Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * MMU support
   8 *
   9 * Copyright (C) 2006 Qumranet, Inc.
  10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  11 *
  12 * Authors:
  13 *   Yaniv Kamay  <yaniv@qumranet.com>
  14 *   Avi Kivity   <avi@qumranet.com>
  15 *
  16 * This work is licensed under the terms of the GNU GPL, version 2.  See
  17 * the COPYING file in the top-level directory.
  18 *
  19 */
  20
  21#include "irq.h"
  22#include "mmu.h"
  23#include "x86.h"
  24#include "kvm_cache_regs.h"
  25
  26#include <linux/kvm_host.h>
  27#include <linux/types.h>
  28#include <linux/string.h>
  29#include <linux/mm.h>
  30#include <linux/highmem.h>
  31#include <linux/module.h>
  32#include <linux/swap.h>
  33#include <linux/hugetlb.h>
  34#include <linux/compiler.h>
  35#include <linux/srcu.h>
  36#include <linux/slab.h>
  37#include <linux/uaccess.h>
  38
  39#include <asm/page.h>
  40#include <asm/cmpxchg.h>
  41#include <asm/io.h>
  42#include <asm/vmx.h>
  43
  44/*
  45 * When setting this variable to true it enables Two-Dimensional-Paging
  46 * where the hardware walks 2 page tables:
  47 * 1. the guest-virtual to guest-physical
  48 * 2. while doing 1. it walks guest-physical to host-physical
  49 * If the hardware supports that we don't need to do shadow paging.
  50 */
  51bool tdp_enabled = false;
  52
  53enum {
  54	AUDIT_PRE_PAGE_FAULT,
  55	AUDIT_POST_PAGE_FAULT,
  56	AUDIT_PRE_PTE_WRITE,
  57	AUDIT_POST_PTE_WRITE,
  58	AUDIT_PRE_SYNC,
  59	AUDIT_POST_SYNC
  60};
  61
  62char *audit_point_name[] = {
  63	"pre page fault",
  64	"post page fault",
  65	"pre pte write",
  66	"post pte write",
  67	"pre sync",
  68	"post sync"
  69};
  70
  71#undef MMU_DEBUG
  72
  73#ifdef MMU_DEBUG
  74
  75#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  76#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  77
  78#else
  79
  80#define pgprintk(x...) do { } while (0)
  81#define rmap_printk(x...) do { } while (0)
  82
  83#endif
  84
  85#ifdef MMU_DEBUG
  86static int dbg = 0;
  87module_param(dbg, bool, 0644);
  88#endif
  89
  90static int oos_shadow = 1;
  91module_param(oos_shadow, bool, 0644);
  92
  93#ifndef MMU_DEBUG
  94#define ASSERT(x) do { } while (0)
  95#else
  96#define ASSERT(x)							\
  97	if (!(x)) {							\
  98		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
  99		       __FILE__, __LINE__, #x);				\
 100	}
 101#endif
 102
 103#define PTE_PREFETCH_NUM		8
 104
 105#define PT_FIRST_AVAIL_BITS_SHIFT 9
 106#define PT64_SECOND_AVAIL_BITS_SHIFT 52
 107
 108#define PT64_LEVEL_BITS 9
 109
 110#define PT64_LEVEL_SHIFT(level) \
 111		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 112
 113#define PT64_INDEX(address, level)\
 114	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 115
 116
 117#define PT32_LEVEL_BITS 10
 118
 119#define PT32_LEVEL_SHIFT(level) \
 120		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 121
 122#define PT32_LVL_OFFSET_MASK(level) \
 123	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 124						* PT32_LEVEL_BITS))) - 1))
 125
 126#define PT32_INDEX(address, level)\
 127	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 128
 129
 130#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 131#define PT64_DIR_BASE_ADDR_MASK \
 132	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 133#define PT64_LVL_ADDR_MASK(level) \
 134	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 135						* PT64_LEVEL_BITS))) - 1))
 136#define PT64_LVL_OFFSET_MASK(level) \
 137	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 138						* PT64_LEVEL_BITS))) - 1))
 139
 140#define PT32_BASE_ADDR_MASK PAGE_MASK
 141#define PT32_DIR_BASE_ADDR_MASK \
 142	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 143#define PT32_LVL_ADDR_MASK(level) \
 144	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 145					    * PT32_LEVEL_BITS))) - 1))
 146
 147#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
 148			| PT64_NX_MASK)
 149
 150#define PTE_LIST_EXT 4
 151
 152#define ACC_EXEC_MASK    1
 153#define ACC_WRITE_MASK   PT_WRITABLE_MASK
 154#define ACC_USER_MASK    PT_USER_MASK
 155#define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 156
 157#include <trace/events/kvm.h>
 158
 159#define CREATE_TRACE_POINTS
 160#include "mmutrace.h"
 161
 162#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 163
 164#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 165
 166struct pte_list_desc {
 167	u64 *sptes[PTE_LIST_EXT];
 168	struct pte_list_desc *more;
 169};
 170
 171struct kvm_shadow_walk_iterator {
 172	u64 addr;
 173	hpa_t shadow_addr;
 174	u64 *sptep;
 175	int level;
 176	unsigned index;
 177};
 178
 179#define for_each_shadow_entry(_vcpu, _addr, _walker)    \
 180	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 181	     shadow_walk_okay(&(_walker));			\
 182	     shadow_walk_next(&(_walker)))
 183
 184#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte)	\
 185	for (shadow_walk_init(&(_walker), _vcpu, _addr);		\
 186	     shadow_walk_okay(&(_walker)) &&				\
 187		({ spte = mmu_spte_get_lockless(_walker.sptep); 1; });	\
 188	     __shadow_walk_next(&(_walker), spte))
 189
 190static struct kmem_cache *pte_list_desc_cache;
 191static struct kmem_cache *mmu_page_header_cache;
 192static struct percpu_counter kvm_total_used_mmu_pages;
 193
 194static u64 __read_mostly shadow_nx_mask;
 195static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
 196static u64 __read_mostly shadow_user_mask;
 197static u64 __read_mostly shadow_accessed_mask;
 198static u64 __read_mostly shadow_dirty_mask;
 199static u64 __read_mostly shadow_mmio_mask;
 200
 201static void mmu_spte_set(u64 *sptep, u64 spte);
 202
 203void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
 204{
 205	shadow_mmio_mask = mmio_mask;
 206}
 207EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
 208
 209static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
 210{
 211	access &= ACC_WRITE_MASK | ACC_USER_MASK;
 212
 213	trace_mark_mmio_spte(sptep, gfn, access);
 214	mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
 215}
 216
 217static bool is_mmio_spte(u64 spte)
 218{
 219	return (spte & shadow_mmio_mask) == shadow_mmio_mask;
 220}
 221
 222static gfn_t get_mmio_spte_gfn(u64 spte)
 223{
 224	return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
 225}
 226
 227static unsigned get_mmio_spte_access(u64 spte)
 228{
 229	return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
 230}
 231
 232static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
 233{
 234	if (unlikely(is_noslot_pfn(pfn))) {
 235		mark_mmio_spte(sptep, gfn, access);
 236		return true;
 237	}
 238
 239	return false;
 240}
 241
 242static inline u64 rsvd_bits(int s, int e)
 243{
 244	return ((1ULL << (e - s + 1)) - 1) << s;
 245}
 246
 247void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 248		u64 dirty_mask, u64 nx_mask, u64 x_mask)
 249{
 250	shadow_user_mask = user_mask;
 251	shadow_accessed_mask = accessed_mask;
 252	shadow_dirty_mask = dirty_mask;
 253	shadow_nx_mask = nx_mask;
 254	shadow_x_mask = x_mask;
 255}
 256EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 257
 258static int is_cpuid_PSE36(void)
 259{
 260	return 1;
 261}
 262
 263static int is_nx(struct kvm_vcpu *vcpu)
 264{
 265	return vcpu->arch.efer & EFER_NX;
 266}
 267
 268static int is_shadow_present_pte(u64 pte)
 269{
 270	return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
 271}
 272
 273static int is_large_pte(u64 pte)
 274{
 275	return pte & PT_PAGE_SIZE_MASK;
 276}
 277
 278static int is_dirty_gpte(unsigned long pte)
 279{
 280	return pte & PT_DIRTY_MASK;
 281}
 282
 283static int is_rmap_spte(u64 pte)
 284{
 285	return is_shadow_present_pte(pte);
 286}
 287
 288static int is_last_spte(u64 pte, int level)
 289{
 290	if (level == PT_PAGE_TABLE_LEVEL)
 291		return 1;
 292	if (is_large_pte(pte))
 293		return 1;
 294	return 0;
 295}
 296
 297static pfn_t spte_to_pfn(u64 pte)
 298{
 299	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 300}
 301
 302static gfn_t pse36_gfn_delta(u32 gpte)
 303{
 304	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 305
 306	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 307}
 308
 309#ifdef CONFIG_X86_64
 310static void __set_spte(u64 *sptep, u64 spte)
 311{
 312	*sptep = spte;
 313}
 314
 315static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 316{
 317	*sptep = spte;
 318}
 319
 320static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 321{
 322	return xchg(sptep, spte);
 323}
 324
 325static u64 __get_spte_lockless(u64 *sptep)
 326{
 327	return ACCESS_ONCE(*sptep);
 328}
 329
 330static bool __check_direct_spte_mmio_pf(u64 spte)
 331{
 332	/* It is valid if the spte is zapped. */
 333	return spte == 0ull;
 334}
 335#else
 336union split_spte {
 337	struct {
 338		u32 spte_low;
 339		u32 spte_high;
 340	};
 341	u64 spte;
 342};
 343
 344static void count_spte_clear(u64 *sptep, u64 spte)
 345{
 346	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 347
 348	if (is_shadow_present_pte(spte))
 349		return;
 350
 351	/* Ensure the spte is completely set before we increase the count */
 352	smp_wmb();
 353	sp->clear_spte_count++;
 354}
 355
 356static void __set_spte(u64 *sptep, u64 spte)
 357{
 358	union split_spte *ssptep, sspte;
 359
 360	ssptep = (union split_spte *)sptep;
 361	sspte = (union split_spte)spte;
 362
 363	ssptep->spte_high = sspte.spte_high;
 364
 365	/*
 366	 * If we map the spte from nonpresent to present, We should store
 367	 * the high bits firstly, then set present bit, so cpu can not
 368	 * fetch this spte while we are setting the spte.
 369	 */
 370	smp_wmb();
 371
 372	ssptep->spte_low = sspte.spte_low;
 373}
 374
 375static void __update_clear_spte_fast(u64 *sptep, u64 spte)
 376{
 377	union split_spte *ssptep, sspte;
 378
 379	ssptep = (union split_spte *)sptep;
 380	sspte = (union split_spte)spte;
 381
 382	ssptep->spte_low = sspte.spte_low;
 383
 384	/*
 385	 * If we map the spte from present to nonpresent, we should clear
 386	 * present bit firstly to avoid vcpu fetch the old high bits.
 387	 */
 388	smp_wmb();
 389
 390	ssptep->spte_high = sspte.spte_high;
 391	count_spte_clear(sptep, spte);
 392}
 393
 394static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
 395{
 396	union split_spte *ssptep, sspte, orig;
 397
 398	ssptep = (union split_spte *)sptep;
 399	sspte = (union split_spte)spte;
 400
 401	/* xchg acts as a barrier before the setting of the high bits */
 402	orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
 403	orig.spte_high = ssptep->spte_high;
 404	ssptep->spte_high = sspte.spte_high;
 405	count_spte_clear(sptep, spte);
 406
 407	return orig.spte;
 408}
 409
 410/*
 411 * The idea using the light way get the spte on x86_32 guest is from
 412 * gup_get_pte(arch/x86/mm/gup.c).
 413 * The difference is we can not catch the spte tlb flush if we leave
 414 * guest mode, so we emulate it by increase clear_spte_count when spte
 415 * is cleared.
 416 */
 417static u64 __get_spte_lockless(u64 *sptep)
 418{
 419	struct kvm_mmu_page *sp =  page_header(__pa(sptep));
 420	union split_spte spte, *orig = (union split_spte *)sptep;
 421	int count;
 422
 423retry:
 424	count = sp->clear_spte_count;
 425	smp_rmb();
 426
 427	spte.spte_low = orig->spte_low;
 428	smp_rmb();
 429
 430	spte.spte_high = orig->spte_high;
 431	smp_rmb();
 432
 433	if (unlikely(spte.spte_low != orig->spte_low ||
 434	      count != sp->clear_spte_count))
 435		goto retry;
 436
 437	return spte.spte;
 438}
 439
 440static bool __check_direct_spte_mmio_pf(u64 spte)
 441{
 442	union split_spte sspte = (union split_spte)spte;
 443	u32 high_mmio_mask = shadow_mmio_mask >> 32;
 444
 445	/* It is valid if the spte is zapped. */
 446	if (spte == 0ull)
 447		return true;
 448
 449	/* It is valid if the spte is being zapped. */
 450	if (sspte.spte_low == 0ull &&
 451	    (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
 452		return true;
 453
 454	return false;
 455}
 456#endif
 457
 458static bool spte_has_volatile_bits(u64 spte)
 459{
 460	if (!shadow_accessed_mask)
 461		return false;
 462
 463	if (!is_shadow_present_pte(spte))
 464		return false;
 465
 466	if ((spte & shadow_accessed_mask) &&
 467	      (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
 468		return false;
 469
 470	return true;
 471}
 472
 473static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
 474{
 475	return (old_spte & bit_mask) && !(new_spte & bit_mask);
 476}
 477
 478/* Rules for using mmu_spte_set:
 479 * Set the sptep from nonpresent to present.
 480 * Note: the sptep being assigned *must* be either not present
 481 * or in a state where the hardware will not attempt to update
 482 * the spte.
 483 */
 484static void mmu_spte_set(u64 *sptep, u64 new_spte)
 485{
 486	WARN_ON(is_shadow_present_pte(*sptep));
 487	__set_spte(sptep, new_spte);
 488}
 489
 490/* Rules for using mmu_spte_update:
 491 * Update the state bits, it means the mapped pfn is not changged.
 492 */
 493static void mmu_spte_update(u64 *sptep, u64 new_spte)
 494{
 495	u64 mask, old_spte = *sptep;
 496
 497	WARN_ON(!is_rmap_spte(new_spte));
 498
 499	if (!is_shadow_present_pte(old_spte))
 500		return mmu_spte_set(sptep, new_spte);
 501
 502	new_spte |= old_spte & shadow_dirty_mask;
 503
 504	mask = shadow_accessed_mask;
 505	if (is_writable_pte(old_spte))
 506		mask |= shadow_dirty_mask;
 507
 508	if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
 509		__update_clear_spte_fast(sptep, new_spte);
 510	else
 511		old_spte = __update_clear_spte_slow(sptep, new_spte);
 512
 513	if (!shadow_accessed_mask)
 514		return;
 515
 516	if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
 517		kvm_set_pfn_accessed(spte_to_pfn(old_spte));
 518	if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
 519		kvm_set_pfn_dirty(spte_to_pfn(old_spte));
 520}
 521
 522/*
 523 * Rules for using mmu_spte_clear_track_bits:
 524 * It sets the sptep from present to nonpresent, and track the
 525 * state bits, it is used to clear the last level sptep.
