Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IOMMU API for Rockchip
   4 *
   5 * Module Authors:	Simon Xue <xxm@rock-chips.com>
   6 *			Daniel Kurtz <djkurtz@chromium.org>
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
  13#include <linux/dma-iommu.h>
  14#include <linux/dma-mapping.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/io.h>
  18#include <linux/iommu.h>
  19#include <linux/iopoll.h>
  20#include <linux/list.h>
  21#include <linux/mm.h>
  22#include <linux/init.h>
  23#include <linux/of.h>
  24#include <linux/of_iommu.h>
  25#include <linux/of_platform.h>
  26#include <linux/platform_device.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/slab.h>
  29#include <linux/spinlock.h>
  30
  31/** MMU register offsets */
  32#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
  33#define RK_MMU_STATUS		0x04
  34#define RK_MMU_COMMAND		0x08
  35#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
  36#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
  37#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
  38#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
  39#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
  40#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
  41#define RK_MMU_AUTO_GATING	0x24
  42
  43#define DTE_ADDR_DUMMY		0xCAFEBABE
  44
  45#define RK_MMU_POLL_PERIOD_US		100
  46#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
  47#define RK_MMU_POLL_TIMEOUT_US		1000
  48
  49/* RK_MMU_STATUS fields */
  50#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
  51#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
  52#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
  53#define RK_MMU_STATUS_IDLE                 BIT(3)
  54#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
  55#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
  56#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
  57
  58/* RK_MMU_COMMAND command values */
  59#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
  60#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
  61#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
  62#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
  63#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
  64#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
  65#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
  66
  67/* RK_MMU_INT_* register fields */
  68#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
  69#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
  70#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
  71
  72#define NUM_DT_ENTRIES 1024
  73#define NUM_PT_ENTRIES 1024
  74
  75#define SPAGE_ORDER 12
  76#define SPAGE_SIZE (1 << SPAGE_ORDER)
  77
  78 /*
  79  * Support mapping any size that fits in one page table:
  80  *   4 KiB to 4 MiB
  81  */
  82#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
  83
  84struct rk_iommu_domain {
  85	struct list_head iommus;
  86	u32 *dt; /* page directory table */
  87	dma_addr_t dt_dma;
  88	spinlock_t iommus_lock; /* lock for iommus list */
  89	spinlock_t dt_lock; /* lock for modifying page directory table */
  90
  91	struct iommu_domain domain;
  92};
  93
  94/* list of clocks required by IOMMU */
  95static const char * const rk_iommu_clocks[] = {
  96	"aclk", "iface",
  97};
  98
 
 
 
 
 
 
 
 
  99struct rk_iommu {
 100	struct device *dev;
 101	void __iomem **bases;
 102	int num_mmu;
 103	int num_irq;
 104	struct clk_bulk_data *clocks;
 105	int num_clocks;
 106	bool reset_disabled;
 107	struct iommu_device iommu;
 108	struct list_head node; /* entry in rk_iommu_domain.iommus */
 109	struct iommu_domain *domain; /* domain to which iommu is attached */
 110	struct iommu_group *group;
 111};
 112
 113struct rk_iommudata {
 114	struct device_link *link; /* runtime PM link from IOMMU to master */
 115	struct rk_iommu *iommu;
 116};
 117
 118static struct device *dma_dev;
 
 
 119
 120static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
 121				  unsigned int count)
 122{
 123	size_t size = count * sizeof(u32); /* count of u32 entry */
 124
 125	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
 126}
 127
 128static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
 129{
 130	return container_of(dom, struct rk_iommu_domain, domain);
 131}
 132
 133/*
 134 * The Rockchip rk3288 iommu uses a 2-level page table.
 135 * The first level is the "Directory Table" (DT).
 136 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
 137 * to a "Page Table".
 138 * The second level is the 1024 Page Tables (PT).
 139 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
 140 * a 4 KB page of physical memory.
 141 *
 142 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
 143 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
 144 * address of the start of the DT page.
 145 *
 146 * The structure of the page table is as follows:
 147 *
 148 *                   DT
 149 * MMU_DTE_ADDR -> +-----+
 150 *                 |     |
 151 *                 +-----+     PT
 152 *                 | DTE | -> +-----+
 153 *                 +-----+    |     |     Memory
 154 *                 |     |    +-----+     Page
 155 *                 |     |    | PTE | -> +-----+
 156 *                 +-----+    +-----+    |     |
 157 *                            |     |    |     |
 158 *                            |     |    |     |
 159 *                            +-----+    |     |
 160 *                                       |     |
 161 *                                       |     |
 162 *                                       +-----+
 163 */
 164
 165/*
 166 * Each DTE has a PT address and a valid bit:
 167 * +---------------------+-----------+-+
 168 * | PT address          | Reserved  |V|
 169 * +---------------------+-----------+-+
 170 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
 171 *  11: 1 - Reserved
 172 *      0 - 1 if PT @ PT address is valid
 173 */
 174#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
 175#define RK_DTE_PT_VALID           BIT(0)
 176
 177static inline phys_addr_t rk_dte_pt_address(u32 dte)
 178{
 179	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
 180}
 181
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182static inline bool rk_dte_is_pt_valid(u32 dte)
 183{
 184	return dte & RK_DTE_PT_VALID;
 185}
 186
 187static inline u32 rk_mk_dte(dma_addr_t pt_dma)
 188{
 189	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
 190}
 191
 
 
 
 
 
 
 
 
 
 192/*
 193 * Each PTE has a Page address, some flags and a valid bit:
 194 * +---------------------+---+-------+-+
 195 * | Page address        |Rsv| Flags |V|
 196 * +---------------------+---+-------+-+
 197 *  31:12 - Page address (Pages always start on a 4 KB boundary)
 198 *  11: 9 - Reserved
 199 *   8: 1 - Flags
 200 *      8 - Read allocate - allocate cache space on read misses
 201 *      7 - Read cache - enable cache & prefetch of data
 202 *      6 - Write buffer - enable delaying writes on their way to memory
 203 *      5 - Write allocate - allocate cache space on write misses
 204 *      4 - Write cache - different writes can be merged together
 205 *      3 - Override cache attributes
 206 *          if 1, bits 4-8 control cache attributes
 207 *          if 0, the system bus defaults are used
 208 *      2 - Writable
 209 *      1 - Readable
 210 *      0 - 1 if Page @ Page address is valid
 211 */
 212#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
 213#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
 214#define RK_PTE_PAGE_WRITABLE      BIT(2)
 215#define RK_PTE_PAGE_READABLE      BIT(1)
 216#define RK_PTE_PAGE_VALID         BIT(0)
 217
 218static inline phys_addr_t rk_pte_page_address(u32 pte)
 219{
 220	return (phys_addr_t)pte & RK_PTE_PAGE_ADDRESS_MASK;
 221}
 222
 223static inline bool rk_pte_is_page_valid(u32 pte)
 224{
 225	return pte & RK_PTE_PAGE_VALID;
 226}
 227
 228/* TODO: set cache flags per prot IOMMU_CACHE */
 229static u32 rk_mk_pte(phys_addr_t page, int prot)
 230{
 231	u32 flags = 0;
 232	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 233	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 234	page &= RK_PTE_PAGE_ADDRESS_MASK;
 235	return page | flags | RK_PTE_PAGE_VALID;
 236}
 237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238static u32 rk_mk_pte_invalid(u32 pte)
 239{
 240	return pte & ~RK_PTE_PAGE_VALID;
 241}
 242
 243/*
 244 * rk3288 iova (IOMMU Virtual Address) format
 245 *  31       22.21       12.11          0
 246 * +-----------+-----------+-------------+
 247 * | DTE index | PTE index | Page offset |
 248 * +-----------+-----------+-------------+
 249 *  31:22 - DTE index   - index of DTE in DT
 250 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
 251 *  11: 0 - Page offset - offset into page @ PTE.page_address
 252 */
 253#define RK_IOVA_DTE_MASK    0xffc00000
 254#define RK_IOVA_DTE_SHIFT   22
 255#define RK_IOVA_PTE_MASK    0x003ff000
 256#define RK_IOVA_PTE_SHIFT   12
 257#define RK_IOVA_PAGE_MASK   0x00000fff
 258#define RK_IOVA_PAGE_SHIFT  0
 259
 260static u32 rk_iova_dte_index(dma_addr_t iova)
 261{
 262	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
 263}
 264
 265static u32 rk_iova_pte_index(dma_addr_t iova)
 266{
 267	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
 268}
 269
 270static u32 rk_iova_page_offset(dma_addr_t iova)
 271{
 272	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
 273}
 274
 275static u32 rk_iommu_read(void __iomem *base, u32 offset)
 276{
 277	return readl(base + offset);
 278}
 279
 280static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
 281{
 282	writel(value, base + offset);
 283}
 284
 285static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
 286{
 287	int i;
 288
 289	for (i = 0; i < iommu->num_mmu; i++)
 290		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
 291}
 292
 293static void rk_iommu_base_command(void __iomem *base, u32 command)
 294{
 295	writel(command, base + RK_MMU_COMMAND);
 296}
 297static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
 298			       size_t size)
 299{
 300	int i;
 301	dma_addr_t iova_end = iova_start + size;
 302	/*
 303	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
 304	 * entire iotlb rather than iterate over individual iovas.
 305	 */
 306	for (i = 0; i < iommu->num_mmu; i++) {
 307		dma_addr_t iova;
 308
 309		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
 310			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
 311	}
 312}
 313
 314static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
 315{
 316	bool active = true;
 317	int i;
 318
 319	for (i = 0; i < iommu->num_mmu; i++)
 320		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 321					   RK_MMU_STATUS_STALL_ACTIVE);
 322
 323	return active;
 324}
 325
 326static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
 327{
 328	bool enable = true;
 329	int i;
 330
 331	for (i = 0; i < iommu->num_mmu; i++)
 332		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 333					   RK_MMU_STATUS_PAGING_ENABLED);
 334
 335	return enable;
 336}
 337
 338static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
 339{
 340	bool done = true;
 341	int i;
 342
 343	for (i = 0; i < iommu->num_mmu; i++)
 344		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
 345
 346	return done;
 347}
 348
 349static int rk_iommu_enable_stall(struct rk_iommu *iommu)
 350{
 351	int ret, i;
 352	bool val;
 353
 354	if (rk_iommu_is_stall_active(iommu))
 355		return 0;
 356
 357	/* Stall can only be enabled if paging is enabled */
 358	if (!rk_iommu_is_paging_enabled(iommu))
 359		return 0;
 360
 361	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
 362
 363	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 364				 val, RK_MMU_POLL_PERIOD_US,
 365				 RK_MMU_POLL_TIMEOUT_US);
 366	if (ret)
 367		for (i = 0; i < iommu->num_mmu; i++)
 368			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
 369				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 370
 371	return ret;
 372}
 373
 374static int rk_iommu_disable_stall(struct rk_iommu *iommu)
 375{
 376	int ret, i;
 377	bool val;
 378
 379	if (!rk_iommu_is_stall_active(iommu))
 380		return 0;
 381
 382	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
 383
 384	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 385				 !val, RK_MMU_POLL_PERIOD_US,
 386				 RK_MMU_POLL_TIMEOUT_US);
 387	if (ret)
 388		for (i = 0; i < iommu->num_mmu; i++)
 389			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
 390				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 391
 392	return ret;
 393}
 394
 395static int rk_iommu_enable_paging(struct rk_iommu *iommu)
 396{
 397	int ret, i;
 398	bool val;
 399
 400	if (rk_iommu_is_paging_enabled(iommu))
 401		return 0;
 402
 403	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
 404
 405	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 406				 val, RK_MMU_POLL_PERIOD_US,
 407				 RK_MMU_POLL_TIMEOUT_US);
 408	if (ret)
 409		for (i = 0; i < iommu->num_mmu; i++)
 410			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
 411				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 412
 413	return ret;
 414}
 415
 416static int rk_iommu_disable_paging(struct rk_iommu *iommu)
 417{
 418	int ret, i;
 419	bool val;
 420
 421	if (!rk_iommu_is_paging_enabled(iommu))
 422		return 0;
 423
 424	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
 425
 426	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 427				 !val, RK_MMU_POLL_PERIOD_US,
 428				 RK_MMU_POLL_TIMEOUT_US);
 429	if (ret)
 430		for (i = 0; i < iommu->num_mmu; i++)
 431			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
 432				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 433
 434	return ret;
 435}
 436
 437static int rk_iommu_force_reset(struct rk_iommu *iommu)
 438{
 439	int ret, i;
 440	u32 dte_addr;
 441	bool val;
 442
 443	if (iommu->reset_disabled)
 444		return 0;
 445
 446	/*
 447	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
 448	 * and verifying that upper 5 nybbles are read back.
 449	 */
 450	for (i = 0; i < iommu->num_mmu; i++) {
 451		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, DTE_ADDR_DUMMY);
 
