Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* 
  3 * Code to handle x86 style IRQs plus some generic interrupt stuff.
  4 *
  5 * Copyright (C) 1992 Linus Torvalds
  6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
  7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  8 * Copyright (C) 1999-2000 Grant Grundler
  9 * Copyright (c) 2005 Matthew Wilcox
 10 */
 11#include <linux/bitops.h>
 12#include <linux/errno.h>
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/seq_file.h>
 17#include <linux/types.h>
 
 18#include <asm/io.h>
 19
 
 20#include <asm/smp.h>
 21#include <asm/ldcw.h>
 22
 23#undef PARISC_IRQ_CR16_COUNTS
 24
 25extern irqreturn_t timer_interrupt(int, void *);
 26extern irqreturn_t ipi_interrupt(int, void *);
 27
 28#define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
 29
 30/* Bits in EIEM correlate with cpu_irq_action[].
 31** Numbered *Big Endian*! (ie bit 0 is MSB)
 32*/
 33static volatile unsigned long cpu_eiem = 0;
 34
 35/*
 36** local ACK bitmap ... habitually set to 1, but reset to zero
 37** between ->ack() and ->end() of the interrupt to prevent
 38** re-interruption of a processing interrupt.
 39*/
 40static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
 41
 42static void cpu_mask_irq(struct irq_data *d)
 43{
 44	unsigned long eirr_bit = EIEM_MASK(d->irq);
 45
 46	cpu_eiem &= ~eirr_bit;
 47	/* Do nothing on the other CPUs.  If they get this interrupt,
 48	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
 49	 * handle it, and the set_eiem() at the bottom will ensure it
 50	 * then gets disabled */
 51}
 52
 53static void __cpu_unmask_irq(unsigned int irq)
 54{
 55	unsigned long eirr_bit = EIEM_MASK(irq);
 56
 57	cpu_eiem |= eirr_bit;
 58
 59	/* This is just a simple NOP IPI.  But what it does is cause
 60	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
 61	 * of the interrupt handler */
 62	smp_send_all_nop();
 63}
 64
 65static void cpu_unmask_irq(struct irq_data *d)
 66{
 67	__cpu_unmask_irq(d->irq);
 68}
 69
 70void cpu_ack_irq(struct irq_data *d)
 71{
 72	unsigned long mask = EIEM_MASK(d->irq);
 73	int cpu = smp_processor_id();
 74
 75	/* Clear in EIEM so we can no longer process */
 76	per_cpu(local_ack_eiem, cpu) &= ~mask;
 77
 78	/* disable the interrupt */
 79	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 80
 81	/* and now ack it */
 82	mtctl(mask, 23);
 83}
 84
 85void cpu_eoi_irq(struct irq_data *d)
 86{
 87	unsigned long mask = EIEM_MASK(d->irq);
 88	int cpu = smp_processor_id();
 89
 90	/* set it in the eiems---it's no longer in process */
 91	per_cpu(local_ack_eiem, cpu) |= mask;
 92
 93	/* enable the interrupt */
 94	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 95}
 96
 97#ifdef CONFIG_SMP
 98int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
 99{
100	int cpu_dest;
101
102	/* timer and ipi have to always be received on all CPUs */
103	if (irqd_is_per_cpu(d))
104		return -EINVAL;
105
106	/* whatever mask they set, we just allow one CPU */
107	cpu_dest = cpumask_next_and(d->irq & (num_online_cpus()-1),
108					dest, cpu_online_mask);
109	if (cpu_dest >= nr_cpu_ids)
110		cpu_dest = cpumask_first_and(dest, cpu_online_mask);
111
112	return cpu_dest;
113}
114
115static int cpu_set_affinity_irq(struct irq_data *d, const struct cpumask *dest,
116				bool force)
117{
118	int cpu_dest;
119
120	cpu_dest = cpu_check_affinity(d, dest);
121	if (cpu_dest < 0)
122		return -1;
123
124	cpumask_copy(irq_data_get_affinity_mask(d), dest);
125
126	return 0;
127}
128#endif
129
130static struct irq_chip cpu_interrupt_type = {
131	.name			= "CPU",
132	.irq_mask		= cpu_mask_irq,
133	.irq_unmask		= cpu_unmask_irq,
134	.irq_ack		= cpu_ack_irq,
135	.irq_eoi		= cpu_eoi_irq,
136#ifdef CONFIG_SMP
137	.irq_set_affinity	= cpu_set_affinity_irq,
138#endif
139	/* XXX: Needs to be written.  We managed without it so far, but
140	 * we really ought to write it.
141	 */
142	.irq_retrigger	= NULL,
143};
144
145DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
146#define irq_stats(x)		(&per_cpu(irq_stat, x))
147
148/*
149 * /proc/interrupts printing for arch specific interrupts
150 */
151int arch_show_interrupts(struct seq_file *p, int prec)
152{
153	int j;
154
155#ifdef CONFIG_DEBUG_STACKOVERFLOW
156	seq_printf(p, "%*s: ", prec, "STK");
157	for_each_online_cpu(j)
158		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
159	seq_puts(p, "  Kernel stack usage\n");
160# ifdef CONFIG_IRQSTACKS
161	seq_printf(p, "%*s: ", prec, "IST");
162	for_each_online_cpu(j)
163		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
164	seq_puts(p, "  Interrupt stack usage\n");
165# endif
166#endif
167#ifdef CONFIG_SMP
168	if (num_online_cpus() > 1) {
169		seq_printf(p, "%*s: ", prec, "RES");
170		for_each_online_cpu(j)
171			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
172		seq_puts(p, "  Rescheduling interrupts\n");
173		seq_printf(p, "%*s: ", prec, "CAL");
174		for_each_online_cpu(j)
175			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
176		seq_puts(p, "  Function call interrupts\n");
177	}
178#endif
179	seq_printf(p, "%*s: ", prec, "UAH");
180	for_each_online_cpu(j)
