Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v5.9
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_MATH64_H
  3#define _LINUX_MATH64_H
  4
  5#include <linux/types.h>
 
  6#include <vdso/math64.h>
  7#include <asm/div64.h>
  8
  9#if BITS_PER_LONG == 64
 10
 11#define div64_long(x, y) div64_s64((x), (y))
 12#define div64_ul(x, y)   div64_u64((x), (y))
 13
 14/**
 15 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
 16 * @dividend: unsigned 64bit dividend
 17 * @divisor: unsigned 32bit divisor
 18 * @remainder: pointer to unsigned 32bit remainder
 19 *
 20 * Return: sets ``*remainder``, then returns dividend / divisor
 21 *
 22 * This is commonly provided by 32bit archs to provide an optimized 64bit
 23 * divide.
 24 */
 25static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
 26{
 27	*remainder = dividend % divisor;
 28	return dividend / divisor;
 29}
 30
 31/**
 32 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
 33 * @dividend: signed 64bit dividend
 34 * @divisor: signed 32bit divisor
 35 * @remainder: pointer to signed 32bit remainder
 36 *
 37 * Return: sets ``*remainder``, then returns dividend / divisor
 38 */
 39static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 40{
 41	*remainder = dividend % divisor;
 42	return dividend / divisor;
 43}
 44
 45/**
 46 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 47 * @dividend: unsigned 64bit dividend
 48 * @divisor: unsigned 64bit divisor
 49 * @remainder: pointer to unsigned 64bit remainder
 50 *
 51 * Return: sets ``*remainder``, then returns dividend / divisor
 52 */
 53static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
 54{
 55	*remainder = dividend % divisor;
 56	return dividend / divisor;
 57}
 58
 59/**
 60 * div64_u64 - unsigned 64bit divide with 64bit divisor
 61 * @dividend: unsigned 64bit dividend
 62 * @divisor: unsigned 64bit divisor
 63 *
 64 * Return: dividend / divisor
 65 */
 66static inline u64 div64_u64(u64 dividend, u64 divisor)
 67{
 68	return dividend / divisor;
 69}
 70
 71/**
 72 * div64_s64 - signed 64bit divide with 64bit divisor
 73 * @dividend: signed 64bit dividend
 74 * @divisor: signed 64bit divisor
 75 *
 76 * Return: dividend / divisor
 77 */
 78static inline s64 div64_s64(s64 dividend, s64 divisor)
 79{
 80	return dividend / divisor;
 81}
 82
 83#elif BITS_PER_LONG == 32
 84
 85#define div64_long(x, y) div_s64((x), (y))
 86#define div64_ul(x, y)   div_u64((x), (y))
 87
 88#ifndef div_u64_rem
 89static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
 90{
 91	*remainder = do_div(dividend, divisor);
 92	return dividend;
 93}
 94#endif
 95
 96#ifndef div_s64_rem
 97extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
 98#endif
 99
100#ifndef div64_u64_rem
101extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
102#endif
103
104#ifndef div64_u64
105extern u64 div64_u64(u64 dividend, u64 divisor);
106#endif
107
108#ifndef div64_s64
109extern s64 div64_s64(s64 dividend, s64 divisor);
110#endif
111
112#endif /* BITS_PER_LONG */
113
114/**
115 * div_u64 - unsigned 64bit divide with 32bit divisor
116 * @dividend: unsigned 64bit dividend
117 * @divisor: unsigned 32bit divisor
118 *
119 * This is the most common 64bit divide and should be used if possible,
120 * as many 32bit archs can optimize this variant better than a full 64bit
121 * divide.
 