 452
 453		dte_addr = rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR);
 454		if (dte_addr != (DTE_ADDR_DUMMY & RK_DTE_PT_ADDRESS_MASK)) {
 455			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
 456			return -EFAULT;
 457		}
 458	}
 459
 460	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
 461
 462	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
 463				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
 464				 RK_MMU_POLL_TIMEOUT_US);
 465	if (ret) {
 466		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
 467		return ret;
 468	}
 469
 470	return 0;
 471}
 472
 473static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
 474{
 475	void __iomem *base = iommu->bases[index];
 476	u32 dte_index, pte_index, page_offset;
 477	u32 mmu_dte_addr;
 478	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
 479	u32 *dte_addr;
 480	u32 dte;
 481	phys_addr_t pte_addr_phys = 0;
 482	u32 *pte_addr = NULL;
 483	u32 pte = 0;
 484	phys_addr_t page_addr_phys = 0;
 485	u32 page_flags = 0;
 486
 487	dte_index = rk_iova_dte_index(iova);
 488	pte_index = rk_iova_pte_index(iova);
 489	page_offset = rk_iova_page_offset(iova);
 490
 491	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
 492	mmu_dte_addr_phys = (phys_addr_t)mmu_dte_addr;
 493
 494	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
 495	dte_addr = phys_to_virt(dte_addr_phys);
 496	dte = *dte_addr;
 497
 498	if (!rk_dte_is_pt_valid(dte))
 499		goto print_it;
 500
 501	pte_addr_phys = rk_dte_pt_address(dte) + (pte_index * 4);
 502	pte_addr = phys_to_virt(pte_addr_phys);
 503	pte = *pte_addr;
 504
 505	if (!rk_pte_is_page_valid(pte))
 506		goto print_it;
 507
 508	page_addr_phys = rk_pte_page_address(pte) + page_offset;
 509	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
 510
 511print_it:
 512	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
 513		&iova, dte_index, pte_index, page_offset);
 514	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
 515		&mmu_dte_addr_phys, &dte_addr_phys, dte,
 516		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
 517		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
 518}
 519
 520static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
 521{
 522	struct rk_iommu *iommu = dev_id;
 523	u32 status;
 524	u32 int_status;
 525	dma_addr_t iova;
 526	irqreturn_t ret = IRQ_NONE;
 527	int i, err;
 528
 529	err = pm_runtime_get_if_in_use(iommu->dev);
 530	if (!err || WARN_ON_ONCE(err < 0))
 531		return ret;
 532
 533	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
 534		goto out;
 535
 536	for (i = 0; i < iommu->num_mmu; i++) {
 537		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
 538		if (int_status == 0)
 539			continue;
 540
 541		ret = IRQ_HANDLED;
 542		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
 543
 544		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
 545			int flags;
 546
 547			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
 548			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
 549					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 550
 551			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
 552				&iova,
 553				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
 554
 555			log_iova(iommu, i, iova);
 556
 557			/*
 558			 * Report page fault to any installed handlers.
 559			 * Ignore the return code, though, since we always zap cache
 560			 * and clear the page fault anyway.
 561			 */
 562			if (iommu->domain)
 563				report_iommu_fault(iommu->domain, iommu->dev, iova,
 564						   flags);
 565			else
 566				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
 567
 568			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 569			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
 570		}
 571
 572		if (int_status & RK_MMU_IRQ_BUS_ERROR)
 573			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
 574
 575		if (int_status & ~RK_MMU_IRQ_MASK)
 576			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
 577				int_status);
 578
 579		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
 580	}
 581
 582	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 583
 584out:
 585	pm_runtime_put(iommu->dev);
 586	return ret;
 587}
 588
 589static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
 590					 dma_addr_t iova)
 591{
 592	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 593	unsigned long flags;
 594	phys_addr_t pt_phys, phys = 0;
 595	u32 dte, pte;
 596	u32 *page_table;
 597
 598	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 599
 600	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 601	if (!rk_dte_is_pt_valid(dte))
 602		goto out;
 603
 604	pt_phys = rk_dte_pt_address(dte);
 605	page_table = (u32 *)phys_to_virt(pt_phys);
 606	pte = page_table[rk_iova_pte_index(iova)];
 607	if (!rk_pte_is_page_valid(pte))
 608		goto out;
 609
 610	phys = rk_pte_page_address(pte) + rk_iova_page_offset(iova);
 611out:
 612	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 613
 614	return phys;
 615}
 616
 617static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
 618			      dma_addr_t iova, size_t size)
 619{
 620	struct list_head *pos;
 621	unsigned long flags;
 622
 623	/* shootdown these iova from all iommus using this domain */
 624	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 625	list_for_each(pos, &rk_domain->iommus) {
 626		struct rk_iommu *iommu;
 627		int ret;
 628
 629		iommu = list_entry(pos, struct rk_iommu, node);
 630
 631		/* Only zap TLBs of IOMMUs that are powered on. */
 632		ret = pm_runtime_get_if_in_use(iommu->dev);
 633		if (WARN_ON_ONCE(ret < 0))
 634			continue;
 635		if (ret) {
 636			WARN_ON(clk_bulk_enable(iommu->num_clocks,
 637						iommu->clocks));
 638			rk_iommu_zap_lines(iommu, iova, size);
 639			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 640			pm_runtime_put(iommu->dev);
 641		}
 642	}
 643	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 644}
 645
 646static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
 647					 dma_addr_t iova, size_t size)
 648{
 649	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
 650	if (size > SPAGE_SIZE)
 651		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
 652					SPAGE_SIZE);
 653}
 654
 655static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
 656				  dma_addr_t iova)
 657{
 658	u32 *page_table, *dte_addr;
 659	u32 dte_index, dte;
 660	phys_addr_t pt_phys;
 661	dma_addr_t pt_dma;
 662
 663	assert_spin_locked(&rk_domain->dt_lock);
 664
 665	dte_index = rk_iova_dte_index(iova);
 666	dte_addr = &rk_domain->dt[dte_index];
 667	dte = *dte_addr;
 668	if (rk_dte_is_pt_valid(dte))
 669		goto done;
 670
 671	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32);
 672	if (!page_table)
 673		return ERR_PTR(-ENOMEM);
 674
 675	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
 676	if (dma_mapping_error(dma_dev, pt_dma)) {
 677		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
 678		free_page((unsigned long)page_table);
 679		return ERR_PTR(-ENOMEM);
 680	}
 681
 682	dte = rk_mk_dte(pt_dma);
 683	*dte_addr = dte;
 684
 685	rk_table_flush(rk_domain, pt_dma, NUM_PT_ENTRIES);
 686	rk_table_flush(rk_domain,
 687		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
 688done:
 689	pt_phys = rk_dte_pt_address(dte);
 690	return (u32 *)phys_to_virt(pt_phys);
 691}
 692
 693static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
 694				  u32 *pte_addr, dma_addr_t pte_dma,
 695				  size_t size)
 696{
 697	unsigned int pte_count;
 698	unsigned int pte_total = size / SPAGE_SIZE;
 699
 700	assert_spin_locked(&rk_domain->dt_lock);
 701
 702	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 703		u32 pte = pte_addr[pte_count];
 704		if (!rk_pte_is_page_valid(pte))
 705			break;
 706
 707		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
 708	}
 709
 710	rk_table_flush(rk_domain, pte_dma, pte_count);
 711
 712	return pte_count * SPAGE_SIZE;
 713}
 714
 715static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
 716			     dma_addr_t pte_dma, dma_addr_t iova,
 717			     phys_addr_t paddr, size_t size, int prot)
 718{
 719	unsigned int pte_count;
 720	unsigned int pte_total = size / SPAGE_SIZE;
 721	phys_addr_t page_phys;
 722
 723	assert_spin_locked(&rk_domain->dt_lock);
 724
 725	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 726		u32 pte = pte_addr[pte_count];
 727
 728		if (rk_pte_is_page_valid(pte))
 729			goto unwind;
 730
 731		pte_addr[pte_count] = rk_mk_pte(paddr, prot);
 732
 733		paddr += SPAGE_SIZE;
 734	}
 735
 736	rk_table_flush(rk_domain, pte_dma, pte_total);
 737
 738	/*
 739	 * Zap the first and last iova to evict from iotlb any previously
 740	 * mapped cachelines holding stale values for its dte and pte.
 741	 * We only zap the first and last iova, since only they could have
 742	 * dte or pte shared with an existing mapping.
 743	 */
 744	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
 745
 746	return 0;
 747unwind:
 748	/* Unmap the range of iovas that we just mapped */
 749	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
 750			    pte_count * SPAGE_SIZE);
 751
 752	iova += pte_count * SPAGE_SIZE;
 753	page_phys = rk_pte_page_address(pte_addr[pte_count]);
 754	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
 755	       &iova, &page_phys, &paddr, prot);
 756
 757	return -EADDRINUSE;
 758}
 759
 760static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
 761			phys_addr_t paddr, size_t size, int prot, gfp_t gfp)
 
 762{
 763	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 764	unsigned long flags;
 765	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 766	u32 *page_table, *pte_addr;
 767	u32 dte_index, pte_index;
 768	int ret;
 769
 770	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 771
 772	/*
 773	 * pgsize_bitmap specifies iova sizes that fit in one page table
 774	 * (1024 4-KiB pages = 4 MiB).
 775	 * So, size will always be 4096 <= size <= 4194304.
 776	 * Since iommu_map() guarantees that both iova and size will be
 777	 * aligned, we will always only be mapping from a single dte here.
 778	 */
 779	page_table = rk_dte_get_page_table(rk_domain, iova);
 780	if (IS_ERR(page_table)) {
 781		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 782		return PTR_ERR(page_table);
 783	}
 784
 785	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
 786	pte_index = rk_iova_pte_index(iova);
 787	pte_addr = &page_table[pte_index];
 788	pte_dma = rk_dte_pt_address(dte_index) + pte_index * sizeof(u32);
 
 789	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
 790				paddr, size, prot);
 791
 792	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 
 
