Linux Audio

Check our new training course

Loading...
   1/*
   2 * x86_64/AVX/AES-NI assembler implementation of Camellia
   3 *
   4 * Copyright © 2012-2013 Jussi Kivilinna <jussi.kivilinna@iki.fi>
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License as published by
   8 * the Free Software Foundation; either version 2 of the License, or
   9 * (at your option) any later version.
  10 *
  11 */
  12
  13/*
  14 * Version licensed under 2-clause BSD License is available at:
  15 *	http://koti.mbnet.fi/axh/crypto/camellia-BSD-1.2.0-aesni1.tar.xz
  16 */
  17
  18#include <linux/linkage.h>
  19#include <asm/frame.h>
  20#include <asm/nospec-branch.h>
  21
  22#define CAMELLIA_TABLE_BYTE_LEN 272
  23
  24/* struct camellia_ctx: */
  25#define key_table 0
  26#define key_length CAMELLIA_TABLE_BYTE_LEN
  27
  28/* register macros */
  29#define CTX %rdi
  30
  31/**********************************************************************
  32  16-way camellia
  33 **********************************************************************/
  34#define filter_8bit(x, lo_t, hi_t, mask4bit, tmp0) \
  35	vpand x, mask4bit, tmp0; \
  36	vpandn x, mask4bit, x; \
  37	vpsrld $4, x, x; \
  38	\
  39	vpshufb tmp0, lo_t, tmp0; \
  40	vpshufb x, hi_t, x; \
  41	vpxor tmp0, x, x;
  42
  43/*
  44 * IN:
  45 *   x0..x7: byte-sliced AB state
  46 *   mem_cd: register pointer storing CD state
  47 *   key: index for key material
  48 * OUT:
  49 *   x0..x7: new byte-sliced CD state
  50 */
  51#define roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, t0, t1, t2, t3, t4, t5, t6, \
  52		  t7, mem_cd, key) \
  53	/* \
  54	 * S-function with AES subbytes \
  55	 */ \
  56	vmovdqa .Linv_shift_row, t4; \
  57	vbroadcastss .L0f0f0f0f, t7; \
  58	vmovdqa .Lpre_tf_lo_s1, t0; \
  59	vmovdqa .Lpre_tf_hi_s1, t1; \
  60	\
  61	/* AES inverse shift rows */ \
  62	vpshufb t4, x0, x0; \
  63	vpshufb t4, x7, x7; \
  64	vpshufb t4, x1, x1; \
  65	vpshufb t4, x4, x4; \
  66	vpshufb t4, x2, x2; \
  67	vpshufb t4, x5, x5; \
  68	vpshufb t4, x3, x3; \
  69	vpshufb t4, x6, x6; \
  70	\
  71	/* prefilter sboxes 1, 2 and 3 */ \
  72	vmovdqa .Lpre_tf_lo_s4, t2; \
  73	vmovdqa .Lpre_tf_hi_s4, t3; \
  74	filter_8bit(x0, t0, t1, t7, t6); \
  75	filter_8bit(x7, t0, t1, t7, t6); \
  76	filter_8bit(x1, t0, t1, t7, t6); \
  77	filter_8bit(x4, t0, t1, t7, t6); \
  78	filter_8bit(x2, t0, t1, t7, t6); \
  79	filter_8bit(x5, t0, t1, t7, t6); \
  80	\
  81	/* prefilter sbox 4 */ \
  82	vpxor t4, t4, t4; \
  83	filter_8bit(x3, t2, t3, t7, t6); \
  84	filter_8bit(x6, t2, t3, t7, t6); \
  85	\
  86	/* AES subbytes + AES shift rows */ \
  87	vmovdqa .Lpost_tf_lo_s1, t0; \
  88	vmovdqa .Lpost_tf_hi_s1, t1; \
  89	vaesenclast t4, x0, x0; \
  90	vaesenclast t4, x7, x7; \
  91	vaesenclast t4, x1, x1; \
  92	vaesenclast t4, x4, x4; \
  93	vaesenclast t4, x2, x2; \
  94	vaesenclast t4, x5, x5; \
  95	vaesenclast t4, x3, x3; \
  96	vaesenclast t4, x6, x6; \
  97	\
  98	/* postfilter sboxes 1 and 4 */ \
  99	vmovdqa .Lpost_tf_lo_s3, t2; \
 100	vmovdqa .Lpost_tf_hi_s3, t3; \
 101	filter_8bit(x0, t0, t1, t7, t6); \
 102	filter_8bit(x7, t0, t1, t7, t6); \
 103	filter_8bit(x3, t0, t1, t7, t6); \
 104	filter_8bit(x6, t0, t1, t7, t6); \
 105	\
 106	/* postfilter sbox 3 */ \
 107	vmovdqa .Lpost_tf_lo_s2, t4; \
 108	vmovdqa .Lpost_tf_hi_s2, t5; \
 109	filter_8bit(x2, t2, t3, t7, t6); \
 110	filter_8bit(x5, t2, t3, t7, t6); \
 111	\
 112	vpxor t6, t6, t6; \
 113	vmovq key, t0; \
 114	\
 115	/* postfilter sbox 2 */ \
 116	filter_8bit(x1, t4, t5, t7, t2); \
 117	filter_8bit(x4, t4, t5, t7, t2); \
 118	\
 119	vpsrldq $5, t0, t5; \
 120	vpsrldq $1, t0, t1; \
 121	vpsrldq $2, t0, t2; \
 122	vpsrldq $3, t0, t3; \
 123	vpsrldq $4, t0, t4; \
 124	vpshufb t6, t0, t0; \
 125	vpshufb t6, t1, t1; \
 126	vpshufb t6, t2, t2; \
 127	vpshufb t6, t3, t3; \
 128	vpshufb t6, t4, t4; \
 129	vpsrldq $2, t5, t7; \
 130	vpshufb t6, t7, t7; \
 131	\
 132	/* \
 133	 * P-function \
 134	 */ \
 135	vpxor x5, x0, x0; \
 136	vpxor x6, x1, x1; \
 137	vpxor x7, x2, x2; \
 138	vpxor x4, x3, x3; \
 139	\
 140	vpxor x2, x4, x4; \
 141	vpxor x3, x5, x5; \
 142	vpxor x0, x6, x6; \
 143	vpxor x1, x7, x7; \
 144	\
 145	vpxor x7, x0, x0; \
 146	vpxor x4, x1, x1; \
 147	vpxor x5, x2, x2; \
 148	vpxor x6, x3, x3; \
 149	\
 150	vpxor x3, x4, x4; \
 151	vpxor x0, x5, x5; \
 152	vpxor x1, x6, x6; \
 153	vpxor x2, x7, x7; /* note: high and low parts swapped */ \
 154	\
 155	/* \
 156	 * Add key material and result to CD (x becomes new CD) \
 157	 */ \
 158	\
 159	vpxor t3, x4, x4; \
 160	vpxor 0 * 16(mem_cd), x4, x4; \
 161	\
 162	vpxor t2, x5, x5; \
 163	vpxor 1 * 16(mem_cd), x5, x5; \
 164	\
 165	vpsrldq $1, t5, t3; \
 166	vpshufb t6, t5, t5; \
 167	vpshufb t6, t3, t6; \
 168	\
 169	vpxor t1, x6, x6; \
 170	vpxor 2 * 16(mem_cd), x6, x6; \
 171	\
 172	vpxor t0, x7, x7; \
 173	vpxor 3 * 16(mem_cd), x7, x7; \
 174	\
 175	vpxor t7, x0, x0; \
 176	vpxor 4 * 16(mem_cd), x0, x0; \
 177	\
 178	vpxor t6, x1, x1; \
 179	vpxor 5 * 16(mem_cd), x1, x1; \
 180	\
 181	vpxor t5, x2, x2; \
 182	vpxor 6 * 16(mem_cd), x2, x2; \
 183	\
 184	vpxor t4, x3, x3; \
 185	vpxor 7 * 16(mem_cd), x3, x3;
 186
 187/*
 188 * Size optimization... with inlined roundsm16, binary would be over 5 times
 189 * larger and would only be 0.5% faster (on sandy-bridge).
