Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
 
  11#include <linux/highmem.h>
 
  12#include <linux/time.h>
  13#include <linux/init.h>
  14#include <linux/string.h>
  15#include <linux/backing-dev.h>
  16#include <linux/writeback.h>
 
  17#include <linux/slab.h>
  18#include <linux/sched/mm.h>
  19#include <linux/log2.h>
 
  20#include <crypto/hash.h>
  21#include "misc.h"
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "volumes.h"
  27#include "ordered-data.h"
  28#include "compression.h"
  29#include "extent_io.h"
  30#include "extent_map.h"
 
 
 
  31
  32int zlib_compress_pages(struct list_head *ws, struct address_space *mapping,
  33		u64 start, struct page **pages, unsigned long *out_pages,
  34		unsigned long *total_in, unsigned long *total_out);
  35int zlib_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  36int zlib_decompress(struct list_head *ws, unsigned char *data_in,
  37		struct page *dest_page, unsigned long start_byte, size_t srclen,
  38		size_t destlen);
  39struct list_head *zlib_alloc_workspace(unsigned int level);
  40void zlib_free_workspace(struct list_head *ws);
  41struct list_head *zlib_get_workspace(unsigned int level);
  42
  43int lzo_compress_pages(struct list_head *ws, struct address_space *mapping,
  44		u64 start, struct page **pages, unsigned long *out_pages,
  45		unsigned long *total_in, unsigned long *total_out);
  46int lzo_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  47int lzo_decompress(struct list_head *ws, unsigned char *data_in,
  48		struct page *dest_page, unsigned long start_byte, size_t srclen,
  49		size_t destlen);
  50struct list_head *lzo_alloc_workspace(unsigned int level);
  51void lzo_free_workspace(struct list_head *ws);
  52
  53int zstd_compress_pages(struct list_head *ws, struct address_space *mapping,
  54		u64 start, struct page **pages, unsigned long *out_pages,
  55		unsigned long *total_in, unsigned long *total_out);
  56int zstd_decompress_bio(struct list_head *ws, struct compressed_bio *cb);
  57int zstd_decompress(struct list_head *ws, unsigned char *data_in,
  58		struct page *dest_page, unsigned long start_byte, size_t srclen,
  59		size_t destlen);
  60void zstd_init_workspace_manager(void);
  61void zstd_cleanup_workspace_manager(void);
  62struct list_head *zstd_alloc_workspace(unsigned int level);
  63void zstd_free_workspace(struct list_head *ws);
  64struct list_head *zstd_get_workspace(unsigned int level);
  65void zstd_put_workspace(struct list_head *ws);
  66
  67static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  68
  69const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  70{
  71	switch (type) {
  72	case BTRFS_COMPRESS_ZLIB:
  73	case BTRFS_COMPRESS_LZO:
  74	case BTRFS_COMPRESS_ZSTD:
  75	case BTRFS_COMPRESS_NONE:
  76		return btrfs_compress_types[type];
  77	default:
  78		break;
  79	}
  80
  81	return NULL;
  82}
  83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  84bool btrfs_compress_is_valid_type(const char *str, size_t len)
  85{
  86	int i;
  87
  88	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  89		size_t comp_len = strlen(btrfs_compress_types[i]);
  90
  91		if (len < comp_len)
  92			continue;
  93
  94		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  95			return true;
  96	}
  97	return false;
  98}
  99
 100static int compression_compress_pages(int type, struct list_head *ws,
 101               struct address_space *mapping, u64 start, struct page **pages,
 102               unsigned long *out_pages, unsigned long *total_in,
 103               unsigned long *total_out)
 104{
 105	switch (type) {
 106	case BTRFS_COMPRESS_ZLIB:
 107		return zlib_compress_pages(ws, mapping, start, pages,
 108				out_pages, total_in, total_out);
 109	case BTRFS_COMPRESS_LZO:
 110		return lzo_compress_pages(ws, mapping, start, pages,
 111				out_pages, total_in, total_out);
 112	case BTRFS_COMPRESS_ZSTD:
 113		return zstd_compress_pages(ws, mapping, start, pages,
 114				out_pages, total_in, total_out);
 115	case BTRFS_COMPRESS_NONE:
 116	default:
 117		/*
 118		 * This can't happen, the type is validated several times
 119		 * before we get here. As a sane fallback, return what the
 120		 * callers will understand as 'no compression happened'.
 
 
 
 
 121		 */
 
 122		return -E2BIG;
 123	}
 124}
 125
 126static int compression_decompress_bio(int type, struct list_head *ws,
 127		struct compressed_bio *cb)
 128{
 129	switch (type) {
 130	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 131	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 132	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 133	case BTRFS_COMPRESS_NONE:
 134	default:
 135		/*
 136		 * This can't happen, the type is validated several times
 137		 * before we get here.
 138		 */
 139		BUG();
 140	}
 141}
 142
 143static int compression_decompress(int type, struct list_head *ws,
 144               unsigned char *data_in, struct page *dest_page,
 145               unsigned long start_byte, size_t srclen, size_t destlen)
 146{
 147	switch (type) {
 148	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 149						start_byte, srclen, destlen);
 150	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 151						start_byte, srclen, destlen);
 152	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 153						start_byte, srclen, destlen);
 154	case BTRFS_COMPRESS_NONE:
 155	default:
 156		/*
 157		 * This can't happen, the type is validated several times
 158		 * before we get here.
 159		 */
 160		BUG();
 161	}
 162}
 163
 
 
 
 
 
 
 
 164static int btrfs_decompress_bio(struct compressed_bio *cb);
 165
 166static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
 167				      unsigned long disk_size)
 
 
 
 
 
 
 
 
 
 
 168{
 169	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 170
 171	return sizeof(struct compressed_bio) +
 172		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * csum_size;
 
 
 
 
 
 
 173}
 174
 175static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
 176				 u64 disk_start)
 177{
 178	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 179	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 180	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 181	struct page *page;
 182	unsigned long i;
 183	char *kaddr;
 184	u8 csum[BTRFS_CSUM_SIZE];
 185	struct compressed_bio *cb = bio->bi_private;
 186	u8 *cb_sum = cb->sums;
 187
 188	if (inode->flags & BTRFS_INODE_NODATASUM)
 189		return 0;
 190
 191	shash->tfm = fs_info->csum_shash;
 192
 193	for (i = 0; i < cb->nr_pages; i++) {
 194		page = cb->compressed_pages[i];
 
 
 
 
 195
 196		kaddr = kmap_atomic(page);
 197		crypto_shash_digest(shash, kaddr, PAGE_SIZE, csum);
 198		kunmap_atomic(kaddr);
 199
 200		if (memcmp(&csum, cb_sum, csum_size)) {
 201			btrfs_print_data_csum_error(inode, disk_start,
 202					csum, cb_sum, cb->mirror_num);
 203			if (btrfs_io_bio(bio)->device)
 204				btrfs_dev_stat_inc_and_print(
 205					btrfs_io_bio(bio)->device,
 206					BTRFS_DEV_STAT_CORRUPTION_ERRS);
 207			return -EIO;
 208		}
 209		cb_sum += csum_size;
 210	}
 211	return 0;
 
 212}
 213
 214/* when we finish reading compressed pages from the disk, we
 215 * decompress them and then run the bio end_io routines on the
 216 * decompressed pages (in the inode address space).
 217 *
 218 * This allows the checksumming and other IO error handling routines
 219 * to work normally
 220 *
 221 * The compressed pages are freed here, and it must be run
 222 * in process context
 223 */
 224static void end_compressed_bio_read(struct bio *bio)
 225{
 226	struct compressed_bio *cb = bio->bi_private;
 227	struct inode *inode;
 228	struct page *page;
 229	unsigned long index;
 230	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
 231	int ret = 0;
 232
 233	if (bio->bi_status)
 234		cb->errors = 1;
 235
 236	/* if there are more bios still pending for this compressed
 237	 * extent, just exit
 238	 */
 239	if (!refcount_dec_and_test(&cb->pending_bios))
 240		goto out;
 241
 242	/*
 243	 * Record the correct mirror_num in cb->orig_bio so that
 244	 * read-repair can work properly.
 245	 */
 246	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
 247	cb->mirror_num = mirror;
 248
 249	/*
 250	 * Some IO in this cb have failed, just skip checksum as there
 251	 * is no way it could be correct.
 252	 */
 253	if (cb->errors == 1)
 254		goto csum_failed;
 255
 256	inode = cb->inode;
 257	ret = check_compressed_csum(BTRFS_I(inode), bio,
 258				    (u64)bio->bi_iter.bi_sector << 9);
 259	if (ret)
 260		goto csum_failed;
 261
 262	/* ok, we're the last bio for this extent, lets start
 263	 * the decompression.
 264	 */
 265	ret = btrfs_decompress_bio(cb);
 266
 267csum_failed:
 268	if (ret)
 269		cb->errors = 1;
 270
 271	/* release the compressed pages */
 272	index = 0;
 273	for (index = 0; index < cb->nr_pages; index++) {
 274		page = cb->compressed_pages[index];
 275		page->mapping = NULL;
 276		put_page(page);
 277	}
 
 278
 279	/* do io completion on the original bio */
 280	if (cb->errors) {
 281		bio_io_error(cb->orig_bio);
 282	} else {
 283		struct bio_vec *bvec;
 284		struct bvec_iter_all iter_all;
 285
 286		/*
 287		 * we have verified the checksum already, set page
 288		 * checked so the end_io handlers know about it
 289		 */
 290		ASSERT(!bio_flagged(bio, BIO_CLONED));
 291		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
 292			SetPageChecked(bvec->bv_page);
 293
 294		bio_endio(cb->orig_bio);
 295	}
 
 
 296
 297	/* finally free the cb struct */
 298	kfree(cb->compressed_pages);
 299	kfree(cb);
 300out:
 301	bio_put(bio);
 
 302}
 303
 304/*
 305 * Clear the writeback bits on all of the file
 306 * pages for a compressed write
 307 */
 308static noinline void end_compressed_writeback(struct inode *inode,
 309					      const struct compressed_bio *cb)
 310{
 
 
 311	unsigned long index = cb->start >> PAGE_SHIFT;
 312	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 313	struct page *pages[16];
 314	unsigned long nr_pages = end_index - index + 1;
 315	int i;
 316	int ret;
 317
 318	if (cb->errors)
 319		mapping_set_error(inode->i_mapping, -EIO);
 
 
 
 
 
 
 
 
 320
 321	while (nr_pages > 0) {
 322		ret = find_get_pages_contig(inode->i_mapping, index,
 323				     min_t(unsigned long,
 324				     nr_pages, ARRAY_SIZE(pages)), pages);
 325		if (ret == 0) {
 326			nr_pages -= 1;
 327			index += 1;
 328			continue;
 329		}
 330		for (i = 0; i < ret; i++) {
 331			if (cb->errors)
 332				SetPageError(pages[i]);
 333			end_page_writeback(pages[i]);
 334			put_page(pages[i]);
 335		}
 336		nr_pages -= ret;
 337		index += ret;
 338	}
 339	/* the inode may be gone now */
 340}
 341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342/*
 343 * do the cleanup once all the compressed pages hit the disk.
 344 * This will clear writeback on the file pages and free the compressed
 345 * pages.
 346 *
 347 * This also calls the writeback end hooks for the file pages so that
 348 * metadata and checksums can be updated in the file.
 349 */
 350static void end_compressed_bio_write(struct bio *bio)
 351{
 352	struct compressed_bio *cb = bio->bi_private;
 353	struct inode *inode;
 354	struct page *page;
 355	unsigned long index;
 356
 357	if (bio->bi_status)
 358		cb->errors = 1;
 359
 360	/* if there are more bios still pending for this compressed
 361	 * extent, just exit
 362	 */
 363	if (!refcount_dec_and_test(&cb->pending_bios))
 364		goto out;
 365
 366	/* ok, we're the last bio for this extent, step one is to
 367	 * call back into the FS and do all the end_io operations
 368	 */
 369	inode = cb->inode;
 370	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 371	btrfs_writepage_endio_finish_ordered(cb->compressed_pages[0],
 372			cb->start, cb->start + cb->len - 1,
 373			bio->bi_status == BLK_STS_OK);
 374	cb->compressed_pages[0]->mapping = NULL;
 375
 376	end_compressed_writeback(inode, cb);
 377	/* note, our inode could be gone now */
 378
 379	/*
 380	 * release the compressed pages, these came from alloc_page and
 381	 * are not attached to the inode at all
 382	 */
 383	index = 0;
 384	for (index = 0; index < cb->nr_pages; index++) {
 385		page = cb->compressed_pages[index];
 386		page->mapping = NULL;
 387		put_page(page);
 388	}
 389
 390	/* finally free the cb struct */
 391	kfree(cb->compressed_pages);
 392	kfree(cb);
 393out:
 394	bio_put(bio);
 395}
 396
 397/*
 398 * worker function to build and submit bios for previously compressed pages.
 399 * The corresponding pages in the inode should be marked for writeback
 400 * and the compressed pages should have a reference on them for dropping
 401 * when the IO is complete.
 402 *
 403 * This also checksums the file bytes and gets things ready for
 404 * the end io hooks.
 405 */
 406blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
 407				 unsigned long len, u64 disk_start,
 408				 unsigned long compressed_len,
 409				 struct page **compressed_pages,
 410				 unsigned long nr_pages,
 411				 unsigned int write_flags,
 412				 struct cgroup_subsys_state *blkcg_css)
 413{
 