 793
 794	return ret;
 795}
 796
 797static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
 798			     size_t size, struct iommu_iotlb_gather *gather)
 799{
 800	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 801	unsigned long flags;
 802	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 803	phys_addr_t pt_phys;
 804	u32 dte;
 805	u32 *pte_addr;
 806	size_t unmap_size;
 807
 808	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 809
 810	/*
 811	 * pgsize_bitmap specifies iova sizes that fit in one page table
 812	 * (1024 4-KiB pages = 4 MiB).
 813	 * So, size will always be 4096 <= size <= 4194304.
 814	 * Since iommu_unmap() guarantees that both iova and size will be
 815	 * aligned, we will always only be unmapping from a single dte here.
 816	 */
 817	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 818	/* Just return 0 if iova is unmapped */
 819	if (!rk_dte_is_pt_valid(dte)) {
 820		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 821		return 0;
 822	}
 823
 824	pt_phys = rk_dte_pt_address(dte);
 825	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
 826	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
 827	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
 828
 829	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 830
 831	/* Shootdown iotlb entries for iova range that was just unmapped */
 832	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
 833
 834	return unmap_size;
 835}
 836
 837static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
 838{
 839	struct rk_iommudata *data = dev_iommu_priv_get(dev);
 840
 841	return data ? data->iommu : NULL;
 842}
 843
 844/* Must be called with iommu powered on and attached */
 845static void rk_iommu_disable(struct rk_iommu *iommu)
 846{
 847	int i;
 848
 849	/* Ignore error while disabling, just keep going */
 850	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
 851	rk_iommu_enable_stall(iommu);
 852	rk_iommu_disable_paging(iommu);
 853	for (i = 0; i < iommu->num_mmu; i++) {
 854		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
 855		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
 856	}
 857	rk_iommu_disable_stall(iommu);
 858	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 859}
 860
 861/* Must be called with iommu powered on and attached */
 862static int rk_iommu_enable(struct rk_iommu *iommu)
 863{
 864	struct iommu_domain *domain = iommu->domain;
 865	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 866	int ret, i;
 867
 868	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
 869	if (ret)
 870		return ret;
 871
 872	ret = rk_iommu_enable_stall(iommu);
 873	if (ret)
 874		goto out_disable_clocks;
 875
 876	ret = rk_iommu_force_reset(iommu);
 877	if (ret)
 878		goto out_disable_stall;
 879
 880	for (i = 0; i < iommu->num_mmu; i++) {
 881		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
 882			       rk_domain->dt_dma);
 883		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 884		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
 885	}
 886
 887	ret = rk_iommu_enable_paging(iommu);
 888
 889out_disable_stall:
 890	rk_iommu_disable_stall(iommu);
 891out_disable_clocks:
 892	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 893	return ret;
 894}
 895
 896static void rk_iommu_detach_device(struct iommu_domain *domain,
 897				   struct device *dev)
 898{
 899	struct rk_iommu *iommu;
 900	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 901	unsigned long flags;
 902	int ret;
 903
 904	/* Allow 'virtual devices' (eg drm) to detach from domain */
 905	iommu = rk_iommu_from_dev(dev);
 906	if (!iommu)
 907		return;
 
 
 908
 909	dev_dbg(dev, "Detaching from iommu domain\n");
 910
 911	/* iommu already detached */
 912	if (iommu->domain != domain)
 913		return;
 914
 915	iommu->domain = NULL;
 916
 917	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 918	list_del_init(&iommu->node);
 919	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 920
 921	ret = pm_runtime_get_if_in_use(iommu->dev);
 922	WARN_ON_ONCE(ret < 0);
 923	if (ret > 0) {
 924		rk_iommu_disable(iommu);
 925		pm_runtime_put(iommu->dev);
 926	}
 
 
 927}
 928
 
 
 
 
 
 
 
 
 
 929static int rk_iommu_attach_device(struct iommu_domain *domain,
 930		struct device *dev)
 931{
 932	struct rk_iommu *iommu;
 933	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 934	unsigned long flags;
 935	int ret;
 936
 937	/*
 938	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
 939	 * Such a device does not belong to an iommu group.
 940	 */
 941	iommu = rk_iommu_from_dev(dev);
 942	if (!iommu)
 943		return 0;
 944
 945	dev_dbg(dev, "Attaching to iommu domain\n");
 946
 947	/* iommu already attached */
 948	if (iommu->domain == domain)
 949		return 0;
 950
 951	if (iommu->domain)
 952		rk_iommu_detach_device(iommu->domain, dev);
 
 953
 954	iommu->domain = domain;
 955
 956	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 957	list_add_tail(&iommu->node, &rk_domain->iommus);
 958	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 959
 960	ret = pm_runtime_get_if_in_use(iommu->dev);
 961	if (!ret || WARN_ON_ONCE(ret < 0))
 962		return 0;
 963
 964	ret = rk_iommu_enable(iommu);
 965	if (ret)
 966		rk_iommu_detach_device(iommu->domain, dev);
 967
 968	pm_runtime_put(iommu->dev);
 969
 970	return ret;
 971}
 972
 973static struct iommu_domain *rk_iommu_domain_alloc(unsigned type)
 974{
 975	struct rk_iommu_domain *rk_domain;
 976
 977	if (type != IOMMU_DOMAIN_UNMANAGED && type != IOMMU_DOMAIN_DMA)
 978		return NULL;
 979
 980	if (!dma_dev)
 981		return NULL;
 982
 983	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
 984	if (!rk_domain)
 985		return NULL;
 986
 987	if (type == IOMMU_DOMAIN_DMA &&
 988	    iommu_get_dma_cookie(&rk_domain->domain))
 989		goto err_free_domain;
 990
 991	/*
 992	 * rk32xx iommus use a 2 level pagetable.
 993	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
 994	 * Allocate one 4 KiB page for each table.
 995	 */
 996	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | GFP_DMA32);
 997	if (!rk_domain->dt)
 998		goto err_put_cookie;
 999
1000	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1001					   SPAGE_SIZE, DMA_TO_DEVICE);
1002	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1003		dev_err(dma_dev, "DMA map error for DT\n");
1004		goto err_free_dt;
1005	}
1006
1007	rk_table_flush(rk_domain, rk_domain->dt_dma, NUM_DT_ENTRIES);
1008
1009	spin_lock_init(&rk_domain->iommus_lock);
1010	spin_lock_init(&rk_domain->dt_lock);
1011	INIT_LIST_HEAD(&rk_domain->iommus);
1012
1013	rk_domain->domain.geometry.aperture_start = 0;
1014	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1015	rk_domain->domain.geometry.force_aperture = true;
1016
1017	return &rk_domain->domain;
1018
1019err_free_dt:
1020	free_page((unsigned long)rk_domain->dt);
1021err_put_cookie:
1022	if (type == IOMMU_DOMAIN_DMA)
1023		iommu_put_dma_cookie(&rk_domain->domain);
1024err_free_domain:
1025	kfree(rk_domain);
1026
1027	return NULL;
1028}
1029
1030static void rk_iommu_domain_free(struct iommu_domain *domain)
1031{
1032	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1033	int i;
1034
1035	WARN_ON(!list_empty(&rk_domain->iommus));
1036
1037	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1038		u32 dte = rk_domain->dt[i];
1039		if (rk_dte_is_pt_valid(dte)) {
1040			phys_addr_t pt_phys = rk_dte_pt_address(dte);
1041			u32 *page_table = phys_to_virt(pt_phys);
1042			dma_unmap_single(dma_dev, pt_phys,
1043					 SPAGE_SIZE, DMA_TO_DEVICE);
1044			free_page((unsigned long)page_table);
1045		}
1046	}
1047
1048	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1049			 SPAGE_SIZE, DMA_TO_DEVICE);
1050	free_page((unsigned long)rk_domain->dt);
1051
1052	if (domain->type == IOMMU_DOMAIN_DMA)
1053		iommu_put_dma_cookie(&rk_domain->domain);
1054	kfree(rk_domain);
1055}
1056
1057static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1058{
1059	struct rk_iommudata *data;
1060	struct rk_iommu *iommu;
1061
1062	data = dev_iommu_priv_get(dev);
1063	if (!data)
1064		return ERR_PTR(-ENODEV);
1065
1066	iommu = rk_iommu_from_dev(dev);
1067
1068	data->link = device_link_add(dev, iommu->dev,
1069				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1070
1071	return &iommu->iommu;
1072}
1073
1074static void rk_iommu_release_device(struct device *dev)
1075{
1076	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1077
1078	device_link_del(data->link);
1079}
1080
1081static struct iommu_group *rk_iommu_device_group(struct device *dev)
1082{
1083	struct rk_iommu *iommu;
1084
1085	iommu = rk_iommu_from_dev(dev);
1086
1087	return iommu_group_ref_get(iommu->group);
1088}
1089
1090static int rk_iommu_of_xlate(struct device *dev,
1091			     struct of_phandle_args *args)
1092{
1093	struct platform_device *iommu_dev;
1094	struct rk_iommudata *data;
1095
1096	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1097	if (!data)
1098		return -ENOMEM;
1099
1100	iommu_dev = of_find_device_by_node(args->np);
1101
1102	data->iommu = platform_get_drvdata(iommu_dev);
 
1103	dev_iommu_priv_set(dev, data);
1104
1105	platform_device_put(iommu_dev);
1106
1107	return 0;
1108}
1109
1110static const struct iommu_ops rk_iommu_ops = {
1111	.domain_alloc = rk_iommu_domain_alloc,
1112	.domain_free = rk_iommu_domain_free,
1113	.attach_dev = rk_iommu_attach_device,
1114	.detach_dev = rk_iommu_detach_device,
1115	.map = rk_iommu_map,
1116	.unmap = rk_iommu_unmap,
1117	.probe_device = rk_iommu_probe_device,
1118	.release_device = rk_iommu_release_device,
1119	.iova_to_phys = rk_iommu_iova_to_phys,
1120	.device_group = rk_iommu_device_group,
1121	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1122	.of_xlate = rk_iommu_of_xlate,
 
 
 
 
 
 
 
1123};
1124
1125static int rk_iommu_probe(struct platform_device *pdev)
1126{
1127	struct device *dev = &pdev->dev;
1128	struct rk_iommu *iommu;
1129	struct resource *res;
 
1130	int num_res = pdev->num_resources;
1131	int err, i;
1132
1133	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1134	if (!iommu)
1135		return -ENOMEM;
1136
1137	platform_set_drvdata(pdev, iommu);
1138	iommu->dev = dev;
1139	iommu->num_mmu = 0;
1140
 
 
 
 
 
 
 
 
 
 
 
1141	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1142				    GFP_KERNEL);
1143	if (!iommu->bases)
1144		return -ENOMEM;
1145
1146	for (i = 0; i < num_res; i++) {
1147		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1148		if (!res)
1149			continue;
1150		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1151		if (IS_ERR(iommu->bases[i]))
1152			continue;
1153		iommu->num_mmu++;
1154	}
1155	if (iommu->num_mmu == 0)
1156		return PTR_ERR(iommu->bases[0]);
1157
1158	iommu->num_irq = platform_irq_count(pdev);
1159	if (iommu->num_irq < 0)
1160		return iommu->num_irq;
1161
1162	iommu->reset_disabled = device_property_read_bool(dev,
1163					"rockchip,disable-mmu-reset");
1164
1165	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1166	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1167				     sizeof(*iommu->clocks), GFP_KERNEL);
1168	if (!iommu->clocks)
1169		return -ENOMEM;
1170
1171	for (i = 0; i < iommu->num_clocks; ++i)
1172		iommu->clocks[i].id = rk_iommu_clocks[i];
1173
1174	/*
1175	 * iommu clocks should be present for all new devices and devicetrees
1176	 * but there are older devicetrees without clocks out in the wild.
1177	 * So clocks as optional for the time being.
1178	 */
1179	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1180	if (err == -ENOENT)
1181		iommu->num_clocks = 0;
1182	else if (err)
1183		return err;
1184
1185	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1186	if (err)
1187		return err;
1188
1189	iommu->group = iommu_group_alloc();
1190	if (IS_ERR(iommu->group)) {
1191		err = PTR_ERR(iommu->group);
1192		goto err_unprepare_clocks;
1193	}
1194
1195	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1196	if (err)
1197		goto err_put_group;
1198
1199	iommu_device_set_ops(&iommu->iommu, &rk_iommu_ops);
1200	iommu_device_set_fwnode(&iommu->iommu, &dev->of_node->fwnode);
1201
1202	err = iommu_device_register(&iommu->iommu);
1203	if (err)
1204		goto err_remove_sysfs;
1205
1206	/*
1207	 * Use the first registered IOMMU device for domain to use with DMA
1208	 * API, since a domain might not physically correspond to a single
1209	 * IOMMU device..
1210	 */
1211	if (!dma_dev)
1212		dma_dev = &pdev->dev;
1213
1214	bus_set_iommu(&platform_bus_type, &rk_iommu_ops);
1215
1216	pm_runtime_enable(dev);
1217
1218	for (i = 0; i < iommu->num_irq; i++) {
1219		int irq = platform_get_irq(pdev, i);
1220
1221		if (irq < 0)
1222			return irq;
 
