Loading...
1// SPDX-License-Identifier: GPL-2.0
2#include <linux/linkage.h>
3#include <linux/errno.h>
4#include <linux/signal.h>
5#include <linux/sched.h>
6#include <linux/ioport.h>
7#include <linux/interrupt.h>
8#include <linux/irq.h>
9#include <linux/timex.h>
10#include <linux/random.h>
11#include <linux/kprobes.h>
12#include <linux/init.h>
13#include <linux/kernel_stat.h>
14#include <linux/device.h>
15#include <linux/bitops.h>
16#include <linux/acpi.h>
17#include <linux/io.h>
18#include <linux/delay.h>
19#include <linux/pgtable.h>
20
21#include <linux/atomic.h>
22#include <asm/timer.h>
23#include <asm/hw_irq.h>
24#include <asm/desc.h>
25#include <asm/io_apic.h>
26#include <asm/acpi.h>
27#include <asm/apic.h>
28#include <asm/setup.h>
29#include <asm/i8259.h>
30#include <asm/traps.h>
31#include <asm/fred.h>
32#include <asm/prom.h>
33
34/*
35 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
36 * (these are usually mapped to vectors 0x30-0x3f)
37 */
38
39/*
40 * The IO-APIC gives us many more interrupt sources. Most of these
41 * are unused but an SMP system is supposed to have enough memory ...
42 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
43 * across the spectrum, so we really want to be prepared to get all
44 * of these. Plus, more powerful systems might have more than 64
45 * IO-APIC registers.
46 *
47 * (these are usually mapped into the 0x30-0xff vector range)
48 */
49
50DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
51 [0 ... NR_VECTORS - 1] = VECTOR_UNUSED,
52};
53
54void __init init_ISA_irqs(void)
55{
56 struct irq_chip *chip = legacy_pic->chip;
57 int i;
58
59 /*
60 * Try to set up the through-local-APIC virtual wire mode earlier.
61 *
62 * On some 32-bit UP machines, whose APIC has been disabled by BIOS
63 * and then got re-enabled by "lapic", it hangs at boot time without this.
64 */
65 init_bsp_APIC();
66
67 legacy_pic->init(0);
68
69 for (i = 0; i < nr_legacy_irqs(); i++) {
70 irq_set_chip_and_handler(i, chip, handle_level_irq);
71 irq_set_status_flags(i, IRQ_LEVEL);
72 }
73}
74
75void __init init_IRQ(void)
76{
77 int i;
78
79 /*
80 * On cpu 0, Assign ISA_IRQ_VECTOR(irq) to IRQ 0..15.
81 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
82 * then this configuration will likely be static after the boot. If
83 * these IRQs are handled by more modern controllers like IO-APIC,
84 * then this vector space can be freed and re-used dynamically as the
85 * irq's migrate etc.