 414	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 415	struct bio *bio = NULL;
 416	struct compressed_bio *cb;
 417	unsigned long bytes_left;
 418	int pg_index = 0;
 419	struct page *page;
 420	u64 first_byte = disk_start;
 421	blk_status_t ret;
 422	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
 423
 424	WARN_ON(!PAGE_ALIGNED(start));
 425	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 426	if (!cb)
 427		return BLK_STS_RESOURCE;
 428	refcount_set(&cb->pending_bios, 0);
 429	cb->errors = 0;
 430	cb->inode = &inode->vfs_inode;
 431	cb->start = start;
 432	cb->len = len;
 433	cb->mirror_num = 0;
 434	cb->compressed_pages = compressed_pages;
 435	cb->compressed_len = compressed_len;
 436	cb->orig_bio = NULL;
 
 437	cb->nr_pages = nr_pages;
 
 
 
 438
 439	bio = btrfs_bio_alloc(first_byte);
 440	bio->bi_opf = REQ_OP_WRITE | write_flags;
 441	bio->bi_private = cb;
 442	bio->bi_end_io = end_compressed_bio_write;
 443
 444	if (blkcg_css) {
 445		bio->bi_opf |= REQ_CGROUP_PUNT;
 446		kthread_associate_blkcg(blkcg_css);
 447	}
 448	refcount_set(&cb->pending_bios, 1);
 449
 450	/* create and submit bios for the compressed pages */
 451	bytes_left = compressed_len;
 452	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 453		int submit = 0;
 454
 455		page = compressed_pages[pg_index];
 456		page->mapping = inode->vfs_inode.i_mapping;
 457		if (bio->bi_iter.bi_size)
 458			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
 459							  0);
 460
 461		page->mapping = NULL;
 462		if (submit || bio_add_page(bio, page, PAGE_SIZE, 0) <
 463		    PAGE_SIZE) {
 464			/*
 465			 * inc the count before we submit the bio so
 466			 * we know the end IO handler won't happen before
 467			 * we inc the count.  Otherwise, the cb might get
 468			 * freed before we're done setting it up
 469			 */
 470			refcount_inc(&cb->pending_bios);
 471			ret = btrfs_bio_wq_end_io(fs_info, bio,
 472						  BTRFS_WQ_ENDIO_DATA);
 473			BUG_ON(ret); /* -ENOMEM */
 474
 475			if (!skip_sum) {
 476				ret = btrfs_csum_one_bio(inode, bio, start, 1);
 477				BUG_ON(ret); /* -ENOMEM */
 478			}
 479
 480			ret = btrfs_map_bio(fs_info, bio, 0);
 481			if (ret) {
 482				bio->bi_status = ret;
 483				bio_endio(bio);
 484			}
 485
 486			bio = btrfs_bio_alloc(first_byte);
 487			bio->bi_opf = REQ_OP_WRITE | write_flags;
 488			bio->bi_private = cb;
 489			bio->bi_end_io = end_compressed_bio_write;
 490			if (blkcg_css)
 491				bio->bi_opf |= REQ_CGROUP_PUNT;
 492			bio_add_page(bio, page, PAGE_SIZE, 0);
 493		}
 494		if (bytes_left < PAGE_SIZE) {
 495			btrfs_info(fs_info,
 496					"bytes left %lu compress len %lu nr %lu",
 497			       bytes_left, cb->compressed_len, cb->nr_pages);
 498		}
 499		bytes_left -= PAGE_SIZE;
 500		first_byte += PAGE_SIZE;
 501		cond_resched();
 502	}
 503
 504	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
 505	BUG_ON(ret); /* -ENOMEM */
 506
 507	if (!skip_sum) {
 508		ret = btrfs_csum_one_bio(inode, bio, start, 1);
 509		BUG_ON(ret); /* -ENOMEM */
 510	}
 511
 512	ret = btrfs_map_bio(fs_info, bio, 0);
 513	if (ret) {
 514		bio->bi_status = ret;
 515		bio_endio(bio);
 516	}
 517
 518	if (blkcg_css)
 519		kthread_associate_blkcg(NULL);
 520
 521	return 0;
 522}
 523
 524static u64 bio_end_offset(struct bio *bio)
 525{
 526	struct bio_vec *last = bio_last_bvec_all(bio);
 527
 528	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
 529}
 530
 
 
 
 
 
 
 
 
 
 
 
 531static noinline int add_ra_bio_pages(struct inode *inode,
 532				     u64 compressed_end,
 533				     struct compressed_bio *cb)
 
 534{
 
 535	unsigned long end_index;
 536	unsigned long pg_index;
 537	u64 last_offset;
 538	u64 isize = i_size_read(inode);
 539	int ret;
 540	struct page *page;
 541	unsigned long nr_pages = 0;
 542	struct extent_map *em;
 543	struct address_space *mapping = inode->i_mapping;
 544	struct extent_map_tree *em_tree;
 545	struct extent_io_tree *tree;
 546	u64 end;
 547	int misses = 0;
 548
 549	last_offset = bio_end_offset(cb->orig_bio);
 550	em_tree = &BTRFS_I(inode)->extent_tree;
 551	tree = &BTRFS_I(inode)->io_tree;
 552
 553	if (isize == 0)
 554		return 0;
 555
 
 
 
 
 
 
 
 
 
 
 556	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 557
 558	while (last_offset < compressed_end) {
 559		pg_index = last_offset >> PAGE_SHIFT;
 
 
 560
 561		if (pg_index > end_index)
 562			break;
 563
 564		page = xa_load(&mapping->i_pages, pg_index);
 565		if (page && !xa_is_value(page)) {
 566			misses++;
 567			if (misses > 4)
 
 
 
 568				break;
 569			goto next;
 
 
 
 
 
 
 570		}
 571
 572		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 573								 ~__GFP_FS));
 574		if (!page)
 575			break;
 576
 577		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 578			put_page(page);
 579			goto next;
 
 
 580		}
 581
 582		end = last_offset + PAGE_SIZE - 1;
 583		/*
 584		 * at this point, we have a locked page in the page cache
 585		 * for these bytes in the file.  But, we have to make
 586		 * sure they map to this compressed extent on disk.
 587		 */
 588		set_page_extent_mapped(page);
 589		lock_extent(tree, last_offset, end);
 
 
 
 
 
 
 590		read_lock(&em_tree->lock);
 591		em = lookup_extent_mapping(em_tree, last_offset,
 592					   PAGE_SIZE);
 593		read_unlock(&em_tree->lock);
 594
 595		if (!em || last_offset < em->start ||
 596		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
 597		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
 
 
 
 
 
 598			free_extent_map(em);
 599			unlock_extent(tree, last_offset, end);
 600			unlock_page(page);
 601			put_page(page);
 602			break;
 603		}
 604		free_extent_map(em);
 605
 606		if (page->index == end_index) {
 607			char *userpage;
 608			size_t zero_offset = offset_in_page(isize);
 609
 610			if (zero_offset) {
 611				int zeros;
 612				zeros = PAGE_SIZE - zero_offset;
 613				userpage = kmap_atomic(page);
 614				memset(userpage + zero_offset, 0, zeros);
 615				flush_dcache_page(page);
 616				kunmap_atomic(userpage);
 617			}
 618		}
 619
 620		ret = bio_add_page(cb->orig_bio, page,
 621				   PAGE_SIZE, 0);
 622
 623		if (ret == PAGE_SIZE) {
 624			nr_pages++;
 625			put_page(page);
 626		} else {
 627			unlock_extent(tree, last_offset, end);
 628			unlock_page(page);
 629			put_page(page);
 630			break;
 631		}
 632next:
 633		last_offset += PAGE_SIZE;
 
 
 
 
 
 
 
 
 634	}
 635	return 0;
 636}
 637
 638/*
 639 * for a compressed read, the bio we get passed has all the inode pages
 640 * in it.  We don't actually do IO on those pages but allocate new ones
 641 * to hold the compressed pages on disk.
 642 *
 643 * bio->bi_iter.bi_sector points to the compressed extent on disk
 644 * bio->bi_io_vec points to all of the inode pages
 645 *
 646 * After the compressed pages are read, we copy the bytes into the
 647 * bio we were passed and then call the bio end_io calls
 648 */
 649blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 650				 int mirror_num, unsigned long bio_flags)
 651{
 652	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 653	struct extent_map_tree *em_tree;
 
 654	struct compressed_bio *cb;
 655	unsigned long compressed_len;
 656	unsigned long nr_pages;
 657	unsigned long pg_index;
 658	struct page *page;
 659	struct bio *comp_bio;
 660	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
 661	u64 em_len;
 662	u64 em_start;
 663	struct extent_map *em;
 664	blk_status_t ret = BLK_STS_RESOURCE;
 665	int faili = 0;
 666	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 667	u8 *sums;
 668
 669	em_tree = &BTRFS_I(inode)->extent_tree;
 670
 671	/* we need the actual starting offset of this extent in the file */
 672	read_lock(&em_tree->lock);
 673	em = lookup_extent_mapping(em_tree,
 674				   page_offset(bio_first_page_all(bio)),
 675				   PAGE_SIZE);
 676	read_unlock(&em_tree->lock);
 677	if (!em)
 678		return BLK_STS_IOERR;
 
 
 679
 
 680	compressed_len = em->block_len;
 681	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
 682	if (!cb)
 683		goto out;
 684
 685	refcount_set(&cb->pending_bios, 0);
 686	cb->errors = 0;
 687	cb->inode = inode;
 688	cb->mirror_num = mirror_num;
 689	sums = cb->sums;
 690
 691	cb->start = em->orig_start;
 692	em_len = em->len;
 693	em_start = em->start;
 694
 695	free_extent_map(em);
 696	em = NULL;
 697
 698	cb->len = bio->bi_iter.bi_size;
 699	cb->compressed_len = compressed_len;
 700	cb->compress_type = extent_compress_type(bio_flags);
 701	cb->orig_bio = bio;
 702
 703	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 704	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
 705				       GFP_NOFS);
 706	if (!cb->compressed_pages)
 707		goto fail1;
 708
 709	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 710		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 711							      __GFP_HIGHMEM);
 712		if (!cb->compressed_pages[pg_index]) {
 713			faili = pg_index - 1;
 714			ret = BLK_STS_RESOURCE;
 715			goto fail2;
 716		}
 717	}
 718	faili = nr_pages - 1;
 719	cb->nr_pages = nr_pages;
 720
 721	add_ra_bio_pages(inode, em_start + em_len, cb);
 722
 723	/* include any pages we added in add_ra-bio_pages */
 724	cb->len = bio->bi_iter.bi_size;
 725
 726	comp_bio = btrfs_bio_alloc(cur_disk_byte);
 727	comp_bio->bi_opf = REQ_OP_READ;
 728	comp_bio->bi_private = cb;
 729	comp_bio->bi_end_io = end_compressed_bio_read;
 730	refcount_set(&cb->pending_bios, 1);
 731
 732	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 733		int submit = 0;
 734
 735		page = cb->compressed_pages[pg_index];
 736		page->mapping = inode->i_mapping;
 737		page->index = em_start >> PAGE_SHIFT;
 738
 739		if (comp_bio->bi_iter.bi_size)
 740			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE,
 741							  comp_bio, 0);
 742
 743		page->mapping = NULL;
 744		if (submit || bio_add_page(comp_bio, page, PAGE_SIZE, 0) <
 745		    PAGE_SIZE) {
 746			unsigned int nr_sectors;
 747
 748			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
 749						  BTRFS_WQ_ENDIO_DATA);
 750			BUG_ON(ret); /* -ENOMEM */
 751
 752			/*
 753			 * inc the count before we submit the bio so
 754			 * we know the end IO handler won't happen before
 755			 * we inc the count.  Otherwise, the cb might get
 756			 * freed before we're done setting it up
 757			 */
 758			refcount_inc(&cb->pending_bios);
 759
 760			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 761				ret = btrfs_lookup_bio_sums(inode, comp_bio,
 762							    (u64)-1, sums);
 763				BUG_ON(ret); /* -ENOMEM */
 764			}
 765
 766			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
 767						  fs_info->sectorsize);
 768			sums += csum_size * nr_sectors;
 769
 770			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 771			if (ret) {
 772				comp_bio->bi_status = ret;
 773				bio_endio(comp_bio);
 774			}
 775
 776			comp_bio = btrfs_bio_alloc(cur_disk_byte);
 777			comp_bio->bi_opf = REQ_OP_READ;
 778			comp_bio->bi_private = cb;
 779			comp_bio->bi_end_io = end_compressed_bio_read;
 780
 781			bio_add_page(comp_bio, page, PAGE_SIZE, 0);
 782		}
 783		cur_disk_byte += PAGE_SIZE;
 
 
 784	}
 785
 786	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
 787	BUG_ON(ret); /* -ENOMEM */
 788
 789	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 790		ret = btrfs_lookup_bio_sums(inode, comp_bio, (u64)-1, sums);
 791		BUG_ON(ret); /* -ENOMEM */
 792	}
 793
 794	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
 795	if (ret) {
 796		comp_bio->bi_status = ret;
 797		bio_endio(comp_bio);
 798	}
 799
 800	return 0;
 
