Linux Audio

Check our new training course

Loading...
v5.9
 1// SPDX-License-Identifier: GPL-2.0
 2/*
 3 * Copyright (C) 2012 Regents of the University of California
 4 * Copyright (C) 2017 SiFive
 
 5 */
 6
 
 
 7#include <linux/mm.h>
 
 
 
 
 8#include <asm/tlbflush.h>
 9#include <asm/cacheflush.h>
10#include <asm/mmu_context.h>
11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12/*
13 * When necessary, performs a deferred icache flush for the given MM context,
14 * on the local CPU.  RISC-V has no direct mechanism for instruction cache
15 * shoot downs, so instead we send an IPI that informs the remote harts they
16 * need to flush their local instruction caches.  To avoid pathologically slow
17 * behavior in a common case (a bunch of single-hart processes on a many-hart
18 * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
19 * executing a MM context and instead schedule a deferred local instruction
20 * cache flush to be performed before execution resumes on each hart.  This
21 * actually performs that local instruction cache flush, which implicitly only
22 * refers to the current hart.
 
 
23 */
24static inline void flush_icache_deferred(struct mm_struct *mm)
25{
26#ifdef CONFIG_SMP
27	unsigned int cpu = smp_processor_id();
28	cpumask_t *mask = &mm->context.icache_stale_mask;
29
30	if (cpumask_test_cpu(cpu, mask)) {
31		cpumask_clear_cpu(cpu, mask);
32		/*
33		 * Ensure the remote hart's writes are visible to this hart.
34		 * This pairs with a barrier in flush_icache_mm.
35		 */
36		smp_mb();
37		local_flush_icache_all();
38	}
39
40#endif
41}
42
43void switch_mm(struct mm_struct *prev, struct mm_struct *next,
44	struct task_struct *task)
45{
46	unsigned int cpu;
47
48	if (unlikely(prev == next))
49		return;
50
 