 526 */
 527static int mmu_spte_clear_track_bits(u64 *sptep)
 528{
 529	pfn_t pfn;
 530	u64 old_spte = *sptep;
 531
 532	if (!spte_has_volatile_bits(old_spte))
 533		__update_clear_spte_fast(sptep, 0ull);
 534	else
 535		old_spte = __update_clear_spte_slow(sptep, 0ull);
 536
 537	if (!is_rmap_spte(old_spte))
 538		return 0;
 539
 540	pfn = spte_to_pfn(old_spte);
 541	if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
 542		kvm_set_pfn_accessed(pfn);
 543	if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
 544		kvm_set_pfn_dirty(pfn);
 545	return 1;
 546}
 547
 548/*
 549 * Rules for using mmu_spte_clear_no_track:
 550 * Directly clear spte without caring the state bits of sptep,
 551 * it is used to set the upper level spte.
 552 */
 553static void mmu_spte_clear_no_track(u64 *sptep)
 554{
 555	__update_clear_spte_fast(sptep, 0ull);
 556}
 557
 558static u64 mmu_spte_get_lockless(u64 *sptep)
 559{
 560	return __get_spte_lockless(sptep);
 561}
 562
 563static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
 564{
 565	rcu_read_lock();
 566	atomic_inc(&vcpu->kvm->arch.reader_counter);
 567
 568	/* Increase the counter before walking shadow page table */
 569	smp_mb__after_atomic_inc();
 570}
 571
 572static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
 573{
 574	/* Decrease the counter after walking shadow page table finished */
 575	smp_mb__before_atomic_dec();
 576	atomic_dec(&vcpu->kvm->arch.reader_counter);
 577	rcu_read_unlock();
 578}
 579
 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 581				  struct kmem_cache *base_cache, int min)
 582{
 583	void *obj;
 584
 585	if (cache->nobjs >= min)
 586		return 0;
 587	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 588		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 589		if (!obj)
 590			return -ENOMEM;
 591		cache->objects[cache->nobjs++] = obj;
 592	}
 593	return 0;
 594}
 595
 596static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
 597				  struct kmem_cache *cache)
 598{
 599	while (mc->nobjs)
 600		kmem_cache_free(cache, mc->objects[--mc->nobjs]);
 601}
 602
 603static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 604				       int min)
 605{
 606	void *page;
 607
 608	if (cache->nobjs >= min)
 609		return 0;
 610	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 611		page = (void *)__get_free_page(GFP_KERNEL);
 612		if (!page)
 613			return -ENOMEM;
 614		cache->objects[cache->nobjs++] = page;
 615	}
 616	return 0;
 617}
 618
 619static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 620{
 621	while (mc->nobjs)
 622		free_page((unsigned long)mc->objects[--mc->nobjs]);
 623}
 624
 625static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 626{
 627	int r;
 628
 629	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 630				   pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
 631	if (r)
 632		goto out;
 633	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 634	if (r)
 635		goto out;
 636	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 637				   mmu_page_header_cache, 4);
 638out:
 639	return r;
 640}
 641
 642static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 643{
 644	mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
 645				pte_list_desc_cache);
 646	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 647	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
 648				mmu_page_header_cache);
 649}
 650
 651static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
 652				    size_t size)
 653{
 654	void *p;
 655
 656	BUG_ON(!mc->nobjs);
 657	p = mc->objects[--mc->nobjs];
 658	return p;
 659}
 660
 661static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
 662{
 663	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache,
 664				      sizeof(struct pte_list_desc));
 665}
 666
 667static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
 668{
 669	kmem_cache_free(pte_list_desc_cache, pte_list_desc);
 670}
 671
 672static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
 673{
 674	if (!sp->role.direct)
 675		return sp->gfns[index];
 676
 677	return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
 678}
 679
 680static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
 681{
 682	if (sp->role.direct)
 683		BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
 684	else
 685		sp->gfns[index] = gfn;
 686}
 687
 688/*
 689 * Return the pointer to the large page information for a given gfn,
 690 * handling slots that are not large page aligned.
 691 */
 692static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
 693					      struct kvm_memory_slot *slot,
 694					      int level)
 695{
 696	unsigned long idx;
 697
 698	idx = (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
 699	      (slot->base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
 700	return &slot->lpage_info[level - 2][idx];
 701}
 702
 703static void account_shadowed(struct kvm *kvm, gfn_t gfn)
 704{
 705	struct kvm_memory_slot *slot;
 706	struct kvm_lpage_info *linfo;
 707	int i;
 708
 709	slot = gfn_to_memslot(kvm, gfn);
 710	for (i = PT_DIRECTORY_LEVEL;
 711	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 712		linfo = lpage_info_slot(gfn, slot, i);
 713		linfo->write_count += 1;
 714	}
 715	kvm->arch.indirect_shadow_pages++;
 716}
 717
 718static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
 719{
 720	struct kvm_memory_slot *slot;
 721	struct kvm_lpage_info *linfo;
 722	int i;
 723
 724	slot = gfn_to_memslot(kvm, gfn);
 725	for (i = PT_DIRECTORY_LEVEL;
 726	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 727		linfo = lpage_info_slot(gfn, slot, i);
 728		linfo->write_count -= 1;
 729		WARN_ON(linfo->write_count < 0);
 730	}
 731	kvm->arch.indirect_shadow_pages--;
 732}
 733
 734static int has_wrprotected_page(struct kvm *kvm,
 735				gfn_t gfn,
 736				int level)
 737{
 738	struct kvm_memory_slot *slot;
 739	struct kvm_lpage_info *linfo;
 740
 741	slot = gfn_to_memslot(kvm, gfn);
 742	if (slot) {
 743		linfo = lpage_info_slot(gfn, slot, level);
 744		return linfo->write_count;
 745	}
 746
 747	return 1;
 748}
 749
 750static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
 751{
 752	unsigned long page_size;
 753	int i, ret = 0;
 754
 755	page_size = kvm_host_page_size(kvm, gfn);
 756
 757	for (i = PT_PAGE_TABLE_LEVEL;
 758	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
 759		if (page_size >= KVM_HPAGE_SIZE(i))
 760			ret = i;
 761		else
 762			break;
 763	}
 764
 765	return ret;
 766}
 767
 768static struct kvm_memory_slot *
 769gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
 770			    bool no_dirty_log)
 771{
 772	struct kvm_memory_slot *slot;
 773
 774	slot = gfn_to_memslot(vcpu->kvm, gfn);
 775	if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
 776	      (no_dirty_log && slot->dirty_bitmap))
 777		slot = NULL;
 778
 779	return slot;
 780}
 781
 782static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 783{
 784	return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
 785}
 786
 787static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 788{
 789	int host_level, level, max_level;
 790
 791	host_level = host_mapping_level(vcpu->kvm, large_gfn);
 792
 793	if (host_level == PT_PAGE_TABLE_LEVEL)
 794		return host_level;
 795
 796	max_level = kvm_x86_ops->get_lpage_level() < host_level ?
 797		kvm_x86_ops->get_lpage_level() : host_level;
 798
 799	for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
 800		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
 801			break;
 802
 803	return level - 1;
 804}
 805
 806/*
 807 * Pte mapping structures:
 808 *
 809 * If pte_list bit zero is zero, then pte_list point to the spte.
 810 *
 811 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
 812 * pte_list_desc containing more mappings.
 813 *
 814 * Returns the number of pte entries before the spte was added or zero if
 815 * the spte was not added.
 816 *
 817 */
 818static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
 819			unsigned long *pte_list)
 820{
 821	struct pte_list_desc *desc;
 822	int i, count = 0;
 823
 824	if (!*pte_list) {
 825		rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
 826		*pte_list = (unsigned long)spte;
 827	} else if (!(*pte_list & 1)) {
 828		rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
 829		desc = mmu_alloc_pte_list_desc(vcpu);
 830		desc->sptes[0] = (u64 *)*pte_list;
 831		desc->sptes[1] = spte;
 832		*pte_list = (unsigned long)desc | 1;
 833		++count;
 834	} else {
 835		rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
 836		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 837		while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
 838			desc = desc->more;
 839			count += PTE_LIST_EXT;
 840		}
 841		if (desc->sptes[PTE_LIST_EXT-1]) {
 842			desc->more = mmu_alloc_pte_list_desc(vcpu);
 843			desc = desc->more;
 844		}
 845		for (i = 0; desc->sptes[i]; ++i)
 846			++count;
 847		desc->sptes[i] = spte;
 848	}
 849	return count;
 850}
 851
 852static u64 *pte_list_next(unsigned long *pte_list, u64 *spte)
 853{
 854	struct pte_list_desc *desc;
 855	u64 *prev_spte;
 856	int i;
 857
 858	if (!*pte_list)
 859		return NULL;
 860	else if (!(*pte_list & 1)) {
 861		if (!spte)
 862			return (u64 *)*pte_list;
 863		return NULL;
 864	}
 865	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 866	prev_spte = NULL;
 867	while (desc) {
 868		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
 869			if (prev_spte == spte)
 870				return desc->sptes[i];
 871			prev_spte = desc->sptes[i];
 872		}
 873		desc = desc->more;
 874	}
 875	return NULL;
 876}
 877
 878static void
 879pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
 880			   int i, struct pte_list_desc *prev_desc)
 881{
 882	int j;
 883
 884	for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
 885		;
 886	desc->sptes[i] = desc->sptes[j];
 887	desc->sptes[j] = NULL;
 888	if (j != 0)
 889		return;
 890	if (!prev_desc && !desc->more)
 891		*pte_list = (unsigned long)desc->sptes[0];
 892	else
 893		if (prev_desc)
 894			prev_desc->more = desc->more;
 895		else
 896			*pte_list = (unsigned long)desc->more | 1;
 897	mmu_free_pte_list_desc(desc);
 898}
 899
 900static void pte_list_remove(u64 *spte, unsigned long *pte_list)
 901{
 902	struct pte_list_desc *desc;
 903	struct pte_list_desc *prev_desc;
 904	int i;
 905
 906	if (!*pte_list) {
 907		printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
 908		BUG();
 909	} else if (!(*pte_list & 1)) {
 910		rmap_printk("pte_list_remove:  %p 1->0\n", spte);
 911		if ((u64 *)*pte_list != spte) {
 912			printk(KERN_ERR "pte_list_remove:  %p 1->BUG\n", spte);
 913			BUG();
 914		}
 915		*pte_list = 0;
 916	} else {
 917		rmap_printk("pte_list_remove:  %p many->many\n", spte);
 918		desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 919		prev_desc = NULL;
 920		while (desc) {
 921			for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
 922				if (desc->sptes[i] == spte) {
 923					pte_list_desc_remove_entry(pte_list,
 924							       desc, i,
 925							       prev_desc);
 926					return;
 927				}
 928			prev_desc = desc;
 929			desc = desc->more;
 930		}
 931		pr_err("pte_list_remove: %p many->many\n", spte);
 932		BUG();
 933	}
 934}
 935
 936typedef void (*pte_list_walk_fn) (u64 *spte);
 937static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
 938{
 939	struct pte_list_desc *desc;
 940	int i;
 941
 942	if (!*pte_list)
 943		return;
 944
 945	if (!(*pte_list & 1))
 946		return fn((u64 *)*pte_list);
 947
 948	desc = (struct pte_list_desc *)(*pte_list & ~1ul);
 949	while (desc) {
 950		for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
 951			fn(desc->sptes[i]);
 952		desc = desc->more;
 953	}
 954}
 955
 956/*
 957 * Take gfn and return the reverse mapping to it.
 958 */
 959static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
 960{
 961	struct kvm_memory_slot *slot;
 962	struct kvm_lpage_info *linfo;
 963
 964	slot = gfn_to_memslot(kvm, gfn);
 965	if (likely(level == PT_PAGE_TABLE_LEVEL))
 966		return &slot->rmap[gfn - slot->base_gfn];
 967
 968	linfo = lpage_info_slot(gfn, slot, level);
 969
 970	return &linfo->rmap_pde;
 971}
 972
 973static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 974{
 975	struct kvm_mmu_page *sp;
 976	unsigned long *rmapp;
 977
 978	sp = page_header(__pa(spte));
 979	kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
 980	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
 981	return pte_list_add(vcpu, spte, rmapp);
 982}
 983
 984static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
 985{
 986	return pte_list_next(rmapp, spte);
 987}
 988
 989static void rmap_remove(struct kvm *kvm, u64 *spte)
 990{
 991	struct kvm_mmu_page *sp;
 992	gfn_t gfn;
 993	unsigned long *rmapp;
 994
 995	sp = page_header(__pa(spte));
 996	gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
 997	rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
 998	pte_list_remove(spte, rmapp);
 999}
1000
1001static void drop_spte(struct kvm *kvm, u64 *sptep)
1002{
1003	if (mmu_spte_clear_track_bits(sptep))
1004		rmap_remove(kvm, sptep);
1005}
1006
1007static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1008{
1009	unsigned long *rmapp;
1010	u64 *spte;
1011	int i, write_protected = 0;
1012
1013	rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
1014
1015	spte = rmap_next(kvm, rmapp, NULL);
1016	while (spte) {
1017		BUG_ON(!spte);
1018		BUG_ON(!(*spte & PT_PRESENT_MASK));
1019		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
1020		if (is_writable_pte(*spte)) {
1021			mmu_spte_update(spte, *spte & ~PT_WRITABLE_MASK);
1022			write_protected = 1;
1023		}
1024		spte = rmap_next(kvm, rmapp, spte);
1025	}
1026
1027	/* check for huge page mappings */
1028	for (i = PT_DIRECTORY_LEVEL;
1029	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1030		rmapp = gfn_to_rmap(kvm, gfn, i);
1031		spte = rmap_next(kvm, rmapp, NULL);
1032		while (spte) {
1033			BUG_ON(!spte);
1034			BUG_ON(!(*spte & PT_PRESENT_MASK));
1035			BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
1036			pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
1037			if (is_writable_pte(*spte)) {
1038				drop_spte(kvm, spte);
1039				--kvm->stat.lpages;
1040				spte = NULL;
1041				write_protected = 1;
1042			}
1043			spte = rmap_next(kvm, rmapp, spte);
1044		}
1045	}
1046
1047	return write_protected;
1048}
1049
1050static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1051			   unsigned long data)
1052{
1053	u64 *spte;
1054	int need_tlb_flush = 0;
1055
1056	while ((spte = rmap_next(kvm, rmapp, NULL))) {
1057		BUG_ON(!(*spte & PT_PRESENT_MASK));
1058		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
1059		drop_spte(kvm, spte);
1060		need_tlb_flush = 1;
1061	}
1062	return need_tlb_flush;
1063}
1064
1065static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1066			     unsigned long data)
1067{
1068	int need_flush = 0;
1069	u64 *spte, new_spte;
1070	pte_t *ptep = (pte_t *)data;
1071	pfn_t new_pfn;
1072
1073	WARN_ON(pte_huge(*ptep));
1074	new_pfn = pte_pfn(*ptep);
1075	spte = rmap_next(kvm, rmapp, NULL);
1076	while (spte) {
1077		BUG_ON(!is_shadow_present_pte(*spte));
1078		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
1079		need_flush = 1;
1080		if (pte_write(*ptep)) {
1081			drop_spte(kvm, spte);
1082			spte = rmap_next(kvm, rmapp, NULL);
1083		} else {
1084			new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
1085			new_spte |= (u64)new_pfn << PAGE_SHIFT;
1086
1087			new_spte &= ~PT_WRITABLE_MASK;
1088			new_spte &= ~SPTE_HOST_WRITEABLE;
1089			new_spte &= ~shadow_accessed_mask;
1090			mmu_spte_clear_track_bits(spte);
1091			mmu_spte_set(spte, new_spte);
1092			spte = rmap_next(kvm, rmapp, spte);
1093		}
1094	}
1095	if (need_flush)
1096		kvm_flush_remote_tlbs(kvm);
1097
1098	return 0;
1099}
1100
1101static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1102			  unsigned long data,
1103			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
1104					 unsigned long data))
1105{
1106	int i, j;
1107	int ret;
1108	int retval = 0;
1109	struct kvm_memslots *slots;
1110
1111	slots = kvm_memslots(kvm);
1112
1113	for (i = 0; i < slots->nmemslots; i++) {
1114		struct kvm_memory_slot *memslot = &slots->memslots[i];
1115		unsigned long start = memslot->userspace_addr;
1116		unsigned long end;
1117
1118		end = start + (memslot->npages << PAGE_SHIFT);
1119		if (hva >= start && hva < end) {
1120			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
1121			gfn_t gfn = memslot->base_gfn + gfn_offset;
1122
1123			ret = handler(kvm, &memslot->rmap[gfn_offset], data);
1124
1125			for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
1126				struct kvm_lpage_info *linfo;
1127
1128				linfo = lpage_info_slot(gfn, memslot,
1129							PT_DIRECTORY_LEVEL + j);
1130				ret |= handler(kvm, &linfo->rmap_pde, data);
1131			}
1132			trace_kvm_age_page(hva, memslot, ret);
1133			retval |= ret;
1134		}
1135	}
1136
1137	return retval;
1138}
1139
1140int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1141{
1142	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1143}
1144
1145void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1146{
1147	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
1148}
1149
1150static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1151			 unsigned long data)
1152{
1153	u64 *spte;
1154	int young = 0;
1155
1156	/*
1157	 * Emulate the accessed bit for EPT, by checking if this page has
1158	 * an EPT mapping, and clearing it if it does. On the next access,
1159	 * a new EPT mapping will be established.