 
 
 801
 802fail2:
 803	while (faili >= 0) {
 804		__free_page(cb->compressed_pages[faili]);
 805		faili--;
 806	}
 807
 
 808	kfree(cb->compressed_pages);
 809fail1:
 810	kfree(cb);
 811out:
 812	free_extent_map(em);
 813	return ret;
 814}
 815
 816/*
 817 * Heuristic uses systematic sampling to collect data from the input data
 818 * range, the logic can be tuned by the following constants:
 819 *
 820 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 821 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 822 */
 823#define SAMPLING_READ_SIZE	(16)
 824#define SAMPLING_INTERVAL	(256)
 825
 826/*
 827 * For statistical analysis of the input data we consider bytes that form a
 828 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 829 * many times the object appeared in the sample.
 830 */
 831#define BUCKET_SIZE		(256)
 832
 833/*
 834 * The size of the sample is based on a statistical sampling rule of thumb.
 835 * The common way is to perform sampling tests as long as the number of
 836 * elements in each cell is at least 5.
 837 *
 838 * Instead of 5, we choose 32 to obtain more accurate results.
 839 * If the data contain the maximum number of symbols, which is 256, we obtain a
 840 * sample size bound by 8192.
 841 *
 842 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 843 * from up to 512 locations.
 844 */
 845#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 846				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 847
 848struct bucket_item {
 849	u32 count;
 850};
 851
 852struct heuristic_ws {
 853	/* Partial copy of input data */
 854	u8 *sample;
 855	u32 sample_size;
 856	/* Buckets store counters for each byte value */
 857	struct bucket_item *bucket;
 858	/* Sorting buffer */
 859	struct bucket_item *bucket_b;
 860	struct list_head list;
 861};
 862
 863static struct workspace_manager heuristic_wsm;
 864
 865static void free_heuristic_ws(struct list_head *ws)
 866{
 867	struct heuristic_ws *workspace;
 868
 869	workspace = list_entry(ws, struct heuristic_ws, list);
 870
 871	kvfree(workspace->sample);
 872	kfree(workspace->bucket);
 873	kfree(workspace->bucket_b);
 874	kfree(workspace);
 875}
 876
 877static struct list_head *alloc_heuristic_ws(unsigned int level)
 878{
 879	struct heuristic_ws *ws;
 880
 881	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 882	if (!ws)
 883		return ERR_PTR(-ENOMEM);
 884
 885	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 886	if (!ws->sample)
 887		goto fail;
 888
 889	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 890	if (!ws->bucket)
 891		goto fail;
 892
 893	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 894	if (!ws->bucket_b)
 895		goto fail;
 896
 897	INIT_LIST_HEAD(&ws->list);
 898	return &ws->list;
 899fail:
 900	free_heuristic_ws(&ws->list);
 901	return ERR_PTR(-ENOMEM);
 902}
 903
 904const struct btrfs_compress_op btrfs_heuristic_compress = {
 905	.workspace_manager = &heuristic_wsm,
 906};
 907
 908static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 909	/* The heuristic is represented as compression type 0 */
 910	&btrfs_heuristic_compress,
 911	&btrfs_zlib_compress,
 912	&btrfs_lzo_compress,
 913	&btrfs_zstd_compress,
 914};
 915
 916static struct list_head *alloc_workspace(int type, unsigned int level)
 917{
 918	switch (type) {
 919	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 920	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 921	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 922	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 923	default:
 924		/*
 925		 * This can't happen, the type is validated several times
 926		 * before we get here.
 927		 */
 928		BUG();
 929	}
 930}
 931
 932static void free_workspace(int type, struct list_head *ws)
 933{
 934	switch (type) {
 935	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 936	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 937	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 938	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 939	default:
 940		/*
 941		 * This can't happen, the type is validated several times
 942		 * before we get here.
 943		 */
 944		BUG();
 945	}
 946}
 947
 948static void btrfs_init_workspace_manager(int type)
 949{
 950	struct workspace_manager *wsm;
 951	struct list_head *workspace;
 952
 953	wsm = btrfs_compress_op[type]->workspace_manager;
 954	INIT_LIST_HEAD(&wsm->idle_ws);
 955	spin_lock_init(&wsm->ws_lock);
 956	atomic_set(&wsm->total_ws, 0);
 957	init_waitqueue_head(&wsm->ws_wait);
 958
 959	/*
 960	 * Preallocate one workspace for each compression type so we can
 961	 * guarantee forward progress in the worst case
 962	 */
 963	workspace = alloc_workspace(type, 0);
 964	if (IS_ERR(workspace)) {
 965		pr_warn(
 966	"BTRFS: cannot preallocate compression workspace, will try later\n");
 967	} else {
 968		atomic_set(&wsm->total_ws, 1);
 969		wsm->free_ws = 1;
 970		list_add(workspace, &wsm->idle_ws);
 971	}
 972}
 973
 974static void btrfs_cleanup_workspace_manager(int type)
 975{
 976	struct workspace_manager *wsman;
 977	struct list_head *ws;
 978
 979	wsman = btrfs_compress_op[type]->workspace_manager;
 980	while (!list_empty(&wsman->idle_ws)) {
 981		ws = wsman->idle_ws.next;
 982		list_del(ws);
 983		free_workspace(type, ws);
 984		atomic_dec(&wsman->total_ws);
 985	}
 986}
 987
 988/*
 989 * This finds an available workspace or allocates a new one.
 990 * If it's not possible to allocate a new one, waits until there's one.
 991 * Preallocation makes a forward progress guarantees and we do not return
 992 * errors.
 993 */
 994struct list_head *btrfs_get_workspace(int type, unsigned int level)
 995{
 996	struct workspace_manager *wsm;
 997	struct list_head *workspace;
 998	int cpus = num_online_cpus();
 999	unsigned nofs_flag;
1000	struct list_head *idle_ws;
1001	spinlock_t *ws_lock;
1002	atomic_t *total_ws;
1003	wait_queue_head_t *ws_wait;
1004	int *free_ws;
1005
1006	wsm = btrfs_compress_op[type]->workspace_manager;
1007	idle_ws	 = &wsm->idle_ws;
1008	ws_lock	 = &wsm->ws_lock;
1009	total_ws = &wsm->total_ws;
1010	ws_wait	 = &wsm->ws_wait;
1011	free_ws	 = &wsm->free_ws;
1012
1013again:
1014	spin_lock(ws_lock);
1015	if (!list_empty(idle_ws)) {
1016		workspace = idle_ws->next;
1017		list_del(workspace);
1018		(*free_ws)--;
1019		spin_unlock(ws_lock);
1020		return workspace;
1021
1022	}
1023	if (atomic_read(total_ws) > cpus) {
1024		DEFINE_WAIT(wait);
1025
1026		spin_unlock(ws_lock);
1027		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1028		if (atomic_read(total_ws) > cpus && !*free_ws)
1029			schedule();
1030		finish_wait(ws_wait, &wait);
1031		goto again;
1032	}
1033	atomic_inc(total_ws);
1034	spin_unlock(ws_lock);
1035
1036	/*
1037	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1038	 * to turn it off here because we might get called from the restricted
1039	 * context of btrfs_compress_bio/btrfs_compress_pages
1040	 */
1041	nofs_flag = memalloc_nofs_save();
1042	workspace = alloc_workspace(type, level);
1043	memalloc_nofs_restore(nofs_flag);
1044
1045	if (IS_ERR(workspace)) {
1046		atomic_dec(total_ws);
1047		wake_up(ws_wait);
1048
1049		/*
1050		 * Do not return the error but go back to waiting. There's a
1051		 * workspace preallocated for each type and the compression
1052		 * time is bounded so we get to a workspace eventually. This
1053		 * makes our caller's life easier.
1054		 *
1055		 * To prevent silent and low-probability deadlocks (when the
1056		 * initial preallocation fails), check if there are any
1057		 * workspaces at all.
1058		 */
1059		if (atomic_read(total_ws) == 0) {
1060			static DEFINE_RATELIMIT_STATE(_rs,
1061					/* once per minute */ 60 * HZ,
1062					/* no burst */ 1);
1063
1064			if (__ratelimit(&_rs)) {
1065				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1066			}
1067		}
1068		goto again;
1069	}
1070	return workspace;
1071}
1072
1073static struct list_head *get_workspace(int type, int level)
1074{
1075	switch (type) {
1076	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1077	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1078	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1079	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1080	default:
1081		/*
1082		 * This can't happen, the type is validated several times
1083		 * before we get here.
1084		 */
1085		BUG();
1086	}
1087}
1088
1089/*
1090 * put a workspace struct back on the list or free it if we have enough
1091 * idle ones sitting around
1092 */
1093void btrfs_put_workspace(int type, struct list_head *ws)
1094{
1095	struct workspace_manager *wsm;
1096	struct list_head *idle_ws;
1097	spinlock_t *ws_lock;
1098	atomic_t *total_ws;
1099	wait_queue_head_t *ws_wait;
1100	int *free_ws;
1101
1102	wsm = btrfs_compress_op[type]->workspace_manager;
1103	idle_ws	 = &wsm->idle_ws;
1104	ws_lock	 = &wsm->ws_lock;
1105	total_ws = &wsm->total_ws;
1106	ws_wait	 = &wsm->ws_wait;
1107	free_ws	 = &wsm->free_ws;
1108
1109	spin_lock(ws_lock);
1110	if (*free_ws <= num_online_cpus()) {
1111		list_add(ws, idle_ws);
1112		(*free_ws)++;
1113		spin_unlock(ws_lock);
1114		goto wake;
1115	}
1116	spin_unlock(ws_lock);
1117
1118	free_workspace(type, ws);
1119	atomic_dec(total_ws);
1120wake:
1121	cond_wake_up(ws_wait);
1122}
1123
1124static void put_workspace(int type, struct list_head *ws)
1125{
1126	switch (type) {
1127	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1128	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1129	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1130	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1131	default:
1132		/*
1133		 * This can't happen, the type is validated several times
1134		 * before we get here.
1135		 */
1136		BUG();
1137	}
1138}
1139
1140/*
1141 * Adjust @level according to the limits of the compression algorithm or
1142 * fallback to default
1143 */
1144static unsigned int btrfs_compress_set_level(int type, unsigned level)
1145{
1146	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1147
1148	if (level == 0)
1149		level = ops->default_level;
1150	else
1151		level = min(level, ops->max_level);
1152
1153	return level;
1154}
1155
1156/*
1157 * Given an address space and start and length, compress the bytes into @pages
1158 * that are allocated on demand.
1159 *
1160 * @type_level is encoded algorithm and level, where level 0 means whatever
1161 * default the algorithm chooses and is opaque here;
1162 * - compression algo are 0-3
1163 * - the level are bits 4-7
1164 *
1165 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1166 * and returns number of actually allocated pages
1167 *
1168 * @total_in is used to return the number of bytes actually read.  It
1169 * may be smaller than the input length if we had to exit early because we
1170 * ran out of room in the pages array or because we cross the
1171 * max_out threshold.
1172 *
1173 * @total_out is an in/out parameter, must be set to the input length and will
1174 * be also used to return the total number of compressed bytes
1175 *
1176 * @max_out tells us the max number of bytes that we're allowed to
1177 * stuff into pages
1178 */
1179int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1180			 u64 start, struct page **pages,
1181			 unsigned long *out_pages,
1182			 unsigned long *total_in,
1183			 unsigned long *total_out)
1184{
1185	int type = btrfs_compress_type(type_level);
1186	int level = btrfs_compress_level(type_level);
1187	struct list_head *workspace;
1188	int ret;
1189
1190	level = btrfs_compress_set_level(type, level);
1191	workspace = get_workspace(type, level);
1192	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1193					 out_pages, total_in, total_out);
1194	put_workspace(type, workspace);
1195	return ret;
1196}
1197
1198/*
1199 * pages_in is an array of pages with compressed data.
1200 *
1201 * disk_start is the starting logical offset of this array in the file
1202 *
1203 * orig_bio contains the pages from the file that we want to decompress into
1204 *
1205 * srclen is the number of bytes in pages_in
1206 *
1207 * The basic idea is that we have a bio that was created by readpages.
1208 * The pages in the bio are for the uncompressed data, and they may not
1209 * be contiguous.  They all correspond to the range of bytes covered by
1210 * the compressed extent.
1211 */
1212static int btrfs_decompress_bio(struct compressed_bio *cb)
1213{
1214	struct list_head *workspace;
1215	int ret;
1216	int type = cb->compress_type;
1217
1218	workspace = get_workspace(type, 0);
1219	ret = compression_decompress_bio(type, workspace, cb);
1220	put_workspace(type, workspace);
1221
 
 
1222	return ret;
1223}
1224
1225/*
1226 * a less complex decompression routine.  Our compressed data fits in a
1227 * single page, and we want to read a single page out of it.
1228 * start_byte tells us the offset into the compressed data we're interested in
1229 */
1230int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1231		     unsigned long start_byte, size_t srclen, size_t destlen)
1232{
 
1233	struct list_head *workspace;
 
1234	int ret;
1235
 
 
 
 
 
 
 