181		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
182	seq_puts(p, "  Unaligned access handler traps\n");
183	seq_printf(p, "%*s: ", prec, "FPA");
184	for_each_online_cpu(j)
185		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
186	seq_puts(p, "  Floating point assist traps\n");
187	seq_printf(p, "%*s: ", prec, "TLB");
188	for_each_online_cpu(j)
189		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
190	seq_puts(p, "  TLB shootdowns\n");
191	return 0;
192}
193
194int show_interrupts(struct seq_file *p, void *v)
195{
196	int i = *(loff_t *) v, j;
197	unsigned long flags;
198
199	if (i == 0) {
200		seq_puts(p, "    ");
201		for_each_online_cpu(j)
202			seq_printf(p, "       CPU%d", j);
203
204#ifdef PARISC_IRQ_CR16_COUNTS
205		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
206#endif
207		seq_putc(p, '\n');
208	}
209
210	if (i < NR_IRQS) {
211		struct irq_desc *desc = irq_to_desc(i);
212		struct irqaction *action;
213
214		raw_spin_lock_irqsave(&desc->lock, flags);
215		action = desc->action;
216		if (!action)
217			goto skip;
218		seq_printf(p, "%3d: ", i);
219#ifdef CONFIG_SMP
220		for_each_online_cpu(j)
221			seq_printf(p, "%10u ", kstat_irqs_cpu(i, j));
222#else
223		seq_printf(p, "%10u ", kstat_irqs(i));
224#endif
225
226		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
227#ifndef PARISC_IRQ_CR16_COUNTS
228		seq_printf(p, "  %s", action->name);
229
230		while ((action = action->next))
231			seq_printf(p, ", %s", action->name);
232#else
233		for ( ;action; action = action->next) {
234			unsigned int k, avg, min, max;
235
236			min = max = action->cr16_hist[0];
237
238			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
239				int hist = action->cr16_hist[k];
240
241				if (hist) {
242					avg += hist;
243				} else
244					break;
245
246				if (hist > max) max = hist;
247				if (hist < min) min = hist;
248			}
249
250			avg /= k;
251			seq_printf(p, " %s[%d/%d/%d]", action->name,
252					min,avg,max);
253		}
254#endif
255
256		seq_putc(p, '\n');
257 skip:
258		raw_spin_unlock_irqrestore(&desc->lock, flags);
259	}
260
261	if (i == NR_IRQS)
262		arch_show_interrupts(p, 3);
263
264	return 0;
265}
266
267
268
269/*
270** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
271** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
272**
273** To use txn_XXX() interfaces, get a Virtual IRQ first.
274** Then use that to get the Transaction address and data.
275*/
276
277int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
278{
279	if (irq_has_action(irq))
280		return -EBUSY;
281	if (irq_get_chip(irq) != &cpu_interrupt_type)
282		return -EBUSY;
283
284	/* for iosapic interrupts */
285	if (type) {
286		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
287		irq_set_chip_data(irq, data);
288		__cpu_unmask_irq(irq);
289	}
290	return 0;
291}
292
293int txn_claim_irq(int irq)
294{
295	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
296}
297
298/*
299 * The bits_wide parameter accommodates the limitations of the HW/SW which
300 * use these bits:
301 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
302 * V-class (EPIC):          6 bits
303 * N/L/A-class (iosapic):   8 bits
304 * PCI 2.2 MSI:            16 bits
305 * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
306 *
307 * On the service provider side:
308 * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
309 * o PA 2.0 wide mode                   6-bits (per processor)
310 * o IA64                               8-bits (0-256 total)
311 *
312 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
313 * by the processor...and the N/L-class I/O subsystem supports more bits than
314 * PA2.0 has. The first case is the problem.
315 */
316int txn_alloc_irq(unsigned int bits_wide)
317{
318	int irq;
319
320	/* never return irq 0 cause that's the interval timer */
321	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
322		if (cpu_claim_irq(irq, NULL, NULL) < 0)
323			continue;
324		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
325			continue;
326		return irq;
327	}
328
329	/* unlikely, but be prepared */
330	return -1;
331}
332
333
334unsigned long txn_affinity_addr(unsigned int irq, int cpu)
335{
336#ifdef CONFIG_SMP
337	struct irq_data *d = irq_get_irq_data(irq);
338	cpumask_copy(irq_data_get_affinity_mask(d), cpumask_of(cpu));
339#endif
340
341	return per_cpu(cpu_data, cpu).txn_addr;
342}
343
344
345unsigned long txn_alloc_addr(unsigned int virt_irq)
346{
347	static int next_cpu = -1;
348
349	next_cpu++; /* assign to "next" CPU we want this bugger on */
350
351	/* validate entry */
352	while ((next_cpu < nr_cpu_ids) &&
353		(!per_cpu(cpu_data, next_cpu).txn_addr ||
354		 !cpu_online(next_cpu)))
355		next_cpu++;
356
357	if (next_cpu >= nr_cpu_ids) 
358		next_cpu = 0;	/* nothing else, assign monarch */
359
360	return txn_affinity_addr(virt_irq, next_cpu);
361}
362
363
364unsigned int txn_alloc_data(unsigned int virt_irq)
365{
366	return virt_irq - CPU_IRQ_BASE;
367}
368
369static inline int eirr_to_irq(unsigned long eirr)
370{
371	int bit = fls_long(eirr);
372	return (BITS_PER_LONG - bit) + TIMER_IRQ;
373}
374
375#ifdef CONFIG_IRQSTACKS
376/*
377 * IRQ STACK - used for irq handler
378 */
 
