = ring->tx_stats.bytes;
 6724			_packets = ring->tx_stats.packets;
 6725		} while (u64_stats_fetch_retry(&ring->tx_syncp, start));
 6726		bytes += _bytes;
 6727		packets += _packets;
 6728	}
 6729	net_stats->tx_bytes = bytes;
 6730	net_stats->tx_packets = packets;
 6731	rcu_read_unlock();
 6732
 6733	/* read stats registers */
 6734	adapter->stats.crcerrs += rd32(E1000_CRCERRS);
 6735	adapter->stats.gprc += rd32(E1000_GPRC);
 6736	adapter->stats.gorc += rd32(E1000_GORCL);
 6737	rd32(E1000_GORCH); /* clear GORCL */
 6738	adapter->stats.bprc += rd32(E1000_BPRC);
 6739	adapter->stats.mprc += rd32(E1000_MPRC);
 6740	adapter->stats.roc += rd32(E1000_ROC);
 6741
 6742	adapter->stats.prc64 += rd32(E1000_PRC64);
 6743	adapter->stats.prc127 += rd32(E1000_PRC127);
 6744	adapter->stats.prc255 += rd32(E1000_PRC255);
 6745	adapter->stats.prc511 += rd32(E1000_PRC511);
 6746	adapter->stats.prc1023 += rd32(E1000_PRC1023);
 6747	adapter->stats.prc1522 += rd32(E1000_PRC1522);
 6748	adapter->stats.symerrs += rd32(E1000_SYMERRS);
 6749	adapter->stats.sec += rd32(E1000_SEC);
 6750
 6751	mpc = rd32(E1000_MPC);
 6752	adapter->stats.mpc += mpc;
 6753	net_stats->rx_fifo_errors += mpc;
 6754	adapter->stats.scc += rd32(E1000_SCC);
 6755	adapter->stats.ecol += rd32(E1000_ECOL);
 6756	adapter->stats.mcc += rd32(E1000_MCC);
 6757	adapter->stats.latecol += rd32(E1000_LATECOL);
 6758	adapter->stats.dc += rd32(E1000_DC);
 6759	adapter->stats.rlec += rd32(E1000_RLEC);
 6760	adapter->stats.xonrxc += rd32(E1000_XONRXC);
 6761	adapter->stats.xontxc += rd32(E1000_XONTXC);
 6762	adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
 6763	adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
 6764	adapter->stats.fcruc += rd32(E1000_FCRUC);
 6765	adapter->stats.gptc += rd32(E1000_GPTC);
 6766	adapter->stats.gotc += rd32(E1000_GOTCL);
 6767	rd32(E1000_GOTCH); /* clear GOTCL */
 6768	adapter->stats.rnbc += rd32(E1000_RNBC);
 6769	adapter->stats.ruc += rd32(E1000_RUC);
 6770	adapter->stats.rfc += rd32(E1000_RFC);
 6771	adapter->stats.rjc += rd32(E1000_RJC);
 6772	adapter->stats.tor += rd32(E1000_TORH);
 6773	adapter->stats.tot += rd32(E1000_TOTH);
 6774	adapter->stats.tpr += rd32(E1000_TPR);
 6775
 6776	adapter->stats.ptc64 += rd32(E1000_PTC64);
 6777	adapter->stats.ptc127 += rd32(E1000_PTC127);
 6778	adapter->stats.ptc255 += rd32(E1000_PTC255);
 6779	adapter->stats.ptc511 += rd32(E1000_PTC511);
 6780	adapter->stats.ptc1023 += rd32(E1000_PTC1023);
 6781	adapter->stats.ptc1522 += rd32(E1000_PTC1522);
 6782
 6783	adapter->stats.mptc += rd32(E1000_MPTC);
 6784	adapter->stats.bptc += rd32(E1000_BPTC);
 6785
 6786	adapter->stats.tpt += rd32(E1000_TPT);
 6787	adapter->stats.colc += rd32(E1000_COLC);
 6788
 6789	adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
 6790	/* read internal phy specific stats */
 6791	reg = rd32(E1000_CTRL_EXT);
 6792	if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
 6793		adapter->stats.rxerrc += rd32(E1000_RXERRC);
 6794
 6795		/* this stat has invalid values on i210/i211 */
 6796		if ((hw->mac.type != e1000_i210) &&
 6797		    (hw->mac.type != e1000_i211))
 6798			adapter->stats.tncrs += rd32(E1000_TNCRS);
 6799	}
 6800
 6801	adapter->stats.tsctc += rd32(E1000_TSCTC);
 6802	adapter->stats.tsctfc += rd32(E1000_TSCTFC);
 6803
 6804	adapter->stats.iac += rd32(E1000_IAC);
 6805	adapter->stats.icrxoc += rd32(E1000_ICRXOC);
 6806	adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
 6807	adapter->stats.icrxatc += rd32(E1000_ICRXATC);
 6808	adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
 6809	adapter->stats.ictxatc += rd32(E1000_ICTXATC);
 6810	adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
 6811	adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
 6812	adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
 6813
 6814	/* Fill out the OS statistics structure */
 6815	net_stats->multicast = adapter->stats.mprc;
 6816	net_stats->collisions = adapter->stats.colc;
 6817
 6818	/* Rx Errors */
 6819
 6820	/* RLEC on some newer hardware can be incorrect so build
 6821	 * our own version based on RUC and ROC
 6822	 */
 6823	net_stats->rx_errors = adapter->stats.rxerrc +
 6824		adapter->stats.crcerrs + adapter->stats.algnerrc +
 6825		adapter->stats.ruc + adapter->stats.roc +
 6826		adapter->stats.cexterr;
 6827	net_stats->rx_length_errors = adapter->stats.ruc +
 6828				      adapter->stats.roc;
 6829	net_stats->rx_crc_errors = adapter->stats.crcerrs;
 6830	net_stats->rx_frame_errors = adapter->stats.algnerrc;
 6831	net_stats->rx_missed_errors = adapter->stats.mpc;
 6832
 6833	/* Tx Errors */
 6834	net_stats->tx_errors = adapter->stats.ecol +
 6835			       adapter->stats.latecol;
 6836	net_stats->tx_aborted_errors = adapter->stats.ecol;
 6837	net_stats->tx_window_errors = adapter->stats.latecol;
 6838	net_stats->tx_carrier_errors = adapter->stats.tncrs;
 6839
 6840	/* Tx Dropped needs to be maintained elsewhere */
 6841
 6842	/* Management Stats */
 6843	adapter->stats.mgptc += rd32(E1000_MGTPTC);
 6844	adapter->stats.mgprc += rd32(E1000_MGTPRC);
 6845	adapter->stats.mgpdc += rd32(E1000_MGTPDC);
 6846
 6847	/* OS2BMC Stats */
 6848	reg = rd32(E1000_MANC);
 6849	if (reg & E1000_MANC_EN_BMC2OS) {
 6850		adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
 6851		adapter->stats.o2bspc += rd32(E1000_O2BSPC);
 6852		adapter->stats.b2ospc += rd32(E1000_B2OSPC);
 6853		adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
 6854	}
 6855}
 6856
 6857static void igb_perout(struct igb_adapter *adapter, int tsintr_tt)
 6858{
 6859	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_PEROUT, tsintr_tt);
 6860	struct e1000_hw *hw = &adapter->hw;
 6861	struct timespec64 ts;
 6862	u32 tsauxc;
 6863
 6864	if (pin < 0 || pin >= IGB_N_SDP)
 6865		return;
 6866
 6867	spin_lock(&adapter->tmreg_lock);
 6868
 6869	if (hw->mac.type == e1000_82580 ||
 6870	    hw->mac.type == e1000_i354 ||
 6871	    hw->mac.type == e1000_i350) {
 6872		s64 ns = timespec64_to_ns(&adapter->perout[tsintr_tt].period);
 6873		u32 systiml, systimh, level_mask, level, rem;
 6874		u64 systim, now;
 6875
 6876		/* read systim registers in sequence */
 6877		rd32(E1000_SYSTIMR);
 6878		systiml = rd32(E1000_SYSTIML);
 6879		systimh = rd32(E1000_SYSTIMH);
 6880		systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
 6881		now = timecounter_cyc2time(&adapter->tc, systim);
 6882
 6883		if (pin < 2) {
 6884			level_mask = (tsintr_tt == 1) ? 0x80000 : 0x40000;
 6885			level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
 6886		} else {
 6887			level_mask = (tsintr_tt == 1) ? 0x80 : 0x40;
 6888			level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
 6889		}
 6890
 6891		div_u64_rem(now, ns, &rem);
 6892		systim = systim + (ns - rem);
 6893
 6894		/* synchronize pin level with rising/falling edges */
 6895		div_u64_rem(now, ns << 1, &rem);
 6896		if (rem < ns) {
 6897			/* first half of period */
 6898			if (level == 0) {
 6899				/* output is already low, skip this period */
 6900				systim += ns;
 6901				pr_notice("igb: periodic output on %s missed falling edge\n",
 6902					  adapter->sdp_config[pin].name);
 6903			}
 6904		} else {
 6905			/* second half of period */
 6906			if (level == 1) {
 6907				/* output is already high, skip this period */
 6908				systim += ns;
 6909				pr_notice("igb: periodic output on %s missed rising edge\n",
 6910					  adapter->sdp_config[pin].name);
 6911			}
 6912		}
 6913
 6914		/* for this chip family tv_sec is the upper part of the binary value,
 6915		 * so not seconds
 6916		 */
 6917		ts.tv_nsec = (u32)systim;
 6918		ts.tv_sec  = ((u32)(systim >> 32)) & 0xFF;
 6919	} else {
 6920		ts = timespec64_add(adapter->perout[tsintr_tt].start,
 6921				    adapter->perout[tsintr_tt].period);
 6922	}
 6923
 6924	/* u32 conversion of tv_sec is safe until y2106 */
 6925	wr32((tsintr_tt == 1) ? E1000_TRGTTIML1 : E1000_TRGTTIML0, ts.tv_nsec);
 6926	wr32((tsintr_tt == 1) ? E1000_TRGTTIMH1 : E1000_TRGTTIMH0, (u32)ts.tv_sec);
 6927	tsauxc = rd32(E1000_TSAUXC);
 6928	tsauxc |= TSAUXC_EN_TT0;
 6929	wr32(E1000_TSAUXC, tsauxc);
 6930	adapter->perout[tsintr_tt].start = ts;
 6931
 6932	spin_unlock(&adapter->tmreg_lock);
 6933}
 6934
 6935static void igb_extts(struct igb_adapter *adapter, int tsintr_tt)
 6936{
 6937	int pin = ptp_find_pin(adapter->ptp_clock, PTP_PF_EXTTS, tsintr_tt);
 6938	int auxstmpl = (tsintr_tt == 1) ? E1000_AUXSTMPL1 : E1000_AUXSTMPL0;
 6939	int auxstmph = (tsintr_tt == 1) ? E1000_AUXSTMPH1 : E1000_AUXSTMPH0;
 6940	struct e1000_hw *hw = &adapter->hw;
 6941	struct ptp_clock_event event;
 6942	struct timespec64 ts;
 6943	unsigned long flags;
 6944
 6945	if (pin < 0 || pin >= IGB_N_SDP)
 6946		return;
 6947
 6948	if (hw->mac.type == e1000_82580 ||
 6949	    hw->mac.type == e1000_i354 ||
 6950	    hw->mac.type == e1000_i350) {
 6951		u64 ns = rd32(auxstmpl);
 6952
 6953		ns += ((u64)(rd32(auxstmph) & 0xFF)) << 32;
 6954		spin_lock_irqsave(&adapter->tmreg_lock, flags);
 6955		ns = timecounter_cyc2time(&adapter->tc, ns);
 6956		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
 6957		ts = ns_to_timespec64(ns);
 6958	} else {
 6959		ts.tv_nsec = rd32(auxstmpl);
 6960		ts.tv_sec  = rd32(auxstmph);
 6961	}
 6962
 6963	event.type = PTP_CLOCK_EXTTS;
 6964	event.index = tsintr_tt;
 6965	event.timestamp = ts.tv_sec * 1000000000ULL + ts.tv_nsec;
 6966	ptp_clock_event(adapter->ptp_clock, &event);
 6967}
 6968
 6969static void igb_tsync_interrupt(struct igb_adapter *adapter)
 6970{
 6971	const u32 mask = (TSINTR_SYS_WRAP | E1000_TSICR_TXTS |
 6972			  TSINTR_TT0 | TSINTR_TT1 |
 6973			  TSINTR_AUTT0 | TSINTR_AUTT1);
 6974	struct e1000_hw *hw = &adapter->hw;
 6975	u32 tsicr = rd32(E1000_TSICR);
 6976	struct ptp_clock_event event;
 6977
 6978	if (hw->mac.type == e1000_82580) {
 6979		/* 82580 has a hardware bug that requires an explicit
 6980		 * write to clear the TimeSync interrupt cause.
 6981		 */
 6982		wr32(E1000_TSICR, tsicr & mask);
 6983	}
 6984
 6985	if (tsicr & TSINTR_SYS_WRAP) {
 6986		event.type = PTP_CLOCK_PPS;
 6987		if (adapter->ptp_caps.pps)
 6988			ptp_clock_event(adapter->ptp_clock, &event);
 6989	}
 6990
 6991	if (tsicr & E1000_TSICR_TXTS) {
 6992		/* retrieve hardware timestamp */
 6993		schedule_work(&adapter->ptp_tx_work);
 6994	}
 6995
 6996	if (tsicr & TSINTR_TT0)
 6997		igb_perout(adapter, 0);
 6998
 6999	if (tsicr & TSINTR_TT1)
 7000		igb_perout(adapter, 1);
 7001
 7002	if (tsicr & TSINTR_AUTT0)
 7003		igb_extts(adapter, 0);
 7004
 7005	if (tsicr & TSINTR_AUTT1)
 7006		igb_extts(adapter, 1);
 7007}
 7008
 7009static irqreturn_t igb_msix_other(int irq, void *data)
 7010{
 7011	struct igb_adapter *adapter = data;
 7012	struct e1000_hw *hw = &adapter->hw;
 7013	u32 icr = rd32(E1000_ICR);
 7014	/* reading ICR causes bit 31 of EICR to be cleared */
 7015
 7016	if (icr & E1000_ICR_DRSTA)
 7017		schedule_work(&adapter->reset_task);
 7018
 7019	if (icr & E1000_ICR_DOUTSYNC) {
 7020		/* HW is reporting DMA is out of sync */
 7021		adapter->stats.doosync++;
 7022		/* The DMA Out of Sync is also indication of a spoof event
 7023		 * in IOV mode. Check the Wrong VM Behavior register to
 7024		 * see if it is really a spoof event.
 7025		 */
 7026		igb_check_wvbr(adapter);
 7027	}
 7028
 7029	/* Check for a mailbox event */
 7030	if (icr & E1000_ICR_VMMB)
 7031		igb_msg_task(adapter);
 7032
 7033	if (icr & E1000_ICR_LSC) {
 7034		hw->mac.get_link_status = 1;
 7035		/* guard against interrupt when we're going down */
 7036		if (!test_bit(__IGB_DOWN, &adapter->state))
 7037			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 7038	}
 7039
 7040	if (icr & E1000_ICR_TS)
 7041		igb_tsync_interrupt(adapter);
 7042
 7043	wr32(E1000_EIMS, adapter->eims_other);
 7044
 7045	return IRQ_HANDLED;
 7046}
 7047
 7048static void igb_write_itr(struct igb_q_vector *q_vector)
 7049{
 7050	struct igb_adapter *adapter = q_vector->adapter;
 7051	u32 itr_val = q_vector->itr_val & 0x7FFC;
 7052
 7053	if (!q_vector->set_itr)
 7054		return;
 7055
 7056	if (!itr_val)
 7057		itr_val = 0x4;
 7058
 7059	if (adapter->hw.mac.type == e1000_82575)
 7060		itr_val |= itr_val << 16;
 7061	else
 7062		itr_val |= E1000_EITR_CNT_IGNR;
 7063
 7064	writel(itr_val, q_vector->itr_register);
 7065	q_vector->set_itr = 0;
 7066}
 7067
 7068static irqreturn_t igb_msix_ring(int irq, void *data)
 7069{
 7070	struct igb_q_vector *q_vector = data;
 7071
 7072	/* Write the ITR value calculated from the previous interrupt. */
 7073	igb_write_itr(q_vector);
 7074
 7075	napi_schedule(&q_vector->napi);
 7076
 7077	return IRQ_HANDLED;
 7078}
 7079
 7080#ifdef CONFIG_IGB_DCA
 7081static void igb_update_tx_dca(struct igb_adapter *adapter,
 7082			      struct igb_ring *tx_ring,
 7083			      int cpu)
 7084{
 7085	struct e1000_hw *hw = &adapter->hw;
 7086	u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
 7087
 7088	if (hw->mac.type != e1000_82575)
 7089		txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
 7090
 7091	/* We can enable relaxed ordering for reads, but not writes when
 7092	 * DCA is enabled.  This is due to a known issue in some chipsets
 7093	 * which will cause the DCA tag to be cleared.