 
1223
1224		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1225				       IRQF_SHARED, dev_name(dev), iommu);
1226		if (err) {
1227			pm_runtime_disable(dev);
1228			goto err_remove_sysfs;
1229		}
1230	}
1231
 
 
1232	return 0;
 
 
1233err_remove_sysfs:
1234	iommu_device_sysfs_remove(&iommu->iommu);
1235err_put_group:
1236	iommu_group_put(iommu->group);
1237err_unprepare_clocks:
1238	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1239	return err;
1240}
1241
1242static void rk_iommu_shutdown(struct platform_device *pdev)
1243{
1244	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1245	int i;
1246
1247	for (i = 0; i < iommu->num_irq; i++) {
1248		int irq = platform_get_irq(pdev, i);
1249
1250		devm_free_irq(iommu->dev, irq, iommu);
1251	}
1252
1253	pm_runtime_force_suspend(&pdev->dev);
1254}
1255
1256static int __maybe_unused rk_iommu_suspend(struct device *dev)
1257{
1258	struct rk_iommu *iommu = dev_get_drvdata(dev);
1259
1260	if (!iommu->domain)
1261		return 0;
1262
1263	rk_iommu_disable(iommu);
1264	return 0;
1265}
1266
1267static int __maybe_unused rk_iommu_resume(struct device *dev)
1268{
1269	struct rk_iommu *iommu = dev_get_drvdata(dev);
1270
1271	if (!iommu->domain)
1272		return 0;
1273
1274	return rk_iommu_enable(iommu);
1275}
1276
1277static const struct dev_pm_ops rk_iommu_pm_ops = {
1278	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1279	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1280				pm_runtime_force_resume)
1281};
1282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1283static const struct of_device_id rk_iommu_dt_ids[] = {
1284	{ .compatible = "rockchip,iommu" },
 
 
 
 
 
1285	{ /* sentinel */ }
1286};
1287
1288static struct platform_driver rk_iommu_driver = {
1289	.probe = rk_iommu_probe,
1290	.shutdown = rk_iommu_shutdown,
1291	.driver = {
1292		   .name = "rk_iommu",
1293		   .of_match_table = rk_iommu_dt_ids,
1294		   .pm = &rk_iommu_pm_ops,
1295		   .suppress_bind_attrs = true,
1296	},
1297};
1298
1299static int __init rk_iommu_init(void)
1300{
1301	return platform_driver_register(&rk_iommu_driver);
1302}
1303subsys_initcall(rk_iommu_init);
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * IOMMU API for Rockchip
   4 *
   5 * Module Authors:	Simon Xue <xxm@rock-chips.com>
   6 *			Daniel Kurtz <djkurtz@chromium.org>
   7 */
   8
   9#include <linux/clk.h>
  10#include <linux/compiler.h>
  11#include <linux/delay.h>
  12#include <linux/device.h>
 
  13#include <linux/dma-mapping.h>
  14#include <linux/errno.h>
  15#include <linux/interrupt.h>
  16#include <linux/io.h>
  17#include <linux/iommu.h>
  18#include <linux/iopoll.h>
  19#include <linux/list.h>
  20#include <linux/mm.h>
  21#include <linux/init.h>
  22#include <linux/of.h>
 
  23#include <linux/of_platform.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/slab.h>
  27#include <linux/spinlock.h>
  28
  29/** MMU register offsets */
  30#define RK_MMU_DTE_ADDR		0x00	/* Directory table address */
  31#define RK_MMU_STATUS		0x04
  32#define RK_MMU_COMMAND		0x08
  33#define RK_MMU_PAGE_FAULT_ADDR	0x0C	/* IOVA of last page fault */
  34#define RK_MMU_ZAP_ONE_LINE	0x10	/* Shootdown one IOTLB entry */
  35#define RK_MMU_INT_RAWSTAT	0x14	/* IRQ status ignoring mask */
  36#define RK_MMU_INT_CLEAR	0x18	/* Acknowledge and re-arm irq */
  37#define RK_MMU_INT_MASK		0x1C	/* IRQ enable */
  38#define RK_MMU_INT_STATUS	0x20	/* IRQ status after masking */
  39#define RK_MMU_AUTO_GATING	0x24
  40
  41#define DTE_ADDR_DUMMY		0xCAFEBABE
  42
  43#define RK_MMU_POLL_PERIOD_US		100
  44#define RK_MMU_FORCE_RESET_TIMEOUT_US	100000
  45#define RK_MMU_POLL_TIMEOUT_US		1000
  46
  47/* RK_MMU_STATUS fields */
  48#define RK_MMU_STATUS_PAGING_ENABLED       BIT(0)
  49#define RK_MMU_STATUS_PAGE_FAULT_ACTIVE    BIT(1)
  50#define RK_MMU_STATUS_STALL_ACTIVE         BIT(2)
  51#define RK_MMU_STATUS_IDLE                 BIT(3)
  52#define RK_MMU_STATUS_REPLAY_BUFFER_EMPTY  BIT(4)
  53#define RK_MMU_STATUS_PAGE_FAULT_IS_WRITE  BIT(5)
  54#define RK_MMU_STATUS_STALL_NOT_ACTIVE     BIT(31)
  55
  56/* RK_MMU_COMMAND command values */
  57#define RK_MMU_CMD_ENABLE_PAGING    0  /* Enable memory translation */
  58#define RK_MMU_CMD_DISABLE_PAGING   1  /* Disable memory translation */
  59#define RK_MMU_CMD_ENABLE_STALL     2  /* Stall paging to allow other cmds */
  60#define RK_MMU_CMD_DISABLE_STALL    3  /* Stop stall re-enables paging */
  61#define RK_MMU_CMD_ZAP_CACHE        4  /* Shoot down entire IOTLB */
  62#define RK_MMU_CMD_PAGE_FAULT_DONE  5  /* Clear page fault */
  63#define RK_MMU_CMD_FORCE_RESET      6  /* Reset all registers */
  64
  65/* RK_MMU_INT_* register fields */
  66#define RK_MMU_IRQ_PAGE_FAULT    0x01  /* page fault */
  67#define RK_MMU_IRQ_BUS_ERROR     0x02  /* bus read error */
  68#define RK_MMU_IRQ_MASK          (RK_MMU_IRQ_PAGE_FAULT | RK_MMU_IRQ_BUS_ERROR)
  69
  70#define NUM_DT_ENTRIES 1024
  71#define NUM_PT_ENTRIES 1024
  72
  73#define SPAGE_ORDER 12
  74#define SPAGE_SIZE (1 << SPAGE_ORDER)
  75
  76 /*
  77  * Support mapping any size that fits in one page table:
  78  *   4 KiB to 4 MiB
  79  */
  80#define RK_IOMMU_PGSIZE_BITMAP 0x007ff000
  81
  82struct rk_iommu_domain {
  83	struct list_head iommus;
  84	u32 *dt; /* page directory table */
  85	dma_addr_t dt_dma;
  86	spinlock_t iommus_lock; /* lock for iommus list */
  87	spinlock_t dt_lock; /* lock for modifying page directory table */
  88
  89	struct iommu_domain domain;
  90};
  91
  92/* list of clocks required by IOMMU */
  93static const char * const rk_iommu_clocks[] = {
  94	"aclk", "iface",
  95};
  96
  97struct rk_iommu_ops {
  98	phys_addr_t (*pt_address)(u32 dte);
  99	u32 (*mk_dtentries)(dma_addr_t pt_dma);
 100	u32 (*mk_ptentries)(phys_addr_t page, int prot);
 101	u64 dma_bit_mask;
 102	gfp_t gfp_flags;
 103};
 104
 105struct rk_iommu {
 106	struct device *dev;
 107	void __iomem **bases;
 108	int num_mmu;
 109	int num_irq;
 110	struct clk_bulk_data *clocks;
 111	int num_clocks;
 112	bool reset_disabled;
 113	struct iommu_device iommu;
 114	struct list_head node; /* entry in rk_iommu_domain.iommus */
 115	struct iommu_domain *domain; /* domain to which iommu is attached */
 