 190 */
 191.align 8
 192SYM_FUNC_START_LOCAL(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 193	roundsm16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 194		  %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14, %xmm15,
 195		  %rcx, (%r9));
 196	ret;
 197SYM_FUNC_END(roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd)
 198
 199.align 8
 200SYM_FUNC_START_LOCAL(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 201	roundsm16(%xmm4, %xmm5, %xmm6, %xmm7, %xmm0, %xmm1, %xmm2, %xmm3,
 202		  %xmm12, %xmm13, %xmm14, %xmm15, %xmm8, %xmm9, %xmm10, %xmm11,
 203		  %rax, (%r9));
 204	ret;
 205SYM_FUNC_END(roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab)
 206
 207/*
 208 * IN/OUT:
 209 *  x0..x7: byte-sliced AB state preloaded
 210 *  mem_ab: byte-sliced AB state in memory
 211 *  mem_cb: byte-sliced CD state in memory
 212 */
 213#define two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 214		      y6, y7, mem_ab, mem_cd, i, dir, store_ab) \
 215	leaq (key_table + (i) * 8)(CTX), %r9; \
 216	call roundsm16_x0_x1_x2_x3_x4_x5_x6_x7_y0_y1_y2_y3_y4_y5_y6_y7_cd; \
 217	\
 218	vmovdqu x4, 0 * 16(mem_cd); \
 219	vmovdqu x5, 1 * 16(mem_cd); \
 220	vmovdqu x6, 2 * 16(mem_cd); \
 221	vmovdqu x7, 3 * 16(mem_cd); \
 222	vmovdqu x0, 4 * 16(mem_cd); \
 223	vmovdqu x1, 5 * 16(mem_cd); \
 224	vmovdqu x2, 6 * 16(mem_cd); \
 225	vmovdqu x3, 7 * 16(mem_cd); \
 226	\
 227	leaq (key_table + ((i) + (dir)) * 8)(CTX), %r9; \
 228	call roundsm16_x4_x5_x6_x7_x0_x1_x2_x3_y4_y5_y6_y7_y0_y1_y2_y3_ab; \
 229	\
 230	store_ab(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab);
 231
 232#define dummy_store(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) /* do nothing */
 233
 234#define store_ab_state(x0, x1, x2, x3, x4, x5, x6, x7, mem_ab) \
 235	/* Store new AB state */ \
 236	vmovdqu x0, 0 * 16(mem_ab); \
 237	vmovdqu x1, 1 * 16(mem_ab); \
 238	vmovdqu x2, 2 * 16(mem_ab); \
 239	vmovdqu x3, 3 * 16(mem_ab); \
 240	vmovdqu x4, 4 * 16(mem_ab); \
 241	vmovdqu x5, 5 * 16(mem_ab); \
 242	vmovdqu x6, 6 * 16(mem_ab); \
 243	vmovdqu x7, 7 * 16(mem_ab);
 244
 245#define enc_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 246		      y6, y7, mem_ab, mem_cd, i) \
 247	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 248		      y6, y7, mem_ab, mem_cd, (i) + 2, 1, store_ab_state); \
 249	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 250		      y6, y7, mem_ab, mem_cd, (i) + 4, 1, store_ab_state); \
 251	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 252		      y6, y7, mem_ab, mem_cd, (i) + 6, 1, dummy_store);
 253
 254#define dec_rounds16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 255		      y6, y7, mem_ab, mem_cd, i) \
 256	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 257		      y6, y7, mem_ab, mem_cd, (i) + 7, -1, store_ab_state); \
 258	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 259		      y6, y7, mem_ab, mem_cd, (i) + 5, -1, store_ab_state); \
 260	two_roundsm16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 261		      y6, y7, mem_ab, mem_cd, (i) + 3, -1, dummy_store);
 262
 263/*
 264 * IN:
 265 *  v0..3: byte-sliced 32-bit integers
 266 * OUT:
 267 *  v0..3: (IN <<< 1)
 268 */
 269#define rol32_1_16(v0, v1, v2, v3, t0, t1, t2, zero) \
 270	vpcmpgtb v0, zero, t0; \
 271	vpaddb v0, v0, v0; \
 272	vpabsb t0, t0; \
 273	\
 274	vpcmpgtb v1, zero, t1; \
 275	vpaddb v1, v1, v1; \
 276	vpabsb t1, t1; \
 277	\
 278	vpcmpgtb v2, zero, t2; \
 279	vpaddb v2, v2, v2; \
 280	vpabsb t2, t2; \
 281	\
 282	vpor t0, v1, v1; \
 283	\
 284	vpcmpgtb v3, zero, t0; \
 285	vpaddb v3, v3, v3; \
 286	vpabsb t0, t0; \
 287	\
 288	vpor t1, v2, v2; \
 289	vpor t2, v3, v3; \
 290	vpor t0, v0, v0;
 291
 292/*
 293 * IN:
 294 *   r: byte-sliced AB state in memory
 295 *   l: byte-sliced CD state in memory
 296 * OUT:
 297 *   x0..x7: new byte-sliced CD state
 298 */
 299#define fls16(l, l0, l1, l2, l3, l4, l5, l6, l7, r, t0, t1, t2, t3, tt0, \
 300	      tt1, tt2, tt3, kll, klr, krl, krr) \
 301	/* \
 302	 * t0 = kll; \
 303	 * t0 &= ll; \
 304	 * lr ^= rol32(t0, 1); \
 305	 */ \
 306	vpxor tt0, tt0, tt0; \
 307	vmovd kll, t0; \
 308	vpshufb tt0, t0, t3; \
 309	vpsrldq $1, t0, t0; \
 310	vpshufb tt0, t0, t2; \
 311	vpsrldq $1, t0, t0; \
 312	vpshufb tt0, t0, t1; \
 313	vpsrldq $1, t0, t0; \
 314	vpshufb tt0, t0, t0; \
 315	\
 316	vpand l0, t0, t0; \
 317	vpand l1, t1, t1; \
 318	vpand l2, t2, t2; \
 319	vpand l3, t3, t3; \
 320	\
 321	rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 322	\
 323	vpxor l4, t0, l4; \
 324	vmovdqu l4, 4 * 16(l); \
 325	vpxor l5, t1, l5; \
 326	vmovdqu l5, 5 * 16(l); \
 327	vpxor l6, t2, l6; \
 328	vmovdqu l6, 6 * 16(l); \
 329	vpxor l7, t3, l7; \
 330	vmovdqu l7, 7 * 16(l); \
 331	\
 332	/* \
 333	 * t2 = krr; \
 334	 * t2 |= rr; \