 
122 */
123#ifndef div_u64
124static inline u64 div_u64(u64 dividend, u32 divisor)
125{
126	u32 remainder;
127	return div_u64_rem(dividend, divisor, &remainder);
128}
129#endif
130
131/**
132 * div_s64 - signed 64bit divide with 32bit divisor
133 * @dividend: signed 64bit dividend
134 * @divisor: signed 32bit divisor
 
 
135 */
136#ifndef div_s64
137static inline s64 div_s64(s64 dividend, s32 divisor)
138{
139	s32 remainder;
140	return div_s64_rem(dividend, divisor, &remainder);
141}
142#endif
143
144u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
145
146#ifndef mul_u32_u32
147/*
148 * Many a GCC version messes this up and generates a 64x64 mult :-(
149 */
150static inline u64 mul_u32_u32(u32 a, u32 b)
151{
152	return (u64)a * b;
153}
154#endif
155
156#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
157
158#ifndef mul_u64_u32_shr
159static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
160{
161	return (u64)(((unsigned __int128)a * mul) >> shift);
162}
163#endif /* mul_u64_u32_shr */
164
165#ifndef mul_u64_u64_shr
166static inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
167{
168	return (u64)(((unsigned __int128)a * mul) >> shift);
169}
170#endif /* mul_u64_u64_shr */
171
172#else
173
174#ifndef mul_u64_u32_shr
175static inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
176{
177	u32 ah, al;
178	u64 ret;
179
180	al = a;
181	ah = a >> 32;
182
183	ret = mul_u32_u32(al, mul) >> shift;
184	if (ah)
185		ret += mul_u32_u32(ah, mul) << (32 - shift);
186
187	return ret;
188}
189#endif /* mul_u64_u32_shr */
190
191#ifndef mul_u64_u64_shr
192static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
193{
194	union {
195		u64 ll;
196		struct {
197#ifdef __BIG_ENDIAN
198			u32 high, low;
199#else
200			u32 low, high;
201#endif
202		} l;
203	} rl, rm, rn, rh, a0, b0;
204	u64 c;
205
206	a0.ll = a;
207	b0.ll = b;
208
209	rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
210	rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
211	rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
212	rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
213
214	/*
215	 * Each of these lines computes a 64-bit intermediate result into "c",
216	 * starting at bits 32-95.  The low 32-bits go into the result of the
217	 * multiplication, the high 32-bits are carried into the next step.
218	 */
219	rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
220	rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
221	rh.l.high = (c >> 32) + rh.l.high;
222
223	/*
224	 * The 128-bit result of the multiplication is in rl.ll and rh.ll,
225	 * shift it right and throw away the high part of the result.
226	 */
227	if (shift == 0)
228		return rl.ll;
229	if (shift < 64)
230		return (rl.ll >> shift) | (rh.ll << (64 - shift));
231	return rh.ll >> (shift & 63);
232}
233#endif /* mul_u64_u64_shr */
234
235#endif
236
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
237#ifndef mul_u64_u32_div
238static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
239{
240	union {
241		u64 ll;
242		struct {
243#ifdef __BIG_ENDIAN
244			u32 high, low;
245#else
246			u32 low, high;
247#endif
248		} l;
249	} u, rl, rh;
250
251	u.ll = a;
252	rl.ll = mul_u32_u32(u.l.low, mul);
253	rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
254
255	/* Bits 32-63 of the result will be in rh.l.low. */
256	rl.l.high = do_div(rh.ll, divisor);
257
258	/* Bits 0-31 of the result will be in rl.l.low.	*/
259	do_div(rl.ll, divisor);
260
261	rl.l.high = rh.l.low;
262	return rl.ll;
263}
264#endif /* mul_u64_u32_div */
265
266u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
267
 
 
 
 
 
 
 
 
 
 
268#define DIV64_U64_ROUND_UP(ll, d)	\
269	({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
270
271/**
272 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
273 * @dividend: unsigned 64bit dividend
274 * @divisor: unsigned 64bit divisor
275 *
276 * Divide unsigned 64bit dividend by unsigned 64bit divisor
277 * and round to closest integer.
278 *
279 * Return: dividend / divisor rounded to nearest integer
280 */
281#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)	\
282	({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
283
284/*
 
 
 
 
 
 
 
 
 
 
 
 
 