 
51	/*
52	 * Mark the current MM context as inactive, and the next as
53	 * active.  This is at least used by the icache flushing
54	 * routines in order to determine who should be flushed.
55	 */
56	cpu = smp_processor_id();
57
58	cpumask_clear_cpu(cpu, mm_cpumask(prev));
59	cpumask_set_cpu(cpu, mm_cpumask(next));
60
61#ifdef CONFIG_MMU
62	csr_write(CSR_SATP, virt_to_pfn(next->pgd) | SATP_MODE);
63	local_flush_tlb_all();
64#endif
65
66	flush_icache_deferred(next);
67}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2012 Regents of the University of California
  4 * Copyright (C) 2017 SiFive
  5 * Copyright (C) 2021 Western Digital Corporation or its affiliates.
  6 */
  7
  8#include <linux/bitops.h>
  9#include <linux/cpumask.h>
 10#include <linux/mm.h>
 11#include <linux/percpu.h>
 12#include <linux/slab.h>
 13#include <linux/spinlock.h>
 14#include <linux/static_key.h>
 15#include <asm/tlbflush.h>
 16#include <asm/cacheflush.h>
 17#include <asm/mmu_context.h>
 18
 19#ifdef CONFIG_MMU
 20
 21DEFINE_STATIC_KEY_FALSE(use_asid_allocator);
 22
 23static unsigned long asid_bits;
 24static unsigned long num_asids;
 25unsigned long asid_mask;
 26
 27static atomic_long_t current_version;
 28
 29static DEFINE_RAW_SPINLOCK(context_lock);
 30static cpumask_t context_tlb_flush_pending;
 31static unsigned long *context_asid_map;
 32
 33static DEFINE_PER_CPU(atomic_long_t, active_context);
 34static DEFINE_PER_CPU(unsigned long, reserved_context);
 35
 36static bool check_update_reserved_context(unsigned long cntx,
 37					  unsigned long newcntx)
 38{
 39	int cpu;
 40	bool hit = false;
 41
 42	/*
 43	 * Iterate over the set of reserved CONTEXT looking for a match.
 44	 * If we find one, then we can update our mm to use new CONTEXT
 45	 * (i.e. the same CONTEXT in the current_version) but we can't
 46	 * exit the loop early, since we need to ensure that all copies
 47	 * of the old CONTEXT are updated to reflect the mm. Failure to do
 48	 * so could result in us missing the reserved CONTEXT in a future
 49	 * version.
 50	 */
 51	for_each_possible_cpu(cpu) {
 52		if (per_cpu(reserved_context, cpu) == cntx) {
 53			hit = true;
 54			per_cpu(reserved_context, cpu) = newcntx;
 55		}
 56	}
 57
 58	return hit;
 59}
 60
 61static void __flush_context(void)
 62{
 63	int i;
 64	unsigned long cntx;
 65
 66	/* Must be called with context_lock held */
 67	lockdep_assert_held(&context_lock);
 68
 69	/* Update the list of reserved ASIDs and the ASID bitmap. */
 70	bitmap_zero(context_asid_map, num_asids);
 71
 72	/* Mark already active ASIDs as used */
 73	for_each_possible_cpu(i) {
 74		cntx = atomic_long_xchg_relaxed(&per_cpu(active_context, i), 0);
 75		/*
 76		 * If this CPU has already been through a rollover, but
 77		 * hasn't run another task in the meantime, we must preserve
 78		 * its reserved CONTEXT, as this is the only trace we have of
 79		 * the process it is still running.
 80		 */
 81		if (cntx == 0)
 82			cntx = per_cpu(reserved_context, i);
 83
 84		__set_bit(cntx & asid_mask, context_asid_map);
 85		per_cpu(reserved_context, i) = cntx;
 86	}
 87
 88	/* Mark ASID #0 as used because it is used at boot-time */
 89	__set_bit(0, context_asid_map);
 90
 91	/* Queue a TLB invalidation for each CPU on next context-switch */
 92	cpumask_setall(&context_tlb_flush_pending);
 93}
 94
 95static unsigned long __new_context(struct mm_struct *mm)
 96{
 97	static u32 cur_idx = 1;
 98	unsigned long cntx = atomic_long_read(&mm->context.id);
 99	unsigned long asid, ver = atomic_long_read(&current_version);
100
101	/* Must be called with context_lock held */
102	lockdep_assert_held(&context_lock);
103
104	if (cntx != 0) {
105		unsigned long newcntx = ver | (cntx & asid_mask);
106
107		/*
108		 * If our current CONTEXT was active during a rollover, we
109		 * can continue to use it and this was just a false alarm.
110		 */
111		if (check_update_reserved_context(cntx, newcntx))
112			return newcntx;
113
114		/*
115		 * We had a valid CONTEXT in a previous life, so try to
116		 * re-use it if possible.
117		 */
118		if (!__test_and_set_bit(cntx & asid_mask, context_asid_map))
119			return newcntx;
120	}
121
122	/*
123	 * Allocate a free ASID. If we can't find one then increment
124	 * current_version and flush all ASIDs.
125	 */
126	asid = find_next_zero_bit(context_asid_map, num_asids, cur_idx);
127	if (asid != num_asids)
128		goto set_asid;
129
130	/* We're out of ASIDs, so increment current_version */
131	ver = atomic_long_add_return_relaxed(num_asids, &current_version);
132
133	/* Flush everything  */
134	__flush_context();
135
136	/* We have more ASIDs than CPUs, so this will always succeed */
137	asid = find_next_zero_bit(context_asid_map, num_asids, 1);
138
139set_asid:
140	__set_bit(asid, context_asid_map);
141	cur_idx = asid;
142	return asid | ver;
143}
144
145static void set_mm_asid(struct mm_struct *mm, unsigned int cpu)
146{
147	unsigned long flags;
148	bool need_flush_tlb = false;
149	unsigned long cntx, old_active_cntx;
150
151	cntx = atomic_long_read(&mm->context.id);
152
153	/*
154	 * If our active_context is non-zero and the context matches the
155	 * current_version, then we update the active_context entry with a
156	 * relaxed cmpxchg.
157	 *
158	 * Following is how we handle racing with a concurrent rollover:
159	 *
160	 * - We get a zero back from the cmpxchg and end up waiting on the
161	 *   lock. Taking the lock synchronises with the rollover and so
162	 *   we are forced to see the updated verion.
163	 *
164	 * - We get a valid context back from the cmpxchg then we continue