 335	 * rl ^= t2; \
 336	 */ \
 337	\
 338	vmovd krr, t0; \
 339	vpshufb tt0, t0, t3; \
 340	vpsrldq $1, t0, t0; \
 341	vpshufb tt0, t0, t2; \
 342	vpsrldq $1, t0, t0; \
 343	vpshufb tt0, t0, t1; \
 344	vpsrldq $1, t0, t0; \
 345	vpshufb tt0, t0, t0; \
 346	\
 347	vpor 4 * 16(r), t0, t0; \
 348	vpor 5 * 16(r), t1, t1; \
 349	vpor 6 * 16(r), t2, t2; \
 350	vpor 7 * 16(r), t3, t3; \
 351	\
 352	vpxor 0 * 16(r), t0, t0; \
 353	vpxor 1 * 16(r), t1, t1; \
 354	vpxor 2 * 16(r), t2, t2; \
 355	vpxor 3 * 16(r), t3, t3; \
 356	vmovdqu t0, 0 * 16(r); \
 357	vmovdqu t1, 1 * 16(r); \
 358	vmovdqu t2, 2 * 16(r); \
 359	vmovdqu t3, 3 * 16(r); \
 360	\
 361	/* \
 362	 * t2 = krl; \
 363	 * t2 &= rl; \
 364	 * rr ^= rol32(t2, 1); \
 365	 */ \
 366	vmovd krl, t0; \
 367	vpshufb tt0, t0, t3; \
 368	vpsrldq $1, t0, t0; \
 369	vpshufb tt0, t0, t2; \
 370	vpsrldq $1, t0, t0; \
 371	vpshufb tt0, t0, t1; \
 372	vpsrldq $1, t0, t0; \
 373	vpshufb tt0, t0, t0; \
 374	\
 375	vpand 0 * 16(r), t0, t0; \
 376	vpand 1 * 16(r), t1, t1; \
 377	vpand 2 * 16(r), t2, t2; \
 378	vpand 3 * 16(r), t3, t3; \
 379	\
 380	rol32_1_16(t3, t2, t1, t0, tt1, tt2, tt3, tt0); \
 381	\
 382	vpxor 4 * 16(r), t0, t0; \
 383	vpxor 5 * 16(r), t1, t1; \
 384	vpxor 6 * 16(r), t2, t2; \
 385	vpxor 7 * 16(r), t3, t3; \
 386	vmovdqu t0, 4 * 16(r); \
 387	vmovdqu t1, 5 * 16(r); \
 388	vmovdqu t2, 6 * 16(r); \
 389	vmovdqu t3, 7 * 16(r); \
 390	\
 391	/* \
 392	 * t0 = klr; \
 393	 * t0 |= lr; \
 394	 * ll ^= t0; \
 395	 */ \
 396	\
 397	vmovd klr, t0; \
 398	vpshufb tt0, t0, t3; \
 399	vpsrldq $1, t0, t0; \
 400	vpshufb tt0, t0, t2; \
 401	vpsrldq $1, t0, t0; \
 402	vpshufb tt0, t0, t1; \
 403	vpsrldq $1, t0, t0; \
 404	vpshufb tt0, t0, t0; \
 405	\
 406	vpor l4, t0, t0; \
 407	vpor l5, t1, t1; \
 408	vpor l6, t2, t2; \
 409	vpor l7, t3, t3; \
 410	\
 411	vpxor l0, t0, l0; \
 412	vmovdqu l0, 0 * 16(l); \
 413	vpxor l1, t1, l1; \
 414	vmovdqu l1, 1 * 16(l); \
 415	vpxor l2, t2, l2; \
 416	vmovdqu l2, 2 * 16(l); \
 417	vpxor l3, t3, l3; \
 418	vmovdqu l3, 3 * 16(l);
 419
 420#define transpose_4x4(x0, x1, x2, x3, t1, t2) \
 421	vpunpckhdq x1, x0, t2; \
 422	vpunpckldq x1, x0, x0; \
 423	\
 424	vpunpckldq x3, x2, t1; \
 425	vpunpckhdq x3, x2, x2; \
 426	\
 427	vpunpckhqdq t1, x0, x1; \
 428	vpunpcklqdq t1, x0, x0; \
 429	\
 430	vpunpckhqdq x2, t2, x3; \
 431	vpunpcklqdq x2, t2, x2;
 432
 433#define byteslice_16x16b(a0, b0, c0, d0, a1, b1, c1, d1, a2, b2, c2, d2, a3, \
 434			 b3, c3, d3, st0, st1) \
 435	vmovdqu d2, st0; \
 436	vmovdqu d3, st1; \
 437	transpose_4x4(a0, a1, a2, a3, d2, d3); \
 438	transpose_4x4(b0, b1, b2, b3, d2, d3); \
 439	vmovdqu st0, d2; \
 440	vmovdqu st1, d3; \
 441	\
 442	vmovdqu a0, st0; \
 443	vmovdqu a1, st1; \
 444	transpose_4x4(c0, c1, c2, c3, a0, a1); \
 445	transpose_4x4(d0, d1, d2, d3, a0, a1); \
 446	\
 447	vmovdqu .Lshufb_16x16b, a0; \
 448	vmovdqu st1, a1; \
 449	vpshufb a0, a2, a2; \
 450	vpshufb a0, a3, a3; \
 451	vpshufb a0, b0, b0; \
 452	vpshufb a0, b1, b1; \
 453	vpshufb a0, b2, b2; \
 454	vpshufb a0, b3, b3; \
 455	vpshufb a0, a1, a1; \
 456	vpshufb a0, c0, c0; \
 457	vpshufb a0, c1, c1; \
 458	vpshufb a0, c2, c2; \
 459	vpshufb a0, c3, c3; \
 460	vpshufb a0, d0, d0; \
 461	vpshufb a0, d1, d1; \
 462	vpshufb a0, d2, d2; \
 463	vpshufb a0, d3, d3; \
 464	vmovdqu d3, st1; \
 465	vmovdqu st0, d3; \
 466	vpshufb a0, d3, a0; \
 467	vmovdqu d2, st0; \
 468	\
 469	transpose_4x4(a0, b0, c0, d0, d2, d3); \
 470	transpose_4x4(a1, b1, c1, d1, d2, d3); \
 471	vmovdqu st0, d2; \
 472	vmovdqu st1, d3; \
 473	\
 474	vmovdqu b0, st0; \
 475	vmovdqu b1, st1; \
 476	transpose_4x4(a2, b2, c2, d2, b0, b1); \
 477	transpose_4x4(a3, b3, c3, d3, b0, b1); \
 478	vmovdqu st0, b0; \
 479	vmovdqu st1, b1; \
 480	/* does not adjust output bytes inside vectors */
 481
 482/* load blocks to registers and apply pre-whitening */
 483#define inpack16_pre(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 484		     y6, y7, rio, key) \
 485	vmovq key, x0; \
 486	vpshufb .Lpack_bswap, x0, x0; \
 487	\
 488	vpxor 0 * 16(rio), x0, y7; \
 489	vpxor 1 * 16(rio), x0, y6; \
 490	vpxor 2 * 16(rio), x0, y5; \
 491	vpxor 3 * 16(rio), x0, y4; \
 492	vpxor 4 * 16(rio), x0, y3; \
 493	vpxor 5 * 16(rio), x0, y2; \
 494	vpxor 6 * 16(rio), x0, y1; \
 495	vpxor 7 * 16(rio), x0, y0; \
 496	vpxor 8 * 16(rio), x0, x7; \
 497	vpxor 9 * 16(rio), x0, x6; \
 498	vpxor 10 * 16(rio), x0, x5; \
 499	vpxor 11 * 16(rio), x0, x4; \
 500	vpxor 12 * 16(rio), x0, x3; \
 501	vpxor 13 * 16(rio), x0, x2; \
 502	vpxor 14 * 16(rio), x0, x1; \
 503	vpxor 15 * 16(rio), x0, x0;
 504
 505/* byteslice pre-whitened blocks and store to temporary memory */
 506#define inpack16_post(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 507		      y6, y7, mem_ab, mem_cd) \