 116};
 117
 118struct rk_iommudata {
 119	struct device_link *link; /* runtime PM link from IOMMU to master */
 120	struct rk_iommu *iommu;
 121};
 122
 123static struct device *dma_dev;
 124static const struct rk_iommu_ops *rk_ops;
 125static struct iommu_domain rk_identity_domain;
 126
 127static inline void rk_table_flush(struct rk_iommu_domain *dom, dma_addr_t dma,
 128				  unsigned int count)
 129{
 130	size_t size = count * sizeof(u32); /* count of u32 entry */
 131
 132	dma_sync_single_for_device(dma_dev, dma, size, DMA_TO_DEVICE);
 133}
 134
 135static struct rk_iommu_domain *to_rk_domain(struct iommu_domain *dom)
 136{
 137	return container_of(dom, struct rk_iommu_domain, domain);
 138}
 139
 140/*
 141 * The Rockchip rk3288 iommu uses a 2-level page table.
 142 * The first level is the "Directory Table" (DT).
 143 * The DT consists of 1024 4-byte Directory Table Entries (DTEs), each pointing
 144 * to a "Page Table".
 145 * The second level is the 1024 Page Tables (PT).
 146 * Each PT consists of 1024 4-byte Page Table Entries (PTEs), each pointing to
 147 * a 4 KB page of physical memory.
 148 *
 149 * The DT and each PT fits in a single 4 KB page (4-bytes * 1024 entries).
 150 * Each iommu device has a MMU_DTE_ADDR register that contains the physical
 151 * address of the start of the DT page.
 152 *
 153 * The structure of the page table is as follows:
 154 *
 155 *                   DT
 156 * MMU_DTE_ADDR -> +-----+
 157 *                 |     |
 158 *                 +-----+     PT
 159 *                 | DTE | -> +-----+
 160 *                 +-----+    |     |     Memory
 161 *                 |     |    +-----+     Page
 162 *                 |     |    | PTE | -> +-----+
 163 *                 +-----+    +-----+    |     |
 164 *                            |     |    |     |
 165 *                            |     |    |     |
 166 *                            +-----+    |     |
 167 *                                       |     |
 168 *                                       |     |
 169 *                                       +-----+
 170 */
 171
 172/*
 173 * Each DTE has a PT address and a valid bit:
 174 * +---------------------+-----------+-+
 175 * | PT address          | Reserved  |V|
 176 * +---------------------+-----------+-+
 177 *  31:12 - PT address (PTs always starts on a 4 KB boundary)
 178 *  11: 1 - Reserved
 179 *      0 - 1 if PT @ PT address is valid
 180 */
 181#define RK_DTE_PT_ADDRESS_MASK    0xfffff000
 182#define RK_DTE_PT_VALID           BIT(0)
 183
 184static inline phys_addr_t rk_dte_pt_address(u32 dte)
 185{
 186	return (phys_addr_t)dte & RK_DTE_PT_ADDRESS_MASK;
 187}
 188
 189/*
 190 * In v2:
 191 * 31:12 - PT address bit 31:0
 192 * 11: 8 - PT address bit 35:32
 193 *  7: 4 - PT address bit 39:36
 194 *  3: 1 - Reserved
 195 *     0 - 1 if PT @ PT address is valid
 196 */
 197#define RK_DTE_PT_ADDRESS_MASK_V2 GENMASK_ULL(31, 4)
 198#define DTE_HI_MASK1	GENMASK(11, 8)
 199#define DTE_HI_MASK2	GENMASK(7, 4)
 200#define DTE_HI_SHIFT1	24 /* shift bit 8 to bit 32 */
 201#define DTE_HI_SHIFT2	32 /* shift bit 4 to bit 36 */
 202#define PAGE_DESC_HI_MASK1	GENMASK_ULL(35, 32)
 203#define PAGE_DESC_HI_MASK2	GENMASK_ULL(39, 36)
 204
 205static inline phys_addr_t rk_dte_pt_address_v2(u32 dte)
 206{
 207	u64 dte_v2 = dte;
 208
 209	dte_v2 = ((dte_v2 & DTE_HI_MASK2) << DTE_HI_SHIFT2) |
 210		 ((dte_v2 & DTE_HI_MASK1) << DTE_HI_SHIFT1) |
 211		 (dte_v2 & RK_DTE_PT_ADDRESS_MASK);
 212
 213	return (phys_addr_t)dte_v2;
 214}
 215
 216static inline bool rk_dte_is_pt_valid(u32 dte)
 217{
 218	return dte & RK_DTE_PT_VALID;
 219}
 220
 221static inline u32 rk_mk_dte(dma_addr_t pt_dma)
 222{
 223	return (pt_dma & RK_DTE_PT_ADDRESS_MASK) | RK_DTE_PT_VALID;
 224}
 225
 226static inline u32 rk_mk_dte_v2(dma_addr_t pt_dma)
 227{
 228	pt_dma = (pt_dma & RK_DTE_PT_ADDRESS_MASK) |
 229		 ((pt_dma & PAGE_DESC_HI_MASK1) >> DTE_HI_SHIFT1) |
 230		 (pt_dma & PAGE_DESC_HI_MASK2) >> DTE_HI_SHIFT2;
 231
 232	return (pt_dma & RK_DTE_PT_ADDRESS_MASK_V2) | RK_DTE_PT_VALID;
 233}
 234
 235/*
 236 * Each PTE has a Page address, some flags and a valid bit:
 237 * +---------------------+---+-------+-+
 238 * | Page address        |Rsv| Flags |V|
 239 * +---------------------+---+-------+-+
 240 *  31:12 - Page address (Pages always start on a 4 KB boundary)
 241 *  11: 9 - Reserved
 242 *   8: 1 - Flags
 243 *      8 - Read allocate - allocate cache space on read misses
 244 *      7 - Read cache - enable cache & prefetch of data
 245 *      6 - Write buffer - enable delaying writes on their way to memory
 246 *      5 - Write allocate - allocate cache space on write misses
 247 *      4 - Write cache - different writes can be merged together
 248 *      3 - Override cache attributes
 249 *          if 1, bits 4-8 control cache attributes
 250 *          if 0, the system bus defaults are used
 251 *      2 - Writable
 252 *      1 - Readable
 253 *      0 - 1 if Page @ Page address is valid
 254 */
 255#define RK_PTE_PAGE_ADDRESS_MASK  0xfffff000
 256#define RK_PTE_PAGE_FLAGS_MASK    0x000001fe
 257#define RK_PTE_PAGE_WRITABLE      BIT(2)
 258#define RK_PTE_PAGE_READABLE      BIT(1)
 259#define RK_PTE_PAGE_VALID         BIT(0)
 260
 
 
 
 
 
 261static inline bool rk_pte_is_page_valid(u32 pte)
 262{
 263	return pte & RK_PTE_PAGE_VALID;
 264}
 265
 266/* TODO: set cache flags per prot IOMMU_CACHE */
 267static u32 rk_mk_pte(phys_addr_t page, int prot)
 268{
 269	u32 flags = 0;
 270	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 271	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 272	page &= RK_PTE_PAGE_ADDRESS_MASK;
 273	return page | flags | RK_PTE_PAGE_VALID;
 274}
 275
 276/*
 277 * In v2:
 278 * 31:12 - Page address bit 31:0
 279 * 11: 8 - Page address bit 35:32
 280 *  7: 4 - Page address bit 39:36
 281 *     3 - Security
 282 *     2 - Writable
 283 *     1 - Readable
 284 *     0 - 1 if Page @ Page address is valid
 285 */
 286
 287static u32 rk_mk_pte_v2(phys_addr_t page, int prot)
 288{
 289	u32 flags = 0;
 290
 291	flags |= (prot & IOMMU_READ) ? RK_PTE_PAGE_READABLE : 0;
 292	flags |= (prot & IOMMU_WRITE) ? RK_PTE_PAGE_WRITABLE : 0;
 293
 294	return rk_mk_dte_v2(page) | flags;
 295}
 296
 297static u32 rk_mk_pte_invalid(u32 pte)
 298{
 299	return pte & ~RK_PTE_PAGE_VALID;
 300}
 301
 302/*
 303 * rk3288 iova (IOMMU Virtual Address) format
 304 *  31       22.21       12.11          0
 305 * +-----------+-----------+-------------+
 306 * | DTE index | PTE index | Page offset |
 307 * +-----------+-----------+-------------+
 308 *  31:22 - DTE index   - index of DTE in DT
 309 *  21:12 - PTE index   - index of PTE in PT @ DTE.pt_address
 310 *  11: 0 - Page offset - offset into page @ PTE.page_address
 311 */
 312#define RK_IOVA_DTE_MASK    0xffc00000
 313#define RK_IOVA_DTE_SHIFT   22
 314#define RK_IOVA_PTE_MASK    0x003ff000
 315#define RK_IOVA_PTE_SHIFT   12
 316#define RK_IOVA_PAGE_MASK   0x00000fff
 317#define RK_IOVA_PAGE_SHIFT  0
 318
 319static u32 rk_iova_dte_index(dma_addr_t iova)
 320{
 321	return (u32)(iova & RK_IOVA_DTE_MASK) >> RK_IOVA_DTE_SHIFT;
 322}
 323
 324static u32 rk_iova_pte_index(dma_addr_t iova)
 325{
 326	return (u32)(iova & RK_IOVA_PTE_MASK) >> RK_IOVA_PTE_SHIFT;
 327}
 328
 329static u32 rk_iova_page_offset(dma_addr_t iova)
 330{
 331	return (u32)(iova & RK_IOVA_PAGE_MASK) >> RK_IOVA_PAGE_SHIFT;
 332}
 333
 334static u32 rk_iommu_read(void __iomem *base, u32 offset)
 335{
 336	return readl(base + offset);
 337}
 338
 339static void rk_iommu_write(void __iomem *base, u32 offset, u32 value)
 340{
 341	writel(value, base + offset);
 342}
 343
 344static void rk_iommu_command(struct rk_iommu *iommu, u32 command)
 345{
 346	int i;
 347
 348	for (i = 0; i < iommu->num_mmu; i++)
 349		writel(command, iommu->bases[i] + RK_MMU_COMMAND);
 350}
 351
 352static void rk_iommu_base_command(void __iomem *base, u32 command)
 353{
 354	writel(command, base + RK_MMU_COMMAND);
 355}
 356static void rk_iommu_zap_lines(struct rk_iommu *iommu, dma_addr_t iova_start,
 357			       size_t size)
 358{
 359	int i;
 360	dma_addr_t iova_end = iova_start + size;
 361	/*
 362	 * TODO(djkurtz): Figure out when it is more efficient to shootdown the
 363	 * entire iotlb rather than iterate over individual iovas.
 364	 */
 365	for (i = 0; i < iommu->num_mmu; i++) {
 366		dma_addr_t iova;
 367
 368		for (iova = iova_start; iova < iova_end; iova += SPAGE_SIZE)
 369			rk_iommu_write(iommu->bases[i], RK_MMU_ZAP_ONE_LINE, iova);
 370	}
 371}
 372
 373static bool rk_iommu_is_stall_active(struct rk_iommu *iommu)
 374{
 375	bool active = true;
 376	int i;
 377
 378	for (i = 0; i < iommu->num_mmu; i++)
 379		active &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 380					   RK_MMU_STATUS_STALL_ACTIVE);
 381
 382	return active;
 383}
 384
 385static bool rk_iommu_is_paging_enabled(struct rk_iommu *iommu)
 386{
 387	bool enable = true;
 388	int i;
 389
 390	for (i = 0; i < iommu->num_mmu; i++)
 391		enable &= !!(rk_iommu_read(iommu->bases[i], RK_MMU_STATUS) &
 392					   RK_MMU_STATUS_PAGING_ENABLED);
 393
 394	return enable;
 395}
 396
 397static bool rk_iommu_is_reset_done(struct rk_iommu *iommu)
 398{
 399	bool done = true;
 400	int i;
 401
 402	for (i = 0; i < iommu->num_mmu; i++)
 403		done &= rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR) == 0;
 404
 405	return done;
 406}
 407
 408static int rk_iommu_enable_stall(struct rk_iommu *iommu)
 409{
 410	int ret, i;
 411	bool val;
 412
 413	if (rk_iommu_is_stall_active(iommu))
 414		return 0;
 415
 416	/* Stall can only be enabled if paging is enabled */
 417	if (!rk_iommu_is_paging_enabled(iommu))
 418		return 0;
 419
 420	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_STALL);
 421
 422	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 423				 val, RK_MMU_POLL_PERIOD_US,
 424				 RK_MMU_POLL_TIMEOUT_US);
 425	if (ret)
 426		for (i = 0; i < iommu->num_mmu; i++)
 427			dev_err(iommu->dev, "Enable stall request timed out, status: %#08x\n",
 428				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 429
 430	return ret;
 431}
 432
 433static int rk_iommu_disable_stall(struct rk_iommu *iommu)
 434{
 435	int ret, i;
 436	bool val;
 437
 438	if (!rk_iommu_is_stall_active(iommu))
 439		return 0;
 440
 441	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_STALL);
 442
 443	ret = readx_poll_timeout(rk_iommu_is_stall_active, iommu, val,
 444				 !val, RK_MMU_POLL_PERIOD_US,
 445				 RK_MMU_POLL_TIMEOUT_US);
 446	if (ret)
 447		for (i = 0; i < iommu->num_mmu; i++)
 448			dev_err(iommu->dev, "Disable stall request timed out, status: %#08x\n",
 449				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 450
 451	return ret;
 452}
 453
 454static int rk_iommu_enable_paging(struct rk_iommu *iommu)
 455{
 456	int ret, i;
 457	bool val;
 458
 459	if (rk_iommu_is_paging_enabled(iommu))
 460		return 0;
 461
 462	rk_iommu_command(iommu, RK_MMU_CMD_ENABLE_PAGING);
 463
 464	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 465				 val, RK_MMU_POLL_PERIOD_US,
 466				 RK_MMU_POLL_TIMEOUT_US);
 467	if (ret)
 468		for (i = 0; i < iommu->num_mmu; i++)
 469			dev_err(iommu->dev, "Enable paging request timed out, status: %#08x\n",
 470				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 471
 472	return ret;
 473}
 474
 475static int rk_iommu_disable_paging(struct rk_iommu *iommu)
 476{
 477	int ret, i;
 478	bool val;
 479
 480	if (!rk_iommu_is_paging_enabled(iommu))
 481		return 0;
 482
 483	rk_iommu_command(iommu, RK_MMU_CMD_DISABLE_PAGING);
 484
 485	ret = readx_poll_timeout(rk_iommu_is_paging_enabled, iommu, val,
 486				 !val, RK_MMU_POLL_PERIOD_US,
 487				 RK_MMU_POLL_TIMEOUT_US);
 488	if (ret)
 489		for (i = 0; i < iommu->num_mmu; i++)
 490			dev_err(iommu->dev, "Disable paging request timed out, status: %#08x\n",
 491				rk_iommu_read(iommu->bases[i], RK_MMU_STATUS));
 492
 493	return ret;
 494}
 495
 496static int rk_iommu_force_reset(struct rk_iommu *iommu)
 497{
 498	int ret, i;
 499	u32 dte_addr;
 500	bool val;
 501
 502	if (iommu->reset_disabled)
 503		return 0;
 504
 505	/*
 506	 * Check if register DTE_ADDR is working by writing DTE_ADDR_DUMMY
 507	 * and verifying that upper 5 (v1) or 7 (v2) nybbles are read back.
 508	 */
 509	for (i = 0; i < iommu->num_mmu; i++) {
 510		dte_addr = rk_ops->pt_address(DTE_ADDR_DUMMY);
 511		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, dte_addr);
 512
 513		if (dte_addr != rk_iommu_read(iommu->bases[i], RK_MMU_DTE_ADDR)) {
 