86 */
87 for (i = 0; i < nr_legacy_irqs(); i++)
88 per_cpu(vector_irq, 0)[ISA_IRQ_VECTOR(i)] = irq_to_desc(i);
89
90 BUG_ON(irq_init_percpu_irqstack(smp_processor_id()));
91
92 x86_init.irqs.intr_init();
93}
94
95void __init native_init_IRQ(void)
96{
97 /* Execute any quirks before the call gates are initialised: */
98 x86_init.irqs.pre_vector_init();
99
100 if (cpu_feature_enabled(X86_FEATURE_FRED))
101 fred_complete_exception_setup();
102 else
103 idt_setup_apic_and_irq_gates();
104
105 lapic_assign_system_vectors();
106
107 if (!acpi_ioapic && !of_ioapic && nr_legacy_irqs()) {
108 /* IRQ2 is cascade interrupt to second interrupt controller */
109 if (request_irq(2, no_action, IRQF_NO_THREAD, "cascade", NULL))
110 pr_err("%s: request_irq() failed\n", "cascade");
111 }
112}
1#include <linux/linkage.h>
2#include <linux/errno.h>
3#include <linux/signal.h>
4#include <linux/sched.h>
5#include <linux/ioport.h>
6#include <linux/interrupt.h>
7#include <linux/timex.h>
8#include <linux/random.h>
9#include <linux/kprobes.h>
10#include <linux/init.h>
11#include <linux/kernel_stat.h>
12#include <linux/sysdev.h>
13#include <linux/bitops.h>
14#include <linux/acpi.h>
15#include <linux/io.h>
16#include <linux/delay.h>
17
18#include <linux/atomic.h>
19#include <asm/system.h>
20#include <asm/timer.h>
21#include <asm/hw_irq.h>
22#include <asm/pgtable.h>
23#include <asm/desc.h>
24#include <asm/apic.h>
25#include <asm/setup.h>
26#include <asm/i8259.h>
27#include <asm/traps.h>
28#include <asm/prom.h>
29
30/*
31 * ISA PIC or low IO-APIC triggered (INTA-cycle or APIC) interrupts:
32 * (these are usually mapped to vectors 0x30-0x3f)
33 */
34
35/*
36 * The IO-APIC gives us many more interrupt sources. Most of these
37 * are unused but an SMP system is supposed to have enough memory ...
38 * sometimes (mostly wrt. hw bugs) we get corrupted vectors all
39 * across the spectrum, so we really want to be prepared to get all
40 * of these. Plus, more powerful systems might have more than 64
41 * IO-APIC registers.
42 *
43 * (these are usually mapped into the 0x30-0xff vector range)
44 */
45
46#ifdef CONFIG_X86_32
47/*
48 * Note that on a 486, we don't want to do a SIGFPE on an irq13
49 * as the irq is unreliable, and exception 16 works correctly
50 * (ie as explained in the intel literature). On a 386, you
51 * can't use exception 16 due to bad IBM design, so we have to
52 * rely on the less exact irq13.
53 *
54 * Careful.. Not only is IRQ13 unreliable, but it is also
55 * leads to races. IBM designers who came up with it should
56 * be shot.
57 */
58
59static irqreturn_t math_error_irq(int cpl, void *dev_id)
60{
61 outb(0, 0xF0);
62 if (ignore_fpu_irq || !boot_cpu_data.hard_math)
63 return IRQ_NONE;
64 math_error(get_irq_regs(), 0, 16);
65 return IRQ_HANDLED;
66}
67
68/*
69 * New motherboards sometimes make IRQ 13 be a PCI interrupt,
70 * so allow interrupt sharing.
71 */
72static struct irqaction fpu_irq = {
73 .handler = math_error_irq,
74 .name = "fpu",
75 .flags = IRQF_NO_THREAD,
76};
77#endif
78
79/*
80 * IRQ2 is cascade interrupt to second interrupt controller
81 */
82static struct irqaction irq2 = {
83 .handler = no_action,
84 .name = "cascade",
85 .flags = IRQF_NO_THREAD,
86};
87
88DEFINE_PER_CPU(vector_irq_t, vector_irq) = {
89 [0 ... NR_VECTORS - 1] = -1,
90};
91
92int vector_used_by_percpu_irq(unsigned int vector)
93{
94 int cpu;
95
96 for_each_online_cpu(cpu) {
97 if (per_cpu(vector_irq, cpu)[vector] != -1)
98 return 1;
99 }
100
101 return 0;
102}
103
104void __init init_ISA_irqs(void)
105{
106 struct irq_chip *chip = legacy_pic->chip;
107 const char *name = chip->name;
108 int i;
109
110#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
111 init_bsp_APIC();
112#endif
113 legacy_pic->init(0);
114
115 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
116 irq_set_chip_and_handler_name(i, chip, handle_level_irq, name);
117}
118
119void __init init_IRQ(void)
120{
121 int i;
122
123 /*
124 * We probably need a better place for this, but it works for
125 * now ...