 508	byteslice_16x16b(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 509			 y5, y6, y7, (mem_ab), (mem_cd)); \
 510	\
 511	vmovdqu x0, 0 * 16(mem_ab); \
 512	vmovdqu x1, 1 * 16(mem_ab); \
 513	vmovdqu x2, 2 * 16(mem_ab); \
 514	vmovdqu x3, 3 * 16(mem_ab); \
 515	vmovdqu x4, 4 * 16(mem_ab); \
 516	vmovdqu x5, 5 * 16(mem_ab); \
 517	vmovdqu x6, 6 * 16(mem_ab); \
 518	vmovdqu x7, 7 * 16(mem_ab); \
 519	vmovdqu y0, 0 * 16(mem_cd); \
 520	vmovdqu y1, 1 * 16(mem_cd); \
 521	vmovdqu y2, 2 * 16(mem_cd); \
 522	vmovdqu y3, 3 * 16(mem_cd); \
 523	vmovdqu y4, 4 * 16(mem_cd); \
 524	vmovdqu y5, 5 * 16(mem_cd); \
 525	vmovdqu y6, 6 * 16(mem_cd); \
 526	vmovdqu y7, 7 * 16(mem_cd);
 527
 528/* de-byteslice, apply post-whitening and store blocks */
 529#define outunpack16(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, \
 530		    y5, y6, y7, key, stack_tmp0, stack_tmp1) \
 531	byteslice_16x16b(y0, y4, x0, x4, y1, y5, x1, x5, y2, y6, x2, x6, y3, \
 532			 y7, x3, x7, stack_tmp0, stack_tmp1); \
 533	\
 534	vmovdqu x0, stack_tmp0; \
 535	\
 536	vmovq key, x0; \
 537	vpshufb .Lpack_bswap, x0, x0; \
 538	\
 539	vpxor x0, y7, y7; \
 540	vpxor x0, y6, y6; \
 541	vpxor x0, y5, y5; \
 542	vpxor x0, y4, y4; \
 543	vpxor x0, y3, y3; \
 544	vpxor x0, y2, y2; \
 545	vpxor x0, y1, y1; \
 546	vpxor x0, y0, y0; \
 547	vpxor x0, x7, x7; \
 548	vpxor x0, x6, x6; \
 549	vpxor x0, x5, x5; \
 550	vpxor x0, x4, x4; \
 551	vpxor x0, x3, x3; \
 552	vpxor x0, x2, x2; \
 553	vpxor x0, x1, x1; \
 554	vpxor stack_tmp0, x0, x0;
 555
 556#define write_output(x0, x1, x2, x3, x4, x5, x6, x7, y0, y1, y2, y3, y4, y5, \
 557		     y6, y7, rio) \
 558	vmovdqu x0, 0 * 16(rio); \
 559	vmovdqu x1, 1 * 16(rio); \
 560	vmovdqu x2, 2 * 16(rio); \
 561	vmovdqu x3, 3 * 16(rio); \
 562	vmovdqu x4, 4 * 16(rio); \
 563	vmovdqu x5, 5 * 16(rio); \
 564	vmovdqu x6, 6 * 16(rio); \
 565	vmovdqu x7, 7 * 16(rio); \
 566	vmovdqu y0, 8 * 16(rio); \
 567	vmovdqu y1, 9 * 16(rio); \
 568	vmovdqu y2, 10 * 16(rio); \
 569	vmovdqu y3, 11 * 16(rio); \
 570	vmovdqu y4, 12 * 16(rio); \
 571	vmovdqu y5, 13 * 16(rio); \
 572	vmovdqu y6, 14 * 16(rio); \
 573	vmovdqu y7, 15 * 16(rio);
 574
 575
 576/* NB: section is mergeable, all elements must be aligned 16-byte blocks */
 577.section	.rodata.cst16, "aM", @progbits, 16
 578.align 16
 579
 580#define SHUFB_BYTES(idx) \
 581	0 + (idx), 4 + (idx), 8 + (idx), 12 + (idx)
 582
 583.Lshufb_16x16b:
 584	.byte SHUFB_BYTES(0), SHUFB_BYTES(1), SHUFB_BYTES(2), SHUFB_BYTES(3);
 585
 586.Lpack_bswap:
 587	.long 0x00010203
 588	.long 0x04050607
 589	.long 0x80808080
 590	.long 0x80808080
 591
 592/* For CTR-mode IV byteswap */
 593.Lbswap128_mask:
 594	.byte 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0
 595
 596/* For XTS mode IV generation */
 597.Lxts_gf128mul_and_shl1_mask:
 598	.byte 0x87, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0
 599
 600/*
 601 * pre-SubByte transform
 602 *
 603 * pre-lookup for sbox1, sbox2, sbox3:
 604 *   swap_bitendianness(
 605 *       isom_map_camellia_to_aes(
 606 *           camellia_f(
 607 *               swap_bitendianess(in)
 608 *           )
 609 *       )
 610 *   )
 611 *
 612 * (note: '⊕ 0xc5' inside camellia_f())
 613 */
 614.Lpre_tf_lo_s1:
 615	.byte 0x45, 0xe8, 0x40, 0xed, 0x2e, 0x83, 0x2b, 0x86
 616	.byte 0x4b, 0xe6, 0x4e, 0xe3, 0x20, 0x8d, 0x25, 0x88
 617.Lpre_tf_hi_s1:
 618	.byte 0x00, 0x51, 0xf1, 0xa0, 0x8a, 0xdb, 0x7b, 0x2a
 619	.byte 0x09, 0x58, 0xf8, 0xa9, 0x83, 0xd2, 0x72, 0x23
 620
 621/*
 622 * pre-SubByte transform
 623 *
 624 * pre-lookup for sbox4:
 625 *   swap_bitendianness(
 626 *       isom_map_camellia_to_aes(
 627 *           camellia_f(
 628 *               swap_bitendianess(in <<< 1)
 629 *           )
 630 *       )
 631 *   )
 632 *
 633 * (note: '⊕ 0xc5' inside camellia_f())
 634 */
 635.Lpre_tf_lo_s4:
 636	.byte 0x45, 0x40, 0x2e, 0x2b, 0x4b, 0x4e, 0x20, 0x25
 637	.byte 0x14, 0x11, 0x7f, 0x7a, 0x1a, 0x1f, 0x71, 0x74
 638.Lpre_tf_hi_s4:
 639	.byte 0x00, 0xf1, 0x8a, 0x7b, 0x09, 0xf8, 0x83, 0x72
 640	.byte 0xad, 0x5c, 0x27, 0xd6, 0xa4, 0x55, 0x2e, 0xdf
 641
 642/*
 643 * post-SubByte transform
 644 *
 645 * post-lookup for sbox1, sbox4:
 646 *  swap_bitendianness(
 647 *      camellia_h(
 648 *          isom_map_aes_to_camellia(
 649 *              swap_bitendianness(
 650 *                  aes_inverse_affine_transform(in)
 651 *              )
 652 *          )
 653 *      )
 654 *  )
 655 *
 656 * (note: '⊕ 0x6e' inside camellia_h())
 657 */
 658.Lpost_tf_lo_s1:
 659	.byte 0x3c, 0xcc, 0xcf, 0x3f, 0x32, 0xc2, 0xc1, 0x31
 660	.byte 0xdc, 0x2c, 0x2f, 0xdf, 0xd2, 0x22, 0x21, 0xd1
 661.Lpost_tf_hi_s1:
 662	.byte 0x00, 0xf9, 0x86, 0x7f, 0xd7, 0x2e, 0x51, 0xa8
 663	.byte 0xa4, 0x5d, 0x22, 0xdb, 0x73, 0x8a, 0xf5, 0x0c
 664
 665/*
 666 * post-SubByte transform
 667 *
 668 * post-lookup for sbox2:
 669 *  swap_bitendianness(