1160	 * This has some overhead, but not as much as the cost of swapping
1161	 * out actively used pages or breaking up actively used hugepages.
1162	 */
1163	if (!shadow_accessed_mask)
1164		return kvm_unmap_rmapp(kvm, rmapp, data);
1165
1166	spte = rmap_next(kvm, rmapp, NULL);
1167	while (spte) {
1168		int _young;
1169		u64 _spte = *spte;
1170		BUG_ON(!(_spte & PT_PRESENT_MASK));
1171		_young = _spte & PT_ACCESSED_MASK;
1172		if (_young) {
1173			young = 1;
1174			clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
1175		}
1176		spte = rmap_next(kvm, rmapp, spte);
1177	}
1178	return young;
1179}
1180
1181static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1182			      unsigned long data)
1183{
1184	u64 *spte;
1185	int young = 0;
1186
1187	/*
1188	 * If there's no access bit in the secondary pte set by the
1189	 * hardware it's up to gup-fast/gup to set the access bit in
1190	 * the primary pte or in the page structure.
1191	 */
1192	if (!shadow_accessed_mask)
1193		goto out;
1194
1195	spte = rmap_next(kvm, rmapp, NULL);
1196	while (spte) {
1197		u64 _spte = *spte;
1198		BUG_ON(!(_spte & PT_PRESENT_MASK));
1199		young = _spte & PT_ACCESSED_MASK;
1200		if (young) {
1201			young = 1;
1202			break;
1203		}
1204		spte = rmap_next(kvm, rmapp, spte);
1205	}
1206out:
1207	return young;
1208}
1209
1210#define RMAP_RECYCLE_THRESHOLD 1000
1211
1212static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1213{
1214	unsigned long *rmapp;
1215	struct kvm_mmu_page *sp;
1216
1217	sp = page_header(__pa(spte));
1218
1219	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1220
1221	kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
1222	kvm_flush_remote_tlbs(vcpu->kvm);
1223}
1224
1225int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1226{
1227	return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
1228}
1229
1230int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1231{
1232	return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1233}
1234
1235#ifdef MMU_DEBUG
1236static int is_empty_shadow_page(u64 *spt)
1237{
1238	u64 *pos;
1239	u64 *end;
1240
1241	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
1242		if (is_shadow_present_pte(*pos)) {
1243			printk(KERN_ERR "%s: %p %llx\n", __func__,
1244			       pos, *pos);
1245			return 0;
1246		}
1247	return 1;
1248}
1249#endif
1250
1251/*
1252 * This value is the sum of all of the kvm instances's
1253 * kvm->arch.n_used_mmu_pages values.  We need a global,
1254 * aggregate version in order to make the slab shrinker
1255 * faster
1256 */
1257static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1258{
1259	kvm->arch.n_used_mmu_pages += nr;
1260	percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1261}
1262
1263/*
1264 * Remove the sp from shadow page cache, after call it,
1265 * we can not find this sp from the cache, and the shadow
1266 * page table is still valid.
1267 * It should be under the protection of mmu lock.
1268 */
1269static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
1270{
1271	ASSERT(is_empty_shadow_page(sp->spt));
1272	hlist_del(&sp->hash_link);
1273	if (!sp->role.direct)
1274		free_page((unsigned long)sp->gfns);
1275}
1276
1277/*
1278 * Free the shadow page table and the sp, we can do it
1279 * out of the protection of mmu lock.
1280 */
1281static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1282{
1283	list_del(&sp->link);
1284	free_page((unsigned long)sp->spt);
1285	kmem_cache_free(mmu_page_header_cache, sp);
1286}
1287
1288static unsigned kvm_page_table_hashfn(gfn_t gfn)
1289{
1290	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
1291}
1292
1293static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
1294				    struct kvm_mmu_page *sp, u64 *parent_pte)
1295{
1296	if (!parent_pte)
1297		return;
1298
1299	pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
1300}
1301
1302static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
1303				       u64 *parent_pte)
1304{
1305	pte_list_remove(parent_pte, &sp->parent_ptes);
1306}
1307
1308static void drop_parent_pte(struct kvm_mmu_page *sp,
1309			    u64 *parent_pte)
1310{
1311	mmu_page_remove_parent_pte(sp, parent_pte);
1312	mmu_spte_clear_no_track(parent_pte);
1313}
1314
1315static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1316					       u64 *parent_pte, int direct)
1317{
1318	struct kvm_mmu_page *sp;
1319	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache,
1320					sizeof *sp);
1321	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
1322	if (!direct)
1323		sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
1324						  PAGE_SIZE);
1325	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1326	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
1327	bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
1328	sp->parent_ptes = 0;
1329	mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1330	kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1331	return sp;
1332}
1333
1334static void mark_unsync(u64 *spte);
1335static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
1336{
1337	pte_list_walk(&sp->parent_ptes, mark_unsync);
1338}
1339
1340static void mark_unsync(u64 *spte)
1341{
1342	struct kvm_mmu_page *sp;
1343	unsigned int index;
1344
1345	sp = page_header(__pa(spte));
1346	index = spte - sp->spt;
1347	if (__test_and_set_bit(index, sp->unsync_child_bitmap))
1348		return;
1349	if (sp->unsync_children++)
1350		return;
1351	kvm_mmu_mark_parents_unsync(sp);
1352}
1353
1354static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
1355			       struct kvm_mmu_page *sp)
1356{
1357	return 1;
1358}
1359
1360static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1361{
1362}
1363
1364static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1365				 struct kvm_mmu_page *sp, u64 *spte,
1366				 const void *pte)
1367{
1368	WARN_ON(1);
1369}
1370
1371#define KVM_PAGE_ARRAY_NR 16
1372
1373struct kvm_mmu_pages {
1374	struct mmu_page_and_offset {
1375		struct kvm_mmu_page *sp;
1376		unsigned int idx;
1377	} page[KVM_PAGE_ARRAY_NR];
1378	unsigned int nr;
1379};
1380
1381#define for_each_unsync_children(bitmap, idx)		\
1382	for (idx = find_first_bit(bitmap, 512);		\
1383	     idx < 512;					\
1384	     idx = find_next_bit(bitmap, 512, idx+1))
1385
1386static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1387			 int idx)
1388{
1389	int i;
1390
1391	if (sp->unsync)
1392		for (i=0; i < pvec->nr; i++)
1393			if (pvec->page[i].sp == sp)
1394				return 0;
1395
1396	pvec->page[pvec->nr].sp = sp;
1397	pvec->page[pvec->nr].idx = idx;
1398	pvec->nr++;
1399	return (pvec->nr == KVM_PAGE_ARRAY_NR);
1400}
1401
1402static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1403			   struct kvm_mmu_pages *pvec)
1404{
1405	int i, ret, nr_unsync_leaf = 0;
1406
1407	for_each_unsync_children(sp->unsync_child_bitmap, i) {
1408		struct kvm_mmu_page *child;
1409		u64 ent = sp->spt[i];
1410
1411		if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1412			goto clear_child_bitmap;
1413
1414		child = page_header(ent & PT64_BASE_ADDR_MASK);
1415
1416		if (child->unsync_children) {
1417			if (mmu_pages_add(pvec, child, i))
1418				return -ENOSPC;
1419
1420			ret = __mmu_unsync_walk(child, pvec);
1421			if (!ret)
1422				goto clear_child_bitmap;
1423			else if (ret > 0)
1424				nr_unsync_leaf += ret;
1425			else
1426				return ret;
1427		} else if (child->unsync) {
1428			nr_unsync_leaf++;
1429			if (mmu_pages_add(pvec, child, i))
1430				return -ENOSPC;
1431		} else
1432			 goto clear_child_bitmap;
1433
1434		continue;
1435
1436clear_child_bitmap:
1437		__clear_bit(i, sp->unsync_child_bitmap);
1438		sp->unsync_children--;
1439		WARN_ON((int)sp->unsync_children < 0);
1440	}
1441
1442
1443	return nr_unsync_leaf;
1444}
1445
1446static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1447			   struct kvm_mmu_pages *pvec)
1448{
1449	if (!sp->unsync_children)
1450		return 0;
1451
1452	mmu_pages_add(pvec, sp, 0);
1453	return __mmu_unsync_walk(sp, pvec);
1454}
1455
1456static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1457{
1458	WARN_ON(!sp->unsync);
1459	trace_kvm_mmu_sync_page(sp);
1460	sp->unsync = 0;
1461	--kvm->stat.mmu_unsync;
1462}
1463
1464static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1465				    struct list_head *invalid_list);
1466static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1467				    struct list_head *invalid_list);
1468
1469#define for_each_gfn_sp(kvm, sp, gfn, pos)				\
1470  hlist_for_each_entry(sp, pos,						\
1471   &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
1472	if ((sp)->gfn != (gfn)) {} else
1473
1474#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos)		\
1475  hlist_for_each_entry(sp, pos,						\
1476   &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link)	\
1477		if ((sp)->gfn != (gfn) || (sp)->role.direct ||		\
1478			(sp)->role.invalid) {} else
1479
1480/* @sp->gfn should be write-protected at the call site */
1481static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1482			   struct list_head *invalid_list, bool clear_unsync)
1483{
1484	if (sp->role.cr4_pae != !!is_pae(vcpu)) {
1485		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1486		return 1;
1487	}
1488
1489	if (clear_unsync)
1490		kvm_unlink_unsync_page(vcpu->kvm, sp);
1491
1492	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
1493		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1494		return 1;
1495	}
1496
1497	kvm_mmu_flush_tlb(vcpu);
1498	return 0;
1499}
1500
1501static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1502				   struct kvm_mmu_page *sp)
1503{
1504	LIST_HEAD(invalid_list);
1505	int ret;
1506
1507	ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
1508	if (ret)
1509		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1510
1511	return ret;
1512}
1513
1514static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1515			 struct list_head *invalid_list)
1516{
1517	return __kvm_sync_page(vcpu, sp, invalid_list, true);
1518}
1519
1520/* @gfn should be write-protected at the call site */
1521static void kvm_sync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
1522{
1523	struct kvm_mmu_page *s;
1524	struct hlist_node *node;
1525	LIST_HEAD(invalid_list);
1526	bool flush = false;
1527
1528	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
1529		if (!s->unsync)
1530			continue;
1531
1532		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
1533		kvm_unlink_unsync_page(vcpu->kvm, s);
1534		if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
1535			(vcpu->arch.mmu.sync_page(vcpu, s))) {
1536			kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
1537			continue;
1538		}
1539		flush = true;
1540	}
1541
1542	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1543	if (flush)
1544		kvm_mmu_flush_tlb(vcpu);
1545}
1546
1547struct mmu_page_path {
1548	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1549	unsigned int idx[PT64_ROOT_LEVEL-1];
1550};
1551
1552#define for_each_sp(pvec, sp, parents, i)			\
1553		for (i = mmu_pages_next(&pvec, &parents, -1),	\
1554			sp = pvec.page[i].sp;			\
1555			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
1556			i = mmu_pages_next(&pvec, &parents, i))
1557
1558static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1559			  struct mmu_page_path *parents,
1560			  int i)
1561{
1562	int n;
1563
1564	for (n = i+1; n < pvec->nr; n++) {
1565		struct kvm_mmu_page *sp = pvec->page[n].sp;
1566
1567		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1568			parents->idx[0] = pvec->page[n].idx;
1569			return n;
1570		}
1571
1572		parents->parent[sp->role.level-2] = sp;
1573		parents->idx[sp->role.level-1] = pvec->page[n].idx;
1574	}
1575
1576	return n;
1577}
1578
1579static void mmu_pages_clear_parents(struct mmu_page_path *parents)
1580{
1581	struct kvm_mmu_page *sp;
1582	unsigned int level = 0;
1583
1584	do {
1585		unsigned int idx = parents->idx[level];
1586
1587		sp = parents->parent[level];
1588		if (!sp)
1589			return;
1590
1591		--sp->unsync_children;
1592		WARN_ON((int)sp->unsync_children < 0);
1593		__clear_bit(idx, sp->unsync_child_bitmap);
1594		level++;
1595	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
1596}
1597
1598static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1599			       struct mmu_page_path *parents,
1600			       struct kvm_mmu_pages *pvec)
1601{
1602	parents->parent[parent->role.level-1] = NULL;
1603	pvec->nr = 0;
1604}
1605
1606static void mmu_sync_children(struct kvm_vcpu *vcpu,
1607			      struct kvm_mmu_page *parent)
1608{
1609	int i;
1610	struct kvm_mmu_page *sp;
1611	struct mmu_page_path parents;
1612	struct kvm_mmu_pages pages;
1613	LIST_HEAD(invalid_list);
1614
1615	kvm_mmu_pages_init(parent, &parents, &pages);
1616	while (mmu_unsync_walk(parent, &pages)) {
1617		int protected = 0;
1618
1619		for_each_sp(pages, sp, parents, i)
1620			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1621
1622		if (protected)
1623			kvm_flush_remote_tlbs(vcpu->kvm);
1624
1625		for_each_sp(pages, sp, parents, i) {
1626			kvm_sync_page(vcpu, sp, &invalid_list);
1627			mmu_pages_clear_parents(&parents);
1628		}
1629		kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1630		cond_resched_lock(&vcpu->kvm->mmu_lock);
1631		kvm_mmu_pages_init(parent, &parents, &pages);
1632	}
1633}
1634
1635static void init_shadow_page_table(struct kvm_mmu_page *sp)
1636{
1637	int i;
1638
1639	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1640		sp->spt[i] = 0ull;
1641}
1642
1643static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1644					     gfn_t gfn,
1645					     gva_t gaddr,
1646					     unsigned level,
1647					     int direct,
1648					     unsigned access,
1649					     u64 *parent_pte)
1650{
1651	union kvm_mmu_page_role role;
1652	unsigned quadrant;
1653	struct kvm_mmu_page *sp;
1654	struct hlist_node *node;
1655	bool need_sync = false;
1656
1657	role = vcpu->arch.mmu.base_role;
1658	role.level = level;
1659	role.direct = direct;
1660	if (role.direct)
1661		role.cr4_pae = 0;
1662	role.access = access;
1663	if (!vcpu->arch.mmu.direct_map
1664	    && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
1665		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1666		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1667		role.quadrant = quadrant;
1668	}
1669	for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
1670		if (!need_sync && sp->unsync)
1671			need_sync = true;
1672
1673		if (sp->role.word != role.word)
1674			continue;
1675
1676		if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1677			break;
1678
1679		mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1680		if (sp->unsync_children) {
