Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
 
  13
  14#include <linux/sched/signal.h>
  15#include <linux/rwsem.h>
  16#include <linux/hugetlb.h>
  17#include <linux/migrate.h>
  18#include <linux/mm_inline.h>
  19#include <linux/sched/mm.h>
 
  20
  21#include <asm/mmu_context.h>
  22#include <asm/tlbflush.h>
  23
  24#include "internal.h"
  25
  26struct follow_page_context {
  27	struct dev_pagemap *pgmap;
  28	unsigned int page_mask;
  29};
  30
  31static void hpage_pincount_add(struct page *page, int refs)
 
  32{
  33	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  34	VM_BUG_ON_PAGE(page != compound_head(page), page);
  35
  36	atomic_add(refs, compound_pincount_ptr(page));
  37}
  38
  39static void hpage_pincount_sub(struct page *page, int refs)
  40{
  41	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
  42	VM_BUG_ON_PAGE(page != compound_head(page), page);
 
 
 
 
 
 
 
 
 
 
 
  43
  44	atomic_sub(refs, compound_pincount_ptr(page));
 
 
 
 
 
 
 
 
 
  45}
  46
  47/*
  48 * Return the compound head page with ref appropriately incremented,
  49 * or NULL if that failed.
  50 */
  51static inline struct page *try_get_compound_head(struct page *page, int refs)
  52{
  53	struct page *head = compound_head(page);
  54
  55	if (WARN_ON_ONCE(page_ref_count(head) < 0))
 
 
  56		return NULL;
  57	if (unlikely(!page_cache_add_speculative(head, refs)))
  58		return NULL;
  59	return head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60}
  61
  62/*
  63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
  64 * flags-dependent amount.
 
 
  65 *
  66 * "grab" names in this file mean, "look at flags to decide whether to use
  67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
  68 *
  69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
  70 * same time. (That's true throughout the get_user_pages*() and
  71 * pin_user_pages*() APIs.) Cases:
  72 *
  73 *    FOLL_GET: page's refcount will be incremented by 1.
  74 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
  75 *
  76 * Return: head page (with refcount appropriately incremented) for success, or
  77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
  78 * considered failure, and furthermore, a likely bug in the caller, so a warning
  79 * is also emitted.
  80 */
  81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
  82							  int refs,
  83							  unsigned int flags)
 
 
 
 
  84{
 
 
 
 
 
 
 
 
  85	if (flags & FOLL_GET)
  86		return try_get_compound_head(page, refs);
  87	else if (flags & FOLL_PIN) {
  88		int orig_refs = refs;
  89
  90		/*
  91		 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
  92		 * path, so fail and let the caller fall back to the slow path.
  93		 */
  94		if (unlikely(flags & FOLL_LONGTERM) &&
  95				is_migrate_cma_page(page))
  96			return NULL;
  97
  98		/*
  99		 * When pinning a compound page of order > 1 (which is what
 100		 * hpage_pincount_available() checks for), use an exact count to
 101		 * track it, via hpage_pincount_add/_sub().
 102		 *
 103		 * However, be sure to *also* increment the normal page refcount
 104		 * field at least once, so that the page really is pinned.
 105		 */
 106		if (!hpage_pincount_available(page))
 107			refs *= GUP_PIN_COUNTING_BIAS;
 108
 109		page = try_get_compound_head(page, refs);
 110		if (!page)
 111			return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112
 113		if (hpage_pincount_available(page))
 114			hpage_pincount_add(page, refs);
 115
 116		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
 117				    orig_refs);
 118
 119		return page;
 
 
 
 
 
 
 
 
 
 120	}
 121
 122	WARN_ON_ONCE(1);
 123	return NULL;
 124}
 125
 126/**
 127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 
 
 128 *
 129 * This might not do anything at all, depending on the flags argument.
 130 *
 131 * "grab" names in this file mean, "look at flags to decide whether to use
 132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 133 *
 134 * @page:    pointer to page to be grabbed
 135 * @flags:   gup flags: these are the FOLL_* flag values.
 136 *
 137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 138 * time. Cases:
 
 139 *
 140 *    FOLL_GET: page's refcount will be incremented by 1.
 141 *    FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
 142 *
 143 * Return: true for success, or if no action was required (if neither FOLL_PIN
 144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
 145 * FOLL_PIN was set, but the page could not be grabbed.
 146 */
 147bool __must_check try_grab_page(struct page *page, unsigned int flags)
 148{
 149	WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
 150
 151	if (flags & FOLL_GET)
 152		return try_get_page(page);
 153	else if (flags & FOLL_PIN) {
 154		int refs = 1;
 155
 156		page = compound_head(page);
 157
 158		if (WARN_ON_ONCE(page_ref_count(page) <= 0))
 159			return false;
 160
 161		if (hpage_pincount_available(page))
 162			hpage_pincount_add(page, 1);
 163		else
 164			refs = GUP_PIN_COUNTING_BIAS;
 165
 
 
 
 166		/*
 167		 * Similar to try_grab_compound_head(): even if using the
 168		 * hpage_pincount_add/_sub() routines, be sure to
 169		 * *also* increment the normal page refcount field at least
 170		 * once, so that the page really is pinned.
 171		 */
 172		page_ref_add(page, refs);
 173
 174		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
 175	}
 176
 177	return true;
 178}
 179
 180#ifdef CONFIG_DEV_PAGEMAP_OPS
 181static bool __unpin_devmap_managed_user_page(struct page *page)
 182{
 183	int count, refs = 1;
 184
 185	if (!page_is_devmap_managed(page))
 186		return false;
 187
 188	if (hpage_pincount_available(page))
 189		hpage_pincount_sub(page, 1);
 190	else
 191		refs = GUP_PIN_COUNTING_BIAS;
 192
 193	count = page_ref_sub_return(page, refs);
 
 
 
 
 
 
 
 
 
 
 194
 195	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 196	/*
 197	 * devmap page refcounts are 1-based, rather than 0-based: if
 198	 * refcount is 1, then the page is free and the refcount is
 199	 * stable because nobody holds a reference on the page.
 200	 */
 201	if (count == 1)
 202		free_devmap_managed_page(page);
 203	else if (!count)
 204		__put_page(page);
 205
 206	return true;
 207}
 208#else
 209static bool __unpin_devmap_managed_user_page(struct page *page)
 210{
 211	return false;
 212}
 213#endif /* CONFIG_DEV_PAGEMAP_OPS */
 214
 215/**
 216 * unpin_user_page() - release a dma-pinned page
 217 * @page:            pointer to page to be released
 218 *
 219 * Pages that were pinned via pin_user_pages*() must be released via either
 220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 221 * that such pages can be separately tracked and uniquely handled. In
 222 * particular, interactions with RDMA and filesystems need special handling.
 223 */
 224void unpin_user_page(struct page *page)
 225{
 226	int refs = 1;
 
 
 
 227
 228	page = compound_head(page);
 
 
 
 
 
 
 
 
 
 
 229
 230	/*
 231	 * For devmap managed pages we need to catch refcount transition from
 232	 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
 233	 * page is free and we need to inform the device driver through
 234	 * callback. See include/linux/memremap.h and HMM for details.
 235	 */
 236	if (__unpin_devmap_managed_user_page(page))
 237		return;
 
 
 
 
 
 
 238
 239	if (hpage_pincount_available(page))
 240		hpage_pincount_sub(page, 1);
 241	else
 242		refs = GUP_PIN_COUNTING_BIAS;
 
 
 243
 244	if (page_ref_sub_and_test(page, refs))
 245		__put_page(page);
 
 246
 247	mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248}
 249EXPORT_SYMBOL(unpin_user_page);
 250
 251/**
 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 253 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 254 * @npages: number of pages in the @pages array.
 255 * @make_dirty: whether to mark the pages dirty
 256 *
 257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 258 * variants called on that page.
 259 *
 260 * For each page in the @pages array, make that page (or its head page, if a
 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
 262 * listed as clean. In any case, releases all pages using unpin_user_page(),
 263 * possibly via unpin_user_pages(), for the non-dirty case.
 264 *
 265 * Please see the unpin_user_page() documentation for details.
 266 *
 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 268 * required, then the caller should a) verify that this is really correct,
 269 * because _lock() is usually required, and b) hand code it:
 270 * set_page_dirty_lock(), unpin_user_page().
 271 *
 272 */
 273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 274				 bool make_dirty)
 275{
 276	unsigned long index;
 277
 278	/*
 279	 * TODO: this can be optimized for huge pages: if a series of pages is
 280	 * physically contiguous and part of the same compound page, then a
 281	 * single operation to the head page should suffice.
 282	 */
 283
 284	if (!make_dirty) {
 285		unpin_user_pages(pages, npages);
 286		return;
 287	}
 288
 289	for (index = 0; index < npages; index++) {
 290		struct page *page = compound_head(pages[index]);
 
 291		/*
 292		 * Checking PageDirty at this point may race with
 293		 * clear_page_dirty_for_io(), but that's OK. Two key
 294		 * cases:
 295		 *
 296		 * 1) This code sees the page as already dirty, so it
 297		 * skips the call to set_page_dirty(). That could happen
 298		 * because clear_page_dirty_for_io() called
 299		 * page_mkclean(), followed by set_page_dirty().
 300		 * However, now the page is going to get written back,
 301		 * which meets the original intention of setting it
 302		 * dirty, so all is well: clear_page_dirty_for_io() goes
 303		 * on to call TestClearPageDirty(), and write the page
 304		 * back.
 305		 *
 306		 * 2) This code sees the page as clean, so it calls
 307		 * set_page_dirty(). The page stays dirty, despite being
 308		 * written back, so it gets written back again in the
 309		 * next writeback cycle. This is harmless.
 310		 */
 311		if (!PageDirty(page))
 312			set_page_dirty_lock(page);
 313		unpin_user_page(page);
 
 
 
 314	}
 315}
 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 317
 318/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 319 * unpin_user_pages() - release an array of gup-pinned pages.
 320 * @pages:  array of pages to be marked dirty and released.
 321 * @npages: number of pages in the @pages array.
 322 *
 323 * For each page in the @pages array, release the page using unpin_user_page().
 324 *
 325 * Please see the unpin_user_page() documentation for details.
 326 */
 327void unpin_user_pages(struct page **pages, unsigned long npages)
 328{
 329	unsigned long index;
 
 
 330
 331	/*
 332	 * TODO: this can be optimized for huge pages: if a series of pages is
 333	 * physically contiguous and part of the same compound page, then a
 334	 * single operation to the head page should suffice.
 335	 */
 336	for (index = 0; index < npages; index++)
 337		unpin_user_page(pages[index]);
 
 
 
 
 
 
 338}
 339EXPORT_SYMBOL(unpin_user_pages);
 340
 
 
 
 
 
 
 
 
 
 
 
 341#ifdef CONFIG_MMU
 342static struct page *no_page_table(struct vm_area_struct *vma,
 343		unsigned int flags)
 344{
 345	/*
 346	 * When core dumping an enormous anonymous area that nobody
 347	 * has touched so far, we don't want to allocate unnecessary pages or
 348	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 349	 * then get_dump_page() will return NULL to leave a hole in the dump.
 350	 * But we can only make this optimization where a hole would surely
 351	 * be zero-filled if handle_mm_fault() actually did handle it.
 352	 */
 353	if ((flags & FOLL_DUMP) &&
 354			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 355		return ERR_PTR(-EFAULT);
 356	return NULL;
 357}
 358
 359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 360		pte_t *pte, unsigned int flags)
 361{
 362	/* No page to get reference */
 363	if (flags & FOLL_GET)
 364		return -EFAULT;
 365
 366	if (flags & FOLL_TOUCH) {
 367		pte_t entry = *pte;
 
 368
 369		if (flags & FOLL_WRITE)
 370			entry = pte_mkdirty(entry);
 371		entry = pte_mkyoung(entry);
 372
 373		if (!pte_same(*pte, entry)) {
 374			set_pte_at(vma->vm_mm, address, pte, entry);
 375			update_mmu_cache(vma, address, pte);
 376		}
 377	}
 378
 379	/* Proper page table entry exists, but no corresponding struct page */
 380	return -EEXIST;
 381}
 382
 383/*
 384 * FOLL_FORCE can write to even unwritable pte's, but only
 385 * after we've gone through a COW cycle and they are dirty.
 386 */
 387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
 388{
 389	return pte_write(pte) ||
 390		((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391}
 392
 393static struct page *follow_page_pte(struct vm_area_struct *vma,
 394		unsigned long address, pmd_t *pmd, unsigned int flags,
 395		struct dev_pagemap **pgmap)
 396{
 397	struct mm_struct *mm = vma->vm_mm;
 398	struct page *page;
 399	spinlock_t *ptl;
 400	pte_t *ptep, pte;
 401	int ret;
 402
 403	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 404	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 405			 (FOLL_PIN | FOLL_GET)))
 406		return ERR_PTR(-EINVAL);
 407retry:
 408	if (unlikely(pmd_bad(*pmd)))
 409		return no_page_table(vma, flags);
 410
 411	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 412	pte = *ptep;
 413	if (!pte_present(pte)) {
 414		swp_entry_t entry;
 415		/*
 416		 * KSM's break_ksm() relies upon recognizing a ksm page
 417		 * even while it is being migrated, so for that case we
 418		 * need migration_entry_wait().
 419		 */
 420		if (likely(!(flags & FOLL_MIGRATION)))
 421			goto no_page;
 422		if (pte_none(pte))
 423			goto no_page;
 424		entry = pte_to_swp_entry(pte);
 425		if (!is_migration_entry(entry))
 426			goto no_page;
 427		pte_unmap_unlock(ptep, ptl);
 428		migration_entry_wait(mm, pmd, address);
 429		goto retry;
 430	}
 431	if ((flags & FOLL_NUMA) && pte_protnone(pte))
 432		goto no_page;
 433	if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 434		pte_unmap_unlock(ptep, ptl);
 435		return NULL;
 436	}
 437
 438	page = vm_normal_page(vma, address, pte);
 
 
 
 
 
 
 
 
 
 
 
 439	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 440		/*
 441		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 442		 * case since they are only valid while holding the pgmap
 443		 * reference.
 444		 */
 445		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 446		if (*pgmap)
 447			page = pte_page(pte);
 448		else
 449			goto no_page;
 450	} else if (unlikely(!page)) {
 451		if (flags & FOLL_DUMP) {
 452			/* Avoid special (like zero) pages in core dumps */
 453			page = ERR_PTR(-EFAULT);
 454			goto out;
 455		}
 456
 457		if (is_zero_pfn(pte_pfn(pte))) {
 458			page = pte_page(pte);
 459		} else {
 460			ret = follow_pfn_pte(vma, address, ptep, flags);
 461			page = ERR_PTR(ret);
 462			goto out;
 463		}
 464	}
 465
 466	if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 467		get_page(page);
 468		pte_unmap_unlock(ptep, ptl);
 469		lock_page(page);
 470		ret = split_huge_page(page);
 471		unlock_page(page);
 472		put_page(page);
 473		if (ret)
 474			return ERR_PTR(ret);
 475		goto retry;
 476	}
 477
 
 
 
 478	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 479	if (unlikely(!try_grab_page(page, flags))) {
 480		page = ERR_PTR(-ENOMEM);
 
 481		goto out;
 482	}
 
 483	/*
 484	 * We need to make the page accessible if and only if we are going
 485	 * to access its content (the FOLL_PIN case).  Please see
 486	 * Documentation/core-api/pin_user_pages.rst for details.
 487	 */
 488	if (flags & FOLL_PIN) {
 489		ret = arch_make_page_accessible(page);
 490		if (ret) {
 491			unpin_user_page(page);
 492			page = ERR_PTR(ret);
 493			goto out;
 494		}
 495	}
 496	if (flags & FOLL_TOUCH) {
 497		if ((flags & FOLL_WRITE) &&
 498		    !pte_dirty(pte) && !PageDirty(page))
 499			set_page_dirty(page);
 500		/*
 501		 * pte_mkyoung() would be more correct here, but atomic care
 502		 * is needed to avoid losing the dirty bit: it is easier to use
 503		 * mark_page_accessed().
 504		 */
 505		mark_page_accessed(page);
 506	}
 507	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 508		/* Do not mlock pte-mapped THP */
 509		if (PageTransCompound(page))
 510			goto out;
 511
 512		/*
 513		 * The preliminary mapping check is mainly to avoid the
 514		 * pointless overhead of lock_page on the ZERO_PAGE
 515		 * which might bounce very badly if there is contention.
 516		 *
 517		 * If the page is already locked, we don't need to
 518		 * handle it now - vmscan will handle it later if and
 519		 * when it attempts to reclaim the page.
 520		 */
 521		if (page->mapping && trylock_page(page)) {
 522			lru_add_drain();  /* push cached pages to LRU */
 523			/*
 524			 * Because we lock page here, and migration is
 525			 * blocked by the pte's page reference, and we
 526			 * know the page is still mapped, we don't even
 527			 * need to check for file-cache page truncation.
 528			 */
 529			mlock_vma_page(page);
 530			unlock_page(page);
 531		}
 532	}
 533out:
 534	pte_unmap_unlock(ptep, ptl);
 535	return page;
 536no_page:
 537	pte_unmap_unlock(ptep, ptl);
 538	if (!pte_none(pte))
 539		return NULL;
 540	return no_page_table(vma, flags);
 541}
 542
 543static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 544				    unsigned long address, pud_t *pudp,
 545				    unsigned int flags,
 546				    struct follow_page_context *ctx)
 547{
 548	pmd_t *pmd, pmdval;
 549	spinlock_t *ptl;
 550	struct page *page;
 551	struct mm_struct *mm = vma->vm_mm;
 552
 553	pmd = pmd_offset(pudp, address);
 554	/*
 555	 * The READ_ONCE() will stabilize the pmdval in a register or
 556	 * on the stack so that it will stop changing under the code.
 557	 */
 558	pmdval = READ_ONCE(*pmd);
 559	if (pmd_none(pmdval))
 560		return no_page_table(vma, flags);
 561	if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
 562		page = follow_huge_pmd(mm, address, pmd, flags);
 563		if (page)
 564			return page;
 565		return no_page_table(vma, flags);
 566	}
 567	if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
 568		page = follow_huge_pd(vma, address,
 569				      __hugepd(pmd_val(pmdval)), flags,
 570				      PMD_SHIFT);
 571		if (page)
 572			return page;
 573		return no_page_table(vma, flags);
 574	}
 575retry:
 576	if (!pmd_present(pmdval)) {
 577		if (likely(!(flags & FOLL_MIGRATION)))
 578			return no_page_table(vma, flags);
 579		VM_BUG_ON(thp_migration_supported() &&
 580				  !is_pmd_migration_entry(pmdval));
 581		if (is_pmd_migration_entry(pmdval))
 582			pmd_migration_entry_wait(mm, pmd);
 583		pmdval = READ_ONCE(*pmd);
 584		/*
 585		 * MADV_DONTNEED may convert the pmd to null because
 586		 * mmap_lock is held in read mode
 587		 */
 588		if (pmd_none(pmdval))
 589			return no_page_table(vma, flags);
 590		goto retry;
 591	}
 592	if (pmd_devmap(pmdval)) {
 593		ptl = pmd_lock(mm, pmd);
 594		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 595		spin_unlock(ptl);
 596		if (page)
 597			return page;
 
 598	}
 599	if (likely(!pmd_trans_huge(pmdval)))
 600		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 601
 602	if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
 603		return no_page_table(vma, flags);
 604
 605retry_locked:
 606	ptl = pmd_lock(mm, pmd);
 607	if (unlikely(pmd_none(*pmd))) {
 608		spin_unlock(ptl);
 609		return no_page_table(vma, flags);
 610	}
 611	if (unlikely(!pmd_present(*pmd))) {
 612		spin_unlock(ptl);
 613		if (likely(!(flags & FOLL_MIGRATION)))
 614			return no_page_table(vma, flags);
 615		pmd_migration_entry_wait(mm, pmd);
 616		goto retry_locked;
 617	}
 618	if (unlikely(!pmd_trans_huge(*pmd))) {
 619		spin_unlock(ptl);
 620		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 621	}
 622	if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
 623		int ret;
 624		page = pmd_page(*pmd);
 625		if (is_huge_zero_page(page)) {
 626			spin_unlock(ptl);
 627			ret = 0;
 628			split_huge_pmd(vma, pmd, address);
 629			if (pmd_trans_unstable(pmd))
 630				ret = -EBUSY;
 631		} else if (flags & FOLL_SPLIT) {
 632			if (unlikely(!try_get_page(page))) {
 633				spin_unlock(ptl);
 634				return ERR_PTR(-ENOMEM);
 635			}
 636			spin_unlock(ptl);
 637			lock_page(page);
 638			ret = split_huge_page(page);
 639			unlock_page(page);
 640			put_page(page);
 641			if (pmd_none(*pmd))
 642				return no_page_table(vma, flags);
 643		} else {  /* flags & FOLL_SPLIT_PMD */
 644			spin_unlock(ptl);
 645			split_huge_pmd(vma, pmd, address);
 646			ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
 647		}
 648
 649		return ret ? ERR_PTR(ret) :
 650			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 651	}
 652	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 653	spin_unlock(ptl);
 654	ctx->page_mask = HPAGE_PMD_NR - 1;
 655	return page;
 656}
 657
 658static struct page *follow_pud_mask(struct vm_area_struct *vma,
 659				    unsigned long address, p4d_t *p4dp,
 660				    unsigned int flags,
 661				    struct follow_page_context *ctx)
 662{
 663	pud_t *pud;
 664	spinlock_t *ptl;
 665	struct page *page;
 666	struct mm_struct *mm = vma->vm_mm;
 667
 668	pud = pud_offset(p4dp, address);
 669	if (pud_none(*pud))
 670		return no_page_table(vma, flags);
 671	if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
 672		page = follow_huge_pud(mm, address, pud, flags);
 673		if (page)
 674			return page;
 675		return no_page_table(vma, flags);
 676	}
 677	if (is_hugepd(__hugepd(pud_val(*pud)))) {
 678		page = follow_huge_pd(vma, address,
 679				      __hugepd(pud_val(*pud)), flags,
 680				      PUD_SHIFT);
 681		if (page)
 682			return page;
 683		return no_page_table(vma, flags);
 684	}
 685	if (pud_devmap(*pud)) {
 686		ptl = pud_lock(mm, pud);
 687		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 688		spin_unlock(ptl);
 689		if (page)
 690			return page;
 
 691	}
 692	if (unlikely(pud_bad(*pud)))
 693		return no_page_table(vma, flags);
 694
 695	return follow_pmd_mask(vma, address, pud, flags, ctx);
 696}
 697
 698static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 699				    unsigned long address, pgd_t *pgdp,
 700				    unsigned int flags,
 701				    struct follow_page_context *ctx)
 702{
 703	p4d_t *p4d;
 704	struct page *page;
 705
 706	p4d = p4d_offset(pgdp, address);
 707	if (p4d_none(*p4d))
 708		return no_page_table(vma, flags);
 709	BUILD_BUG_ON(p4d_huge(*p4d));
 710	if (unlikely(p4d_bad(*p4d)))
 711		return no_page_table(vma, flags);
 712
 713	if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 714		page = follow_huge_pd(vma, address,
 715				      __hugepd(p4d_val(*p4d)), flags,
 716				      P4D_SHIFT);
 717		if (page)
 718			return page;
 719		return no_page_table(vma, flags);
 720	}
 721	return follow_pud_mask(vma, address, p4d, flags, ctx);
 722}
 723
 724/**
 725 * follow_page_mask - look up a page descriptor from a user-virtual address
 726 * @vma: vm_area_struct mapping @address
 727 * @address: virtual address to look up
 728 * @flags: flags modifying lookup behaviour
 729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 730 *       pointer to output page_mask
 731 *
 732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 733 *
 734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 736 *
 
 
 
 
 
 737 * On output, the @ctx->page_mask is set according to the size of the page.
 738 *
 739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 740 * an error pointer if there is a mapping to something not represented
 741 * by a page descriptor (see also vm_normal_page()).
 742 */
 743static struct page *follow_page_mask(struct vm_area_struct *vma,
 744			      unsigned long address, unsigned int flags,
 745			      struct follow_page_context *ctx)
 746{
 747	pgd_t *pgd;
 748	struct page *page;
 749	struct mm_struct *mm = vma->vm_mm;
 750
 751	ctx->page_mask = 0;
 752
 753	/* make this handle hugepd */
 754	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 755	if (!IS_ERR(page)) {
 756		WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
 757		return page;
 758	}
 
 
 759
 760	pgd = pgd_offset(mm, address);
 761
 762	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 763		return no_page_table(vma, flags);
 764
 765	if (pgd_huge(*pgd)) {
 766		page = follow_huge_pgd(mm, address, pgd, flags);
 767		if (page)
 768			return page;
 769		return no_page_table(vma, flags);
 770	}
 771	if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 772		page = follow_huge_pd(vma, address,
 773				      __hugepd(pgd_val(*pgd)), flags,
 774				      PGDIR_SHIFT);
 775		if (page)
 776			return page;
 777		return no_page_table(vma, flags);
 778	}
 779
 780	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 781}
 782
 783struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 784			 unsigned int foll_flags)
 785{
 786	struct follow_page_context ctx = { NULL };
 787	struct page *page;
 788
 
 
 
 
 
 
 
 
 
 
 789	page = follow_page_mask(vma, address, foll_flags, &ctx);
 790	if (ctx.pgmap)
 791		put_dev_pagemap(ctx.pgmap);
 792	return page;
 793}
 794
 795static int get_gate_page(struct mm_struct *mm, unsigned long address,
 796		unsigned int gup_flags, struct vm_area_struct **vma,
 797		struct page **page)
 798{
 799	pgd_t *pgd;
 800	p4d_t *p4d;
 801	pud_t *pud;
 802	pmd_t *pmd;
 803	pte_t *pte;
 
 804	int ret = -EFAULT;
 805
 806	/* user gate pages are read-only */
 807	if (gup_flags & FOLL_WRITE)
 808		return -EFAULT;
 809	if (address > TASK_SIZE)
 810		pgd = pgd_offset_k(address);
 811	else
 812		pgd = pgd_offset_gate(mm, address);
 813	if (pgd_none(*pgd))
 814		return -EFAULT;
 815	p4d = p4d_offset(pgd, address);
 816	if (p4d_none(*p4d))
 817		return -EFAULT;
 818	pud = pud_offset(p4d, address);
 819	if (pud_none(*pud))
 820		return -EFAULT;
 821	pmd = pmd_offset(pud, address);
 822	if (!pmd_present(*pmd))
 823		return -EFAULT;
 824	VM_BUG_ON(pmd_trans_huge(*pmd));
 825	pte = pte_offset_map(pmd, address);
 826	if (pte_none(*pte))
 