1236	workspace = get_workspace(type, 0);
1237	ret = compression_decompress(type, workspace, data_in, dest_page,
1238				     start_byte, srclen, destlen);
1239	put_workspace(type, workspace);
1240
1241	return ret;
1242}
1243
1244void __init btrfs_init_compress(void)
1245{
 
 
 
 
 
 
 
 
 
1246	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1247	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1248	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1249	zstd_init_workspace_manager();
 
 
 
 
 
 
 
 
 
 
 
 
 
1250}
1251
1252void __cold btrfs_exit_compress(void)
1253{
 
 
 
 
1254	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1255	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1256	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1257	zstd_cleanup_workspace_manager();
 
1258}
1259
1260/*
1261 * Copy uncompressed data from working buffer to pages.
1262 *
1263 * buf_start is the byte offset we're of the start of our workspace buffer.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264 *
1265 * total_out is the last byte of the buffer
 
1266 */
1267int btrfs_decompress_buf2page(const char *buf, unsigned long buf_start,
1268			      unsigned long total_out, u64 disk_start,
1269			      struct bio *bio)
1270{
1271	unsigned long buf_offset;
1272	unsigned long current_buf_start;
1273	unsigned long start_byte;
1274	unsigned long prev_start_byte;
1275	unsigned long working_bytes = total_out - buf_start;
1276	unsigned long bytes;
1277	char *kaddr;
1278	struct bio_vec bvec = bio_iter_iovec(bio, bio->bi_iter);
1279
1280	/*
1281	 * start byte is the first byte of the page we're currently
1282	 * copying into relative to the start of the compressed data.
1283	 */
1284	start_byte = page_offset(bvec.bv_page) - disk_start;
1285
1286	/* we haven't yet hit data corresponding to this page */
1287	if (total_out <= start_byte)
1288		return 1;
1289
1290	/*
1291	 * the start of the data we care about is offset into
1292	 * the middle of our working buffer
1293	 */
1294	if (total_out > start_byte && buf_start < start_byte) {
1295		buf_offset = start_byte - buf_start;
1296		working_bytes -= buf_offset;
1297	} else {
1298		buf_offset = 0;
1299	}
1300	current_buf_start = buf_start;
1301
1302	/* copy bytes from the working buffer into the pages */
1303	while (working_bytes > 0) {
1304		bytes = min_t(unsigned long, bvec.bv_len,
1305				PAGE_SIZE - (buf_offset % PAGE_SIZE));
1306		bytes = min(bytes, working_bytes);
1307
1308		kaddr = kmap_atomic(bvec.bv_page);
1309		memcpy(kaddr + bvec.bv_offset, buf + buf_offset, bytes);
1310		kunmap_atomic(kaddr);
1311		flush_dcache_page(bvec.bv_page);
1312
1313		buf_offset += bytes;
1314		working_bytes -= bytes;
1315		current_buf_start += bytes;
1316
1317		/* check if we need to pick another page */
1318		bio_advance(bio, bytes);
1319		if (!bio->bi_iter.bi_size)
1320			return 0;
1321		bvec = bio_iter_iovec(bio, bio->bi_iter);
1322		prev_start_byte = start_byte;
1323		start_byte = page_offset(bvec.bv_page) - disk_start;
1324
1325		/*
1326		 * We need to make sure we're only adjusting
1327		 * our offset into compression working buffer when
1328		 * we're switching pages.  Otherwise we can incorrectly
1329		 * keep copying when we were actually done.
1330		 */
1331		if (start_byte != prev_start_byte) {
1332			/*
1333			 * make sure our new page is covered by this
1334			 * working buffer
1335			 */
1336			if (total_out <= start_byte)
1337				return 1;
1338
1339			/*
1340			 * the next page in the biovec might not be adjacent
1341			 * to the last page, but it might still be found
1342			 * inside this working buffer. bump our offset pointer
1343			 */
1344			if (total_out > start_byte &&
1345			    current_buf_start < start_byte) {
1346				buf_offset = start_byte - buf_start;
1347				working_bytes = total_out - start_byte;
1348				current_buf_start = buf_start + buf_offset;
1349			}
1350		}
1351	}
1352
1353	return 1;
1354}
1355
1356/*
1357 * Shannon Entropy calculation
1358 *
1359 * Pure byte distribution analysis fails to determine compressibility of data.
1360 * Try calculating entropy to estimate the average minimum number of bits
1361 * needed to encode the sampled data.
1362 *
1363 * For convenience, return the percentage of needed bits, instead of amount of
1364 * bits directly.
1365 *
1366 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1367 *			    and can be compressible with high probability
1368 *
1369 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1370 *
1371 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1372 */
1373#define ENTROPY_LVL_ACEPTABLE		(65)
1374#define ENTROPY_LVL_HIGH		(80)
1375
1376/*
1377 * For increasead precision in shannon_entropy calculation,
1378 * let's do pow(n, M) to save more digits after comma:
1379 *
1380 * - maximum int bit length is 64
1381 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1382 * - 13 * 4 = 52 < 64		-> M = 4
1383 *
1384 * So use pow(n, 4).
1385 */
1386static inline u32 ilog2_w(u64 n)
1387{
1388	return ilog2(n * n * n * n);
1389}
1390
1391static u32 shannon_entropy(struct heuristic_ws *ws)
1392{
1393	const u32 entropy_max = 8 * ilog2_w(2);
1394	u32 entropy_sum = 0;
1395	u32 p, p_base, sz_base;
1396	u32 i;
1397
1398	sz_base = ilog2_w(ws->sample_size);
1399	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1400		p = ws->bucket[i].count;
1401		p_base = ilog2_w(p);
1402		entropy_sum += p * (sz_base - p_base);
1403	}
1404
1405	entropy_sum /= ws->sample_size;
1406	return entropy_sum * 100 / entropy_max;
1407}
1408
1409#define RADIX_BASE		4U
1410#define COUNTERS_SIZE		(1U << RADIX_BASE)
1411
1412static u8 get4bits(u64 num, int shift) {
1413	u8 low4bits;
1414
1415	num >>= shift;
1416	/* Reverse order */
1417	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1418	return low4bits;
1419}
1420
1421/*
1422 * Use 4 bits as radix base
1423 * Use 16 u32 counters for calculating new position in buf array
1424 *
1425 * @array     - array that will be sorted
1426 * @array_buf - buffer array to store sorting results
1427 *              must be equal in size to @array
1428 * @num       - array size
1429 */
1430static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1431		       int num)
1432{
1433	u64 max_num;
1434	u64 buf_num;
1435	u32 counters[COUNTERS_SIZE];
1436	u32 new_addr;
1437	u32 addr;
1438	int bitlen;
1439	int shift;
1440	int i;
1441
1442	/*
1443	 * Try avoid useless loop iterations for small numbers stored in big
1444	 * counters.  Example: 48 33 4 ... in 64bit array
1445	 */
1446	max_num = array[0].count;
1447	for (i = 1; i < num; i++) {
1448		buf_num = array[i].count;
1449		if (buf_num > max_num)
1450			max_num = buf_num;
1451	}
1452
1453	buf_num = ilog2(max_num);
1454	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1455
1456	shift = 0;
1457	while (shift < bitlen) {
1458		memset(counters, 0, sizeof(counters));
1459
1460		for (i = 0; i < num; i++) {
1461			buf_num = array[i].count;
1462			addr = get4bits(buf_num, shift);
1463			counters[addr]++;
1464		}
1465
1466		for (i = 1; i < COUNTERS_SIZE; i++)
1467			counters[i] += counters[i - 1];
1468
1469		for (i = num - 1; i >= 0; i--) {
1470			buf_num = array[i].count;
1471			addr = get4bits(buf_num, shift);
1472			counters[addr]--;
1473			new_addr = counters[addr];
1474			array_buf[new_addr] = array[i];
1475		}
1476
1477		shift += RADIX_BASE;
1478
1479		/*
1480		 * Normal radix expects to move data from a temporary array, to
1481		 * the main one.  But that requires some CPU time. Avoid that
1482		 * by doing another sort iteration to original array instead of
1483		 * memcpy()
1484		 */
1485		memset(counters, 0, sizeof(counters));
1486
1487		for (i = 0; i < num; i ++) {
1488			buf_num = array_buf[i].count;
1489			addr = get4bits(buf_num, shift);
1490			counters[addr]++;
1491		}
1492
1493		for (i = 1; i < COUNTERS_SIZE; i++)
1494			counters[i] += counters[i - 1];
1495
1496		for (i = num - 1; i >= 0; i--) {
1497			buf_num = array_buf[i].count;
1498			addr = get4bits(buf_num, shift);
1499			counters[addr]--;
1500			new_addr = counters[addr];
1501			array[new_addr] = array_buf[i];
1502		}
1503
1504		shift += RADIX_BASE;
1505	}
1506}
1507
1508/*
1509 * Size of the core byte set - how many bytes cover 90% of the sample
1510 *
1511 * There are several types of structured binary data that use nearly all byte
1512 * values. The distribution can be uniform and counts in all buckets will be
1513 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1514 *
1515 * Other possibility is normal (Gaussian) distribution, where the data could
1516 * be potentially compressible, but we have to take a few more steps to decide
1517 * how much.
1518 *
1519 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1520 *                       compression algo can easy fix that
1521 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1522 *                       probability is not compressible
1523 */
1524#define BYTE_CORE_SET_LOW		(64)
1525#define BYTE_CORE_SET_HIGH		(200)
1526
1527static int byte_core_set_size(struct heuristic_ws *ws)
1528{
1529	u32 i;
1530	u32 coreset_sum = 0;
1531	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1532	struct bucket_item *bucket = ws->bucket;
1533
1534	/* Sort in reverse order */
1535	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1536
1537	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1538		coreset_sum += bucket[i].count;
1539
1540	if (coreset_sum > core_set_threshold)
1541		return i;
1542
1543	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1544		coreset_sum += bucket[i].count;
1545		if (coreset_sum > core_set_threshold)
1546			break;
1547	}
1548
1549	return i;
1550}
1551
1552/*
1553 * Count byte values in buckets.
1554 * This heuristic can detect textual data (configs, xml, json, html, etc).
1555 * Because in most text-like data byte set is restricted to limited number of
1556 * possible characters, and that restriction in most cases makes data easy to
1557 * compress.
1558 *
1559 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1560 *	less - compressible
1561 *	more - need additional analysis
1562 */
1563#define BYTE_SET_THRESHOLD		(64)
1564
1565static u32 byte_set_size(const struct heuristic_ws *ws)
1566{
1567	u32 i;
1568	u32 byte_set_size = 0;
1569
1570	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1571		if (ws->bucket[i].count > 0)
1572			byte_set_size++;
1573	}
1574
1575	/*
1576	 * Continue collecting count of byte values in buckets.  If the byte
1577	 * set size is bigger then the threshold, it's pointless to continue,
1578	 * the detection technique would fail for this type of data.
1579	 */
1580	for (; i < BUCKET_SIZE; i++) {
1581		if (ws->bucket[i].count > 0) {
1582			byte_set_size++;
1583			if (byte_set_size > BYTE_SET_THRESHOLD)
1584				return byte_set_size;
1585		}
1586	}
1587
1588	return byte_set_size;
1589}
1590
1591static bool sample_repeated_patterns(struct heuristic_ws *ws)
1592{
1593	const u32 half_of_sample = ws->sample_size / 2;
1594	const u8 *data = ws->sample;
1595
1596	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1597}
1598
1599static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1600				     struct heuristic_ws *ws)
1601{
1602	struct page *page;
1603	u64 index, index_end;
1604	u32 i, curr_sample_pos;
1605	u8 *in_data;
1606
1607	/*
1608	 * Compression handles the input data by chunks of 128KiB
1609	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1610	 *
1611	 * We do the same for the heuristic and loop over the whole range.
1612	 *
1613	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1614	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1615	 */
1616	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1617		end = start + BTRFS_MAX_UNCOMPRESSED;
1618
1619	index = start >> PAGE_SHIFT;
1620	index_end = end >> PAGE_SHIFT;
1621
1622	/* Don't miss unaligned end */
1623	if (!IS_ALIGNED(end, PAGE_SIZE))
1624		index_end++;
1625
1626	curr_sample_pos = 0;
1627	while (index < index_end) {
1628		page = find_get_page(inode->i_mapping, index);
1629		in_data = kmap(page);
1630		/* Handle case where the start is not aligned to PAGE_SIZE */
1631		i = start % PAGE_SIZE;
1632		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1633			/* Don't sample any garbage from the last page */
1634			if (start > end - SAMPLING_READ_SIZE)
1635				break;
1636			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1637					SAMPLING_READ_SIZE);
1638			i += SAMPLING_INTERVAL;
1639			start += SAMPLING_INTERVAL;
1640			curr_sample_pos += SAMPLING_READ_SIZE;
1641		}
1642		kunmap(page);
1643		put_page(page);
1644
1645		index++;
1646	}
1647
1648	ws->sample_size = curr_sample_pos;
1649}
1650
1651/*
1652 * Compression heuristic.
1653 *
1654 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1655 * quickly (compared to direct compression) detect data characteristics
1656 * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1657 * data.
1658 *
1659 * The following types of analysis can be performed:
1660 * - detect mostly zero data
1661 * - detect data with low "byte set" size (text, etc)
1662 * - detect data with low/high "core byte" set
1663 *
1664 * Return non-zero if the compression should be done, 0 otherwise.
1665 */
1666int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1667{
1668	struct list_head *ws_list = get_workspace(0, 0);
1669	struct heuristic_ws *ws;
1670	u32 i;
1671	u8 byte;
1672	int ret = 0;
1673
1674	ws = list_entry(ws_list, struct heuristic_ws, list);
1675
1676	heuristic_collect_sample(inode, start, end, ws);
1677
1678	if (sample_repeated_patterns(ws)) {
1679		ret = 1;
1680		goto out;
1681	}
1682
1683	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1684
1685	for (i = 0; i < ws->sample_size; i++) {
1686		byte = ws->sample[i];
1687		ws->bucket[byte].count++;
1688	}
1689
1690	i = byte_set_size(ws);
1691	if (i < BYTE_SET_THRESHOLD) {
1692		ret = 2;
1693		goto out;
1694	}
1695
1696	i = byte_core_set_size(ws);
1697	if (i <= BYTE_CORE_SET_LOW) {
1698		ret = 3;
1699		goto out;
1700	}
1701
1702	if (i >= BYTE_CORE_SET_HIGH) {
1703		ret = 0;
1704		goto out;
1705	}
1706
1707	i = shannon_entropy(ws);
1708	if (i <= ENTROPY_LVL_ACEPTABLE) {
1709		ret = 4;
1710		goto out;
1711	}
1712
1713	/*
1714	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1715	 * needed to give green light to compression.
1716	 *
1717	 * For now just assume that compression at that level is not worth the
1718	 * resources because:
1719	 *
1720	 * 1. it is possible to defrag the data later
1721	 *
1722	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1723	 * values, every bucket has counter at level ~54. The heuristic would
1724	 * be confused. This can happen when data have some internal repeated
1725	 * patterns like "abbacbbc...". This can be detected by analyzing
1726	 * pairs of bytes, which is too costly.
1727	 */
1728	if (i < ENTROPY_LVL_HIGH) {
1729		ret = 5;
1730		goto out;
1731	} else {
1732		ret = 0;
1733		goto out;
1734	}
1735
1736out:
1737	put_workspace(0, ws_list);
1738	return ret;
1739}
1740
1741/*
1742 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1743 * level, unrecognized string will set the default level
1744 */
1745unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1746{
1747	unsigned int level = 0;
1748	int ret;
1749
1750	if (!type)
1751		return 0;
1752
1753	if (str[0] == ':') {
1754		ret = kstrtouint(str + 1, 10, &level);
1755		if (ret)
1756			level = 0;
1757	}
1758
1759	level = btrfs_compress_set_level(type, level);
1760
1761	return level;
1762}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2008 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/kernel.h>
   7#include <linux/bio.h>
   8#include <linux/file.h>
   9#include <linux/fs.h>
  10#include <linux/pagemap.h>
  11#include <linux/pagevec.h>
  12#include <linux/highmem.h>
  13#include <linux/kthread.h>
  14#include <linux/time.h>
  15#include <linux/init.h>
  16#include <linux/string.h>
  17#include <linux/backing-dev.h>
  18#include <linux/writeback.h>
  19#include <linux/psi.h>
  20#include <linux/slab.h>
  21#include <linux/sched/mm.h>
  22#include <linux/log2.h>
  23#include <linux/shrinker.h>
  24#include <crypto/hash.h>
  25#include "misc.h"
  26#include "ctree.h"
  27#include "fs.h"
 