 7094	 */
 7095	txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
 7096		  E1000_DCA_TXCTRL_DATA_RRO_EN |
 7097		  E1000_DCA_TXCTRL_DESC_DCA_EN;
 7098
 7099	wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
 7100}
 7101
 7102static void igb_update_rx_dca(struct igb_adapter *adapter,
 7103			      struct igb_ring *rx_ring,
 7104			      int cpu)
 7105{
 7106	struct e1000_hw *hw = &adapter->hw;
 7107	u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
 7108
 7109	if (hw->mac.type != e1000_82575)
 7110		rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
 7111
 7112	/* We can enable relaxed ordering for reads, but not writes when
 7113	 * DCA is enabled.  This is due to a known issue in some chipsets
 7114	 * which will cause the DCA tag to be cleared.
 7115	 */
 7116	rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
 7117		  E1000_DCA_RXCTRL_DESC_DCA_EN;
 7118
 7119	wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
 7120}
 7121
 7122static void igb_update_dca(struct igb_q_vector *q_vector)
 7123{
 7124	struct igb_adapter *adapter = q_vector->adapter;
 7125	int cpu = get_cpu();
 7126
 7127	if (q_vector->cpu == cpu)
 7128		goto out_no_update;
 7129
 7130	if (q_vector->tx.ring)
 7131		igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
 7132
 7133	if (q_vector->rx.ring)
 7134		igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
 7135
 7136	q_vector->cpu = cpu;
 7137out_no_update:
 7138	put_cpu();
 7139}
 7140
 7141static void igb_setup_dca(struct igb_adapter *adapter)
 7142{
 7143	struct e1000_hw *hw = &adapter->hw;
 7144	int i;
 7145
 7146	if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
 7147		return;
 7148
 7149	/* Always use CB2 mode, difference is masked in the CB driver. */
 7150	wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
 7151
 7152	for (i = 0; i < adapter->num_q_vectors; i++) {
 7153		adapter->q_vector[i]->cpu = -1;
 7154		igb_update_dca(adapter->q_vector[i]);
 7155	}
 7156}
 7157
 7158static int __igb_notify_dca(struct device *dev, void *data)
 7159{
 7160	struct net_device *netdev = dev_get_drvdata(dev);
 7161	struct igb_adapter *adapter = netdev_priv(netdev);
 7162	struct pci_dev *pdev = adapter->pdev;
 7163	struct e1000_hw *hw = &adapter->hw;
 7164	unsigned long event = *(unsigned long *)data;
 7165
 7166	switch (event) {
 7167	case DCA_PROVIDER_ADD:
 7168		/* if already enabled, don't do it again */
 7169		if (adapter->flags & IGB_FLAG_DCA_ENABLED)
 7170			break;
 7171		if (dca_add_requester(dev) == 0) {
 7172			adapter->flags |= IGB_FLAG_DCA_ENABLED;
 7173			dev_info(&pdev->dev, "DCA enabled\n");
 7174			igb_setup_dca(adapter);
 7175			break;
 7176		}
 7177		fallthrough; /* since DCA is disabled. */
 7178	case DCA_PROVIDER_REMOVE:
 7179		if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
 7180			/* without this a class_device is left
 7181			 * hanging around in the sysfs model
 7182			 */
 7183			dca_remove_requester(dev);
 7184			dev_info(&pdev->dev, "DCA disabled\n");
 7185			adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
 7186			wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
 7187		}
 7188		break;
 7189	}
 7190
 7191	return 0;
 7192}
 7193
 7194static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
 7195			  void *p)
 7196{
 7197	int ret_val;
 7198
 7199	ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
 7200					 __igb_notify_dca);
 7201
 7202	return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
 7203}
 7204#endif /* CONFIG_IGB_DCA */
 7205
 7206#ifdef CONFIG_PCI_IOV
 7207static int igb_vf_configure(struct igb_adapter *adapter, int vf)
 7208{
 7209	unsigned char mac_addr[ETH_ALEN];
 7210
 7211	eth_zero_addr(mac_addr);
 7212	igb_set_vf_mac(adapter, vf, mac_addr);
 7213
 7214	/* By default spoof check is enabled for all VFs */
 7215	adapter->vf_data[vf].spoofchk_enabled = true;
 7216
 7217	/* By default VFs are not trusted */
 7218	adapter->vf_data[vf].trusted = false;
 7219
 7220	return 0;
 7221}
 7222
 7223#endif
 7224static void igb_ping_all_vfs(struct igb_adapter *adapter)
 7225{
 7226	struct e1000_hw *hw = &adapter->hw;
 7227	u32 ping;
 7228	int i;
 7229
 7230	for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
 7231		ping = E1000_PF_CONTROL_MSG;
 7232		if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
 7233			ping |= E1000_VT_MSGTYPE_CTS;
 7234		igb_write_mbx(hw, &ping, 1, i);
 7235	}
 7236}
 7237
 7238static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7239{
 7240	struct e1000_hw *hw = &adapter->hw;
 7241	u32 vmolr = rd32(E1000_VMOLR(vf));
 7242	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7243
 7244	vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
 7245			    IGB_VF_FLAG_MULTI_PROMISC);
 7246	vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7247
 7248	if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
 7249		vmolr |= E1000_VMOLR_MPME;
 7250		vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
 7251		*msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
 7252	} else {
 7253		/* if we have hashes and we are clearing a multicast promisc
 7254		 * flag we need to write the hashes to the MTA as this step
 7255		 * was previously skipped
 7256		 */
 7257		if (vf_data->num_vf_mc_hashes > 30) {
 7258			vmolr |= E1000_VMOLR_MPME;
 7259		} else if (vf_data->num_vf_mc_hashes) {
 7260			int j;
 7261
 7262			vmolr |= E1000_VMOLR_ROMPE;
 7263			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7264				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7265		}
 7266	}
 7267
 7268	wr32(E1000_VMOLR(vf), vmolr);
 7269
 7270	/* there are flags left unprocessed, likely not supported */
 7271	if (*msgbuf & E1000_VT_MSGINFO_MASK)
 7272		return -EINVAL;
 7273
 7274	return 0;
 7275}
 7276
 7277static int igb_set_vf_multicasts(struct igb_adapter *adapter,
 7278				  u32 *msgbuf, u32 vf)
 7279{
 7280	int n = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
 7281	u16 *hash_list = (u16 *)&msgbuf[1];
 7282	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7283	int i;
 7284
 7285	/* salt away the number of multicast addresses assigned
 7286	 * to this VF for later use to restore when the PF multi cast
 7287	 * list changes
 7288	 */
 7289	vf_data->num_vf_mc_hashes = n;
 7290
 7291	/* only up to 30 hash values supported */
 7292	if (n > 30)
 7293		n = 30;
 7294
 7295	/* store the hashes for later use */
 7296	for (i = 0; i < n; i++)
 7297		vf_data->vf_mc_hashes[i] = hash_list[i];
 7298
 7299	/* Flush and reset the mta with the new values */
 7300	igb_set_rx_mode(adapter->netdev);
 7301
 7302	return 0;
 7303}
 7304
 7305static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
 7306{
 7307	struct e1000_hw *hw = &adapter->hw;
 7308	struct vf_data_storage *vf_data;
 7309	int i, j;
 7310
 7311	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 7312		u32 vmolr = rd32(E1000_VMOLR(i));
 7313
 7314		vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
 7315
 7316		vf_data = &adapter->vf_data[i];
 7317
 7318		if ((vf_data->num_vf_mc_hashes > 30) ||
 7319		    (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
 7320			vmolr |= E1000_VMOLR_MPME;
 7321		} else if (vf_data->num_vf_mc_hashes) {
 7322			vmolr |= E1000_VMOLR_ROMPE;
 7323			for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
 7324				igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
 7325		}
 7326		wr32(E1000_VMOLR(i), vmolr);
 7327	}
 7328}
 7329
 7330static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
 7331{
 7332	struct e1000_hw *hw = &adapter->hw;
 7333	u32 pool_mask, vlvf_mask, i;
 7334
 7335	/* create mask for VF and other pools */
 7336	pool_mask = E1000_VLVF_POOLSEL_MASK;
 7337	vlvf_mask = BIT(E1000_VLVF_POOLSEL_SHIFT + vf);
 7338
 7339	/* drop PF from pool bits */
 7340	pool_mask &= ~BIT(E1000_VLVF_POOLSEL_SHIFT +
 7341			     adapter->vfs_allocated_count);
 7342
 7343	/* Find the vlan filter for this id */
 7344	for (i = E1000_VLVF_ARRAY_SIZE; i--;) {
 7345		u32 vlvf = rd32(E1000_VLVF(i));
 7346		u32 vfta_mask, vid, vfta;
 7347
 7348		/* remove the vf from the pool */
 7349		if (!(vlvf & vlvf_mask))
 7350			continue;
 7351
 7352		/* clear out bit from VLVF */
 7353		vlvf ^= vlvf_mask;
 7354
 7355		/* if other pools are present, just remove ourselves */
 7356		if (vlvf & pool_mask)
 7357			goto update_vlvfb;
 7358
 7359		/* if PF is present, leave VFTA */
 7360		if (vlvf & E1000_VLVF_POOLSEL_MASK)
 7361			goto update_vlvf;
 7362
 7363		vid = vlvf & E1000_VLVF_VLANID_MASK;
 7364		vfta_mask = BIT(vid % 32);
 7365
 7366		/* clear bit from VFTA */
 7367		vfta = adapter->shadow_vfta[vid / 32];
 7368		if (vfta & vfta_mask)
 7369			hw->mac.ops.write_vfta(hw, vid / 32, vfta ^ vfta_mask);
 7370update_vlvf:
 7371		/* clear pool selection enable */
 7372		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7373			vlvf &= E1000_VLVF_POOLSEL_MASK;
 7374		else
 7375			vlvf = 0;
 7376update_vlvfb:
 7377		/* clear pool bits */
 7378		wr32(E1000_VLVF(i), vlvf);
 7379	}
 7380}
 7381
 7382static int igb_find_vlvf_entry(struct e1000_hw *hw, u32 vlan)
 7383{
 7384	u32 vlvf;
 7385	int idx;
 7386
 7387	/* short cut the special case */
 7388	if (vlan == 0)
 7389		return 0;
 7390
 7391	/* Search for the VLAN id in the VLVF entries */
 7392	for (idx = E1000_VLVF_ARRAY_SIZE; --idx;) {
 7393		vlvf = rd32(E1000_VLVF(idx));
 7394		if ((vlvf & VLAN_VID_MASK) == vlan)
 7395			break;
 7396	}
 7397
 7398	return idx;
 7399}
 7400
 7401static void igb_update_pf_vlvf(struct igb_adapter *adapter, u32 vid)
 7402{
 7403	struct e1000_hw *hw = &adapter->hw;
 7404	u32 bits, pf_id;
 7405	int idx;
 7406
 7407	idx = igb_find_vlvf_entry(hw, vid);
 7408	if (!idx)
 7409		return;
 7410
 7411	/* See if any other pools are set for this VLAN filter
 7412	 * entry other than the PF.
 7413	 */
 7414	pf_id = adapter->vfs_allocated_count + E1000_VLVF_POOLSEL_SHIFT;
 7415	bits = ~BIT(pf_id) & E1000_VLVF_POOLSEL_MASK;
 7416	bits &= rd32(E1000_VLVF(idx));
 7417
 7418	/* Disable the filter so this falls into the default pool. */
 7419	if (!bits) {
 7420		if (adapter->flags & IGB_FLAG_VLAN_PROMISC)
 7421			wr32(E1000_VLVF(idx), BIT(pf_id));
 7422		else
 7423			wr32(E1000_VLVF(idx), 0);
 7424	}
 7425}
 7426
 7427static s32 igb_set_vf_vlan(struct igb_adapter *adapter, u32 vid,
 7428			   bool add, u32 vf)
 7429{
 7430	int pf_id = adapter->vfs_allocated_count;
 7431	struct e1000_hw *hw = &adapter->hw;
 7432	int err;
 7433
 7434	/* If VLAN overlaps with one the PF is currently monitoring make
 7435	 * sure that we are able to allocate a VLVF entry.  This may be
 7436	 * redundant but it guarantees PF will maintain visibility to
 7437	 * the VLAN.
 7438	 */
 7439	if (add && test_bit(vid, adapter->active_vlans)) {
 7440		err = igb_vfta_set(hw, vid, pf_id, true, false);
 7441		if (err)
 7442			return err;
 7443	}
 7444
 7445	err = igb_vfta_set(hw, vid, vf, add, false);
 7446
 7447	if (add && !err)
 7448		return err;
 7449
 7450	/* If we failed to add the VF VLAN or we are removing the VF VLAN
 7451	 * we may need to drop the PF pool bit in order to allow us to free
 7452	 * up the VLVF resources.