 
 
 827		goto unmap;
 828	*vma = get_gate_vma(mm);
 829	if (!page)
 830		goto out;
 831	*page = vm_normal_page(*vma, address, *pte);
 832	if (!*page) {
 833		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 834			goto unmap;
 835		*page = pte_page(*pte);
 836	}
 837	if (unlikely(!try_grab_page(*page, gup_flags))) {
 838		ret = -ENOMEM;
 839		goto unmap;
 840	}
 841out:
 842	ret = 0;
 843unmap:
 844	pte_unmap(pte);
 845	return ret;
 846}
 847
 848/*
 849 * mmap_lock must be held on entry.  If @locked != NULL and *@flags
 850 * does not include FOLL_NOWAIT, the mmap_lock may be released.  If it
 851 * is, *@locked will be set to 0 and -EBUSY returned.
 852 */
 853static int faultin_page(struct vm_area_struct *vma,
 854		unsigned long address, unsigned int *flags, int *locked)
 
 855{
 856	unsigned int fault_flags = 0;
 857	vm_fault_t ret;
 858
 859	/* mlock all present pages, but do not fault in new pages */
 860	if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 861		return -ENOENT;
 862	if (*flags & FOLL_WRITE)
 863		fault_flags |= FAULT_FLAG_WRITE;
 864	if (*flags & FOLL_REMOTE)
 865		fault_flags |= FAULT_FLAG_REMOTE;
 866	if (locked)
 867		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 
 
 
 
 
 
 
 
 
 868	if (*flags & FOLL_NOWAIT)
 869		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 870	if (*flags & FOLL_TRIED) {
 871		/*
 872		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 873		 * can co-exist
 874		 */
 875		fault_flags |= FAULT_FLAG_TRIED;
 876	}
 
 
 
 
 
 877
 878	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879	if (ret & VM_FAULT_ERROR) {
 880		int err = vm_fault_to_errno(ret, *flags);
 881
 882		if (err)
 883			return err;
 884		BUG();
 885	}
 886
 887	if (ret & VM_FAULT_RETRY) {
 888		if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 889			*locked = 0;
 890		return -EBUSY;
 891	}
 892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893	/*
 894	 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 895	 * necessary, even if maybe_mkwrite decided not to set pte_write. We
 896	 * can thus safely do subsequent page lookups as if they were reads.
 897	 * But only do so when looping for pte_write is futile: in some cases
 898	 * userspace may also be wanting to write to the gotten user page,
 899	 * which a read fault here might prevent (a readonly page might get
 900	 * reCOWed by userspace write).
 901	 */
 902	if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 903		*flags |= FOLL_COW;
 904	return 0;
 
 
 
 
 
 
 905}
 906
 907static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 908{
 909	vm_flags_t vm_flags = vma->vm_flags;
 910	int write = (gup_flags & FOLL_WRITE);
 911	int foreign = (gup_flags & FOLL_REMOTE);
 
 912
 913	if (vm_flags & (VM_IO | VM_PFNMAP))
 914		return -EFAULT;
 915
 916	if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 
 
 
 
 
 
 917		return -EFAULT;
 918
 919	if (write) {
 920		if (!(vm_flags & VM_WRITE)) {
 
 
 
 
 921			if (!(gup_flags & FOLL_FORCE))
 922				return -EFAULT;
 
 
 
 923			/*
 924			 * We used to let the write,force case do COW in a
 925			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 926			 * set a breakpoint in a read-only mapping of an
 927			 * executable, without corrupting the file (yet only
 928			 * when that file had been opened for writing!).
 929			 * Anon pages in shared mappings are surprising: now
 930			 * just reject it.
 931			 */
 932			if (!is_cow_mapping(vm_flags))
 933				return -EFAULT;
 934		}
 935	} else if (!(vm_flags & VM_READ)) {
 936		if (!(gup_flags & FOLL_FORCE))
 937			return -EFAULT;
 938		/*
 939		 * Is there actually any vma we can reach here which does not
 940		 * have VM_MAYREAD set?
 941		 */
 942		if (!(vm_flags & VM_MAYREAD))
 943			return -EFAULT;
 944	}
 945	/*
 946	 * gups are always data accesses, not instruction
 947	 * fetches, so execute=false here
 948	 */
 949	if (!arch_vma_access_permitted(vma, write, false, foreign))
 950		return -EFAULT;
 951	return 0;
 952}
 953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 954/**
 955 * __get_user_pages() - pin user pages in memory
 956 * @mm:		mm_struct of target mm
 957 * @start:	starting user address
 958 * @nr_pages:	number of pages from start to pin
 959 * @gup_flags:	flags modifying pin behaviour
 960 * @pages:	array that receives pointers to the pages pinned.
 961 *		Should be at least nr_pages long. Or NULL, if caller
 962 *		only intends to ensure the pages are faulted in.
 963 * @vmas:	array of pointers to vmas corresponding to each page.
 964 *		Or NULL if the caller does not require them.
 965 * @locked:     whether we're still with the mmap_lock held
 966 *
 967 * Returns either number of pages pinned (which may be less than the
 968 * number requested), or an error. Details about the return value:
 969 *
 970 * -- If nr_pages is 0, returns 0.
 971 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
 972 * -- If nr_pages is >0, and some pages were pinned, returns the number of
 973 *    pages pinned. Again, this may be less than nr_pages.
 974 * -- 0 return value is possible when the fault would need to be retried.
 975 *
 976 * The caller is responsible for releasing returned @pages, via put_page().
 977 *
 978 * @vmas are valid only as long as mmap_lock is held.
 979 *
 980 * Must be called with mmap_lock held.  It may be released.  See below.
 981 *
 982 * __get_user_pages walks a process's page tables and takes a reference to
 983 * each struct page that each user address corresponds to at a given
 984 * instant. That is, it takes the page that would be accessed if a user
 985 * thread accesses the given user virtual address at that instant.
 986 *
 987 * This does not guarantee that the page exists in the user mappings when
 988 * __get_user_pages returns, and there may even be a completely different
 989 * page there in some cases (eg. if mmapped pagecache has been invalidated
 990 * and subsequently re faulted). However it does guarantee that the page
 991 * won't be freed completely. And mostly callers simply care that the page
 992 * contains data that was valid *at some point in time*. Typically, an IO
 993 * or similar operation cannot guarantee anything stronger anyway because
 994 * locks can't be held over the syscall boundary.
 995 *
 996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 998 * appropriate) must be called after the page is finished with, and
 999 * before put_page is called.
1000 *
1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
1002 * released by an up_read().  That can happen if @gup_flags does not
1003 * have FOLL_NOWAIT.
1004 *
1005 * A caller using such a combination of @locked and @gup_flags
1006 * must therefore hold the mmap_lock for reading only, and recognize
1007 * when it's been released.  Otherwise, it must be held for either
1008 * reading or writing and will not be released.
1009 *
1010 * In most cases, get_user_pages or get_user_pages_fast should be used
1011 * instead of __get_user_pages. __get_user_pages should be used only if
1012 * you need some special @gup_flags.
1013 */
1014static long __get_user_pages(struct mm_struct *mm,
1015		unsigned long start, unsigned long nr_pages,
1016		unsigned int gup_flags, struct page **pages,
1017		struct vm_area_struct **vmas, int *locked)
1018{
1019	long ret = 0, i = 0;
1020	struct vm_area_struct *vma = NULL;
1021	struct follow_page_context ctx = { NULL };
1022
1023	if (!nr_pages)
1024		return 0;
1025
1026	start = untagged_addr(start);
1027
1028	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1029
1030	/*
1031	 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032	 * fault information is unrelated to the reference behaviour of a task
1033	 * using the address space
1034	 */
1035	if (!(gup_flags & FOLL_FORCE))
1036		gup_flags |= FOLL_NUMA;
1037
1038	do {
1039		struct page *page;
1040		unsigned int foll_flags = gup_flags;
1041		unsigned int page_increm;
1042
1043		/* first iteration or cross vma bound */
1044		if (!vma || start >= vma->vm_end) {
1045			vma = find_extend_vma(mm, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046			if (!vma && in_gate_area(mm, start)) {
1047				ret = get_gate_page(mm, start & PAGE_MASK,
1048						gup_flags, &vma,
1049						pages ? &pages[i] : NULL);
1050				if (ret)
1051					goto out;
1052				ctx.page_mask = 0;
1053				goto next_page;
1054			}
1055
1056			if (!vma || check_vma_flags(vma, gup_flags)) {
1057				ret = -EFAULT;
1058				goto out;
1059			}
1060			if (is_vm_hugetlb_page(vma)) {
1061				i = follow_hugetlb_page(mm, vma, pages, vmas,
1062						&start, &nr_pages, i,
1063						gup_flags, locked);
1064				if (locked && *locked == 0) {
1065					/*
1066					 * We've got a VM_FAULT_RETRY
1067					 * and we've lost mmap_lock.
1068					 * We must stop here.
1069					 */
1070					BUG_ON(gup_flags & FOLL_NOWAIT);
1071					BUG_ON(ret != 0);
1072					goto out;
1073				}
1074				continue;
1075			}
1076		}
1077retry:
1078		/*
1079		 * If we have a pending SIGKILL, don't keep faulting pages and
1080		 * potentially allocating memory.
1081		 */
1082		if (fatal_signal_pending(current)) {
1083			ret = -EINTR;
1084			goto out;
1085		}
1086		cond_resched();
1087
1088		page = follow_page_mask(vma, start, foll_flags, &ctx);
1089		if (!page) {
1090			ret = faultin_page(vma, start, &foll_flags, locked);
 
1091			switch (ret) {
1092			case 0:
1093				goto retry;
1094			case -EBUSY:
 
1095				ret = 0;
1096				fallthrough;
1097			case -EFAULT:
1098			case -ENOMEM:
1099			case -EHWPOISON:
1100				goto out;
1101			case -ENOENT:
1102				goto next_page;
1103			}
1104			BUG();
1105		} else if (PTR_ERR(page) == -EEXIST) {
1106			/*
1107			 * Proper page table entry exists, but no corresponding
1108			 * struct page.
 
 
1109			 */
1110			goto next_page;
 
 
 
1111		} else if (IS_ERR(page)) {
1112			ret = PTR_ERR(page);
1113			goto out;
1114		}
1115		if (pages) {
1116			pages[i] = page;
1117			flush_anon_page(vma, page, start);
1118			flush_dcache_page(page);
1119			ctx.page_mask = 0;
1120		}
1121next_page:
1122		if (vmas) {
1123			vmas[i] = vma;
1124			ctx.page_mask = 0;
1125		}
1126		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1127		if (page_increm > nr_pages)
1128			page_increm = nr_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1129		i += page_increm;
1130		start += page_increm * PAGE_SIZE;
1131		nr_pages -= page_increm;
1132	} while (nr_pages);
1133out:
1134	if (ctx.pgmap)
1135		put_dev_pagemap(ctx.pgmap);
1136	return i ? i : ret;
1137}
1138
1139static bool vma_permits_fault(struct vm_area_struct *vma,
1140			      unsigned int fault_flags)
1141{
1142	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1143	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1144	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1145
1146	if (!(vm_flags & vma->vm_flags))
1147		return false;
1148
1149	/*
1150	 * The architecture might have a hardware protection
1151	 * mechanism other than read/write that can deny access.
1152	 *
1153	 * gup always represents data access, not instruction
1154	 * fetches, so execute=false here:
1155	 */
1156	if (!arch_vma_access_permitted(vma, write, false, foreign))
1157		return false;
1158
1159	return true;
1160}
1161
1162/**
1163 * fixup_user_fault() - manually resolve a user page fault
1164 * @mm:		mm_struct of target mm
1165 * @address:	user address
1166 * @fault_flags:flags to pass down to handle_mm_fault()
1167 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1168 *		does not allow retry. If NULL, the caller must guarantee
1169 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1170 *
1171 * This is meant to be called in the specific scenario where for locking reasons
1172 * we try to access user memory in atomic context (within a pagefault_disable()
1173 * section), this returns -EFAULT, and we want to resolve the user fault before
1174 * trying again.
1175 *
1176 * Typically this is meant to be used by the futex code.
1177 *
1178 * The main difference with get_user_pages() is that this function will
1179 * unconditionally call handle_mm_fault() which will in turn perform all the
1180 * necessary SW fixup of the dirty and young bits in the PTE, while
1181 * get_user_pages() only guarantees to update these in the struct page.
1182 *
1183 * This is important for some architectures where those bits also gate the
1184 * access permission to the page because they are maintained in software.  On
1185 * such architectures, gup() will not be enough to make a subsequent access
1186 * succeed.
1187 *
1188 * This function will not return with an unlocked mmap_lock. So it has not the
1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1190 */
1191int fixup_user_fault(struct mm_struct *mm,
1192		     unsigned long address, unsigned int fault_flags,
1193		     bool *unlocked)
1194{
1195	struct vm_area_struct *vma;
1196	vm_fault_t ret, major = 0;
1197
1198	address = untagged_addr(address);
1199
1200	if (unlocked)
1201		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1202
1203retry:
1204	vma = find_extend_vma(mm, address);
1205	if (!vma || address < vma->vm_start)
1206		return -EFAULT;
1207
1208	if (!vma_permits_fault(vma, fault_flags))
1209		return -EFAULT;
1210
1211	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212	    fatal_signal_pending(current))
1213		return -EINTR;
1214
1215	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1216	major |= ret & VM_FAULT_MAJOR;
 
 
 
 
 
 
 
 
 
 
 
1217	if (ret & VM_FAULT_ERROR) {
1218		int err = vm_fault_to_errno(ret, 0);
1219
1220		if (err)
1221			return err;
1222		BUG();
1223	}
1224
1225	if (ret & VM_FAULT_RETRY) {
1226		mmap_read_lock(mm);
1227		*unlocked = true;
1228		fault_flags |= FAULT_FLAG_TRIED;
1229		goto retry;
1230	}
1231
1232	return 0;
1233}
1234EXPORT_SYMBOL_GPL(fixup_user_fault);
1235
1236/*
1237 * Please note that this function, unlike __get_user_pages will not
1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239 */
1240static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1241						unsigned long start,
1242						unsigned long nr_pages,
1243						struct page **pages,
1244						struct vm_area_struct **vmas,
1245						int *locked,
1246						unsigned int flags)
1247{
1248	long ret, pages_done;
1249	bool lock_dropped;
1250
1251	if (locked) {
1252		/* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253		BUG_ON(vmas);
1254		/* check caller initialized locked */
1255		BUG_ON(*locked != 1);
 
 
 
 
 
 
 
1256	}
 
 
1257
1258	if (flags & FOLL_PIN)
1259		atomic_set(&mm->has_pinned, 1);
1260
1261	/*
1262	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1263	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1264	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1265	 * for FOLL_GET, not for the newer FOLL_PIN.
1266	 *
1267	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1268	 * that here, as any failures will be obvious enough.
1269	 */
1270	if (pages && !(flags & FOLL_PIN))
1271		flags |= FOLL_GET;
1272
1273	pages_done = 0;
1274	lock_dropped = false;
1275	for (;;) {
1276		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1277				       vmas, locked);
1278		if (!locked)
1279			/* VM_FAULT_RETRY couldn't trigger, bypass */
1280			return ret;
 
 
1281
1282		/* VM_FAULT_RETRY cannot return errors */
1283		if (!*locked) {
1284			BUG_ON(ret < 0);
1285			BUG_ON(ret >= nr_pages);
1286		}
1287
1288		if (ret > 0) {
1289			nr_pages -= ret;
1290			pages_done += ret;
1291			if (!nr_pages)
1292				break;
1293		}
1294		if (*locked) {
1295			/*
1296			 * VM_FAULT_RETRY didn't trigger or it was a
1297			 * FOLL_NOWAIT.
1298			 */
1299			if (!pages_done)
1300				pages_done = ret;
1301			break;
1302		}
1303		/*
1304		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1305		 * For the prefault case (!pages) we only update counts.
1306		 */
1307		if (likely(pages))
1308			pages += ret;
1309		start += ret << PAGE_SHIFT;
1310		lock_dropped = true;
 
 
1311
1312retry:
1313		/*
1314		 * Repeat on the address that fired VM_FAULT_RETRY
1315		 * with both FAULT_FLAG_ALLOW_RETRY and
1316		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1317		 * by fatal signals, so we need to check it before we
 
1318		 * start trying again otherwise it can loop forever.
1319		 */
1320
1321		if (fatal_signal_pending(current)) {
1322			if (!pages_done)
1323				pages_done = -EINTR;
1324			break;
1325		}
1326
1327		ret = mmap_read_lock_killable(mm);
1328		if (ret) {
1329			BUG_ON(ret > 0);
1330			if (!pages_done)
1331				pages_done = ret;
1332			break;
1333		}
1334
1335		*locked = 1;
1336		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1337				       pages, NULL, locked);
1338		if (!*locked) {
1339			/* Continue to retry until we succeeded */
1340			BUG_ON(ret != 0);
1341			goto retry;
1342		}
1343		if (ret != 1) {
1344			BUG_ON(ret > 1);
1345			if (!pages_done)
1346				pages_done = ret;
1347			break;
1348		}
1349		nr_pages--;
1350		pages_done++;
1351		if (!nr_pages)
1352			break;
1353		if (likely(pages))
1354			pages++;
1355		start += PAGE_SIZE;
1356	}
1357	if (lock_dropped && *locked) {
1358		/*
1359		 * We must let the caller know we temporarily dropped the lock
1360		 * and so the critical section protected by it was lost.
 
1361		 */
1362		mmap_read_unlock(mm);
1363		*locked = 0;
1364	}
 
 
 
 
 
 
 
 
1365	return pages_done;
1366}
1367
1368/**
1369 * populate_vma_page_range() -  populate a range of pages in the vma.
1370 * @vma:   target vma
1371 * @start: start address
1372 * @end:   end address
1373 * @locked: whether the mmap_lock is still held
1374 *
1375 * This takes care of mlocking the pages too if VM_LOCKED is set.
1376 *
1377 * Return either number of pages pinned in the vma, or a negative error
1378 * code on error.
1379 *
1380 * vma->vm_mm->mmap_lock must be held.
1381 *
1382 * If @locked is NULL, it may be held for read or write and will
1383 * be unperturbed.
1384 *
1385 * If @locked is non-NULL, it must held for read only and may be
1386 * released.  If it's released, *@locked will be set to 0.
1387 */
1388long populate_vma_page_range(struct vm_area_struct *vma,
1389		unsigned long start, unsigned long end, int *locked)
1390{
1391	struct mm_struct *mm = vma->vm_mm;
1392	unsigned long nr_pages = (end - start) / PAGE_SIZE;
 
1393	int gup_flags;
 
1394
1395	VM_BUG_ON(start & ~PAGE_MASK);
1396	VM_BUG_ON(end   & ~PAGE_MASK);
1397	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1398	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1399	mmap_assert_locked(mm);
1400
1401	gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
 
 
 
1402	if (vma->vm_flags & VM_LOCKONFAULT)
1403		gup_flags &= ~FOLL_POPULATE;
 
 
 
 
 
 
1404	/*
1405	 * We want to touch writable mappings with a write fault in order
1406	 * to break COW, except for shared mappings because these don't COW
1407	 * and we would not want to dirty them for nothing.
 
 
 
1408	 */
1409	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1410		gup_flags |= FOLL_WRITE;
1411
1412	/*
1413	 * We want mlock to succeed for regions that have any permissions
1414	 * other than PROT_NONE.
1415	 */
1416	if (vma_is_accessible(vma))
1417		gup_flags |= FOLL_FORCE;
1418
 
 
 
1419	/*
1420	 * We made sure addr is within a VMA, so the following will
1421	 * not result in a stack expansion that recurses back here.
1422	 */
1423	return __get_user_pages(mm, start, nr_pages, gup_flags,
1424				NULL, NULL, locked);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425}
1426
1427/*
1428 * __mm_populate - populate and/or mlock pages within a range of address space.
1429 *
1430 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1431 * flags. VMAs must be already marked with the desired vm_flags, and
1432 * mmap_lock must not be held.
1433 */
1434int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1435{
1436	struct mm_struct *mm = current->mm;
1437	unsigned long end, nstart, nend;
1438	struct vm_area_struct *vma = NULL;
1439	int locked = 0;
1440	long ret = 0;
1441
1442	end = start + len;
1443
1444	for (nstart = start; nstart < end; nstart = nend) {
1445		/*
1446		 * We want to fault in pages for [nstart; end) address range.
1447		 * Find first corresponding VMA.
1448		 */
1449		if (!locked) {
1450			locked = 1;
1451			mmap_read_lock(mm);
1452			vma = find_vma(mm, nstart);
1453		} else if (nstart >= vma->vm_end)
1454			vma = vma->vm_next;
1455		if (!vma || vma->vm_start >= end)
 
1456			break;
1457		/*
1458		 * Set [nstart; nend) to intersection of desired address
1459		 * range with the first VMA. Also, skip undesirable VMA types.
1460		 */
1461		nend = min(end, vma->vm_end);
1462		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1463			continue;
1464		if (nstart < vma->vm_start)
1465			nstart = vma->vm_start;
1466		/*
1467		 * Now fault in a range of pages. populate_vma_page_range()
1468		 * double checks the vma flags, so that it won't mlock pages
1469		 * if the vma was already munlocked.
1470		 */
1471		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1472		if (ret < 0) {
1473			if (ignore_errors) {
1474				ret = 0;
1475				continue;	/* continue at next VMA */
1476			}
1477			break;
1478		}
1479		nend = nstart + ret * PAGE_SIZE;
1480		ret = 0;
1481	}
1482	if (locked)
1483		mmap_read_unlock(mm);
1484	return ret;	/* 0 or negative error code */
1485}
1486
1487/**
1488 * get_dump_page() - pin user page in memory while writing it to core dump
1489 * @addr: user address
1490 *
1491 * Returns struct page pointer of user page pinned for dump,
1492 * to be freed afterwards by put_page().
1493 *
1494 * Returns NULL on any kind of failure - a hole must then be inserted into
1495 * the corefile, to preserve alignment with its headers; and also returns
1496 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1497 * allowing a hole to be left in the corefile to save diskspace.
1498 *
1499 * Called without mmap_lock, but after all other threads have been killed.
1500 */
1501#ifdef CONFIG_ELF_CORE
1502struct page *get_dump_page(unsigned long addr)
1503{
1504	struct vm_area_struct *vma;
1505	struct page *page;
1506
1507	if (__get_user_pages(current->mm, addr, 1,
1508			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1509			     NULL) < 1)
1510		return NULL;
1511	flush_cache_page(vma, addr, page_to_pfn(page));
1512	return page;
1513}
1514#endif /* CONFIG_ELF_CORE */
1515#else /* CONFIG_MMU */
1516static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1517		unsigned long nr_pages, struct page **pages,
1518		struct vm_area_struct **vmas, int *locked,
1519		unsigned int foll_flags)
1520{
1521	struct vm_area_struct *vma;
 
1522	unsigned long vm_flags;
1523	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1524
1525	/* calculate required read or write permissions.
1526	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1527	 */
1528	vm_flags  = (foll_flags & FOLL_WRITE) ?
1529			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1530	vm_flags &= (foll_flags & FOLL_FORCE) ?
1531			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1532
1533	for (i = 0; i < nr_pages; i++) {
1534		vma = find_vma(mm, start);
1535		if (!vma)
1536			goto finish_or_fault;
1537
1538		/* protect what we can, including chardevs */
1539		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1540		    !(vm_flags & vma->vm_flags))
1541			goto finish_or_fault;
1542
1543		if (pages) {
1544			pages[i] = virt_to_page(start);
1545			if (pages[i])
1546				get_page(pages[i]);
1547		}
1548		if (vmas)
1549			vmas[i] = vma;
1550		start = (start + PAGE_SIZE) & PAGE_MASK;
1551	}
1552
1553	return i;
 
 
 
1554
1555finish_or_fault:
1556	return i ? : -EFAULT;
1557}
1558#endif /* !CONFIG_MMU */
1559
1560#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
1561static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
 
 
 
 
 
 
 
1562{
1563	long i;
1564	struct vm_area_struct *vma_prev = NULL;
1565
1566	for (i = 0; i < nr_pages; i++) {
1567		struct vm_area_struct *vma = vmas[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
1568
1569		if (vma == vma_prev)
1570			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1571
1572		vma_prev = vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574		if (vma_is_fsdax(vma))
1575			return true;
 
 
 
 
 
 
 
 
 
 
 
 
1576	}
1577	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1578}
 
1579
1580#ifdef CONFIG_CMA
1581static long check_and_migrate_cma_pages(struct mm_struct *mm,
1582					unsigned long start,
 
 
 
1583					unsigned long nr_pages,
1584					struct page **pages,
1585					struct vm_area_struct **vmas,
1586					unsigned int gup_flags)
1587{
1588	unsigned long i;
1589	unsigned long step;
1590	bool drain_allow = true;
1591	bool migrate_allow = true;
1592	LIST_HEAD(cma_page_list);
1593	long ret = nr_pages;
1594	struct migration_target_control mtc = {
1595		.nid = NUMA_NO_NODE,
1596		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1597	};
1598
1599check_again:
1600	for (i = 0; i < nr_pages;) {
1601
1602		struct page *head = compound_head(pages[i]);
1603
1604		/*
1605		 * gup may start from a tail page. Advance step by the left
1606		 * part.
1607		 */
1608		step = compound_nr(head) - (pages[i] - head);
1609		/*
1610		 * If we get a page from the CMA zone, since we are going to
1611		 * be pinning these entries, we might as well move them out
1612		 * of the CMA zone if possible.
1613		 */
1614		if (is_migrate_cma_page(head)) {
1615			if (PageHuge(head))
1616				isolate_huge_page(head, &cma_page_list);
1617			else {
1618				if (!PageLRU(head) && drain_allow) {
1619					lru_add_drain_all();
1620					drain_allow = false;
1621				}
1622
1623				if (!isolate_lru_page(head)) {
1624					list_add_tail(&head->lru, &cma_page_list);
1625					mod_node_page_state(page_pgdat(head),
1626							    NR_ISOLATED_ANON +
1627							    page_is_file_lru(head),
1628							    thp_nr_pages(head));
1629				}
1630			}
 
 
 
 
 
 
 
 
 
 
1631		}
1632
1633		i += step;
 
 
 
 
 
 
 
 
 
 
 
1634	}
1635
1636	if (!list_empty(&cma_page_list)) {
1637		/*
1638		 * drop the above get_user_pages reference.
1639		 */
1640		for (i = 0; i < nr_pages; i++)
1641			put_page(pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
1642
1643		if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644			(unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1645			/*
1646			 * some of the pages failed migration. Do get_user_pages
1647			 * without migration.
1648			 */
1649			migrate_allow = false;
 
 
1650
1651			if (!list_empty(&cma_page_list))
1652				putback_movable_pages(&cma_page_list);
 
 
 
 
1653		}
 
1654		/*
1655		 * We did migrate all the pages, Try to get the page references
1656		 * again migrating any new CMA pages which we failed to isolate
1657		 * earlier.
 