 514			dev_err(iommu->dev, "Error during raw reset. MMU_DTE_ADDR is not functioning\n");
 515			return -EFAULT;
 516		}
 517	}
 518
 519	rk_iommu_command(iommu, RK_MMU_CMD_FORCE_RESET);
 520
 521	ret = readx_poll_timeout(rk_iommu_is_reset_done, iommu, val,
 522				 val, RK_MMU_FORCE_RESET_TIMEOUT_US,
 523				 RK_MMU_POLL_TIMEOUT_US);
 524	if (ret) {
 525		dev_err(iommu->dev, "FORCE_RESET command timed out\n");
 526		return ret;
 527	}
 528
 529	return 0;
 530}
 531
 532static void log_iova(struct rk_iommu *iommu, int index, dma_addr_t iova)
 533{
 534	void __iomem *base = iommu->bases[index];
 535	u32 dte_index, pte_index, page_offset;
 536	u32 mmu_dte_addr;
 537	phys_addr_t mmu_dte_addr_phys, dte_addr_phys;
 538	u32 *dte_addr;
 539	u32 dte;
 540	phys_addr_t pte_addr_phys = 0;
 541	u32 *pte_addr = NULL;
 542	u32 pte = 0;
 543	phys_addr_t page_addr_phys = 0;
 544	u32 page_flags = 0;
 545
 546	dte_index = rk_iova_dte_index(iova);
 547	pte_index = rk_iova_pte_index(iova);
 548	page_offset = rk_iova_page_offset(iova);
 549
 550	mmu_dte_addr = rk_iommu_read(base, RK_MMU_DTE_ADDR);
 551	mmu_dte_addr_phys = rk_ops->pt_address(mmu_dte_addr);
 552
 553	dte_addr_phys = mmu_dte_addr_phys + (4 * dte_index);
 554	dte_addr = phys_to_virt(dte_addr_phys);
 555	dte = *dte_addr;
 556
 557	if (!rk_dte_is_pt_valid(dte))
 558		goto print_it;
 559
 560	pte_addr_phys = rk_ops->pt_address(dte) + (pte_index * 4);
 561	pte_addr = phys_to_virt(pte_addr_phys);
 562	pte = *pte_addr;
 563
 564	if (!rk_pte_is_page_valid(pte))
 565		goto print_it;
 566
 567	page_addr_phys = rk_ops->pt_address(pte) + page_offset;
 568	page_flags = pte & RK_PTE_PAGE_FLAGS_MASK;
 569
 570print_it:
 571	dev_err(iommu->dev, "iova = %pad: dte_index: %#03x pte_index: %#03x page_offset: %#03x\n",
 572		&iova, dte_index, pte_index, page_offset);
 573	dev_err(iommu->dev, "mmu_dte_addr: %pa dte@%pa: %#08x valid: %u pte@%pa: %#08x valid: %u page@%pa flags: %#03x\n",
 574		&mmu_dte_addr_phys, &dte_addr_phys, dte,
 575		rk_dte_is_pt_valid(dte), &pte_addr_phys, pte,
 576		rk_pte_is_page_valid(pte), &page_addr_phys, page_flags);
 577}
 578
 579static irqreturn_t rk_iommu_irq(int irq, void *dev_id)
 580{
 581	struct rk_iommu *iommu = dev_id;
 582	u32 status;
 583	u32 int_status;
 584	dma_addr_t iova;
 585	irqreturn_t ret = IRQ_NONE;
 586	int i, err;
 587
 588	err = pm_runtime_get_if_in_use(iommu->dev);
 589	if (!err || WARN_ON_ONCE(err < 0))
 590		return ret;
 591
 592	if (WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks)))
 593		goto out;
 594
 595	for (i = 0; i < iommu->num_mmu; i++) {
 596		int_status = rk_iommu_read(iommu->bases[i], RK_MMU_INT_STATUS);
 597		if (int_status == 0)
 598			continue;
 599
 600		ret = IRQ_HANDLED;
 601		iova = rk_iommu_read(iommu->bases[i], RK_MMU_PAGE_FAULT_ADDR);
 602
 603		if (int_status & RK_MMU_IRQ_PAGE_FAULT) {
 604			int flags;
 605
 606			status = rk_iommu_read(iommu->bases[i], RK_MMU_STATUS);
 607			flags = (status & RK_MMU_STATUS_PAGE_FAULT_IS_WRITE) ?
 608					IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
 609
 610			dev_err(iommu->dev, "Page fault at %pad of type %s\n",
 611				&iova,
 612				(flags == IOMMU_FAULT_WRITE) ? "write" : "read");
 613
 614			log_iova(iommu, i, iova);
 615
 616			/*
 617			 * Report page fault to any installed handlers.
 618			 * Ignore the return code, though, since we always zap cache
 619			 * and clear the page fault anyway.
 620			 */
 621			if (iommu->domain != &rk_identity_domain)
 622				report_iommu_fault(iommu->domain, iommu->dev, iova,
 623						   flags);
 624			else
 625				dev_err(iommu->dev, "Page fault while iommu not attached to domain?\n");
 626
 627			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 628			rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_PAGE_FAULT_DONE);
 629		}
 630
 631		if (int_status & RK_MMU_IRQ_BUS_ERROR)
 632			dev_err(iommu->dev, "BUS_ERROR occurred at %pad\n", &iova);
 633
 634		if (int_status & ~RK_MMU_IRQ_MASK)
 635			dev_err(iommu->dev, "unexpected int_status: %#08x\n",
 636				int_status);
 637
 638		rk_iommu_write(iommu->bases[i], RK_MMU_INT_CLEAR, int_status);
 639	}
 640
 641	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 642
 643out:
 644	pm_runtime_put(iommu->dev);
 645	return ret;
 646}
 647
 648static phys_addr_t rk_iommu_iova_to_phys(struct iommu_domain *domain,
 649					 dma_addr_t iova)
 650{
 651	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 652	unsigned long flags;
 653	phys_addr_t pt_phys, phys = 0;
 654	u32 dte, pte;
 655	u32 *page_table;
 656
 657	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 658
 659	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 660	if (!rk_dte_is_pt_valid(dte))
 661		goto out;
 662
 663	pt_phys = rk_ops->pt_address(dte);
 664	page_table = (u32 *)phys_to_virt(pt_phys);
 665	pte = page_table[rk_iova_pte_index(iova)];
 666	if (!rk_pte_is_page_valid(pte))
 667		goto out;
 668
 669	phys = rk_ops->pt_address(pte) + rk_iova_page_offset(iova);
 670out:
 671	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 672
 673	return phys;
 674}
 675
 676static void rk_iommu_zap_iova(struct rk_iommu_domain *rk_domain,
 677			      dma_addr_t iova, size_t size)
 678{
 679	struct list_head *pos;
 680	unsigned long flags;
 681
 682	/* shootdown these iova from all iommus using this domain */
 683	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 684	list_for_each(pos, &rk_domain->iommus) {
 685		struct rk_iommu *iommu;
 686		int ret;
 687
 688		iommu = list_entry(pos, struct rk_iommu, node);
 689
 690		/* Only zap TLBs of IOMMUs that are powered on. */
 691		ret = pm_runtime_get_if_in_use(iommu->dev);
 692		if (WARN_ON_ONCE(ret < 0))
 693			continue;
 694		if (ret) {
 695			WARN_ON(clk_bulk_enable(iommu->num_clocks,
 696						iommu->clocks));
 697			rk_iommu_zap_lines(iommu, iova, size);
 698			clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 699			pm_runtime_put(iommu->dev);
 700		}
 701	}
 702	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 703}
 704
 705static void rk_iommu_zap_iova_first_last(struct rk_iommu_domain *rk_domain,
 706					 dma_addr_t iova, size_t size)
 707{
 708	rk_iommu_zap_iova(rk_domain, iova, SPAGE_SIZE);
 709	if (size > SPAGE_SIZE)
 710		rk_iommu_zap_iova(rk_domain, iova + size - SPAGE_SIZE,
 711					SPAGE_SIZE);
 712}
 713
 714static u32 *rk_dte_get_page_table(struct rk_iommu_domain *rk_domain,
 715				  dma_addr_t iova)
 716{
 717	u32 *page_table, *dte_addr;
 718	u32 dte_index, dte;
 719	phys_addr_t pt_phys;
 720	dma_addr_t pt_dma;
 721
 722	assert_spin_locked(&rk_domain->dt_lock);
 723
 724	dte_index = rk_iova_dte_index(iova);
 725	dte_addr = &rk_domain->dt[dte_index];
 726	dte = *dte_addr;
 727	if (rk_dte_is_pt_valid(dte))
 728		goto done;
 729
 730	page_table = (u32 *)get_zeroed_page(GFP_ATOMIC | rk_ops->gfp_flags);
 731	if (!page_table)
 732		return ERR_PTR(-ENOMEM);
 733
 734	pt_dma = dma_map_single(dma_dev, page_table, SPAGE_SIZE, DMA_TO_DEVICE);
 735	if (dma_mapping_error(dma_dev, pt_dma)) {
 736		dev_err(dma_dev, "DMA mapping error while allocating page table\n");
 737		free_page((unsigned long)page_table);
 738		return ERR_PTR(-ENOMEM);
 739	}
 740
 741	dte = rk_ops->mk_dtentries(pt_dma);
 742	*dte_addr = dte;
 743
 