126 */
127 x86_add_irq_domains();
128
129 /*
130 * On cpu 0, Assign IRQ0_VECTOR..IRQ15_VECTOR's to IRQ 0..15.
131 * If these IRQ's are handled by legacy interrupt-controllers like PIC,
132 * then this configuration will likely be static after the boot. If
133 * these IRQ's are handled by more mordern controllers like IO-APIC,
134 * then this vector space can be freed and re-used dynamically as the
135 * irq's migrate etc.
136 */
137 for (i = 0; i < legacy_pic->nr_legacy_irqs; i++)
138 per_cpu(vector_irq, 0)[IRQ0_VECTOR + i] = i;
139
140 x86_init.irqs.intr_init();
141}
142
143/*
144 * Setup the vector to irq mappings.
145 */
146void setup_vector_irq(int cpu)
147{
148#ifndef CONFIG_X86_IO_APIC
149 int irq;
150
151 /*
152 * On most of the platforms, legacy PIC delivers the interrupts on the
153 * boot cpu. But there are certain platforms where PIC interrupts are
154 * delivered to multiple cpu's. If the legacy IRQ is handled by the
155 * legacy PIC, for the new cpu that is coming online, setup the static
156 * legacy vector to irq mapping:
157 */
158 for (irq = 0; irq < legacy_pic->nr_legacy_irqs; irq++)
159 per_cpu(vector_irq, cpu)[IRQ0_VECTOR + irq] = irq;
160#endif
161
162 __setup_vector_irq(cpu);
163}
164
165static void __init smp_intr_init(void)
166{
167#ifdef CONFIG_SMP
168#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
169 /*
170 * The reschedule interrupt is a CPU-to-CPU reschedule-helper
171 * IPI, driven by wakeup.
172 */
173 alloc_intr_gate(RESCHEDULE_VECTOR, reschedule_interrupt);
174
175 /* IPIs for invalidation */
176#define ALLOC_INVTLB_VEC(NR) \
177 alloc_intr_gate(INVALIDATE_TLB_VECTOR_START+NR, \
178 invalidate_interrupt##NR)
179
180 switch (NUM_INVALIDATE_TLB_VECTORS) {
181 default:
182 ALLOC_INVTLB_VEC(31);
183 case 31:
184 ALLOC_INVTLB_VEC(30);
185 case 30:
186 ALLOC_INVTLB_VEC(29);
187 case 29:
188 ALLOC_INVTLB_VEC(28);
189 case 28:
190 ALLOC_INVTLB_VEC(27);
191 case 27:
192 ALLOC_INVTLB_VEC(26);
193 case 26:
194 ALLOC_INVTLB_VEC(25);
195 case 25:
196 ALLOC_INVTLB_VEC(24);
197 case 24:
198 ALLOC_INVTLB_VEC(23);
199 case 23:
200 ALLOC_INVTLB_VEC(22);
201 case 22:
202 ALLOC_INVTLB_VEC(21);
203 case 21:
204 ALLOC_INVTLB_VEC(20);
205 case 20:
206 ALLOC_INVTLB_VEC(19);
207 case 19:
208 ALLOC_INVTLB_VEC(18);
209 case 18:
210 ALLOC_INVTLB_VEC(17);
211 case 17:
212 ALLOC_INVTLB_VEC(16);
213 case 16:
214 ALLOC_INVTLB_VEC(15);
215 case 15:
216 ALLOC_INVTLB_VEC(14);
217 case 14:
218 ALLOC_INVTLB_VEC(13);
219 case 13:
220 ALLOC_INVTLB_VEC(12);
221 case 12:
222 ALLOC_INVTLB_VEC(11);
223 case 11:
224 ALLOC_INVTLB_VEC(10);
225 case 10:
226 ALLOC_INVTLB_VEC(9);
227 case 9:
228 ALLOC_INVTLB_VEC(8);
229 case 8:
230 ALLOC_INVTLB_VEC(7);