 
1658		 */
1659		ret = __get_user_pages_locked(mm, start, nr_pages,
1660						   pages, vmas, NULL,
1661						   gup_flags);
 
 
 
 
 
 
1662
1663		if ((ret > 0) && migrate_allow) {
1664			nr_pages = ret;
1665			drain_allow = true;
1666			goto check_again;
 
1667		}
1668	}
1669
 
 
 
 
 
 
 
 
 
 
1670	return ret;
1671}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672#else
1673static long check_and_migrate_cma_pages(struct mm_struct *mm,
1674					unsigned long start,
1675					unsigned long nr_pages,
1676					struct page **pages,
1677					struct vm_area_struct **vmas,
1678					unsigned int gup_flags)
1679{
1680	return nr_pages;
1681}
1682#endif /* CONFIG_CMA */
1683
1684/*
1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686 * allows us to process the FOLL_LONGTERM flag.
1687 */
1688static long __gup_longterm_locked(struct mm_struct *mm,
1689				  unsigned long start,
1690				  unsigned long nr_pages,
1691				  struct page **pages,
1692				  struct vm_area_struct **vmas,
1693				  unsigned int gup_flags)
1694{
1695	struct vm_area_struct **vmas_tmp = vmas;
1696	unsigned long flags = 0;
1697	long rc, i;
1698
1699	if (gup_flags & FOLL_LONGTERM) {
1700		if (!pages)
1701			return -EINVAL;
1702
1703		if (!vmas_tmp) {
1704			vmas_tmp = kcalloc(nr_pages,
1705					   sizeof(struct vm_area_struct *),
1706					   GFP_KERNEL);
1707			if (!vmas_tmp)
1708				return -ENOMEM;
1709		}
1710		flags = memalloc_nocma_save();
1711	}
1712
1713	rc = __get_user_pages_locked(mm, start, nr_pages, pages,
1714				     vmas_tmp, NULL, gup_flags);
 
1715
1716	if (gup_flags & FOLL_LONGTERM) {
1717		if (rc < 0)
1718			goto out;
1719
1720		if (check_dax_vmas(vmas_tmp, rc)) {
1721			for (i = 0; i < rc; i++)
1722				put_page(pages[i]);
1723			rc = -EOPNOTSUPP;
1724			goto out;
1725		}
1726
1727		rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1728						 vmas_tmp, gup_flags);
1729out:
1730		memalloc_nocma_restore(flags);
1731	}
1732
1733	if (vmas_tmp != vmas)
1734		kfree(vmas_tmp);
1735	return rc;
1736}
1737#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1738static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
1739						  unsigned long start,
1740						  unsigned long nr_pages,
1741						  struct page **pages,
1742						  struct vm_area_struct **vmas,
1743						  unsigned int flags)
1744{
1745	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1746				       NULL, flags);
1747}
1748#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1749
1750#ifdef CONFIG_MMU
1751static long __get_user_pages_remote(struct mm_struct *mm,
1752				    unsigned long start, unsigned long nr_pages,
1753				    unsigned int gup_flags, struct page **pages,
1754				    struct vm_area_struct **vmas, int *locked)
 
1755{
 
 
1756	/*
1757	 * Parts of FOLL_LONGTERM behavior are incompatible with
1758	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1759	 * vmas. However, this only comes up if locked is set, and there are
1760	 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1761	 * allow what we can.
1762	 */
1763	if (gup_flags & FOLL_LONGTERM) {
1764		if (WARN_ON_ONCE(locked))
1765			return -EINVAL;
1766		/*
1767		 * This will check the vmas (even if our vmas arg is NULL)
1768		 * and return -ENOTSUPP if DAX isn't allowed in this case:
1769		 */
1770		return __gup_longterm_locked(mm, start, nr_pages, pages,
1771					     vmas, gup_flags | FOLL_TOUCH |
1772					     FOLL_REMOTE);
1773	}
1774
1775	return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1776				       locked,
1777				       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1778}
1779
 
1780/**
1781 * get_user_pages_remote() - pin user pages in memory
1782 * @mm:		mm_struct of target mm
1783 * @start:	starting user address
1784 * @nr_pages:	number of pages from start to pin
1785 * @gup_flags:	flags modifying lookup behaviour
1786 * @pages:	array that receives pointers to the pages pinned.
1787 *		Should be at least nr_pages long. Or NULL, if caller
1788 *		only intends to ensure the pages are faulted in.
1789 * @vmas:	array of pointers to vmas corresponding to each page.
1790 *		Or NULL if the caller does not require them.
1791 * @locked:	pointer to lock flag indicating whether lock is held and
1792 *		subsequently whether VM_FAULT_RETRY functionality can be
1793 *		utilised. Lock must initially be held.
1794 *
1795 * Returns either number of pages pinned (which may be less than the
1796 * number requested), or an error. Details about the return value:
1797 *
1798 * -- If nr_pages is 0, returns 0.
1799 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1800 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1801 *    pages pinned. Again, this may be less than nr_pages.
1802 *
1803 * The caller is responsible for releasing returned @pages, via put_page().
1804 *
1805 * @vmas are valid only as long as mmap_lock is held.
1806 *
1807 * Must be called with mmap_lock held for read or write.
1808 *
1809 * get_user_pages_remote walks a process's page tables and takes a reference
1810 * to each struct page that each user address corresponds to at a given
1811 * instant. That is, it takes the page that would be accessed if a user
1812 * thread accesses the given user virtual address at that instant.
1813 *
1814 * This does not guarantee that the page exists in the user mappings when
1815 * get_user_pages_remote returns, and there may even be a completely different
1816 * page there in some cases (eg. if mmapped pagecache has been invalidated
1817 * and subsequently re faulted). However it does guarantee that the page
1818 * won't be freed completely. And mostly callers simply care that the page
1819 * contains data that was valid *at some point in time*. Typically, an IO
1820 * or similar operation cannot guarantee anything stronger anyway because
1821 * locks can't be held over the syscall boundary.
1822 *
1823 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1824 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1825 * be called after the page is finished with, and before put_page is called.
1826 *
1827 * get_user_pages_remote is typically used for fewer-copy IO operations,
1828 * to get a handle on the memory by some means other than accesses
1829 * via the user virtual addresses. The pages may be submitted for
1830 * DMA to devices or accessed via their kernel linear mapping (via the
1831 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
1832 *
1833 * See also get_user_pages_fast, for performance critical applications.
1834 *
1835 * get_user_pages_remote should be phased out in favor of
1836 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1837 * should use get_user_pages_remote because it cannot pass
1838 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1839 */
1840long get_user_pages_remote(struct mm_struct *mm,
1841		unsigned long start, unsigned long nr_pages,
1842		unsigned int gup_flags, struct page **pages,
1843		struct vm_area_struct **vmas, int *locked)
1844{
1845	/*
1846	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1847	 * never directly by the caller, so enforce that with an assertion:
1848	 */
1849	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1850		return -EINVAL;
1851
1852	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
1853				       pages, vmas, locked);
 
1854}
1855EXPORT_SYMBOL(get_user_pages_remote);
1856
1857#else /* CONFIG_MMU */
1858long get_user_pages_remote(struct mm_struct *mm,
1859			   unsigned long start, unsigned long nr_pages,
1860			   unsigned int gup_flags, struct page **pages,
1861			   struct vm_area_struct **vmas, int *locked)
1862{
1863	return 0;
1864}
1865
1866static long __get_user_pages_remote(struct mm_struct *mm,
1867				    unsigned long start, unsigned long nr_pages,
1868				    unsigned int gup_flags, struct page **pages,
1869				    struct vm_area_struct **vmas, int *locked)
1870{
1871	return 0;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * get_user_pages() - pin user pages in memory
1877 * @start:      starting user address
1878 * @nr_pages:   number of pages from start to pin
1879 * @gup_flags:  flags modifying lookup behaviour
1880 * @pages:      array that receives pointers to the pages pinned.
1881 *              Should be at least nr_pages long. Or NULL, if caller
1882 *              only intends to ensure the pages are faulted in.
1883 * @vmas:       array of pointers to vmas corresponding to each page.
1884 *              Or NULL if the caller does not require them.
1885 *
1886 * This is the same as get_user_pages_remote(), just with a less-flexible
1887 * calling convention where we assume that the mm being operated on belongs to
1888 * the current task, and doesn't allow passing of a locked parameter.  We also
1889 * obviously don't pass FOLL_REMOTE in here.
1890 */
1891long get_user_pages(unsigned long start, unsigned long nr_pages,
1892		unsigned int gup_flags, struct page **pages,
1893		struct vm_area_struct **vmas)
1894{
1895	/*
1896	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1897	 * never directly by the caller, so enforce that with an assertion:
1898	 */
1899	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1900		return -EINVAL;
1901
1902	return __gup_longterm_locked(current->mm, start, nr_pages,
1903				     pages, vmas, gup_flags | FOLL_TOUCH);
1904}
1905EXPORT_SYMBOL(get_user_pages);
1906
1907/**
1908 * get_user_pages_locked() is suitable to replace the form:
1909 *
1910 *      mmap_read_lock(mm);
1911 *      do_something()
1912 *      get_user_pages(mm, ..., pages, NULL);
1913 *      mmap_read_unlock(mm);
1914 *
1915 *  to:
1916 *
1917 *      int locked = 1;
1918 *      mmap_read_lock(mm);
1919 *      do_something()
1920 *      get_user_pages_locked(mm, ..., pages, &locked);
1921 *      if (locked)
1922 *          mmap_read_unlock(mm);
1923 *
1924 * @start:      starting user address
1925 * @nr_pages:   number of pages from start to pin
1926 * @gup_flags:  flags modifying lookup behaviour
1927 * @pages:      array that receives pointers to the pages pinned.
1928 *              Should be at least nr_pages long. Or NULL, if caller
1929 *              only intends to ensure the pages are faulted in.
1930 * @locked:     pointer to lock flag indicating whether lock is held and
1931 *              subsequently whether VM_FAULT_RETRY functionality can be
1932 *              utilised. Lock must initially be held.
1933 *
1934 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1935 * paths better by using either get_user_pages_locked() or
1936 * get_user_pages_unlocked().
1937 *
1938 */
1939long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1940			   unsigned int gup_flags, struct page **pages,
1941			   int *locked)
1942{
1943	/*
1944	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1945	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1946	 * vmas.  As there are no users of this flag in this call we simply
1947	 * disallow this option for now.
1948	 */
1949	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1950		return -EINVAL;
1951	/*
1952	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1953	 * never directly by the caller, so enforce that:
1954	 */
1955	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1956		return -EINVAL;
1957
1958	return __get_user_pages_locked(current->mm, start, nr_pages,
1959				       pages, NULL, locked,
1960				       gup_flags | FOLL_TOUCH);
1961}
1962EXPORT_SYMBOL(get_user_pages_locked);
1963
1964/*
1965 * get_user_pages_unlocked() is suitable to replace the form:
1966 *
1967 *      mmap_read_lock(mm);
1968 *      get_user_pages(mm, ..., pages, NULL);
1969 *      mmap_read_unlock(mm);
1970 *
1971 *  with:
1972 *
1973 *      get_user_pages_unlocked(mm, ..., pages);
1974 *
1975 * It is functionally equivalent to get_user_pages_fast so
1976 * get_user_pages_fast should be used instead if specific gup_flags
1977 * (e.g. FOLL_FORCE) are not required.
1978 */
1979long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1980			     struct page **pages, unsigned int gup_flags)
1981{
1982	struct mm_struct *mm = current->mm;
1983	int locked = 1;
1984	long ret;
1985
1986	/*
1987	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1988	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1989	 * vmas.  As there are no users of this flag in this call we simply
1990	 * disallow this option for now.
1991	 */
1992	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1993		return -EINVAL;
1994
1995	mmap_read_lock(mm);
1996	ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
1997				      &locked, gup_flags | FOLL_TOUCH);
1998	if (locked)
1999		mmap_read_unlock(mm);
2000	return ret;
2001}
2002EXPORT_SYMBOL(get_user_pages_unlocked);
2003
2004/*
2005 * Fast GUP
2006 *
2007 * get_user_pages_fast attempts to pin user pages by walking the page
2008 * tables directly and avoids taking locks. Thus the walker needs to be
2009 * protected from page table pages being freed from under it, and should
2010 * block any THP splits.
2011 *
2012 * One way to achieve this is to have the walker disable interrupts, and
2013 * rely on IPIs from the TLB flushing code blocking before the page table
2014 * pages are freed. This is unsuitable for architectures that do not need
2015 * to broadcast an IPI when invalidating TLBs.
2016 *
2017 * Another way to achieve this is to batch up page table containing pages
2018 * belonging to more than one mm_user, then rcu_sched a callback to free those
2019 * pages. Disabling interrupts will allow the fast_gup walker to both block
2020 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2021 * (which is a relatively rare event). The code below adopts this strategy.
2022 *
2023 * Before activating this code, please be aware that the following assumptions
2024 * are currently made:
2025 *
2026 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2027 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2028 *
2029 *  *) ptes can be read atomically by the architecture.
2030 *
2031 *  *) access_ok is sufficient to validate userspace address ranges.
2032 *
2033 * The last two assumptions can be relaxed by the addition of helper functions.
2034 *
2035 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2036 */
2037#ifdef CONFIG_HAVE_FAST_GUP
2038
2039static void put_compound_head(struct page *page, int refs, unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040{
2041	if (flags & FOLL_PIN) {
2042		mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2043				    refs);
2044
2045		if (hpage_pincount_available(page))
2046			hpage_pincount_sub(page, refs);
2047		else
2048			refs *= GUP_PIN_COUNTING_BIAS;
2049	}
 
 
 
 
 
 
 
 
 
 
 
2050
2051	VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2052	/*
2053	 * Calling put_page() for each ref is unnecessarily slow. Only the last
2054	 * ref needs a put_page().
 
 
 
 
 
2055	 */
2056	if (refs > 1)
2057		page_ref_sub(page, refs - 1);
2058	put_page(page);
2059}
2060
2061#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
 
 
 
 
2062
2063/*
2064 * WARNING: only to be used in the get_user_pages_fast() implementation.
2065 *
2066 * With get_user_pages_fast(), we walk down the pagetables without taking any
2067 * locks.  For this we would like to load the pointers atomically, but sometimes
2068 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE).  What
2069 * we do have is the guarantee that a PTE will only either go from not present
2070 * to present, or present to not present or both -- it will not switch to a
2071 * completely different present page without a TLB flush in between; something
2072 * that we are blocking by holding interrupts off.
2073 *
2074 * Setting ptes from not present to present goes:
2075 *
2076 *   ptep->pte_high = h;
2077 *   smp_wmb();
2078 *   ptep->pte_low = l;
2079 *
2080 * And present to not present goes:
2081 *
2082 *   ptep->pte_low = 0;
2083 *   smp_wmb();
2084 *   ptep->pte_high = 0;
2085 *
2086 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2087 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2088 * value of pte_high.  *Then* we recheck pte_low, which ensures that we haven't
2089 * picked up a changed pte high. We might have gotten rubbish values from
2090 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2091 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2092 * operates on present ptes we're safe.
2093 */
2094static inline pte_t gup_get_pte(pte_t *ptep)
2095{
2096	pte_t pte;
2097
2098	do {
2099		pte.pte_low = ptep->pte_low;
2100		smp_rmb();
2101		pte.pte_high = ptep->pte_high;
2102		smp_rmb();
2103	} while (unlikely(pte.pte_low != ptep->pte_low));
2104
2105	return pte;
2106}
2107#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2108/*
2109 * We require that the PTE can be read atomically.
2110 */
2111static inline pte_t gup_get_pte(pte_t *ptep)
2112{
2113	return ptep_get(ptep);
2114}
2115#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
2116
2117static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2118					    unsigned int flags,
2119					    struct page **pages)
2120{
2121	while ((*nr) - nr_start) {
2122		struct page *page = pages[--(*nr)];
2123
2124		ClearPageReferenced(page);
2125		if (flags & FOLL_PIN)
2126			unpin_user_page(page);
2127		else
2128			put_page(page);
2129	}
2130}
2131
2132#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2133static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2134			 unsigned int flags, struct page **pages, int *nr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135{
2136	struct dev_pagemap *pgmap = NULL;
2137	int nr_start = *nr, ret = 0;
2138	pte_t *ptep, *ptem;
2139
2140	ptem = ptep = pte_offset_map(&pmd, addr);
 
 
2141	do {
2142		pte_t pte = gup_get_pte(ptep);
2143		struct page *head, *page;
 
2144
2145		/*
2146		 * Similar to the PMD case below, NUMA hinting must take slow
2147		 * path using the pte_protnone check.
 
 
 
2148		 */
2149		if (pte_protnone(pte))
2150			goto pte_unmap;
2151
2152		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2153			goto pte_unmap;
2154
2155		if (pte_devmap(pte)) {
2156			if (unlikely(flags & FOLL_LONGTERM))
2157				goto pte_unmap;
2158
2159			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2160			if (unlikely(!pgmap)) {
2161				undo_dev_pagemap(nr, nr_start, flags, pages);
2162				goto pte_unmap;
2163			}
2164		} else if (pte_special(pte))
2165			goto pte_unmap;
2166
2167		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2168		page = pte_page(pte);
2169
2170		head = try_grab_compound_head(page, 1, flags);
2171		if (!head)
 
 
 
 
2172			goto pte_unmap;
 
 
 
 
 
 
 
2173
2174		if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2175			put_compound_head(head, 1, flags);
2176			goto pte_unmap;
2177		}
2178
2179		VM_BUG_ON_PAGE(compound_head(page) != head, page);
 
 
 
2180
2181		/*
2182		 * We need to make the page accessible if and only if we are
2183		 * going to access its content (the FOLL_PIN case).  Please
2184		 * see Documentation/core-api/pin_user_pages.rst for
2185		 * details.
2186		 */
2187		if (flags & FOLL_PIN) {
2188			ret = arch_make_page_accessible(page);
2189			if (ret) {
2190				unpin_user_page(page);
2191				goto pte_unmap;
2192			}
2193		}
2194		SetPageReferenced(page);
2195		pages[*nr] = page;
2196		(*nr)++;
2197
2198	} while (ptep++, addr += PAGE_SIZE, addr != end);
2199
2200	ret = 1;
2201
2202pte_unmap:
2203	if (pgmap)
2204		put_dev_pagemap(pgmap);
2205	pte_unmap(ptem);
2206	return ret;
2207}
2208#else
2209
2210/*
2211 * If we can't determine whether or not a pte is special, then fail immediately
2212 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2213 * to be special.
2214 *
2215 * For a futex to be placed on a THP tail page, get_futex_key requires a
2216 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2217 * useful to have gup_huge_pmd even if we can't operate on ptes.
2218 */
2219static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
2220			 unsigned int flags, struct page **pages, int *nr)
 
2221{
2222	return 0;
2223}
2224#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2225
2226#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2227static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2228			     unsigned long end, unsigned int flags,
2229			     struct page **pages, int *nr)
2230{
2231	int nr_start = *nr;
2232	struct dev_pagemap *pgmap = NULL;
2233
2234	do {
2235		struct page *page = pfn_to_page(pfn);
2236
2237		pgmap = get_dev_pagemap(pfn, pgmap);
2238		if (unlikely(!pgmap)) {
2239			undo_dev_pagemap(nr, nr_start, flags, pages);
2240			return 0;
2241		}
 
 
 
 
 
 
2242		SetPageReferenced(page);
2243		pages[*nr] = page;
2244		if (unlikely(!try_grab_page(page, flags))) {
2245			undo_dev_pagemap(nr, nr_start, flags, pages);
2246			return 0;
2247		}
2248		(*nr)++;
2249		pfn++;
2250	} while (addr += PAGE_SIZE, addr != end);
2251
2252	if (pgmap)
2253		put_dev_pagemap(pgmap);
2254	return 1;
2255}
2256
2257static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2258				 unsigned long end, unsigned int flags,
2259				 struct page **pages, int *nr)
2260{
2261	unsigned long fault_pfn;
2262	int nr_start = *nr;
2263
2264	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2265	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2266		return 0;
2267
2268	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2269		undo_dev_pagemap(nr, nr_start, flags, pages);
2270		return 0;
2271	}
2272	return 1;
2273}
2274
2275static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2276				 unsigned long end, unsigned int flags,
2277				 struct page **pages, int *nr)
2278{
2279	unsigned long fault_pfn;
2280	int nr_start = *nr;
2281
2282	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2283	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2284		return 0;
2285
2286	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2287		undo_dev_pagemap(nr, nr_start, flags, pages);
2288		return 0;
2289	}
2290	return 1;
2291}
2292#else
2293static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2294				 unsigned long end, unsigned int flags,
2295				 struct page **pages, int *nr)
2296{
2297	BUILD_BUG();
2298	return 0;
2299}
2300
2301static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2302				 unsigned long end, unsigned int flags,
2303				 struct page **pages, int *nr)
2304{
2305	BUILD_BUG();
2306	return 0;
2307}
2308#endif
2309
2310static int record_subpages(struct page *page, unsigned long addr,
2311			   unsigned long end, struct page **pages)
2312{
2313	int nr;
2314
2315	for (nr = 0; addr != end; addr += PAGE_SIZE)
2316		pages[nr++] = page++;
2317
2318	return nr;
2319}
2320
2321#ifdef CONFIG_ARCH_HAS_HUGEPD
2322static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2323				      unsigned long sz)
2324{
2325	unsigned long __boundary = (addr + sz) & ~(sz-1);
2326	return (__boundary - 1 < end - 1) ? __boundary : end;
2327}
2328
2329static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2330		       unsigned long end, unsigned int flags,
2331		       struct page **pages, int *nr)
2332{
2333	unsigned long pte_end;
2334	struct page *head, *page;
 
2335	pte_t pte;
2336	int refs;
2337
2338	pte_end = (addr + sz) & ~(sz-1);
2339	if (pte_end < end)
2340		end = pte_end;
2341
2342	pte = huge_ptep_get(ptep);
2343
2344	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2345		return 0;
2346
2347	/* hugepages are never "special" */
2348	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2349
2350	head = pte_page(pte);
2351	page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2352	refs = record_subpages(page, addr, end, pages + *nr);
2353
2354	head = try_grab_compound_head(head, refs, flags);
2355	if (!head)
 
 
 
 
 
 
 
 
 
2356		return 0;
 
2357
2358	if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2359		put_compound_head(head, refs, flags);
2360		return 0;
2361	}
2362
2363	*nr += refs;
2364	SetPageReferenced(head);
2365	return 1;
2366}
2367
2368static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2369		unsigned int pdshift, unsigned long end, unsigned int flags,
2370		struct page **pages, int *nr)
2371{
2372	pte_t *ptep;
2373	unsigned long sz = 1UL << hugepd_shift(hugepd);
2374	unsigned long next;
2375
2376	ptep = hugepte_offset(hugepd, addr, pdshift);
2377	do {
2378		next = hugepte_addr_end(addr, end, sz);
2379		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2380			return 0;
2381	} while (ptep++, addr = next, addr != end);
2382
2383	return 1;
2384}
2385#else
2386static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2387		unsigned int pdshift, unsigned long end, unsigned int flags,
2388		struct page **pages, int *nr)
2389{
2390	return 0;
2391}
2392#endif /* CONFIG_ARCH_HAS_HUGEPD */
2393
2394static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2395			unsigned long end, unsigned int flags,
2396			struct page **pages, int *nr)
2397{
2398	struct page *head, *page;
 
2399	int refs;
2400
2401	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2402		return 0;
2403
2404	if (pmd_devmap(orig)) {
2405		if (unlikely(flags & FOLL_LONGTERM))
2406			return 0;
2407		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2408					     pages, nr);
2409	}
2410
2411	page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2412	refs = record_subpages(page, addr, end, pages + *nr);
2413
2414	head = try_grab_compound_head(pmd_page(orig), refs, flags);
2415	if (!head)
2416		return 0;
2417
2418	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2419		put_compound_head(head, refs, flags);
 
 
 
 
 
 
 
 
 
2420		return 0;
2421	}
2422
2423	*nr += refs;
2424	SetPageReferenced(head);
2425	return 1;
2426}
2427
2428static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2429			unsigned long end, unsigned int flags,
2430			struct page **pages, int *nr)
2431{
2432	struct page *head, *page;
 
2433	int refs;
2434
2435	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2436		return 0;
2437
2438	if (pud_devmap(orig)) {
2439		if (unlikely(flags & FOLL_LONGTERM))
2440			return 0;
2441		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2442					     pages, nr);
2443	}
2444
2445	page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2446	refs = record_subpages(page, addr, end, pages + *nr);
2447
2448	head = try_grab_compound_head(pud_page(orig), refs, flags);
2449	if (!head)
2450		return 0;
2451
2452	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2453		put_compound_head(head, refs, flags);
 
 
 
 
 
 
 
 
 
 
2454		return 0;
2455	}
2456
2457	*nr += refs;
2458	SetPageReferenced(head);
2459	return 1;
2460}
2461
2462static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2463			unsigned long end, unsigned int flags,
2464			struct page **pages, int *nr)
2465{
2466	int refs;
2467	struct page *head, *page;
 
2468
2469	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2470		return 0;
2471
2472	BUILD_BUG_ON(pgd_devmap(orig));
2473
2474	page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2475	refs = record_subpages(page, addr, end, pages + *nr);
2476
2477	head = try_grab_compound_head(pgd_page(orig), refs, flags);
2478	if (!head)
2479		return 0;
2480
2481	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2482		put_compound_head(head, refs, flags);
 
 
 
 
 
 
 
 
 