 
 
379#define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
 
380
381union irq_stack_union {
382	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
383	volatile unsigned int slock[4];
384	volatile unsigned int lock[1];
385};
386
387DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
388		.slock = { 1,1,1,1 },
389	};
390#endif
391
392
393int sysctl_panic_on_stackoverflow = 1;
394
395static inline void stack_overflow_check(struct pt_regs *regs)
396{
397#ifdef CONFIG_DEBUG_STACKOVERFLOW
398	#define STACK_MARGIN	(256*6)
399
400	/* Our stack starts directly behind the thread_info struct. */
401	unsigned long stack_start = (unsigned long) current_thread_info();
402	unsigned long sp = regs->gr[30];
403	unsigned long stack_usage;
404	unsigned int *last_usage;
405	int cpu = smp_processor_id();
406
407	/* if sr7 != 0, we interrupted a userspace process which we do not want
408	 * to check for stack overflow. We will only check the kernel stack. */
409	if (regs->sr[7])
410		return;
411
412	/* exit if already in panic */
413	if (sysctl_panic_on_stackoverflow < 0)
414		return;
415
416	/* calculate kernel stack usage */
417	stack_usage = sp - stack_start;
418#ifdef CONFIG_IRQSTACKS
419	if (likely(stack_usage <= THREAD_SIZE))
420		goto check_kernel_stack; /* found kernel stack */
421
422	/* check irq stack usage */
423	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
424	stack_usage = sp - stack_start;
425
426	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
427	if (unlikely(stack_usage > *last_usage))
428		*last_usage = stack_usage;
429
430	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
431		return;
432
433	pr_emerg("stackcheck: %s will most likely overflow irq stack "
434		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
435		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
436	goto panic_check;
437
438check_kernel_stack:
439#endif
440
441	/* check kernel stack usage */
442	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
443
444	if (unlikely(stack_usage > *last_usage))
445		*last_usage = stack_usage;
446
447	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
448		return;
449
450	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
451		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
452		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
453
454#ifdef CONFIG_IRQSTACKS
455panic_check:
456#endif
457	if (sysctl_panic_on_stackoverflow) {
458		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
459		panic("low stack detected by irq handler - check messages\n");
460	}
461#endif
462}
463
464#ifdef CONFIG_IRQSTACKS
465/* in entry.S: */
466void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
467
468static void execute_on_irq_stack(void *func, unsigned long param1)
469{
470	union irq_stack_union *union_ptr;
471	unsigned long irq_stack;
472	volatile unsigned int *irq_stack_in_use;
473
474	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
475	irq_stack = (unsigned long) &union_ptr->stack;
476	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
477			 64); /* align for stack frame usage */
478
479	/* We may be called recursive. If we are already using the irq stack,
480	 * just continue to use it. Use spinlocks to serialize
481	 * the irq stack usage.
482	 */
483	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
484	if (!__ldcw(irq_stack_in_use)) {
485		void (*direct_call)(unsigned long p1) = func;
486
487		/* We are using the IRQ stack already.
488		 * Do direct call on current stack. */
489		direct_call(param1);
490		return;
491	}
492
493	/* This is where we switch to the IRQ stack. */
494	call_on_stack(param1, func, irq_stack);
495
496	/* free up irq stack usage. */
497	*irq_stack_in_use = 1;
498}
499
 