 670 *      camellia_h(
 671 *          isom_map_aes_to_camellia(
 672 *              swap_bitendianness(
 673 *                  aes_inverse_affine_transform(in)
 674 *              )
 675 *          )
 676 *      )
 677 *  ) <<< 1
 678 *
 679 * (note: '⊕ 0x6e' inside camellia_h())
 680 */
 681.Lpost_tf_lo_s2:
 682	.byte 0x78, 0x99, 0x9f, 0x7e, 0x64, 0x85, 0x83, 0x62
 683	.byte 0xb9, 0x58, 0x5e, 0xbf, 0xa5, 0x44, 0x42, 0xa3
 684.Lpost_tf_hi_s2:
 685	.byte 0x00, 0xf3, 0x0d, 0xfe, 0xaf, 0x5c, 0xa2, 0x51
 686	.byte 0x49, 0xba, 0x44, 0xb7, 0xe6, 0x15, 0xeb, 0x18
 687
 688/*
 689 * post-SubByte transform
 690 *
 691 * post-lookup for sbox3:
 692 *  swap_bitendianness(
 693 *      camellia_h(
 694 *          isom_map_aes_to_camellia(
 695 *              swap_bitendianness(
 696 *                  aes_inverse_affine_transform(in)
 697 *              )
 698 *          )
 699 *      )
 700 *  ) >>> 1
 701 *
 702 * (note: '⊕ 0x6e' inside camellia_h())
 703 */
 704.Lpost_tf_lo_s3:
 705	.byte 0x1e, 0x66, 0xe7, 0x9f, 0x19, 0x61, 0xe0, 0x98
 706	.byte 0x6e, 0x16, 0x97, 0xef, 0x69, 0x11, 0x90, 0xe8
 707.Lpost_tf_hi_s3:
 708	.byte 0x00, 0xfc, 0x43, 0xbf, 0xeb, 0x17, 0xa8, 0x54
 709	.byte 0x52, 0xae, 0x11, 0xed, 0xb9, 0x45, 0xfa, 0x06
 710
 711/* For isolating SubBytes from AESENCLAST, inverse shift row */
 712.Linv_shift_row:
 713	.byte 0x00, 0x0d, 0x0a, 0x07, 0x04, 0x01, 0x0e, 0x0b
 714	.byte 0x08, 0x05, 0x02, 0x0f, 0x0c, 0x09, 0x06, 0x03
 715
 716/* 4-bit mask */
 717.section	.rodata.cst4.L0f0f0f0f, "aM", @progbits, 4
 718.align 4
 719.L0f0f0f0f:
 720	.long 0x0f0f0f0f
 721
 722.text
 723
 724.align 8
 725SYM_FUNC_START_LOCAL(__camellia_enc_blk16)
 726	/* input:
 727	 *	%rdi: ctx, CTX
 728	 *	%rax: temporary storage, 256 bytes
 729	 *	%xmm0..%xmm15: 16 plaintext blocks
 730	 * output:
 731	 *	%xmm0..%xmm15: 16 encrypted blocks, order swapped:
 732	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 733	 */
 734	FRAME_BEGIN
 735
 736	leaq 8 * 16(%rax), %rcx;
 737
 738	inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 739		      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 740		      %xmm15, %rax, %rcx);
 741
 742	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 743		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 744		     %xmm15, %rax, %rcx, 0);
 745
 746	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 747	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 748	      %xmm15,
 749	      ((key_table + (8) * 8) + 0)(CTX),
 750	      ((key_table + (8) * 8) + 4)(CTX),
 751	      ((key_table + (8) * 8) + 8)(CTX),
 752	      ((key_table + (8) * 8) + 12)(CTX));
 753
 754	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 755		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 756		     %xmm15, %rax, %rcx, 8);
 757
 758	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 759	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 760	      %xmm15,
 761	      ((key_table + (16) * 8) + 0)(CTX),
 762	      ((key_table + (16) * 8) + 4)(CTX),
 763	      ((key_table + (16) * 8) + 8)(CTX),
 764	      ((key_table + (16) * 8) + 12)(CTX));
 765
 766	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 767		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 768		     %xmm15, %rax, %rcx, 16);
 769
 770	movl $24, %r8d;
 771	cmpl $16, key_length(CTX);
 772	jne .Lenc_max32;
 773
 774.Lenc_done:
 775	/* load CD for output */
 776	vmovdqu 0 * 16(%rcx), %xmm8;
 777	vmovdqu 1 * 16(%rcx), %xmm9;
 778	vmovdqu 2 * 16(%rcx), %xmm10;
 779	vmovdqu 3 * 16(%rcx), %xmm11;
 780	vmovdqu 4 * 16(%rcx), %xmm12;
 781	vmovdqu 5 * 16(%rcx), %xmm13;
 782	vmovdqu 6 * 16(%rcx), %xmm14;
 783	vmovdqu 7 * 16(%rcx), %xmm15;
 784
 785	outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 786		    %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 787		    %xmm15, (key_table)(CTX, %r8, 8), (%rax), 1 * 16(%rax));
 788
 789	FRAME_END
 790	ret;
 791
 792.align 8
 793.Lenc_max32:
 794	movl $32, %r8d;
 795
 796	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 797	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 798	      %xmm15,
 799	      ((key_table + (24) * 8) + 0)(CTX),
 800	      ((key_table + (24) * 8) + 4)(CTX),
 801	      ((key_table + (24) * 8) + 8)(CTX),
 802	      ((key_table + (24) * 8) + 12)(CTX));
 803
 804	enc_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 805		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 806		     %xmm15, %rax, %rcx, 24);
 807
 808	jmp .Lenc_done;
 809SYM_FUNC_END(__camellia_enc_blk16)
 810
 811.align 8
 812SYM_FUNC_START_LOCAL(__camellia_dec_blk16)
 813	/* input:
 814	 *	%rdi: ctx, CTX
 815	 *	%rax: temporary storage, 256 bytes
 816	 *	%r8d: 24 for 16 byte key, 32 for larger
 817	 *	%xmm0..%xmm15: 16 encrypted blocks
 818	 * output:
 819	 *	%xmm0..%xmm15: 16 plaintext blocks, order swapped:
 820	 *       7, 8, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8
 821	 */
 822	FRAME_BEGIN
 823
 824	leaq 8 * 16(%rax), %rcx;
 825
 826	inpack16_post(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 827		      %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 828		      %xmm15, %rax, %rcx);
 829
 830	cmpl $32, %r8d;
 831	je .Ldec_max32;
 832
 833.Ldec_max24:
 834	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 835		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 836		     %xmm15, %rax, %rcx, 16);
 837
 838	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 839	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 840	      %xmm15,
 841	      ((key_table + (16) * 8) + 8)(CTX),
 842	      ((key_table + (16) * 8) + 12)(CTX),
 843	      ((key_table + (16) * 8) + 0)(CTX),
 844	      ((key_table + (16) * 8) + 4)(CTX));
 845
 846	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 847		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 848		     %xmm15, %rax, %rcx, 8);
 849
 850	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 851	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 852	      %xmm15,
 853	      ((key_table + (8) * 8) + 8)(CTX),
 854	      ((key_table + (8) * 8) + 12)(CTX),
 855	      ((key_table + (8) * 8) + 0)(CTX),
 856	      ((key_table + (8) * 8) + 4)(CTX));
 857
 858	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 859		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 860		     %xmm15, %rax, %rcx, 0);
 861
 862	/* load CD for output */
 863	vmovdqu 0 * 16(%rcx), %xmm8;
 864	vmovdqu 1 * 16(%rcx), %xmm9;
 865	vmovdqu 2 * 16(%rcx), %xmm10;
 866	vmovdqu 3 * 16(%rcx), %xmm11;
 867	vmovdqu 4 * 16(%rcx), %xmm12;
 868	vmovdqu 5 * 16(%rcx), %xmm13;
 869	vmovdqu 6 * 16(%rcx), %xmm14;
 870	vmovdqu 7 * 16(%rcx), %xmm15;
 871
 872	outunpack16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 873		    %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 874		    %xmm15, (key_table)(CTX), (%rax), 1 * 16(%rax));
 875
 876	FRAME_END
 877	ret;
 878
 879.align 8
 880.Ldec_max32:
 881	dec_rounds16(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 882		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 883		     %xmm15, %rax, %rcx, 24);
 884
 885	fls16(%rax, %xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 886	      %rcx, %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 887	      %xmm15,
 888	      ((key_table + (24) * 8) + 8)(CTX),
 889	      ((key_table + (24) * 8) + 12)(CTX),
 890	      ((key_table + (24) * 8) + 0)(CTX),
 891	      ((key_table + (24) * 8) + 4)(CTX));
 892
 893	jmp .Ldec_max24;
 894SYM_FUNC_END(__camellia_dec_blk16)
 895
 896SYM_FUNC_START(camellia_ecb_enc_16way)
 897	/* input:
 898	 *	%rdi: ctx, CTX
 899	 *	%rsi: dst (16 blocks)
 900	 *	%rdx: src (16 blocks)
 901	 */
 902	 FRAME_BEGIN
 903
 904	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 905		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 906		     %xmm15, %rdx, (key_table)(CTX));
 907
 908	/* now dst can be used as temporary buffer (even in src == dst case) */
 909	movq	%rsi, %rax;
 910
 911	call __camellia_enc_blk16;
 912
 913	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
 914		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
 915		     %xmm8, %rsi);
 916
 917	FRAME_END
 918	ret;
 919SYM_FUNC_END(camellia_ecb_enc_16way)
 920
 921SYM_FUNC_START(camellia_ecb_dec_16way)
 922	/* input:
 923	 *	%rdi: ctx, CTX
 924	 *	%rsi: dst (16 blocks)
 925	 *	%rdx: src (16 blocks)
 926	 */
 927	 FRAME_BEGIN
 928
 929	cmpl $16, key_length(CTX);
 930	movl $32, %r8d;
 931	movl $24, %eax;
 932	cmovel %eax, %r8d; /* max */
 933
 934	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 935		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 936		     %xmm15, %rdx, (key_table)(CTX, %r8, 8));
 937
 938	/* now dst can be used as temporary buffer (even in src == dst case) */
 939	movq	%rsi, %rax;
 940
 941	call __camellia_dec_blk16;
 942
 943	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
 944		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
 945		     %xmm8, %rsi);
 946
 947	FRAME_END
 948	ret;
 949SYM_FUNC_END(camellia_ecb_dec_16way)
 950
 951SYM_FUNC_START(camellia_cbc_dec_16way)
 952	/* input:
 953	 *	%rdi: ctx, CTX
 954	 *	%rsi: dst (16 blocks)
 955	 *	%rdx: src (16 blocks)
 956	 */
 957	FRAME_BEGIN
 958
 959	cmpl $16, key_length(CTX);
 960	movl $32, %r8d;
 961	movl $24, %eax;
 962	cmovel %eax, %r8d; /* max */
 963
 964	inpack16_pre(%xmm0, %xmm1, %xmm2, %xmm3, %xmm4, %xmm5, %xmm6, %xmm7,
 965		     %xmm8, %xmm9, %xmm10, %xmm11, %xmm12, %xmm13, %xmm14,
 966		     %xmm15, %rdx, (key_table)(CTX, %r8, 8));
 967
 968	/*
 969	 * dst might still be in-use (in case dst == src), so use stack for
 970	 * temporary storage.