 
2483		return 0;
2484	}
2485
2486	*nr += refs;
2487	SetPageReferenced(head);
2488	return 1;
2489}
2490
2491static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
2492		unsigned int flags, struct page **pages, int *nr)
2493{
2494	unsigned long next;
2495	pmd_t *pmdp;
2496
2497	pmdp = pmd_offset_lockless(pudp, pud, addr);
2498	do {
2499		pmd_t pmd = READ_ONCE(*pmdp);
2500
2501		next = pmd_addr_end(addr, end);
2502		if (!pmd_present(pmd))
2503			return 0;
2504
2505		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2506			     pmd_devmap(pmd))) {
2507			/*
2508			 * NUMA hinting faults need to be handled in the GUP
2509			 * slowpath for accounting purposes and so that they
2510			 * can be serialised against THP migration.
2511			 */
2512			if (pmd_protnone(pmd))
2513				return 0;
2514
2515			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2516				pages, nr))
2517				return 0;
2518
2519		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2520			/*
2521			 * architecture have different format for hugetlbfs
2522			 * pmd format and THP pmd format
2523			 */
2524			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
2525					 PMD_SHIFT, next, flags, pages, nr))
2526				return 0;
2527		} else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2528			return 0;
2529	} while (pmdp++, addr = next, addr != end);
2530
2531	return 1;
2532}
2533
2534static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
2535			 unsigned int flags, struct page **pages, int *nr)
2536{
2537	unsigned long next;
2538	pud_t *pudp;
2539
2540	pudp = pud_offset_lockless(p4dp, p4d, addr);
2541	do {
2542		pud_t pud = READ_ONCE(*pudp);
2543
2544		next = pud_addr_end(addr, end);
2545		if (unlikely(!pud_present(pud)))
2546			return 0;
2547		if (unlikely(pud_huge(pud))) {
2548			if (!gup_huge_pud(pud, pudp, addr, next, flags,
2549					  pages, nr))
2550				return 0;
2551		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2552			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
2553					 PUD_SHIFT, next, flags, pages, nr))
2554				return 0;
2555		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2556			return 0;
2557	} while (pudp++, addr = next, addr != end);
2558
2559	return 1;
2560}
2561
2562static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
2563			 unsigned int flags, struct page **pages, int *nr)
2564{
2565	unsigned long next;
2566	p4d_t *p4dp;
2567
2568	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
2569	do {
2570		p4d_t p4d = READ_ONCE(*p4dp);
2571
2572		next = p4d_addr_end(addr, end);
2573		if (p4d_none(p4d))
2574			return 0;
2575		BUILD_BUG_ON(p4d_huge(p4d));
2576		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2577			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
2578					 P4D_SHIFT, next, flags, pages, nr))
2579				return 0;
2580		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
2581			return 0;
2582	} while (p4dp++, addr = next, addr != end);
2583
2584	return 1;
2585}
2586
2587static void gup_pgd_range(unsigned long addr, unsigned long end,
2588		unsigned int flags, struct page **pages, int *nr)
2589{
2590	unsigned long next;
2591	pgd_t *pgdp;
2592
2593	pgdp = pgd_offset(current->mm, addr);
2594	do {
2595		pgd_t pgd = READ_ONCE(*pgdp);
2596
2597		next = pgd_addr_end(addr, end);
2598		if (pgd_none(pgd))
2599			return;
2600		if (unlikely(pgd_huge(pgd))) {
2601			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
2602					  pages, nr))
2603				return;
2604		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2605			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
2606					 PGDIR_SHIFT, next, flags, pages, nr))
2607				return;
2608		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
2609			return;
2610	} while (pgdp++, addr = next, addr != end);
2611}
2612#else
2613static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2614		unsigned int flags, struct page **pages, int *nr)
2615{
2616}
2617#endif /* CONFIG_HAVE_FAST_GUP */
2618
2619#ifndef gup_fast_permitted
2620/*
2621 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
2622 * we need to fall back to the slow version:
2623 */
2624static bool gup_fast_permitted(unsigned long start, unsigned long end)
2625{
2626	return true;
2627}
2628#endif
2629
2630static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2631				   unsigned int gup_flags, struct page **pages)
 
 
2632{
2633	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2634
2635	/*
2636	 * FIXME: FOLL_LONGTERM does not work with
2637	 * get_user_pages_unlocked() (see comments in that function)
2638	 */
2639	if (gup_flags & FOLL_LONGTERM) {
2640		mmap_read_lock(current->mm);
2641		ret = __gup_longterm_locked(current->mm,
2642					    start, nr_pages,
2643					    pages, NULL, gup_flags);
2644		mmap_read_unlock(current->mm);
2645	} else {
2646		ret = get_user_pages_unlocked(start, nr_pages,
2647					      pages, gup_flags);
2648	}
2649
2650	return ret;
2651}
2652
2653static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
 
2654					unsigned int gup_flags,
2655					struct page **pages)
2656{
2657	unsigned long addr, len, end;
2658	unsigned long flags;
2659	int nr_pinned = 0, ret = 0;
 
2660
2661	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
2662				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
2663				       FOLL_FAST_ONLY)))
 
2664		return -EINVAL;
2665
2666	if (gup_flags & FOLL_PIN)
2667		atomic_set(&current->mm->has_pinned, 1);
2668
2669	if (!(gup_flags & FOLL_FAST_ONLY))
2670		might_lock_read(&current->mm->mmap_lock);
2671
2672	start = untagged_addr(start) & PAGE_MASK;
2673	addr = start;
2674	len = (unsigned long) nr_pages << PAGE_SHIFT;
2675	end = start + len;
2676
2677	if (end <= start)
2678		return 0;
2679	if (unlikely(!access_ok((void __user *)start, len)))
2680		return -EFAULT;
2681
2682	/*
2683	 * Disable interrupts. The nested form is used, in order to allow
2684	 * full, general purpose use of this routine.
2685	 *
2686	 * With interrupts disabled, we block page table pages from being
2687	 * freed from under us. See struct mmu_table_batch comments in
2688	 * include/asm-generic/tlb.h for more details.
2689	 *
2690	 * We do not adopt an rcu_read_lock(.) here as we also want to
2691	 * block IPIs that come from THPs splitting.
2692	 */
2693	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2694		unsigned long fast_flags = gup_flags;
2695
2696		local_irq_save(flags);
2697		gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2698		local_irq_restore(flags);
2699		ret = nr_pinned;
2700	}
2701
2702	if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2703		/* Try to get the remaining pages with get_user_pages */
2704		start += nr_pinned << PAGE_SHIFT;
2705		pages += nr_pinned;
2706
2707		ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
2708					      gup_flags, pages);
2709
2710		/* Have to be a bit careful with return values */
2711		if (nr_pinned > 0) {
2712			if (ret < 0)
2713				ret = nr_pinned;
2714			else
2715				ret += nr_pinned;
2716		}
2717	}
2718
2719	return ret;
2720}
 
2721/**
2722 * get_user_pages_fast_only() - pin user pages in memory
2723 * @start:      starting user address
2724 * @nr_pages:   number of pages from start to pin
2725 * @gup_flags:  flags modifying pin behaviour
2726 * @pages:      array that receives pointers to the pages pinned.
2727 *              Should be at least nr_pages long.
2728 *
2729 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2730 * the regular GUP.
2731 * Note a difference with get_user_pages_fast: this always returns the
2732 * number of pages pinned, 0 if no pages were pinned.
2733 *
2734 * If the architecture does not support this function, simply return with no
2735 * pages pinned.
2736 *
2737 * Careful, careful! COW breaking can go either way, so a non-write
2738 * access can get ambiguous page results. If you call this function without
2739 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2740 */
2741int get_user_pages_fast_only(unsigned long start, int nr_pages,
2742			     unsigned int gup_flags, struct page **pages)
2743{
2744	int nr_pinned;
2745	/*
2746	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2747	 * because gup fast is always a "pin with a +1 page refcount" request.
2748	 *
2749	 * FOLL_FAST_ONLY is required in order to match the API description of
2750	 * this routine: no fall back to regular ("slow") GUP.
2751	 */
2752	gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
2753
2754	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2755						 pages);
2756
2757	/*
2758	 * As specified in the API description above, this routine is not
2759	 * allowed to return negative values. However, the common core
2760	 * routine internal_get_user_pages_fast() *can* return -errno.
2761	 * Therefore, correct for that here:
2762	 */
2763	if (nr_pinned < 0)
2764		nr_pinned = 0;
2765
2766	return nr_pinned;
2767}
2768EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
2769
2770/**
2771 * get_user_pages_fast() - pin user pages in memory
2772 * @start:      starting user address
2773 * @nr_pages:   number of pages from start to pin
2774 * @gup_flags:  flags modifying pin behaviour
2775 * @pages:      array that receives pointers to the pages pinned.
2776 *              Should be at least nr_pages long.
2777 *
2778 * Attempt to pin user pages in memory without taking mm->mmap_lock.
2779 * If not successful, it will fall back to taking the lock and
2780 * calling get_user_pages().
2781 *
2782 * Returns number of pages pinned. This may be fewer than the number requested.
2783 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2784 * -errno.
2785 */
2786int get_user_pages_fast(unsigned long start, int nr_pages,
2787			unsigned int gup_flags, struct page **pages)
2788{
2789	/*
2790	 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2791	 * never directly by the caller, so enforce that:
2792	 */
2793	if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2794		return -EINVAL;
2795
2796	/*
2797	 * The caller may or may not have explicitly set FOLL_GET; either way is
2798	 * OK. However, internally (within mm/gup.c), gup fast variants must set
2799	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2800	 * request.
2801	 */
2802	gup_flags |= FOLL_GET;
 
2803	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2804}
2805EXPORT_SYMBOL_GPL(get_user_pages_fast);
2806
2807/**
2808 * pin_user_pages_fast() - pin user pages in memory without taking locks
2809 *
2810 * @start:      starting user address
2811 * @nr_pages:   number of pages from start to pin
2812 * @gup_flags:  flags modifying pin behaviour
2813 * @pages:      array that receives pointers to the pages pinned.
2814 *              Should be at least nr_pages long.
2815 *
2816 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2817 * get_user_pages_fast() for documentation on the function arguments, because
2818 * the arguments here are identical.
2819 *
2820 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2821 * see Documentation/core-api/pin_user_pages.rst for further details.
 
 
 
2822 */
2823int pin_user_pages_fast(unsigned long start, int nr_pages,
2824			unsigned int gup_flags, struct page **pages)
2825{
2826	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2827	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2828		return -EINVAL;
2829
2830	gup_flags |= FOLL_PIN;
2831	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2832}
2833EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2834
2835/*
2836 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2837 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
2838 *
2839 * The API rules are the same, too: no negative values may be returned.
2840 */
2841int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2842			     unsigned int gup_flags, struct page **pages)
2843{
2844	int nr_pinned;
2845
2846	/*
2847	 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2848	 * rules require returning 0, rather than -errno:
2849	 */
2850	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2851		return 0;
2852	/*
2853	 * FOLL_FAST_ONLY is required in order to match the API description of
2854	 * this routine: no fall back to regular ("slow") GUP.
2855	 */
2856	gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2857	nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2858						 pages);
2859	/*
2860	 * This routine is not allowed to return negative values. However,
2861	 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2862	 * correct for that here:
2863	 */
2864	if (nr_pinned < 0)
2865		nr_pinned = 0;
2866
2867	return nr_pinned;
2868}
2869EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2870
2871/**
2872 * pin_user_pages_remote() - pin pages of a remote process
2873 *
2874 * @mm:		mm_struct of target mm
2875 * @start:	starting user address
2876 * @nr_pages:	number of pages from start to pin
2877 * @gup_flags:	flags modifying lookup behaviour
2878 * @pages:	array that receives pointers to the pages pinned.
2879 *		Should be at least nr_pages long. Or NULL, if caller
2880 *		only intends to ensure the pages are faulted in.
2881 * @vmas:	array of pointers to vmas corresponding to each page.
2882 *		Or NULL if the caller does not require them.
2883 * @locked:	pointer to lock flag indicating whether lock is held and
2884 *		subsequently whether VM_FAULT_RETRY functionality can be
2885 *		utilised. Lock must initially be held.
2886 *
2887 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2888 * get_user_pages_remote() for documentation on the function arguments, because
2889 * the arguments here are identical.
2890 *
2891 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2892 * see Documentation/core-api/pin_user_pages.rst for details.
 
 
 
2893 */
2894long pin_user_pages_remote(struct mm_struct *mm,
2895			   unsigned long start, unsigned long nr_pages,
2896			   unsigned int gup_flags, struct page **pages,
2897			   struct vm_area_struct **vmas, int *locked)
2898{
2899	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2900	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2901		return -EINVAL;
2902
2903	gup_flags |= FOLL_PIN;
2904	return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
2905				       pages, vmas, locked);
 
 
 
2906}
2907EXPORT_SYMBOL(pin_user_pages_remote);
2908
2909/**
2910 * pin_user_pages() - pin user pages in memory for use by other devices
2911 *
2912 * @start:	starting user address
2913 * @nr_pages:	number of pages from start to pin
2914 * @gup_flags:	flags modifying lookup behaviour
2915 * @pages:	array that receives pointers to the pages pinned.
2916 *		Should be at least nr_pages long. Or NULL, if caller
2917 *		only intends to ensure the pages are faulted in.
2918 * @vmas:	array of pointers to vmas corresponding to each page.
2919 *		Or NULL if the caller does not require them.
2920 *
2921 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2922 * FOLL_PIN is set.
2923 *
2924 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2925 * see Documentation/core-api/pin_user_pages.rst for details.
 
 
 
2926 */
2927long pin_user_pages(unsigned long start, unsigned long nr_pages,
2928		    unsigned int gup_flags, struct page **pages,
2929		    struct vm_area_struct **vmas)
2930{
2931	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2932	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2933		return -EINVAL;
2934
2935	gup_flags |= FOLL_PIN;
 
2936	return __gup_longterm_locked(current->mm, start, nr_pages,
2937				     pages, vmas, gup_flags);
2938}
2939EXPORT_SYMBOL(pin_user_pages);
2940
2941/*
2942 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2943 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2944 * FOLL_PIN and rejects FOLL_GET.
 
 
 
2945 */
2946long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2947			     struct page **pages, unsigned int gup_flags)
2948{
2949	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2950	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2951		return -EINVAL;
2952
2953	gup_flags |= FOLL_PIN;
2954	return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2955}
2956EXPORT_SYMBOL(pin_user_pages_unlocked);
2957
2958/*
2959 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2960 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2961 * FOLL_GET.
2962 */
2963long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2964			   unsigned int gup_flags, struct page **pages,
2965			   int *locked)
2966{
2967	/*
2968	 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2969	 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2970	 * vmas.  As there are no users of this flag in this call we simply
2971	 * disallow this option for now.
2972	 */
2973	if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2974		return -EINVAL;
2975
2976	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2977	if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2978		return -EINVAL;
2979
2980	gup_flags |= FOLL_PIN;
2981	return __get_user_pages_locked(current->mm, start, nr_pages,
2982				       pages, NULL, locked,
2983				       gup_flags | FOLL_TOUCH);
2984}
2985EXPORT_SYMBOL(pin_user_pages_locked);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/kernel.h>
   3#include <linux/errno.h>
   4#include <linux/err.h>
   5#include <linux/spinlock.h>
   6
   7#include <linux/mm.h>
   8#include <linux/memremap.h>
   9#include <linux/pagemap.h>
  10#include <linux/rmap.h>
  11#include <linux/swap.h>
  12#include <linux/swapops.h>
  13#include <linux/secretmem.h>
  14
  15#include <linux/sched/signal.h>
  16#include <linux/rwsem.h>
  17#include <linux/hugetlb.h>
  18#include <linux/migrate.h>
  19#include <linux/mm_inline.h>
  20#include <linux/sched/mm.h>
  21#include <linux/shmem_fs.h>
  22
  23#include <asm/mmu_context.h>
  24#include <asm/tlbflush.h>
  25
  26#include "internal.h"
  27
  28struct follow_page_context {
  29	struct dev_pagemap *pgmap;
  30	unsigned int page_mask;
  31};
  32
  33static inline void sanity_check_pinned_pages(struct page **pages,
  34					     unsigned long npages)
  35{
  36	if (!IS_ENABLED(CONFIG_DEBUG_VM))
  37		return;
 
 
 
  38
  39	/*
  40	 * We only pin anonymous pages if they are exclusive. Once pinned, we
  41	 * can no longer turn them possibly shared and PageAnonExclusive() will
  42	 * stick around until the page is freed.
  43	 *
  44	 * We'd like to verify that our pinned anonymous pages are still mapped
  45	 * exclusively. The issue with anon THP is that we don't know how
  46	 * they are/were mapped when pinning them. However, for anon
  47	 * THP we can assume that either the given page (PTE-mapped THP) or
  48	 * the head page (PMD-mapped THP) should be PageAnonExclusive(). If
  49	 * neither is the case, there is certainly something wrong.
  50	 */
  51	for (; npages; npages--, pages++) {
  52		struct page *page = *pages;
  53		struct folio *folio = page_folio(page);
  54
  55		if (is_zero_page(page) ||
  56		    !folio_test_anon(folio))
  57			continue;
  58		if (!folio_test_large(folio) || folio_test_hugetlb(folio))
  59			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page), page);
  60		else
  61			/* Either a PTE-mapped or a PMD-mapped THP. */
  62			VM_BUG_ON_PAGE(!PageAnonExclusive(&folio->page) &&
  63				       !PageAnonExclusive(page), page);
  64	}
  65}
  66
  67/*
  68 * Return the folio with ref appropriately incremented,
  69 * or NULL if that failed.
  70 */
  71static inline struct folio *try_get_folio(struct page *page, int refs)
  72{
  73	struct folio *folio;
  74
  75retry:
  76	folio = page_folio(page);
  77	if (WARN_ON_ONCE(folio_ref_count(folio) < 0))
  78		return NULL;
  79	if (unlikely(!folio_ref_try_add_rcu(folio, refs)))
  80		return NULL;
  81
  82	/*
  83	 * At this point we have a stable reference to the folio; but it
  84	 * could be that between calling page_folio() and the refcount
  85	 * increment, the folio was split, in which case we'd end up
  86	 * holding a reference on a folio that has nothing to do with the page
  87	 * we were given anymore.
  88	 * So now that the folio is stable, recheck that the page still
  89	 * belongs to this folio.
  90	 */
  91	if (unlikely(page_folio(page) != folio)) {
  92		if (!put_devmap_managed_page_refs(&folio->page, refs))
  93			folio_put_refs(folio, refs);
  94		goto retry;
  95	}
  96
  97	return folio;
  98}
  99
 100/**
 101 * try_grab_folio() - Attempt to get or pin a folio.
 102 * @page:  pointer to page to be grabbed
 103 * @refs:  the value to (effectively) add to the folio's refcount
 104 * @flags: gup flags: these are the FOLL_* flag values.
 105 *
 106 * "grab" names in this file mean, "look at flags to decide whether to use
 107 * FOLL_PIN or FOLL_GET behavior, when incrementing the folio's refcount.
 108 *
 109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
 110 * same time. (That's true throughout the get_user_pages*() and
 111 * pin_user_pages*() APIs.) Cases:
 112 *
 113 *    FOLL_GET: folio's refcount will be incremented by @refs.
 
 114 *
 115 *    FOLL_PIN on large folios: folio's refcount will be incremented by
 116 *    @refs, and its pincount will be incremented by @refs.
 117 *
 118 *    FOLL_PIN on single-page folios: folio's refcount will be incremented by
 119 *    @refs * GUP_PIN_COUNTING_BIAS.
 120 *
 121 * Return: The folio containing @page (with refcount appropriately
 122 * incremented) for success, or NULL upon failure. If neither FOLL_GET
 123 * nor FOLL_PIN was set, that's considered failure, and furthermore,
 124 * a likely bug in the caller, so a warning is also emitted.
 125 */
 126struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags)
 127{
 128	struct folio *folio;
 129
 130	if (WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == 0))
 131		return NULL;
 132
 133	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 134		return NULL;
 135
 136	if (flags & FOLL_GET)
 137		return try_get_folio(page, refs);
 
 
 138
 139	/* FOLL_PIN is set */
 
 
 
 
 
 
 140
 141	/*
 142	 * Don't take a pin on the zero page - it's not going anywhere
 143	 * and it is used in a *lot* of places.
 144	 */
 145	if (is_zero_page(page))
 146		return page_folio(page);
 
 
 
 
 147
 148	folio = try_get_folio(page, refs);
 149	if (!folio)
 150		return NULL;
 151
 152	/*
 153	 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
 154	 * right zone, so fail and let the caller fall back to the slow
 155	 * path.
 156	 */
 157	if (unlikely((flags & FOLL_LONGTERM) &&
 158		     !folio_is_longterm_pinnable(folio))) {
 159		if (!put_devmap_managed_page_refs(&folio->page, refs))
 160			folio_put_refs(folio, refs);
 161		return NULL;
 162	}
 163
 164	/*
 165	 * When pinning a large folio, use an exact count to track it.
 166	 *
 167	 * However, be sure to *also* increment the normal folio
 168	 * refcount field at least once, so that the folio really
 169	 * is pinned.  That's why the refcount from the earlier
 170	 * try_get_folio() is left intact.
 171	 */
 172	if (folio_test_large(folio))
 173		atomic_add(refs, &folio->_pincount);
 174	else
 175		folio_ref_add(folio,
 176				refs * (GUP_PIN_COUNTING_BIAS - 1));
 177	/*
 178	 * Adjust the pincount before re-checking the PTE for changes.
 179	 * This is essentially a smp_mb() and is paired with a memory
 180	 * barrier in folio_try_share_anon_rmap_*().
 181	 */
 182	smp_mb__after_atomic();
 183
 184	node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, refs);
 
 185
 186	return folio;
 187}
 188
 189static void gup_put_folio(struct folio *folio, int refs, unsigned int flags)
 190{
 191	if (flags & FOLL_PIN) {
 192		if (is_zero_folio(folio))
 193			return;
 194		node_stat_mod_folio(folio, NR_FOLL_PIN_RELEASED, refs);
 195		if (folio_test_large(folio))
 196			atomic_sub(refs, &folio->_pincount);
 197		else
 198			refs *= GUP_PIN_COUNTING_BIAS;
 199	}
 200
 201	if (!put_devmap_managed_page_refs(&folio->page, refs))
 202		folio_put_refs(folio, refs);
 203}
 204
 205/**
 206 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
 207 * @page:    pointer to page to be grabbed
 208 * @flags:   gup flags: these are the FOLL_* flag values.
 209 *
 210 * This might not do anything at all, depending on the flags argument.
 211 *
 212 * "grab" names in this file mean, "look at flags to decide whether to use
 213 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
 214 *
 
 
 
 215 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
 216 * time. Cases: please see the try_grab_folio() documentation, with
 217 * "refs=1".
 218 *
 219 * Return: 0 for success, or if no action was required (if neither FOLL_PIN
 220 * nor FOLL_GET was set, nothing is done). A negative error code for failure:
 221 *
 222 *   -ENOMEM		FOLL_GET or FOLL_PIN was set, but the page could not
 223 *			be grabbed.
 
 224 */
 225int __must_check try_grab_page(struct page *page, unsigned int flags)
 226{
 227	struct folio *folio = page_folio(page);
 
 
 
 
 
 
 
 228
 229	if (WARN_ON_ONCE(folio_ref_count(folio) <= 0))
 230		return -ENOMEM;
 231
 232	if (unlikely(!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)))
 233		return -EREMOTEIO;
 
 
 234
 235	if (flags & FOLL_GET)
 236		folio_ref_inc(folio);
 237	else if (flags & FOLL_PIN) {
 238		/*
 239		 * Don't take a pin on the zero page - it's not going anywhere
 240		 * and it is used in a *lot* of places.
 