 7453	 */
 7454	if (test_bit(vid, adapter->active_vlans) ||
 7455	    (adapter->flags & IGB_FLAG_VLAN_PROMISC))
 7456		igb_update_pf_vlvf(adapter, vid);
 7457
 7458	return err;
 7459}
 7460
 7461static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
 7462{
 7463	struct e1000_hw *hw = &adapter->hw;
 7464
 7465	if (vid)
 7466		wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
 7467	else
 7468		wr32(E1000_VMVIR(vf), 0);
 7469}
 7470
 7471static int igb_enable_port_vlan(struct igb_adapter *adapter, int vf,
 7472				u16 vlan, u8 qos)
 7473{
 7474	int err;
 7475
 7476	err = igb_set_vf_vlan(adapter, vlan, true, vf);
 7477	if (err)
 7478		return err;
 7479
 7480	igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
 7481	igb_set_vmolr(adapter, vf, !vlan);
 7482
 7483	/* revoke access to previous VLAN */
 7484	if (vlan != adapter->vf_data[vf].pf_vlan)
 7485		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7486				false, vf);
 7487
 7488	adapter->vf_data[vf].pf_vlan = vlan;
 7489	adapter->vf_data[vf].pf_qos = qos;
 7490	igb_set_vf_vlan_strip(adapter, vf, true);
 7491	dev_info(&adapter->pdev->dev,
 7492		 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
 7493	if (test_bit(__IGB_DOWN, &adapter->state)) {
 7494		dev_warn(&adapter->pdev->dev,
 7495			 "The VF VLAN has been set, but the PF device is not up.\n");
 7496		dev_warn(&adapter->pdev->dev,
 7497			 "Bring the PF device up before attempting to use the VF device.\n");
 7498	}
 7499
 7500	return err;
 7501}
 7502
 7503static int igb_disable_port_vlan(struct igb_adapter *adapter, int vf)
 7504{
 7505	/* Restore tagless access via VLAN 0 */
 7506	igb_set_vf_vlan(adapter, 0, true, vf);
 7507
 7508	igb_set_vmvir(adapter, 0, vf);
 7509	igb_set_vmolr(adapter, vf, true);
 7510
 7511	/* Remove any PF assigned VLAN */
 7512	if (adapter->vf_data[vf].pf_vlan)
 7513		igb_set_vf_vlan(adapter, adapter->vf_data[vf].pf_vlan,
 7514				false, vf);
 7515
 7516	adapter->vf_data[vf].pf_vlan = 0;
 7517	adapter->vf_data[vf].pf_qos = 0;
 7518	igb_set_vf_vlan_strip(adapter, vf, false);
 7519
 7520	return 0;
 7521}
 7522
 7523static int igb_ndo_set_vf_vlan(struct net_device *netdev, int vf,
 7524			       u16 vlan, u8 qos, __be16 vlan_proto)
 7525{
 7526	struct igb_adapter *adapter = netdev_priv(netdev);
 7527
 7528	if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
 7529		return -EINVAL;
 7530
 7531	if (vlan_proto != htons(ETH_P_8021Q))
 7532		return -EPROTONOSUPPORT;
 7533
 7534	return (vlan || qos) ? igb_enable_port_vlan(adapter, vf, vlan, qos) :
 7535			       igb_disable_port_vlan(adapter, vf);
 7536}
 7537
 7538static int igb_set_vf_vlan_msg(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
 7539{
 7540	int add = FIELD_GET(E1000_VT_MSGINFO_MASK, msgbuf[0]);
 7541	int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
 7542	int ret;
 7543
 7544	if (adapter->vf_data[vf].pf_vlan)
 7545		return -1;
 7546
 7547	/* VLAN 0 is a special case, don't allow it to be removed */
 7548	if (!vid && !add)
 7549		return 0;
 7550
 7551	ret = igb_set_vf_vlan(adapter, vid, !!add, vf);
 7552	if (!ret)
 7553		igb_set_vf_vlan_strip(adapter, vf, !!vid);
 7554	return ret;
 7555}
 7556
 7557static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
 7558{
 7559	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7560
 7561	/* clear flags - except flag that indicates PF has set the MAC */
 7562	vf_data->flags &= IGB_VF_FLAG_PF_SET_MAC;
 7563	vf_data->last_nack = jiffies;
 7564
 7565	/* reset vlans for device */
 7566	igb_clear_vf_vfta(adapter, vf);
 7567	igb_set_vf_vlan(adapter, vf_data->pf_vlan, true, vf);
 7568	igb_set_vmvir(adapter, vf_data->pf_vlan |
 7569			       (vf_data->pf_qos << VLAN_PRIO_SHIFT), vf);
 7570	igb_set_vmolr(adapter, vf, !vf_data->pf_vlan);
 7571	igb_set_vf_vlan_strip(adapter, vf, !!(vf_data->pf_vlan));
 7572
 7573	/* reset multicast table array for vf */
 7574	adapter->vf_data[vf].num_vf_mc_hashes = 0;
 7575
 7576	/* Flush and reset the mta with the new values */
 7577	igb_set_rx_mode(adapter->netdev);
 7578}
 7579
 7580static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
 7581{
 7582	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7583
 7584	/* clear mac address as we were hotplug removed/added */
 7585	if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
 7586		eth_zero_addr(vf_mac);
 7587
 7588	/* process remaining reset events */
 7589	igb_vf_reset(adapter, vf);
 7590}
 7591
 7592static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
 7593{
 7594	struct e1000_hw *hw = &adapter->hw;
 7595	unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
 7596	u32 reg, msgbuf[3] = {};
 7597	u8 *addr = (u8 *)(&msgbuf[1]);
 7598
 7599	/* process all the same items cleared in a function level reset */
 7600	igb_vf_reset(adapter, vf);
 7601
 7602	/* set vf mac address */
 7603	igb_set_vf_mac(adapter, vf, vf_mac);
 7604
 7605	/* enable transmit and receive for vf */
 7606	reg = rd32(E1000_VFTE);
 7607	wr32(E1000_VFTE, reg | BIT(vf));
 7608	reg = rd32(E1000_VFRE);
 7609	wr32(E1000_VFRE, reg | BIT(vf));
 7610
 7611	adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
 7612
 7613	/* reply to reset with ack and vf mac address */
 7614	if (!is_zero_ether_addr(vf_mac)) {
 7615		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
 7616		memcpy(addr, vf_mac, ETH_ALEN);
 7617	} else {
 7618		msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_NACK;
 7619	}
 7620	igb_write_mbx(hw, msgbuf, 3, vf);
 7621}
 7622
 7623static void igb_flush_mac_table(struct igb_adapter *adapter)
 7624{
 7625	struct e1000_hw *hw = &adapter->hw;
 7626	int i;
 7627
 7628	for (i = 0; i < hw->mac.rar_entry_count; i++) {
 7629		adapter->mac_table[i].state &= ~IGB_MAC_STATE_IN_USE;
 7630		eth_zero_addr(adapter->mac_table[i].addr);
 7631		adapter->mac_table[i].queue = 0;
 7632		igb_rar_set_index(adapter, i);
 7633	}
 7634}
 7635
 7636static int igb_available_rars(struct igb_adapter *adapter, u8 queue)
 7637{
 7638	struct e1000_hw *hw = &adapter->hw;
 7639	/* do not count rar entries reserved for VFs MAC addresses */
 7640	int rar_entries = hw->mac.rar_entry_count -
 7641			  adapter->vfs_allocated_count;
 7642	int i, count = 0;
 7643
 7644	for (i = 0; i < rar_entries; i++) {
 7645		/* do not count default entries */
 7646		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT)
 7647			continue;
 7648
 7649		/* do not count "in use" entries for different queues */
 7650		if ((adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE) &&
 7651		    (adapter->mac_table[i].queue != queue))
 7652			continue;
 7653
 7654		count++;
 7655	}
 7656
 7657	return count;
 7658}
 7659
 7660/* Set default MAC address for the PF in the first RAR entry */
 7661static void igb_set_default_mac_filter(struct igb_adapter *adapter)
 7662{
 7663	struct igb_mac_addr *mac_table = &adapter->mac_table[0];
 7664
 7665	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
 7666	mac_table->queue = adapter->vfs_allocated_count;
 7667	mac_table->state = IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7668
 7669	igb_rar_set_index(adapter, 0);
 7670}
 7671
 7672/* If the filter to be added and an already existing filter express
 7673 * the same address and address type, it should be possible to only
 7674 * override the other configurations, for example the queue to steer
 7675 * traffic.
 7676 */
 7677static bool igb_mac_entry_can_be_used(const struct igb_mac_addr *entry,
 7678				      const u8 *addr, const u8 flags)
 7679{
 7680	if (!(entry->state & IGB_MAC_STATE_IN_USE))
 7681		return true;
 7682
 7683	if ((entry->state & IGB_MAC_STATE_SRC_ADDR) !=
 7684	    (flags & IGB_MAC_STATE_SRC_ADDR))
 7685		return false;
 7686
 7687	if (!ether_addr_equal(addr, entry->addr))
 7688		return false;
 7689
 7690	return true;
 7691}
 7692
 7693/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
 7694 * 'flags' is used to indicate what kind of match is made, match is by
 7695 * default for the destination address, if matching by source address
 7696 * is desired the flag IGB_MAC_STATE_SRC_ADDR can be used.
 7697 */
 7698static int igb_add_mac_filter_flags(struct igb_adapter *adapter,
 7699				    const u8 *addr, const u8 queue,
 7700				    const u8 flags)
 7701{
 7702	struct e1000_hw *hw = &adapter->hw;
 7703	int rar_entries = hw->mac.rar_entry_count -
 7704			  adapter->vfs_allocated_count;
 7705	int i;
 7706
 7707	if (is_zero_ether_addr(addr))
 7708		return -EINVAL;
 7709
 7710	/* Search for the first empty entry in the MAC table.
 7711	 * Do not touch entries at the end of the table reserved for the VF MAC
 7712	 * addresses.
 7713	 */
 7714	for (i = 0; i < rar_entries; i++) {
 7715		if (!igb_mac_entry_can_be_used(&adapter->mac_table[i],
 7716					       addr, flags))
 7717			continue;
 7718
 7719		ether_addr_copy(adapter->mac_table[i].addr, addr);
 7720		adapter->mac_table[i].queue = queue;
 7721		adapter->mac_table[i].state |= IGB_MAC_STATE_IN_USE | flags;
 7722
 7723		igb_rar_set_index(adapter, i);
 7724		return i;
 7725	}
 7726
 7727	return -ENOSPC;
 7728}
 7729
 7730static int igb_add_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7731			      const u8 queue)
 7732{
 7733	return igb_add_mac_filter_flags(adapter, addr, queue, 0);
 7734}
 7735
 7736/* Remove a MAC filter for 'addr' directing matching traffic to
 7737 * 'queue', 'flags' is used to indicate what kind of match need to be
 7738 * removed, match is by default for the destination address, if
 7739 * matching by source address is to be removed the flag
 7740 * IGB_MAC_STATE_SRC_ADDR can be used.
 7741 */
 7742static int igb_del_mac_filter_flags(struct igb_adapter *adapter,
 7743				    const u8 *addr, const u8 queue,
 7744				    const u8 flags)
 7745{
 7746	struct e1000_hw *hw = &adapter->hw;
 7747	int rar_entries = hw->mac.rar_entry_count -
 7748			  adapter->vfs_allocated_count;
 7749	int i;
 7750
 7751	if (is_zero_ether_addr(addr))
 7752		return -EINVAL;
 7753
 7754	/* Search for matching entry in the MAC table based on given address
 7755	 * and queue. Do not touch entries at the end of the table reserved
 7756	 * for the VF MAC addresses.
 7757	 */
 7758	for (i = 0; i < rar_entries; i++) {
 7759		if (!(adapter->mac_table[i].state & IGB_MAC_STATE_IN_USE))
 7760			continue;
 7761		if ((adapter->mac_table[i].state & flags) != flags)
 7762			continue;
 7763		if (adapter->mac_table[i].queue != queue)
 7764			continue;
 7765		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
 7766			continue;
 7767
 7768		/* When a filter for the default address is "deleted",
 7769		 * we return it to its initial configuration
 7770		 */
 7771		if (adapter->mac_table[i].state & IGB_MAC_STATE_DEFAULT) {
 7772			adapter->mac_table[i].state =
 7773				IGB_MAC_STATE_DEFAULT | IGB_MAC_STATE_IN_USE;
 7774			adapter->mac_table[i].queue =
 7775				adapter->vfs_allocated_count;
 7776		} else {
 7777			adapter->mac_table[i].state = 0;
 7778			adapter->mac_table[i].queue = 0;
 7779			eth_zero_addr(adapter->mac_table[i].addr);
 7780		}
 7781
 7782		igb_rar_set_index(adapter, i);
 7783		return 0;
 7784	}
 7785
 7786	return -ENOENT;
 7787}
 7788
 7789static int igb_del_mac_filter(struct igb_adapter *adapter, const u8 *addr,
 7790			      const u8 queue)
 7791{
 7792	return igb_del_mac_filter_flags(adapter, addr, queue, 0);
 7793}
 7794
 7795int igb_add_mac_steering_filter(struct igb_adapter *adapter,
 7796				const u8 *addr, u8 queue, u8 flags)
 7797{
 7798	struct e1000_hw *hw = &adapter->hw;
 7799
 7800	/* In theory, this should be supported on 82575 as well, but
 7801	 * that part wasn't easily accessible during development.
 7802	 */
 7803	if (hw->mac.type != e1000_i210)
 7804		return -EOPNOTSUPP;
 7805
 7806	return igb_add_mac_filter_flags(adapter, addr, queue,
 7807					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7808}
 7809
 7810int igb_del_mac_steering_filter(struct igb_adapter *adapter,
 7811				const u8 *addr, u8 queue, u8 flags)
 7812{
 7813	return igb_del_mac_filter_flags(adapter, addr, queue,
 7814					IGB_MAC_STATE_QUEUE_STEERING | flags);
 7815}
 7816
 7817static int igb_uc_sync(struct net_device *netdev, const unsigned char *addr)
 7818{
 7819	struct igb_adapter *adapter = netdev_priv(netdev);
 7820	int ret;
 7821
 7822	ret = igb_add_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7823
 7824	return min_t(int, ret, 0);
 7825}
 7826
 7827static int igb_uc_unsync(struct net_device *netdev, const unsigned char *addr)
 7828{
 7829	struct igb_adapter *adapter = netdev_priv(netdev);
 7830
 7831	igb_del_mac_filter(adapter, addr, adapter->vfs_allocated_count);
 7832
 7833	return 0;
 7834}
 7835
 7836static int igb_set_vf_mac_filter(struct igb_adapter *adapter, const int vf,
 7837				 const u32 info, const u8 *addr)
 7838{
 7839	struct pci_dev *pdev = adapter->pdev;
 7840	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7841	struct vf_mac_filter *entry;
 7842	bool found = false;
 7843	int ret = 0;
 7844
 7845	if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7846	    !vf_data->trusted) {
 7847		dev_warn(&pdev->dev,
 7848			 "VF %d requested MAC filter but is administratively denied\n",
 7849			  vf);
 7850		return -EINVAL;
 7851	}
 7852	if (!is_valid_ether_addr(addr)) {
 7853		dev_warn(&pdev->dev,
 7854			 "VF %d attempted to set invalid MAC filter\n",
 7855			  vf);
 7856		return -EINVAL;
 7857	}
 7858
 7859	switch (info) {
 7860	case E1000_VF_MAC_FILTER_CLR:
 7861		/* remove all unicast MAC filters related to the current VF */
 7862		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
 7863			if (entry->vf == vf) {
 7864				entry->vf = -1;
 7865				entry->free = true;
 7866				igb_del_mac_filter(adapter, entry->vf_mac, vf);
 7867			}
 7868		}
 7869		break;
 7870	case E1000_VF_MAC_FILTER_ADD:
 7871		/* try to find empty slot in the list */
 7872		list_for_each_entry(entry, &adapter->vf_macs.l, l) {
 7873			if (entry->free) {
 7874				found = true;
 7875				break;
 7876			}
 7877		}
 7878
 7879		if (found) {
 7880			entry->free = false;
 7881			entry->vf = vf;
 7882			ether_addr_copy(entry->vf_mac, addr);
 7883
 7884			ret = igb_add_mac_filter(adapter, addr, vf);
 7885			ret = min_t(int, ret, 0);
 7886		} else {
 7887			ret = -ENOSPC;
 7888		}
 7889
 7890		if (ret == -ENOSPC)
 7891			dev_warn(&pdev->dev,
 7892				 "VF %d has requested MAC filter but there is no space for it\n",
 7893				 vf);
 7894		break;
 7895	default:
 7896		ret = -EINVAL;
 7897		break;
 7898	}
 7899
 7900	return ret;
 7901}
 7902
 7903static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
 7904{
 7905	struct pci_dev *pdev = adapter->pdev;
 7906	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7907	u32 info = msg[0] & E1000_VT_MSGINFO_MASK;
 7908
 7909	/* The VF MAC Address is stored in a packed array of bytes
 7910	 * starting at the second 32 bit word of the msg array
 7911	 */
 7912	unsigned char *addr = (unsigned char *)&msg[1];
 7913	int ret = 0;
 7914
 7915	if (!info) {
 7916		if ((vf_data->flags & IGB_VF_FLAG_PF_SET_MAC) &&
 7917		    !vf_data->trusted) {
 7918			dev_warn(&pdev->dev,
 7919				 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
 7920				 vf);
 7921			return -EINVAL;
 7922		}
 7923
 7924		if (!is_valid_ether_addr(addr)) {
 7925			dev_warn(&pdev->dev,
 7926				 "VF %d attempted to set invalid MAC\n",
 7927				 vf);
 7928			return -EINVAL;
 7929		}
 7930
 7931		ret = igb_set_vf_mac(adapter, vf, addr);
 7932	} else {
 7933		ret = igb_set_vf_mac_filter(adapter, vf, info, addr);
 7934	}
 7935
 7936	return ret;
 7937}
 7938
 7939static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
 7940{
 7941	struct e1000_hw *hw = &adapter->hw;
 7942	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7943	u32 msg = E1000_VT_MSGTYPE_NACK;
 7944
 7945	/* if device isn't clear to send it shouldn't be reading either */
 7946	if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
 7947	    time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
 7948		igb_write_mbx(hw, &msg, 1, vf);
 7949		vf_data->last_nack = jiffies;
 7950	}
 7951}
 7952
 7953static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
 7954{
 7955	struct pci_dev *pdev = adapter->pdev;
 7956	u32 msgbuf[E1000_VFMAILBOX_SIZE];
 7957	struct e1000_hw *hw = &adapter->hw;
 7958	struct vf_data_storage *vf_data = &adapter->vf_data[vf];
 7959	s32 retval;
 7960
 7961	retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf, false);
 7962
 7963	if (retval) {
 7964		/* if receive failed revoke VF CTS stats and restart init */
 7965		dev_err(&pdev->dev, "Error receiving message from VF\n");
 7966		vf_data->flags &= ~IGB_VF_FLAG_CTS;
 7967		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7968			goto unlock;
 7969		goto out;
 7970	}
 7971
 7972	/* this is a message we already processed, do nothing */
 7973	if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
 7974		goto unlock;
 7975
 7976	/* until the vf completes a reset it should not be
 7977	 * allowed to start any configuration.