 971	 */
 972	subq $(16 * 16), %rsp;
 973	movq %rsp, %rax;
 974
 975	call __camellia_dec_blk16;
 976
 977	addq $(16 * 16), %rsp;
 978
 979	vpxor (0 * 16)(%rdx), %xmm6, %xmm6;
 980	vpxor (1 * 16)(%rdx), %xmm5, %xmm5;
 981	vpxor (2 * 16)(%rdx), %xmm4, %xmm4;
 982	vpxor (3 * 16)(%rdx), %xmm3, %xmm3;
 983	vpxor (4 * 16)(%rdx), %xmm2, %xmm2;
 984	vpxor (5 * 16)(%rdx), %xmm1, %xmm1;
 985	vpxor (6 * 16)(%rdx), %xmm0, %xmm0;
 986	vpxor (7 * 16)(%rdx), %xmm15, %xmm15;
 987	vpxor (8 * 16)(%rdx), %xmm14, %xmm14;
 988	vpxor (9 * 16)(%rdx), %xmm13, %xmm13;
 989	vpxor (10 * 16)(%rdx), %xmm12, %xmm12;
 990	vpxor (11 * 16)(%rdx), %xmm11, %xmm11;
 991	vpxor (12 * 16)(%rdx), %xmm10, %xmm10;
 992	vpxor (13 * 16)(%rdx), %xmm9, %xmm9;
 993	vpxor (14 * 16)(%rdx), %xmm8, %xmm8;
 994	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
 995		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
 996		     %xmm8, %rsi);
 997
 998	FRAME_END
 999	ret;
1000SYM_FUNC_END(camellia_cbc_dec_16way)
1001
1002#define inc_le128(x, minus_one, tmp) \
1003	vpcmpeqq minus_one, x, tmp; \
1004	vpsubq minus_one, x, x; \
1005	vpslldq $8, tmp, tmp; \
1006	vpsubq tmp, x, x;
1007
1008SYM_FUNC_START(camellia_ctr_16way)
1009	/* input:
1010	 *	%rdi: ctx, CTX
1011	 *	%rsi: dst (16 blocks)
1012	 *	%rdx: src (16 blocks)
1013	 *	%rcx: iv (little endian, 128bit)
1014	 */
1015	FRAME_BEGIN
1016
1017	subq $(16 * 16), %rsp;
1018	movq %rsp, %rax;
1019
1020	vmovdqa .Lbswap128_mask, %xmm14;
1021
1022	/* load IV and byteswap */
1023	vmovdqu (%rcx), %xmm0;
1024	vpshufb %xmm14, %xmm0, %xmm15;
1025	vmovdqu %xmm15, 15 * 16(%rax);
1026
1027	vpcmpeqd %xmm15, %xmm15, %xmm15;
1028	vpsrldq $8, %xmm15, %xmm15; /* low: -1, high: 0 */
1029
1030	/* construct IVs */
1031	inc_le128(%xmm0, %xmm15, %xmm13);
1032	vpshufb %xmm14, %xmm0, %xmm13;
1033	vmovdqu %xmm13, 14 * 16(%rax);
1034	inc_le128(%xmm0, %xmm15, %xmm13);
1035	vpshufb %xmm14, %xmm0, %xmm13;
1036	vmovdqu %xmm13, 13 * 16(%rax);
1037	inc_le128(%xmm0, %xmm15, %xmm13);
1038	vpshufb %xmm14, %xmm0, %xmm12;
1039	inc_le128(%xmm0, %xmm15, %xmm13);
1040	vpshufb %xmm14, %xmm0, %xmm11;
1041	inc_le128(%xmm0, %xmm15, %xmm13);
1042	vpshufb %xmm14, %xmm0, %xmm10;
1043	inc_le128(%xmm0, %xmm15, %xmm13);
1044	vpshufb %xmm14, %xmm0, %xmm9;
1045	inc_le128(%xmm0, %xmm15, %xmm13);
1046	vpshufb %xmm14, %xmm0, %xmm8;
1047	inc_le128(%xmm0, %xmm15, %xmm13);
1048	vpshufb %xmm14, %xmm0, %xmm7;
1049	inc_le128(%xmm0, %xmm15, %xmm13);
1050	vpshufb %xmm14, %xmm0, %xmm6;
1051	inc_le128(%xmm0, %xmm15, %xmm13);
1052	vpshufb %xmm14, %xmm0, %xmm5;
1053	inc_le128(%xmm0, %xmm15, %xmm13);
1054	vpshufb %xmm14, %xmm0, %xmm4;
1055	inc_le128(%xmm0, %xmm15, %xmm13);
1056	vpshufb %xmm14, %xmm0, %xmm3;
1057	inc_le128(%xmm0, %xmm15, %xmm13);
1058	vpshufb %xmm14, %xmm0, %xmm2;
1059	inc_le128(%xmm0, %xmm15, %xmm13);
1060	vpshufb %xmm14, %xmm0, %xmm1;
1061	inc_le128(%xmm0, %xmm15, %xmm13);
1062	vmovdqa %xmm0, %xmm13;
1063	vpshufb %xmm14, %xmm0, %xmm0;
1064	inc_le128(%xmm13, %xmm15, %xmm14);
1065	vmovdqu %xmm13, (%rcx);
1066
1067	/* inpack16_pre: */
1068	vmovq (key_table)(CTX), %xmm15;
1069	vpshufb .Lpack_bswap, %xmm15, %xmm15;
1070	vpxor %xmm0, %xmm15, %xmm0;
1071	vpxor %xmm1, %xmm15, %xmm1;
1072	vpxor %xmm2, %xmm15, %xmm2;
1073	vpxor %xmm3, %xmm15, %xmm3;
1074	vpxor %xmm4, %xmm15, %xmm4;
1075	vpxor %xmm5, %xmm15, %xmm5;
1076	vpxor %xmm6, %xmm15, %xmm6;
1077	vpxor %xmm7, %xmm15, %xmm7;
1078	vpxor %xmm8, %xmm15, %xmm8;
1079	vpxor %xmm9, %xmm15, %xmm9;
1080	vpxor %xmm10, %xmm15, %xmm10;
1081	vpxor %xmm11, %xmm15, %xmm11;
1082	vpxor %xmm12, %xmm15, %xmm12;
1083	vpxor 13 * 16(%rax), %xmm15, %xmm13;
1084	vpxor 14 * 16(%rax), %xmm15, %xmm14;
1085	vpxor 15 * 16(%rax), %xmm15, %xmm15;
1086
1087	call __camellia_enc_blk16;
1088
1089	addq $(16 * 16), %rsp;
1090
1091	vpxor 0 * 16(%rdx), %xmm7, %xmm7;
1092	vpxor 1 * 16(%rdx), %xmm6, %xmm6;
1093	vpxor 2 * 16(%rdx), %xmm5, %xmm5;
1094	vpxor 3 * 16(%rdx), %xmm4, %xmm4;
1095	vpxor 4 * 16(%rdx), %xmm3, %xmm3;
1096	vpxor 5 * 16(%rdx), %xmm2, %xmm2;
1097	vpxor 6 * 16(%rdx), %xmm1, %xmm1;
1098	vpxor 7 * 16(%rdx), %xmm0, %xmm0;
1099	vpxor 8 * 16(%rdx), %xmm15, %xmm15;
1100	vpxor 9 * 16(%rdx), %xmm14, %xmm14;
1101	vpxor 10 * 16(%rdx), %xmm13, %xmm13;
1102	vpxor 11 * 16(%rdx), %xmm12, %xmm12;
1103	vpxor 12 * 16(%rdx), %xmm11, %xmm11;
1104	vpxor 13 * 16(%rdx), %xmm10, %xmm10;
1105	vpxor 14 * 16(%rdx), %xmm9, %xmm9;
1106	vpxor 15 * 16(%rdx), %xmm8, %xmm8;
1107	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1108		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1109		     %xmm8, %rsi);
1110
1111	FRAME_END
1112	ret;
1113SYM_FUNC_END(camellia_ctr_16way)
1114
1115#define gf128mul_x_ble(iv, mask, tmp) \
1116	vpsrad $31, iv, tmp; \
1117	vpaddq iv, iv, iv; \
1118	vpshufd $0x13, tmp, tmp; \
1119	vpand mask, tmp, tmp; \
1120	vpxor tmp, iv, iv;
1121
1122.align 8
1123SYM_FUNC_START_LOCAL(camellia_xts_crypt_16way)
1124	/* input:
1125	 *	%rdi: ctx, CTX
1126	 *	%rsi: dst (16 blocks)
1127	 *	%rdx: src (16 blocks)
1128	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1129	 *	%r8: index for input whitening key