285 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
286 * @dividend: signed 64bit dividend
287 * @divisor: signed 32bit divisor
288 *
289 * Divide signed 64bit dividend by signed 32bit divisor
290 * and round to closest integer.
291 *
292 * Return: dividend / divisor rounded to nearest integer
293 */
294#define DIV_S64_ROUND_CLOSEST(dividend, divisor)(	\
295{							\
296	s64 __x = (dividend);				\
297	s32 __d = (divisor);				\
298	((__x > 0) == (__d > 0)) ?			\
299		div_s64((__x + (__d / 2)), __d) :	\
300		div_s64((__x - (__d / 2)), __d);	\
301}							\
302)
303#endif /* _LINUX_MATH64_H */
v6.9.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef _LINUX_MATH64_H
  3#define _LINUX_MATH64_H
  4
  5#include <linux/types.h>
  6#include <linux/math.h>
  7#include <vdso/math64.h>
  8#include <asm/div64.h>
  9
 10#if BITS_PER_LONG == 64
 11
 12#define div64_long(x, y) div64_s64((x), (y))
 13#define div64_ul(x, y)   div64_u64((x), (y))
 14
 15/**
 16 * div_u64_rem - unsigned 64bit divide with 32bit divisor with remainder
 17 * @dividend: unsigned 64bit dividend
 18 * @divisor: unsigned 32bit divisor
 19 * @remainder: pointer to unsigned 32bit remainder
 20 *
 21 * Return: sets ``*remainder``, then returns dividend / divisor
 22 *
 23 * This is commonly provided by 32bit archs to provide an optimized 64bit
 24 * divide.
 25 */
 26static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
 27{
 28	*remainder = dividend % divisor;
 29	return dividend / divisor;
 30}
 31
 32/**
 33 * div_s64_rem - signed 64bit divide with 32bit divisor with remainder
 34 * @dividend: signed 64bit dividend
 35 * @divisor: signed 32bit divisor
 36 * @remainder: pointer to signed 32bit remainder
 37 *
 38 * Return: sets ``*remainder``, then returns dividend / divisor
 39 */
 40static inline s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
 41{
 42	*remainder = dividend % divisor;
 43	return dividend / divisor;
 44}
 45
 46/**
 47 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
 48 * @dividend: unsigned 64bit dividend
 49 * @divisor: unsigned 64bit divisor
 50 * @remainder: pointer to unsigned 64bit remainder
 51 *
 52 * Return: sets ``*remainder``, then returns dividend / divisor
 53 */
 54static inline u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
 55{
 56	*remainder = dividend % divisor;
 57	return dividend / divisor;
 58}
 59
 60/**
 61 * div64_u64 - unsigned 64bit divide with 64bit divisor
 62 * @dividend: unsigned 64bit dividend
 63 * @divisor: unsigned 64bit divisor
 64 *
 65 * Return: dividend / divisor
 66 */
 67static inline u64 div64_u64(u64 dividend, u64 divisor)
 68{
 69	return dividend / divisor;
 70}
 71
 72/**
 73 * div64_s64 - signed 64bit divide with 64bit divisor
 74 * @dividend: signed 64bit dividend
 75 * @divisor: signed 64bit divisor
 76 *
 77 * Return: dividend / divisor
 78 */
 79static inline s64 div64_s64(s64 dividend, s64 divisor)
 80{
 81	return dividend / divisor;
 82}
 83
 84#elif BITS_PER_LONG == 32
 85
 86#define div64_long(x, y) div_s64((x), (y))
 87#define div64_ul(x, y)   div_u64((x), (y))
 88
 89#ifndef div_u64_rem
 90static inline u64 div_u64_rem(u64 dividend, u32 divisor, u32 *remainder)
 91{
 92	*remainder = do_div(dividend, divisor);
 93	return dividend;
 94}
 95#endif
 96
 97#ifndef div_s64_rem
 98extern s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder);