 
 241		 */
 242		if (is_zero_page(page))
 243			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244
 245		/*
 246		 * Similar to try_grab_folio(): be sure to *also*
 247		 * increment the normal page refcount field at least once,
 248		 * so that the page really is pinned.
 249		 */
 250		if (folio_test_large(folio)) {
 251			folio_ref_add(folio, 1);
 252			atomic_add(1, &folio->_pincount);
 253		} else {
 254			folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 255		}
 256
 257		node_stat_mod_folio(folio, NR_FOLL_PIN_ACQUIRED, 1);
 258	}
 
 
 
 
 
 
 
 
 259
 260	return 0;
 
 
 
 
 
 261}
 
 262
 263/**
 264 * unpin_user_page() - release a dma-pinned page
 265 * @page:            pointer to page to be released
 266 *
 267 * Pages that were pinned via pin_user_pages*() must be released via either
 268 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
 269 * that such pages can be separately tracked and uniquely handled. In
 270 * particular, interactions with RDMA and filesystems need special handling.
 271 */
 272void unpin_user_page(struct page *page)
 273{
 274	sanity_check_pinned_pages(&page, 1);
 275	gup_put_folio(page_folio(page), 1, FOLL_PIN);
 276}
 277EXPORT_SYMBOL(unpin_user_page);
 278
 279/**
 280 * folio_add_pin - Try to get an additional pin on a pinned folio
 281 * @folio: The folio to be pinned
 282 *
 283 * Get an additional pin on a folio we already have a pin on.  Makes no change
 284 * if the folio is a zero_page.
 285 */
 286void folio_add_pin(struct folio *folio)
 287{
 288	if (is_zero_folio(folio))
 289		return;
 290
 291	/*
 292	 * Similar to try_grab_folio(): be sure to *also* increment the normal
 293	 * page refcount field at least once, so that the page really is
 294	 * pinned.
 295	 */
 296	if (folio_test_large(folio)) {
 297		WARN_ON_ONCE(atomic_read(&folio->_pincount) < 1);
 298		folio_ref_inc(folio);
 299		atomic_inc(&folio->_pincount);
 300	} else {
 301		WARN_ON_ONCE(folio_ref_count(folio) < GUP_PIN_COUNTING_BIAS);
 302		folio_ref_add(folio, GUP_PIN_COUNTING_BIAS);
 303	}
 304}
 305
 306static inline struct folio *gup_folio_range_next(struct page *start,
 307		unsigned long npages, unsigned long i, unsigned int *ntails)
 308{
 309	struct page *next = nth_page(start, i);
 310	struct folio *folio = page_folio(next);
 311	unsigned int nr = 1;
 312
 313	if (folio_test_large(folio))
 314		nr = min_t(unsigned int, npages - i,
 315			   folio_nr_pages(folio) - folio_page_idx(folio, next));
 316
 317	*ntails = nr;
 318	return folio;
 319}
 320
 321static inline struct folio *gup_folio_next(struct page **list,
 322		unsigned long npages, unsigned long i, unsigned int *ntails)
 323{
 324	struct folio *folio = page_folio(list[i]);
 325	unsigned int nr;
 326
 327	for (nr = i + 1; nr < npages; nr++) {
 328		if (page_folio(list[nr]) != folio)
 329			break;
 330	}
 331
 332	*ntails = nr - i;
 333	return folio;
 334}
 
 335
 336/**
 337 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
 338 * @pages:  array of pages to be maybe marked dirty, and definitely released.
 339 * @npages: number of pages in the @pages array.
 340 * @make_dirty: whether to mark the pages dirty
 341 *
 342 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
 343 * variants called on that page.
 344 *
 345 * For each page in the @pages array, make that page (or its head page, if a
 346 * compound page) dirty, if @make_dirty is true, and if the page was previously
 347 * listed as clean. In any case, releases all pages using unpin_user_page(),
 348 * possibly via unpin_user_pages(), for the non-dirty case.
 349 *
 350 * Please see the unpin_user_page() documentation for details.
 351 *
 352 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 353 * required, then the caller should a) verify that this is really correct,
 354 * because _lock() is usually required, and b) hand code it:
 355 * set_page_dirty_lock(), unpin_user_page().
 356 *
 357 */
 358void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
 359				 bool make_dirty)
 360{
 361	unsigned long i;
 362	struct folio *folio;
 363	unsigned int nr;
 
 
 
 
 364
 365	if (!make_dirty) {
 366		unpin_user_pages(pages, npages);
 367		return;
 368	}
 369
 370	sanity_check_pinned_pages(pages, npages);
 371	for (i = 0; i < npages; i += nr) {
 372		folio = gup_folio_next(pages, npages, i, &nr);
 373		/*
 374		 * Checking PageDirty at this point may race with
 375		 * clear_page_dirty_for_io(), but that's OK. Two key
 376		 * cases:
 377		 *
 378		 * 1) This code sees the page as already dirty, so it
 379		 * skips the call to set_page_dirty(). That could happen
 380		 * because clear_page_dirty_for_io() called
 381		 * page_mkclean(), followed by set_page_dirty().
 382		 * However, now the page is going to get written back,
 383		 * which meets the original intention of setting it
 384		 * dirty, so all is well: clear_page_dirty_for_io() goes
 385		 * on to call TestClearPageDirty(), and write the page
 386		 * back.
 387		 *
 388		 * 2) This code sees the page as clean, so it calls
 389		 * set_page_dirty(). The page stays dirty, despite being
 390		 * written back, so it gets written back again in the
 391		 * next writeback cycle. This is harmless.
 392		 */
 393		if (!folio_test_dirty(folio)) {
 394			folio_lock(folio);
 395			folio_mark_dirty(folio);
 396			folio_unlock(folio);
 397		}
 398		gup_put_folio(folio, nr, FOLL_PIN);
 399	}
 400}
 401EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
 402
 403/**
 404 * unpin_user_page_range_dirty_lock() - release and optionally dirty
 405 * gup-pinned page range
 406 *
 407 * @page:  the starting page of a range maybe marked dirty, and definitely released.
 408 * @npages: number of consecutive pages to release.
 409 * @make_dirty: whether to mark the pages dirty
 410 *
 411 * "gup-pinned page range" refers to a range of pages that has had one of the
 412 * pin_user_pages() variants called on that page.
 413 *
 414 * For the page ranges defined by [page .. page+npages], make that range (or
 415 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
 416 * page range was previously listed as clean.
 417 *
 418 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
 419 * required, then the caller should a) verify that this is really correct,
 420 * because _lock() is usually required, and b) hand code it:
 421 * set_page_dirty_lock(), unpin_user_page().
 422 *
 423 */
 424void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
 425				      bool make_dirty)
 426{
 427	unsigned long i;
 428	struct folio *folio;
 429	unsigned int nr;
 430
 431	for (i = 0; i < npages; i += nr) {
 432		folio = gup_folio_range_next(page, npages, i, &nr);
 433		if (make_dirty && !folio_test_dirty(folio)) {
 434			folio_lock(folio);
 435			folio_mark_dirty(folio);
 436			folio_unlock(folio);
 437		}
 438		gup_put_folio(folio, nr, FOLL_PIN);
 439	}
 440}
 441EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
 442
 443static void unpin_user_pages_lockless(struct page **pages, unsigned long npages)
 444{
 445	unsigned long i;
 446	struct folio *folio;
 447	unsigned int nr;
 448
 449	/*
 450	 * Don't perform any sanity checks because we might have raced with
 451	 * fork() and some anonymous pages might now actually be shared --
 452	 * which is why we're unpinning after all.
 453	 */
 454	for (i = 0; i < npages; i += nr) {
 455		folio = gup_folio_next(pages, npages, i, &nr);
 456		gup_put_folio(folio, nr, FOLL_PIN);
 457	}
 458}
 459
 460/**
 461 * unpin_user_pages() - release an array of gup-pinned pages.
 462 * @pages:  array of pages to be marked dirty and released.
 463 * @npages: number of pages in the @pages array.
 464 *
 465 * For each page in the @pages array, release the page using unpin_user_page().
 466 *
 467 * Please see the unpin_user_page() documentation for details.
 468 */
 469void unpin_user_pages(struct page **pages, unsigned long npages)
 470{
 471	unsigned long i;
 472	struct folio *folio;
 473	unsigned int nr;
 474
 475	/*
 476	 * If this WARN_ON() fires, then the system *might* be leaking pages (by
 477	 * leaving them pinned), but probably not. More likely, gup/pup returned
 478	 * a hard -ERRNO error to the caller, who erroneously passed it here.
 479	 */
 480	if (WARN_ON(IS_ERR_VALUE(npages)))
 481		return;
 482
 483	sanity_check_pinned_pages(pages, npages);
 484	for (i = 0; i < npages; i += nr) {
 485		folio = gup_folio_next(pages, npages, i, &nr);
 486		gup_put_folio(folio, nr, FOLL_PIN);
 487	}
 488}
 489EXPORT_SYMBOL(unpin_user_pages);
 490
 491/*
 492 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
 493 * lifecycle.  Avoid setting the bit unless necessary, or it might cause write
 494 * cache bouncing on large SMP machines for concurrent pinned gups.
 495 */
 496static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
 497{
 498	if (!test_bit(MMF_HAS_PINNED, mm_flags))
 499		set_bit(MMF_HAS_PINNED, mm_flags);
 500}
 501
 502#ifdef CONFIG_MMU
 503static struct page *no_page_table(struct vm_area_struct *vma,
 504		unsigned int flags)
 505{
 506	/*
 507	 * When core dumping an enormous anonymous area that nobody
 508	 * has touched so far, we don't want to allocate unnecessary pages or
 509	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
 510	 * then get_dump_page() will return NULL to leave a hole in the dump.
 511	 * But we can only make this optimization where a hole would surely
 512	 * be zero-filled if handle_mm_fault() actually did handle it.
 513	 */
 514	if ((flags & FOLL_DUMP) &&
 515			(vma_is_anonymous(vma) || !vma->vm_ops->fault))
 516		return ERR_PTR(-EFAULT);
 517	return NULL;
 518}
 519
 520static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
 521		pte_t *pte, unsigned int flags)
 522{
 
 
 
 
 523	if (flags & FOLL_TOUCH) {
 524		pte_t orig_entry = ptep_get(pte);
 525		pte_t entry = orig_entry;
 526
 527		if (flags & FOLL_WRITE)
 528			entry = pte_mkdirty(entry);
 529		entry = pte_mkyoung(entry);
 530
 531		if (!pte_same(orig_entry, entry)) {
 532			set_pte_at(vma->vm_mm, address, pte, entry);
 533			update_mmu_cache(vma, address, pte);
 534		}
 535	}
 536
 537	/* Proper page table entry exists, but no corresponding struct page */
 538	return -EEXIST;
 539}
 540
 541/* FOLL_FORCE can write to even unwritable PTEs in COW mappings. */
 542static inline bool can_follow_write_pte(pte_t pte, struct page *page,
 543					struct vm_area_struct *vma,
 544					unsigned int flags)
 545{
 546	/* If the pte is writable, we can write to the page. */
 547	if (pte_write(pte))
 548		return true;
 549
 550	/* Maybe FOLL_FORCE is set to override it? */
 551	if (!(flags & FOLL_FORCE))
 552		return false;
 553
 554	/* But FOLL_FORCE has no effect on shared mappings */
 555	if (vma->vm_flags & (VM_MAYSHARE | VM_SHARED))
 556		return false;
 557
 558	/* ... or read-only private ones */
 559	if (!(vma->vm_flags & VM_MAYWRITE))
 560		return false;
 561
 562	/* ... or already writable ones that just need to take a write fault */
 563	if (vma->vm_flags & VM_WRITE)
 564		return false;
 565
 566	/*
 567	 * See can_change_pte_writable(): we broke COW and could map the page
 568	 * writable if we have an exclusive anonymous page ...
 569	 */
 570	if (!page || !PageAnon(page) || !PageAnonExclusive(page))
 571		return false;
 572
 573	/* ... and a write-fault isn't required for other reasons. */
 574	if (vma_soft_dirty_enabled(vma) && !pte_soft_dirty(pte))
 575		return false;
 576	return !userfaultfd_pte_wp(vma, pte);
 577}
 578
 579static struct page *follow_page_pte(struct vm_area_struct *vma,
 580		unsigned long address, pmd_t *pmd, unsigned int flags,
 581		struct dev_pagemap **pgmap)
 582{
 583	struct mm_struct *mm = vma->vm_mm;
 584	struct page *page;
 585	spinlock_t *ptl;
 586	pte_t *ptep, pte;
 587	int ret;
 588
 589	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
 590	if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
 591			 (FOLL_PIN | FOLL_GET)))
 592		return ERR_PTR(-EINVAL);
 
 
 
 593
 594	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
 595	if (!ptep)
 596		return no_page_table(vma, flags);
 597	pte = ptep_get(ptep);
 598	if (!pte_present(pte))
 599		goto no_page;
 600	if (pte_protnone(pte) && !gup_can_follow_protnone(vma, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601		goto no_page;
 
 
 
 
 602
 603	page = vm_normal_page(vma, address, pte);
 604
 605	/*
 606	 * We only care about anon pages in can_follow_write_pte() and don't
 607	 * have to worry about pte_devmap() because they are never anon.
 608	 */
 609	if ((flags & FOLL_WRITE) &&
 610	    !can_follow_write_pte(pte, page, vma, flags)) {
 611		page = NULL;
 612		goto out;
 613	}
 614
 615	if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
 616		/*
 617		 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
 618		 * case since they are only valid while holding the pgmap
 619		 * reference.
 620		 */
 621		*pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
 622		if (*pgmap)
 623			page = pte_page(pte);
 624		else
 625			goto no_page;
 626	} else if (unlikely(!page)) {
 627		if (flags & FOLL_DUMP) {
 628			/* Avoid special (like zero) pages in core dumps */
 629			page = ERR_PTR(-EFAULT);
 630			goto out;
 631		}
 632
 633		if (is_zero_pfn(pte_pfn(pte))) {
 634			page = pte_page(pte);
 635		} else {
 636			ret = follow_pfn_pte(vma, address, ptep, flags);
 637			page = ERR_PTR(ret);
 638			goto out;
 639		}
 640	}
 641
 642	if (!pte_write(pte) && gup_must_unshare(vma, flags, page)) {
 643		page = ERR_PTR(-EMLINK);
 644		goto out;
 
 
 
 
 
 
 
 645	}
 646
 647	VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
 648		       !PageAnonExclusive(page), page);
 649
 650	/* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
 651	ret = try_grab_page(page, flags);
 652	if (unlikely(ret)) {
 653		page = ERR_PTR(ret);
 654		goto out;
 655	}
 656
 657	/*
 658	 * We need to make the page accessible if and only if we are going
 659	 * to access its content (the FOLL_PIN case).  Please see
 660	 * Documentation/core-api/pin_user_pages.rst for details.
 661	 */
 662	if (flags & FOLL_PIN) {
 663		ret = arch_make_page_accessible(page);
 664		if (ret) {
 665			unpin_user_page(page);
 666			page = ERR_PTR(ret);
 667			goto out;
 668		}
 669	}
 670	if (flags & FOLL_TOUCH) {
 671		if ((flags & FOLL_WRITE) &&
 672		    !pte_dirty(pte) && !PageDirty(page))
 673			set_page_dirty(page);
 674		/*
 675		 * pte_mkyoung() would be more correct here, but atomic care
 676		 * is needed to avoid losing the dirty bit: it is easier to use
 677		 * mark_page_accessed().
 678		 */
 679		mark_page_accessed(page);
 680	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 681out:
 682	pte_unmap_unlock(ptep, ptl);
 683	return page;
 684no_page:
 685	pte_unmap_unlock(ptep, ptl);
 686	if (!pte_none(pte))
 687		return NULL;
 688	return no_page_table(vma, flags);
 689}
 690
 691static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 692				    unsigned long address, pud_t *pudp,
 693				    unsigned int flags,
 694				    struct follow_page_context *ctx)
 695{
 696	pmd_t *pmd, pmdval;
 697	spinlock_t *ptl;
 698	struct page *page;
 699	struct mm_struct *mm = vma->vm_mm;
 700
 701	pmd = pmd_offset(pudp, address);
 702	pmdval = pmdp_get_lockless(pmd);
 
 
 
 
 703	if (pmd_none(pmdval))
 704		return no_page_table(vma, flags);
 705	if (!pmd_present(pmdval))
 
 
 
 706		return no_page_table(vma, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 707	if (pmd_devmap(pmdval)) {
 708		ptl = pmd_lock(mm, pmd);
 709		page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
 710		spin_unlock(ptl);
 711		if (page)
 712			return page;
 713		return no_page_table(vma, flags);
 714	}
 715	if (likely(!pmd_trans_huge(pmdval)))
 716		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 717
 718	if (pmd_protnone(pmdval) && !gup_can_follow_protnone(vma, flags))
 719		return no_page_table(vma, flags);
 720
 
 721	ptl = pmd_lock(mm, pmd);
 
 
 
 
 722	if (unlikely(!pmd_present(*pmd))) {
 723		spin_unlock(ptl);
 724		return no_page_table(vma, flags);
 
 
 
 725	}
 726	if (unlikely(!pmd_trans_huge(*pmd))) {
 727		spin_unlock(ptl);
 728		return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 729	}
 730	if (flags & FOLL_SPLIT_PMD) {
 731		spin_unlock(ptl);
 732		split_huge_pmd(vma, pmd, address);
 733		/* If pmd was left empty, stuff a page table in there quickly */
 734		return pte_alloc(mm, pmd) ? ERR_PTR(-ENOMEM) :
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 735			follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
 736	}
 737	page = follow_trans_huge_pmd(vma, address, pmd, flags);
 738	spin_unlock(ptl);
 739	ctx->page_mask = HPAGE_PMD_NR - 1;
 740	return page;
 741}
 742
 743static struct page *follow_pud_mask(struct vm_area_struct *vma,
 744				    unsigned long address, p4d_t *p4dp,
 745				    unsigned int flags,
 746				    struct follow_page_context *ctx)
 747{
 748	pud_t *pud;
 749	spinlock_t *ptl;
 750	struct page *page;
 751	struct mm_struct *mm = vma->vm_mm;
 752
 753	pud = pud_offset(p4dp, address);
 754	if (pud_none(*pud))
 755		return no_page_table(vma, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 756	if (pud_devmap(*pud)) {
 757		ptl = pud_lock(mm, pud);
 758		page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
 759		spin_unlock(ptl);
 760		if (page)
 761			return page;
 762		return no_page_table(vma, flags);
 763	}
 764	if (unlikely(pud_bad(*pud)))
 765		return no_page_table(vma, flags);
 766
 767	return follow_pmd_mask(vma, address, pud, flags, ctx);
 768}
 769
 770static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 771				    unsigned long address, pgd_t *pgdp,
 772				    unsigned int flags,
 773				    struct follow_page_context *ctx)
 774{
 775	p4d_t *p4d;
 
 776
 777	p4d = p4d_offset(pgdp, address);
 778	if (p4d_none(*p4d))
 779		return no_page_table(vma, flags);
 780	BUILD_BUG_ON(p4d_huge(*p4d));
 781	if (unlikely(p4d_bad(*p4d)))
 782		return no_page_table(vma, flags);
 783
 
 
 
 
 
 
 
 
 784	return follow_pud_mask(vma, address, p4d, flags, ctx);
 785}
 786
 787/**
 788 * follow_page_mask - look up a page descriptor from a user-virtual address
 789 * @vma: vm_area_struct mapping @address
 790 * @address: virtual address to look up
 791 * @flags: flags modifying lookup behaviour
 792 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
 793 *       pointer to output page_mask
 794 *
 795 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 796 *
 797 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
 798 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
 799 *
 800 * When getting an anonymous page and the caller has to trigger unsharing
 801 * of a shared anonymous page first, -EMLINK is returned. The caller should
 802 * trigger a fault with FAULT_FLAG_UNSHARE set. Note that unsharing is only
 803 * relevant with FOLL_PIN and !FOLL_WRITE.
 804 *
 805 * On output, the @ctx->page_mask is set according to the size of the page.
 806 *
 807 * Return: the mapped (struct page *), %NULL if no mapping exists, or
 808 * an error pointer if there is a mapping to something not represented
 809 * by a page descriptor (see also vm_normal_page()).
 810 */
 811static struct page *follow_page_mask(struct vm_area_struct *vma,
 812			      unsigned long address, unsigned int flags,
 813			      struct follow_page_context *ctx)
 814{
 815	pgd_t *pgd;
 
 816	struct mm_struct *mm = vma->vm_mm;
 817
 818	ctx->page_mask = 0;
 819
 820	/*
 821	 * Call hugetlb_follow_page_mask for hugetlb vmas as it will use
 822	 * special hugetlb page table walking code.  This eliminates the
 823	 * need to check for hugetlb entries in the general walking code.
 824	 */
 825	if (is_vm_hugetlb_page(vma))
 826		return hugetlb_follow_page_mask(vma, address, flags,
 827						&ctx->page_mask);
 828
 829	pgd = pgd_offset(mm, address);
 830
 831	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 832		return no_page_table(vma, flags);
 833
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 834	return follow_p4d_mask(vma, address, pgd, flags, ctx);
 835}
 836
 837struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
 838			 unsigned int foll_flags)
 839{
 840	struct follow_page_context ctx = { NULL };
 841	struct page *page;
 842
 843	if (vma_is_secretmem(vma))
 844		return NULL;
 845
 846	if (WARN_ON_ONCE(foll_flags & FOLL_PIN))
 847		return NULL;
 848
 849	/*
 850	 * We never set FOLL_HONOR_NUMA_FAULT because callers don't expect
 851	 * to fail on PROT_NONE-mapped pages.
 852	 */
 853	page = follow_page_mask(vma, address, foll_flags, &ctx);
 854	if (ctx.pgmap)
 855		put_dev_pagemap(ctx.pgmap);
 856	return page;
 857}
 858
 859static int get_gate_page(struct mm_struct *mm, unsigned long address,
 860		unsigned int gup_flags, struct vm_area_struct **vma,
 861		struct page **page)
 862{
 863	pgd_t *pgd;
 864	p4d_t *p4d;
 865	pud_t *pud;
 866	pmd_t *pmd;
 867	pte_t *pte;
 868	pte_t entry;
 869	int ret = -EFAULT;
 870
 871	/* user gate pages are read-only */
 872	if (gup_flags & FOLL_WRITE)
 873		return -EFAULT;
 874	if (address > TASK_SIZE)
 875		pgd = pgd_offset_k(address);
 876	else
 877		pgd = pgd_offset_gate(mm, address);
 878	if (pgd_none(*pgd))
 879		return -EFAULT;
 880	p4d = p4d_offset(pgd, address);
 881	if (p4d_none(*p4d))
 882		return -EFAULT;
 883	pud = pud_offset(p4d, address);
 884	if (pud_none(*pud))
 885		return -EFAULT;
 886	pmd = pmd_offset(pud, address);
 887	if (!pmd_present(*pmd))
 888		return -EFAULT;
 
 889	pte = pte_offset_map(pmd, address);
 890	if (!pte)
 891		return -EFAULT;
 892	entry = ptep_get(pte);
 893	if (pte_none(entry))
 894		goto unmap;
 895	*vma = get_gate_vma(mm);
 896	if (!page)
 897		goto out;
 898	*page = vm_normal_page(*vma, address, entry);
 899	if (!*page) {
 900		if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(entry)))
 901			goto unmap;
 902		*page = pte_page(entry);
 903	}
 904	ret = try_grab_page(*page, gup_flags);
 905	if (unlikely(ret))
 906		goto unmap;
 
 907out:
 908	ret = 0;
 909unmap:
 910	pte_unmap(pte);
 911	return ret;
 912}
 913
 914/*
 915 * mmap_lock must be held on entry.  If @flags has FOLL_UNLOCKABLE but not
 916 * FOLL_NOWAIT, the mmap_lock may be released.  If it is, *@locked will be set
 917 * to 0 and -EBUSY returned.
 918 */
 919static int faultin_page(struct vm_area_struct *vma,
 920		unsigned long address, unsigned int *flags, bool unshare,
 921		int *locked)
 922{
 923	unsigned int fault_flags = 0;
 924	vm_fault_t ret;
 925
 926	if (*flags & FOLL_NOFAULT)
 927		return -EFAULT;
 
 928	if (*flags & FOLL_WRITE)
 929		fault_flags |= FAULT_FLAG_WRITE;
 930	if (*flags & FOLL_REMOTE)
 931		fault_flags |= FAULT_FLAG_REMOTE;
 932	if (*flags & FOLL_UNLOCKABLE) {
 933		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
 934		/*
 935		 * FAULT_FLAG_INTERRUPTIBLE is opt-in. GUP callers must set
 936		 * FOLL_INTERRUPTIBLE to enable FAULT_FLAG_INTERRUPTIBLE.
 937		 * That's because some callers may not be prepared to
 938		 * handle early exits caused by non-fatal signals.
 939		 */
 940		if (*flags & FOLL_INTERRUPTIBLE)
 941			fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
 942	}
 943	if (*flags & FOLL_NOWAIT)
 944		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 945	if (*flags & FOLL_TRIED) {
 946		/*
 947		 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
 948		 * can co-exist
 949		 */
 950		fault_flags |= FAULT_FLAG_TRIED;
 951	}
 952	if (unshare) {
 953		fault_flags |= FAULT_FLAG_UNSHARE;
 954		/* FAULT_FLAG_WRITE and FAULT_FLAG_UNSHARE are incompatible */
 955		VM_BUG_ON(fault_flags & FAULT_FLAG_WRITE);
 956	}
 957
 958	ret = handle_mm_fault(vma, address, fault_flags, NULL);
 959
 960	if (ret & VM_FAULT_COMPLETED) {
 961		/*
 962		 * With FAULT_FLAG_RETRY_NOWAIT we'll never release the
 963		 * mmap lock in the page fault handler. Sanity check this.
 964		 */
 965		WARN_ON_ONCE(fault_flags & FAULT_FLAG_RETRY_NOWAIT);
 966		*locked = 0;
 967
 968		/*
 969		 * We should do the same as VM_FAULT_RETRY, but let's not
 970		 * return -EBUSY since that's not reflecting the reality of
 971		 * what has happened - we've just fully completed a page
 972		 * fault, with the mmap lock released.  Use -EAGAIN to show
 973		 * that we want to take the mmap lock _again_.
 974		 */
 975		return -EAGAIN;
 976	}
 977
 978	if (ret & VM_FAULT_ERROR) {
 979		int err = vm_fault_to_errno(ret, *flags);
 980
 981		if (err)
 982			return err;
 983		BUG();
 984	}
 985
 986	if (ret & VM_FAULT_RETRY) {
 987		if (!(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 988			*locked = 0;
 989		return -EBUSY;
 990	}
 991
 992	return 0;
 993}
 994
 995/*
 996 * Writing to file-backed mappings which require folio dirty tracking using GUP
 997 * is a fundamentally broken operation, as kernel write access to GUP mappings
 998 * do not adhere to the semantics expected by a file system.
 999 *
1000 * Consider the following scenario:-
1001 *
1002 * 1. A folio is written to via GUP which write-faults the memory, notifying
1003 *    the file system and dirtying the folio.
1004 * 2. Later, writeback is triggered, resulting in the folio being cleaned and
1005 *    the PTE being marked read-only.
1006 * 3. The GUP caller writes to the folio, as it is mapped read/write via the
1007 *    direct mapping.
1008 * 4. The GUP caller, now done with the page, unpins it and sets it dirty
1009 *    (though it does not have to).
1010 *
1011 * This results in both data being written to a folio without writenotify, and
1012 * the folio being dirtied unexpectedly (if the caller decides to do so).
1013 */
1014static bool writable_file_mapping_allowed(struct vm_area_struct *vma,
1015					  unsigned long gup_flags)
1016{
1017	/*
1018	 * If we aren't pinning then no problematic write can occur. A long term
1019	 * pin is the most egregious case so this is the case we disallow.
 