 744	rk_table_flush(rk_domain,
 745		       rk_domain->dt_dma + dte_index * sizeof(u32), 1);
 746done:
 747	pt_phys = rk_ops->pt_address(dte);
 748	return (u32 *)phys_to_virt(pt_phys);
 749}
 750
 751static size_t rk_iommu_unmap_iova(struct rk_iommu_domain *rk_domain,
 752				  u32 *pte_addr, dma_addr_t pte_dma,
 753				  size_t size)
 754{
 755	unsigned int pte_count;
 756	unsigned int pte_total = size / SPAGE_SIZE;
 757
 758	assert_spin_locked(&rk_domain->dt_lock);
 759
 760	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 761		u32 pte = pte_addr[pte_count];
 762		if (!rk_pte_is_page_valid(pte))
 763			break;
 764
 765		pte_addr[pte_count] = rk_mk_pte_invalid(pte);
 766	}
 767
 768	rk_table_flush(rk_domain, pte_dma, pte_count);
 769
 770	return pte_count * SPAGE_SIZE;
 771}
 772
 773static int rk_iommu_map_iova(struct rk_iommu_domain *rk_domain, u32 *pte_addr,
 774			     dma_addr_t pte_dma, dma_addr_t iova,
 775			     phys_addr_t paddr, size_t size, int prot)
 776{
 777	unsigned int pte_count;
 778	unsigned int pte_total = size / SPAGE_SIZE;
 779	phys_addr_t page_phys;
 780
 781	assert_spin_locked(&rk_domain->dt_lock);
 782
 783	for (pte_count = 0; pte_count < pte_total; pte_count++) {
 784		u32 pte = pte_addr[pte_count];
 785
 786		if (rk_pte_is_page_valid(pte))
 787			goto unwind;
 788
 789		pte_addr[pte_count] = rk_ops->mk_ptentries(paddr, prot);
 790
 791		paddr += SPAGE_SIZE;
 792	}
 793
 794	rk_table_flush(rk_domain, pte_dma, pte_total);
 795
 796	/*
 797	 * Zap the first and last iova to evict from iotlb any previously
 798	 * mapped cachelines holding stale values for its dte and pte.
 799	 * We only zap the first and last iova, since only they could have
 800	 * dte or pte shared with an existing mapping.
 801	 */
 802	rk_iommu_zap_iova_first_last(rk_domain, iova, size);
 803
 804	return 0;
 805unwind:
 806	/* Unmap the range of iovas that we just mapped */
 807	rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma,
 808			    pte_count * SPAGE_SIZE);
 809
 810	iova += pte_count * SPAGE_SIZE;
 811	page_phys = rk_ops->pt_address(pte_addr[pte_count]);
 812	pr_err("iova: %pad already mapped to %pa cannot remap to phys: %pa prot: %#x\n",
 813	       &iova, &page_phys, &paddr, prot);
 814
 815	return -EADDRINUSE;
 816}
 817
 818static int rk_iommu_map(struct iommu_domain *domain, unsigned long _iova,
 819			phys_addr_t paddr, size_t size, size_t count,
 820			int prot, gfp_t gfp, size_t *mapped)
 821{
 822	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 823	unsigned long flags;
 824	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 825	u32 *page_table, *pte_addr;
 826	u32 dte_index, pte_index;
 827	int ret;
 828
 829	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 830
 831	/*
 832	 * pgsize_bitmap specifies iova sizes that fit in one page table
 833	 * (1024 4-KiB pages = 4 MiB).
 834	 * So, size will always be 4096 <= size <= 4194304.
 835	 * Since iommu_map() guarantees that both iova and size will be
 836	 * aligned, we will always only be mapping from a single dte here.
 837	 */
 838	page_table = rk_dte_get_page_table(rk_domain, iova);
 839	if (IS_ERR(page_table)) {
 840		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 841		return PTR_ERR(page_table);
 842	}
 843
 844	dte_index = rk_domain->dt[rk_iova_dte_index(iova)];
 845	pte_index = rk_iova_pte_index(iova);
 846	pte_addr = &page_table[pte_index];
 847
 848	pte_dma = rk_ops->pt_address(dte_index) + pte_index * sizeof(u32);
 849	ret = rk_iommu_map_iova(rk_domain, pte_addr, pte_dma, iova,
 850				paddr, size, prot);
 851
 852	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 853	if (!ret)
 854		*mapped = size;
 855
 856	return ret;
 857}
 858
 859static size_t rk_iommu_unmap(struct iommu_domain *domain, unsigned long _iova,
 860			     size_t size, size_t count, struct iommu_iotlb_gather *gather)
 861{
 862	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 863	unsigned long flags;
 864	dma_addr_t pte_dma, iova = (dma_addr_t)_iova;
 865	phys_addr_t pt_phys;
 866	u32 dte;
 867	u32 *pte_addr;
 868	size_t unmap_size;
 869
 870	spin_lock_irqsave(&rk_domain->dt_lock, flags);
 871
 872	/*
 873	 * pgsize_bitmap specifies iova sizes that fit in one page table
 874	 * (1024 4-KiB pages = 4 MiB).
 875	 * So, size will always be 4096 <= size <= 4194304.
 876	 * Since iommu_unmap() guarantees that both iova and size will be
 877	 * aligned, we will always only be unmapping from a single dte here.
 878	 */
 879	dte = rk_domain->dt[rk_iova_dte_index(iova)];
 880	/* Just return 0 if iova is unmapped */
 881	if (!rk_dte_is_pt_valid(dte)) {
 882		spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 883		return 0;
 884	}
 885
 886	pt_phys = rk_ops->pt_address(dte);
 887	pte_addr = (u32 *)phys_to_virt(pt_phys) + rk_iova_pte_index(iova);
 888	pte_dma = pt_phys + rk_iova_pte_index(iova) * sizeof(u32);
 889	unmap_size = rk_iommu_unmap_iova(rk_domain, pte_addr, pte_dma, size);
 890
 891	spin_unlock_irqrestore(&rk_domain->dt_lock, flags);
 892
 893	/* Shootdown iotlb entries for iova range that was just unmapped */
 894	rk_iommu_zap_iova(rk_domain, iova, unmap_size);
 895
 896	return unmap_size;
 897}
 898
 899static struct rk_iommu *rk_iommu_from_dev(struct device *dev)
 900{
 901	struct rk_iommudata *data = dev_iommu_priv_get(dev);
 902
 903	return data ? data->iommu : NULL;
 904}
 905
 906/* Must be called with iommu powered on and attached */
 907static void rk_iommu_disable(struct rk_iommu *iommu)
 908{
 909	int i;
 910
 911	/* Ignore error while disabling, just keep going */
 912	WARN_ON(clk_bulk_enable(iommu->num_clocks, iommu->clocks));
 913	rk_iommu_enable_stall(iommu);
 914	rk_iommu_disable_paging(iommu);
 915	for (i = 0; i < iommu->num_mmu; i++) {
 916		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, 0);
 917		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR, 0);
 918	}
 919	rk_iommu_disable_stall(iommu);
 920	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 921}
 922
 923/* Must be called with iommu powered on and attached */
 924static int rk_iommu_enable(struct rk_iommu *iommu)
 925{
 926	struct iommu_domain *domain = iommu->domain;
 927	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
 928	int ret, i;
 929
 930	ret = clk_bulk_enable(iommu->num_clocks, iommu->clocks);
 931	if (ret)
 932		return ret;
 933
 934	ret = rk_iommu_enable_stall(iommu);
 935	if (ret)
 936		goto out_disable_clocks;
 937
 938	ret = rk_iommu_force_reset(iommu);
 939	if (ret)
 940		goto out_disable_stall;
 941
 942	for (i = 0; i < iommu->num_mmu; i++) {
 943		rk_iommu_write(iommu->bases[i], RK_MMU_DTE_ADDR,
 944			       rk_ops->mk_dtentries(rk_domain->dt_dma));
 945		rk_iommu_base_command(iommu->bases[i], RK_MMU_CMD_ZAP_CACHE);
 946		rk_iommu_write(iommu->bases[i], RK_MMU_INT_MASK, RK_MMU_IRQ_MASK);
 947	}
 948
 949	ret = rk_iommu_enable_paging(iommu);
 950
 951out_disable_stall:
 952	rk_iommu_disable_stall(iommu);
 953out_disable_clocks:
 954	clk_bulk_disable(iommu->num_clocks, iommu->clocks);
 955	return ret;
 956}
 957
 958static int rk_iommu_identity_attach(struct iommu_domain *identity_domain,
 959				    struct device *dev)
 960{
 961	struct rk_iommu *iommu;
 962	struct rk_iommu_domain *rk_domain;
 963	unsigned long flags;
 964	int ret;
 965
 966	/* Allow 'virtual devices' (eg drm) to detach from domain */
 967	iommu = rk_iommu_from_dev(dev);
 968	if (!iommu)
 969		return -ENODEV;
 970
 971	rk_domain = to_rk_domain(iommu->domain);
 972
 973	dev_dbg(dev, "Detaching from iommu domain\n");
 974
 975	if (iommu->domain == identity_domain)
 976		return 0;
 
 977
 978	iommu->domain = identity_domain;
 979
 980	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
 981	list_del_init(&iommu->node);
 982	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
 983
 984	ret = pm_runtime_get_if_in_use(iommu->dev);
 985	WARN_ON_ONCE(ret < 0);
 986	if (ret > 0) {
 987		rk_iommu_disable(iommu);
 988		pm_runtime_put(iommu->dev);
 989	}
 990
 991	return 0;
 992}
 993
 994static struct iommu_domain_ops rk_identity_ops = {
 995	.attach_dev = rk_iommu_identity_attach,
 996};
 997
 998static struct iommu_domain rk_identity_domain = {
 999	.type = IOMMU_DOMAIN_IDENTITY,
1000	.ops = &rk_identity_ops,
1001};
1002
1003static int rk_iommu_attach_device(struct iommu_domain *domain,
1004		struct device *dev)
1005{
1006	struct rk_iommu *iommu;
1007	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1008	unsigned long flags;
1009	int ret;
1010
1011	/*
1012	 * Allow 'virtual devices' (e.g., drm) to attach to domain.
1013	 * Such a device does not belong to an iommu group.
1014	 */
1015	iommu = rk_iommu_from_dev(dev);
1016	if (!iommu)
1017		return 0;
1018
1019	dev_dbg(dev, "Attaching to iommu domain\n");
1020
1021	/* iommu already attached */
1022	if (iommu->domain == domain)
1023		return 0;
1024
1025	ret = rk_iommu_identity_attach(&rk_identity_domain, dev);
1026	if (ret)
1027		return ret;
1028
1029	iommu->domain = domain;
1030
1031	spin_lock_irqsave(&rk_domain->iommus_lock, flags);
1032	list_add_tail(&iommu->node, &rk_domain->iommus);
1033	spin_unlock_irqrestore(&rk_domain->iommus_lock, flags);
1034
1035	ret = pm_runtime_get_if_in_use(iommu->dev);
1036	if (!ret || WARN_ON_ONCE(ret < 0))
1037		return 0;
1038
1039	ret = rk_iommu_enable(iommu);
1040	if (ret)
1041		WARN_ON(rk_iommu_identity_attach(&rk_identity_domain, dev));
1042
1043	pm_runtime_put(iommu->dev);
1044
1045	return ret;
1046}
1047
1048static struct iommu_domain *rk_iommu_domain_alloc_paging(struct device *dev)
1049{
1050	struct rk_iommu_domain *rk_domain;
1051
 
 
 
1052	if (!dma_dev)
1053		return NULL;
1054
1055	rk_domain = kzalloc(sizeof(*rk_domain), GFP_KERNEL);
1056	if (!rk_domain)
1057		return NULL;
1058
 
 
 
 
1059	/*
1060	 * rk32xx iommus use a 2 level pagetable.
1061	 * Each level1 (dt) and level2 (pt) table has 1024 4-byte entries.
1062	 * Allocate one 4 KiB page for each table.
1063	 */
1064	rk_domain->dt = (u32 *)get_zeroed_page(GFP_KERNEL | rk_ops->gfp_flags);
1065	if (!rk_domain->dt)
1066		goto err_free_domain;
1067
1068	rk_domain->dt_dma = dma_map_single(dma_dev, rk_domain->dt,
1069					   SPAGE_SIZE, DMA_TO_DEVICE);
1070	if (dma_mapping_error(dma_dev, rk_domain->dt_dma)) {
1071		dev_err(dma_dev, "DMA map error for DT\n");
1072		goto err_free_dt;
1073	}
1074
 