  28#include "btrfs_inode.h"
  29#include "bio.h"
  30#include "ordered-data.h"
  31#include "compression.h"
  32#include "extent_io.h"
  33#include "extent_map.h"
  34#include "subpage.h"
  35#include "messages.h"
  36#include "super.h"
  37
  38static struct bio_set btrfs_compressed_bioset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
  41
  42const char* btrfs_compress_type2str(enum btrfs_compression_type type)
  43{
  44	switch (type) {
  45	case BTRFS_COMPRESS_ZLIB:
  46	case BTRFS_COMPRESS_LZO:
  47	case BTRFS_COMPRESS_ZSTD:
  48	case BTRFS_COMPRESS_NONE:
  49		return btrfs_compress_types[type];
  50	default:
  51		break;
  52	}
  53
  54	return NULL;
  55}
  56
  57static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
  58{
  59	return container_of(bbio, struct compressed_bio, bbio);
  60}
  61
  62static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
  63						   u64 start, blk_opf_t op,
  64						   btrfs_bio_end_io_t end_io)
  65{
  66	struct btrfs_bio *bbio;
  67
  68	bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
  69					  GFP_NOFS, &btrfs_compressed_bioset));
  70	btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
  71	bbio->inode = inode;
  72	bbio->file_offset = start;
  73	return to_compressed_bio(bbio);
  74}
  75
  76bool btrfs_compress_is_valid_type(const char *str, size_t len)
  77{
  78	int i;
  79
  80	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
  81		size_t comp_len = strlen(btrfs_compress_types[i]);
  82
  83		if (len < comp_len)
  84			continue;
  85
  86		if (!strncmp(btrfs_compress_types[i], str, comp_len))
  87			return true;
  88	}
  89	return false;
  90}
  91
  92static int compression_compress_pages(int type, struct list_head *ws,
  93               struct address_space *mapping, u64 start, struct page **pages,
  94               unsigned long *out_pages, unsigned long *total_in,
  95               unsigned long *total_out)
  96{
  97	switch (type) {
  98	case BTRFS_COMPRESS_ZLIB:
  99		return zlib_compress_pages(ws, mapping, start, pages,
 100				out_pages, total_in, total_out);
 101	case BTRFS_COMPRESS_LZO:
 102		return lzo_compress_pages(ws, mapping, start, pages,
 103				out_pages, total_in, total_out);
 104	case BTRFS_COMPRESS_ZSTD:
 105		return zstd_compress_pages(ws, mapping, start, pages,
 106				out_pages, total_in, total_out);
 107	case BTRFS_COMPRESS_NONE:
 108	default:
 109		/*
 110		 * This can happen when compression races with remount setting
 111		 * it to 'no compress', while caller doesn't call
 112		 * inode_need_compress() to check if we really need to
 113		 * compress.
 114		 *
 115		 * Not a big deal, just need to inform caller that we
 116		 * haven't allocated any pages yet.
 117		 */
 118		*out_pages = 0;
 119		return -E2BIG;
 120	}
 121}
 122
 123static int compression_decompress_bio(struct list_head *ws,
 124				      struct compressed_bio *cb)
 125{
 126	switch (cb->compress_type) {
 127	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
 128	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
 129	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
 130	case BTRFS_COMPRESS_NONE:
 131	default:
 132		/*
 133		 * This can't happen, the type is validated several times
 134		 * before we get here.
 135		 */
 136		BUG();
 137	}
 138}
 139
 140static int compression_decompress(int type, struct list_head *ws,
 141		const u8 *data_in, struct page *dest_page,
 142		unsigned long dest_pgoff, size_t srclen, size_t destlen)
 143{
 144	switch (type) {
 145	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
 146						dest_pgoff, srclen, destlen);
 147	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
 148						dest_pgoff, srclen, destlen);
 149	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
 150						dest_pgoff, srclen, destlen);
 151	case BTRFS_COMPRESS_NONE:
 152	default:
 153		/*
 154		 * This can't happen, the type is validated several times
 155		 * before we get here.
 156		 */
 157		BUG();
 158	}
 159}
 160
 161static void btrfs_free_compressed_pages(struct compressed_bio *cb)
 162{
 163	for (unsigned int i = 0; i < cb->nr_pages; i++)
 164		btrfs_free_compr_page(cb->compressed_pages[i]);
 165	kfree(cb->compressed_pages);
 166}
 167
 168static int btrfs_decompress_bio(struct compressed_bio *cb);
 169
 170/*
 171 * Global cache of last unused pages for compression/decompression.
 172 */
 173static struct btrfs_compr_pool {
 174	struct shrinker *shrinker;
 175	spinlock_t lock;
 176	struct list_head list;
 177	int count;
 178	int thresh;
 179} compr_pool;
 180
 181static unsigned long btrfs_compr_pool_count(struct shrinker *sh, struct shrink_control *sc)
 182{
 183	int ret;
 184
 185	/*
 186	 * We must not read the values more than once if 'ret' gets expanded in
 187	 * the return statement so we don't accidentally return a negative
 188	 * number, even if the first condition finds it positive.
 189	 */
 190	ret = READ_ONCE(compr_pool.count) - READ_ONCE(compr_pool.thresh);
 191
 192	return ret > 0 ? ret : 0;
 193}
 194
 195static unsigned long btrfs_compr_pool_scan(struct shrinker *sh, struct shrink_control *sc)
 
 196{
 197	struct list_head remove;
 198	struct list_head *tmp, *next;
 199	int freed;
 
 
 
 
 
 
 200
 201	if (compr_pool.count == 0)
 202		return SHRINK_STOP;
 203
 204	INIT_LIST_HEAD(&remove);
 205
 206	/* For now, just simply drain the whole list. */
 207	spin_lock(&compr_pool.lock);
 208	list_splice_init(&compr_pool.list, &remove);
 209	freed = compr_pool.count;
 210	compr_pool.count = 0;
 211	spin_unlock(&compr_pool.lock);
 212
 213	list_for_each_safe(tmp, next, &remove) {
 214		struct page *page = list_entry(tmp, struct page, lru);
 215
 216		ASSERT(page_ref_count(page) == 1);
 217		put_page(page);
 
 
 
 
 
 
 
 
 
 218	}
 219
 220	return freed;
 221}
 222
 223/*
 224 * Common wrappers for page allocation from compression wrappers
 
 
 
 
 
 
 
 225 */
 226struct page *btrfs_alloc_compr_page(void)
 227{
 228	struct page *page = NULL;
 
 
 
 
 
 229
 230	spin_lock(&compr_pool.lock);
 231	if (compr_pool.count > 0) {
 232		page = list_first_entry(&compr_pool.list, struct page, lru);
 233		list_del_init(&page->lru);
 234		compr_pool.count--;
 235	}
 236	spin_unlock(&compr_pool.lock);
 
 
 
 
 
 
 
 
 237
 238	if (page)
 239		return page;
 
 
 
 
 240
 241	return alloc_page(GFP_NOFS);
 242}
 
 
 
 243
 244void btrfs_free_compr_page(struct page *page)
 245{
 246	bool do_free = false;
 
 247
 248	spin_lock(&compr_pool.lock);
 249	if (compr_pool.count > compr_pool.thresh) {
 250		do_free = true;
 251	} else {
 252		list_add(&page->lru, &compr_pool.list);
 253		compr_pool.count++;
 
 
 
 
 254	}
 255	spin_unlock(&compr_pool.lock);
 256
 257	if (!do_free)
 258		return;
 
 
 
 
 259
 260	ASSERT(page_ref_count(page) == 1);
 261	put_page(page);
 262}
 
 
 
 
 263
 264static void end_bbio_comprssed_read(struct btrfs_bio *bbio)
 265{
 266	struct compressed_bio *cb = to_compressed_bio(bbio);
 267	blk_status_t status = bbio->bio.bi_status;
 268
 269	if (!status)
 270		status = errno_to_blk_status(btrfs_decompress_bio(cb));
 271
 272	btrfs_free_compressed_pages(cb);
 273	btrfs_bio_end_io(cb->orig_bbio, status);
 274	bio_put(&bbio->bio);
 275}
 276
 277/*
 278 * Clear the writeback bits on all of the file
 279 * pages for a compressed write
 280 */
 281static noinline void end_compressed_writeback(const struct compressed_bio *cb)
 
 282{
 283	struct inode *inode = &cb->bbio.inode->vfs_inode;
 284	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 285	unsigned long index = cb->start >> PAGE_SHIFT;
 286	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
 287	struct folio_batch fbatch;
 288	const int error = blk_status_to_errno(cb->bbio.bio.bi_status);
 289	int i;
 290	int ret;
 291
 292	if (error)
 293		mapping_set_error(inode->i_mapping, error);
 294
 295	folio_batch_init(&fbatch);
 296	while (index <= end_index) {
 297		ret = filemap_get_folios(inode->i_mapping, &index, end_index,
 298				&fbatch);
 299
 300		if (ret == 0)
 301			return;
 302
 
 
 
 
 
 
 
 
 
 303		for (i = 0; i < ret; i++) {
 304			struct folio *folio = fbatch.folios[i];
 305
 306			btrfs_folio_clamp_clear_writeback(fs_info, folio,
 307							  cb->start, cb->len);
 308		}
 309		folio_batch_release(&fbatch);
 
 310	}
 311	/* the inode may be gone now */
 312}
 313
 314static void btrfs_finish_compressed_write_work(struct work_struct *work)
 315{
 316	struct compressed_bio *cb =
 317		container_of(work, struct compressed_bio, write_end_work);
 318
 319	btrfs_finish_ordered_extent(cb->bbio.ordered, NULL, cb->start, cb->len,
 320				    cb->bbio.bio.bi_status == BLK_STS_OK);
 321
 322	if (cb->writeback)
 323		end_compressed_writeback(cb);
 324	/* Note, our inode could be gone now */
 325
 326	btrfs_free_compressed_pages(cb);
 327	bio_put(&cb->bbio.bio);
 328}
 329
 330/*
 331 * Do the cleanup once all the compressed pages hit the disk.  This will clear
 332 * writeback on the file pages and free the compressed pages.
 