 99#endif
100
101#ifndef div64_u64_rem
102extern u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder);
103#endif
104
105#ifndef div64_u64
106extern u64 div64_u64(u64 dividend, u64 divisor);
107#endif
108
109#ifndef div64_s64
110extern s64 div64_s64(s64 dividend, s64 divisor);
111#endif
112
113#endif /* BITS_PER_LONG */
114
115/**
116 * div_u64 - unsigned 64bit divide with 32bit divisor
117 * @dividend: unsigned 64bit dividend
118 * @divisor: unsigned 32bit divisor
119 *
120 * This is the most common 64bit divide and should be used if possible,
121 * as many 32bit archs can optimize this variant better than a full 64bit
122 * divide.
123 *
124 * Return: dividend / divisor
125 */
126#ifndef div_u64
127static inline u64 div_u64(u64 dividend, u32 divisor)
128{
129	u32 remainder;
130	return div_u64_rem(dividend, divisor, &remainder);
131}
132#endif
133
134/**
135 * div_s64 - signed 64bit divide with 32bit divisor
136 * @dividend: signed 64bit dividend
137 * @divisor: signed 32bit divisor
138 *
139 * Return: dividend / divisor
140 */
141#ifndef div_s64
142static inline s64 div_s64(s64 dividend, s32 divisor)
143{
144	s32 remainder;
145	return div_s64_rem(dividend, divisor, &remainder);
146}
147#endif
148
149u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder);
150
151#ifndef mul_u32_u32
152/*
153 * Many a GCC version messes this up and generates a 64x64 mult :-(
154 */
155static inline u64 mul_u32_u32(u32 a, u32 b)
156{
157	return (u64)a * b;
158}
159#endif
160
161#if defined(CONFIG_ARCH_SUPPORTS_INT128) && defined(__SIZEOF_INT128__)
162
163#ifndef mul_u64_u32_shr
164static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
165{
166	return (u64)(((unsigned __int128)a * mul) >> shift);
167}
168#endif /* mul_u64_u32_shr */
169
170#ifndef mul_u64_u64_shr
171static __always_inline u64 mul_u64_u64_shr(u64 a, u64 mul, unsigned int shift)
172{
173	return (u64)(((unsigned __int128)a * mul) >> shift);
174}
175#endif /* mul_u64_u64_shr */
176
177#else
178
179#ifndef mul_u64_u32_shr
180static __always_inline u64 mul_u64_u32_shr(u64 a, u32 mul, unsigned int shift)
181{
182	u32 ah, al;
183	u64 ret;
184
185	al = a;
186	ah = a >> 32;
187
188	ret = mul_u32_u32(al, mul) >> shift;
189	if (ah)
190		ret += mul_u32_u32(ah, mul) << (32 - shift);
191
192	return ret;
193}
194#endif /* mul_u64_u32_shr */
195
196#ifndef mul_u64_u64_shr
197static inline u64 mul_u64_u64_shr(u64 a, u64 b, unsigned int shift)
198{
199	union {
200		u64 ll;
201		struct {
202#ifdef __BIG_ENDIAN
203			u32 high, low;
204#else
205			u32 low, high;
206#endif
207		} l;
208	} rl, rm, rn, rh, a0, b0;
209	u64 c;
210
211	a0.ll = a;
212	b0.ll = b;
213
214	rl.ll = mul_u32_u32(a0.l.low, b0.l.low);
215	rm.ll = mul_u32_u32(a0.l.low, b0.l.high);
216	rn.ll = mul_u32_u32(a0.l.high, b0.l.low);
217	rh.ll = mul_u32_u32(a0.l.high, b0.l.high);
218
219	/*
220	 * Each of these lines computes a 64-bit intermediate result into "c",
221	 * starting at bits 32-95.  The low 32-bits go into the result of the
222	 * multiplication, the high 32-bits are carried into the next step.
223	 */
224	rl.l.high = c = (u64)rl.l.high + rm.l.low + rn.l.low;
225	rh.l.low = c = (c >> 32) + rm.l.high + rn.l.high + rh.l.low;
226	rh.l.high = (c >> 32) + rh.l.high;
227
228	/*
229	 * The 128-bit result of the multiplication is in rl.ll and rh.ll,
230	 * shift it right and throw away the high part of the result.