 7978	 */
 7979	if (msgbuf[0] == E1000_VF_RESET) {
 7980		/* unlocks mailbox */
 7981		igb_vf_reset_msg(adapter, vf);
 7982		return;
 7983	}
 7984
 7985	if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
 7986		if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
 7987			goto unlock;
 7988		retval = -1;
 7989		goto out;
 7990	}
 7991
 7992	switch ((msgbuf[0] & 0xFFFF)) {
 7993	case E1000_VF_SET_MAC_ADDR:
 7994		retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
 7995		break;
 7996	case E1000_VF_SET_PROMISC:
 7997		retval = igb_set_vf_promisc(adapter, msgbuf, vf);
 7998		break;
 7999	case E1000_VF_SET_MULTICAST:
 8000		retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
 8001		break;
 8002	case E1000_VF_SET_LPE:
 8003		retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
 8004		break;
 8005	case E1000_VF_SET_VLAN:
 8006		retval = -1;
 8007		if (vf_data->pf_vlan)
 8008			dev_warn(&pdev->dev,
 8009				 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
 8010				 vf);
 8011		else
 8012			retval = igb_set_vf_vlan_msg(adapter, msgbuf, vf);
 8013		break;
 8014	default:
 8015		dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
 8016		retval = -1;
 8017		break;
 8018	}
 8019
 8020	msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
 8021out:
 8022	/* notify the VF of the results of what it sent us */
 8023	if (retval)
 8024		msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
 8025	else
 8026		msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
 8027
 8028	/* unlocks mailbox */
 8029	igb_write_mbx(hw, msgbuf, 1, vf);
 8030	return;
 8031
 8032unlock:
 8033	igb_unlock_mbx(hw, vf);
 8034}
 8035
 8036static void igb_msg_task(struct igb_adapter *adapter)
 8037{
 8038	struct e1000_hw *hw = &adapter->hw;
 8039	unsigned long flags;
 8040	u32 vf;
 8041
 8042	spin_lock_irqsave(&adapter->vfs_lock, flags);
 8043	for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
 8044		/* process any reset requests */
 8045		if (!igb_check_for_rst(hw, vf))
 8046			igb_vf_reset_event(adapter, vf);
 8047
 8048		/* process any messages pending */
 8049		if (!igb_check_for_msg(hw, vf))
 8050			igb_rcv_msg_from_vf(adapter, vf);
 8051
 8052		/* process any acks */
 8053		if (!igb_check_for_ack(hw, vf))
 8054			igb_rcv_ack_from_vf(adapter, vf);
 8055	}
 8056	spin_unlock_irqrestore(&adapter->vfs_lock, flags);
 8057}
 8058
 8059/**
 8060 *  igb_set_uta - Set unicast filter table address
 8061 *  @adapter: board private structure
 8062 *  @set: boolean indicating if we are setting or clearing bits
 8063 *
 8064 *  The unicast table address is a register array of 32-bit registers.
 8065 *  The table is meant to be used in a way similar to how the MTA is used
 8066 *  however due to certain limitations in the hardware it is necessary to
 8067 *  set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
 8068 *  enable bit to allow vlan tag stripping when promiscuous mode is enabled
 8069 **/
 8070static void igb_set_uta(struct igb_adapter *adapter, bool set)
 8071{
 8072	struct e1000_hw *hw = &adapter->hw;
 8073	u32 uta = set ? ~0 : 0;
 8074	int i;
 8075
 8076	/* we only need to do this if VMDq is enabled */
 8077	if (!adapter->vfs_allocated_count)
 8078		return;
 8079
 8080	for (i = hw->mac.uta_reg_count; i--;)
 8081		array_wr32(E1000_UTA, i, uta);
 8082}
 8083
 8084/**
 8085 *  igb_intr_msi - Interrupt Handler
 8086 *  @irq: interrupt number
 8087 *  @data: pointer to a network interface device structure
 8088 **/
 8089static irqreturn_t igb_intr_msi(int irq, void *data)
 8090{
 8091	struct igb_adapter *adapter = data;
 8092	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8093	struct e1000_hw *hw = &adapter->hw;
 8094	/* read ICR disables interrupts using IAM */
 8095	u32 icr = rd32(E1000_ICR);
 8096
 8097	igb_write_itr(q_vector);
 8098
 8099	if (icr & E1000_ICR_DRSTA)
 8100		schedule_work(&adapter->reset_task);
 8101
 8102	if (icr & E1000_ICR_DOUTSYNC) {
 8103		/* HW is reporting DMA is out of sync */
 8104		adapter->stats.doosync++;
 8105	}
 8106
 8107	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8108		hw->mac.get_link_status = 1;
 8109		if (!test_bit(__IGB_DOWN, &adapter->state))
 8110			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8111	}
 8112
 8113	if (icr & E1000_ICR_TS)
 8114		igb_tsync_interrupt(adapter);
 8115
 8116	napi_schedule(&q_vector->napi);
 8117
 8118	return IRQ_HANDLED;
 8119}
 8120
 8121/**
 8122 *  igb_intr - Legacy Interrupt Handler
 8123 *  @irq: interrupt number
 8124 *  @data: pointer to a network interface device structure
 8125 **/
 8126static irqreturn_t igb_intr(int irq, void *data)
 8127{
 8128	struct igb_adapter *adapter = data;
 8129	struct igb_q_vector *q_vector = adapter->q_vector[0];
 8130	struct e1000_hw *hw = &adapter->hw;
 8131	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
 8132	 * need for the IMC write
 8133	 */
 8134	u32 icr = rd32(E1000_ICR);
 8135
 8136	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 8137	 * not set, then the adapter didn't send an interrupt
 8138	 */
 8139	if (!(icr & E1000_ICR_INT_ASSERTED))
 8140		return IRQ_NONE;
 8141
 8142	igb_write_itr(q_vector);
 8143
 8144	if (icr & E1000_ICR_DRSTA)
 8145		schedule_work(&adapter->reset_task);
 8146
 8147	if (icr & E1000_ICR_DOUTSYNC) {
 8148		/* HW is reporting DMA is out of sync */
 8149		adapter->stats.doosync++;
 8150	}
 8151
 8152	if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
 8153		hw->mac.get_link_status = 1;
 8154		/* guard against interrupt when we're going down */
 8155		if (!test_bit(__IGB_DOWN, &adapter->state))
 8156			mod_timer(&adapter->watchdog_timer, jiffies + 1);
 8157	}
 8158
 8159	if (icr & E1000_ICR_TS)
 8160		igb_tsync_interrupt(adapter);
 8161
 8162	napi_schedule(&q_vector->napi);
 8163
 8164	return IRQ_HANDLED;
 8165}
 8166
 8167static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
 8168{
 8169	struct igb_adapter *adapter = q_vector->adapter;
 8170	struct e1000_hw *hw = &adapter->hw;
 8171
 8172	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
 8173	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
 8174		if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
 8175			igb_set_itr(q_vector);
 8176		else
 8177			igb_update_ring_itr(q_vector);
 8178	}
 8179
 8180	if (!test_bit(__IGB_DOWN, &adapter->state)) {
 8181		if (adapter->flags & IGB_FLAG_HAS_MSIX)
 8182			wr32(E1000_EIMS, q_vector->eims_value);
 8183		else
 8184			igb_irq_enable(adapter);
 8185	}
 8186}
 8187
 8188/**
 8189 *  igb_poll - NAPI Rx polling callback
 8190 *  @napi: napi polling structure
 8191 *  @budget: count of how many packets we should handle
 8192 **/
 8193static int igb_poll(struct napi_struct *napi, int budget)
 8194{
 8195	struct igb_q_vector *q_vector = container_of(napi,
 8196						     struct igb_q_vector,
 8197						     napi);
 8198	bool clean_complete = true;
 8199	int work_done = 0;
 8200
 8201#ifdef CONFIG_IGB_DCA
 8202	if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
 8203		igb_update_dca(q_vector);
 8204#endif
 8205	if (q_vector->tx.ring)
 8206		clean_complete = igb_clean_tx_irq(q_vector, budget);
 8207
 8208	if (q_vector->rx.ring) {
 8209		int cleaned = igb_clean_rx_irq(q_vector, budget);
 8210
 8211		work_done += cleaned;
 8212		if (cleaned >= budget)
 8213			clean_complete = false;
 8214	}
 8215
 8216	/* If all work not completed, return budget and keep polling */
 8217	if (!clean_complete)
 8218		return budget;
 8219
 8220	/* Exit the polling mode, but don't re-enable interrupts if stack might
 8221	 * poll us due to busy-polling
 8222	 */
 8223	if (likely(napi_complete_done(napi, work_done)))
 8224		igb_ring_irq_enable(q_vector);
 8225
 8226	return work_done;
 8227}
 8228
 8229/**
 8230 *  igb_clean_tx_irq - Reclaim resources after transmit completes
 8231 *  @q_vector: pointer to q_vector containing needed info
 8232 *  @napi_budget: Used to determine if we are in netpoll
 8233 *
 8234 *  returns true if ring is completely cleaned
 8235 **/
 8236static bool igb_clean_tx_irq(struct igb_q_vector *q_vector, int napi_budget)
 8237{
 8238	struct igb_adapter *adapter = q_vector->adapter;
 8239	struct igb_ring *tx_ring = q_vector->tx.ring;
 8240	struct igb_tx_buffer *tx_buffer;
 8241	union e1000_adv_tx_desc *tx_desc;
 8242	unsigned int total_bytes = 0, total_packets = 0;
 8243	unsigned int budget = q_vector->tx.work_limit;
 8244	unsigned int i = tx_ring->next_to_clean;
 8245
 8246	if (test_bit(__IGB_DOWN, &adapter->state))
 8247		return true;
 8248
 8249	tx_buffer = &tx_ring->tx_buffer_info[i];
 8250	tx_desc = IGB_TX_DESC(tx_ring, i);
 8251	i -= tx_ring->count;
 8252
 8253	do {
 8254		union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
 8255
 8256		/* if next_to_watch is not set then there is no work pending */
 8257		if (!eop_desc)
 8258			break;
 8259
 8260		/* prevent any other reads prior to eop_desc */
 8261		smp_rmb();
 8262
 8263		/* if DD is not set pending work has not been completed */
 8264		if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
 8265			break;
 8266
 8267		/* clear next_to_watch to prevent false hangs */
 8268		tx_buffer->next_to_watch = NULL;
 8269
 8270		/* update the statistics for this packet */
 8271		total_bytes += tx_buffer->bytecount;
 8272		total_packets += tx_buffer->gso_segs;
 8273
 8274		/* free the skb */
 8275		if (tx_buffer->type == IGB_TYPE_SKB)
 8276			napi_consume_skb(tx_buffer->skb, napi_budget);
 8277		else
 8278			xdp_return_frame(tx_buffer->xdpf);
 8279
 8280		/* unmap skb header data */
 8281		dma_unmap_single(tx_ring->dev,
 8282				 dma_unmap_addr(tx_buffer, dma),
 8283				 dma_unmap_len(tx_buffer, len),
 8284				 DMA_TO_DEVICE);
 8285
 8286		/* clear tx_buffer data */
 8287		dma_unmap_len_set(tx_buffer, len, 0);
 8288
 8289		/* clear last DMA location and unmap remaining buffers */
 8290		while (tx_desc != eop_desc) {
 8291			tx_buffer++;
 8292			tx_desc++;
 8293			i++;
 8294			if (unlikely(!i)) {
 8295				i -= tx_ring->count;
 8296				tx_buffer = tx_ring->tx_buffer_info;
 8297				tx_desc = IGB_TX_DESC(tx_ring, 0);
 8298			}
 8299
 8300			/* unmap any remaining paged data */
 8301			if (dma_unmap_len(tx_buffer, len)) {
 8302				dma_unmap_page(tx_ring->dev,
 8303					       dma_unmap_addr(tx_buffer, dma),
 8304					       dma_unmap_len(tx_buffer, len),
 8305					       DMA_TO_DEVICE);
 8306				dma_unmap_len_set(tx_buffer, len, 0);
 8307			}
 8308		}
 8309
 8310		/* move us one more past the eop_desc for start of next pkt */
 8311		tx_buffer++;
 8312		tx_desc++;
 8313		i++;
 8314		if (unlikely(!i)) {
 8315			i -= tx_ring->count;
 8316			tx_buffer = tx_ring->tx_buffer_info;
 8317			tx_desc = IGB_TX_DESC(tx_ring, 0);
 8318		}
 8319
 8320		/* issue prefetch for next Tx descriptor */
 8321		prefetch(tx_desc);
 8322
 8323		/* update budget accounting */
 8324		budget--;
 8325	} while (likely(budget));
 8326
 8327	netdev_tx_completed_queue(txring_txq(tx_ring),
 8328				  total_packets, total_bytes);
 8329	i += tx_ring->count;
 8330	tx_ring->next_to_clean = i;
 8331	u64_stats_update_begin(&tx_ring->tx_syncp);
 8332	tx_ring->tx_stats.bytes += total_bytes;
 8333	tx_ring->tx_stats.packets += total_packets;
 8334	u64_stats_update_end(&tx_ring->tx_syncp);
 8335	q_vector->tx.total_bytes += total_bytes;
 8336	q_vector->tx.total_packets += total_packets;
 8337
 8338	if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
 8339		struct e1000_hw *hw = &adapter->hw;
 8340
 8341		/* Detect a transmit hang in hardware, this serializes the
 8342		 * check with the clearing of time_stamp and movement of i
 8343		 */
 8344		clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
 8345		if (tx_buffer->next_to_watch &&
 8346		    time_after(jiffies, tx_buffer->time_stamp +
 8347			       (adapter->tx_timeout_factor * HZ)) &&
 8348		    !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
 8349
 8350			/* detected Tx unit hang */
 8351			dev_err(tx_ring->dev,
 8352				"Detected Tx Unit Hang\n"
 8353				"  Tx Queue             <%d>\n"
 8354				"  TDH                  <%x>\n"
 8355				"  TDT                  <%x>\n"
 8356				"  next_to_use          <%x>\n"
 8357				"  next_to_clean        <%x>\n"
 8358				"buffer_info[next_to_clean]\n"
 8359				"  time_stamp           <%lx>\n"
 8360				"  next_to_watch        <%p>\n"
 8361				"  jiffies              <%lx>\n"
 8362				"  desc.status          <%x>\n",
 8363				tx_ring->queue_index,
 8364				rd32(E1000_TDH(tx_ring->reg_idx)),
 8365				readl(tx_ring->tail),
 8366				tx_ring->next_to_use,
 8367				tx_ring->next_to_clean,
 8368				tx_buffer->time_stamp,
 8369				tx_buffer->next_to_watch,
 8370				jiffies,
 8371				tx_buffer->next_to_watch->wb.status);
 8372			netif_stop_subqueue(tx_ring->netdev,
 8373					    tx_ring->queue_index);
 8374
 8375			/* we are about to reset, no point in enabling stuff */
 8376			return true;
 8377		}
 8378	}
 8379
 8380#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
 8381	if (unlikely(total_packets &&
 8382	    netif_carrier_ok(tx_ring->netdev) &&
 8383	    igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
 8384		/* Make sure that anybody stopping the queue after this
 8385		 * sees the new next_to_clean.
 8386		 */
 8387		smp_mb();
 8388		if (__netif_subqueue_stopped(tx_ring->netdev,
 8389					     tx_ring->queue_index) &&
 8390		    !(test_bit(__IGB_DOWN, &adapter->state))) {
 8391			netif_wake_subqueue(tx_ring->netdev,
 8392					    tx_ring->queue_index);
 8393
 8394			u64_stats_update_begin(&tx_ring->tx_syncp);
 8395			tx_ring->tx_stats.restart_queue++;
 8396			u64_stats_update_end(&tx_ring->tx_syncp);
 8397		}
 8398	}
 8399
 8400	return !!budget;
 8401}
 8402
 8403/**
 8404 *  igb_reuse_rx_page - page flip buffer and store it back on the ring
 8405 *  @rx_ring: rx descriptor ring to store buffers on
 8406 *  @old_buff: donor buffer to have page reused
 8407 *
 8408 *  Synchronizes page for reuse by the adapter
 8409 **/
 8410static void igb_reuse_rx_page(struct igb_ring *rx_ring,
 8411			      struct igb_rx_buffer *old_buff)
 8412{
 8413	struct igb_rx_buffer *new_buff;
 8414	u16 nta = rx_ring->next_to_alloc;
 8415
 8416	new_buff = &rx_ring->rx_buffer_info[nta];
 8417
 8418	/* update, and store next to alloc */
 8419	nta++;
 8420	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
 8421
 8422	/* Transfer page from old buffer to new buffer.