 333 *
 334 * This also calls the writeback end hooks for the file pages so that metadata
 335 * and checksums can be updated in the file.
 336 */
 337static void end_bbio_comprssed_write(struct btrfs_bio *bbio)
 338{
 339	struct compressed_bio *cb = to_compressed_bio(bbio);
 340	struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
 
 
 
 
 
 341
 342	queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
 343}
 
 
 
 344
 345static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
 346{
 347	struct bio *bio = &cb->bbio.bio;
 348	u32 offset = 0;
 
 
 
 
 
 349
 350	while (offset < cb->compressed_len) {
 351		u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
 352
 353		/* Maximum compressed extent is smaller than bio size limit. */
 354		__bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
 355			       len, 0);
 356		offset += len;
 
 
 
 
 
 357	}
 
 
 
 
 
 
 358}
 359
 360/*
 361 * worker function to build and submit bios for previously compressed pages.
 362 * The corresponding pages in the inode should be marked for writeback
 363 * and the compressed pages should have a reference on them for dropping
 364 * when the IO is complete.
 365 *
 366 * This also checksums the file bytes and gets things ready for
 367 * the end io hooks.
 368 */
 369void btrfs_submit_compressed_write(struct btrfs_ordered_extent *ordered,
 370				   struct page **compressed_pages,
 371				   unsigned int nr_pages,
 372				   blk_opf_t write_flags,
 373				   bool writeback)
 
 
 374{
 375	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 376	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 
 377	struct compressed_bio *cb;
 
 
 
 
 
 
 378
 379	ASSERT(IS_ALIGNED(ordered->file_offset, fs_info->sectorsize));
 380	ASSERT(IS_ALIGNED(ordered->num_bytes, fs_info->sectorsize));
 381
 382	cb = alloc_compressed_bio(inode, ordered->file_offset,
 383				  REQ_OP_WRITE | write_flags,
 384				  end_bbio_comprssed_write);
 385	cb->start = ordered->file_offset;
 386	cb->len = ordered->num_bytes;
 
 
 387	cb->compressed_pages = compressed_pages;
 388	cb->compressed_len = ordered->disk_num_bytes;
 389	cb->writeback = writeback;
 390	INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
 391	cb->nr_pages = nr_pages;
 392	cb->bbio.bio.bi_iter.bi_sector = ordered->disk_bytenr >> SECTOR_SHIFT;
 393	cb->bbio.ordered = ordered;
 394	btrfs_add_compressed_bio_pages(cb);
 395
 396	btrfs_submit_bio(&cb->bbio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397}
 398
 399/*
 400 * Add extra pages in the same compressed file extent so that we don't need to
 401 * re-read the same extent again and again.
 402 *
 403 * NOTE: this won't work well for subpage, as for subpage read, we lock the
 404 * full page then submit bio for each compressed/regular extents.
 405 *
 406 * This means, if we have several sectors in the same page points to the same
 407 * on-disk compressed data, we will re-read the same extent many times and
 408 * this function can only help for the next page.
 409 */
 410static noinline int add_ra_bio_pages(struct inode *inode,
 411				     u64 compressed_end,
 412				     struct compressed_bio *cb,
 413				     int *memstall, unsigned long *pflags)
 414{
 415	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 416	unsigned long end_index;
 417	struct bio *orig_bio = &cb->orig_bbio->bio;
 418	u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
 419	u64 isize = i_size_read(inode);
 420	int ret;
 421	struct page *page;
 
 422	struct extent_map *em;
 423	struct address_space *mapping = inode->i_mapping;
 424	struct extent_map_tree *em_tree;
 425	struct extent_io_tree *tree;
 426	int sectors_missed = 0;
 
 427
 
 428	em_tree = &BTRFS_I(inode)->extent_tree;
 429	tree = &BTRFS_I(inode)->io_tree;
 430
 431	if (isize == 0)
 432		return 0;
 433
 434	/*
 435	 * For current subpage support, we only support 64K page size,
 436	 * which means maximum compressed extent size (128K) is just 2x page
 437	 * size.
 438	 * This makes readahead less effective, so here disable readahead for
 439	 * subpage for now, until full compressed write is supported.
 440	 */
 441	if (fs_info->sectorsize < PAGE_SIZE)
 442		return 0;
 443
 444	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
 445
 446	while (cur < compressed_end) {
 447		u64 page_end;
 448		u64 pg_index = cur >> PAGE_SHIFT;
 449		u32 add_size;
 450
 451		if (pg_index > end_index)
 452			break;
 453
 454		page = xa_load(&mapping->i_pages, pg_index);
 455		if (page && !xa_is_value(page)) {
 456			sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
 457					  fs_info->sectorsize_bits;
 458
 459			/* Beyond threshold, no need to continue */
 460			if (sectors_missed > 4)
 461				break;
 462
 463			/*
 464			 * Jump to next page start as we already have page for
 465			 * current offset.
 466			 */
 467			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 468			continue;
 469		}
 470
 471		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
 472								 ~__GFP_FS));
 473		if (!page)
 474			break;
 475
 476		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
 477			put_page(page);
 478			/* There is already a page, skip to page end */
 479			cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
 480			continue;
 481		}
 482
 483		if (!*memstall && PageWorkingset(page)) {
 484			psi_memstall_enter(pflags);
 485			*memstall = 1;
 486		}
 487
 488		ret = set_page_extent_mapped(page);
 489		if (ret < 0) {
 490			unlock_page(page);
 491			put_page(page);
 492			break;
 493		}
 494
 495		page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
 496		lock_extent(tree, cur, page_end, NULL);
 497		read_lock(&em_tree->lock);
 498		em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
 
 499		read_unlock(&em_tree->lock);
 500
 501		/*
 502		 * At this point, we have a locked page in the page cache for
 503		 * these bytes in the file.  But, we have to make sure they map
 504		 * to this compressed extent on disk.
 505		 */
 506		if (!em || cur < em->start ||
 507		    (cur + fs_info->sectorsize > extent_map_end(em)) ||
 508		    (em->block_start >> SECTOR_SHIFT) != orig_bio->bi_iter.bi_sector) {
 509			free_extent_map(em);
 510			unlock_extent(tree, cur, page_end, NULL);
 511			unlock_page(page);
 512			put_page(page);
 513			break;
 514		}
 515		free_extent_map(em);
 516
 517		if (page->index == end_index) {
 
 518			size_t zero_offset = offset_in_page(isize);
 519
 520			if (zero_offset) {
 521				int zeros;
 522				zeros = PAGE_SIZE - zero_offset;
 523				memzero_page(page, zero_offset, zeros);
 
 
 
 524			}
 525		}
 526
 527		add_size = min(em->start + em->len, page_end + 1) - cur;
 528		ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
 529		if (ret != add_size) {
 530			unlock_extent(tree, cur, page_end, NULL);
 
 
 
 
 531			unlock_page(page);
 532			put_page(page);
 533			break;
 534		}
 535		/*
 536		 * If it's subpage, we also need to increase its
 537		 * subpage::readers number, as at endio we will decrease
 538		 * subpage::readers and to unlock the page.
 539		 */
 540		if (fs_info->sectorsize < PAGE_SIZE)
 541			btrfs_subpage_start_reader(fs_info, page_folio(page),
 542						   cur, add_size);
 543		put_page(page);
 544		cur += add_size;
 545	}
 546	return 0;
 547}
 548
 549/*
 550 * for a compressed read, the bio we get passed has all the inode pages
 551 * in it.  We don't actually do IO on those pages but allocate new ones
 552 * to hold the compressed pages on disk.
 553 *
 554 * bio->bi_iter.bi_sector points to the compressed extent on disk
 555 * bio->bi_io_vec points to all of the inode pages
 556 *
 557 * After the compressed pages are read, we copy the bytes into the
 558 * bio we were passed and then call the bio end_io calls
 559 */
 560void btrfs_submit_compressed_read(struct btrfs_bio *bbio)
 
 561{
 562	struct btrfs_inode *inode = bbio->inode;
 563	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 564	struct extent_map_tree *em_tree = &inode->extent_tree;
 565	struct compressed_bio *cb;
 566	unsigned int compressed_len;
 567	u64 file_offset = bbio->file_offset;
 
 
 
 
 568	u64 em_len;
 569	u64 em_start;
 570	struct extent_map *em;
 571	unsigned long pflags;
 572	int memstall = 0;
 573	blk_status_t ret;
 574	int ret2;
 
 
 575
 576	/* we need the actual starting offset of this extent in the file */
 577	read_lock(&em_tree->lock);
 578	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
 
 
 579	read_unlock(&em_tree->lock);
 580	if (!em) {
 581		ret = BLK_STS_IOERR;
 582		goto out;
 583	}
 584
 585	ASSERT(extent_map_is_compressed(em));
 586	compressed_len = em->block_len;
 
 
 
 587
 588	cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
 589				  end_bbio_comprssed_read);
 
 
 
 590
 591	cb->start = em->orig_start;
 592	em_len = em->len;
 593	em_start = em->start;
 594
 595	cb->len = bbio->bio.bi_iter.bi_size;
 
 
 
 596	cb->compressed_len = compressed_len;
 597	cb->compress_type = extent_map_compression(em);
 598	cb->orig_bbio = bbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599
 600	free_extent_map(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 601
 602	cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
 603	cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
 604	if (!cb->compressed_pages) {
 605		ret = BLK_STS_RESOURCE;
 606		goto out_free_bio;
 607	}
 608
 609	ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages, 0);
 610	if (ret2) {
 611		ret = BLK_STS_RESOURCE;
 612		goto out_free_compressed_pages;
 
 
 613	}
 614
 615	add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
 616			 &pflags);
 
 
 
 617
 618	/* include any pages we added in add_ra-bio_pages */
 619	cb->len = bbio->bio.bi_iter.bi_size;
 620	cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
 621	btrfs_add_compressed_bio_pages(cb);
 622
 623	if (memstall)
 624		psi_memstall_leave(&pflags);
 625
 626	btrfs_submit_bio(&cb->bbio, 0);
 627	return;
 628
 629out_free_compressed_pages:
 630	kfree(cb->compressed_pages);
 631out_free_bio:
 632	bio_put(&cb->bbio.bio);
 633out:
 634	btrfs_bio_end_io(bbio, ret);
 