 
 
 
 
1020	 */
1021	if ((gup_flags & (FOLL_PIN | FOLL_LONGTERM)) !=
1022	    (FOLL_PIN | FOLL_LONGTERM))
1023		return true;
1024
1025	/*
1026	 * If the VMA does not require dirty tracking then no problematic write
1027	 * can occur either.
1028	 */
1029	return !vma_needs_dirty_tracking(vma);
1030}
1031
1032static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
1033{
1034	vm_flags_t vm_flags = vma->vm_flags;
1035	int write = (gup_flags & FOLL_WRITE);
1036	int foreign = (gup_flags & FOLL_REMOTE);
1037	bool vma_anon = vma_is_anonymous(vma);
1038
1039	if (vm_flags & (VM_IO | VM_PFNMAP))
1040		return -EFAULT;
1041
1042	if ((gup_flags & FOLL_ANON) && !vma_anon)
1043		return -EFAULT;
1044
1045	if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1046		return -EOPNOTSUPP;
1047
1048	if (vma_is_secretmem(vma))
1049		return -EFAULT;
1050
1051	if (write) {
1052		if (!vma_anon &&
1053		    !writable_file_mapping_allowed(vma, gup_flags))
1054			return -EFAULT;
1055
1056		if (!(vm_flags & VM_WRITE) || (vm_flags & VM_SHADOW_STACK)) {
1057			if (!(gup_flags & FOLL_FORCE))
1058				return -EFAULT;
1059			/* hugetlb does not support FOLL_FORCE|FOLL_WRITE. */
1060			if (is_vm_hugetlb_page(vma))
1061				return -EFAULT;
1062			/*
1063			 * We used to let the write,force case do COW in a
1064			 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1065			 * set a breakpoint in a read-only mapping of an
1066			 * executable, without corrupting the file (yet only
1067			 * when that file had been opened for writing!).
1068			 * Anon pages in shared mappings are surprising: now
1069			 * just reject it.
1070			 */
1071			if (!is_cow_mapping(vm_flags))
1072				return -EFAULT;
1073		}
1074	} else if (!(vm_flags & VM_READ)) {
1075		if (!(gup_flags & FOLL_FORCE))
1076			return -EFAULT;
1077		/*
1078		 * Is there actually any vma we can reach here which does not
1079		 * have VM_MAYREAD set?
1080		 */
1081		if (!(vm_flags & VM_MAYREAD))
1082			return -EFAULT;
1083	}
1084	/*
1085	 * gups are always data accesses, not instruction
1086	 * fetches, so execute=false here
1087	 */
1088	if (!arch_vma_access_permitted(vma, write, false, foreign))
1089		return -EFAULT;
1090	return 0;
1091}
1092
1093/*
1094 * This is "vma_lookup()", but with a warning if we would have
1095 * historically expanded the stack in the GUP code.
1096 */
1097static struct vm_area_struct *gup_vma_lookup(struct mm_struct *mm,
1098	 unsigned long addr)
1099{
1100#ifdef CONFIG_STACK_GROWSUP
1101	return vma_lookup(mm, addr);
1102#else
1103	static volatile unsigned long next_warn;
1104	struct vm_area_struct *vma;
1105	unsigned long now, next;
1106
1107	vma = find_vma(mm, addr);
1108	if (!vma || (addr >= vma->vm_start))
1109		return vma;
1110
1111	/* Only warn for half-way relevant accesses */
1112	if (!(vma->vm_flags & VM_GROWSDOWN))
1113		return NULL;
1114	if (vma->vm_start - addr > 65536)
1115		return NULL;
1116
1117	/* Let's not warn more than once an hour.. */
1118	now = jiffies; next = next_warn;
1119	if (next && time_before(now, next))
1120		return NULL;
1121	next_warn = now + 60*60*HZ;
1122
1123	/* Let people know things may have changed. */
1124	pr_warn("GUP no longer grows the stack in %s (%d): %lx-%lx (%lx)\n",
1125		current->comm, task_pid_nr(current),
1126		vma->vm_start, vma->vm_end, addr);
1127	dump_stack();
1128	return NULL;
1129#endif
1130}
1131
1132/**
1133 * __get_user_pages() - pin user pages in memory
1134 * @mm:		mm_struct of target mm
1135 * @start:	starting user address
1136 * @nr_pages:	number of pages from start to pin
1137 * @gup_flags:	flags modifying pin behaviour
1138 * @pages:	array that receives pointers to the pages pinned.
1139 *		Should be at least nr_pages long. Or NULL, if caller
1140 *		only intends to ensure the pages are faulted in.
 
 
1141 * @locked:     whether we're still with the mmap_lock held
1142 *
1143 * Returns either number of pages pinned (which may be less than the
1144 * number requested), or an error. Details about the return value:
1145 *
1146 * -- If nr_pages is 0, returns 0.
1147 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1148 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1149 *    pages pinned. Again, this may be less than nr_pages.
1150 * -- 0 return value is possible when the fault would need to be retried.
1151 *
1152 * The caller is responsible for releasing returned @pages, via put_page().
1153 *
 
 
1154 * Must be called with mmap_lock held.  It may be released.  See below.
1155 *
1156 * __get_user_pages walks a process's page tables and takes a reference to
1157 * each struct page that each user address corresponds to at a given
1158 * instant. That is, it takes the page that would be accessed if a user
1159 * thread accesses the given user virtual address at that instant.
1160 *
1161 * This does not guarantee that the page exists in the user mappings when
1162 * __get_user_pages returns, and there may even be a completely different
1163 * page there in some cases (eg. if mmapped pagecache has been invalidated
1164 * and subsequently re-faulted). However it does guarantee that the page
1165 * won't be freed completely. And mostly callers simply care that the page
1166 * contains data that was valid *at some point in time*. Typically, an IO
1167 * or similar operation cannot guarantee anything stronger anyway because
1168 * locks can't be held over the syscall boundary.
1169 *
1170 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1171 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1172 * appropriate) must be called after the page is finished with, and
1173 * before put_page is called.
1174 *
1175 * If FOLL_UNLOCKABLE is set without FOLL_NOWAIT then the mmap_lock may
1176 * be released. If this happens *@locked will be set to 0 on return.
1177 *
1178 * A caller using such a combination of @gup_flags must therefore hold the
1179 * mmap_lock for reading only, and recognize when it's been released. Otherwise,
1180 * it must be held for either reading or writing and will not be released.
 
 
1181 *
1182 * In most cases, get_user_pages or get_user_pages_fast should be used
1183 * instead of __get_user_pages. __get_user_pages should be used only if
1184 * you need some special @gup_flags.
1185 */
1186static long __get_user_pages(struct mm_struct *mm,
1187		unsigned long start, unsigned long nr_pages,
1188		unsigned int gup_flags, struct page **pages,
1189		int *locked)
1190{
1191	long ret = 0, i = 0;
1192	struct vm_area_struct *vma = NULL;
1193	struct follow_page_context ctx = { NULL };
1194
1195	if (!nr_pages)
1196		return 0;
1197
1198	start = untagged_addr_remote(mm, start);
1199
1200	VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
1201
 
 
 
 
 
 
 
 
1202	do {
1203		struct page *page;
1204		unsigned int foll_flags = gup_flags;
1205		unsigned int page_increm;
1206
1207		/* first iteration or cross vma bound */
1208		if (!vma || start >= vma->vm_end) {
1209			/*
1210			 * MADV_POPULATE_(READ|WRITE) wants to handle VMA
1211			 * lookups+error reporting differently.
1212			 */
1213			if (gup_flags & FOLL_MADV_POPULATE) {
1214				vma = vma_lookup(mm, start);
1215				if (!vma) {
1216					ret = -ENOMEM;
1217					goto out;
1218				}
1219				if (check_vma_flags(vma, gup_flags)) {
1220					ret = -EINVAL;
1221					goto out;
1222				}
1223				goto retry;
1224			}
1225			vma = gup_vma_lookup(mm, start);
1226			if (!vma && in_gate_area(mm, start)) {
1227				ret = get_gate_page(mm, start & PAGE_MASK,
1228						gup_flags, &vma,
1229						pages ? &page : NULL);
1230				if (ret)
1231					goto out;
1232				ctx.page_mask = 0;
1233				goto next_page;
1234			}
1235
1236			if (!vma) {
1237				ret = -EFAULT;
1238				goto out;
1239			}
1240			ret = check_vma_flags(vma, gup_flags);
1241			if (ret)
1242				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
1243		}
1244retry:
1245		/*
1246		 * If we have a pending SIGKILL, don't keep faulting pages and
1247		 * potentially allocating memory.
1248		 */
1249		if (fatal_signal_pending(current)) {
1250			ret = -EINTR;
1251			goto out;
1252		}
1253		cond_resched();
1254
1255		page = follow_page_mask(vma, start, foll_flags, &ctx);
1256		if (!page || PTR_ERR(page) == -EMLINK) {
1257			ret = faultin_page(vma, start, &foll_flags,
1258					   PTR_ERR(page) == -EMLINK, locked);
1259			switch (ret) {
1260			case 0:
1261				goto retry;
1262			case -EBUSY:
1263			case -EAGAIN:
1264				ret = 0;
1265				fallthrough;
1266			case -EFAULT:
1267			case -ENOMEM:
1268			case -EHWPOISON:
1269				goto out;
 
 
1270			}
1271			BUG();
1272		} else if (PTR_ERR(page) == -EEXIST) {
1273			/*
1274			 * Proper page table entry exists, but no corresponding
1275			 * struct page. If the caller expects **pages to be
1276			 * filled in, bail out now, because that can't be done
1277			 * for this page.
1278			 */
1279			if (pages) {
1280				ret = PTR_ERR(page);
1281				goto out;
1282			}
1283		} else if (IS_ERR(page)) {
1284			ret = PTR_ERR(page);
1285			goto out;
1286		}
 
 
 
 
 
 
1287next_page:
 
 
 
 
1288		page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
1289		if (page_increm > nr_pages)
1290			page_increm = nr_pages;
1291
1292		if (pages) {
1293			struct page *subpage;
1294			unsigned int j;
1295
1296			/*
1297			 * This must be a large folio (and doesn't need to
1298			 * be the whole folio; it can be part of it), do
1299			 * the refcount work for all the subpages too.
1300			 *
1301			 * NOTE: here the page may not be the head page
1302			 * e.g. when start addr is not thp-size aligned.
1303			 * try_grab_folio() should have taken care of tail
1304			 * pages.
1305			 */
1306			if (page_increm > 1) {
1307				struct folio *folio;
1308
1309				/*
1310				 * Since we already hold refcount on the
1311				 * large folio, this should never fail.
1312				 */
1313				folio = try_grab_folio(page, page_increm - 1,
1314						       foll_flags);
1315				if (WARN_ON_ONCE(!folio)) {
1316					/*
1317					 * Release the 1st page ref if the
1318					 * folio is problematic, fail hard.
1319					 */
1320					gup_put_folio(page_folio(page), 1,
1321						      foll_flags);
1322					ret = -EFAULT;
1323					goto out;
1324				}
1325			}
1326
1327			for (j = 0; j < page_increm; j++) {
1328				subpage = nth_page(page, j);
1329				pages[i + j] = subpage;
1330				flush_anon_page(vma, subpage, start + j * PAGE_SIZE);
1331				flush_dcache_page(subpage);
1332			}
1333		}
1334
1335		i += page_increm;
1336		start += page_increm * PAGE_SIZE;
1337		nr_pages -= page_increm;
1338	} while (nr_pages);
1339out:
1340	if (ctx.pgmap)
1341		put_dev_pagemap(ctx.pgmap);
1342	return i ? i : ret;
1343}
1344
1345static bool vma_permits_fault(struct vm_area_struct *vma,
1346			      unsigned int fault_flags)
1347{
1348	bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
1349	bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
1350	vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
1351
1352	if (!(vm_flags & vma->vm_flags))
1353		return false;
1354
1355	/*
1356	 * The architecture might have a hardware protection
1357	 * mechanism other than read/write that can deny access.
1358	 *
1359	 * gup always represents data access, not instruction
1360	 * fetches, so execute=false here:
1361	 */
1362	if (!arch_vma_access_permitted(vma, write, false, foreign))
1363		return false;
1364
1365	return true;
1366}
1367
1368/**
1369 * fixup_user_fault() - manually resolve a user page fault
1370 * @mm:		mm_struct of target mm
1371 * @address:	user address
1372 * @fault_flags:flags to pass down to handle_mm_fault()
1373 * @unlocked:	did we unlock the mmap_lock while retrying, maybe NULL if caller
1374 *		does not allow retry. If NULL, the caller must guarantee
1375 *		that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
1376 *
1377 * This is meant to be called in the specific scenario where for locking reasons
1378 * we try to access user memory in atomic context (within a pagefault_disable()
1379 * section), this returns -EFAULT, and we want to resolve the user fault before
1380 * trying again.
1381 *
1382 * Typically this is meant to be used by the futex code.
1383 *
1384 * The main difference with get_user_pages() is that this function will
1385 * unconditionally call handle_mm_fault() which will in turn perform all the
1386 * necessary SW fixup of the dirty and young bits in the PTE, while
1387 * get_user_pages() only guarantees to update these in the struct page.
1388 *
1389 * This is important for some architectures where those bits also gate the
1390 * access permission to the page because they are maintained in software.  On
1391 * such architectures, gup() will not be enough to make a subsequent access
1392 * succeed.
1393 *
1394 * This function will not return with an unlocked mmap_lock. So it has not the
1395 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
1396 */
1397int fixup_user_fault(struct mm_struct *mm,
1398		     unsigned long address, unsigned int fault_flags,
1399		     bool *unlocked)
1400{
1401	struct vm_area_struct *vma;
1402	vm_fault_t ret;
1403
1404	address = untagged_addr_remote(mm, address);
1405
1406	if (unlocked)
1407		fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1408
1409retry:
1410	vma = gup_vma_lookup(mm, address);
1411	if (!vma)
1412		return -EFAULT;
1413
1414	if (!vma_permits_fault(vma, fault_flags))
1415		return -EFAULT;
1416
1417	if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1418	    fatal_signal_pending(current))
1419		return -EINTR;
1420
1421	ret = handle_mm_fault(vma, address, fault_flags, NULL);
1422
1423	if (ret & VM_FAULT_COMPLETED) {
1424		/*
1425		 * NOTE: it's a pity that we need to retake the lock here
1426		 * to pair with the unlock() in the callers. Ideally we
1427		 * could tell the callers so they do not need to unlock.
1428		 */
1429		mmap_read_lock(mm);
1430		*unlocked = true;
1431		return 0;
1432	}
1433
1434	if (ret & VM_FAULT_ERROR) {
1435		int err = vm_fault_to_errno(ret, 0);
1436
1437		if (err)
1438			return err;
1439		BUG();
1440	}
1441
1442	if (ret & VM_FAULT_RETRY) {
1443		mmap_read_lock(mm);
1444		*unlocked = true;
1445		fault_flags |= FAULT_FLAG_TRIED;
1446		goto retry;
1447	}
1448
1449	return 0;
1450}
1451EXPORT_SYMBOL_GPL(fixup_user_fault);
1452
1453/*
1454 * GUP always responds to fatal signals.  When FOLL_INTERRUPTIBLE is
1455 * specified, it'll also respond to generic signals.  The caller of GUP
1456 * that has FOLL_INTERRUPTIBLE should take care of the GUP interruption.
1457 */
1458static bool gup_signal_pending(unsigned int flags)
1459{
1460	if (fatal_signal_pending(current))
1461		return true;
1462
1463	if (!(flags & FOLL_INTERRUPTIBLE))
1464		return false;
1465
1466	return signal_pending(current);
1467}
1468
1469/*
1470 * Locking: (*locked == 1) means that the mmap_lock has already been acquired by
1471 * the caller. This function may drop the mmap_lock. If it does so, then it will
1472 * set (*locked = 0).
1473 *
1474 * (*locked == 0) means that the caller expects this function to acquire and
1475 * drop the mmap_lock. Therefore, the value of *locked will still be zero when
1476 * the function returns, even though it may have changed temporarily during
1477 * function execution.
1478 *
1479 * Please note that this function, unlike __get_user_pages(), will not return 0
1480 * for nr_pages > 0, unless FOLL_NOWAIT is used.
1481 */
1482static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
1483						unsigned long start,
1484						unsigned long nr_pages,
1485						struct page **pages,
 
1486						int *locked,
1487						unsigned int flags)
1488{
1489	long ret, pages_done;
1490	bool must_unlock = false;
1491
1492	if (!nr_pages)
1493		return 0;
1494
1495	/*
1496	 * The internal caller expects GUP to manage the lock internally and the
1497	 * lock must be released when this returns.
1498	 */
1499	if (!*locked) {
1500		if (mmap_read_lock_killable(mm))
1501			return -EAGAIN;
1502		must_unlock = true;
1503		*locked = 1;
1504	}
1505	else
1506		mmap_assert_locked(mm);
1507
1508	if (flags & FOLL_PIN)
1509		mm_set_has_pinned_flag(&mm->flags);
1510
1511	/*
1512	 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1513	 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1514	 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1515	 * for FOLL_GET, not for the newer FOLL_PIN.
1516	 *
1517	 * FOLL_PIN always expects pages to be non-null, but no need to assert
1518	 * that here, as any failures will be obvious enough.
1519	 */
1520	if (pages && !(flags & FOLL_PIN))
1521		flags |= FOLL_GET;
1522
1523	pages_done = 0;
 
1524	for (;;) {
1525		ret = __get_user_pages(mm, start, nr_pages, flags, pages,
1526				       locked);
1527		if (!(flags & FOLL_UNLOCKABLE)) {
1528			/* VM_FAULT_RETRY couldn't trigger, bypass */
1529			pages_done = ret;
1530			break;
1531		}
1532
1533		/* VM_FAULT_RETRY or VM_FAULT_COMPLETED cannot return errors */
1534		if (!*locked) {
1535			BUG_ON(ret < 0);
1536			BUG_ON(ret >= nr_pages);
1537		}
1538
1539		if (ret > 0) {
1540			nr_pages -= ret;
1541			pages_done += ret;
1542			if (!nr_pages)
1543				break;
1544		}
1545		if (*locked) {
1546			/*
1547			 * VM_FAULT_RETRY didn't trigger or it was a
1548			 * FOLL_NOWAIT.
1549			 */
1550			if (!pages_done)
1551				pages_done = ret;
1552			break;
1553		}
1554		/*
1555		 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1556		 * For the prefault case (!pages) we only update counts.
1557		 */
1558		if (likely(pages))
1559			pages += ret;
1560		start += ret << PAGE_SHIFT;
1561
1562		/* The lock was temporarily dropped, so we must unlock later */
1563		must_unlock = true;
1564
1565retry:
1566		/*
1567		 * Repeat on the address that fired VM_FAULT_RETRY
1568		 * with both FAULT_FLAG_ALLOW_RETRY and
1569		 * FAULT_FLAG_TRIED.  Note that GUP can be interrupted
1570		 * by fatal signals of even common signals, depending on
1571		 * the caller's request. So we need to check it before we
1572		 * start trying again otherwise it can loop forever.
1573		 */
1574		if (gup_signal_pending(flags)) {
 
1575			if (!pages_done)
1576				pages_done = -EINTR;
1577			break;
1578		}
1579
1580		ret = mmap_read_lock_killable(mm);
1581		if (ret) {
1582			BUG_ON(ret > 0);
1583			if (!pages_done)
1584				pages_done = ret;
1585			break;
1586		}
1587
1588		*locked = 1;
1589		ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
1590				       pages, locked);
1591		if (!*locked) {
1592			/* Continue to retry until we succeeded */
1593			BUG_ON(ret != 0);
1594			goto retry;
1595		}
1596		if (ret != 1) {
1597			BUG_ON(ret > 1);
1598			if (!pages_done)
1599				pages_done = ret;
1600			break;
1601		}
1602		nr_pages--;
1603		pages_done++;
1604		if (!nr_pages)
1605			break;
1606		if (likely(pages))
1607			pages++;
1608		start += PAGE_SIZE;
1609	}
1610	if (must_unlock && *locked) {
1611		/*
1612		 * We either temporarily dropped the lock, or the caller
1613		 * requested that we both acquire and drop the lock. Either way,
1614		 * we must now unlock, and notify the caller of that state.
1615		 */
1616		mmap_read_unlock(mm);
1617		*locked = 0;
1618	}
1619
1620	/*
1621	 * Failing to pin anything implies something has gone wrong (except when
1622	 * FOLL_NOWAIT is specified).
1623	 */
1624	if (WARN_ON_ONCE(pages_done == 0 && !(flags & FOLL_NOWAIT)))
1625		return -EFAULT;
1626
1627	return pages_done;
1628}
1629
1630/**
1631 * populate_vma_page_range() -  populate a range of pages in the vma.
1632 * @vma:   target vma
1633 * @start: start address
1634 * @end:   end address
1635 * @locked: whether the mmap_lock is still held
1636 *
1637 * This takes care of mlocking the pages too if VM_LOCKED is set.
1638 *
1639 * Return either number of pages pinned in the vma, or a negative error
1640 * code on error.
1641 *
1642 * vma->vm_mm->mmap_lock must be held.
1643 *
1644 * If @locked is NULL, it may be held for read or write and will
1645 * be unperturbed.
1646 *
1647 * If @locked is non-NULL, it must held for read only and may be
1648 * released.  If it's released, *@locked will be set to 0.
1649 */
1650long populate_vma_page_range(struct vm_area_struct *vma,
1651		unsigned long start, unsigned long end, int *locked)
1652{
1653	struct mm_struct *mm = vma->vm_mm;
1654	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1655	int local_locked = 1;
1656	int gup_flags;
1657	long ret;
1658
1659	VM_BUG_ON(!PAGE_ALIGNED(start));
1660	VM_BUG_ON(!PAGE_ALIGNED(end));
1661	VM_BUG_ON_VMA(start < vma->vm_start, vma);
1662	VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1663	mmap_assert_locked(mm);
1664
1665	/*
1666	 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1667	 * faultin_page() to break COW, so it has no work to do here.
1668	 */
1669	if (vma->vm_flags & VM_LOCKONFAULT)
1670		return nr_pages;
1671
1672	/* ... similarly, we've never faulted in PROT_NONE pages */
1673	if (!vma_is_accessible(vma))
1674		return -EFAULT;
1675
1676	gup_flags = FOLL_TOUCH;
1677	/*
1678	 * We want to touch writable mappings with a write fault in order
1679	 * to break COW, except for shared mappings because these don't COW
1680	 * and we would not want to dirty them for nothing.
1681	 *
1682	 * Otherwise, do a read fault, and use FOLL_FORCE in case it's not
1683	 * readable (ie write-only or executable).
1684	 */
1685	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1686		gup_flags |= FOLL_WRITE;
1687	else
 
 
 
 
 
1688		gup_flags |= FOLL_FORCE;
1689
1690	if (locked)
1691		gup_flags |= FOLL_UNLOCKABLE;
1692
1693	/*
1694	 * We made sure addr is within a VMA, so the following will
1695	 * not result in a stack expansion that recurses back here.
1696	 */
1697	ret = __get_user_pages(mm, start, nr_pages, gup_flags,
1698			       NULL, locked ? locked : &local_locked);
1699	lru_add_drain();
1700	return ret;
1701}
1702
1703/*
1704 * faultin_page_range() - populate (prefault) page tables inside the
1705 *			  given range readable/writable
1706 *
1707 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1708 *
1709 * @mm: the mm to populate page tables in
1710 * @start: start address
1711 * @end: end address
1712 * @write: whether to prefault readable or writable
1713 * @locked: whether the mmap_lock is still held
1714 *
1715 * Returns either number of processed pages in the MM, or a negative error
1716 * code on error (see __get_user_pages()). Note that this function reports
1717 * errors related to VMAs, such as incompatible mappings, as expected by
1718 * MADV_POPULATE_(READ|WRITE).
1719 *
1720 * The range must be page-aligned.
1721 *
1722 * mm->mmap_lock must be held. If it's released, *@locked will be set to 0.
1723 */
1724long faultin_page_range(struct mm_struct *mm, unsigned long start,
1725			unsigned long end, bool write, int *locked)
1726{
1727	unsigned long nr_pages = (end - start) / PAGE_SIZE;
1728	int gup_flags;
1729	long ret;
1730
1731	VM_BUG_ON(!PAGE_ALIGNED(start));
1732	VM_BUG_ON(!PAGE_ALIGNED(end));
1733	mmap_assert_locked(mm);
1734
1735	/*
1736	 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1737	 *	       the page dirty with FOLL_WRITE -- which doesn't make a
1738	 *	       difference with !FOLL_FORCE, because the page is writable
1739	 *	       in the page table.
1740	 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1741	 *		  a poisoned page.
1742	 * !FOLL_FORCE: Require proper access permissions.
1743	 */
1744	gup_flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_UNLOCKABLE |
1745		    FOLL_MADV_POPULATE;
1746	if (write)
1747		gup_flags |= FOLL_WRITE;
1748
1749	ret = __get_user_pages_locked(mm, start, nr_pages, NULL, locked,
1750				      gup_flags);
1751	lru_add_drain();
1752	return ret;
1753}
1754
1755/*
1756 * __mm_populate - populate and/or mlock pages within a range of address space.
1757 *
1758 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1759 * flags. VMAs must be already marked with the desired vm_flags, and
1760 * mmap_lock must not be held.
1761 */
1762int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1763{
1764	struct mm_struct *mm = current->mm;
1765	unsigned long end, nstart, nend;
1766	struct vm_area_struct *vma = NULL;
1767	int locked = 0;
1768	long ret = 0;
1769
1770	end = start + len;
1771
1772	for (nstart = start; nstart < end; nstart = nend) {
1773		/*
1774		 * We want to fault in pages for [nstart; end) address range.
1775		 * Find first corresponding VMA.
1776		 */
1777		if (!locked) {
1778			locked = 1;
1779			mmap_read_lock(mm);
1780			vma = find_vma_intersection(mm, nstart, end);
1781		} else if (nstart >= vma->vm_end)
1782			vma = find_vma_intersection(mm, vma->vm_end, end);
1783
1784		if (!vma)
1785			break;
1786		/*
1787		 * Set [nstart; nend) to intersection of desired address
1788		 * range with the first VMA. Also, skip undesirable VMA types.
1789		 */
1790		nend = min(end, vma->vm_end);
1791		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1792			continue;
1793		if (nstart < vma->vm_start)
1794			nstart = vma->vm_start;
1795		/*
1796		 * Now fault in a range of pages. populate_vma_page_range()
1797		 * double checks the vma flags, so that it won't mlock pages
1798		 * if the vma was already munlocked.
1799		 */
1800		ret = populate_vma_page_range(vma, nstart, nend, &locked);
1801		if (ret < 0) {
1802			if (ignore_errors) {
1803				ret = 0;
1804				continue;	/* continue at next VMA */
1805			}
1806			break;
1807		}
1808		nend = nstart + ret * PAGE_SIZE;
1809		ret = 0;
1810	}
1811	if (locked)
1812		mmap_read_unlock(mm);
1813	return ret;	/* 0 or negative error code */
1814}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1815#else /* CONFIG_MMU */
1816static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
1817		unsigned long nr_pages, struct page **pages,
1818		int *locked, unsigned int foll_flags)
 
1819{
1820	struct vm_area_struct *vma;
1821	bool must_unlock = false;
1822	unsigned long vm_flags;
1823	long i;
1824
1825	if (!nr_pages)
1826		return 0;
1827
1828	/*
1829	 * The internal caller expects GUP to manage the lock internally and the
1830	 * lock must be released when this returns.
1831	 */
1832	if (!*locked) {
1833		if (mmap_read_lock_killable(mm))
1834			return -EAGAIN;
1835		must_unlock = true;
1836		*locked = 1;
1837	}
1838
1839	/* calculate required read or write permissions.
1840	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1841	 */
1842	vm_flags  = (foll_flags & FOLL_WRITE) ?
1843			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1844	vm_flags &= (foll_flags & FOLL_FORCE) ?
1845			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1846
1847	for (i = 0; i < nr_pages; i++) {
1848		vma = find_vma(mm, start);
1849		if (!vma)
1850			break;
1851
1852		/* protect what we can, including chardevs */
1853		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1854		    !(vm_flags & vma->vm_flags))
1855			break;
1856
1857		if (pages) {
1858			pages[i] = virt_to_page((void *)start);
1859			if (pages[i])
1860				get_page(pages[i]);
1861		}
1862
 