165	 *   using old ASID because __flush_context() would have marked ASID
166	 *   of active_context as used and next context switch we will
167	 *   allocate new context.
168	 */
169	old_active_cntx = atomic_long_read(&per_cpu(active_context, cpu));
170	if (old_active_cntx &&
171	    ((cntx & ~asid_mask) == atomic_long_read(&current_version)) &&
172	    atomic_long_cmpxchg_relaxed(&per_cpu(active_context, cpu),
173					old_active_cntx, cntx))
174		goto switch_mm_fast;
175
176	raw_spin_lock_irqsave(&context_lock, flags);
177
178	/* Check that our ASID belongs to the current_version. */
179	cntx = atomic_long_read(&mm->context.id);
180	if ((cntx & ~asid_mask) != atomic_long_read(&current_version)) {
181		cntx = __new_context(mm);
182		atomic_long_set(&mm->context.id, cntx);
183	}
184
185	if (cpumask_test_and_clear_cpu(cpu, &context_tlb_flush_pending))
186		need_flush_tlb = true;
187
188	atomic_long_set(&per_cpu(active_context, cpu), cntx);
189
190	raw_spin_unlock_irqrestore(&context_lock, flags);
191
192switch_mm_fast:
193	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) |
194		  ((cntx & asid_mask) << SATP_ASID_SHIFT) |
195		  satp_mode);
196
197	if (need_flush_tlb)
198		local_flush_tlb_all();
199}
200
201static void set_mm_noasid(struct mm_struct *mm)
202{
203	/* Switch the page table and blindly nuke entire local TLB */
204	csr_write(CSR_SATP, virt_to_pfn(mm->pgd) | satp_mode);
205	local_flush_tlb_all();
206}
207
208static inline void set_mm(struct mm_struct *prev,
209			  struct mm_struct *next, unsigned int cpu)
210{
211	/*
212	 * The mm_cpumask indicates which harts' TLBs contain the virtual
213	 * address mapping of the mm. Compared to noasid, using asid
214	 * can't guarantee that stale TLB entries are invalidated because
215	 * the asid mechanism wouldn't flush TLB for every switch_mm for
216	 * performance. So when using asid, keep all CPUs footmarks in
217	 * cpumask() until mm reset.
218	 */
219	cpumask_set_cpu(cpu, mm_cpumask(next));
220	if (static_branch_unlikely(&use_asid_allocator)) {
221		set_mm_asid(next, cpu);
222	} else {
223		cpumask_clear_cpu(cpu, mm_cpumask(prev));
224		set_mm_noasid(next);
225	}
226}
227
228static int __init asids_init(void)
229{
230	unsigned long old;
231
232	/* Figure-out number of ASID bits in HW */
233	old = csr_read(CSR_SATP);
234	asid_bits = old | (SATP_ASID_MASK << SATP_ASID_SHIFT);
235	csr_write(CSR_SATP, asid_bits);
236	asid_bits = (csr_read(CSR_SATP) >> SATP_ASID_SHIFT)  & SATP_ASID_MASK;
237	asid_bits = fls_long(asid_bits);
238	csr_write(CSR_SATP, old);
239
240	/*
241	 * In the process of determining number of ASID bits (above)
242	 * we polluted the TLB of current HART so let's do TLB flushed
243	 * to remove unwanted TLB enteries.
244	 */
245	local_flush_tlb_all();
246
247	/* Pre-compute ASID details */
248	if (asid_bits) {
249		num_asids = 1 << asid_bits;
250		asid_mask = num_asids - 1;
251	}
252
253	/*
254	 * Use ASID allocator only if number of HW ASIDs are
255	 * at-least twice more than CPUs
256	 */
257	if (num_asids > (2 * num_possible_cpus())) {
258		atomic_long_set(&current_version, num_asids);
259
260		context_asid_map = bitmap_zalloc(num_asids, GFP_KERNEL);
261		if (!context_asid_map)
262			panic("Failed to allocate bitmap for %lu ASIDs\n",
263			      num_asids);
264
265		__set_bit(0, context_asid_map);
266
267		static_branch_enable(&use_asid_allocator);
268
269		pr_info("ASID allocator using %lu bits (%lu entries)\n",
270			asid_bits, num_asids);
271	} else {
272		pr_info("ASID allocator disabled (%lu bits)\n", asid_bits);
273	}
274
275	return 0;
276}
277early_initcall(asids_init);
278#else
279static inline void set_mm(struct mm_struct *prev,
280			  struct mm_struct *next, unsigned int cpu)
281{
282	/* Nothing to do here when there is no MMU */
283}
284#endif
285
286/*
287 * When necessary, performs a deferred icache flush for the given MM context,
288 * on the local CPU.  RISC-V has no direct mechanism for instruction cache
289 * shoot downs, so instead we send an IPI that informs the remote harts they
290 * need to flush their local instruction caches.  To avoid pathologically slow
291 * behavior in a common case (a bunch of single-hart processes on a many-hart
292 * machine, ie 'make -j') we avoid the IPIs for harts that are not currently
293 * executing a MM context and instead schedule a deferred local instruction
294 * cache flush to be performed before execution resumes on each hart.  This
295 * actually performs that local instruction cache flush, which implicitly only
296 * refers to the current hart.
297 *
298 * The "cpu" argument must be the current local CPU number.
299 */
300static inline void flush_icache_deferred(struct mm_struct *mm, unsigned int cpu)
301{
302#ifdef CONFIG_SMP
 
303	cpumask_t *mask = &mm->context.icache_stale_mask;
304
305	if (cpumask_test_cpu(cpu, mask)) {
306		cpumask_clear_cpu(cpu, mask);
307		/*
308		 * Ensure the remote hart's writes are visible to this hart.
309		 * This pairs with a barrier in flush_icache_mm.
310		 */
311		smp_mb();
312		local_flush_icache_all();
313	}
314
315#endif
316}
317
318void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319	struct task_struct *task)
320{
321	unsigned int cpu;
322
323	if (unlikely(prev == next))
324		return;
325
326	membarrier_arch_switch_mm(prev, next, task);
327
328	/*
329	 * Mark the current MM context as inactive, and the next as
330	 * active.  This is at least used by the icache flushing
331	 * routines in order to determine who should be flushed.
332	 */
333	cpu = smp_processor_id();
334
335	set_mm(prev, next, cpu);
 
 
 
 
 
 
336
337	flush_icache_deferred(next, cpu);
338}