 8423	 * Move each member individually to avoid possible store
 8424	 * forwarding stalls.
 8425	 */
 8426	new_buff->dma		= old_buff->dma;
 8427	new_buff->page		= old_buff->page;
 8428	new_buff->page_offset	= old_buff->page_offset;
 8429	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
 8430}
 8431
 8432static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
 8433				  int rx_buf_pgcnt)
 8434{
 8435	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
 8436	struct page *page = rx_buffer->page;
 8437
 8438	/* avoid re-using remote and pfmemalloc pages */
 8439	if (!dev_page_is_reusable(page))
 8440		return false;
 8441
 8442#if (PAGE_SIZE < 8192)
 8443	/* if we are only owner of page we can reuse it */
 8444	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
 8445		return false;
 8446#else
 8447#define IGB_LAST_OFFSET \
 8448	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGB_RXBUFFER_2048)
 8449
 8450	if (rx_buffer->page_offset > IGB_LAST_OFFSET)
 8451		return false;
 8452#endif
 8453
 8454	/* If we have drained the page fragment pool we need to update
 8455	 * the pagecnt_bias and page count so that we fully restock the
 8456	 * number of references the driver holds.
 8457	 */
 8458	if (unlikely(pagecnt_bias == 1)) {
 8459		page_ref_add(page, USHRT_MAX - 1);
 8460		rx_buffer->pagecnt_bias = USHRT_MAX;
 8461	}
 8462
 8463	return true;
 8464}
 8465
 8466/**
 8467 *  igb_add_rx_frag - Add contents of Rx buffer to sk_buff
 8468 *  @rx_ring: rx descriptor ring to transact packets on
 8469 *  @rx_buffer: buffer containing page to add
 8470 *  @skb: sk_buff to place the data into
 8471 *  @size: size of buffer to be added
 8472 *
 8473 *  This function will add the data contained in rx_buffer->page to the skb.
 8474 **/
 8475static void igb_add_rx_frag(struct igb_ring *rx_ring,
 8476			    struct igb_rx_buffer *rx_buffer,
 8477			    struct sk_buff *skb,
 8478			    unsigned int size)
 8479{
 8480#if (PAGE_SIZE < 8192)
 8481	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8482#else
 8483	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
 8484				SKB_DATA_ALIGN(IGB_SKB_PAD + size) :
 8485				SKB_DATA_ALIGN(size);
 8486#endif
 8487	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
 8488			rx_buffer->page_offset, size, truesize);
 8489#if (PAGE_SIZE < 8192)
 8490	rx_buffer->page_offset ^= truesize;
 8491#else
 8492	rx_buffer->page_offset += truesize;
 8493#endif
 8494}
 8495
 8496static struct sk_buff *igb_construct_skb(struct igb_ring *rx_ring,
 8497					 struct igb_rx_buffer *rx_buffer,
 8498					 struct xdp_buff *xdp,
 8499					 ktime_t timestamp)
 8500{
 8501#if (PAGE_SIZE < 8192)
 8502	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8503#else
 8504	unsigned int truesize = SKB_DATA_ALIGN(xdp->data_end -
 8505					       xdp->data_hard_start);
 8506#endif
 8507	unsigned int size = xdp->data_end - xdp->data;
 8508	unsigned int headlen;
 8509	struct sk_buff *skb;
 8510
 8511	/* prefetch first cache line of first page */
 8512	net_prefetch(xdp->data);
 8513
 8514	/* allocate a skb to store the frags */
 8515	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGB_RX_HDR_LEN);
 8516	if (unlikely(!skb))
 8517		return NULL;
 8518
 8519	if (timestamp)
 8520		skb_hwtstamps(skb)->hwtstamp = timestamp;
 8521
 8522	/* Determine available headroom for copy */
 8523	headlen = size;
 8524	if (headlen > IGB_RX_HDR_LEN)
 8525		headlen = eth_get_headlen(skb->dev, xdp->data, IGB_RX_HDR_LEN);
 8526
 8527	/* align pull length to size of long to optimize memcpy performance */
 8528	memcpy(__skb_put(skb, headlen), xdp->data, ALIGN(headlen, sizeof(long)));
 8529
 8530	/* update all of the pointers */
 8531	size -= headlen;
 8532	if (size) {
 8533		skb_add_rx_frag(skb, 0, rx_buffer->page,
 8534				(xdp->data + headlen) - page_address(rx_buffer->page),
 8535				size, truesize);
 8536#if (PAGE_SIZE < 8192)
 8537		rx_buffer->page_offset ^= truesize;
 8538#else
 8539		rx_buffer->page_offset += truesize;
 8540#endif
 8541	} else {
 8542		rx_buffer->pagecnt_bias++;
 8543	}
 8544
 8545	return skb;
 8546}
 8547
 8548static struct sk_buff *igb_build_skb(struct igb_ring *rx_ring,
 8549				     struct igb_rx_buffer *rx_buffer,
 8550				     struct xdp_buff *xdp,
 8551				     ktime_t timestamp)
 8552{
 8553#if (PAGE_SIZE < 8192)
 8554	unsigned int truesize = igb_rx_pg_size(rx_ring) / 2;
 8555#else
 8556	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
 8557				SKB_DATA_ALIGN(xdp->data_end -
 8558					       xdp->data_hard_start);
 8559#endif
 8560	unsigned int metasize = xdp->data - xdp->data_meta;
 8561	struct sk_buff *skb;
 8562
 8563	/* prefetch first cache line of first page */
 8564	net_prefetch(xdp->data_meta);
 8565
 8566	/* build an skb around the page buffer */
 8567	skb = napi_build_skb(xdp->data_hard_start, truesize);
 8568	if (unlikely(!skb))
 8569		return NULL;
 8570
 8571	/* update pointers within the skb to store the data */
 8572	skb_reserve(skb, xdp->data - xdp->data_hard_start);
 8573	__skb_put(skb, xdp->data_end - xdp->data);
 8574
 8575	if (metasize)
 8576		skb_metadata_set(skb, metasize);
 8577
 8578	if (timestamp)
 8579		skb_hwtstamps(skb)->hwtstamp = timestamp;
 8580
 8581	/* update buffer offset */
 8582#if (PAGE_SIZE < 8192)
 8583	rx_buffer->page_offset ^= truesize;
 8584#else
 8585	rx_buffer->page_offset += truesize;
 8586#endif
 8587
 8588	return skb;
 8589}
 8590
 8591static struct sk_buff *igb_run_xdp(struct igb_adapter *adapter,
 8592				   struct igb_ring *rx_ring,
 8593				   struct xdp_buff *xdp)
 8594{
 8595	int err, result = IGB_XDP_PASS;
 8596	struct bpf_prog *xdp_prog;
 8597	u32 act;
 8598
 8599	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
 8600
 8601	if (!xdp_prog)
 8602		goto xdp_out;
 8603
 8604	prefetchw(xdp->data_hard_start); /* xdp_frame write */
 8605
 8606	act = bpf_prog_run_xdp(xdp_prog, xdp);
 8607	switch (act) {
 8608	case XDP_PASS:
 8609		break;
 8610	case XDP_TX:
 8611		result = igb_xdp_xmit_back(adapter, xdp);
 8612		if (result == IGB_XDP_CONSUMED)
 8613			goto out_failure;
 8614		break;
 8615	case XDP_REDIRECT:
 8616		err = xdp_do_redirect(adapter->netdev, xdp, xdp_prog);
 8617		if (err)
 8618			goto out_failure;
 8619		result = IGB_XDP_REDIR;
 8620		break;
 8621	default:
 8622		bpf_warn_invalid_xdp_action(adapter->netdev, xdp_prog, act);
 8623		fallthrough;
 8624	case XDP_ABORTED:
 8625out_failure:
 8626		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
 8627		fallthrough;
 8628	case XDP_DROP:
 8629		result = IGB_XDP_CONSUMED;
 8630		break;
 8631	}
 8632xdp_out:
 8633	return ERR_PTR(-result);
 8634}
 8635
 8636static unsigned int igb_rx_frame_truesize(struct igb_ring *rx_ring,
 8637					  unsigned int size)
 8638{
 8639	unsigned int truesize;
 8640
 8641#if (PAGE_SIZE < 8192)
 8642	truesize = igb_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
 8643#else
 8644	truesize = ring_uses_build_skb(rx_ring) ?
 8645		SKB_DATA_ALIGN(IGB_SKB_PAD + size) +
 8646		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
 8647		SKB_DATA_ALIGN(size);
 8648#endif
 8649	return truesize;
 8650}
 8651
 8652static void igb_rx_buffer_flip(struct igb_ring *rx_ring,
 8653			       struct igb_rx_buffer *rx_buffer,
 8654			       unsigned int size)
 8655{
 8656	unsigned int truesize = igb_rx_frame_truesize(rx_ring, size);
 8657#if (PAGE_SIZE < 8192)
 8658	rx_buffer->page_offset ^= truesize;
 8659#else
 8660	rx_buffer->page_offset += truesize;
 8661#endif
 8662}
 8663
 8664static inline void igb_rx_checksum(struct igb_ring *ring,
 8665				   union e1000_adv_rx_desc *rx_desc,
 8666				   struct sk_buff *skb)
 8667{
 8668	skb_checksum_none_assert(skb);
 8669
 8670	/* Ignore Checksum bit is set */
 8671	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
 8672		return;
 8673
 8674	/* Rx checksum disabled via ethtool */
 8675	if (!(ring->netdev->features & NETIF_F_RXCSUM))
 8676		return;
 8677
 8678	/* TCP/UDP checksum error bit is set */
 8679	if (igb_test_staterr(rx_desc,
 8680			     E1000_RXDEXT_STATERR_TCPE |
 8681			     E1000_RXDEXT_STATERR_IPE)) {
 8682		/* work around errata with sctp packets where the TCPE aka
 8683		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
 8684		 * packets, (aka let the stack check the crc32c)
 8685		 */
 8686		if (!((skb->len == 60) &&
 8687		      test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
 8688			u64_stats_update_begin(&ring->rx_syncp);
 8689			ring->rx_stats.csum_err++;
 8690			u64_stats_update_end(&ring->rx_syncp);
 8691		}
 8692		/* let the stack verify checksum errors */
 8693		return;
 8694	}
 8695	/* It must be a TCP or UDP packet with a valid checksum */
 8696	if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
 8697				      E1000_RXD_STAT_UDPCS))
 8698		skb->ip_summed = CHECKSUM_UNNECESSARY;
 8699
 8700	dev_dbg(ring->dev, "cksum success: bits %08X\n",
 8701		le32_to_cpu(rx_desc->wb.upper.status_error));
 8702}
 8703
 8704static inline void igb_rx_hash(struct igb_ring *ring,
 8705			       union e1000_adv_rx_desc *rx_desc,
 8706			       struct sk_buff *skb)
 8707{
 8708	if (ring->netdev->features & NETIF_F_RXHASH)
 8709		skb_set_hash(skb,
 8710			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
 8711			     PKT_HASH_TYPE_L3);
 8712}
 8713
 8714/**
 8715 *  igb_is_non_eop - process handling of non-EOP buffers
 8716 *  @rx_ring: Rx ring being processed
 8717 *  @rx_desc: Rx descriptor for current buffer
 8718 *
 8719 *  This function updates next to clean.  If the buffer is an EOP buffer
 8720 *  this function exits returning false, otherwise it will place the
 8721 *  sk_buff in the next buffer to be chained and return true indicating
 8722 *  that this is in fact a non-EOP buffer.
 8723 **/
 8724static bool igb_is_non_eop(struct igb_ring *rx_ring,
 8725			   union e1000_adv_rx_desc *rx_desc)
 8726{
 8727	u32 ntc = rx_ring->next_to_clean + 1;
 8728
 8729	/* fetch, update, and store next to clean */
 8730	ntc = (ntc < rx_ring->count) ? ntc : 0;
 8731	rx_ring->next_to_clean = ntc;
 8732
 8733	prefetch(IGB_RX_DESC(rx_ring, ntc));
 8734
 8735	if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
 8736		return false;
 8737
 8738	return true;
 8739}
 8740
 8741/**
 8742 *  igb_cleanup_headers - Correct corrupted or empty headers
 8743 *  @rx_ring: rx descriptor ring packet is being transacted on
 8744 *  @rx_desc: pointer to the EOP Rx descriptor
 8745 *  @skb: pointer to current skb being fixed
 8746 *
 8747 *  Address the case where we are pulling data in on pages only
 8748 *  and as such no data is present in the skb header.
 8749 *
 8750 *  In addition if skb is not at least 60 bytes we need to pad it so that
 8751 *  it is large enough to qualify as a valid Ethernet frame.
 8752 *
 8753 *  Returns true if an error was encountered and skb was freed.
 8754 **/
 8755static bool igb_cleanup_headers(struct igb_ring *rx_ring,
 8756				union e1000_adv_rx_desc *rx_desc,
 8757				struct sk_buff *skb)
 8758{
 8759	/* XDP packets use error pointer so abort at this point */
 8760	if (IS_ERR(skb))
 8761		return true;
 8762
 8763	if (unlikely((igb_test_staterr(rx_desc,
 8764				       E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
 8765		struct net_device *netdev = rx_ring->netdev;
 8766		if (!(netdev->features & NETIF_F_RXALL)) {
 8767			dev_kfree_skb_any(skb);
 8768			return true;
 8769		}
 8770	}
 8771
 8772	/* if eth_skb_pad returns an error the skb was freed */
 8773	if (eth_skb_pad(skb))
 8774		return true;
 8775
 8776	return false;
 8777}
 8778
 8779/**
 8780 *  igb_process_skb_fields - Populate skb header fields from Rx descriptor
 8781 *  @rx_ring: rx descriptor ring packet is being transacted on
 8782 *  @rx_desc: pointer to the EOP Rx descriptor
 8783 *  @skb: pointer to current skb being populated
 8784 *
 8785 *  This function checks the ring, descriptor, and packet information in
 8786 *  order to populate the hash, checksum, VLAN, timestamp, protocol, and
 8787 *  other fields within the skb.