1681			kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1682			kvm_mmu_mark_parents_unsync(sp);
1683		} else if (sp->unsync)
1684			kvm_mmu_mark_parents_unsync(sp);
1685
1686		trace_kvm_mmu_get_page(sp, false);
1687		return sp;
1688	}
1689	++vcpu->kvm->stat.mmu_cache_miss;
1690	sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
1691	if (!sp)
1692		return sp;
1693	sp->gfn = gfn;
1694	sp->role = role;
1695	hlist_add_head(&sp->hash_link,
1696		&vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
1697	if (!direct) {
1698		if (rmap_write_protect(vcpu->kvm, gfn))
1699			kvm_flush_remote_tlbs(vcpu->kvm);
1700		if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1701			kvm_sync_pages(vcpu, gfn);
1702
1703		account_shadowed(vcpu->kvm, gfn);
1704	}
1705	init_shadow_page_table(sp);
1706	trace_kvm_mmu_get_page(sp, true);
1707	return sp;
1708}
1709
1710static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1711			     struct kvm_vcpu *vcpu, u64 addr)
1712{
1713	iterator->addr = addr;
1714	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1715	iterator->level = vcpu->arch.mmu.shadow_root_level;
1716
1717	if (iterator->level == PT64_ROOT_LEVEL &&
1718	    vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1719	    !vcpu->arch.mmu.direct_map)
1720		--iterator->level;
1721
1722	if (iterator->level == PT32E_ROOT_LEVEL) {
1723		iterator->shadow_addr
1724			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1725		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1726		--iterator->level;
1727		if (!iterator->shadow_addr)
1728			iterator->level = 0;
1729	}
1730}
1731
1732static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1733{
1734	if (iterator->level < PT_PAGE_TABLE_LEVEL)
1735		return false;
1736
1737	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1738	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1739	return true;
1740}
1741
1742static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1743			       u64 spte)
1744{
1745	if (is_last_spte(spte, iterator->level)) {
1746		iterator->level = 0;
1747		return;
1748	}
1749
1750	iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
1751	--iterator->level;
1752}
1753
1754static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1755{
1756	return __shadow_walk_next(iterator, *iterator->sptep);
1757}
1758
1759static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1760{
1761	u64 spte;
1762
1763	spte = __pa(sp->spt)
1764		| PT_PRESENT_MASK | PT_ACCESSED_MASK
1765		| PT_WRITABLE_MASK | PT_USER_MASK;
1766	mmu_spte_set(sptep, spte);
1767}
1768
1769static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1770{
1771	if (is_large_pte(*sptep)) {
1772		drop_spte(vcpu->kvm, sptep);
1773		kvm_flush_remote_tlbs(vcpu->kvm);
1774	}
1775}
1776
1777static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1778				   unsigned direct_access)
1779{
1780	if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1781		struct kvm_mmu_page *child;
1782
1783		/*
1784		 * For the direct sp, if the guest pte's dirty bit
1785		 * changed form clean to dirty, it will corrupt the
1786		 * sp's access: allow writable in the read-only sp,
1787		 * so we should update the spte at this point to get
1788		 * a new sp with the correct access.
1789		 */
1790		child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1791		if (child->role.access == direct_access)
1792			return;
1793
1794		drop_parent_pte(child, sptep);
1795		kvm_flush_remote_tlbs(vcpu->kvm);
1796	}
1797}
1798
1799static void mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
1800			     u64 *spte)
1801{
1802	u64 pte;
1803	struct kvm_mmu_page *child;
1804
1805	pte = *spte;
1806	if (is_shadow_present_pte(pte)) {
1807		if (is_last_spte(pte, sp->role.level))
1808			drop_spte(kvm, spte);
1809		else {
1810			child = page_header(pte & PT64_BASE_ADDR_MASK);
1811			drop_parent_pte(child, spte);
1812		}
1813	} else if (is_mmio_spte(pte))
1814		mmu_spte_clear_no_track(spte);
1815
1816	if (is_large_pte(pte))
1817		--kvm->stat.lpages;
1818}
1819
1820static void kvm_mmu_page_unlink_children(struct kvm *kvm,
1821					 struct kvm_mmu_page *sp)
1822{
1823	unsigned i;
1824
1825	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1826		mmu_page_zap_pte(kvm, sp, sp->spt + i);
1827}
1828
1829static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
1830{
1831	mmu_page_remove_parent_pte(sp, parent_pte);
1832}
1833
1834static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
1835{
1836	int i;
1837	struct kvm_vcpu *vcpu;
1838
1839	kvm_for_each_vcpu(i, vcpu, kvm)
1840		vcpu->arch.last_pte_updated = NULL;
1841}
1842
1843static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
1844{
1845	u64 *parent_pte;
1846
1847	while ((parent_pte = pte_list_next(&sp->parent_ptes, NULL)))
1848		drop_parent_pte(sp, parent_pte);
1849}
1850
1851static int mmu_zap_unsync_children(struct kvm *kvm,
1852				   struct kvm_mmu_page *parent,
1853				   struct list_head *invalid_list)
1854{
1855	int i, zapped = 0;
1856	struct mmu_page_path parents;
1857	struct kvm_mmu_pages pages;
1858
1859	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
1860		return 0;
1861
1862	kvm_mmu_pages_init(parent, &parents, &pages);
1863	while (mmu_unsync_walk(parent, &pages)) {
1864		struct kvm_mmu_page *sp;
1865
1866		for_each_sp(pages, sp, parents, i) {
1867			kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
1868			mmu_pages_clear_parents(&parents);
1869			zapped++;
1870		}
1871		kvm_mmu_pages_init(parent, &parents, &pages);
1872	}
1873
1874	return zapped;
1875}
1876
1877static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1878				    struct list_head *invalid_list)
1879{
1880	int ret;
1881
1882	trace_kvm_mmu_prepare_zap_page(sp);
1883	++kvm->stat.mmu_shadow_zapped;
1884	ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
1885	kvm_mmu_page_unlink_children(kvm, sp);
1886	kvm_mmu_unlink_parents(kvm, sp);
1887	if (!sp->role.invalid && !sp->role.direct)
1888		unaccount_shadowed(kvm, sp->gfn);
1889	if (sp->unsync)
1890		kvm_unlink_unsync_page(kvm, sp);
1891	if (!sp->root_count) {
1892		/* Count self */
1893		ret++;
1894		list_move(&sp->link, invalid_list);
1895		kvm_mod_used_mmu_pages(kvm, -1);
1896	} else {
1897		list_move(&sp->link, &kvm->arch.active_mmu_pages);
1898		kvm_reload_remote_mmus(kvm);
1899	}
1900
1901	sp->role.invalid = 1;
1902	kvm_mmu_reset_last_pte_updated(kvm);
1903	return ret;
1904}
1905
1906static void kvm_mmu_isolate_pages(struct list_head *invalid_list)
1907{
1908	struct kvm_mmu_page *sp;
1909
1910	list_for_each_entry(sp, invalid_list, link)
1911		kvm_mmu_isolate_page(sp);
1912}
1913
1914static void free_pages_rcu(struct rcu_head *head)
1915{
1916	struct kvm_mmu_page *next, *sp;
1917
1918	sp = container_of(head, struct kvm_mmu_page, rcu);
1919	while (sp) {
1920		if (!list_empty(&sp->link))
1921			next = list_first_entry(&sp->link,
1922				      struct kvm_mmu_page, link);
1923		else
1924			next = NULL;
1925		kvm_mmu_free_page(sp);
1926		sp = next;
1927	}
1928}
1929
1930static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1931				    struct list_head *invalid_list)
1932{
1933	struct kvm_mmu_page *sp;
1934
1935	if (list_empty(invalid_list))
1936		return;
1937
1938	kvm_flush_remote_tlbs(kvm);
1939
1940	if (atomic_read(&kvm->arch.reader_counter)) {
1941		kvm_mmu_isolate_pages(invalid_list);
1942		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1943		list_del_init(invalid_list);
1944
1945		trace_kvm_mmu_delay_free_pages(sp);
1946		call_rcu(&sp->rcu, free_pages_rcu);
1947		return;
1948	}
1949
1950	do {
1951		sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
1952		WARN_ON(!sp->role.invalid || sp->root_count);
1953		kvm_mmu_isolate_page(sp);
1954		kvm_mmu_free_page(sp);
1955	} while (!list_empty(invalid_list));
1956
1957}
1958
1959/*
1960 * Changing the number of mmu pages allocated to the vm
1961 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
1962 */
1963void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
1964{
1965	LIST_HEAD(invalid_list);
1966	/*
1967	 * If we set the number of mmu pages to be smaller be than the
1968	 * number of actived pages , we must to free some mmu pages before we
1969	 * change the value
1970	 */
1971
1972	if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
1973		while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
1974			!list_empty(&kvm->arch.active_mmu_pages)) {
1975			struct kvm_mmu_page *page;
1976
1977			page = container_of(kvm->arch.active_mmu_pages.prev,
1978					    struct kvm_mmu_page, link);
1979			kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
1980		}
1981		kvm_mmu_commit_zap_page(kvm, &invalid_list);
1982		goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
1983	}
1984
1985	kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
1986}
1987
1988static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
1989{
1990	struct kvm_mmu_page *sp;
1991	struct hlist_node *node;
1992	LIST_HEAD(invalid_list);
1993	int r;
1994
1995	pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
1996	r = 0;
1997
1998	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
1999		pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
2000			 sp->role.word);
2001		r = 1;
2002		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2003	}
2004	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2005	return r;
2006}
2007
2008static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
2009{
2010	struct kvm_mmu_page *sp;
2011	struct hlist_node *node;
2012	LIST_HEAD(invalid_list);
2013
2014	for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
2015		pgprintk("%s: zap %llx %x\n",
2016			 __func__, gfn, sp->role.word);
2017		kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
2018	}
2019	kvm_mmu_commit_zap_page(kvm, &invalid_list);
2020}
2021
2022static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
2023{
2024	int slot = memslot_id(kvm, gfn);
2025	struct kvm_mmu_page *sp = page_header(__pa(pte));
2026
2027	__set_bit(slot, sp->slot_bitmap);
2028}
2029
2030/*
2031 * The function is based on mtrr_type_lookup() in
2032 * arch/x86/kernel/cpu/mtrr/generic.c
2033 */
2034static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2035			 u64 start, u64 end)
2036{
2037	int i;
2038	u64 base, mask;
2039	u8 prev_match, curr_match;
2040	int num_var_ranges = KVM_NR_VAR_MTRR;
2041
2042	if (!mtrr_state->enabled)
2043		return 0xFF;
2044
2045	/* Make end inclusive end, instead of exclusive */
2046	end--;
2047
2048	/* Look in fixed ranges. Just return the type as per start */
2049	if (mtrr_state->have_fixed && (start < 0x100000)) {
2050		int idx;
2051
2052		if (start < 0x80000) {
2053			idx = 0;
2054			idx += (start >> 16);
2055			return mtrr_state->fixed_ranges[idx];
2056		} else if (start < 0xC0000) {
2057			idx = 1 * 8;
2058			idx += ((start - 0x80000) >> 14);
2059			return mtrr_state->fixed_ranges[idx];
2060		} else if (start < 0x1000000) {
2061			idx = 3 * 8;
2062			idx += ((start - 0xC0000) >> 12);
2063			return mtrr_state->fixed_ranges[idx];
2064		}
2065	}
2066
2067	/*
2068	 * Look in variable ranges
2069	 * Look of multiple ranges matching this address and pick type
2070	 * as per MTRR precedence
2071	 */
2072	if (!(mtrr_state->enabled & 2))
2073		return mtrr_state->def_type;
2074
2075	prev_match = 0xFF;
2076	for (i = 0; i < num_var_ranges; ++i) {
2077		unsigned short start_state, end_state;
2078
2079		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2080			continue;
2081
2082		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2083		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2084		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2085		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2086
2087		start_state = ((start & mask) == (base & mask));
2088		end_state = ((end & mask) == (base & mask));
2089		if (start_state != end_state)
2090			return 0xFE;
2091
2092		if ((start & mask) != (base & mask))
2093			continue;
2094
2095		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2096		if (prev_match == 0xFF) {
2097			prev_match = curr_match;
2098			continue;
2099		}
2100
2101		if (prev_match == MTRR_TYPE_UNCACHABLE ||
2102		    curr_match == MTRR_TYPE_UNCACHABLE)
2103			return MTRR_TYPE_UNCACHABLE;
2104
2105		if ((prev_match == MTRR_TYPE_WRBACK &&
2106		     curr_match == MTRR_TYPE_WRTHROUGH) ||
2107		    (prev_match == MTRR_TYPE_WRTHROUGH &&
2108		     curr_match == MTRR_TYPE_WRBACK)) {
2109			prev_match = MTRR_TYPE_WRTHROUGH;
2110			curr_match = MTRR_TYPE_WRTHROUGH;
2111		}
2112
2113		if (prev_match != curr_match)
2114			return MTRR_TYPE_UNCACHABLE;
2115	}
2116
2117	if (prev_match != 0xFF)
2118		return prev_match;
2119
2120	return mtrr_state->def_type;
2121}
2122
2123u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
2124{
2125	u8 mtrr;
2126
2127	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2128			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
2129	if (mtrr == 0xfe || mtrr == 0xff)
2130		mtrr = MTRR_TYPE_WRBACK;
2131	return mtrr;
2132}
2133EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
2134
2135static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2136{
2137	trace_kvm_mmu_unsync_page(sp);
2138	++vcpu->kvm->stat.mmu_unsync;
2139	sp->unsync = 1;
2140
2141	kvm_mmu_mark_parents_unsync(sp);
2142}
2143
2144static void kvm_unsync_pages(struct kvm_vcpu *vcpu,  gfn_t gfn)
2145{
2146	struct kvm_mmu_page *s;
2147	struct hlist_node *node;
2148
2149	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2150		if (s->unsync)
2151			continue;
2152		WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2153		__kvm_unsync_page(vcpu, s);
2154	}
2155}
2156
2157static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2158				  bool can_unsync)
2159{
2160	struct kvm_mmu_page *s;
2161	struct hlist_node *node;
2162	bool need_unsync = false;
2163
2164	for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
2165		if (!can_unsync)
2166			return 1;
2167
2168		if (s->role.level != PT_PAGE_TABLE_LEVEL)
2169			return 1;
2170
2171		if (!need_unsync && !s->unsync) {
2172			if (!oos_shadow)
2173				return 1;
2174			need_unsync = true;
2175		}
2176	}
2177	if (need_unsync)
2178		kvm_unsync_pages(vcpu, gfn);
2179	return 0;
2180}
2181
2182static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2183		    unsigned pte_access, int user_fault,
2184		    int write_fault, int level,
2185		    gfn_t gfn, pfn_t pfn, bool speculative,
2186		    bool can_unsync, bool host_writable)
2187{
2188	u64 spte, entry = *sptep;
2189	int ret = 0;
2190
2191	if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2192		return 0;
2193
2194	/*
2195	 * We don't set the accessed bit, since we sometimes want to see
2196	 * whether the guest actually used the pte (in order to detect
2197	 * demand paging).