231	 */
232	if (shift == 0)
233		return rl.ll;
234	if (shift < 64)
235		return (rl.ll >> shift) | (rh.ll << (64 - shift));
236	return rh.ll >> (shift & 63);
237}
238#endif /* mul_u64_u64_shr */
239
240#endif
241
242#ifndef mul_s64_u64_shr
243static inline u64 mul_s64_u64_shr(s64 a, u64 b, unsigned int shift)
244{
245	u64 ret;
246
247	/*
248	 * Extract the sign before the multiplication and put it back
249	 * afterwards if needed.
250	 */
251	ret = mul_u64_u64_shr(abs(a), b, shift);
252
253	if (a < 0)
254		ret = -((s64) ret);
255
256	return ret;
257}
258#endif /* mul_s64_u64_shr */
259
260#ifndef mul_u64_u32_div
261static inline u64 mul_u64_u32_div(u64 a, u32 mul, u32 divisor)
262{
263	union {
264		u64 ll;
265		struct {
266#ifdef __BIG_ENDIAN
267			u32 high, low;
268#else
269			u32 low, high;
270#endif
271		} l;
272	} u, rl, rh;
273
274	u.ll = a;
275	rl.ll = mul_u32_u32(u.l.low, mul);
276	rh.ll = mul_u32_u32(u.l.high, mul) + rl.l.high;
277
278	/* Bits 32-63 of the result will be in rh.l.low. */
279	rl.l.high = do_div(rh.ll, divisor);
280
281	/* Bits 0-31 of the result will be in rl.l.low.	*/
282	do_div(rl.ll, divisor);
283
284	rl.l.high = rh.l.low;
285	return rl.ll;
286}
287#endif /* mul_u64_u32_div */
288
289u64 mul_u64_u64_div_u64(u64 a, u64 mul, u64 div);
290
291/**
292 * DIV64_U64_ROUND_UP - unsigned 64bit divide with 64bit divisor rounded up
293 * @ll: unsigned 64bit dividend
294 * @d: unsigned 64bit divisor
295 *
296 * Divide unsigned 64bit dividend by unsigned 64bit divisor
297 * and round up.
298 *
299 * Return: dividend / divisor rounded up
300 */
301#define DIV64_U64_ROUND_UP(ll, d)	\
302	({ u64 _tmp = (d); div64_u64((ll) + _tmp - 1, _tmp); })
303
304/**
305 * DIV64_U64_ROUND_CLOSEST - unsigned 64bit divide with 64bit divisor rounded to nearest integer
306 * @dividend: unsigned 64bit dividend
307 * @divisor: unsigned 64bit divisor
308 *
309 * Divide unsigned 64bit dividend by unsigned 64bit divisor
310 * and round to closest integer.
311 *
312 * Return: dividend / divisor rounded to nearest integer
313 */
314#define DIV64_U64_ROUND_CLOSEST(dividend, divisor)	\
315	({ u64 _tmp = (divisor); div64_u64((dividend) + _tmp / 2, _tmp); })
316
317/**
318 * DIV_U64_ROUND_CLOSEST - unsigned 64bit divide with 32bit divisor rounded to nearest integer
319 * @dividend: unsigned 64bit dividend
320 * @divisor: unsigned 32bit divisor
321 *
322 * Divide unsigned 64bit dividend by unsigned 32bit divisor
323 * and round to closest integer.
324 *
325 * Return: dividend / divisor rounded to nearest integer
326 */
327#define DIV_U64_ROUND_CLOSEST(dividend, divisor)	\
328	({ u32 _tmp = (divisor); div_u64((u64)(dividend) + _tmp / 2, _tmp); })
329
330/**
331 * DIV_S64_ROUND_CLOSEST - signed 64bit divide with 32bit divisor rounded to nearest integer
332 * @dividend: signed 64bit dividend
333 * @divisor: signed 32bit divisor
334 *
335 * Divide signed 64bit dividend by signed 32bit divisor
336 * and round to closest integer.
337 *
338 * Return: dividend / divisor rounded to nearest integer
339 */
340#define DIV_S64_ROUND_CLOSEST(dividend, divisor)(	\
341{							\
342	s64 __x = (dividend);				\
343	s32 __d = (divisor);				\
344	((__x > 0) == (__d > 0)) ?			\
345		div_s64((__x + (__d / 2)), __d) :	\
346		div_s64((__x - (__d / 2)), __d);	\
347}							\
348)
349#endif /* _LINUX_MATH64_H */