231 case 7:
232 ALLOC_INVTLB_VEC(6);
233 case 6:
234 ALLOC_INVTLB_VEC(5);
235 case 5:
236 ALLOC_INVTLB_VEC(4);
237 case 4:
238 ALLOC_INVTLB_VEC(3);
239 case 3:
240 ALLOC_INVTLB_VEC(2);
241 case 2:
242 ALLOC_INVTLB_VEC(1);
243 case 1:
244 ALLOC_INVTLB_VEC(0);
245 break;
246 }
247
248 /* IPI for generic function call */
249 alloc_intr_gate(CALL_FUNCTION_VECTOR, call_function_interrupt);
250
251 /* IPI for generic single function call */
252 alloc_intr_gate(CALL_FUNCTION_SINGLE_VECTOR,
253 call_function_single_interrupt);
254
255 /* Low priority IPI to cleanup after moving an irq */
256 set_intr_gate(IRQ_MOVE_CLEANUP_VECTOR, irq_move_cleanup_interrupt);
257 set_bit(IRQ_MOVE_CLEANUP_VECTOR, used_vectors);
258
259 /* IPI used for rebooting/stopping */
260 alloc_intr_gate(REBOOT_VECTOR, reboot_interrupt);
261#endif
262#endif /* CONFIG_SMP */
263}
264
265static void __init apic_intr_init(void)
266{
267 smp_intr_init();
268
269#ifdef CONFIG_X86_THERMAL_VECTOR
270 alloc_intr_gate(THERMAL_APIC_VECTOR, thermal_interrupt);
271#endif
272#ifdef CONFIG_X86_MCE_THRESHOLD
273 alloc_intr_gate(THRESHOLD_APIC_VECTOR, threshold_interrupt);
274#endif
275
276#if defined(CONFIG_X86_64) || defined(CONFIG_X86_LOCAL_APIC)
277 /* self generated IPI for local APIC timer */
278 alloc_intr_gate(LOCAL_TIMER_VECTOR, apic_timer_interrupt);
279
280 /* IPI for X86 platform specific use */
281 alloc_intr_gate(X86_PLATFORM_IPI_VECTOR, x86_platform_ipi);
282
283 /* IPI vectors for APIC spurious and error interrupts */
284 alloc_intr_gate(SPURIOUS_APIC_VECTOR, spurious_interrupt);
285 alloc_intr_gate(ERROR_APIC_VECTOR, error_interrupt);
286
287 /* IRQ work interrupts: */
288# ifdef CONFIG_IRQ_WORK
289 alloc_intr_gate(IRQ_WORK_VECTOR, irq_work_interrupt);
290# endif
291
292#endif
293}
294
295void __init native_init_IRQ(void)
296{
297 int i;
298
299 /* Execute any quirks before the call gates are initialised: */
300 x86_init.irqs.pre_vector_init();
301
302 apic_intr_init();
303
304 /*
305 * Cover the whole vector space, no vector can escape
306 * us. (some of these will be overridden and become
307 * 'special' SMP interrupts)
308 */
309 for (i = FIRST_EXTERNAL_VECTOR; i < NR_VECTORS; i++) {
310 /* IA32_SYSCALL_VECTOR could be used in trap_init already. */
311 if (!test_bit(i, used_vectors))
312 set_intr_gate(i, interrupt[i-FIRST_EXTERNAL_VECTOR]);
313 }
314
315 if (!acpi_ioapic && !of_ioapic)
316 setup_irq(2, &irq2);
317
318#ifdef CONFIG_X86_32
319 /*
320 * External FPU? Set up irq13 if so, for
321 * original braindamaged IBM FERR coupling.
322 */
323 if (boot_cpu_data.hard_math && !cpu_has_fpu)
324 setup_irq(FPU_IRQ, &fpu_irq);
325
326 irq_ctx_init(smp_processor_id());
327#endif
328}