2198	 */
2199	spte = PT_PRESENT_MASK;
2200	if (!speculative)
2201		spte |= shadow_accessed_mask;
2202
2203	if (pte_access & ACC_EXEC_MASK)
2204		spte |= shadow_x_mask;
2205	else
2206		spte |= shadow_nx_mask;
2207	if (pte_access & ACC_USER_MASK)
2208		spte |= shadow_user_mask;
2209	if (level > PT_PAGE_TABLE_LEVEL)
2210		spte |= PT_PAGE_SIZE_MASK;
2211	if (tdp_enabled)
2212		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2213			kvm_is_mmio_pfn(pfn));
2214
2215	if (host_writable)
2216		spte |= SPTE_HOST_WRITEABLE;
2217	else
2218		pte_access &= ~ACC_WRITE_MASK;
2219
2220	spte |= (u64)pfn << PAGE_SHIFT;
2221
2222	if ((pte_access & ACC_WRITE_MASK)
2223	    || (!vcpu->arch.mmu.direct_map && write_fault
2224		&& !is_write_protection(vcpu) && !user_fault)) {
2225
2226		if (level > PT_PAGE_TABLE_LEVEL &&
2227		    has_wrprotected_page(vcpu->kvm, gfn, level)) {
2228			ret = 1;
2229			drop_spte(vcpu->kvm, sptep);
2230			goto done;
2231		}
2232
2233		spte |= PT_WRITABLE_MASK;
2234
2235		if (!vcpu->arch.mmu.direct_map
2236		    && !(pte_access & ACC_WRITE_MASK)) {
2237			spte &= ~PT_USER_MASK;
2238			/*
2239			 * If we converted a user page to a kernel page,
2240			 * so that the kernel can write to it when cr0.wp=0,
2241			 * then we should prevent the kernel from executing it
2242			 * if SMEP is enabled.
2243			 */
2244			if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2245				spte |= PT64_NX_MASK;
2246		}
2247
2248		/*
2249		 * Optimization: for pte sync, if spte was writable the hash
2250		 * lookup is unnecessary (and expensive). Write protection
2251		 * is responsibility of mmu_get_page / kvm_sync_page.
2252		 * Same reasoning can be applied to dirty page accounting.
2253		 */
2254		if (!can_unsync && is_writable_pte(*sptep))
2255			goto set_pte;
2256
2257		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
2258			pgprintk("%s: found shadow page for %llx, marking ro\n",
2259				 __func__, gfn);
2260			ret = 1;
2261			pte_access &= ~ACC_WRITE_MASK;
2262			if (is_writable_pte(spte))
2263				spte &= ~PT_WRITABLE_MASK;
2264		}
2265	}
2266
2267	if (pte_access & ACC_WRITE_MASK)
2268		mark_page_dirty(vcpu->kvm, gfn);
2269
2270set_pte:
2271	mmu_spte_update(sptep, spte);
2272	/*
2273	 * If we overwrite a writable spte with a read-only one we
2274	 * should flush remote TLBs. Otherwise rmap_write_protect
2275	 * will find a read-only spte, even though the writable spte
2276	 * might be cached on a CPU's TLB.
2277	 */
2278	if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2279		kvm_flush_remote_tlbs(vcpu->kvm);
2280done:
2281	return ret;
2282}
2283
2284static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2285			 unsigned pt_access, unsigned pte_access,
2286			 int user_fault, int write_fault,
2287			 int *emulate, int level, gfn_t gfn,
2288			 pfn_t pfn, bool speculative,
2289			 bool host_writable)
2290{
2291	int was_rmapped = 0;
2292	int rmap_count;
2293
2294	pgprintk("%s: spte %llx access %x write_fault %d"
2295		 " user_fault %d gfn %llx\n",
2296		 __func__, *sptep, pt_access,
2297		 write_fault, user_fault, gfn);
2298
2299	if (is_rmap_spte(*sptep)) {
2300		/*
2301		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2302		 * the parent of the now unreachable PTE.
2303		 */
2304		if (level > PT_PAGE_TABLE_LEVEL &&
2305		    !is_large_pte(*sptep)) {
2306			struct kvm_mmu_page *child;
2307			u64 pte = *sptep;
2308
2309			child = page_header(pte & PT64_BASE_ADDR_MASK);
2310			drop_parent_pte(child, sptep);
2311			kvm_flush_remote_tlbs(vcpu->kvm);
2312		} else if (pfn != spte_to_pfn(*sptep)) {
2313			pgprintk("hfn old %llx new %llx\n",
2314				 spte_to_pfn(*sptep), pfn);
2315			drop_spte(vcpu->kvm, sptep);
2316			kvm_flush_remote_tlbs(vcpu->kvm);
2317		} else
2318			was_rmapped = 1;
2319	}
2320
2321	if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
2322		      level, gfn, pfn, speculative, true,
2323		      host_writable)) {
2324		if (write_fault)
2325			*emulate = 1;
2326		kvm_mmu_flush_tlb(vcpu);
2327	}
2328
2329	if (unlikely(is_mmio_spte(*sptep) && emulate))
2330		*emulate = 1;
2331
2332	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
2333	pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
2334		 is_large_pte(*sptep)? "2MB" : "4kB",
2335		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2336		 *sptep, sptep);
2337	if (!was_rmapped && is_large_pte(*sptep))
2338		++vcpu->kvm->stat.lpages;
2339
2340	if (is_shadow_present_pte(*sptep)) {
2341		page_header_update_slot(vcpu->kvm, sptep, gfn);
2342		if (!was_rmapped) {
2343			rmap_count = rmap_add(vcpu, sptep, gfn);
2344			if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2345				rmap_recycle(vcpu, sptep, gfn);
2346		}
2347	}
2348	kvm_release_pfn_clean(pfn);
2349	if (speculative) {
2350		vcpu->arch.last_pte_updated = sptep;
2351		vcpu->arch.last_pte_gfn = gfn;
2352	}
2353}
2354
2355static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2356{
2357}
2358
2359static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2360				     bool no_dirty_log)
2361{
2362	struct kvm_memory_slot *slot;
2363	unsigned long hva;
2364
2365	slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
2366	if (!slot) {
2367		get_page(fault_page);
2368		return page_to_pfn(fault_page);
2369	}
2370
2371	hva = gfn_to_hva_memslot(slot, gfn);
2372
2373	return hva_to_pfn_atomic(vcpu->kvm, hva);
2374}
2375
2376static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2377				    struct kvm_mmu_page *sp,
2378				    u64 *start, u64 *end)
2379{
2380	struct page *pages[PTE_PREFETCH_NUM];
2381	unsigned access = sp->role.access;
2382	int i, ret;
2383	gfn_t gfn;
2384
2385	gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
2386	if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
2387		return -1;
2388
2389	ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2390	if (ret <= 0)
2391		return -1;
2392
2393	for (i = 0; i < ret; i++, gfn++, start++)
2394		mmu_set_spte(vcpu, start, ACC_ALL,
2395			     access, 0, 0, NULL,
2396			     sp->role.level, gfn,
2397			     page_to_pfn(pages[i]), true, true);
2398
2399	return 0;
2400}
2401
2402static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2403				  struct kvm_mmu_page *sp, u64 *sptep)
2404{
2405	u64 *spte, *start = NULL;
2406	int i;
2407
2408	WARN_ON(!sp->role.direct);
2409
2410	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2411	spte = sp->spt + i;
2412
2413	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
2414		if (is_shadow_present_pte(*spte) || spte == sptep) {
2415			if (!start)
2416				continue;
2417			if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2418				break;
2419			start = NULL;
2420		} else if (!start)
2421			start = spte;
2422	}
2423}
2424
2425static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2426{
2427	struct kvm_mmu_page *sp;
2428
2429	/*
2430	 * Since it's no accessed bit on EPT, it's no way to
2431	 * distinguish between actually accessed translations
2432	 * and prefetched, so disable pte prefetch if EPT is
2433	 * enabled.
2434	 */
2435	if (!shadow_accessed_mask)
2436		return;
2437
2438	sp = page_header(__pa(sptep));
2439	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2440		return;
2441
2442	__direct_pte_prefetch(vcpu, sp, sptep);
2443}
2444
2445static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2446			int map_writable, int level, gfn_t gfn, pfn_t pfn,
2447			bool prefault)
2448{
2449	struct kvm_shadow_walk_iterator iterator;
2450	struct kvm_mmu_page *sp;
2451	int emulate = 0;
2452	gfn_t pseudo_gfn;
2453
2454	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
2455		if (iterator.level == level) {
2456			unsigned pte_access = ACC_ALL;
2457
2458			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
2459				     0, write, &emulate,
2460				     level, gfn, pfn, prefault, map_writable);
2461			direct_pte_prefetch(vcpu, iterator.sptep);
2462			++vcpu->stat.pf_fixed;
2463			break;
2464		}
2465
2466		if (!is_shadow_present_pte(*iterator.sptep)) {
2467			u64 base_addr = iterator.addr;
2468
2469			base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2470			pseudo_gfn = base_addr >> PAGE_SHIFT;
2471			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2472					      iterator.level - 1,
2473					      1, ACC_ALL, iterator.sptep);
2474			if (!sp) {
2475				pgprintk("nonpaging_map: ENOMEM\n");
2476				kvm_release_pfn_clean(pfn);
2477				return -ENOMEM;
2478			}
2479
2480			mmu_spte_set(iterator.sptep,
2481				     __pa(sp->spt)
2482				     | PT_PRESENT_MASK | PT_WRITABLE_MASK
2483				     | shadow_user_mask | shadow_x_mask
2484				     | shadow_accessed_mask);
2485		}
2486	}
2487	return emulate;
2488}
2489
2490static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
2491{
2492	siginfo_t info;
2493
2494	info.si_signo	= SIGBUS;
2495	info.si_errno	= 0;
2496	info.si_code	= BUS_MCEERR_AR;
2497	info.si_addr	= (void __user *)address;
2498	info.si_addr_lsb = PAGE_SHIFT;
2499
2500	send_sig_info(SIGBUS, &info, tsk);
2501}
2502
2503static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
2504{
2505	kvm_release_pfn_clean(pfn);
2506	if (is_hwpoison_pfn(pfn)) {
2507		kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
2508		return 0;
2509	}
2510
2511	return -EFAULT;
2512}
2513
2514static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2515					gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2516{
2517	pfn_t pfn = *pfnp;
2518	gfn_t gfn = *gfnp;
2519	int level = *levelp;
2520
2521	/*
2522	 * Check if it's a transparent hugepage. If this would be an
2523	 * hugetlbfs page, level wouldn't be set to
2524	 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2525	 * here.
2526	 */
2527	if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2528	    level == PT_PAGE_TABLE_LEVEL &&
2529	    PageTransCompound(pfn_to_page(pfn)) &&
2530	    !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2531		unsigned long mask;
2532		/*
2533		 * mmu_notifier_retry was successful and we hold the
2534		 * mmu_lock here, so the pmd can't become splitting
2535		 * from under us, and in turn
2536		 * __split_huge_page_refcount() can't run from under
2537		 * us and we can safely transfer the refcount from
2538		 * PG_tail to PG_head as we switch the pfn to tail to
2539		 * head.
2540		 */
2541		*levelp = level = PT_DIRECTORY_LEVEL;
2542		mask = KVM_PAGES_PER_HPAGE(level) - 1;
2543		VM_BUG_ON((gfn & mask) != (pfn & mask));
2544		if (pfn & mask) {
2545			gfn &= ~mask;
2546			*gfnp = gfn;
2547			kvm_release_pfn_clean(pfn);
2548			pfn &= ~mask;
2549			if (!get_page_unless_zero(pfn_to_page(pfn)))
2550				BUG();
2551			*pfnp = pfn;
2552		}
2553	}
2554}
2555
2556static bool mmu_invalid_pfn(pfn_t pfn)
2557{
2558	return unlikely(is_invalid_pfn(pfn));
2559}
2560
2561static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2562				pfn_t pfn, unsigned access, int *ret_val)
2563{
2564	bool ret = true;
2565
2566	/* The pfn is invalid, report the error! */
2567	if (unlikely(is_invalid_pfn(pfn))) {
2568		*ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2569		goto exit;
2570	}
2571
2572	if (unlikely(is_noslot_pfn(pfn)))
2573		vcpu_cache_mmio_info(vcpu, gva, gfn, access);
2574
2575	ret = false;
2576exit:
2577	return ret;
2578}
2579
2580static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
2581			 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2582
2583static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
2584			 bool prefault)
2585{
2586	int r;
2587	int level;
2588	int force_pt_level;
2589	pfn_t pfn;
2590	unsigned long mmu_seq;
2591	bool map_writable;
2592
2593	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2594	if (likely(!force_pt_level)) {
2595		level = mapping_level(vcpu, gfn);
2596		/*
2597		 * This path builds a PAE pagetable - so we can map
2598		 * 2mb pages at maximum. Therefore check if the level
2599		 * is larger than that.