500void do_softirq_own_stack(void)
501{
502	execute_on_irq_stack(__do_softirq, 0);
503}
 
504#endif /* CONFIG_IRQSTACKS */
505
506/* ONLY called from entry.S:intr_extint() */
507void do_cpu_irq_mask(struct pt_regs *regs)
508{
509	struct pt_regs *old_regs;
510	unsigned long eirr_val;
511	int irq, cpu = smp_processor_id();
512	struct irq_data *irq_data;
513#ifdef CONFIG_SMP
514	cpumask_t dest;
515#endif
516
517	old_regs = set_irq_regs(regs);
518	local_irq_disable();
519	irq_enter();
520
521	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
522	if (!eirr_val)
523		goto set_out;
524	irq = eirr_to_irq(eirr_val);
525
526	irq_data = irq_get_irq_data(irq);
527
528	/* Filter out spurious interrupts, mostly from serial port at bootup */
529	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
530		goto set_out;
531
532#ifdef CONFIG_SMP
533	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
534	if (irqd_is_per_cpu(irq_data) &&
535	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
536		int cpu = cpumask_first(&dest);
537
538		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
539		       irq, smp_processor_id(), cpu);
540		gsc_writel(irq + CPU_IRQ_BASE,
541			   per_cpu(cpu_data, cpu).hpa);
542		goto set_out;
543	}
544#endif
545	stack_overflow_check(regs);
546
547#ifdef CONFIG_IRQSTACKS
548	execute_on_irq_stack(&generic_handle_irq, irq);
549#else
550	generic_handle_irq(irq);
551#endif /* CONFIG_IRQSTACKS */
552
553 out:
554	irq_exit();
555	set_irq_regs(old_regs);
556	return;
557
558 set_out:
559	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
560	goto out;
561}
562
563static void claim_cpu_irqs(void)
564{
565	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
566	int i;
567
568	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
569		irq_set_chip_and_handler(i, &cpu_interrupt_type,
570					 handle_percpu_irq);
571	}
572
573	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
574	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
575		pr_err("Failed to register timer interrupt\n");
576#ifdef CONFIG_SMP
577	irq_set_handler(IPI_IRQ, handle_percpu_irq);
578	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
579		pr_err("Failed to register IPI interrupt\n");
580#endif
581}
582
583void __init init_IRQ(void)
584{
585	local_irq_disable();	/* PARANOID - should already be disabled */
586	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
587#ifdef CONFIG_SMP
588	if (!cpu_eiem) {
589		claim_cpu_irqs();
590		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
591	}
592#else
593	claim_cpu_irqs();
594	cpu_eiem = EIEM_MASK(TIMER_IRQ);
595#endif
596        set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
597}
v6.9.4
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/* 
  3 * Code to handle x86 style IRQs plus some generic interrupt stuff.
  4 *
  5 * Copyright (C) 1992 Linus Torvalds
  6 * Copyright (C) 1994, 1995, 1996, 1997, 1998 Ralf Baechle
  7 * Copyright (C) 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
  8 * Copyright (C) 1999-2000 Grant Grundler
  9 * Copyright (c) 2005 Matthew Wilcox
 10 */
 11#include <linux/bitops.h>
 12#include <linux/errno.h>
 13#include <linux/init.h>
 14#include <linux/interrupt.h>
 15#include <linux/kernel_stat.h>
 16#include <linux/seq_file.h>
 17#include <linux/types.h>
 18#include <linux/sched/task_stack.h>
 19#include <asm/io.h>
 20
 21#include <asm/softirq_stack.h>
 22#include <asm/smp.h>
 23#include <asm/ldcw.h>
 24
 25#undef PARISC_IRQ_CR16_COUNTS
 26
 
 
 