1863		start = (start + PAGE_SIZE) & PAGE_MASK;
1864	}
1865
1866	if (must_unlock && *locked) {
1867		mmap_read_unlock(mm);
1868		*locked = 0;
1869	}
1870
 
1871	return i ? : -EFAULT;
1872}
1873#endif /* !CONFIG_MMU */
1874
1875/**
1876 * fault_in_writeable - fault in userspace address range for writing
1877 * @uaddr: start of address range
1878 * @size: size of address range
1879 *
1880 * Returns the number of bytes not faulted in (like copy_to_user() and
1881 * copy_from_user()).
1882 */
1883size_t fault_in_writeable(char __user *uaddr, size_t size)
1884{
1885	char __user *start = uaddr, *end;
 
1886
1887	if (unlikely(size == 0))
1888		return 0;
1889	if (!user_write_access_begin(uaddr, size))
1890		return size;
1891	if (!PAGE_ALIGNED(uaddr)) {
1892		unsafe_put_user(0, uaddr, out);
1893		uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1894	}
1895	end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1896	if (unlikely(end < start))
1897		end = NULL;
1898	while (uaddr != end) {
1899		unsafe_put_user(0, uaddr, out);
1900		uaddr += PAGE_SIZE;
1901	}
1902
1903out:
1904	user_write_access_end();
1905	if (size > uaddr - start)
1906		return size - (uaddr - start);
1907	return 0;
1908}
1909EXPORT_SYMBOL(fault_in_writeable);
1910
1911/**
1912 * fault_in_subpage_writeable - fault in an address range for writing
1913 * @uaddr: start of address range
1914 * @size: size of address range
1915 *
1916 * Fault in a user address range for writing while checking for permissions at
1917 * sub-page granularity (e.g. arm64 MTE). This function should be used when
1918 * the caller cannot guarantee forward progress of a copy_to_user() loop.
1919 *
1920 * Returns the number of bytes not faulted in (like copy_to_user() and
1921 * copy_from_user()).
1922 */
1923size_t fault_in_subpage_writeable(char __user *uaddr, size_t size)
1924{
1925	size_t faulted_in;
1926
1927	/*
1928	 * Attempt faulting in at page granularity first for page table
1929	 * permission checking. The arch-specific probe_subpage_writeable()
1930	 * functions may not check for this.
1931	 */
1932	faulted_in = size - fault_in_writeable(uaddr, size);
1933	if (faulted_in)
1934		faulted_in -= probe_subpage_writeable(uaddr, faulted_in);
1935
1936	return size - faulted_in;
1937}
1938EXPORT_SYMBOL(fault_in_subpage_writeable);
1939
1940/*
1941 * fault_in_safe_writeable - fault in an address range for writing
1942 * @uaddr: start of address range
1943 * @size: length of address range
1944 *
1945 * Faults in an address range for writing.  This is primarily useful when we
1946 * already know that some or all of the pages in the address range aren't in
1947 * memory.
1948 *
1949 * Unlike fault_in_writeable(), this function is non-destructive.
1950 *
1951 * Note that we don't pin or otherwise hold the pages referenced that we fault
1952 * in.  There's no guarantee that they'll stay in memory for any duration of
1953 * time.
1954 *
1955 * Returns the number of bytes not faulted in, like copy_to_user() and
1956 * copy_from_user().
1957 */
1958size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1959{
1960	unsigned long start = (unsigned long)uaddr, end;
1961	struct mm_struct *mm = current->mm;
1962	bool unlocked = false;
1963
1964	if (unlikely(size == 0))
1965		return 0;
1966	end = PAGE_ALIGN(start + size);
1967	if (end < start)
1968		end = 0;
1969
1970	mmap_read_lock(mm);
1971	do {
1972		if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
1973			break;
1974		start = (start + PAGE_SIZE) & PAGE_MASK;
1975	} while (start != end);
1976	mmap_read_unlock(mm);
1977
1978	if (size > (unsigned long)uaddr - start)
1979		return size - ((unsigned long)uaddr - start);
1980	return 0;
1981}
1982EXPORT_SYMBOL(fault_in_safe_writeable);
1983
1984/**
1985 * fault_in_readable - fault in userspace address range for reading
1986 * @uaddr: start of user address range
1987 * @size: size of user address range
1988 *
1989 * Returns the number of bytes not faulted in (like copy_to_user() and
1990 * copy_from_user()).
1991 */
1992size_t fault_in_readable(const char __user *uaddr, size_t size)
1993{
1994	const char __user *start = uaddr, *end;
1995	volatile char c;
1996
1997	if (unlikely(size == 0))
1998		return 0;
1999	if (!user_read_access_begin(uaddr, size))
2000		return size;
2001	if (!PAGE_ALIGNED(uaddr)) {
2002		unsafe_get_user(c, uaddr, out);
2003		uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
2004	}
2005	end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
2006	if (unlikely(end < start))
2007		end = NULL;
2008	while (uaddr != end) {
2009		unsafe_get_user(c, uaddr, out);
2010		uaddr += PAGE_SIZE;
2011	}
2012
2013out:
2014	user_read_access_end();
2015	(void)c;
2016	if (size > uaddr - start)
2017		return size - (uaddr - start);
2018	return 0;
2019}
2020EXPORT_SYMBOL(fault_in_readable);
2021
2022/**
2023 * get_dump_page() - pin user page in memory while writing it to core dump
2024 * @addr: user address
2025 *
2026 * Returns struct page pointer of user page pinned for dump,
2027 * to be freed afterwards by put_page().
2028 *
2029 * Returns NULL on any kind of failure - a hole must then be inserted into
2030 * the corefile, to preserve alignment with its headers; and also returns
2031 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2032 * allowing a hole to be left in the corefile to save disk space.
2033 *
2034 * Called without mmap_lock (takes and releases the mmap_lock by itself).
2035 */
2036#ifdef CONFIG_ELF_CORE
2037struct page *get_dump_page(unsigned long addr)
2038{
2039	struct page *page;
2040	int locked = 0;
2041	int ret;
2042
2043	ret = __get_user_pages_locked(current->mm, addr, 1, &page, &locked,
2044				      FOLL_FORCE | FOLL_DUMP | FOLL_GET);
2045	return (ret == 1) ? page : NULL;
2046}
2047#endif /* CONFIG_ELF_CORE */
2048
2049#ifdef CONFIG_MIGRATION
2050/*
2051 * Returns the number of collected pages. Return value is always >= 0.
2052 */
2053static unsigned long collect_longterm_unpinnable_pages(
2054					struct list_head *movable_page_list,
2055					unsigned long nr_pages,
2056					struct page **pages)
 
 
2057{
2058	unsigned long i, collected = 0;
2059	struct folio *prev_folio = NULL;
2060	bool drain_allow = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2061
2062	for (i = 0; i < nr_pages; i++) {
2063		struct folio *folio = page_folio(pages[i]);
2064
2065		if (folio == prev_folio)
2066			continue;
2067		prev_folio = folio;
2068
2069		if (folio_is_longterm_pinnable(folio))
2070			continue;
2071
2072		collected++;
2073
2074		if (folio_is_device_coherent(folio))
2075			continue;
2076
2077		if (folio_test_hugetlb(folio)) {
2078			isolate_hugetlb(folio, movable_page_list);
2079			continue;
2080		}
2081
2082		if (!folio_test_lru(folio) && drain_allow) {
2083			lru_add_drain_all();
2084			drain_allow = false;
2085		}
2086
2087		if (!folio_isolate_lru(folio))
2088			continue;
2089
2090		list_add_tail(&folio->lru, movable_page_list);
2091		node_stat_mod_folio(folio,
2092				    NR_ISOLATED_ANON + folio_is_file_lru(folio),
2093				    folio_nr_pages(folio));
2094	}
2095
2096	return collected;
2097}
2098
2099/*
2100 * Unpins all pages and migrates device coherent pages and movable_page_list.
2101 * Returns -EAGAIN if all pages were successfully migrated or -errno for failure
2102 * (or partial success).
2103 */
2104static int migrate_longterm_unpinnable_pages(
2105					struct list_head *movable_page_list,
2106					unsigned long nr_pages,
2107					struct page **pages)
2108{
2109	int ret;
2110	unsigned long i;
2111
2112	for (i = 0; i < nr_pages; i++) {
2113		struct folio *folio = page_folio(pages[i]);
2114
2115		if (folio_is_device_coherent(folio)) {
 
2116			/*
2117			 * Migration will fail if the page is pinned, so convert
2118			 * the pin on the source page to a normal reference.
2119			 */
2120			pages[i] = NULL;
2121			folio_get(folio);
2122			gup_put_folio(folio, 1, FOLL_PIN);
2123
2124			if (migrate_device_coherent_page(&folio->page)) {
2125				ret = -EBUSY;
2126				goto err;
2127			}
2128
2129			continue;
2130		}
2131
2132		/*
2133		 * We can't migrate pages with unexpected references, so drop
2134		 * the reference obtained by __get_user_pages_locked().
2135		 * Migrating pages have been added to movable_page_list after
2136		 * calling folio_isolate_lru() which takes a reference so the
2137		 * page won't be freed if it's migrating.
2138		 */
2139		unpin_user_page(pages[i]);
2140		pages[i] = NULL;
2141	}
2142
2143	if (!list_empty(movable_page_list)) {
2144		struct migration_target_control mtc = {
2145			.nid = NUMA_NO_NODE,
2146			.gfp_mask = GFP_USER | __GFP_NOWARN,
2147		};
2148
2149		if (migrate_pages(movable_page_list, alloc_migration_target,
2150				  NULL, (unsigned long)&mtc, MIGRATE_SYNC,
2151				  MR_LONGTERM_PIN, NULL)) {
2152			ret = -ENOMEM;
2153			goto err;
2154		}
2155	}
2156
2157	putback_movable_pages(movable_page_list);
2158
2159	return -EAGAIN;
2160
2161err:
2162	for (i = 0; i < nr_pages; i++)
2163		if (pages[i])
2164			unpin_user_page(pages[i]);
2165	putback_movable_pages(movable_page_list);
2166
2167	return ret;
2168}
2169
2170/*
2171 * Check whether all pages are *allowed* to be pinned. Rather confusingly, all
2172 * pages in the range are required to be pinned via FOLL_PIN, before calling
2173 * this routine.
2174 *
2175 * If any pages in the range are not allowed to be pinned, then this routine
2176 * will migrate those pages away, unpin all the pages in the range and return
2177 * -EAGAIN. The caller should re-pin the entire range with FOLL_PIN and then
2178 * call this routine again.
2179 *
2180 * If an error other than -EAGAIN occurs, this indicates a migration failure.
2181 * The caller should give up, and propagate the error back up the call stack.
2182 *
2183 * If everything is OK and all pages in the range are allowed to be pinned, then
2184 * this routine leaves all pages pinned and returns zero for success.
2185 */
2186static long check_and_migrate_movable_pages(unsigned long nr_pages,
2187					    struct page **pages)
2188{
2189	unsigned long collected;
2190	LIST_HEAD(movable_page_list);
2191
2192	collected = collect_longterm_unpinnable_pages(&movable_page_list,
2193						nr_pages, pages);
2194	if (!collected)
2195		return 0;
2196
2197	return migrate_longterm_unpinnable_pages(&movable_page_list, nr_pages,
2198						pages);
2199}
2200#else
2201static long check_and_migrate_movable_pages(unsigned long nr_pages,
2202					    struct page **pages)
 
 
 
 
2203{
2204	return 0;
2205}
2206#endif /* CONFIG_MIGRATION */
2207
2208/*
2209 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
2210 * allows us to process the FOLL_LONGTERM flag.
2211 */
2212static long __gup_longterm_locked(struct mm_struct *mm,
2213				  unsigned long start,
2214				  unsigned long nr_pages,
2215				  struct page **pages,
2216				  int *locked,
2217				  unsigned int gup_flags)
2218{
2219	unsigned int flags;
2220	long rc, nr_pinned_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2221
2222	if (!(gup_flags & FOLL_LONGTERM))
2223		return __get_user_pages_locked(mm, start, nr_pages, pages,
2224					       locked, gup_flags);
2225
2226	flags = memalloc_pin_save();
2227	do {
2228		nr_pinned_pages = __get_user_pages_locked(mm, start, nr_pages,
2229							  pages, locked,
2230							  gup_flags);
2231		if (nr_pinned_pages <= 0) {
2232			rc = nr_pinned_pages;
2233			break;
 
2234		}
2235
2236		/* FOLL_LONGTERM implies FOLL_PIN */
2237		rc = check_and_migrate_movable_pages(nr_pinned_pages, pages);
2238	} while (rc == -EAGAIN);
2239	memalloc_pin_restore(flags);
2240	return rc ? rc : nr_pinned_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2241}
 
2242
2243/*
2244 * Check that the given flags are valid for the exported gup/pup interface, and
2245 * update them with the required flags that the caller must have set.
2246 */
2247static bool is_valid_gup_args(struct page **pages, int *locked,
2248			      unsigned int *gup_flags_p, unsigned int to_set)
2249{
2250	unsigned int gup_flags = *gup_flags_p;
2251
2252	/*
2253	 * These flags not allowed to be specified externally to the gup
2254	 * interfaces:
2255	 * - FOLL_TOUCH/FOLL_PIN/FOLL_TRIED/FOLL_FAST_ONLY are internal only
2256	 * - FOLL_REMOTE is internal only and used on follow_page()
2257	 * - FOLL_UNLOCKABLE is internal only and used if locked is !NULL
2258	 */
2259	if (WARN_ON_ONCE(gup_flags & INTERNAL_GUP_FLAGS))
2260		return false;
2261
2262	gup_flags |= to_set;
2263	if (locked) {
2264		/* At the external interface locked must be set */
2265		if (WARN_ON_ONCE(*locked != 1))
2266			return false;
2267
2268		gup_flags |= FOLL_UNLOCKABLE;
2269	}
2270
2271	/* FOLL_GET and FOLL_PIN are mutually exclusive. */
2272	if (WARN_ON_ONCE((gup_flags & (FOLL_PIN | FOLL_GET)) ==
2273			 (FOLL_PIN | FOLL_GET)))
2274		return false;
2275
2276	/* LONGTERM can only be specified when pinning */
2277	if (WARN_ON_ONCE(!(gup_flags & FOLL_PIN) && (gup_flags & FOLL_LONGTERM)))
2278		return false;
2279
2280	/* Pages input must be given if using GET/PIN */
2281	if (WARN_ON_ONCE((gup_flags & (FOLL_GET | FOLL_PIN)) && !pages))
2282		return false;
2283
2284	/* We want to allow the pgmap to be hot-unplugged at all times */
2285	if (WARN_ON_ONCE((gup_flags & FOLL_LONGTERM) &&
2286			 (gup_flags & FOLL_PCI_P2PDMA)))
2287		return false;
2288
2289	*gup_flags_p = gup_flags;
2290	return true;
2291}
2292
2293#ifdef CONFIG_MMU
2294/**
2295 * get_user_pages_remote() - pin user pages in memory
2296 * @mm:		mm_struct of target mm
2297 * @start:	starting user address
2298 * @nr_pages:	number of pages from start to pin
2299 * @gup_flags:	flags modifying lookup behaviour
2300 * @pages:	array that receives pointers to the pages pinned.
2301 *		Should be at least nr_pages long. Or NULL, if caller
2302 *		only intends to ensure the pages are faulted in.
 
 
2303 * @locked:	pointer to lock flag indicating whether lock is held and
2304 *		subsequently whether VM_FAULT_RETRY functionality can be
2305 *		utilised. Lock must initially be held.
2306 *
2307 * Returns either number of pages pinned (which may be less than the
2308 * number requested), or an error. Details about the return value:
2309 *
2310 * -- If nr_pages is 0, returns 0.
2311 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2312 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2313 *    pages pinned. Again, this may be less than nr_pages.
2314 *
2315 * The caller is responsible for releasing returned @pages, via put_page().
2316 *
 
 
2317 * Must be called with mmap_lock held for read or write.
2318 *
2319 * get_user_pages_remote walks a process's page tables and takes a reference
2320 * to each struct page that each user address corresponds to at a given
2321 * instant. That is, it takes the page that would be accessed if a user
2322 * thread accesses the given user virtual address at that instant.
2323 *
2324 * This does not guarantee that the page exists in the user mappings when
2325 * get_user_pages_remote returns, and there may even be a completely different
2326 * page there in some cases (eg. if mmapped pagecache has been invalidated
2327 * and subsequently re-faulted). However it does guarantee that the page
2328 * won't be freed completely. And mostly callers simply care that the page
2329 * contains data that was valid *at some point in time*. Typically, an IO
2330 * or similar operation cannot guarantee anything stronger anyway because
2331 * locks can't be held over the syscall boundary.
2332 *
2333 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2334 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2335 * be called after the page is finished with, and before put_page is called.
2336 *
2337 * get_user_pages_remote is typically used for fewer-copy IO operations,
2338 * to get a handle on the memory by some means other than accesses
2339 * via the user virtual addresses. The pages may be submitted for
2340 * DMA to devices or accessed via their kernel linear mapping (via the
2341 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
2342 *
2343 * See also get_user_pages_fast, for performance critical applications.
2344 *
2345 * get_user_pages_remote should be phased out in favor of
2346 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
2347 * should use get_user_pages_remote because it cannot pass
2348 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2349 */
2350long get_user_pages_remote(struct mm_struct *mm,
2351		unsigned long start, unsigned long nr_pages,
2352		unsigned int gup_flags, struct page **pages,
2353		int *locked)
2354{
2355	int local_locked = 1;
2356
2357	if (!is_valid_gup_args(pages, locked, &gup_flags,
2358			       FOLL_TOUCH | FOLL_REMOTE))
 
2359		return -EINVAL;
2360
2361	return __get_user_pages_locked(mm, start, nr_pages, pages,
2362				       locked ? locked : &local_locked,
2363				       gup_flags);
2364}
2365EXPORT_SYMBOL(get_user_pages_remote);
2366
2367#else /* CONFIG_MMU */
2368long get_user_pages_remote(struct mm_struct *mm,
2369			   unsigned long start, unsigned long nr_pages,
2370			   unsigned int gup_flags, struct page **pages,
2371			   int *locked)
 
 
 
 
 
 
 
 
2372{
2373	return 0;
2374}
2375#endif /* !CONFIG_MMU */
2376
2377/**
2378 * get_user_pages() - pin user pages in memory
2379 * @start:      starting user address
2380 * @nr_pages:   number of pages from start to pin
2381 * @gup_flags:  flags modifying lookup behaviour
2382 * @pages:      array that receives pointers to the pages pinned.
2383 *              Should be at least nr_pages long. Or NULL, if caller
2384 *              only intends to ensure the pages are faulted in.
 
 
2385 *
2386 * This is the same as get_user_pages_remote(), just with a less-flexible
2387 * calling convention where we assume that the mm being operated on belongs to
2388 * the current task, and doesn't allow passing of a locked parameter.  We also
2389 * obviously don't pass FOLL_REMOTE in here.
2390 */
2391long get_user_pages(unsigned long start, unsigned long nr_pages,
2392		    unsigned int gup_flags, struct page **pages)
 
2393{
2394	int locked = 1;
 
 
 
 
 
 
 
 
 
 
2395
2396	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_TOUCH))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397		return -EINVAL;
2398
2399	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2400				       &locked, gup_flags);
 
2401}
2402EXPORT_SYMBOL(get_user_pages);
2403
2404/*
2405 * get_user_pages_unlocked() is suitable to replace the form:
2406 *
2407 *      mmap_read_lock(mm);
2408 *      get_user_pages(mm, ..., pages, NULL);
2409 *      mmap_read_unlock(mm);
2410 *
2411 *  with:
2412 *
2413 *      get_user_pages_unlocked(mm, ..., pages);
2414 *
2415 * It is functionally equivalent to get_user_pages_fast so
2416 * get_user_pages_fast should be used instead if specific gup_flags
2417 * (e.g. FOLL_FORCE) are not required.
2418 */
2419long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2420			     struct page **pages, unsigned int gup_flags)
2421{
2422	int locked = 0;
 
 
2423
2424	if (!is_valid_gup_args(pages, NULL, &gup_flags,
2425			       FOLL_TOUCH | FOLL_UNLOCKABLE))
 
 
 
 
 
2426		return -EINVAL;
2427
2428	return __get_user_pages_locked(current->mm, start, nr_pages, pages,
2429				       &locked, gup_flags);
 
 
 
 
2430}
2431EXPORT_SYMBOL(get_user_pages_unlocked);
2432
2433/*
2434 * Fast GUP
2435 *
2436 * get_user_pages_fast attempts to pin user pages by walking the page
2437 * tables directly and avoids taking locks. Thus the walker needs to be
2438 * protected from page table pages being freed from under it, and should
2439 * block any THP splits.
2440 *
2441 * One way to achieve this is to have the walker disable interrupts, and
2442 * rely on IPIs from the TLB flushing code blocking before the page table
2443 * pages are freed. This is unsuitable for architectures that do not need
2444 * to broadcast an IPI when invalidating TLBs.
2445 *
2446 * Another way to achieve this is to batch up page table containing pages
2447 * belonging to more than one mm_user, then rcu_sched a callback to free those
2448 * pages. Disabling interrupts will allow the fast_gup walker to both block
2449 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2450 * (which is a relatively rare event). The code below adopts this strategy.
2451 *
2452 * Before activating this code, please be aware that the following assumptions
2453 * are currently made:
2454 *
2455 *  *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
2456 *  free pages containing page tables or TLB flushing requires IPI broadcast.
2457 *
2458 *  *) ptes can be read atomically by the architecture.
2459 *
2460 *  *) access_ok is sufficient to validate userspace address ranges.
2461 *
2462 * The last two assumptions can be relaxed by the addition of helper functions.
2463 *
2464 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2465 */
2466#ifdef CONFIG_HAVE_FAST_GUP
2467
2468/*
2469 * Used in the GUP-fast path to determine whether a pin is permitted for a
2470 * specific folio.
2471 *
2472 * This call assumes the caller has pinned the folio, that the lowest page table
2473 * level still points to this folio, and that interrupts have been disabled.
2474 *
2475 * Writing to pinned file-backed dirty tracked folios is inherently problematic
2476 * (see comment describing the writable_file_mapping_allowed() function). We
2477 * therefore try to avoid the most egregious case of a long-term mapping doing
2478 * so.
2479 *
2480 * This function cannot be as thorough as that one as the VMA is not available
2481 * in the fast path, so instead we whitelist known good cases and if in doubt,
2482 * fall back to the slow path.
2483 */
2484static bool folio_fast_pin_allowed(struct folio *folio, unsigned int flags)
2485{
2486	struct address_space *mapping;
2487	unsigned long mapping_flags;
 
2488
2489	/*
2490	 * If we aren't pinning then no problematic write can occur. A long term
2491	 * pin is the most egregious case so this is the one we disallow.
2492	 */
2493	if ((flags & (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE)) !=
2494	    (FOLL_PIN | FOLL_LONGTERM | FOLL_WRITE))
2495		return true;
2496
2497	/* The folio is pinned, so we can safely access folio fields. */
2498
2499	if (WARN_ON_ONCE(folio_test_slab(folio)))
2500		return false;
2501
2502	/* hugetlb mappings do not require dirty-tracking. */
2503	if (folio_test_hugetlb(folio))
2504		return true;
2505
 
2506	/*
2507	 * GUP-fast disables IRQs. When IRQS are disabled, RCU grace periods
2508	 * cannot proceed, which means no actions performed under RCU can
2509	 * proceed either.
2510	 *
2511	 * inodes and thus their mappings are freed under RCU, which means the
2512	 * mapping cannot be freed beneath us and thus we can safely dereference
2513	 * it.
2514	 */
2515	lockdep_assert_irqs_disabled();
 
 
 
2516
2517	/*
2518	 * However, there may be operations which _alter_ the mapping, so ensure
2519	 * we read it once and only once.
2520	 */
2521	mapping = READ_ONCE(folio->mapping);
2522
2523	/*
2524	 * The mapping may have been truncated, in any case we cannot determine
2525	 * if this mapping is safe - fall back to slow path to determine how to
2526	 * proceed.
2527	 */
2528	if (!mapping)
2529		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2530
2531	/* Anonymous folios pose no problem. */
2532	mapping_flags = (unsigned long)mapping & PAGE_MAPPING_FLAGS;
2533	if (mapping_flags)
2534		return mapping_flags & PAGE_MAPPING_ANON;
 
 
2535
2536	/*
2537	 * At this point, we know the mapping is non-null and points to an
2538	 * address_space object. The only remaining whitelisted file system is
2539	 * shmem.
2540	 */
2541	return shmem_mapping(mapping);
 
 
 