2600		 */
2601		if (level > PT_DIRECTORY_LEVEL)
2602			level = PT_DIRECTORY_LEVEL;
2603
2604		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2605	} else
2606		level = PT_PAGE_TABLE_LEVEL;
2607
2608	mmu_seq = vcpu->kvm->mmu_notifier_seq;
2609	smp_rmb();
2610
2611	if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
2612		return 0;
2613
2614	if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2615		return r;
2616
2617	spin_lock(&vcpu->kvm->mmu_lock);
2618	if (mmu_notifier_retry(vcpu, mmu_seq))
2619		goto out_unlock;
2620	kvm_mmu_free_some_pages(vcpu);
2621	if (likely(!force_pt_level))
2622		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2623	r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2624			 prefault);
2625	spin_unlock(&vcpu->kvm->mmu_lock);
2626
2627
2628	return r;
2629
2630out_unlock:
2631	spin_unlock(&vcpu->kvm->mmu_lock);
2632	kvm_release_pfn_clean(pfn);
2633	return 0;
2634}
2635
2636
2637static void mmu_free_roots(struct kvm_vcpu *vcpu)
2638{
2639	int i;
2640	struct kvm_mmu_page *sp;
2641	LIST_HEAD(invalid_list);
2642
2643	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2644		return;
2645	spin_lock(&vcpu->kvm->mmu_lock);
2646	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2647	    (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2648	     vcpu->arch.mmu.direct_map)) {
2649		hpa_t root = vcpu->arch.mmu.root_hpa;
2650
2651		sp = page_header(root);
2652		--sp->root_count;
2653		if (!sp->root_count && sp->role.invalid) {
2654			kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2655			kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2656		}
2657		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2658		spin_unlock(&vcpu->kvm->mmu_lock);
2659		return;
2660	}
2661	for (i = 0; i < 4; ++i) {
2662		hpa_t root = vcpu->arch.mmu.pae_root[i];
2663
2664		if (root) {
2665			root &= PT64_BASE_ADDR_MASK;
2666			sp = page_header(root);
2667			--sp->root_count;
2668			if (!sp->root_count && sp->role.invalid)
2669				kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2670							 &invalid_list);
2671		}
2672		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
2673	}
2674	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2675	spin_unlock(&vcpu->kvm->mmu_lock);
2676	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
2677}
2678
2679static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2680{
2681	int ret = 0;
2682
2683	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
2684		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2685		ret = 1;
2686	}
2687
2688	return ret;
2689}
2690
2691static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2692{
2693	struct kvm_mmu_page *sp;
2694	unsigned i;
2695
2696	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2697		spin_lock(&vcpu->kvm->mmu_lock);
2698		kvm_mmu_free_some_pages(vcpu);
2699		sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2700				      1, ACC_ALL, NULL);
2701		++sp->root_count;
2702		spin_unlock(&vcpu->kvm->mmu_lock);
2703		vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2704	} else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2705		for (i = 0; i < 4; ++i) {
2706			hpa_t root = vcpu->arch.mmu.pae_root[i];
2707
2708			ASSERT(!VALID_PAGE(root));
2709			spin_lock(&vcpu->kvm->mmu_lock);
2710			kvm_mmu_free_some_pages(vcpu);
2711			sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2712					      i << 30,
2713					      PT32_ROOT_LEVEL, 1, ACC_ALL,
2714					      NULL);
2715			root = __pa(sp->spt);
2716			++sp->root_count;
2717			spin_unlock(&vcpu->kvm->mmu_lock);
2718			vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
2719		}
2720		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2721	} else
2722		BUG();
2723
2724	return 0;
2725}
2726
2727static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
2728{
2729	struct kvm_mmu_page *sp;
2730	u64 pdptr, pm_mask;
2731	gfn_t root_gfn;
2732	int i;
2733
2734	root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
2735
2736	if (mmu_check_root(vcpu, root_gfn))
2737		return 1;
2738
2739	/*
2740	 * Do we shadow a long mode page table? If so we need to
2741	 * write-protect the guests page table root.
2742	 */
2743	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2744		hpa_t root = vcpu->arch.mmu.root_hpa;
2745
2746		ASSERT(!VALID_PAGE(root));
2747
2748		spin_lock(&vcpu->kvm->mmu_lock);
2749		kvm_mmu_free_some_pages(vcpu);
2750		sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2751				      0, ACC_ALL, NULL);
2752		root = __pa(sp->spt);
2753		++sp->root_count;
2754		spin_unlock(&vcpu->kvm->mmu_lock);
2755		vcpu->arch.mmu.root_hpa = root;
2756		return 0;
2757	}
2758
2759	/*
2760	 * We shadow a 32 bit page table. This may be a legacy 2-level
2761	 * or a PAE 3-level page table. In either case we need to be aware that
2762	 * the shadow page table may be a PAE or a long mode page table.
2763	 */
2764	pm_mask = PT_PRESENT_MASK;
2765	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2766		pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2767
2768	for (i = 0; i < 4; ++i) {
2769		hpa_t root = vcpu->arch.mmu.pae_root[i];
2770
2771		ASSERT(!VALID_PAGE(root));
2772		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
2773			pdptr = kvm_pdptr_read_mmu(vcpu, &vcpu->arch.mmu, i);
2774			if (!is_present_gpte(pdptr)) {
2775				vcpu->arch.mmu.pae_root[i] = 0;
2776				continue;
2777			}
2778			root_gfn = pdptr >> PAGE_SHIFT;
2779			if (mmu_check_root(vcpu, root_gfn))
2780				return 1;
2781		}
2782		spin_lock(&vcpu->kvm->mmu_lock);
2783		kvm_mmu_free_some_pages(vcpu);
2784		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
2785				      PT32_ROOT_LEVEL, 0,
2786				      ACC_ALL, NULL);
2787		root = __pa(sp->spt);
2788		++sp->root_count;
2789		spin_unlock(&vcpu->kvm->mmu_lock);
2790
2791		vcpu->arch.mmu.pae_root[i] = root | pm_mask;
2792	}
2793	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
2794
2795	/*
2796	 * If we shadow a 32 bit page table with a long mode page
2797	 * table we enter this path.
2798	 */
2799	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2800		if (vcpu->arch.mmu.lm_root == NULL) {
2801			/*
2802			 * The additional page necessary for this is only
2803			 * allocated on demand.
2804			 */
2805
2806			u64 *lm_root;
2807
2808			lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2809			if (lm_root == NULL)
2810				return 1;
2811
2812			lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2813
2814			vcpu->arch.mmu.lm_root = lm_root;
2815		}
2816
2817		vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2818	}
2819
2820	return 0;
2821}
2822
2823static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2824{
2825	if (vcpu->arch.mmu.direct_map)
2826		return mmu_alloc_direct_roots(vcpu);
2827	else
2828		return mmu_alloc_shadow_roots(vcpu);
2829}
2830
2831static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2832{
2833	int i;
2834	struct kvm_mmu_page *sp;
2835
2836	if (vcpu->arch.mmu.direct_map)
2837		return;
2838
2839	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2840		return;
2841
2842	vcpu_clear_mmio_info(vcpu, ~0ul);
2843	trace_kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
2844	if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
2845		hpa_t root = vcpu->arch.mmu.root_hpa;
2846		sp = page_header(root);
2847		mmu_sync_children(vcpu, sp);
2848		trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2849		return;
2850	}
2851	for (i = 0; i < 4; ++i) {
2852		hpa_t root = vcpu->arch.mmu.pae_root[i];
2853
2854		if (root && VALID_PAGE(root)) {
2855			root &= PT64_BASE_ADDR_MASK;
2856			sp = page_header(root);
2857			mmu_sync_children(vcpu, sp);
2858		}
2859	}
2860	trace_kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
2861}
2862
2863void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2864{
2865	spin_lock(&vcpu->kvm->mmu_lock);
2866	mmu_sync_roots(vcpu);
2867	spin_unlock(&vcpu->kvm->mmu_lock);
2868}
2869
2870static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
2871				  u32 access, struct x86_exception *exception)
2872{
2873	if (exception)
2874		exception->error_code = 0;
2875	return vaddr;
2876}
2877
2878static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
2879					 u32 access,
2880					 struct x86_exception *exception)
2881{
2882	if (exception)
2883		exception->error_code = 0;
2884	return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2885}
2886
2887static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2888{
2889	if (direct)
2890		return vcpu_match_mmio_gpa(vcpu, addr);
2891
2892	return vcpu_match_mmio_gva(vcpu, addr);
2893}
2894
2895
2896/*
2897 * On direct hosts, the last spte is only allows two states
2898 * for mmio page fault:
2899 *   - It is the mmio spte
2900 *   - It is zapped or it is being zapped.
2901 *
2902 * This function completely checks the spte when the last spte
2903 * is not the mmio spte.
2904 */
2905static bool check_direct_spte_mmio_pf(u64 spte)
2906{
2907	return __check_direct_spte_mmio_pf(spte);
2908}
2909
2910static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2911{
2912	struct kvm_shadow_walk_iterator iterator;
2913	u64 spte = 0ull;
2914
2915	walk_shadow_page_lockless_begin(vcpu);
2916	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2917		if (!is_shadow_present_pte(spte))
2918			break;
2919	walk_shadow_page_lockless_end(vcpu);
2920
2921	return spte;
2922}
2923
2924/*
2925 * If it is a real mmio page fault, return 1 and emulat the instruction
2926 * directly, return 0 to let CPU fault again on the address, -1 is
2927 * returned if bug is detected.
2928 */
2929int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2930{
2931	u64 spte;
2932
2933	if (quickly_check_mmio_pf(vcpu, addr, direct))
2934		return 1;
2935
2936	spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2937
2938	if (is_mmio_spte(spte)) {
2939		gfn_t gfn = get_mmio_spte_gfn(spte);
2940		unsigned access = get_mmio_spte_access(spte);
2941
2942		if (direct)
2943			addr = 0;
2944
2945		trace_handle_mmio_page_fault(addr, gfn, access);
2946		vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2947		return 1;
2948	}
2949
2950	/*
2951	 * It's ok if the gva is remapped by other cpus on shadow guest,
2952	 * it's a BUG if the gfn is not a mmio page.
2953	 */
2954	if (direct && !check_direct_spte_mmio_pf(spte))
2955		return -1;
2956
2957	/*
2958	 * If the page table is zapped by other cpus, let CPU fault again on
2959	 * the address.