 8788 **/
 8789static void igb_process_skb_fields(struct igb_ring *rx_ring,
 8790				   union e1000_adv_rx_desc *rx_desc,
 8791				   struct sk_buff *skb)
 8792{
 8793	struct net_device *dev = rx_ring->netdev;
 8794
 8795	igb_rx_hash(rx_ring, rx_desc, skb);
 8796
 8797	igb_rx_checksum(rx_ring, rx_desc, skb);
 8798
 8799	if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TS) &&
 8800	    !igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP))
 8801		igb_ptp_rx_rgtstamp(rx_ring->q_vector, skb);
 8802
 8803	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
 8804	    igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
 8805		u16 vid;
 8806
 8807		if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
 8808		    test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
 8809			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
 8810		else
 8811			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
 8812
 8813		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
 8814	}
 8815
 8816	skb_record_rx_queue(skb, rx_ring->queue_index);
 8817
 8818	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
 8819}
 8820
 8821static unsigned int igb_rx_offset(struct igb_ring *rx_ring)
 8822{
 8823	return ring_uses_build_skb(rx_ring) ? IGB_SKB_PAD : 0;
 8824}
 8825
 8826static struct igb_rx_buffer *igb_get_rx_buffer(struct igb_ring *rx_ring,
 8827					       const unsigned int size, int *rx_buf_pgcnt)
 8828{
 8829	struct igb_rx_buffer *rx_buffer;
 8830
 8831	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
 8832	*rx_buf_pgcnt =
 8833#if (PAGE_SIZE < 8192)
 8834		page_count(rx_buffer->page);
 8835#else
 8836		0;
 8837#endif
 8838	prefetchw(rx_buffer->page);
 8839
 8840	/* we are reusing so sync this buffer for CPU use */
 8841	dma_sync_single_range_for_cpu(rx_ring->dev,
 8842				      rx_buffer->dma,
 8843				      rx_buffer->page_offset,
 8844				      size,
 8845				      DMA_FROM_DEVICE);
 8846
 8847	rx_buffer->pagecnt_bias--;
 8848
 8849	return rx_buffer;
 8850}
 8851
 8852static void igb_put_rx_buffer(struct igb_ring *rx_ring,
 8853			      struct igb_rx_buffer *rx_buffer, int rx_buf_pgcnt)
 8854{
 8855	if (igb_can_reuse_rx_page(rx_buffer, rx_buf_pgcnt)) {
 8856		/* hand second half of page back to the ring */
 8857		igb_reuse_rx_page(rx_ring, rx_buffer);
 8858	} else {
 8859		/* We are not reusing the buffer so unmap it and free
 8860		 * any references we are holding to it
 8861		 */
 8862		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
 8863				     igb_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
 8864				     IGB_RX_DMA_ATTR);
 8865		__page_frag_cache_drain(rx_buffer->page,
 8866					rx_buffer->pagecnt_bias);
 8867	}
 8868
 8869	/* clear contents of rx_buffer */
 8870	rx_buffer->page = NULL;
 8871}
 8872
 8873static int igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
 8874{
 8875	unsigned int total_bytes = 0, total_packets = 0;
 8876	struct igb_adapter *adapter = q_vector->adapter;
 8877	struct igb_ring *rx_ring = q_vector->rx.ring;
 8878	u16 cleaned_count = igb_desc_unused(rx_ring);
 8879	struct sk_buff *skb = rx_ring->skb;
 8880	int cpu = smp_processor_id();
 8881	unsigned int xdp_xmit = 0;
 8882	struct netdev_queue *nq;
 8883	struct xdp_buff xdp;
 8884	u32 frame_sz = 0;
 8885	int rx_buf_pgcnt;
 8886
 8887	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
 8888#if (PAGE_SIZE < 8192)
 8889	frame_sz = igb_rx_frame_truesize(rx_ring, 0);
 8890#endif
 8891	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
 8892
 8893	while (likely(total_packets < budget)) {
 8894		union e1000_adv_rx_desc *rx_desc;
 8895		struct igb_rx_buffer *rx_buffer;
 8896		ktime_t timestamp = 0;
 8897		int pkt_offset = 0;
 8898		unsigned int size;
 8899		void *pktbuf;
 8900
 8901		/* return some buffers to hardware, one at a time is too slow */
 8902		if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
 8903			igb_alloc_rx_buffers(rx_ring, cleaned_count);
 8904			cleaned_count = 0;
 8905		}
 8906
 8907		rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
 8908		size = le16_to_cpu(rx_desc->wb.upper.length);
 8909		if (!size)
 8910			break;
 8911
 8912		/* This memory barrier is needed to keep us from reading
 8913		 * any other fields out of the rx_desc until we know the
 8914		 * descriptor has been written back
 8915		 */
 8916		dma_rmb();
 8917
 8918		rx_buffer = igb_get_rx_buffer(rx_ring, size, &rx_buf_pgcnt);
 8919		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
 8920
 8921		/* pull rx packet timestamp if available and valid */
 8922		if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
 8923			int ts_hdr_len;
 8924
 8925			ts_hdr_len = igb_ptp_rx_pktstamp(rx_ring->q_vector,
 8926							 pktbuf, &timestamp);
 8927
 8928			pkt_offset += ts_hdr_len;
 8929			size -= ts_hdr_len;
 8930		}
 8931
 8932		/* retrieve a buffer from the ring */
 8933		if (!skb) {
 8934			unsigned char *hard_start = pktbuf - igb_rx_offset(rx_ring);
 8935			unsigned int offset = pkt_offset + igb_rx_offset(rx_ring);
 8936
 8937			xdp_prepare_buff(&xdp, hard_start, offset, size, true);
 8938			xdp_buff_clear_frags_flag(&xdp);
 8939#if (PAGE_SIZE > 4096)
 8940			/* At larger PAGE_SIZE, frame_sz depend on len size */
 8941			xdp.frame_sz = igb_rx_frame_truesize(rx_ring, size);
 8942#endif
 8943			skb = igb_run_xdp(adapter, rx_ring, &xdp);
 8944		}
 8945
 8946		if (IS_ERR(skb)) {
 8947			unsigned int xdp_res = -PTR_ERR(skb);
 8948
 8949			if (xdp_res & (IGB_XDP_TX | IGB_XDP_REDIR)) {
 8950				xdp_xmit |= xdp_res;
 8951				igb_rx_buffer_flip(rx_ring, rx_buffer, size);
 8952			} else {
 8953				rx_buffer->pagecnt_bias++;
 8954			}
 8955			total_packets++;
 8956			total_bytes += size;
 8957		} else if (skb)
 8958			igb_add_rx_frag(rx_ring, rx_buffer, skb, size);
 8959		else if (ring_uses_build_skb(rx_ring))
 8960			skb = igb_build_skb(rx_ring, rx_buffer, &xdp,
 8961					    timestamp);
 8962		else
 8963			skb = igb_construct_skb(rx_ring, rx_buffer,
 8964						&xdp, timestamp);
 8965
 8966		/* exit if we failed to retrieve a buffer */
 8967		if (!skb) {
 8968			rx_ring->rx_stats.alloc_failed++;
 8969			rx_buffer->pagecnt_bias++;
 8970			break;
 8971		}
 8972
 8973		igb_put_rx_buffer(rx_ring, rx_buffer, rx_buf_pgcnt);
 8974		cleaned_count++;
 8975
 8976		/* fetch next buffer in frame if non-eop */
 8977		if (igb_is_non_eop(rx_ring, rx_desc))
 8978			continue;
 8979
 8980		/* verify the packet layout is correct */
 8981		if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
 8982			skb = NULL;
 8983			continue;
 8984		}
 8985
 8986		/* probably a little skewed due to removing CRC */
 8987		total_bytes += skb->len;
 8988
 8989		/* populate checksum, timestamp, VLAN, and protocol */
 8990		igb_process_skb_fields(rx_ring, rx_desc, skb);
 8991
 8992		napi_gro_receive(&q_vector->napi, skb);
 8993
 8994		/* reset skb pointer */
 8995		skb = NULL;
 8996
 8997		/* update budget accounting */
 8998		total_packets++;
 8999	}
 9000
 9001	/* place incomplete frames back on ring for completion */
 9002	rx_ring->skb = skb;
 9003
 9004	if (xdp_xmit & IGB_XDP_REDIR)
 9005		xdp_do_flush();
 9006
 9007	if (xdp_xmit & IGB_XDP_TX) {
 9008		struct igb_ring *tx_ring = igb_xdp_tx_queue_mapping(adapter);
 9009
 9010		nq = txring_txq(tx_ring);
 9011		__netif_tx_lock(nq, cpu);
 9012		igb_xdp_ring_update_tail(tx_ring);
 9013		__netif_tx_unlock(nq);
 9014	}
 9015
 9016	u64_stats_update_begin(&rx_ring->rx_syncp);
 9017	rx_ring->rx_stats.packets += total_packets;
 9018	rx_ring->rx_stats.bytes += total_bytes;
 9019	u64_stats_update_end(&rx_ring->rx_syncp);
 9020	q_vector->rx.total_packets += total_packets;
 9021	q_vector->rx.total_bytes += total_bytes;
 9022
 9023	if (cleaned_count)
 9024		igb_alloc_rx_buffers(rx_ring, cleaned_count);
 9025
 9026	return total_packets;
 9027}
 9028
 9029static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
 9030				  struct igb_rx_buffer *bi)
 9031{
 9032	struct page *page = bi->page;
 9033	dma_addr_t dma;
 9034
 9035	/* since we are recycling buffers we should seldom need to alloc */
 9036	if (likely(page))
 9037		return true;
 9038
 9039	/* alloc new page for storage */
 9040	page = dev_alloc_pages(igb_rx_pg_order(rx_ring));
 9041	if (unlikely(!page)) {
 9042		rx_ring->rx_stats.alloc_failed++;
 9043		return false;
 9044	}
 9045
 9046	/* map page for use */
 9047	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
 9048				 igb_rx_pg_size(rx_ring),
 9049				 DMA_FROM_DEVICE,
 9050				 IGB_RX_DMA_ATTR);
 9051
 9052	/* if mapping failed free memory back to system since
 9053	 * there isn't much point in holding memory we can't use
 9054	 */
 9055	if (dma_mapping_error(rx_ring->dev, dma)) {
 9056		__free_pages(page, igb_rx_pg_order(rx_ring));
 9057
 9058		rx_ring->rx_stats.alloc_failed++;
 9059		return false;
 9060	}
 9061
 9062	bi->dma = dma;
 9063	bi->page = page;
 9064	bi->page_offset = igb_rx_offset(rx_ring);
 9065	page_ref_add(page, USHRT_MAX - 1);
 9066	bi->pagecnt_bias = USHRT_MAX;
 9067
 9068	return true;
 9069}
 9070
 9071/**
 9072 *  igb_alloc_rx_buffers - Replace used receive buffers
 9073 *  @rx_ring: rx descriptor ring to allocate new receive buffers
 9074 *  @cleaned_count: count of buffers to allocate
 9075 **/
 9076void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
 9077{
 9078	union e1000_adv_rx_desc *rx_desc;
 9079	struct igb_rx_buffer *bi;
 9080	u16 i = rx_ring->next_to_use;
 9081	u16 bufsz;
 9082
 9083	/* nothing to do */
 9084	if (!cleaned_count)
 9085		return;
 9086
 9087	rx_desc = IGB_RX_DESC(rx_ring, i);
 9088	bi = &rx_ring->rx_buffer_info[i];
 9089	i -= rx_ring->count;
 9090
 9091	bufsz = igb_rx_bufsz(rx_ring);
 9092
 9093	do {
 9094		if (!igb_alloc_mapped_page(rx_ring, bi))
 9095			break;
 9096
 9097		/* sync the buffer for use by the device */
 9098		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
 9099						 bi->page_offset, bufsz,
 9100						 DMA_FROM_DEVICE);
 9101
 9102		/* Refresh the desc even if buffer_addrs didn't change
 9103		 * because each write-back erases this info.
 9104		 */
 9105		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
 9106
 9107		rx_desc++;
 9108		bi++;
 9109		i++;
 9110		if (unlikely(!i)) {
 9111			rx_desc = IGB_RX_DESC(rx_ring, 0);
 9112			bi = rx_ring->rx_buffer_info;
 9113			i -= rx_ring->count;
 9114		}
 9115
 9116		/* clear the length for the next_to_use descriptor */
 9117		rx_desc->wb.upper.length = 0;
 9118
 9119		cleaned_count--;
 9120	} while (cleaned_count);
 9121
 9122	i += rx_ring->count;
 9123
 9124	if (rx_ring->next_to_use != i) {
 9125		/* record the next descriptor to use */
 9126		rx_ring->next_to_use = i;
 9127
 9128		/* update next to alloc since we have filled the ring */
 9129		rx_ring->next_to_alloc = i;
 9130
 9131		/* Force memory writes to complete before letting h/w
 9132		 * know there are new descriptors to fetch.  (Only
 9133		 * applicable for weak-ordered memory model archs,
 9134		 * such as IA-64).
 9135		 */
 9136		dma_wmb();
 9137		writel(i, rx_ring->tail);
 9138	}
 9139}
 9140
 9141/**
 9142 * igb_mii_ioctl -
 9143 * @netdev: pointer to netdev struct
 9144 * @ifr: interface structure
 9145 * @cmd: ioctl command to execute
 9146 **/
 9147static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9148{
 9149	struct igb_adapter *adapter = netdev_priv(netdev);
 9150	struct mii_ioctl_data *data = if_mii(ifr);
 9151
 9152	if (adapter->hw.phy.media_type != e1000_media_type_copper)
 9153		return -EOPNOTSUPP;
 9154
 9155	switch (cmd) {
 9156	case SIOCGMIIPHY:
 9157		data->phy_id = adapter->hw.phy.addr;
 9158		break;
 9159	case SIOCGMIIREG:
 9160		if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
 9161				     &data->val_out))
 9162			return -EIO;
 9163		break;
 9164	case SIOCSMIIREG:
 9165		if (igb_write_phy_reg(&adapter->hw, data->reg_num & 0x1F,
 9166				      data->val_in))
 9167			return -EIO;
 9168		break;
 9169	default:
 9170		return -EOPNOTSUPP;
 9171	}
 9172	return 0;
 9173}
 9174
 9175/**
 9176 * igb_ioctl -
 9177 * @netdev: pointer to netdev struct
 9178 * @ifr: interface structure
 9179 * @cmd: ioctl command to execute
 9180 **/
 9181static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
 9182{
 9183	switch (cmd) {
 9184	case SIOCGMIIPHY:
 9185	case SIOCGMIIREG:
 9186	case SIOCSMIIREG:
 9187		return igb_mii_ioctl(netdev, ifr, cmd);
 9188	case SIOCGHWTSTAMP:
 9189		return igb_ptp_get_ts_config(netdev, ifr);
 9190	case SIOCSHWTSTAMP:
 9191		return igb_ptp_set_ts_config(netdev, ifr);
 9192	default:
 9193		return -EOPNOTSUPP;
 9194	}
 9195}
 9196
 9197void igb_read_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9198{
 9199	struct igb_adapter *adapter = hw->back;
 9200
 9201	pci_read_config_word(adapter->pdev, reg, value);
 9202}
 9203
 9204void igb_write_pci_cfg(struct e1000_hw *hw, u32 reg, u16 *value)
 9205{
 9206	struct igb_adapter *adapter = hw->back;
 9207
 9208	pci_write_config_word(adapter->pdev, reg, *value);
 9209}
 9210
 9211s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9212{
 9213	struct igb_adapter *adapter = hw->back;
 9214
 9215	if (pcie_capability_read_word(adapter->pdev, reg, value))
 9216		return -E1000_ERR_CONFIG;
 9217
 9218	return 0;
 9219}
 9220
 9221s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
 9222{
 9223	struct igb_adapter *adapter = hw->back;
 9224
 9225	if (pcie_capability_write_word(adapter->pdev, reg, *value))
 9226		return -E1000_ERR_CONFIG;
 9227
 9228	return 0;
 9229}
 9230
 9231static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
 9232{
 9233	struct igb_adapter *adapter = netdev_priv(netdev);
 9234	struct e1000_hw *hw = &adapter->hw;
 9235	u32 ctrl, rctl;
 9236	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
 9237
 9238	if (enable) {
 9239		/* enable VLAN tag insert/strip */
 9240		ctrl = rd32(E1000_CTRL);
 9241		ctrl |= E1000_CTRL_VME;
 9242		wr32(E1000_CTRL, ctrl);
 9243
 9244		/* Disable CFI check */
 9245		rctl = rd32(E1000_RCTL);
 9246		rctl &= ~E1000_RCTL_CFIEN;
 9247		wr32(E1000_RCTL, rctl);
 9248	} else {
 9249		/* disable VLAN tag insert/strip */
 9250		ctrl = rd32(E1000_CTRL);
 9251		ctrl &= ~E1000_CTRL_VME;
 9252		wr32(E1000_CTRL, ctrl);
 9253	}
 9254
 9255	igb_set_vf_vlan_strip(adapter, adapter->vfs_allocated_count, enable);
 9256}
 9257
 9258static int igb_vlan_rx_add_vid(struct net_device *netdev,
 9259			       __be16 proto, u16 vid)
 9260{
 9261	struct igb_adapter *adapter = netdev_priv(netdev);
 9262	struct e1000_hw *hw = &adapter->hw;
 9263	int pf_id = adapter->vfs_allocated_count;
 9264
 9265	/* add the filter since PF can receive vlans w/o entry in vlvf */
 9266	if (!vid || !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9267		igb_vfta_set(hw, vid, pf_id, true, !!vid);
 9268
 9269	set_bit(vid, adapter->active_vlans);
 9270
 9271	return 0;
 9272}
 9273
 9274static int igb_vlan_rx_kill_vid(struct net_device *netdev,
 9275				__be16 proto, u16 vid)
 9276{
 9277	struct igb_adapter *adapter = netdev_priv(netdev);
 9278	int pf_id = adapter->vfs_allocated_count;
 9279	struct e1000_hw *hw = &adapter->hw;
 9280
 9281	/* remove VID from filter table */
 9282	if (vid && !(adapter->flags & IGB_FLAG_VLAN_PROMISC))
 9283		igb_vfta_set(hw, vid, pf_id, false, true);
 9284
 9285	clear_bit(vid, adapter->active_vlans);
 9286
 9287	return 0;
 9288}
 9289
 9290static void igb_restore_vlan(struct igb_adapter *adapter)
 9291{
 9292	u16 vid = 1;
 9293
 9294	igb_vlan_mode(adapter->netdev, adapter->netdev->features);
 9295	igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
 9296
 9297	for_each_set_bit_from(vid, adapter->active_vlans, VLAN_N_VID)
 9298		igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
 9299}
 9300
 9301int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
 9302{
 9303	struct pci_dev *pdev = adapter->pdev;
 9304	struct e1000_mac_info *mac = &adapter->hw.mac;
 9305
 9306	mac->autoneg = 0;
 9307
 9308	/* Make sure dplx is at most 1 bit and lsb of speed is not set
 9309	 * for the switch() below to work
 9310	 */
 9311	if ((spd & 1) || (dplx & ~1))
 9312		goto err_inval;
 9313
 9314	/* Fiber NIC's only allow 1000 gbps Full duplex
 9315	 * and 100Mbps Full duplex for 100baseFx sfp
 9316	 */
 9317	if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
 9318		switch (spd + dplx) {
 9319		case SPEED_10 + DUPLEX_HALF:
 9320		case SPEED_10 + DUPLEX_FULL:
 9321		case SPEED_100 + DUPLEX_HALF:
 9322			goto err_inval;
 9323		default:
 9324			break;
 9325		}
 9326	}
 9327
 9328	switch (spd + dplx) {
 9329	case SPEED_10 + DUPLEX_HALF:
 9330		mac->forced_speed_duplex = ADVERTISE_10_HALF;
 9331		break;
 9332	case SPEED_10 + DUPLEX_FULL:
 9333		mac->forced_speed_duplex = ADVERTISE_10_FULL;
 9334		break;
 9335	case SPEED_100 + DUPLEX_HALF:
 9336		mac->forced_speed_duplex = ADVERTISE_100_HALF;
 9337		break;
 9338	case SPEED_100 + DUPLEX_FULL:
 9339		mac->forced_speed_duplex = ADVERTISE_100_FULL;
 9340		break;
 9341	case SPEED_1000 + DUPLEX_FULL:
 9342		mac->autoneg = 1;
 9343		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
 9344		break;
 9345	case SPEED_1000 + DUPLEX_HALF: /* not supported */
 9346	default:
 9347		goto err_inval;
 9348	}
 9349
 9350	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
 9351	adapter->hw.phy.mdix = AUTO_ALL_MODES;
 9352
 9353	return 0;
 9354
 9355err_inval:
 9356	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
 9357	return -EINVAL;
 9358}
 9359
 9360static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
 9361			  bool runtime)
 9362{
 9363	struct net_device *netdev = pci_get_drvdata(pdev);
 9364	struct igb_adapter *adapter = netdev_priv(netdev);
 9365	struct e1000_hw *hw = &adapter->hw;
 9366	u32 ctrl, rctl, status;
 9367	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
 9368	bool wake;
 9369
 9370	rtnl_lock();
 9371	netif_device_detach(netdev);
 9372
 9373	if (netif_running(netdev))
 9374		__igb_close(netdev, true);
 9375
 9376	igb_ptp_suspend(adapter);
 9377
 9378	igb_clear_interrupt_scheme(adapter);
 9379	rtnl_unlock();
 9380
 9381	status = rd32(E1000_STATUS);
 9382	if (status & E1000_STATUS_LU)
 9383		wufc &= ~E1000_WUFC_LNKC;
 9384
 9385	if (wufc) {
 9386		igb_setup_rctl(adapter);
 9387		igb_set_rx_mode(netdev);
 9388
 9389		/* turn on all-multi mode if wake on multicast is enabled */
 9390		if (wufc & E1000_WUFC_MC) {
 9391			rctl = rd32(E1000_RCTL);
 9392			rctl |= E1000_RCTL_MPE;
 9393			wr32(E1000_RCTL, rctl);
 9394		}
 9395
 9396		ctrl = rd32(E1000_CTRL);
 9397		ctrl |= E1000_CTRL_ADVD3WUC;
 9398		wr32(E1000_CTRL, ctrl);
 9399
 9400		/* Allow time for pending master requests to run */
 9401		igb_disable_pcie_master(hw);
 9402
 9403		wr32(E1000_WUC, E1000_WUC_PME_EN);
 9404		wr32(E1000_WUFC, wufc);
 9405	} else {
 9406		wr32(E1000_WUC, 0);
 9407		wr32(E1000_WUFC, 0);
 9408	}
 9409
 9410	wake = wufc || adapter->en_mng_pt;
 9411	if (!wake)
 9412		igb_power_down_link(adapter);
 9413	else
 9414		igb_power_up_link(adapter);
 9415
 9416	if (enable_wake)
 9417		*enable_wake = wake;
 9418
 9419	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 9420	 * would have already happened in close and is redundant.