 
1075	spin_lock_init(&rk_domain->iommus_lock);
1076	spin_lock_init(&rk_domain->dt_lock);
1077	INIT_LIST_HEAD(&rk_domain->iommus);
1078
1079	rk_domain->domain.geometry.aperture_start = 0;
1080	rk_domain->domain.geometry.aperture_end   = DMA_BIT_MASK(32);
1081	rk_domain->domain.geometry.force_aperture = true;
1082
1083	return &rk_domain->domain;
1084
1085err_free_dt:
1086	free_page((unsigned long)rk_domain->dt);
 
 
 
1087err_free_domain:
1088	kfree(rk_domain);
1089
1090	return NULL;
1091}
1092
1093static void rk_iommu_domain_free(struct iommu_domain *domain)
1094{
1095	struct rk_iommu_domain *rk_domain = to_rk_domain(domain);
1096	int i;
1097
1098	WARN_ON(!list_empty(&rk_domain->iommus));
1099
1100	for (i = 0; i < NUM_DT_ENTRIES; i++) {
1101		u32 dte = rk_domain->dt[i];
1102		if (rk_dte_is_pt_valid(dte)) {
1103			phys_addr_t pt_phys = rk_ops->pt_address(dte);
1104			u32 *page_table = phys_to_virt(pt_phys);
1105			dma_unmap_single(dma_dev, pt_phys,
1106					 SPAGE_SIZE, DMA_TO_DEVICE);
1107			free_page((unsigned long)page_table);
1108		}
1109	}
1110
1111	dma_unmap_single(dma_dev, rk_domain->dt_dma,
1112			 SPAGE_SIZE, DMA_TO_DEVICE);
1113	free_page((unsigned long)rk_domain->dt);
1114
 
 
1115	kfree(rk_domain);
1116}
1117
1118static struct iommu_device *rk_iommu_probe_device(struct device *dev)
1119{
1120	struct rk_iommudata *data;
1121	struct rk_iommu *iommu;
1122
1123	data = dev_iommu_priv_get(dev);
1124	if (!data)
1125		return ERR_PTR(-ENODEV);
1126
1127	iommu = rk_iommu_from_dev(dev);
1128
1129	data->link = device_link_add(dev, iommu->dev,
1130				     DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME);
1131
1132	return &iommu->iommu;
1133}
1134
1135static void rk_iommu_release_device(struct device *dev)
1136{
1137	struct rk_iommudata *data = dev_iommu_priv_get(dev);
1138
1139	device_link_del(data->link);
1140}
1141
 
 
 
 
 
 
 
 
 
1142static int rk_iommu_of_xlate(struct device *dev,
1143			     const struct of_phandle_args *args)
1144{
1145	struct platform_device *iommu_dev;
1146	struct rk_iommudata *data;
1147
1148	data = devm_kzalloc(dma_dev, sizeof(*data), GFP_KERNEL);
1149	if (!data)
1150		return -ENOMEM;
1151
1152	iommu_dev = of_find_device_by_node(args->np);
1153
1154	data->iommu = platform_get_drvdata(iommu_dev);
1155	data->iommu->domain = &rk_identity_domain;
1156	dev_iommu_priv_set(dev, data);
1157
1158	platform_device_put(iommu_dev);
1159
1160	return 0;
1161}
1162
1163static const struct iommu_ops rk_iommu_ops = {
1164	.identity_domain = &rk_identity_domain,
1165	.domain_alloc_paging = rk_iommu_domain_alloc_paging,
 
 
 
 
1166	.probe_device = rk_iommu_probe_device,
1167	.release_device = rk_iommu_release_device,
1168	.device_group = generic_single_device_group,
 
1169	.pgsize_bitmap = RK_IOMMU_PGSIZE_BITMAP,
1170	.of_xlate = rk_iommu_of_xlate,
1171	.default_domain_ops = &(const struct iommu_domain_ops) {
1172		.attach_dev	= rk_iommu_attach_device,
1173		.map_pages	= rk_iommu_map,
1174		.unmap_pages	= rk_iommu_unmap,
1175		.iova_to_phys	= rk_iommu_iova_to_phys,
1176		.free		= rk_iommu_domain_free,
1177	}
1178};
1179
1180static int rk_iommu_probe(struct platform_device *pdev)
1181{
1182	struct device *dev = &pdev->dev;
1183	struct rk_iommu *iommu;
1184	struct resource *res;
1185	const struct rk_iommu_ops *ops;
1186	int num_res = pdev->num_resources;
1187	int err, i;
1188
1189	iommu = devm_kzalloc(dev, sizeof(*iommu), GFP_KERNEL);
1190	if (!iommu)
1191		return -ENOMEM;
1192
1193	platform_set_drvdata(pdev, iommu);
1194	iommu->dev = dev;
1195	iommu->num_mmu = 0;
1196
1197	ops = of_device_get_match_data(dev);
1198	if (!rk_ops)
1199		rk_ops = ops;
1200
1201	/*
1202	 * That should not happen unless different versions of the
1203	 * hardware block are embedded the same SoC
1204	 */
1205	if (WARN_ON(rk_ops != ops))
1206		return -EINVAL;
1207
1208	iommu->bases = devm_kcalloc(dev, num_res, sizeof(*iommu->bases),
1209				    GFP_KERNEL);
1210	if (!iommu->bases)
1211		return -ENOMEM;
1212
1213	for (i = 0; i < num_res; i++) {
1214		res = platform_get_resource(pdev, IORESOURCE_MEM, i);
1215		if (!res)
1216			continue;
1217		iommu->bases[i] = devm_ioremap_resource(&pdev->dev, res);
1218		if (IS_ERR(iommu->bases[i]))
1219			continue;
1220		iommu->num_mmu++;
1221	}
1222	if (iommu->num_mmu == 0)
1223		return PTR_ERR(iommu->bases[0]);
1224
1225	iommu->num_irq = platform_irq_count(pdev);
1226	if (iommu->num_irq < 0)
1227		return iommu->num_irq;
1228
1229	iommu->reset_disabled = device_property_read_bool(dev,
1230					"rockchip,disable-mmu-reset");
1231
1232	iommu->num_clocks = ARRAY_SIZE(rk_iommu_clocks);
1233	iommu->clocks = devm_kcalloc(iommu->dev, iommu->num_clocks,
1234				     sizeof(*iommu->clocks), GFP_KERNEL);
1235	if (!iommu->clocks)
1236		return -ENOMEM;
1237
1238	for (i = 0; i < iommu->num_clocks; ++i)
1239		iommu->clocks[i].id = rk_iommu_clocks[i];
1240
1241	/*
1242	 * iommu clocks should be present for all new devices and devicetrees
1243	 * but there are older devicetrees without clocks out in the wild.
1244	 * So clocks as optional for the time being.
1245	 */
1246	err = devm_clk_bulk_get(iommu->dev, iommu->num_clocks, iommu->clocks);
1247	if (err == -ENOENT)
1248		iommu->num_clocks = 0;
1249	else if (err)
1250		return err;
1251
1252	err = clk_bulk_prepare(iommu->num_clocks, iommu->clocks);
1253	if (err)
1254		return err;
1255
 
 
 
 
 
 
1256	err = iommu_device_sysfs_add(&iommu->iommu, dev, NULL, dev_name(dev));
1257	if (err)
1258		goto err_unprepare_clocks;
 
 
 
1259
1260	err = iommu_device_register(&iommu->iommu, &rk_iommu_ops, dev);
1261	if (err)
1262		goto err_remove_sysfs;
1263
1264	/*
1265	 * Use the first registered IOMMU device for domain to use with DMA
1266	 * API, since a domain might not physically correspond to a single
1267	 * IOMMU device..
1268	 */
1269	if (!dma_dev)
1270		dma_dev = &pdev->dev;
1271
 
 
1272	pm_runtime_enable(dev);
1273
1274	for (i = 0; i < iommu->num_irq; i++) {
1275		int irq = platform_get_irq(pdev, i);
1276
1277		if (irq < 0) {
1278			err = irq;
1279			goto err_pm_disable;
1280		}
1281
1282		err = devm_request_irq(iommu->dev, irq, rk_iommu_irq,
1283				       IRQF_SHARED, dev_name(dev), iommu);
1284		if (err)
1285			goto err_pm_disable;
 
 
1286	}
1287
1288	dma_set_mask_and_coherent(dev, rk_ops->dma_bit_mask);
1289
1290	return 0;
1291err_pm_disable:
1292	pm_runtime_disable(dev);
1293err_remove_sysfs:
1294	iommu_device_sysfs_remove(&iommu->iommu);
 
 
1295err_unprepare_clocks:
1296	clk_bulk_unprepare(iommu->num_clocks, iommu->clocks);
1297	return err;
1298}
1299
1300static void rk_iommu_shutdown(struct platform_device *pdev)
1301{
1302	struct rk_iommu *iommu = platform_get_drvdata(pdev);
1303	int i;
1304
1305	for (i = 0; i < iommu->num_irq; i++) {
1306		int irq = platform_get_irq(pdev, i);
1307
1308		devm_free_irq(iommu->dev, irq, iommu);
1309	}
1310
1311	pm_runtime_force_suspend(&pdev->dev);
1312}
1313
1314static int __maybe_unused rk_iommu_suspend(struct device *dev)
1315{
1316	struct rk_iommu *iommu = dev_get_drvdata(dev);
1317
1318	if (iommu->domain == &rk_identity_domain)
1319		return 0;
1320
1321	rk_iommu_disable(iommu);
1322	return 0;
1323}
1324
1325static int __maybe_unused rk_iommu_resume(struct device *dev)
1326{
1327	struct rk_iommu *iommu = dev_get_drvdata(dev);
1328
1329	if (iommu->domain == &rk_identity_domain)
1330		return 0;
1331
1332	return rk_iommu_enable(iommu);
1333}
1334
1335static const struct dev_pm_ops rk_iommu_pm_ops = {
1336	SET_RUNTIME_PM_OPS(rk_iommu_suspend, rk_iommu_resume, NULL)
1337	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
1338				pm_runtime_force_resume)
1339};
1340
1341static struct rk_iommu_ops iommu_data_ops_v1 = {
1342	.pt_address = &rk_dte_pt_address,
1343	.mk_dtentries = &rk_mk_dte,
1344	.mk_ptentries = &rk_mk_pte,
1345	.dma_bit_mask = DMA_BIT_MASK(32),
1346	.gfp_flags = GFP_DMA32,
1347};
1348
1349static struct rk_iommu_ops iommu_data_ops_v2 = {
1350	.pt_address = &rk_dte_pt_address_v2,
1351	.mk_dtentries = &rk_mk_dte_v2,
1352	.mk_ptentries = &rk_mk_pte_v2,
1353	.dma_bit_mask = DMA_BIT_MASK(40),
1354	.gfp_flags = 0,
1355};
1356
1357static const struct of_device_id rk_iommu_dt_ids[] = {
1358	{	.compatible = "rockchip,iommu",
1359		.data = &iommu_data_ops_v1,
1360	},
1361	{	.compatible = "rockchip,rk3568-iommu",
1362		.data = &iommu_data_ops_v2,
1363	},
1364	{ /* sentinel */ }
1365};
1366
1367static struct platform_driver rk_iommu_driver = {
1368	.probe = rk_iommu_probe,
1369	.shutdown = rk_iommu_shutdown,
1370	.driver = {
1371		   .name = "rk_iommu",
1372		   .of_match_table = rk_iommu_dt_ids,
1373		   .pm = &rk_iommu_pm_ops,
1374		   .suppress_bind_attrs = true,
1375	},
1376};
1377builtin_platform_driver(rk_iommu_driver);