2960	 */
2961	return 0;
2962}
2963EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
2964
2965static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
2966				  u32 error_code, bool direct)
2967{
2968	int ret;
2969
2970	ret = handle_mmio_page_fault_common(vcpu, addr, direct);
2971	WARN_ON(ret < 0);
2972	return ret;
2973}
2974
2975static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
2976				u32 error_code, bool prefault)
2977{
2978	gfn_t gfn;
2979	int r;
2980
2981	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
2982
2983	if (unlikely(error_code & PFERR_RSVD_MASK))
2984		return handle_mmio_page_fault(vcpu, gva, error_code, true);
2985
2986	r = mmu_topup_memory_caches(vcpu);
2987	if (r)
2988		return r;
2989
2990	ASSERT(vcpu);
2991	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2992
2993	gfn = gva >> PAGE_SHIFT;
2994
2995	return nonpaging_map(vcpu, gva & PAGE_MASK,
2996			     error_code & PFERR_WRITE_MASK, gfn, prefault);
2997}
2998
2999static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
3000{
3001	struct kvm_arch_async_pf arch;
3002
3003	arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
3004	arch.gfn = gfn;
3005	arch.direct_map = vcpu->arch.mmu.direct_map;
3006	arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
3007
3008	return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3009}
3010
3011static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3012{
3013	if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3014		     kvm_event_needs_reinjection(vcpu)))
3015		return false;
3016
3017	return kvm_x86_ops->interrupt_allowed(vcpu);
3018}
3019
3020static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
3021			 gva_t gva, pfn_t *pfn, bool write, bool *writable)
3022{
3023	bool async;
3024
3025	*pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
3026
3027	if (!async)
3028		return false; /* *pfn has correct page already */
3029
3030	put_page(pfn_to_page(*pfn));
3031
3032	if (!prefault && can_do_async_pf(vcpu)) {
3033		trace_kvm_try_async_get_page(gva, gfn);
3034		if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3035			trace_kvm_async_pf_doublefault(gva, gfn);
3036			kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3037			return true;
3038		} else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3039			return true;
3040	}
3041
3042	*pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
3043
3044	return false;
3045}
3046
3047static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
3048			  bool prefault)
3049{
3050	pfn_t pfn;
3051	int r;
3052	int level;
3053	int force_pt_level;
3054	gfn_t gfn = gpa >> PAGE_SHIFT;
3055	unsigned long mmu_seq;
3056	int write = error_code & PFERR_WRITE_MASK;
3057	bool map_writable;
3058
3059	ASSERT(vcpu);
3060	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3061
3062	if (unlikely(error_code & PFERR_RSVD_MASK))
3063		return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3064
3065	r = mmu_topup_memory_caches(vcpu);
3066	if (r)
3067		return r;
3068
3069	force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3070	if (likely(!force_pt_level)) {
3071		level = mapping_level(vcpu, gfn);
3072		gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3073	} else
3074		level = PT_PAGE_TABLE_LEVEL;
3075
3076	mmu_seq = vcpu->kvm->mmu_notifier_seq;
3077	smp_rmb();
3078
3079	if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
3080		return 0;
3081
3082	if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3083		return r;
3084
3085	spin_lock(&vcpu->kvm->mmu_lock);
3086	if (mmu_notifier_retry(vcpu, mmu_seq))
3087		goto out_unlock;
3088	kvm_mmu_free_some_pages(vcpu);
3089	if (likely(!force_pt_level))
3090		transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
3091	r = __direct_map(vcpu, gpa, write, map_writable,
3092			 level, gfn, pfn, prefault);
3093	spin_unlock(&vcpu->kvm->mmu_lock);
3094
3095	return r;
3096
3097out_unlock:
3098	spin_unlock(&vcpu->kvm->mmu_lock);
3099	kvm_release_pfn_clean(pfn);
3100	return 0;
3101}
3102
3103static void nonpaging_free(struct kvm_vcpu *vcpu)
3104{
3105	mmu_free_roots(vcpu);
3106}
3107
3108static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3109				  struct kvm_mmu *context)
3110{
3111	context->new_cr3 = nonpaging_new_cr3;
3112	context->page_fault = nonpaging_page_fault;
3113	context->gva_to_gpa = nonpaging_gva_to_gpa;
3114	context->free = nonpaging_free;
3115	context->sync_page = nonpaging_sync_page;
3116	context->invlpg = nonpaging_invlpg;
3117	context->update_pte = nonpaging_update_pte;
3118	context->root_level = 0;
3119	context->shadow_root_level = PT32E_ROOT_LEVEL;
3120	context->root_hpa = INVALID_PAGE;
3121	context->direct_map = true;
3122	context->nx = false;
3123	return 0;
3124}
3125
3126void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
3127{
3128	++vcpu->stat.tlb_flush;
3129	kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3130}
3131
3132static void paging_new_cr3(struct kvm_vcpu *vcpu)
3133{
3134	pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
3135	mmu_free_roots(vcpu);
3136}
3137
3138static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3139{
3140	return kvm_read_cr3(vcpu);
3141}
3142
3143static void inject_page_fault(struct kvm_vcpu *vcpu,
3144			      struct x86_exception *fault)
3145{
3146	vcpu->arch.mmu.inject_page_fault(vcpu, fault);
3147}
3148
3149static void paging_free(struct kvm_vcpu *vcpu)
3150{
3151	nonpaging_free(vcpu);
3152}
3153
3154static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3155{
3156	int bit7;
3157
3158	bit7 = (gpte >> 7) & 1;
3159	return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
3160}
3161
3162static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3163			   int *nr_present)
3164{
3165	if (unlikely(is_mmio_spte(*sptep))) {
3166		if (gfn != get_mmio_spte_gfn(*sptep)) {
3167			mmu_spte_clear_no_track(sptep);
3168			return true;
3169		}
3170
3171		(*nr_present)++;
3172		mark_mmio_spte(sptep, gfn, access);
3173		return true;
3174	}
3175
3176	return false;
3177}
3178
3179#define PTTYPE 64
3180#include "paging_tmpl.h"
3181#undef PTTYPE
3182
3183#define PTTYPE 32
3184#include "paging_tmpl.h"
3185#undef PTTYPE
3186
3187static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
3188				  struct kvm_mmu *context,
3189				  int level)
3190{
3191	int maxphyaddr = cpuid_maxphyaddr(vcpu);
3192	u64 exb_bit_rsvd = 0;
3193
3194	if (!context->nx)
3195		exb_bit_rsvd = rsvd_bits(63, 63);
3196	switch (level) {
3197	case PT32_ROOT_LEVEL:
3198		/* no rsvd bits for 2 level 4K page table entries */
3199		context->rsvd_bits_mask[0][1] = 0;
3200		context->rsvd_bits_mask[0][0] = 0;
3201		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3202
3203		if (!is_pse(vcpu)) {
3204			context->rsvd_bits_mask[1][1] = 0;
3205			break;
3206		}
3207
3208		if (is_cpuid_PSE36())
3209			/* 36bits PSE 4MB page */
3210			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3211		else
3212			/* 32 bits PSE 4MB page */
3213			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
3214		break;
3215	case PT32E_ROOT_LEVEL:
3216		context->rsvd_bits_mask[0][2] =
3217			rsvd_bits(maxphyaddr, 63) |
3218			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
3219		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3220			rsvd_bits(maxphyaddr, 62);	/* PDE */
3221		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3222			rsvd_bits(maxphyaddr, 62); 	/* PTE */
3223		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3224			rsvd_bits(maxphyaddr, 62) |
3225			rsvd_bits(13, 20);		/* large page */
3226		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3227		break;
3228	case PT64_ROOT_LEVEL:
3229		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3230			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3231		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3232			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3233		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
3234			rsvd_bits(maxphyaddr, 51);
3235		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3236			rsvd_bits(maxphyaddr, 51);
3237		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3238		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3239			rsvd_bits(maxphyaddr, 51) |
3240			rsvd_bits(13, 29);
3241		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3242			rsvd_bits(maxphyaddr, 51) |
3243			rsvd_bits(13, 20);		/* large page */
3244		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3245		break;
3246	}
3247}
3248
3249static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3250					struct kvm_mmu *context,
3251					int level)
3252{
3253	context->nx = is_nx(vcpu);
3254
3255	reset_rsvds_bits_mask(vcpu, context, level);
3256
3257	ASSERT(is_pae(vcpu));
3258	context->new_cr3 = paging_new_cr3;
3259	context->page_fault = paging64_page_fault;
3260	context->gva_to_gpa = paging64_gva_to_gpa;
3261	context->sync_page = paging64_sync_page;
3262	context->invlpg = paging64_invlpg;
3263	context->update_pte = paging64_update_pte;
3264	context->free = paging_free;
3265	context->root_level = level;
3266	context->shadow_root_level = level;
3267	context->root_hpa = INVALID_PAGE;
3268	context->direct_map = false;
3269	return 0;
3270}
3271
3272static int paging64_init_context(struct kvm_vcpu *vcpu,
3273				 struct kvm_mmu *context)
3274{
3275	return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
3276}
3277
3278static int paging32_init_context(struct kvm_vcpu *vcpu,
3279				 struct kvm_mmu *context)
3280{
3281	context->nx = false;
3282
3283	reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3284
3285	context->new_cr3 = paging_new_cr3;
3286	context->page_fault = paging32_page_fault;
3287	context->gva_to_gpa = paging32_gva_to_gpa;
3288	context->free = paging_free;
3289	context->sync_page = paging32_sync_page;
3290	context->invlpg = paging32_invlpg;
3291	context->update_pte = paging32_update_pte;
3292	context->root_level = PT32_ROOT_LEVEL;
3293	context->shadow_root_level = PT32E_ROOT_LEVEL;
3294	context->root_hpa = INVALID_PAGE;
3295	context->direct_map = false;
3296	return 0;
3297}
3298
3299static int paging32E_init_context(struct kvm_vcpu *vcpu,
3300				  struct kvm_mmu *context)
3301{
3302	return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
3303}
3304
3305static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3306{
3307	struct kvm_mmu *context = vcpu->arch.walk_mmu;
3308
3309	context->base_role.word = 0;
3310	context->new_cr3 = nonpaging_new_cr3;
3311	context->page_fault = tdp_page_fault;
3312	context->free = nonpaging_free;
3313	context->sync_page = nonpaging_sync_page;
3314	context->invlpg = nonpaging_invlpg;
3315	context->update_pte = nonpaging_update_pte;
3316	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3317	context->root_hpa = INVALID_PAGE;
3318	context->direct_map = true;
3319	context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
3320	context->get_cr3 = get_cr3;
3321	context->inject_page_fault = kvm_inject_page_fault;
3322	context->nx = is_nx(vcpu);
3323
3324	if (!is_paging(vcpu)) {
3325		context->nx = false;
3326		context->gva_to_gpa = nonpaging_gva_to_gpa;
3327		context->root_level = 0;
3328	} else if (is_long_mode(vcpu)) {
3329		context->nx = is_nx(vcpu);
3330		reset_rsvds_bits_mask(vcpu, context, PT64_ROOT_LEVEL);
3331		context->gva_to_gpa = paging64_gva_to_gpa;
3332		context->root_level = PT64_ROOT_LEVEL;
3333	} else if (is_pae(vcpu)) {
3334		context->nx = is_nx(vcpu);
3335		reset_rsvds_bits_mask(vcpu, context, PT32E_ROOT_LEVEL);
3336		context->gva_to_gpa = paging64_gva_to_gpa;
3337		context->root_level = PT32E_ROOT_LEVEL;
3338	} else {
3339		context->nx = false;
3340		reset_rsvds_bits_mask(vcpu, context, PT32_ROOT_LEVEL);
3341		context->gva_to_gpa = paging32_gva_to_gpa;
3342		context->root_level = PT32_ROOT_LEVEL;
3343	}
3344
3345	return 0;
3346}
3347
3348int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
3349{
3350	int r;
3351	bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3352	ASSERT(vcpu);
3353	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3354
3355	if (!is_paging(vcpu))
3356		r = nonpaging_init_context(vcpu, context);
3357	else if (is_long_mode(vcpu))
3358		r = paging64_init_context(vcpu, context);
3359	else if (is_pae(vcpu))
3360		r = paging32E_init_context(vcpu, context);
3361	else
3362		r = paging32_init_context(vcpu, context);
3363
3364	vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
3365	vcpu->arch.mmu.base_role.cr0_wp  = is_write_protection(vcpu);
3366	vcpu->arch.mmu.base_role.smep_andnot_wp
3367		= smep && !is_write_protection(vcpu);
3368
3369	return r;
3370}
3371EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3372
3373static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3374{
3375	int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
3376
3377	vcpu->arch.walk_mmu->set_cr3           = kvm_x86_ops->set_cr3;
3378	vcpu->arch.walk_mmu->get_cr3           = get_cr3;
3379	vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3380
3381	return r;
3382}
3383
3384static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3385{
3386	struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3387
3388	g_context->get_cr3           = get_cr3;
3389	g_context->inject_page_fault = kvm_inject_page_fault;
3390
3391	/*
3392	 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3393	 * translation of l2_gpa to l1_gpa addresses is done using the
3394	 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3395	 * functions between mmu and nested_mmu are swapped.
3396	 */
3397	if (!is_paging(vcpu)) {
3398		g_context->nx = false;
3399		g_context->root_level = 0;
3400		g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3401	} else if (is_long_mode(vcpu)) {
3402		g_context->nx = is_nx(vcpu);
3403		reset_rsvds_bits_mask(vcpu, g_context, PT64_ROOT_LEVEL);
3404		g_context->root_level = PT64_ROOT_LEVEL;
3405		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3406	} else if (is_pae(vcpu)) {
3407		g_context->nx = is_nx(vcpu);
3408		reset_rsvds_bits_mask(vcpu, g_context, PT32E_ROOT_LEVEL);
3409		g_context->root_level = PT32E_ROOT_LEVEL;
3410		g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3411	} else {
3412		g_context->nx = false;
3413		reset_rsvds_bits_mask(vcpu, g_context, PT32_ROOT_LEVEL);
3414		g_context->root_level = PT32_ROOT_LEVEL;
3415		g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3416	}
3417
3418	return 0;
3419}
3420
3421static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3422{
3423	if (mmu_is_nested(vcpu))
3424		return init_kvm_nested_mmu(vcpu);
3425	else if (tdp_enabled)
3426		return init_kvm_tdp_mmu(vcpu);
3427	else
3428		return init_kvm_softmmu(vcpu);
3429}
3430
3431static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3432{
3433	ASSERT(vcpu);
3434	if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3435		/* mmu.free() should set root_hpa = INVALID_PAGE */
3436		vcpu->arch.mmu.free(vcpu);
3437}
3438
3439int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
3440{
3441	destroy_kvm_mmu(vcpu);
3442	return init_kvm_mmu(vcpu);
3443}
3444EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
3445
3446int kvm_mmu_load(struct kvm_vcpu *vcpu)
3447{
3448	int r;
3449
3450	r = mmu_topup_memory_caches(vcpu);
3451	if (r)
3452		goto out;
3453	r = mmu_alloc_roots(vcpu);
3454	spin_lock(&vcpu->kvm->mmu_lock);
3455	mmu_sync_roots(vcpu);
3456	spin_unlock(&vcpu->kvm->mmu_lock);
3457	if (r)
3458		goto out;
3459	/* set_cr3() should ensure TLB has been flushed */
3460	vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
3461out:
3462	return r;
3463}
3464EXPORT_SYMBOL_GPL(kvm_mmu_load);
3465
3466void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3467{
3468	mmu_free_roots(vcpu);
3469}
3470EXPORT_SYMBOL_GPL(kvm_mmu_unload);
3471
3472static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
3473				  struct kvm_mmu_page *sp, u64 *spte,
3474				  const void *new)
3475{
3476	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
3477		++vcpu->kvm->stat.mmu_pde_zapped;
3478		return;
3479        }
3480
3481	++vcpu->kvm->stat.mmu_pte_updated;
3482	vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
3483}
3484
3485static bool need_remote_flush(u64 old, u64 new)
3486{
3487	if (!is_shadow_present_pte(old))
3488		return false;
3489	if (!is_shadow_present_pte(new))
3490		return true;
3491	if ((old ^ new) & PT64_BASE_ADDR_MASK)
3492		return true;
3493	old ^= PT64_NX_MASK;
3494	new ^= PT64_NX_MASK;
3495	return (old & ~new & PT64_PERM_MASK) != 0;
3496}
3497
3498static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3499				    bool remote_flush, bool local_flush)
3500{
3501	if (zap_page)
3502		return;
3503
3504	if (remote_flush)
3505		kvm_flush_remote_tlbs(vcpu->kvm);
3506	else if (local_flush)
3507		kvm_mmu_flush_tlb(vcpu);
3508}
3509
3510static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
3511{
3512	u64 *spte = vcpu->arch.last_pte_updated;
3513
3514	return !!(spte && (*spte & shadow_accessed_mask));
3515}
3516
3517static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
3518{
3519	u64 *spte = vcpu->arch.last_pte_updated;
3520
3521	if (spte
3522	    && vcpu->arch.last_pte_gfn == gfn
3523	    && shadow_accessed_mask
3524	    && !(*spte & shadow_accessed_mask)
3525	    && is_shadow_present_pte(*spte))
3526		set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
3527}
3528
3529void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3530		       const u8 *new, int bytes,
3531		       bool guest_initiated)
3532{
3533	gfn_t gfn = gpa >> PAGE_SHIFT;
3534	union kvm_mmu_page_role mask = { .word = 0 };
3535	struct kvm_mmu_page *sp;
3536	struct hlist_node *node;
3537	LIST_HEAD(invalid_list);
3538	u64 entry, gentry, *spte;
3539	unsigned pte_size, page_offset, misaligned, quadrant, offset;
3540	int level, npte, invlpg_counter, r, flooded = 0;
3541	bool remote_flush, local_flush, zap_page;
3542
3543	/*
3544	 * If we don't have indirect shadow pages, it means no page is
3545	 * write-protected, so we can exit simply.
3546	 */
3547	if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3548		return;
3549
3550	zap_page = remote_flush = local_flush = false;
3551	offset = offset_in_page(gpa);
3552
3553	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3554
3555	invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
3556
3557	/*
3558	 * Assume that the pte write on a page table of the same type
3559	 * as the current vcpu paging mode since we update the sptes only
3560	 * when they have the same mode.