2542}
 
2543
2544static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
2545					    unsigned int flags,
2546					    struct page **pages)
2547{
2548	while ((*nr) - nr_start) {
2549		struct page *page = pages[--(*nr)];
2550
2551		ClearPageReferenced(page);
2552		if (flags & FOLL_PIN)
2553			unpin_user_page(page);
2554		else
2555			put_page(page);
2556	}
2557}
2558
2559#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2560/*
2561 * Fast-gup relies on pte change detection to avoid concurrent pgtable
2562 * operations.
2563 *
2564 * To pin the page, fast-gup needs to do below in order:
2565 * (1) pin the page (by prefetching pte), then (2) check pte not changed.
2566 *
2567 * For the rest of pgtable operations where pgtable updates can be racy
2568 * with fast-gup, we need to do (1) clear pte, then (2) check whether page
2569 * is pinned.
2570 *
2571 * Above will work for all pte-level operations, including THP split.
2572 *
2573 * For THP collapse, it's a bit more complicated because fast-gup may be
2574 * walking a pgtable page that is being freed (pte is still valid but pmd
2575 * can be cleared already).  To avoid race in such condition, we need to
2576 * also check pmd here to make sure pmd doesn't change (corresponds to
2577 * pmdp_collapse_flush() in the THP collapse code path).
2578 */
2579static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2580			 unsigned long end, unsigned int flags,
2581			 struct page **pages, int *nr)
2582{
2583	struct dev_pagemap *pgmap = NULL;
2584	int nr_start = *nr, ret = 0;
2585	pte_t *ptep, *ptem;
2586
2587	ptem = ptep = pte_offset_map(&pmd, addr);
2588	if (!ptep)
2589		return 0;
2590	do {
2591		pte_t pte = ptep_get_lockless(ptep);
2592		struct page *page;
2593		struct folio *folio;
2594
2595		/*
2596		 * Always fallback to ordinary GUP on PROT_NONE-mapped pages:
2597		 * pte_access_permitted() better should reject these pages
2598		 * either way: otherwise, GUP-fast might succeed in
2599		 * cases where ordinary GUP would fail due to VMA access
2600		 * permissions.
2601		 */
2602		if (pte_protnone(pte))
2603			goto pte_unmap;
2604
2605		if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2606			goto pte_unmap;
2607
2608		if (pte_devmap(pte)) {
2609			if (unlikely(flags & FOLL_LONGTERM))
2610				goto pte_unmap;
2611
2612			pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2613			if (unlikely(!pgmap)) {
2614				undo_dev_pagemap(nr, nr_start, flags, pages);
2615				goto pte_unmap;
2616			}
2617		} else if (pte_special(pte))
2618			goto pte_unmap;
2619
2620		VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2621		page = pte_page(pte);
2622
2623		folio = try_grab_folio(page, 1, flags);
2624		if (!folio)
2625			goto pte_unmap;
2626
2627		if (unlikely(folio_is_secretmem(folio))) {
2628			gup_put_folio(folio, 1, flags);
2629			goto pte_unmap;
2630		}
2631
2632		if (unlikely(pmd_val(pmd) != pmd_val(*pmdp)) ||
2633		    unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2634			gup_put_folio(folio, 1, flags);
2635			goto pte_unmap;
2636		}
2637
2638		if (!folio_fast_pin_allowed(folio, flags)) {
2639			gup_put_folio(folio, 1, flags);
2640			goto pte_unmap;
2641		}
2642
2643		if (!pte_write(pte) && gup_must_unshare(NULL, flags, page)) {
2644			gup_put_folio(folio, 1, flags);
2645			goto pte_unmap;
2646		}
2647
2648		/*
2649		 * We need to make the page accessible if and only if we are
2650		 * going to access its content (the FOLL_PIN case).  Please
2651		 * see Documentation/core-api/pin_user_pages.rst for
2652		 * details.
2653		 */
2654		if (flags & FOLL_PIN) {
2655			ret = arch_make_page_accessible(page);
2656			if (ret) {
2657				gup_put_folio(folio, 1, flags);
2658				goto pte_unmap;
2659			}
2660		}
2661		folio_set_referenced(folio);
2662		pages[*nr] = page;
2663		(*nr)++;
 
2664	} while (ptep++, addr += PAGE_SIZE, addr != end);
2665
2666	ret = 1;
2667
2668pte_unmap:
2669	if (pgmap)
2670		put_dev_pagemap(pgmap);
2671	pte_unmap(ptem);
2672	return ret;
2673}
2674#else
2675
2676/*
2677 * If we can't determine whether or not a pte is special, then fail immediately
2678 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2679 * to be special.
2680 *
2681 * For a futex to be placed on a THP tail page, get_futex_key requires a
2682 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2683 * useful to have gup_huge_pmd even if we can't operate on ptes.
2684 */
2685static int gup_pte_range(pmd_t pmd, pmd_t *pmdp, unsigned long addr,
2686			 unsigned long end, unsigned int flags,
2687			 struct page **pages, int *nr)
2688{
2689	return 0;
2690}
2691#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2692
2693#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
2694static int __gup_device_huge(unsigned long pfn, unsigned long addr,
2695			     unsigned long end, unsigned int flags,
2696			     struct page **pages, int *nr)
2697{
2698	int nr_start = *nr;
2699	struct dev_pagemap *pgmap = NULL;
2700
2701	do {
2702		struct page *page = pfn_to_page(pfn);
2703
2704		pgmap = get_dev_pagemap(pfn, pgmap);
2705		if (unlikely(!pgmap)) {
2706			undo_dev_pagemap(nr, nr_start, flags, pages);
2707			break;
2708		}
2709
2710		if (!(flags & FOLL_PCI_P2PDMA) && is_pci_p2pdma_page(page)) {
2711			undo_dev_pagemap(nr, nr_start, flags, pages);
2712			break;
2713		}
2714
2715		SetPageReferenced(page);
2716		pages[*nr] = page;
2717		if (unlikely(try_grab_page(page, flags))) {
2718			undo_dev_pagemap(nr, nr_start, flags, pages);
2719			break;
2720		}
2721		(*nr)++;
2722		pfn++;
2723	} while (addr += PAGE_SIZE, addr != end);
2724
2725	put_dev_pagemap(pgmap);
2726	return addr == end;
 
2727}
2728
2729static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2730				 unsigned long end, unsigned int flags,
2731				 struct page **pages, int *nr)
2732{
2733	unsigned long fault_pfn;
2734	int nr_start = *nr;
2735
2736	fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2737	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2738		return 0;
2739
2740	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2741		undo_dev_pagemap(nr, nr_start, flags, pages);
2742		return 0;
2743	}
2744	return 1;
2745}
2746
2747static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2748				 unsigned long end, unsigned int flags,
2749				 struct page **pages, int *nr)
2750{
2751	unsigned long fault_pfn;
2752	int nr_start = *nr;
2753
2754	fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2755	if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
2756		return 0;
2757
2758	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2759		undo_dev_pagemap(nr, nr_start, flags, pages);
2760		return 0;
2761	}
2762	return 1;
2763}
2764#else
2765static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2766				 unsigned long end, unsigned int flags,
2767				 struct page **pages, int *nr)
2768{
2769	BUILD_BUG();
2770	return 0;
2771}
2772
2773static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
2774				 unsigned long end, unsigned int flags,
2775				 struct page **pages, int *nr)
2776{
2777	BUILD_BUG();
2778	return 0;
2779}
2780#endif
2781
2782static int record_subpages(struct page *page, unsigned long addr,
2783			   unsigned long end, struct page **pages)
2784{
2785	int nr;
2786
2787	for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2788		pages[nr] = nth_page(page, nr);
2789
2790	return nr;
2791}
2792
2793#ifdef CONFIG_ARCH_HAS_HUGEPD
2794static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2795				      unsigned long sz)
2796{
2797	unsigned long __boundary = (addr + sz) & ~(sz-1);
2798	return (__boundary - 1 < end - 1) ? __boundary : end;
2799}
2800
2801static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
2802		       unsigned long end, unsigned int flags,
2803		       struct page **pages, int *nr)
2804{
2805	unsigned long pte_end;
2806	struct page *page;
2807	struct folio *folio;
2808	pte_t pte;
2809	int refs;
2810
2811	pte_end = (addr + sz) & ~(sz-1);
2812	if (pte_end < end)
2813		end = pte_end;
2814
2815	pte = huge_ptep_get(ptep);
2816
2817	if (!pte_access_permitted(pte, flags & FOLL_WRITE))
2818		return 0;
2819
2820	/* hugepages are never "special" */
2821	VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2822
2823	page = nth_page(pte_page(pte), (addr & (sz - 1)) >> PAGE_SHIFT);
 
2824	refs = record_subpages(page, addr, end, pages + *nr);
2825
2826	folio = try_grab_folio(page, refs, flags);
2827	if (!folio)
2828		return 0;
2829
2830	if (unlikely(pte_val(pte) != pte_val(ptep_get(ptep)))) {
2831		gup_put_folio(folio, refs, flags);
2832		return 0;
2833	}
2834
2835	if (!folio_fast_pin_allowed(folio, flags)) {
2836		gup_put_folio(folio, refs, flags);
2837		return 0;
2838	}
2839
2840	if (!pte_write(pte) && gup_must_unshare(NULL, flags, &folio->page)) {
2841		gup_put_folio(folio, refs, flags);
2842		return 0;
2843	}
2844
2845	*nr += refs;
2846	folio_set_referenced(folio);
2847	return 1;
2848}
2849
2850static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2851		unsigned int pdshift, unsigned long end, unsigned int flags,
2852		struct page **pages, int *nr)
2853{
2854	pte_t *ptep;
2855	unsigned long sz = 1UL << hugepd_shift(hugepd);
2856	unsigned long next;
2857
2858	ptep = hugepte_offset(hugepd, addr, pdshift);
2859	do {
2860		next = hugepte_addr_end(addr, end, sz);
2861		if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
2862			return 0;
2863	} while (ptep++, addr = next, addr != end);
2864
2865	return 1;
2866}
2867#else
2868static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2869		unsigned int pdshift, unsigned long end, unsigned int flags,
2870		struct page **pages, int *nr)
2871{
2872	return 0;
2873}
2874#endif /* CONFIG_ARCH_HAS_HUGEPD */
2875
2876static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
2877			unsigned long end, unsigned int flags,
2878			struct page **pages, int *nr)
2879{
2880	struct page *page;
2881	struct folio *folio;
2882	int refs;
2883
2884	if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2885		return 0;
2886
2887	if (pmd_devmap(orig)) {
2888		if (unlikely(flags & FOLL_LONGTERM))
2889			return 0;
2890		return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2891					     pages, nr);
2892	}
2893
2894	page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
2895	refs = record_subpages(page, addr, end, pages + *nr);
2896
2897	folio = try_grab_folio(page, refs, flags);
2898	if (!folio)
2899		return 0;
2900
2901	if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2902		gup_put_folio(folio, refs, flags);
2903		return 0;
2904	}
2905
2906	if (!folio_fast_pin_allowed(folio, flags)) {
2907		gup_put_folio(folio, refs, flags);
2908		return 0;
2909	}
2910	if (!pmd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2911		gup_put_folio(folio, refs, flags);
2912		return 0;
2913	}
2914
2915	*nr += refs;
2916	folio_set_referenced(folio);
2917	return 1;
2918}
2919
2920static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
2921			unsigned long end, unsigned int flags,
2922			struct page **pages, int *nr)
2923{
2924	struct page *page;
2925	struct folio *folio;
2926	int refs;
2927
2928	if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2929		return 0;
2930
2931	if (pud_devmap(orig)) {
2932		if (unlikely(flags & FOLL_LONGTERM))
2933			return 0;
2934		return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2935					     pages, nr);
2936	}
2937
2938	page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
2939	refs = record_subpages(page, addr, end, pages + *nr);
2940
2941	folio = try_grab_folio(page, refs, flags);
2942	if (!folio)
2943		return 0;
2944
2945	if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2946		gup_put_folio(folio, refs, flags);
2947		return 0;
2948	}
2949
2950	if (!folio_fast_pin_allowed(folio, flags)) {
2951		gup_put_folio(folio, refs, flags);
2952		return 0;
2953	}
2954
2955	if (!pud_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2956		gup_put_folio(folio, refs, flags);
2957		return 0;
2958	}
2959
2960	*nr += refs;
2961	folio_set_referenced(folio);
2962	return 1;
2963}
2964
2965static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
2966			unsigned long end, unsigned int flags,
2967			struct page **pages, int *nr)
2968{
2969	int refs;
2970	struct page *page;
2971	struct folio *folio;
2972
2973	if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
2974		return 0;
2975
2976	BUILD_BUG_ON(pgd_devmap(orig));
2977
2978	page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
2979	refs = record_subpages(page, addr, end, pages + *nr);
2980
2981	folio = try_grab_folio(page, refs, flags);
2982	if (!folio)
2983		return 0;
2984
2985	if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2986		gup_put_folio(folio, refs, flags);
2987		return 0;
2988	}
2989
2990	if (!pgd_write(orig) && gup_must_unshare(NULL, flags, &folio->page)) {
2991		gup_put_folio(folio, refs, flags);
2992		return 0;
2993	}
2994
2995	if (!folio_fast_pin_allowed(folio, flags)) {
2996		gup_put_folio(folio, refs, flags);
2997		return 0;
2998	}
2999
3000	*nr += refs;
3001	folio_set_referenced(folio);
3002	return 1;
3003}
3004
3005static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
3006		unsigned int flags, struct page **pages, int *nr)
3007{
3008	unsigned long next;
3009	pmd_t *pmdp;
3010
3011	pmdp = pmd_offset_lockless(pudp, pud, addr);
3012	do {
3013		pmd_t pmd = pmdp_get_lockless(pmdp);
3014
3015		next = pmd_addr_end(addr, end);
3016		if (!pmd_present(pmd))
3017			return 0;
3018
3019		if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
3020			     pmd_devmap(pmd))) {
3021			/* See gup_pte_range() */
 
 
 
 
3022			if (pmd_protnone(pmd))
3023				return 0;
3024
3025			if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
3026				pages, nr))
3027				return 0;
3028
3029		} else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
3030			/*
3031			 * architecture have different format for hugetlbfs
3032			 * pmd format and THP pmd format
3033			 */
3034			if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
3035					 PMD_SHIFT, next, flags, pages, nr))
3036				return 0;
3037		} else if (!gup_pte_range(pmd, pmdp, addr, next, flags, pages, nr))
3038			return 0;
3039	} while (pmdp++, addr = next, addr != end);
3040
3041	return 1;
3042}
3043
3044static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
3045			 unsigned int flags, struct page **pages, int *nr)
3046{
3047	unsigned long next;
3048	pud_t *pudp;
3049
3050	pudp = pud_offset_lockless(p4dp, p4d, addr);
3051	do {
3052		pud_t pud = READ_ONCE(*pudp);
3053
3054		next = pud_addr_end(addr, end);
3055		if (unlikely(!pud_present(pud)))
3056			return 0;
3057		if (unlikely(pud_huge(pud) || pud_devmap(pud))) {
3058			if (!gup_huge_pud(pud, pudp, addr, next, flags,
3059					  pages, nr))
3060				return 0;
3061		} else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
3062			if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
3063					 PUD_SHIFT, next, flags, pages, nr))
3064				return 0;
3065		} else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
3066			return 0;
3067	} while (pudp++, addr = next, addr != end);
3068
3069	return 1;
3070}
3071
3072static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
3073			 unsigned int flags, struct page **pages, int *nr)
3074{
3075	unsigned long next;
3076	p4d_t *p4dp;
3077
3078	p4dp = p4d_offset_lockless(pgdp, pgd, addr);
3079	do {
3080		p4d_t p4d = READ_ONCE(*p4dp);
3081
3082		next = p4d_addr_end(addr, end);
3083		if (p4d_none(p4d))
3084			return 0;
3085		BUILD_BUG_ON(p4d_huge(p4d));
3086		if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
3087			if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
3088					 P4D_SHIFT, next, flags, pages, nr))
3089				return 0;
3090		} else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
3091			return 0;
3092	} while (p4dp++, addr = next, addr != end);
3093
3094	return 1;
3095}
3096
3097static void gup_pgd_range(unsigned long addr, unsigned long end,
3098		unsigned int flags, struct page **pages, int *nr)
3099{
3100	unsigned long next;
3101	pgd_t *pgdp;
3102
3103	pgdp = pgd_offset(current->mm, addr);
3104	do {
3105		pgd_t pgd = READ_ONCE(*pgdp);
3106
3107		next = pgd_addr_end(addr, end);
3108		if (pgd_none(pgd))
3109			return;
3110		if (unlikely(pgd_huge(pgd))) {
3111			if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
3112					  pages, nr))
3113				return;
3114		} else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
3115			if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
3116					 PGDIR_SHIFT, next, flags, pages, nr))
3117				return;
3118		} else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
3119			return;
3120	} while (pgdp++, addr = next, addr != end);
3121}
3122#else
3123static inline void gup_pgd_range(unsigned long addr, unsigned long end,
3124		unsigned int flags, struct page **pages, int *nr)
3125{
3126}
3127#endif /* CONFIG_HAVE_FAST_GUP */
3128
3129#ifndef gup_fast_permitted
3130/*
3131 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
3132 * we need to fall back to the slow version:
3133 */
3134static bool gup_fast_permitted(unsigned long start, unsigned long end)
3135{
3136	return true;
3137}
3138#endif
3139
3140static unsigned long lockless_pages_from_mm(unsigned long start,
3141					    unsigned long end,
3142					    unsigned int gup_flags,
3143					    struct page **pages)
3144{
3145	unsigned long flags;
3146	int nr_pinned = 0;
3147	unsigned seq;
3148
3149	if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
3150	    !gup_fast_permitted(start, end))
3151		return 0;
3152
3153	if (gup_flags & FOLL_PIN) {
3154		seq = raw_read_seqcount(&current->mm->write_protect_seq);
3155		if (seq & 1)
3156			return 0;
3157	}
3158
3159	/*
3160	 * Disable interrupts. The nested form is used, in order to allow full,
3161	 * general purpose use of this routine.
3162	 *
3163	 * With interrupts disabled, we block page table pages from being freed
3164	 * from under us. See struct mmu_table_batch comments in
3165	 * include/asm-generic/tlb.h for more details.
3166	 *
3167	 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
3168	 * that come from THPs splitting.
3169	 */
3170	local_irq_save(flags);
3171	gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
3172	local_irq_restore(flags);
3173
3174	/*
3175	 * When pinning pages for DMA there could be a concurrent write protect
3176	 * from fork() via copy_page_range(), in this case always fail fast GUP.
3177	 */
3178	if (gup_flags & FOLL_PIN) {
3179		if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
3180			unpin_user_pages_lockless(pages, nr_pinned);
3181			return 0;
3182		} else {
3183			sanity_check_pinned_pages(pages, nr_pinned);
3184		}
 
 
3185	}
3186	return nr_pinned;
 
3187}
3188
3189static int internal_get_user_pages_fast(unsigned long start,
3190					unsigned long nr_pages,
3191					unsigned int gup_flags,
3192					struct page **pages)
3193{
3194	unsigned long len, end;
3195	unsigned long nr_pinned;
3196	int locked = 0;
3197	int ret;
3198
3199	if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
3200				       FOLL_FORCE | FOLL_PIN | FOLL_GET |
3201				       FOLL_FAST_ONLY | FOLL_NOFAULT |
3202				       FOLL_PCI_P2PDMA | FOLL_HONOR_NUMA_FAULT)))
3203		return -EINVAL;
3204
3205	if (gup_flags & FOLL_PIN)
3206		mm_set_has_pinned_flag(&current->mm->flags);
3207
3208	if (!(gup_flags & FOLL_FAST_ONLY))
3209		might_lock_read(&current->mm->mmap_lock);
3210
3211	start = untagged_addr(start) & PAGE_MASK;
3212	len = nr_pages << PAGE_SHIFT;
3213	if (check_add_overflow(start, len, &end))
3214		return -EOVERFLOW;
3215	if (end > TASK_SIZE_MAX)
3216		return -EFAULT;
 
3217	if (unlikely(!access_ok((void __user *)start, len)))
3218		return -EFAULT;
3219
3220	nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
3221	if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
3222		return nr_pinned;
3223
3224	/* Slow path: try to get the remaining pages with get_user_pages */
3225	start += nr_pinned << PAGE_SHIFT;
3226	pages += nr_pinned;
3227	ret = __gup_longterm_locked(current->mm, start, nr_pages - nr_pinned,
3228				    pages, &locked,
3229				    gup_flags | FOLL_TOUCH | FOLL_UNLOCKABLE);
3230	if (ret < 0) {
3231		/*
3232		 * The caller has to unpin the pages we already pinned so
3233		 * returning -errno is not an option
3234		 */
3235		if (nr_pinned)
3236			return nr_pinned;
3237		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3238	}
3239	return ret + nr_pinned;
 
3240}
3241
3242/**
3243 * get_user_pages_fast_only() - pin user pages in memory
3244 * @start:      starting user address
3245 * @nr_pages:   number of pages from start to pin
3246 * @gup_flags:  flags modifying pin behaviour
3247 * @pages:      array that receives pointers to the pages pinned.
3248 *              Should be at least nr_pages long.
3249 *
3250 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
3251 * the regular GUP.
 
 
3252 *
3253 * If the architecture does not support this function, simply return with no
3254 * pages pinned.
3255 *
3256 * Careful, careful! COW breaking can go either way, so a non-write
3257 * access can get ambiguous page results. If you call this function without
3258 * 'write' set, you'd better be sure that you're ok with that ambiguity.
3259 */
3260int get_user_pages_fast_only(unsigned long start, int nr_pages,
3261			     unsigned int gup_flags, struct page **pages)
3262{
 
3263	/*
3264	 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
3265	 * because gup fast is always a "pin with a +1 page refcount" request.
3266	 *
3267	 * FOLL_FAST_ONLY is required in order to match the API description of
3268	 * this routine: no fall back to regular ("slow") GUP.
3269	 */
3270	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3271			       FOLL_GET | FOLL_FAST_ONLY))
3272		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
3273
3274	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3275}
3276EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
3277
3278/**
3279 * get_user_pages_fast() - pin user pages in memory
3280 * @start:      starting user address
3281 * @nr_pages:   number of pages from start to pin
3282 * @gup_flags:  flags modifying pin behaviour
3283 * @pages:      array that receives pointers to the pages pinned.
3284 *              Should be at least nr_pages long.
3285 *
3286 * Attempt to pin user pages in memory without taking mm->mmap_lock.
3287 * If not successful, it will fall back to taking the lock and
3288 * calling get_user_pages().
3289 *
3290 * Returns number of pages pinned. This may be fewer than the number requested.
3291 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
3292 * -errno.
3293 */
3294int get_user_pages_fast(unsigned long start, int nr_pages,
3295			unsigned int gup_flags, struct page **pages)
3296{
3297	/*
 
 
 
 
 
 
 
3298	 * The caller may or may not have explicitly set FOLL_GET; either way is
3299	 * OK. However, internally (within mm/gup.c), gup fast variants must set
3300	 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
3301	 * request.
3302	 */
3303	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_GET))
3304		return -EINVAL;
3305	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3306}
3307EXPORT_SYMBOL_GPL(get_user_pages_fast);
3308
3309/**
3310 * pin_user_pages_fast() - pin user pages in memory without taking locks
3311 *
3312 * @start:      starting user address
3313 * @nr_pages:   number of pages from start to pin
3314 * @gup_flags:  flags modifying pin behaviour
3315 * @pages:      array that receives pointers to the pages pinned.
3316 *              Should be at least nr_pages long.
3317 *
3318 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
3319 * get_user_pages_fast() for documentation on the function arguments, because
3320 * the arguments here are identical.
3321 *
3322 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3323 * see Documentation/core-api/pin_user_pages.rst for further details.
3324 *
3325 * Note that if a zero_page is amongst the returned pages, it will not have
3326 * pins in it and unpin_user_page() will not remove pins from it.
3327 */
3328int pin_user_pages_fast(unsigned long start, int nr_pages,
3329			unsigned int gup_flags, struct page **pages)
3330{
3331	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
 
3332		return -EINVAL;
 
 
3333	return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
3334}
3335EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3336
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3337/**
3338 * pin_user_pages_remote() - pin pages of a remote process
3339 *
3340 * @mm:		mm_struct of target mm
3341 * @start:	starting user address
3342 * @nr_pages:	number of pages from start to pin
3343 * @gup_flags:	flags modifying lookup behaviour
3344 * @pages:	array that receives pointers to the pages pinned.
3345 *		Should be at least nr_pages long.
 
 
 
3346 * @locked:	pointer to lock flag indicating whether lock is held and
3347 *		subsequently whether VM_FAULT_RETRY functionality can be
3348 *		utilised. Lock must initially be held.
3349 *
3350 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3351 * get_user_pages_remote() for documentation on the function arguments, because
3352 * the arguments here are identical.
3353 *
3354 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3355 * see Documentation/core-api/pin_user_pages.rst for details.
3356 *
3357 * Note that if a zero_page is amongst the returned pages, it will not have
3358 * pins in it and unpin_user_page*() will not remove pins from it.
3359 */
3360long pin_user_pages_remote(struct mm_struct *mm,
3361			   unsigned long start, unsigned long nr_pages,
3362			   unsigned int gup_flags, struct page **pages,
3363			   int *locked)
3364{
3365	int local_locked = 1;
 
 
3366
3367	if (!is_valid_gup_args(pages, locked, &gup_flags,
3368			       FOLL_PIN | FOLL_TOUCH | FOLL_REMOTE))
3369		return 0;
3370	return __gup_longterm_locked(mm, start, nr_pages, pages,
3371				     locked ? locked : &local_locked,
3372				     gup_flags);
3373}
3374EXPORT_SYMBOL(pin_user_pages_remote);
3375
3376/**
3377 * pin_user_pages() - pin user pages in memory for use by other devices
3378 *
3379 * @start:	starting user address
3380 * @nr_pages:	number of pages from start to pin
3381 * @gup_flags:	flags modifying lookup behaviour
3382 * @pages:	array that receives pointers to the pages pinned.
3383 *		Should be at least nr_pages long.
 
 
 
3384 *
3385 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3386 * FOLL_PIN is set.
3387 *
3388 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
3389 * see Documentation/core-api/pin_user_pages.rst for details.
3390 *
3391 * Note that if a zero_page is amongst the returned pages, it will not have
3392 * pins in it and unpin_user_page*() will not remove pins from it.
3393 */
3394long pin_user_pages(unsigned long start, unsigned long nr_pages,
3395		    unsigned int gup_flags, struct page **pages)
 
3396{
3397	int locked = 1;
 
 
3398
3399	if (!is_valid_gup_args(pages, NULL, &gup_flags, FOLL_PIN))
3400		return 0;
3401	return __gup_longterm_locked(current->mm, start, nr_pages,
3402				     pages, &locked, gup_flags);
3403}
3404EXPORT_SYMBOL(pin_user_pages);
3405
3406/*
3407 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3408 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3409 * FOLL_PIN and rejects FOLL_GET.
3410 *
3411 * Note that if a zero_page is amongst the returned pages, it will not have
3412 * pins in it and unpin_user_page*() will not remove pins from it.
3413 */
3414long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3415			     struct page **pages, unsigned int gup_flags)
3416{
3417	int locked = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3418
3419	if (!is_valid_gup_args(pages, NULL, &gup_flags,
3420			       FOLL_PIN | FOLL_TOUCH | FOLL_UNLOCKABLE))
3421		return 0;
3422
3423	return __gup_longterm_locked(current->mm, start, nr_pages, pages,
3424				     &locked, gup_flags);
 
 
3425}
3426EXPORT_SYMBOL(pin_user_pages_unlocked);