 635}
 636
 637/*
 638 * Heuristic uses systematic sampling to collect data from the input data
 639 * range, the logic can be tuned by the following constants:
 640 *
 641 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
 642 * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
 643 */
 644#define SAMPLING_READ_SIZE	(16)
 645#define SAMPLING_INTERVAL	(256)
 646
 647/*
 648 * For statistical analysis of the input data we consider bytes that form a
 649 * Galois Field of 256 objects. Each object has an attribute count, ie. how
 650 * many times the object appeared in the sample.
 651 */
 652#define BUCKET_SIZE		(256)
 653
 654/*
 655 * The size of the sample is based on a statistical sampling rule of thumb.
 656 * The common way is to perform sampling tests as long as the number of
 657 * elements in each cell is at least 5.
 658 *
 659 * Instead of 5, we choose 32 to obtain more accurate results.
 660 * If the data contain the maximum number of symbols, which is 256, we obtain a
 661 * sample size bound by 8192.
 662 *
 663 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
 664 * from up to 512 locations.
 665 */
 666#define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
 667				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
 668
 669struct bucket_item {
 670	u32 count;
 671};
 672
 673struct heuristic_ws {
 674	/* Partial copy of input data */
 675	u8 *sample;
 676	u32 sample_size;
 677	/* Buckets store counters for each byte value */
 678	struct bucket_item *bucket;
 679	/* Sorting buffer */
 680	struct bucket_item *bucket_b;
 681	struct list_head list;
 682};
 683
 684static struct workspace_manager heuristic_wsm;
 685
 686static void free_heuristic_ws(struct list_head *ws)
 687{
 688	struct heuristic_ws *workspace;
 689
 690	workspace = list_entry(ws, struct heuristic_ws, list);
 691
 692	kvfree(workspace->sample);
 693	kfree(workspace->bucket);
 694	kfree(workspace->bucket_b);
 695	kfree(workspace);
 696}
 697
 698static struct list_head *alloc_heuristic_ws(unsigned int level)
 699{
 700	struct heuristic_ws *ws;
 701
 702	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
 703	if (!ws)
 704		return ERR_PTR(-ENOMEM);
 705
 706	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
 707	if (!ws->sample)
 708		goto fail;
 709
 710	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
 711	if (!ws->bucket)
 712		goto fail;
 713
 714	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
 715	if (!ws->bucket_b)
 716		goto fail;
 717
 718	INIT_LIST_HEAD(&ws->list);
 719	return &ws->list;
 720fail:
 721	free_heuristic_ws(&ws->list);
 722	return ERR_PTR(-ENOMEM);
 723}
 724
 725const struct btrfs_compress_op btrfs_heuristic_compress = {
 726	.workspace_manager = &heuristic_wsm,
 727};
 728
 729static const struct btrfs_compress_op * const btrfs_compress_op[] = {
 730	/* The heuristic is represented as compression type 0 */
 731	&btrfs_heuristic_compress,
 732	&btrfs_zlib_compress,
 733	&btrfs_lzo_compress,
 734	&btrfs_zstd_compress,
 735};
 736
 737static struct list_head *alloc_workspace(int type, unsigned int level)
 738{
 739	switch (type) {
 740	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
 741	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
 742	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
 743	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
 744	default:
 745		/*
 746		 * This can't happen, the type is validated several times
 747		 * before we get here.
 748		 */
 749		BUG();
 750	}
 751}
 752
 753static void free_workspace(int type, struct list_head *ws)
 754{
 755	switch (type) {
 756	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
 757	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
 758	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
 759	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
 760	default:
 761		/*
 762		 * This can't happen, the type is validated several times
 763		 * before we get here.
 764		 */
 765		BUG();
 766	}
 767}
 768
 769static void btrfs_init_workspace_manager(int type)
 770{
 771	struct workspace_manager *wsm;
 772	struct list_head *workspace;
 773
 774	wsm = btrfs_compress_op[type]->workspace_manager;
 775	INIT_LIST_HEAD(&wsm->idle_ws);
 776	spin_lock_init(&wsm->ws_lock);
 777	atomic_set(&wsm->total_ws, 0);
 778	init_waitqueue_head(&wsm->ws_wait);
 779
 780	/*
 781	 * Preallocate one workspace for each compression type so we can
 782	 * guarantee forward progress in the worst case
 783	 */
 784	workspace = alloc_workspace(type, 0);
 785	if (IS_ERR(workspace)) {
 786		pr_warn(
 787	"BTRFS: cannot preallocate compression workspace, will try later\n");
 788	} else {
 789		atomic_set(&wsm->total_ws, 1);
 790		wsm->free_ws = 1;
 791		list_add(workspace, &wsm->idle_ws);
 792	}
 793}
 794
 795static void btrfs_cleanup_workspace_manager(int type)
 796{
 797	struct workspace_manager *wsman;
 798	struct list_head *ws;
 799
 800	wsman = btrfs_compress_op[type]->workspace_manager;
 801	while (!list_empty(&wsman->idle_ws)) {
 802		ws = wsman->idle_ws.next;
 803		list_del(ws);
 804		free_workspace(type, ws);
 805		atomic_dec(&wsman->total_ws);
 806	}
 807}
 808
 809/*
 810 * This finds an available workspace or allocates a new one.
 811 * If it's not possible to allocate a new one, waits until there's one.
 812 * Preallocation makes a forward progress guarantees and we do not return
 813 * errors.
 814 */
 815struct list_head *btrfs_get_workspace(int type, unsigned int level)
 816{
 817	struct workspace_manager *wsm;
 818	struct list_head *workspace;
 819	int cpus = num_online_cpus();
 820	unsigned nofs_flag;
 821	struct list_head *idle_ws;
 822	spinlock_t *ws_lock;
 823	atomic_t *total_ws;
 824	wait_queue_head_t *ws_wait;
 825	int *free_ws;
 826
 827	wsm = btrfs_compress_op[type]->workspace_manager;
 828	idle_ws	 = &wsm->idle_ws;
 829	ws_lock	 = &wsm->ws_lock;
 830	total_ws = &wsm->total_ws;
 831	ws_wait	 = &wsm->ws_wait;
 832	free_ws	 = &wsm->free_ws;
 833
 834again:
 835	spin_lock(ws_lock);
 836	if (!list_empty(idle_ws)) {
 837		workspace = idle_ws->next;
 838		list_del(workspace);
 839		(*free_ws)--;
 840		spin_unlock(ws_lock);
 841		return workspace;
 842
 843	}
 844	if (atomic_read(total_ws) > cpus) {
 845		DEFINE_WAIT(wait);
 846
 847		spin_unlock(ws_lock);
 848		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
 849		if (atomic_read(total_ws) > cpus && !*free_ws)
 850			schedule();
 851		finish_wait(ws_wait, &wait);
 852		goto again;
 853	}
 854	atomic_inc(total_ws);
 855	spin_unlock(ws_lock);
 856
 857	/*
 858	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
 859	 * to turn it off here because we might get called from the restricted
 860	 * context of btrfs_compress_bio/btrfs_compress_pages
 861	 */
 862	nofs_flag = memalloc_nofs_save();
 863	workspace = alloc_workspace(type, level);
 864	memalloc_nofs_restore(nofs_flag);
 865
 866	if (IS_ERR(workspace)) {
 867		atomic_dec(total_ws);
 868		wake_up(ws_wait);
 869
 870		/*
 871		 * Do not return the error but go back to waiting. There's a
 872		 * workspace preallocated for each type and the compression
 873		 * time is bounded so we get to a workspace eventually. This
 874		 * makes our caller's life easier.
 875		 *
 876		 * To prevent silent and low-probability deadlocks (when the
 877		 * initial preallocation fails), check if there are any
 878		 * workspaces at all.
 879		 */
 880		if (atomic_read(total_ws) == 0) {
 881			static DEFINE_RATELIMIT_STATE(_rs,
 882					/* once per minute */ 60 * HZ,
 883					/* no burst */ 1);
 884
 885			if (__ratelimit(&_rs)) {
 886				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
 887			}
 888		}
 889		goto again;
 890	}
 891	return workspace;
 892}
 893
 894static struct list_head *get_workspace(int type, int level)
 895{
 896	switch (type) {
 897	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
 898	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
 899	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
 900	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
 901	default:
 902		/*
 903		 * This can't happen, the type is validated several times
 904		 * before we get here.
 905		 */
 906		BUG();
 907	}
 908}
 909
 910/*
 911 * put a workspace struct back on the list or free it if we have enough
 912 * idle ones sitting around
 913 */
 914void btrfs_put_workspace(int type, struct list_head *ws)
 915{
 916	struct workspace_manager *wsm;
 917	struct list_head *idle_ws;
 918	spinlock_t *ws_lock;
 919	atomic_t *total_ws;
 920	wait_queue_head_t *ws_wait;
 921	int *free_ws;
 922
 923	wsm = btrfs_compress_op[type]->workspace_manager;
 924	idle_ws	 = &wsm->idle_ws;
 925	ws_lock	 = &wsm->ws_lock;
 926	total_ws = &wsm->total_ws;
 927	ws_wait	 = &wsm->ws_wait;
 928	free_ws	 = &wsm->free_ws;
 929
 930	spin_lock(ws_lock);
 931	if (*free_ws <= num_online_cpus()) {
 932		list_add(ws, idle_ws);
 933		(*free_ws)++;
 934		spin_unlock(ws_lock);
 935		goto wake;
 936	}
 937	spin_unlock(ws_lock);
 938
 939	free_workspace(type, ws);
 940	atomic_dec(total_ws);
 941wake:
 942	cond_wake_up(ws_wait);
 943}
 944
 945static void put_workspace(int type, struct list_head *ws)
 946{
 947	switch (type) {
 948	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
 949	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
 950	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
 951	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
 952	default:
 953		/*
 954		 * This can't happen, the type is validated several times
 955		 * before we get here.
 956		 */
 957		BUG();
 958	}
 959}
 960
 961/*
 962 * Adjust @level according to the limits of the compression algorithm or
 963 * fallback to default
 964 */
 965static unsigned int btrfs_compress_set_level(int type, unsigned level)
 966{
 967	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
 968
 969	if (level == 0)
 970		level = ops->default_level;
 971	else
 972		level = min(level, ops->max_level);
 973
 974	return level;
 975}
 976
 977/*
 978 * Given an address space and start and length, compress the bytes into @pages
 979 * that are allocated on demand.
 980 *
 981 * @type_level is encoded algorithm and level, where level 0 means whatever
 982 * default the algorithm chooses and is opaque here;
 983 * - compression algo are 0-3
 984 * - the level are bits 4-7
 985 *
 986 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
 987 * and returns number of actually allocated pages
 988 *
 989 * @total_in is used to return the number of bytes actually read.  It
 990 * may be smaller than the input length if we had to exit early because we
 991 * ran out of room in the pages array or because we cross the
 992 * max_out threshold.
 993 *
 994 * @total_out is an in/out parameter, must be set to the input length and will
 995 * be also used to return the total number of compressed bytes
 
 
 
 996 */
 997int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
 998			 u64 start, struct page **pages,
 999			 unsigned long *out_pages,
1000			 unsigned long *total_in,
1001			 unsigned long *total_out)
1002{
1003	int type = btrfs_compress_type(type_level);
1004	int level = btrfs_compress_level(type_level);
1005	struct list_head *workspace;
1006	int ret;
1007
1008	level = btrfs_compress_set_level(type, level);
1009	workspace = get_workspace(type, level);
1010	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1011					 out_pages, total_in, total_out);
1012	put_workspace(type, workspace);
1013	return ret;
1014}
1015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016static int btrfs_decompress_bio(struct compressed_bio *cb)
1017{
1018	struct list_head *workspace;
1019	int ret;
1020	int type = cb->compress_type;
1021
1022	workspace = get_workspace(type, 0);
1023	ret = compression_decompress_bio(workspace, cb);
1024	put_workspace(type, workspace);
1025
1026	if (!ret)
1027		zero_fill_bio(&cb->orig_bbio->bio);
1028	return ret;
1029}
1030
1031/*
1032 * a less complex decompression routine.  Our compressed data fits in a
1033 * single page, and we want to read a single page out of it.
1034 * start_byte tells us the offset into the compressed data we're interested in
1035 */
1036int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
1037		     unsigned long dest_pgoff, size_t srclen, size_t destlen)
1038{
1039	struct btrfs_fs_info *fs_info = page_to_fs_info(dest_page);
1040	struct list_head *workspace;
1041	const u32 sectorsize = fs_info->sectorsize;
1042	int ret;
1043
1044	/*
1045	 * The full destination page range should not exceed the page size.
1046	 * And the @destlen should not exceed sectorsize, as this is only called for
1047	 * inline file extents, which should not exceed sectorsize.
1048	 */
1049	ASSERT(dest_pgoff + destlen <= PAGE_SIZE && destlen <= sectorsize);
1050
1051	workspace = get_workspace(type, 0);
1052	ret = compression_decompress(type, workspace, data_in, dest_page,
1053				     dest_pgoff, srclen, destlen);
1054	put_workspace(type, workspace);
1055
1056	return ret;
1057}
1058
1059int __init btrfs_init_compress(void)
1060{
1061	if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
1062			offsetof(struct compressed_bio, bbio.bio),
1063			BIOSET_NEED_BVECS))
1064		return -ENOMEM;
1065
1066	compr_pool.shrinker = shrinker_alloc(SHRINKER_NONSLAB, "btrfs-compr-pages");
1067	if (!compr_pool.shrinker)
1068		return -ENOMEM;
1069
1070	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1071	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1072	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1073	zstd_init_workspace_manager();
1074
1075	spin_lock_init(&compr_pool.lock);
1076	INIT_LIST_HEAD(&compr_pool.list);
1077	compr_pool.count = 0;
1078	/* 128K / 4K = 32, for 8 threads is 256 pages. */
1079	compr_pool.thresh = BTRFS_MAX_COMPRESSED / PAGE_SIZE * 8;
1080	compr_pool.shrinker->count_objects = btrfs_compr_pool_count;
1081	compr_pool.shrinker->scan_objects = btrfs_compr_pool_scan;
1082	compr_pool.shrinker->batch = 32;
1083	compr_pool.shrinker->seeks = DEFAULT_SEEKS;
1084	shrinker_register(compr_pool.shrinker);
1085
1086	return 0;
1087}
1088
1089void __cold btrfs_exit_compress(void)
1090{
1091	/* For now scan drains all pages and does not touch the parameters. */
1092	btrfs_compr_pool_scan(NULL, NULL);
1093	shrinker_free(compr_pool.shrinker);
1094
1095	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1096	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1097	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1098	zstd_cleanup_workspace_manager();
1099	bioset_exit(&btrfs_compressed_bioset);
1100}
1101
1102/*
1103 * Copy decompressed data from working buffer to pages.
1104 *
1105 * @buf:		The decompressed data buffer
1106 * @buf_len:		The decompressed data length
1107 * @decompressed:	Number of bytes that are already decompressed inside the
1108 * 			compressed extent
1109 * @cb:			The compressed extent descriptor
1110 * @orig_bio:		The original bio that the caller wants to read for
1111 *
1112 * An easier to understand graph is like below:
1113 *
1114 * 		|<- orig_bio ->|     |<- orig_bio->|
1115 * 	|<-------      full decompressed extent      ----->|
1116 * 	|<-----------    @cb range   ---->|
1117 * 	|			|<-- @buf_len -->|
1118 * 	|<--- @decompressed --->|
1119 *
1120 * Note that, @cb can be a subpage of the full decompressed extent, but
1121 * @cb->start always has the same as the orig_file_offset value of the full
1122 * decompressed extent.
1123 *
1124 * When reading compressed extent, we have to read the full compressed extent,
1125 * while @orig_bio may only want part of the range.
1126 * Thus this function will ensure only data covered by @orig_bio will be copied
1127 * to.
1128 *
1129 * Return 0 if we have copied all needed contents for @orig_bio.
1130 * Return >0 if we need continue decompress.
1131 */
1132int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1133			      struct compressed_bio *cb, u32 decompressed)
1134{
1135	struct bio *orig_bio = &cb->orig_bbio->bio;
1136	/* Offset inside the full decompressed extent */
1137	u32 cur_offset;
1138
1139	cur_offset = decompressed;
1140	/* The main loop to do the copy */
1141	while (cur_offset < decompressed + buf_len) {
1142		struct bio_vec bvec;
1143		size_t copy_len;
1144		u32 copy_start;
1145		/* Offset inside the full decompressed extent */
1146		u32 bvec_offset;
 
 
 
 
 
 
 
1147
1148		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1149		/*
1150		 * cb->start may underflow, but subtracting that value can still
1151		 * give us correct offset inside the full decompressed extent.
1152		 */
1153		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
 
 
 
 
 
1154
1155		/* Haven't reached the bvec range, exit */
1156		if (decompressed + buf_len <= bvec_offset)
1157			return 1;
1158
1159		copy_start = max(cur_offset, bvec_offset);
1160		copy_len = min(bvec_offset + bvec.bv_len,
1161			       decompressed + buf_len) - copy_start;
1162		ASSERT(copy_len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163
1164		/*
1165		 * Extra range check to ensure we didn't go beyond
1166		 * @buf + @buf_len.
 