 9421	 */
 9422	igb_release_hw_control(adapter);
 9423
 9424	pci_disable_device(pdev);
 9425
 9426	return 0;
 9427}
 9428
 9429static void igb_deliver_wake_packet(struct net_device *netdev)
 9430{
 9431	struct igb_adapter *adapter = netdev_priv(netdev);
 9432	struct e1000_hw *hw = &adapter->hw;
 9433	struct sk_buff *skb;
 9434	u32 wupl;
 9435
 9436	wupl = rd32(E1000_WUPL) & E1000_WUPL_MASK;
 9437
 9438	/* WUPM stores only the first 128 bytes of the wake packet.
 9439	 * Read the packet only if we have the whole thing.
 9440	 */
 9441	if ((wupl == 0) || (wupl > E1000_WUPM_BYTES))
 9442		return;
 9443
 9444	skb = netdev_alloc_skb_ip_align(netdev, E1000_WUPM_BYTES);
 9445	if (!skb)
 9446		return;
 9447
 9448	skb_put(skb, wupl);
 9449
 9450	/* Ensure reads are 32-bit aligned */
 9451	wupl = roundup(wupl, 4);
 9452
 9453	memcpy_fromio(skb->data, hw->hw_addr + E1000_WUPM_REG(0), wupl);
 9454
 9455	skb->protocol = eth_type_trans(skb, netdev);
 9456	netif_rx(skb);
 9457}
 9458
 9459static int igb_suspend(struct device *dev)
 9460{
 9461	return __igb_shutdown(to_pci_dev(dev), NULL, 0);
 9462}
 9463
 9464static int __igb_resume(struct device *dev, bool rpm)
 9465{
 9466	struct pci_dev *pdev = to_pci_dev(dev);
 9467	struct net_device *netdev = pci_get_drvdata(pdev);
 9468	struct igb_adapter *adapter = netdev_priv(netdev);
 9469	struct e1000_hw *hw = &adapter->hw;
 9470	u32 err, val;
 9471
 9472	pci_set_power_state(pdev, PCI_D0);
 9473	pci_restore_state(pdev);
 9474	pci_save_state(pdev);
 9475
 9476	if (!pci_device_is_present(pdev))
 9477		return -ENODEV;
 9478	err = pci_enable_device_mem(pdev);
 9479	if (err) {
 9480		dev_err(&pdev->dev,
 9481			"igb: Cannot enable PCI device from suspend\n");
 9482		return err;
 9483	}
 9484	pci_set_master(pdev);
 9485
 9486	pci_enable_wake(pdev, PCI_D3hot, 0);
 9487	pci_enable_wake(pdev, PCI_D3cold, 0);
 9488
 9489	if (igb_init_interrupt_scheme(adapter, true)) {
 9490		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
 9491		return -ENOMEM;
 9492	}
 9493
 9494	igb_reset(adapter);
 9495
 9496	/* let the f/w know that the h/w is now under the control of the
 9497	 * driver.
 9498	 */
 9499	igb_get_hw_control(adapter);
 9500
 9501	val = rd32(E1000_WUS);
 9502	if (val & WAKE_PKT_WUS)
 9503		igb_deliver_wake_packet(netdev);
 9504
 9505	wr32(E1000_WUS, ~0);
 9506
 9507	if (!rpm)
 9508		rtnl_lock();
 9509	if (!err && netif_running(netdev))
 9510		err = __igb_open(netdev, true);
 9511
 9512	if (!err)
 9513		netif_device_attach(netdev);
 9514	if (!rpm)
 9515		rtnl_unlock();
 9516
 9517	return err;
 9518}
 9519
 9520static int igb_resume(struct device *dev)
 9521{
 9522	return __igb_resume(dev, false);
 9523}
 9524
 9525static int igb_runtime_idle(struct device *dev)
 9526{
 9527	struct net_device *netdev = dev_get_drvdata(dev);
 9528	struct igb_adapter *adapter = netdev_priv(netdev);
 9529
 9530	if (!igb_has_link(adapter))
 9531		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
 9532
 9533	return -EBUSY;
 9534}
 9535
 9536static int igb_runtime_suspend(struct device *dev)
 9537{
 9538	return __igb_shutdown(to_pci_dev(dev), NULL, 1);
 9539}
 9540
 9541static int igb_runtime_resume(struct device *dev)
 9542{
 9543	return __igb_resume(dev, true);
 9544}
 9545
 9546static void igb_shutdown(struct pci_dev *pdev)
 9547{
 9548	bool wake;
 9549
 9550	__igb_shutdown(pdev, &wake, 0);
 9551
 9552	if (system_state == SYSTEM_POWER_OFF) {
 9553		pci_wake_from_d3(pdev, wake);
 9554		pci_set_power_state(pdev, PCI_D3hot);
 9555	}
 9556}
 9557
 9558static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
 9559{
 9560#ifdef CONFIG_PCI_IOV
 9561	int err;
 9562
 9563	if (num_vfs == 0) {
 9564		return igb_disable_sriov(dev, true);
 9565	} else {
 9566		err = igb_enable_sriov(dev, num_vfs, true);
 9567		return err ? err : num_vfs;
 9568	}
 9569#endif
 9570	return 0;
 9571}
 9572
 9573/**
 9574 *  igb_io_error_detected - called when PCI error is detected
 9575 *  @pdev: Pointer to PCI device
 9576 *  @state: The current pci connection state
 9577 *
 9578 *  This function is called after a PCI bus error affecting
 9579 *  this device has been detected.
 9580 **/
 9581static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
 9582					      pci_channel_state_t state)
 9583{
 9584	struct net_device *netdev = pci_get_drvdata(pdev);
 9585	struct igb_adapter *adapter = netdev_priv(netdev);
 9586
 9587	if (state == pci_channel_io_normal) {
 9588		dev_warn(&pdev->dev, "Non-correctable non-fatal error reported.\n");
 9589		return PCI_ERS_RESULT_CAN_RECOVER;
 9590	}
 9591
 9592	netif_device_detach(netdev);
 9593
 9594	if (state == pci_channel_io_perm_failure)
 9595		return PCI_ERS_RESULT_DISCONNECT;
 9596
 9597	if (netif_running(netdev))
 9598		igb_down(adapter);
 9599	pci_disable_device(pdev);
 9600
 9601	/* Request a slot reset. */
 9602	return PCI_ERS_RESULT_NEED_RESET;
 9603}
 9604
 9605/**
 9606 *  igb_io_slot_reset - called after the pci bus has been reset.
 9607 *  @pdev: Pointer to PCI device
 9608 *
 9609 *  Restart the card from scratch, as if from a cold-boot. Implementation
 9610 *  resembles the first-half of the __igb_resume routine.
 9611 **/
 9612static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
 9613{
 9614	struct net_device *netdev = pci_get_drvdata(pdev);
 9615	struct igb_adapter *adapter = netdev_priv(netdev);
 9616	struct e1000_hw *hw = &adapter->hw;
 9617	pci_ers_result_t result;
 9618
 9619	if (pci_enable_device_mem(pdev)) {
 9620		dev_err(&pdev->dev,
 9621			"Cannot re-enable PCI device after reset.\n");
 9622		result = PCI_ERS_RESULT_DISCONNECT;
 9623	} else {
 9624		pci_set_master(pdev);
 9625		pci_restore_state(pdev);
 9626		pci_save_state(pdev);
 9627
 9628		pci_enable_wake(pdev, PCI_D3hot, 0);
 9629		pci_enable_wake(pdev, PCI_D3cold, 0);
 9630
 9631		/* In case of PCI error, adapter lose its HW address
 9632		 * so we should re-assign it here.
 9633		 */
 9634		hw->hw_addr = adapter->io_addr;
 9635
 9636		igb_reset(adapter);
 9637		wr32(E1000_WUS, ~0);
 9638		result = PCI_ERS_RESULT_RECOVERED;
 9639	}
 9640
 9641	return result;
 9642}
 9643
 9644/**
 9645 *  igb_io_resume - called when traffic can start flowing again.
 9646 *  @pdev: Pointer to PCI device
 9647 *
 9648 *  This callback is called when the error recovery driver tells us that
 9649 *  its OK to resume normal operation. Implementation resembles the
 9650 *  second-half of the __igb_resume routine.
 9651 */
 9652static void igb_io_resume(struct pci_dev *pdev)
 9653{
 9654	struct net_device *netdev = pci_get_drvdata(pdev);
 9655	struct igb_adapter *adapter = netdev_priv(netdev);
 9656
 9657	if (netif_running(netdev)) {
 9658		if (!test_bit(__IGB_DOWN, &adapter->state)) {
 9659			dev_dbg(&pdev->dev, "Resuming from non-fatal error, do nothing.\n");
 9660			return;
 9661		}
 9662		if (igb_up(adapter)) {
 9663			dev_err(&pdev->dev, "igb_up failed after reset\n");
 9664			return;
 9665		}
 9666	}
 9667
 9668	netif_device_attach(netdev);
 9669
 9670	/* let the f/w know that the h/w is now under the control of the
 9671	 * driver.
 9672	 */
 9673	igb_get_hw_control(adapter);
 9674}
 9675
 9676/**
 9677 *  igb_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
 9678 *  @adapter: Pointer to adapter structure
 9679 *  @index: Index of the RAR entry which need to be synced with MAC table
 9680 **/
 9681static void igb_rar_set_index(struct igb_adapter *adapter, u32 index)
 9682{
 9683	struct e1000_hw *hw = &adapter->hw;
 9684	u32 rar_low, rar_high;
 9685	u8 *addr = adapter->mac_table[index].addr;
 9686
 9687	/* HW expects these to be in network order when they are plugged
 9688	 * into the registers which are little endian.  In order to guarantee
 9689	 * that ordering we need to do an leXX_to_cpup here in order to be
 9690	 * ready for the byteswap that occurs with writel
 9691	 */
 9692	rar_low = le32_to_cpup((__le32 *)(addr));
 9693	rar_high = le16_to_cpup((__le16 *)(addr + 4));
 9694
 9695	/* Indicate to hardware the Address is Valid. */
 9696	if (adapter->mac_table[index].state & IGB_MAC_STATE_IN_USE) {
 9697		if (is_valid_ether_addr(addr))
 9698			rar_high |= E1000_RAH_AV;
 9699
 9700		if (adapter->mac_table[index].state & IGB_MAC_STATE_SRC_ADDR)
 9701			rar_high |= E1000_RAH_ASEL_SRC_ADDR;
 9702
 9703		switch (hw->mac.type) {
 9704		case e1000_82575:
 9705		case e1000_i210:
 9706			if (adapter->mac_table[index].state &
 9707			    IGB_MAC_STATE_QUEUE_STEERING)
 9708				rar_high |= E1000_RAH_QSEL_ENABLE;
 9709
 9710			rar_high |= E1000_RAH_POOL_1 *
 9711				    adapter->mac_table[index].queue;
 9712			break;
 9713		default:
 9714			rar_high |= E1000_RAH_POOL_1 <<
 9715				    adapter->mac_table[index].queue;
 9716			break;
 9717		}
 9718	}
 9719
 9720	wr32(E1000_RAL(index), rar_low);
 9721	wrfl();
 9722	wr32(E1000_RAH(index), rar_high);
 9723	wrfl();
 9724}
 9725
 9726static int igb_set_vf_mac(struct igb_adapter *adapter,
 9727			  int vf, unsigned char *mac_addr)
 9728{
 9729	struct e1000_hw *hw = &adapter->hw;
 9730	/* VF MAC addresses start at end of receive addresses and moves
 9731	 * towards the first, as a result a collision should not be possible
 9732	 */
 9733	int rar_entry = hw->mac.rar_entry_count - (vf + 1);
 9734	unsigned char *vf_mac_addr = adapter->vf_data[vf].vf_mac_addresses;
 9735
 9736	ether_addr_copy(vf_mac_addr, mac_addr);
 9737	ether_addr_copy(adapter->mac_table[rar_entry].addr, mac_addr);
 9738	adapter->mac_table[rar_entry].queue = vf;
 9739	adapter->mac_table[rar_entry].state |= IGB_MAC_STATE_IN_USE;
 9740	igb_rar_set_index(adapter, rar_entry);
 9741
 9742	return 0;
 9743}
 9744
 9745static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
 9746{
 9747	struct igb_adapter *adapter = netdev_priv(netdev);
 9748
 9749	if (vf >= adapter->vfs_allocated_count)
 9750		return -EINVAL;
 9751
 9752	/* Setting the VF MAC to 0 reverts the IGB_VF_FLAG_PF_SET_MAC
 9753	 * flag and allows to overwrite the MAC via VF netdev.  This
 9754	 * is necessary to allow libvirt a way to restore the original
 9755	 * MAC after unbinding vfio-pci and reloading igbvf after shutting
 9756	 * down a VM.