3561	 */
3562	if ((is_pae(vcpu) && bytes == 4) || !new) {
3563		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
3564		if (is_pae(vcpu)) {
3565			gpa &= ~(gpa_t)7;
3566			bytes = 8;
3567		}
3568		r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
3569		if (r)
3570			gentry = 0;
3571		new = (const u8 *)&gentry;
3572	}
3573
3574	switch (bytes) {
3575	case 4:
3576		gentry = *(const u32 *)new;
3577		break;
3578	case 8:
3579		gentry = *(const u64 *)new;
3580		break;
3581	default:
3582		gentry = 0;
3583		break;
3584	}
3585
3586	spin_lock(&vcpu->kvm->mmu_lock);
3587	if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
3588		gentry = 0;
3589	kvm_mmu_free_some_pages(vcpu);
3590	++vcpu->kvm->stat.mmu_pte_write;
3591	trace_kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
3592	if (guest_initiated) {
3593		kvm_mmu_access_page(vcpu, gfn);
3594		if (gfn == vcpu->arch.last_pt_write_gfn
3595		    && !last_updated_pte_accessed(vcpu)) {
3596			++vcpu->arch.last_pt_write_count;
3597			if (vcpu->arch.last_pt_write_count >= 3)
3598				flooded = 1;
3599		} else {
3600			vcpu->arch.last_pt_write_gfn = gfn;
3601			vcpu->arch.last_pt_write_count = 1;
3602			vcpu->arch.last_pte_updated = NULL;
3603		}
3604	}
3605
3606	mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
3607	for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
3608		pte_size = sp->role.cr4_pae ? 8 : 4;
3609		misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3610		misaligned |= bytes < 4;
3611		if (misaligned || flooded) {
3612			/*
3613			 * Misaligned accesses are too much trouble to fix
3614			 * up; also, they usually indicate a page is not used
3615			 * as a page table.
3616			 *
3617			 * If we're seeing too many writes to a page,
3618			 * it may no longer be a page table, or we may be
3619			 * forking, in which case it is better to unmap the
3620			 * page.
3621			 */
3622			pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3623				 gpa, bytes, sp->role.word);
3624			zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3625						     &invalid_list);
3626			++vcpu->kvm->stat.mmu_flooded;
3627			continue;
3628		}
3629		page_offset = offset;
3630		level = sp->role.level;
3631		npte = 1;
3632		if (!sp->role.cr4_pae) {
3633			page_offset <<= 1;	/* 32->64 */
3634			/*
3635			 * A 32-bit pde maps 4MB while the shadow pdes map
3636			 * only 2MB.  So we need to double the offset again
3637			 * and zap two pdes instead of one.
3638			 */
3639			if (level == PT32_ROOT_LEVEL) {
3640				page_offset &= ~7; /* kill rounding error */
3641				page_offset <<= 1;
3642				npte = 2;
3643			}
3644			quadrant = page_offset >> PAGE_SHIFT;
3645			page_offset &= ~PAGE_MASK;
3646			if (quadrant != sp->role.quadrant)
3647				continue;
3648		}
3649		local_flush = true;
3650		spte = &sp->spt[page_offset / sizeof(*spte)];
3651		while (npte--) {
3652			entry = *spte;
3653			mmu_page_zap_pte(vcpu->kvm, sp, spte);
3654			if (gentry &&
3655			      !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
3656			      & mask.word))
3657				mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
3658			if (!remote_flush && need_remote_flush(entry, *spte))
3659				remote_flush = true;
3660			++spte;
3661		}
3662	}
3663	mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
3664	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3665	trace_kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
3666	spin_unlock(&vcpu->kvm->mmu_lock);
3667}
3668
3669int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3670{
3671	gpa_t gpa;
3672	int r;
3673
3674	if (vcpu->arch.mmu.direct_map)
3675		return 0;
3676
3677	gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
3678
3679	spin_lock(&vcpu->kvm->mmu_lock);
3680	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
3681	spin_unlock(&vcpu->kvm->mmu_lock);
3682	return r;
3683}
3684EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
3685
3686void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
3687{
3688	LIST_HEAD(invalid_list);
3689
3690	while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3691	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
3692		struct kvm_mmu_page *sp;
3693
3694		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
3695				  struct kvm_mmu_page, link);
3696		kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3697		++vcpu->kvm->stat.mmu_recycled;
3698	}
3699	kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3700}
3701
3702int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3703		       void *insn, int insn_len)
3704{
3705	int r;
3706	enum emulation_result er;
3707
3708	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3709	if (r < 0)
3710		goto out;
3711
3712	if (!r) {
3713		r = 1;
3714		goto out;
3715	}
3716
3717	r = mmu_topup_memory_caches(vcpu);
3718	if (r)
3719		goto out;
3720
3721	er = x86_emulate_instruction(vcpu, cr2, 0, insn, insn_len);
3722
3723	switch (er) {
3724	case EMULATE_DONE:
3725		return 1;
3726	case EMULATE_DO_MMIO:
3727		++vcpu->stat.mmio_exits;
3728		/* fall through */
3729	case EMULATE_FAIL:
3730		return 0;
3731	default:
3732		BUG();
3733	}
3734out:
3735	return r;
3736}
3737EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3738
3739void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3740{
3741	vcpu->arch.mmu.invlpg(vcpu, gva);
3742	kvm_mmu_flush_tlb(vcpu);
3743	++vcpu->stat.invlpg;
3744}
3745EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3746
3747void kvm_enable_tdp(void)
3748{
3749	tdp_enabled = true;
3750}
3751EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3752
3753void kvm_disable_tdp(void)
3754{
3755	tdp_enabled = false;
3756}
3757EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3758
3759static void free_mmu_pages(struct kvm_vcpu *vcpu)
3760{
3761	free_page((unsigned long)vcpu->arch.mmu.pae_root);
3762	if (vcpu->arch.mmu.lm_root != NULL)
3763		free_page((unsigned long)vcpu->arch.mmu.lm_root);
3764}
3765
3766static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3767{
3768	struct page *page;
3769	int i;
3770
3771	ASSERT(vcpu);
3772
3773	/*
3774	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3775	 * Therefore we need to allocate shadow page tables in the first
3776	 * 4GB of memory, which happens to fit the DMA32 zone.
3777	 */
3778	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3779	if (!page)
3780		return -ENOMEM;
3781
3782	vcpu->arch.mmu.pae_root = page_address(page);
3783	for (i = 0; i < 4; ++i)
3784		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
3785
3786	return 0;
3787}
3788
3789int kvm_mmu_create(struct kvm_vcpu *vcpu)
3790{
3791	ASSERT(vcpu);
3792	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3793
3794	return alloc_mmu_pages(vcpu);
3795}
3796
3797int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3798{
3799	ASSERT(vcpu);
3800	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3801
3802	return init_kvm_mmu(vcpu);
3803}
3804
3805void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
3806{
3807	struct kvm_mmu_page *sp;
3808
3809	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
3810		int i;
3811		u64 *pt;
3812
3813		if (!test_bit(slot, sp->slot_bitmap))
3814			continue;
3815
3816		pt = sp->spt;
3817		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
3818			if (!is_shadow_present_pte(pt[i]) ||
3819			      !is_last_spte(pt[i], sp->role.level))
3820				continue;
3821
3822			if (is_large_pte(pt[i])) {
3823				drop_spte(kvm, &pt[i]);
3824				--kvm->stat.lpages;
3825				continue;
3826			}
3827
3828			/* avoid RMW */
3829			if (is_writable_pte(pt[i]))
3830				mmu_spte_update(&pt[i],
3831						pt[i] & ~PT_WRITABLE_MASK);
3832		}
3833	}
3834	kvm_flush_remote_tlbs(kvm);
3835}
3836
3837void kvm_mmu_zap_all(struct kvm *kvm)
3838{
3839	struct kvm_mmu_page *sp, *node;
3840	LIST_HEAD(invalid_list);
3841
3842	spin_lock(&kvm->mmu_lock);
3843restart:
3844	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
3845		if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3846			goto restart;
3847
3848	kvm_mmu_commit_zap_page(kvm, &invalid_list);
3849	spin_unlock(&kvm->mmu_lock);
3850}
3851
3852static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3853					       struct list_head *invalid_list)
3854{
3855	struct kvm_mmu_page *page;
3856
3857	page = container_of(kvm->arch.active_mmu_pages.prev,
3858			    struct kvm_mmu_page, link);
3859	return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3860}
3861
3862static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3863{
3864	struct kvm *kvm;
3865	struct kvm *kvm_freed = NULL;
3866	int nr_to_scan = sc->nr_to_scan;
3867
3868	if (nr_to_scan == 0)
3869		goto out;
3870
3871	raw_spin_lock(&kvm_lock);
3872
3873	list_for_each_entry(kvm, &vm_list, vm_list) {
3874		int idx, freed_pages;
3875		LIST_HEAD(invalid_list);
3876
3877		idx = srcu_read_lock(&kvm->srcu);
3878		spin_lock(&kvm->mmu_lock);
3879		if (!kvm_freed && nr_to_scan > 0 &&
3880		    kvm->arch.n_used_mmu_pages > 0) {
3881			freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
3882							  &invalid_list);
3883			kvm_freed = kvm;
3884		}
3885		nr_to_scan--;
3886
3887		kvm_mmu_commit_zap_page(kvm, &invalid_list);
3888		spin_unlock(&kvm->mmu_lock);
3889		srcu_read_unlock(&kvm->srcu, idx);
3890	}
3891	if (kvm_freed)
3892		list_move_tail(&kvm_freed->vm_list, &vm_list);
3893
3894	raw_spin_unlock(&kvm_lock);
3895
3896out:
3897	return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3898}
3899
3900static struct shrinker mmu_shrinker = {
3901	.shrink = mmu_shrink,
3902	.seeks = DEFAULT_SEEKS * 10,
3903};
3904
3905static void mmu_destroy_caches(void)
3906{
3907	if (pte_list_desc_cache)
3908		kmem_cache_destroy(pte_list_desc_cache);
3909	if (mmu_page_header_cache)
3910		kmem_cache_destroy(mmu_page_header_cache);
3911}
3912
3913int kvm_mmu_module_init(void)
3914{
3915	pte_list_desc_cache = kmem_cache_create("pte_list_desc",
3916					    sizeof(struct pte_list_desc),
3917					    0, 0, NULL);
3918	if (!pte_list_desc_cache)
3919		goto nomem;
3920
3921	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
3922						  sizeof(struct kvm_mmu_page),
3923						  0, 0, NULL);
3924	if (!mmu_page_header_cache)
3925		goto nomem;
3926
3927	if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
3928		goto nomem;
3929
3930	register_shrinker(&mmu_shrinker);
3931
3932	return 0;
3933
3934nomem:
3935	mmu_destroy_caches();
3936	return -ENOMEM;
3937}
3938
3939/*
3940 * Caculate mmu pages needed for kvm.
3941 */
3942unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
3943{
3944	int i;
3945	unsigned int nr_mmu_pages;
3946	unsigned int  nr_pages = 0;
3947	struct kvm_memslots *slots;
3948
3949	slots = kvm_memslots(kvm);
3950
3951	for (i = 0; i < slots->nmemslots; i++)
3952		nr_pages += slots->memslots[i].npages;
3953
3954	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
3955	nr_mmu_pages = max(nr_mmu_pages,
3956			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3957
3958	return nr_mmu_pages;
3959}
3960
3961static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3962				unsigned len)
3963{
3964	if (len > buffer->len)
3965		return NULL;
3966	return buffer->ptr;
3967}
3968
3969static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
3970				unsigned len)
3971{
3972	void *ret;
3973
3974	ret = pv_mmu_peek_buffer(buffer, len);
3975	if (!ret)
3976		return ret;
3977	buffer->ptr += len;
3978	buffer->len -= len;
3979	buffer->processed += len;
3980	return ret;
3981}
3982
3983static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
3984			     gpa_t addr, gpa_t value)
3985{
3986	int bytes = 8;
3987	int r;
3988
3989	if (!is_long_mode(vcpu) && !is_pae(vcpu))
3990		bytes = 4;
3991
3992	r = mmu_topup_memory_caches(vcpu);
3993	if (r)
3994		return r;
3995
3996	if (!emulator_write_phys(vcpu, addr, &value, bytes))
3997		return -EFAULT;
3998
3999	return 1;
4000}
4001
4002static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
4003{
4004	(void)kvm_set_cr3(vcpu, kvm_read_cr3(vcpu));
4005	return 1;
4006}
4007
4008static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
4009{
4010	spin_lock(&vcpu->kvm->mmu_lock);
4011	mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
4012	spin_unlock(&vcpu->kvm->mmu_lock);
4013	return 1;
4014}
4015
4016static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
4017			     struct kvm_pv_mmu_op_buffer *buffer)
4018{
4019	struct kvm_mmu_op_header *header;
4020
4021	header = pv_mmu_peek_buffer(buffer, sizeof *header);
4022	if (!header)
4023		return 0;
4024	switch (header->op) {
4025	case KVM_MMU_OP_WRITE_PTE: {
4026		struct kvm_mmu_op_write_pte *wpte;
4027
4028		wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
4029		if (!wpte)
4030			return 0;
4031		return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
4032					wpte->pte_val);
4033	}
4034	case KVM_MMU_OP_FLUSH_TLB: {
4035		struct kvm_mmu_op_flush_tlb *ftlb;
4036
4037		ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
4038		if (!ftlb)
4039			return 0;
4040		return kvm_pv_mmu_flush_tlb(vcpu);
4041	}
4042	case KVM_MMU_OP_RELEASE_PT: {
4043		struct kvm_mmu_op_release_pt *rpt;
4044
4045		rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
4046		if (!rpt)
4047			return 0;
4048		return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
4049	}
4050	default: return 0;
4051	}
4052}
4053
4054int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
4055		  gpa_t addr, unsigned long *ret)
4056{
4057	int r;
4058	struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
4059
4060	buffer->ptr = buffer->buf;
4061	buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
4062	buffer->processed = 0;
4063
4064	r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
4065	if (r)
4066		goto out;
4067
4068	while (buffer->len) {
4069		r = kvm_pv_mmu_op_one(vcpu, buffer);
4070		if (r < 0)
4071			goto out;
4072		if (r == 0)
4073			break;
4074	}
4075
4076	r = 1;
4077out:
4078	*ret = buffer->processed;
4079	return r;
4080}
4081
4082int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4083{
4084	struct kvm_shadow_walk_iterator iterator;
4085	u64 spte;
4086	int nr_sptes = 0;
4087
4088	walk_shadow_page_lockless_begin(vcpu);
4089	for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4090		sptes[iterator.level-1] = spte;
4091		nr_sptes++;
4092		if (!is_shadow_present_pte(spte))
4093			break;
4094	}
4095	walk_shadow_page_lockless_end(vcpu);
4096
4097	return nr_sptes;
4098}
4099EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4100
4101void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4102{
4103	ASSERT(vcpu);
4104
4105	destroy_kvm_mmu(vcpu);
4106	free_mmu_pages(vcpu);
4107	mmu_free_memory_caches(vcpu);
4108}
4109
4110#ifdef CONFIG_KVM_MMU_AUDIT
4111#include "mmu_audit.c"
4112#else
4113static void mmu_audit_disable(void) { }
4114#endif
4115
4116void kvm_mmu_module_exit(void)
4117{
4118	mmu_destroy_caches();
4119	percpu_counter_destroy(&kvm_total_used_mmu_pages);
4120	unregister_shrinker(&mmu_shrinker);
4121	mmu_audit_disable();
4122}