 27#define EIEM_MASK(irq)       (1UL<<(CPU_IRQ_MAX - irq))
 28
 29/* Bits in EIEM correlate with cpu_irq_action[].
 30** Numbered *Big Endian*! (ie bit 0 is MSB)
 31*/
 32static volatile unsigned long cpu_eiem = 0;
 33
 34/*
 35** local ACK bitmap ... habitually set to 1, but reset to zero
 36** between ->ack() and ->end() of the interrupt to prevent
 37** re-interruption of a processing interrupt.
 38*/
 39static DEFINE_PER_CPU(unsigned long, local_ack_eiem) = ~0UL;
 40
 41static void cpu_mask_irq(struct irq_data *d)
 42{
 43	unsigned long eirr_bit = EIEM_MASK(d->irq);
 44
 45	cpu_eiem &= ~eirr_bit;
 46	/* Do nothing on the other CPUs.  If they get this interrupt,
 47	 * The & cpu_eiem in the do_cpu_irq_mask() ensures they won't
 48	 * handle it, and the set_eiem() at the bottom will ensure it
 49	 * then gets disabled */
 50}
 51
 52static void __cpu_unmask_irq(unsigned int irq)
 53{
 54	unsigned long eirr_bit = EIEM_MASK(irq);
 55
 56	cpu_eiem |= eirr_bit;
 57
 58	/* This is just a simple NOP IPI.  But what it does is cause
 59	 * all the other CPUs to do a set_eiem(cpu_eiem) at the end
 60	 * of the interrupt handler */
 61	smp_send_all_nop();
 62}
 63
 64static void cpu_unmask_irq(struct irq_data *d)
 65{
 66	__cpu_unmask_irq(d->irq);
 67}
 68
 69void cpu_ack_irq(struct irq_data *d)
 70{
 71	unsigned long mask = EIEM_MASK(d->irq);
 72	int cpu = smp_processor_id();
 73
 74	/* Clear in EIEM so we can no longer process */
 75	per_cpu(local_ack_eiem, cpu) &= ~mask;
 76
 77	/* disable the interrupt */
 78	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 79
 80	/* and now ack it */
 81	mtctl(mask, 23);
 82}
 83
 84void cpu_eoi_irq(struct irq_data *d)
 85{
 86	unsigned long mask = EIEM_MASK(d->irq);
 87	int cpu = smp_processor_id();
 88
 89	/* set it in the eiems---it's no longer in process */
 90	per_cpu(local_ack_eiem, cpu) |= mask;
 91
 92	/* enable the interrupt */
 93	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
 94}
 95
 96#ifdef CONFIG_SMP
 97int cpu_check_affinity(struct irq_data *d, const struct cpumask *dest)
 98{
 99	int cpu_dest;
100
101	/* timer and ipi have to always be received on all CPUs */
102	if (irqd_is_per_cpu(d))
103		return -EINVAL;
104
105	cpu_dest = cpumask_first_and(dest, cpu_online_mask);
 
 
106	if (cpu_dest >= nr_cpu_ids)
107		cpu_dest = cpumask_first(cpu_online_mask);
108
109	return cpu_dest;
110}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
111#endif
112
113static struct irq_chip cpu_interrupt_type = {
114	.name			= "CPU",
115	.irq_mask		= cpu_mask_irq,
116	.irq_unmask		= cpu_unmask_irq,
117	.irq_ack		= cpu_ack_irq,
118	.irq_eoi		= cpu_eoi_irq,
 
 
 
119	/* XXX: Needs to be written.  We managed without it so far, but
120	 * we really ought to write it.
121	 */
122	.irq_retrigger	= NULL,
123};
124
125DEFINE_PER_CPU_SHARED_ALIGNED(irq_cpustat_t, irq_stat);
126#define irq_stats(x)		(&per_cpu(irq_stat, x))
127
128/*
129 * /proc/interrupts printing for arch specific interrupts
130 */
131int arch_show_interrupts(struct seq_file *p, int prec)
132{
133	int j;
134
135#ifdef CONFIG_DEBUG_STACKOVERFLOW
136	seq_printf(p, "%*s: ", prec, "STK");
137	for_each_online_cpu(j)
138		seq_printf(p, "%10u ", irq_stats(j)->kernel_stack_usage);
139	seq_puts(p, "  Kernel stack usage\n");
140# ifdef CONFIG_IRQSTACKS
141	seq_printf(p, "%*s: ", prec, "IST");
142	for_each_online_cpu(j)
143		seq_printf(p, "%10u ", irq_stats(j)->irq_stack_usage);
144	seq_puts(p, "  Interrupt stack usage\n");
145# endif
146#endif
147#ifdef CONFIG_SMP
148	if (num_online_cpus() > 1) {
149		seq_printf(p, "%*s: ", prec, "RES");
150		for_each_online_cpu(j)
151			seq_printf(p, "%10u ", irq_stats(j)->irq_resched_count);
152		seq_puts(p, "  Rescheduling interrupts\n");
153		seq_printf(p, "%*s: ", prec, "CAL");
154		for_each_online_cpu(j)
155			seq_printf(p, "%10u ", irq_stats(j)->irq_call_count);
156		seq_puts(p, "  Function call interrupts\n");
157	}
158#endif
159	seq_printf(p, "%*s: ", prec, "UAH");
160	for_each_online_cpu(j)
161		seq_printf(p, "%10u ", irq_stats(j)->irq_unaligned_count);
162	seq_puts(p, "  Unaligned access handler traps\n");
163	seq_printf(p, "%*s: ", prec, "FPA");
164	for_each_online_cpu(j)
165		seq_printf(p, "%10u ", irq_stats(j)->irq_fpassist_count);
166	seq_puts(p, "  Floating point assist traps\n");
167	seq_printf(p, "%*s: ", prec, "TLB");
168	for_each_online_cpu(j)
169		seq_printf(p, "%10u ", irq_stats(j)->irq_tlb_count);
170	seq_puts(p, "  TLB shootdowns\n");
171	return 0;
172}
173
174int show_interrupts(struct seq_file *p, void *v)
175{
176	int i = *(loff_t *) v, j;
177	unsigned long flags;
178
179	if (i == 0) {
180		seq_puts(p, "    ");
181		for_each_online_cpu(j)
182			seq_printf(p, "       CPU%d", j);
183
184#ifdef PARISC_IRQ_CR16_COUNTS
185		seq_printf(p, " [min/avg/max] (CPU cycle counts)");
186#endif
187		seq_putc(p, '\n');
188	}
189
190	if (i < NR_IRQS) {
191		struct irq_desc *desc = irq_to_desc(i);
192		struct irqaction *action;
193
194		raw_spin_lock_irqsave(&desc->lock, flags);
195		action = desc->action;
196		if (!action)
197			goto skip;
198		seq_printf(p, "%3d: ", i);
199
200		for_each_online_cpu(j)
201			seq_printf(p, "%10u ", irq_desc_kstat_cpu(desc, j));
 