 9757	 */
 9758	if (is_zero_ether_addr(mac)) {
 9759		adapter->vf_data[vf].flags &= ~IGB_VF_FLAG_PF_SET_MAC;
 9760		dev_info(&adapter->pdev->dev,
 9761			 "remove administratively set MAC on VF %d\n",
 9762			 vf);
 9763	} else if (is_valid_ether_addr(mac)) {
 9764		adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
 9765		dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n",
 9766			 mac, vf);
 9767		dev_info(&adapter->pdev->dev,
 9768			 "Reload the VF driver to make this change effective.");
 9769		/* Generate additional warning if PF is down */
 9770		if (test_bit(__IGB_DOWN, &adapter->state)) {
 9771			dev_warn(&adapter->pdev->dev,
 9772				 "The VF MAC address has been set, but the PF device is not up.\n");
 9773			dev_warn(&adapter->pdev->dev,
 9774				 "Bring the PF device up before attempting to use the VF device.\n");
 9775		}
 9776	} else {
 9777		return -EINVAL;
 9778	}
 9779	return igb_set_vf_mac(adapter, vf, mac);
 9780}
 9781
 9782static int igb_link_mbps(int internal_link_speed)
 9783{
 9784	switch (internal_link_speed) {
 9785	case SPEED_100:
 9786		return 100;
 9787	case SPEED_1000:
 9788		return 1000;
 9789	default:
 9790		return 0;
 9791	}
 9792}
 9793
 9794static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
 9795				  int link_speed)
 9796{
 9797	int rf_dec, rf_int;
 9798	u32 bcnrc_val;
 9799
 9800	if (tx_rate != 0) {
 9801		/* Calculate the rate factor values to set */
 9802		rf_int = link_speed / tx_rate;
 9803		rf_dec = (link_speed - (rf_int * tx_rate));
 9804		rf_dec = (rf_dec * BIT(E1000_RTTBCNRC_RF_INT_SHIFT)) /
 9805			 tx_rate;
 9806
 9807		bcnrc_val = E1000_RTTBCNRC_RS_ENA;
 9808		bcnrc_val |= FIELD_PREP(E1000_RTTBCNRC_RF_INT_MASK, rf_int);
 9809		bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
 9810	} else {
 9811		bcnrc_val = 0;
 9812	}
 9813
 9814	wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
 9815	/* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
 9816	 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
 9817	 */
 9818	wr32(E1000_RTTBCNRM, 0x14);
 9819	wr32(E1000_RTTBCNRC, bcnrc_val);
 9820}
 9821
 9822static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
 9823{
 9824	int actual_link_speed, i;
 9825	bool reset_rate = false;
 9826
 9827	/* VF TX rate limit was not set or not supported */
 9828	if ((adapter->vf_rate_link_speed == 0) ||
 9829	    (adapter->hw.mac.type != e1000_82576))
 9830		return;
 9831
 9832	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9833	if (actual_link_speed != adapter->vf_rate_link_speed) {
 9834		reset_rate = true;
 9835		adapter->vf_rate_link_speed = 0;
 9836		dev_info(&adapter->pdev->dev,
 9837			 "Link speed has been changed. VF Transmit rate is disabled\n");
 9838	}
 9839
 9840	for (i = 0; i < adapter->vfs_allocated_count; i++) {
 9841		if (reset_rate)
 9842			adapter->vf_data[i].tx_rate = 0;
 9843
 9844		igb_set_vf_rate_limit(&adapter->hw, i,
 9845				      adapter->vf_data[i].tx_rate,
 9846				      actual_link_speed);
 9847	}
 9848}
 9849
 9850static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf,
 9851			     int min_tx_rate, int max_tx_rate)
 9852{
 9853	struct igb_adapter *adapter = netdev_priv(netdev);
 9854	struct e1000_hw *hw = &adapter->hw;
 9855	int actual_link_speed;
 9856
 9857	if (hw->mac.type != e1000_82576)
 9858		return -EOPNOTSUPP;
 9859
 9860	if (min_tx_rate)
 9861		return -EINVAL;
 9862
 9863	actual_link_speed = igb_link_mbps(adapter->link_speed);
 9864	if ((vf >= adapter->vfs_allocated_count) ||
 9865	    (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
 9866	    (max_tx_rate < 0) ||
 9867	    (max_tx_rate > actual_link_speed))
 9868		return -EINVAL;
 9869
 9870	adapter->vf_rate_link_speed = actual_link_speed;
 9871	adapter->vf_data[vf].tx_rate = (u16)max_tx_rate;
 9872	igb_set_vf_rate_limit(hw, vf, max_tx_rate, actual_link_speed);
 9873
 9874	return 0;
 9875}
 9876
 9877static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
 9878				   bool setting)
 9879{
 9880	struct igb_adapter *adapter = netdev_priv(netdev);
 9881	struct e1000_hw *hw = &adapter->hw;
 9882	u32 reg_val, reg_offset;
 9883
 9884	if (!adapter->vfs_allocated_count)
 9885		return -EOPNOTSUPP;
 9886
 9887	if (vf >= adapter->vfs_allocated_count)
 9888		return -EINVAL;
 9889
 9890	reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
 9891	reg_val = rd32(reg_offset);
 9892	if (setting)
 9893		reg_val |= (BIT(vf) |
 9894			    BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9895	else
 9896		reg_val &= ~(BIT(vf) |
 9897			     BIT(vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT));
 9898	wr32(reg_offset, reg_val);
 9899
 9900	adapter->vf_data[vf].spoofchk_enabled = setting;
 9901	return 0;
 9902}
 9903
 9904static int igb_ndo_set_vf_trust(struct net_device *netdev, int vf, bool setting)
 9905{
 9906	struct igb_adapter *adapter = netdev_priv(netdev);
 9907
 9908	if (vf >= adapter->vfs_allocated_count)
 9909		return -EINVAL;
 9910	if (adapter->vf_data[vf].trusted == setting)
 9911		return 0;
 9912
 9913	adapter->vf_data[vf].trusted = setting;
 9914
 9915	dev_info(&adapter->pdev->dev, "VF %u is %strusted\n",
 9916		 vf, setting ? "" : "not ");
 9917	return 0;
 9918}
 9919
 9920static int igb_ndo_get_vf_config(struct net_device *netdev,
 9921				 int vf, struct ifla_vf_info *ivi)
 9922{
 9923	struct igb_adapter *adapter = netdev_priv(netdev);
 9924	if (vf >= adapter->vfs_allocated_count)
 9925		return -EINVAL;
 9926	ivi->vf = vf;
 9927	memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
 9928	ivi->max_tx_rate = adapter->vf_data[vf].tx_rate;
 9929	ivi->min_tx_rate = 0;
 9930	ivi->vlan = adapter->vf_data[vf].pf_vlan;
 9931	ivi->qos = adapter->vf_data[vf].pf_qos;
 9932	ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
 9933	ivi->trusted = adapter->vf_data[vf].trusted;
 9934	return 0;
 9935}
 9936
 9937static void igb_vmm_control(struct igb_adapter *adapter)
 9938{
 9939	struct e1000_hw *hw = &adapter->hw;
 9940	u32 reg;
 9941
 9942	switch (hw->mac.type) {
 9943	case e1000_82575:
 9944	case e1000_i210:
 9945	case e1000_i211:
 9946	case e1000_i354:
 9947	default:
 9948		/* replication is not supported for 82575 */
 9949		return;
 9950	case e1000_82576:
 9951		/* notify HW that the MAC is adding vlan tags */
 9952		reg = rd32(E1000_DTXCTL);
 9953		reg |= E1000_DTXCTL_VLAN_ADDED;
 9954		wr32(E1000_DTXCTL, reg);
 9955		fallthrough;
 9956	case e1000_82580:
 9957		/* enable replication vlan tag stripping */
 9958		reg = rd32(E1000_RPLOLR);
 9959		reg |= E1000_RPLOLR_STRVLAN;
 9960		wr32(E1000_RPLOLR, reg);
 9961		fallthrough;
 9962	case e1000_i350:
 9963		/* none of the above registers are supported by i350 */
 9964		break;
 9965	}
 9966
 9967	if (adapter->vfs_allocated_count) {
 9968		igb_vmdq_set_loopback_pf(hw, true);
 9969		igb_vmdq_set_replication_pf(hw, true);
 9970		igb_vmdq_set_anti_spoofing_pf(hw, true,
 9971					      adapter->vfs_allocated_count);
 9972	} else {
 9973		igb_vmdq_set_loopback_pf(hw, false);
 9974		igb_vmdq_set_replication_pf(hw, false);
 9975	}
 9976}
 9977
 9978static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
 9979{
 9980	struct e1000_hw *hw = &adapter->hw;
 9981	u32 dmac_thr;
 9982	u16 hwm;
 9983	u32 reg;
 9984
 9985	if (hw->mac.type > e1000_82580) {
 9986		if (adapter->flags & IGB_FLAG_DMAC) {
 9987			/* force threshold to 0. */
 9988			wr32(E1000_DMCTXTH, 0);
 9989
 9990			/* DMA Coalescing high water mark needs to be greater
 9991			 * than the Rx threshold. Set hwm to PBA - max frame
 9992			 * size in 16B units, capping it at PBA - 6KB.
 9993			 */
 9994			hwm = 64 * (pba - 6);
 9995			reg = rd32(E1000_FCRTC);
 9996			reg &= ~E1000_FCRTC_RTH_COAL_MASK;
 9997			reg |= FIELD_PREP(E1000_FCRTC_RTH_COAL_MASK, hwm);
 9998			wr32(E1000_FCRTC, reg);
 9999
10000			/* Set the DMA Coalescing Rx threshold to PBA - 2 * max
10001			 * frame size, capping it at PBA - 10KB.
10002			 */
10003			dmac_thr = pba - 10;
10004			reg = rd32(E1000_DMACR);
10005			reg &= ~E1000_DMACR_DMACTHR_MASK;
10006			reg |= FIELD_PREP(E1000_DMACR_DMACTHR_MASK, dmac_thr);
10007
10008			/* transition to L0x or L1 if available..*/
10009			reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
10010
10011			/* watchdog timer= +-1000 usec in 32usec intervals */
10012			reg |= (1000 >> 5);
10013
10014			/* Disable BMC-to-OS Watchdog Enable */
10015			if (hw->mac.type != e1000_i354)
10016				reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
10017			wr32(E1000_DMACR, reg);
10018
10019			/* no lower threshold to disable
10020			 * coalescing(smart fifb)-UTRESH=0
10021			 */
10022			wr32(E1000_DMCRTRH, 0);
10023
10024			reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
10025
10026			wr32(E1000_DMCTLX, reg);
10027
10028			/* free space in tx packet buffer to wake from
10029			 * DMA coal
10030			 */
10031			wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
10032			     (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
10033		}
10034
10035		if (hw->mac.type >= e1000_i210 ||
10036		    (adapter->flags & IGB_FLAG_DMAC)) {
10037			reg = rd32(E1000_PCIEMISC);
10038			reg |= E1000_PCIEMISC_LX_DECISION;
10039			wr32(E1000_PCIEMISC, reg);
10040		} /* endif adapter->dmac is not disabled */
10041	} else if (hw->mac.type == e1000_82580) {
10042		u32 reg = rd32(E1000_PCIEMISC);
10043
10044		wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
10045		wr32(E1000_DMACR, 0);
10046	}
10047}
10048
10049/**
10050 *  igb_read_i2c_byte - Reads 8 bit word over I2C
10051 *  @hw: pointer to hardware structure
10052 *  @byte_offset: byte offset to read
10053 *  @dev_addr: device address
10054 *  @data: value read
10055 *
10056 *  Performs byte read operation over I2C interface at
10057 *  a specified device address.
10058 **/
10059s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10060		      u8 dev_addr, u8 *data)
10061{
10062	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10063	struct i2c_client *this_client = adapter->i2c_client;
10064	s32 status;
10065	u16 swfw_mask = 0;
10066
10067	if (!this_client)
10068		return E1000_ERR_I2C;
10069
10070	swfw_mask = E1000_SWFW_PHY0_SM;
10071
10072	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10073		return E1000_ERR_SWFW_SYNC;
10074
10075	status = i2c_smbus_read_byte_data(this_client, byte_offset);
10076	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10077
10078	if (status < 0)
10079		return E1000_ERR_I2C;
10080	else {
10081		*data = status;
10082		return 0;
10083	}
10084}
10085
10086/**
10087 *  igb_write_i2c_byte - Writes 8 bit word over I2C
10088 *  @hw: pointer to hardware structure
10089 *  @byte_offset: byte offset to write
10090 *  @dev_addr: device address
10091 *  @data: value to write
10092 *
10093 *  Performs byte write operation over I2C interface at
10094 *  a specified device address.
10095 **/
10096s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
10097		       u8 dev_addr, u8 data)
10098{
10099	struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
10100	struct i2c_client *this_client = adapter->i2c_client;
10101	s32 status;
10102	u16 swfw_mask = E1000_SWFW_PHY0_SM;
10103
10104	if (!this_client)
10105		return E1000_ERR_I2C;
10106
10107	if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask))
10108		return E1000_ERR_SWFW_SYNC;
10109	status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
10110	hw->mac.ops.release_swfw_sync(hw, swfw_mask);
10111
10112	if (status)
10113		return E1000_ERR_I2C;
10114	else
10115		return 0;
10116
10117}
10118
10119int igb_reinit_queues(struct igb_adapter *adapter)
10120{
10121	struct net_device *netdev = adapter->netdev;
10122	struct pci_dev *pdev = adapter->pdev;
10123	int err = 0;
10124
10125	if (netif_running(netdev))
10126		igb_close(netdev);
10127
10128	igb_reset_interrupt_capability(adapter);
10129
10130	if (igb_init_interrupt_scheme(adapter, true)) {
10131		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
10132		return -ENOMEM;
10133	}
10134
10135	if (netif_running(netdev))
10136		err = igb_open(netdev);
10137
10138	return err;
10139}
10140
10141static void igb_nfc_filter_exit(struct igb_adapter *adapter)
10142{
10143	struct igb_nfc_filter *rule;
10144
10145	spin_lock(&adapter->nfc_lock);
10146
10147	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10148		igb_erase_filter(adapter, rule);
10149
10150	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
10151		igb_erase_filter(adapter, rule);
10152
10153	spin_unlock(&adapter->nfc_lock);
10154}
10155
10156static void igb_nfc_filter_restore(struct igb_adapter *adapter)
10157{
10158	struct igb_nfc_filter *rule;
10159
10160	spin_lock(&adapter->nfc_lock);
10161
10162	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
10163		igb_add_filter(adapter, rule);
10164
10165	spin_unlock(&adapter->nfc_lock);
10166}
10167
10168static _DEFINE_DEV_PM_OPS(igb_pm_ops, igb_suspend, igb_resume,
10169			  igb_runtime_suspend, igb_runtime_resume,
10170			  igb_runtime_idle);
10171
10172static struct pci_driver igb_driver = {
10173	.name     = igb_driver_name,
10174	.id_table = igb_pci_tbl,
10175	.probe    = igb_probe,
10176	.remove   = igb_remove,
10177	.driver.pm = pm_ptr(&igb_pm_ops),
10178	.shutdown = igb_shutdown,
10179	.sriov_configure = igb_pci_sriov_configure,
10180	.err_handler = &igb_err_handler
10181};
10182
10183/* igb_main.c */