1130	 *	%r9: pointer to  __camellia_enc_blk16 or __camellia_dec_blk16
1131	 */
1132	FRAME_BEGIN
1133
1134	subq $(16 * 16), %rsp;
1135	movq %rsp, %rax;
1136
1137	vmovdqa .Lxts_gf128mul_and_shl1_mask, %xmm14;
1138
1139	/* load IV */
1140	vmovdqu (%rcx), %xmm0;
1141	vpxor 0 * 16(%rdx), %xmm0, %xmm15;
1142	vmovdqu %xmm15, 15 * 16(%rax);
1143	vmovdqu %xmm0, 0 * 16(%rsi);
1144
1145	/* construct IVs */
1146	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1147	vpxor 1 * 16(%rdx), %xmm0, %xmm15;
1148	vmovdqu %xmm15, 14 * 16(%rax);
1149	vmovdqu %xmm0, 1 * 16(%rsi);
1150
1151	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1152	vpxor 2 * 16(%rdx), %xmm0, %xmm13;
1153	vmovdqu %xmm0, 2 * 16(%rsi);
1154
1155	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1156	vpxor 3 * 16(%rdx), %xmm0, %xmm12;
1157	vmovdqu %xmm0, 3 * 16(%rsi);
1158
1159	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1160	vpxor 4 * 16(%rdx), %xmm0, %xmm11;
1161	vmovdqu %xmm0, 4 * 16(%rsi);
1162
1163	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1164	vpxor 5 * 16(%rdx), %xmm0, %xmm10;
1165	vmovdqu %xmm0, 5 * 16(%rsi);
1166
1167	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1168	vpxor 6 * 16(%rdx), %xmm0, %xmm9;
1169	vmovdqu %xmm0, 6 * 16(%rsi);
1170
1171	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1172	vpxor 7 * 16(%rdx), %xmm0, %xmm8;
1173	vmovdqu %xmm0, 7 * 16(%rsi);
1174
1175	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1176	vpxor 8 * 16(%rdx), %xmm0, %xmm7;
1177	vmovdqu %xmm0, 8 * 16(%rsi);
1178
1179	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1180	vpxor 9 * 16(%rdx), %xmm0, %xmm6;
1181	vmovdqu %xmm0, 9 * 16(%rsi);
1182
1183	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1184	vpxor 10 * 16(%rdx), %xmm0, %xmm5;
1185	vmovdqu %xmm0, 10 * 16(%rsi);
1186
1187	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1188	vpxor 11 * 16(%rdx), %xmm0, %xmm4;
1189	vmovdqu %xmm0, 11 * 16(%rsi);
1190
1191	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1192	vpxor 12 * 16(%rdx), %xmm0, %xmm3;
1193	vmovdqu %xmm0, 12 * 16(%rsi);
1194
1195	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1196	vpxor 13 * 16(%rdx), %xmm0, %xmm2;
1197	vmovdqu %xmm0, 13 * 16(%rsi);
1198
1199	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1200	vpxor 14 * 16(%rdx), %xmm0, %xmm1;
1201	vmovdqu %xmm0, 14 * 16(%rsi);
1202
1203	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1204	vpxor 15 * 16(%rdx), %xmm0, %xmm15;
1205	vmovdqu %xmm15, 0 * 16(%rax);
1206	vmovdqu %xmm0, 15 * 16(%rsi);
1207
1208	gf128mul_x_ble(%xmm0, %xmm14, %xmm15);
1209	vmovdqu %xmm0, (%rcx);
1210
1211	/* inpack16_pre: */
1212	vmovq (key_table)(CTX, %r8, 8), %xmm15;
1213	vpshufb .Lpack_bswap, %xmm15, %xmm15;
1214	vpxor 0 * 16(%rax), %xmm15, %xmm0;
1215	vpxor %xmm1, %xmm15, %xmm1;
1216	vpxor %xmm2, %xmm15, %xmm2;
1217	vpxor %xmm3, %xmm15, %xmm3;
1218	vpxor %xmm4, %xmm15, %xmm4;
1219	vpxor %xmm5, %xmm15, %xmm5;
1220	vpxor %xmm6, %xmm15, %xmm6;
1221	vpxor %xmm7, %xmm15, %xmm7;
1222	vpxor %xmm8, %xmm15, %xmm8;
1223	vpxor %xmm9, %xmm15, %xmm9;
1224	vpxor %xmm10, %xmm15, %xmm10;
1225	vpxor %xmm11, %xmm15, %xmm11;
1226	vpxor %xmm12, %xmm15, %xmm12;
1227	vpxor %xmm13, %xmm15, %xmm13;
1228	vpxor 14 * 16(%rax), %xmm15, %xmm14;
1229	vpxor 15 * 16(%rax), %xmm15, %xmm15;
1230
1231	CALL_NOSPEC r9;
1232
1233	addq $(16 * 16), %rsp;
1234
1235	vpxor 0 * 16(%rsi), %xmm7, %xmm7;
1236	vpxor 1 * 16(%rsi), %xmm6, %xmm6;
1237	vpxor 2 * 16(%rsi), %xmm5, %xmm5;
1238	vpxor 3 * 16(%rsi), %xmm4, %xmm4;
1239	vpxor 4 * 16(%rsi), %xmm3, %xmm3;
1240	vpxor 5 * 16(%rsi), %xmm2, %xmm2;
1241	vpxor 6 * 16(%rsi), %xmm1, %xmm1;
1242	vpxor 7 * 16(%rsi), %xmm0, %xmm0;
1243	vpxor 8 * 16(%rsi), %xmm15, %xmm15;
1244	vpxor 9 * 16(%rsi), %xmm14, %xmm14;
1245	vpxor 10 * 16(%rsi), %xmm13, %xmm13;
1246	vpxor 11 * 16(%rsi), %xmm12, %xmm12;
1247	vpxor 12 * 16(%rsi), %xmm11, %xmm11;
1248	vpxor 13 * 16(%rsi), %xmm10, %xmm10;
1249	vpxor 14 * 16(%rsi), %xmm9, %xmm9;
1250	vpxor 15 * 16(%rsi), %xmm8, %xmm8;
1251	write_output(%xmm7, %xmm6, %xmm5, %xmm4, %xmm3, %xmm2, %xmm1, %xmm0,
1252		     %xmm15, %xmm14, %xmm13, %xmm12, %xmm11, %xmm10, %xmm9,
1253		     %xmm8, %rsi);
1254
1255	FRAME_END
1256	ret;
1257SYM_FUNC_END(camellia_xts_crypt_16way)
1258
1259SYM_FUNC_START(camellia_xts_enc_16way)
1260	/* input:
1261	 *	%rdi: ctx, CTX
1262	 *	%rsi: dst (16 blocks)
1263	 *	%rdx: src (16 blocks)
1264	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1265	 */
1266	xorl %r8d, %r8d; /* input whitening key, 0 for enc */
1267
1268	leaq __camellia_enc_blk16, %r9;
1269
1270	jmp camellia_xts_crypt_16way;
1271SYM_FUNC_END(camellia_xts_enc_16way)
1272
1273SYM_FUNC_START(camellia_xts_dec_16way)
1274	/* input:
1275	 *	%rdi: ctx, CTX
1276	 *	%rsi: dst (16 blocks)
1277	 *	%rdx: src (16 blocks)
1278	 *	%rcx: iv (t ⊕ αⁿ ∈ GF(2¹²⁸))
1279	 */
1280
1281	cmpl $16, key_length(CTX);
1282	movl $32, %r8d;
1283	movl $24, %eax;
1284	cmovel %eax, %r8d;  /* input whitening key, last for dec */
1285
1286	leaq __camellia_dec_blk16, %r9;
1287
1288	jmp camellia_xts_crypt_16way;
1289SYM_FUNC_END(camellia_xts_dec_16way)