 
 
202
203		seq_printf(p, " %14s", irq_desc_get_chip(desc)->name);
204#ifndef PARISC_IRQ_CR16_COUNTS
205		seq_printf(p, "  %s", action->name);
206
207		while ((action = action->next))
208			seq_printf(p, ", %s", action->name);
209#else
210		for ( ;action; action = action->next) {
211			unsigned int k, avg, min, max;
212
213			min = max = action->cr16_hist[0];
214
215			for (avg = k = 0; k < PARISC_CR16_HIST_SIZE; k++) {
216				int hist = action->cr16_hist[k];
217
218				if (hist) {
219					avg += hist;
220				} else
221					break;
222
223				if (hist > max) max = hist;
224				if (hist < min) min = hist;
225			}
226
227			avg /= k;
228			seq_printf(p, " %s[%d/%d/%d]", action->name,
229					min,avg,max);
230		}
231#endif
232
233		seq_putc(p, '\n');
234 skip:
235		raw_spin_unlock_irqrestore(&desc->lock, flags);
236	}
237
238	if (i == NR_IRQS)
239		arch_show_interrupts(p, 3);
240
241	return 0;
242}
243
244
245
246/*
247** The following form a "set": Virtual IRQ, Transaction Address, Trans Data.
248** Respectively, these map to IRQ region+EIRR, Processor HPA, EIRR bit.
249**
250** To use txn_XXX() interfaces, get a Virtual IRQ first.
251** Then use that to get the Transaction address and data.
252*/
253
254int cpu_claim_irq(unsigned int irq, struct irq_chip *type, void *data)
255{
256	if (irq_has_action(irq))
257		return -EBUSY;
258	if (irq_get_chip(irq) != &cpu_interrupt_type)
259		return -EBUSY;
260
261	/* for iosapic interrupts */
262	if (type) {
263		irq_set_chip_and_handler(irq, type, handle_percpu_irq);
264		irq_set_chip_data(irq, data);
265		__cpu_unmask_irq(irq);
266	}
267	return 0;
268}
269
270int txn_claim_irq(int irq)
271{
272	return cpu_claim_irq(irq, NULL, NULL) ? -1 : irq;
273}
274
275/*
276 * The bits_wide parameter accommodates the limitations of the HW/SW which
277 * use these bits:
278 * Legacy PA I/O (GSC/NIO): 5 bits (architected EIM register)
279 * V-class (EPIC):          6 bits
280 * N/L/A-class (iosapic):   8 bits
281 * PCI 2.2 MSI:            16 bits
282 * Some PCI devices:       32 bits (Symbios SCSI/ATM/HyperFabric)
283 *
284 * On the service provider side:
285 * o PA 1.1 (and PA2.0 narrow mode)     5-bits (width of EIR register)
286 * o PA 2.0 wide mode                   6-bits (per processor)
287 * o IA64                               8-bits (0-256 total)
288 *
289 * So a Legacy PA I/O device on a PA 2.0 box can't use all the bits supported
290 * by the processor...and the N/L-class I/O subsystem supports more bits than
291 * PA2.0 has. The first case is the problem.
292 */
293int txn_alloc_irq(unsigned int bits_wide)
294{
295	int irq;
296
297	/* never return irq 0 cause that's the interval timer */
298	for (irq = CPU_IRQ_BASE + 1; irq <= CPU_IRQ_MAX; irq++) {
299		if (cpu_claim_irq(irq, NULL, NULL) < 0)
300			continue;
301		if ((irq - CPU_IRQ_BASE) >= (1 << bits_wide))
302			continue;
303		return irq;
304	}
305
306	/* unlikely, but be prepared */
307	return -1;
308}
309
310
311unsigned long txn_affinity_addr(unsigned int irq, int cpu)
312{
313#ifdef CONFIG_SMP
314	struct irq_data *d = irq_get_irq_data(irq);
315	irq_data_update_affinity(d, cpumask_of(cpu));
316#endif
317
318	return per_cpu(cpu_data, cpu).txn_addr;
319}
320
321
322unsigned long txn_alloc_addr(unsigned int virt_irq)
323{
324	static int next_cpu = -1;
325
326	next_cpu++; /* assign to "next" CPU we want this bugger on */
327
328	/* validate entry */
329	while ((next_cpu < nr_cpu_ids) &&
330		(!per_cpu(cpu_data, next_cpu).txn_addr ||
331		 !cpu_online(next_cpu)))
332		next_cpu++;
333
334	if (next_cpu >= nr_cpu_ids) 
335		next_cpu = 0;	/* nothing else, assign monarch */
336
337	return txn_affinity_addr(virt_irq, next_cpu);
338}
339
340
341unsigned int txn_alloc_data(unsigned int virt_irq)
342{
343	return virt_irq - CPU_IRQ_BASE;
344}
345
346static inline int eirr_to_irq(unsigned long eirr)
347{
348	int bit = fls_long(eirr);
349	return (BITS_PER_LONG - bit) + TIMER_IRQ;
350}
351
352#ifdef CONFIG_IRQSTACKS
353/*
354 * IRQ STACK - used for irq handler
355 */
356#ifdef CONFIG_64BIT
357#define IRQ_STACK_SIZE      (4096 << 4) /* 64k irq stack size */
358#else
359#define IRQ_STACK_SIZE      (4096 << 3) /* 32k irq stack size */
360#endif
361
362union irq_stack_union {
363	unsigned long stack[IRQ_STACK_SIZE/sizeof(unsigned long)];
364	volatile unsigned int slock[4];
365	volatile unsigned int lock[1];
366};
367
368static DEFINE_PER_CPU(union irq_stack_union, irq_stack_union) = {
369		.slock = { 1,1,1,1 },
370	};
371#endif
372
373
374int sysctl_panic_on_stackoverflow = 1;
375
376static inline void stack_overflow_check(struct pt_regs *regs)
377{
378#ifdef CONFIG_DEBUG_STACKOVERFLOW
379	#define STACK_MARGIN	(256*6)
380
381	unsigned long stack_start = (unsigned long) task_stack_page(current);
 