 
1167		 */
1168		ASSERT(copy_start - decompressed < buf_len);
1169		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1170			       buf + copy_start - decompressed, copy_len);
1171		cur_offset += copy_len;
1172
1173		bio_advance(orig_bio, copy_len);
1174		/* Finished the bio */
1175		if (!orig_bio->bi_iter.bi_size)
1176			return 0;
 
 
 
 
 
 
 
 
 
 
 
1177	}
 
1178	return 1;
1179}
1180
1181/*
1182 * Shannon Entropy calculation
1183 *
1184 * Pure byte distribution analysis fails to determine compressibility of data.
1185 * Try calculating entropy to estimate the average minimum number of bits
1186 * needed to encode the sampled data.
1187 *
1188 * For convenience, return the percentage of needed bits, instead of amount of
1189 * bits directly.
1190 *
1191 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1192 *			    and can be compressible with high probability
1193 *
1194 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1195 *
1196 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1197 */
1198#define ENTROPY_LVL_ACEPTABLE		(65)
1199#define ENTROPY_LVL_HIGH		(80)
1200
1201/*
1202 * For increasead precision in shannon_entropy calculation,
1203 * let's do pow(n, M) to save more digits after comma:
1204 *
1205 * - maximum int bit length is 64
1206 * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1207 * - 13 * 4 = 52 < 64		-> M = 4
1208 *
1209 * So use pow(n, 4).
1210 */
1211static inline u32 ilog2_w(u64 n)
1212{
1213	return ilog2(n * n * n * n);
1214}
1215
1216static u32 shannon_entropy(struct heuristic_ws *ws)
1217{
1218	const u32 entropy_max = 8 * ilog2_w(2);
1219	u32 entropy_sum = 0;
1220	u32 p, p_base, sz_base;
1221	u32 i;
1222
1223	sz_base = ilog2_w(ws->sample_size);
1224	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1225		p = ws->bucket[i].count;
1226		p_base = ilog2_w(p);
1227		entropy_sum += p * (sz_base - p_base);
1228	}
1229
1230	entropy_sum /= ws->sample_size;
1231	return entropy_sum * 100 / entropy_max;
1232}
1233
1234#define RADIX_BASE		4U
1235#define COUNTERS_SIZE		(1U << RADIX_BASE)
1236
1237static u8 get4bits(u64 num, int shift) {
1238	u8 low4bits;
1239
1240	num >>= shift;
1241	/* Reverse order */
1242	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1243	return low4bits;
1244}
1245
1246/*
1247 * Use 4 bits as radix base
1248 * Use 16 u32 counters for calculating new position in buf array
1249 *
1250 * @array     - array that will be sorted
1251 * @array_buf - buffer array to store sorting results
1252 *              must be equal in size to @array
1253 * @num       - array size
1254 */
1255static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1256		       int num)
1257{
1258	u64 max_num;
1259	u64 buf_num;
1260	u32 counters[COUNTERS_SIZE];
1261	u32 new_addr;
1262	u32 addr;
1263	int bitlen;
1264	int shift;
1265	int i;
1266
1267	/*
1268	 * Try avoid useless loop iterations for small numbers stored in big
1269	 * counters.  Example: 48 33 4 ... in 64bit array
1270	 */
1271	max_num = array[0].count;
1272	for (i = 1; i < num; i++) {
1273		buf_num = array[i].count;
1274		if (buf_num > max_num)
1275			max_num = buf_num;
1276	}
1277
1278	buf_num = ilog2(max_num);
1279	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1280
1281	shift = 0;
1282	while (shift < bitlen) {
1283		memset(counters, 0, sizeof(counters));
1284
1285		for (i = 0; i < num; i++) {
1286			buf_num = array[i].count;
1287			addr = get4bits(buf_num, shift);
1288			counters[addr]++;
1289		}
1290
1291		for (i = 1; i < COUNTERS_SIZE; i++)
1292			counters[i] += counters[i - 1];
1293
1294		for (i = num - 1; i >= 0; i--) {
1295			buf_num = array[i].count;
1296			addr = get4bits(buf_num, shift);
1297			counters[addr]--;
1298			new_addr = counters[addr];
1299			array_buf[new_addr] = array[i];
1300		}
1301
1302		shift += RADIX_BASE;
1303
1304		/*
1305		 * Normal radix expects to move data from a temporary array, to
1306		 * the main one.  But that requires some CPU time. Avoid that
1307		 * by doing another sort iteration to original array instead of
1308		 * memcpy()
1309		 */
1310		memset(counters, 0, sizeof(counters));
1311
1312		for (i = 0; i < num; i ++) {
1313			buf_num = array_buf[i].count;
1314			addr = get4bits(buf_num, shift);
1315			counters[addr]++;
1316		}
1317
1318		for (i = 1; i < COUNTERS_SIZE; i++)
1319			counters[i] += counters[i - 1];
1320
1321		for (i = num - 1; i >= 0; i--) {
1322			buf_num = array_buf[i].count;
1323			addr = get4bits(buf_num, shift);
1324			counters[addr]--;
1325			new_addr = counters[addr];
1326			array[new_addr] = array_buf[i];
1327		}
1328
1329		shift += RADIX_BASE;
1330	}
1331}
1332
1333/*
1334 * Size of the core byte set - how many bytes cover 90% of the sample
1335 *
1336 * There are several types of structured binary data that use nearly all byte
1337 * values. The distribution can be uniform and counts in all buckets will be
1338 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1339 *
1340 * Other possibility is normal (Gaussian) distribution, where the data could
1341 * be potentially compressible, but we have to take a few more steps to decide
1342 * how much.
1343 *
1344 * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1345 *                       compression algo can easy fix that
1346 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1347 *                       probability is not compressible
1348 */
1349#define BYTE_CORE_SET_LOW		(64)
1350#define BYTE_CORE_SET_HIGH		(200)
1351
1352static int byte_core_set_size(struct heuristic_ws *ws)
1353{
1354	u32 i;
1355	u32 coreset_sum = 0;
1356	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1357	struct bucket_item *bucket = ws->bucket;
1358
1359	/* Sort in reverse order */
1360	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1361
1362	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1363		coreset_sum += bucket[i].count;
1364
1365	if (coreset_sum > core_set_threshold)
1366		return i;
1367
1368	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1369		coreset_sum += bucket[i].count;
1370		if (coreset_sum > core_set_threshold)
1371			break;
1372	}
1373
1374	return i;
1375}
1376
1377/*
1378 * Count byte values in buckets.
1379 * This heuristic can detect textual data (configs, xml, json, html, etc).
1380 * Because in most text-like data byte set is restricted to limited number of
1381 * possible characters, and that restriction in most cases makes data easy to
1382 * compress.
1383 *
1384 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1385 *	less - compressible
1386 *	more - need additional analysis
1387 */
1388#define BYTE_SET_THRESHOLD		(64)
1389
1390static u32 byte_set_size(const struct heuristic_ws *ws)
1391{
1392	u32 i;
1393	u32 byte_set_size = 0;
1394
1395	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1396		if (ws->bucket[i].count > 0)
1397			byte_set_size++;
1398	}
1399
1400	/*
1401	 * Continue collecting count of byte values in buckets.  If the byte
1402	 * set size is bigger then the threshold, it's pointless to continue,
1403	 * the detection technique would fail for this type of data.
1404	 */
1405	for (; i < BUCKET_SIZE; i++) {
1406		if (ws->bucket[i].count > 0) {
1407			byte_set_size++;
1408			if (byte_set_size > BYTE_SET_THRESHOLD)
1409				return byte_set_size;
1410		}
1411	}
1412
1413	return byte_set_size;
1414}
1415
1416static bool sample_repeated_patterns(struct heuristic_ws *ws)
1417{
1418	const u32 half_of_sample = ws->sample_size / 2;
1419	const u8 *data = ws->sample;
1420
1421	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1422}
1423
1424static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1425				     struct heuristic_ws *ws)
1426{
1427	struct page *page;
1428	u64 index, index_end;
1429	u32 i, curr_sample_pos;
1430	u8 *in_data;
1431
1432	/*
1433	 * Compression handles the input data by chunks of 128KiB
1434	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1435	 *
1436	 * We do the same for the heuristic and loop over the whole range.
1437	 *
1438	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1439	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1440	 */
1441	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1442		end = start + BTRFS_MAX_UNCOMPRESSED;
1443
1444	index = start >> PAGE_SHIFT;
1445	index_end = end >> PAGE_SHIFT;
1446
1447	/* Don't miss unaligned end */
1448	if (!PAGE_ALIGNED(end))
1449		index_end++;
1450
1451	curr_sample_pos = 0;
1452	while (index < index_end) {
1453		page = find_get_page(inode->i_mapping, index);
1454		in_data = kmap_local_page(page);
1455		/* Handle case where the start is not aligned to PAGE_SIZE */
1456		i = start % PAGE_SIZE;
1457		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1458			/* Don't sample any garbage from the last page */
1459			if (start > end - SAMPLING_READ_SIZE)
1460				break;
1461			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1462					SAMPLING_READ_SIZE);
1463			i += SAMPLING_INTERVAL;
1464			start += SAMPLING_INTERVAL;
1465			curr_sample_pos += SAMPLING_READ_SIZE;
1466		}
1467		kunmap_local(in_data);
1468		put_page(page);
1469
1470		index++;
1471	}
1472
1473	ws->sample_size = curr_sample_pos;
1474}
1475
1476/*
1477 * Compression heuristic.
 
 
 
 
 
1478 *
1479 * The following types of analysis can be performed:
1480 * - detect mostly zero data
1481 * - detect data with low "byte set" size (text, etc)
1482 * - detect data with low/high "core byte" set
1483 *
1484 * Return non-zero if the compression should be done, 0 otherwise.
1485 */
1486int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1487{
1488	struct list_head *ws_list = get_workspace(0, 0);
1489	struct heuristic_ws *ws;
1490	u32 i;
1491	u8 byte;
1492	int ret = 0;
1493
1494	ws = list_entry(ws_list, struct heuristic_ws, list);
1495
1496	heuristic_collect_sample(inode, start, end, ws);
1497
1498	if (sample_repeated_patterns(ws)) {
1499		ret = 1;
1500		goto out;
1501	}
1502
1503	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1504
1505	for (i = 0; i < ws->sample_size; i++) {
1506		byte = ws->sample[i];
1507		ws->bucket[byte].count++;
1508	}
1509
1510	i = byte_set_size(ws);
1511	if (i < BYTE_SET_THRESHOLD) {
1512		ret = 2;
1513		goto out;
1514	}
1515
1516	i = byte_core_set_size(ws);
1517	if (i <= BYTE_CORE_SET_LOW) {
1518		ret = 3;
1519		goto out;
1520	}
1521
1522	if (i >= BYTE_CORE_SET_HIGH) {
1523		ret = 0;
1524		goto out;
1525	}
1526
1527	i = shannon_entropy(ws);
1528	if (i <= ENTROPY_LVL_ACEPTABLE) {
1529		ret = 4;
1530		goto out;
1531	}
1532
1533	/*
1534	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1535	 * needed to give green light to compression.
1536	 *
1537	 * For now just assume that compression at that level is not worth the
1538	 * resources because:
1539	 *
1540	 * 1. it is possible to defrag the data later
1541	 *
1542	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1543	 * values, every bucket has counter at level ~54. The heuristic would
1544	 * be confused. This can happen when data have some internal repeated
1545	 * patterns like "abbacbbc...". This can be detected by analyzing
1546	 * pairs of bytes, which is too costly.
1547	 */
1548	if (i < ENTROPY_LVL_HIGH) {
1549		ret = 5;
1550		goto out;
1551	} else {
1552		ret = 0;
1553		goto out;
1554	}
1555
1556out:
1557	put_workspace(0, ws_list);
1558	return ret;
1559}
1560
1561/*
1562 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1563 * level, unrecognized string will set the default level
1564 */
1565unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1566{
1567	unsigned int level = 0;
1568	int ret;
1569
1570	if (!type)
1571		return 0;
1572
1573	if (str[0] == ':') {
1574		ret = kstrtouint(str + 1, 10, &level);
1575		if (ret)
1576			level = 0;
1577	}
1578
1579	level = btrfs_compress_set_level(type, level);
1580
1581	return level;
1582}