382	unsigned long sp = regs->gr[30];
383	unsigned long stack_usage;
384	unsigned int *last_usage;
385	int cpu = smp_processor_id();
386
387	/* if sr7 != 0, we interrupted a userspace process which we do not want
388	 * to check for stack overflow. We will only check the kernel stack. */
389	if (regs->sr[7])
390		return;
391
392	/* exit if already in panic */
393	if (sysctl_panic_on_stackoverflow < 0)
394		return;
395
396	/* calculate kernel stack usage */
397	stack_usage = sp - stack_start;
398#ifdef CONFIG_IRQSTACKS
399	if (likely(stack_usage <= THREAD_SIZE))
400		goto check_kernel_stack; /* found kernel stack */
401
402	/* check irq stack usage */
403	stack_start = (unsigned long) &per_cpu(irq_stack_union, cpu).stack;
404	stack_usage = sp - stack_start;
405
406	last_usage = &per_cpu(irq_stat.irq_stack_usage, cpu);
407	if (unlikely(stack_usage > *last_usage))
408		*last_usage = stack_usage;
409
410	if (likely(stack_usage < (IRQ_STACK_SIZE - STACK_MARGIN)))
411		return;
412
413	pr_emerg("stackcheck: %s will most likely overflow irq stack "
414		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
415		current->comm, sp, stack_start, stack_start + IRQ_STACK_SIZE);
416	goto panic_check;
417
418check_kernel_stack:
419#endif
420
421	/* check kernel stack usage */
422	last_usage = &per_cpu(irq_stat.kernel_stack_usage, cpu);
423
424	if (unlikely(stack_usage > *last_usage))
425		*last_usage = stack_usage;
426
427	if (likely(stack_usage < (THREAD_SIZE - STACK_MARGIN)))
428		return;
429
430	pr_emerg("stackcheck: %s will most likely overflow kernel stack "
431		 "(sp:%lx, stk bottom-top:%lx-%lx)\n",
432		current->comm, sp, stack_start, stack_start + THREAD_SIZE);
433
434#ifdef CONFIG_IRQSTACKS
435panic_check:
436#endif
437	if (sysctl_panic_on_stackoverflow) {
438		sysctl_panic_on_stackoverflow = -1; /* disable further checks */
439		panic("low stack detected by irq handler - check messages\n");
440	}
441#endif
442}
443
444#ifdef CONFIG_IRQSTACKS
445/* in entry.S: */
446void call_on_stack(unsigned long p1, void *func, unsigned long new_stack);
447
448static void execute_on_irq_stack(void *func, unsigned long param1)
449{
450	union irq_stack_union *union_ptr;
451	unsigned long irq_stack;
452	volatile unsigned int *irq_stack_in_use;
453
454	union_ptr = &per_cpu(irq_stack_union, smp_processor_id());
455	irq_stack = (unsigned long) &union_ptr->stack;
456	irq_stack = ALIGN(irq_stack + sizeof(irq_stack_union.slock),
457			FRAME_ALIGN); /* align for stack frame usage */
458
459	/* We may be called recursive. If we are already using the irq stack,
460	 * just continue to use it. Use spinlocks to serialize
461	 * the irq stack usage.
462	 */
463	irq_stack_in_use = (volatile unsigned int *)__ldcw_align(union_ptr);
464	if (!__ldcw(irq_stack_in_use)) {
465		void (*direct_call)(unsigned long p1) = func;
466
467		/* We are using the IRQ stack already.
468		 * Do direct call on current stack. */
469		direct_call(param1);
470		return;
471	}
472
473	/* This is where we switch to the IRQ stack. */
474	call_on_stack(param1, func, irq_stack);
475
476	/* free up irq stack usage. */
477	*irq_stack_in_use = 1;
478}
479
480#ifdef CONFIG_SOFTIRQ_ON_OWN_STACK
481void do_softirq_own_stack(void)
482{
483	execute_on_irq_stack(__do_softirq, 0);
484}
485#endif
486#endif /* CONFIG_IRQSTACKS */
487
488/* ONLY called from entry.S:intr_extint() */
489asmlinkage void do_cpu_irq_mask(struct pt_regs *regs)
490{
491	struct pt_regs *old_regs;
492	unsigned long eirr_val;
493	int irq, cpu = smp_processor_id();
494	struct irq_data *irq_data;
495#ifdef CONFIG_SMP
496	cpumask_t dest;
497#endif
498
499	old_regs = set_irq_regs(regs);
500	local_irq_disable();
501	irq_enter_rcu();
502
503	eirr_val = mfctl(23) & cpu_eiem & per_cpu(local_ack_eiem, cpu);
504	if (!eirr_val)
505		goto set_out;
506	irq = eirr_to_irq(eirr_val);
507
508	irq_data = irq_get_irq_data(irq);
509
510	/* Filter out spurious interrupts, mostly from serial port at bootup */
511	if (unlikely(!irq_desc_has_action(irq_data_to_desc(irq_data))))
512		goto set_out;
513
514#ifdef CONFIG_SMP
515	cpumask_copy(&dest, irq_data_get_affinity_mask(irq_data));
516	if (irqd_is_per_cpu(irq_data) &&
517	    !cpumask_test_cpu(smp_processor_id(), &dest)) {
518		int cpu = cpumask_first(&dest);
519
520		printk(KERN_DEBUG "redirecting irq %d from CPU %d to %d\n",
521		       irq, smp_processor_id(), cpu);
522		gsc_writel(irq + CPU_IRQ_BASE,
523			   per_cpu(cpu_data, cpu).hpa);
524		goto set_out;
525	}
526#endif
527	stack_overflow_check(regs);
528
529#ifdef CONFIG_IRQSTACKS
530	execute_on_irq_stack(&generic_handle_irq, irq);
531#else
532	generic_handle_irq(irq);
533#endif /* CONFIG_IRQSTACKS */
534
535 out:
536	irq_exit_rcu();
537	set_irq_regs(old_regs);
538	return;
539
540 set_out:
541	set_eiem(cpu_eiem & per_cpu(local_ack_eiem, cpu));
542	goto out;
543}
544
545static void claim_cpu_irqs(void)
546{
547	unsigned long flags = IRQF_TIMER | IRQF_PERCPU | IRQF_IRQPOLL;
548	int i;
549
550	for (i = CPU_IRQ_BASE; i <= CPU_IRQ_MAX; i++) {
551		irq_set_chip_and_handler(i, &cpu_interrupt_type,
552					 handle_percpu_irq);
553	}
554
555	irq_set_handler(TIMER_IRQ, handle_percpu_irq);
556	if (request_irq(TIMER_IRQ, timer_interrupt, flags, "timer", NULL))
557		pr_err("Failed to register timer interrupt\n");
558#ifdef CONFIG_SMP
559	irq_set_handler(IPI_IRQ, handle_percpu_irq);
560	if (request_irq(IPI_IRQ, ipi_interrupt, IRQF_PERCPU, "IPI", NULL))
561		pr_err("Failed to register IPI interrupt\n");
562#endif
563}
564
565void init_IRQ(void)
566{
567	local_irq_disable();	/* PARANOID - should already be disabled */
568	mtctl(~0UL, 23);	/* EIRR : clear all pending external intr */
569#ifdef CONFIG_SMP
570	if (!cpu_eiem) {
571		claim_cpu_irqs();
572		cpu_eiem = EIEM_MASK(IPI_IRQ) | EIEM_MASK(TIMER_IRQ);
573	}
574#else
575	claim_cpu_irqs();
576	cpu_eiem = EIEM_MASK(TIMER_IRQ);
577#endif
578        set_eiem(cpu_eiem);	/* EIEM : enable all external intr */
579}