Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19/* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54#include <stdarg.h>
55
56#include <linux/delay.h>
57#include <linux/init.h>
58#include <linux/kernel.h>
59#include <linux/module.h>
60#include <linux/string.h>
61#include <linux/spinlock.h>
62
63#include <asm/page.h>
64#include <asm/pdc.h>
65#include <asm/pdcpat.h>
66#include <asm/processor.h> /* for boot_cpu_data */
67
68#if defined(BOOTLOADER)
69# undef spin_lock_irqsave
70# define spin_lock_irqsave(a, b) { b = 1; }
71# undef spin_unlock_irqrestore
72# define spin_unlock_irqrestore(a, b)
73#else
74static DEFINE_SPINLOCK(pdc_lock);
75#endif
76
77extern unsigned long pdc_result[NUM_PDC_RESULT];
78extern unsigned long pdc_result2[NUM_PDC_RESULT];
79
80#ifdef CONFIG_64BIT
81#define WIDE_FIRMWARE 0x1
82#define NARROW_FIRMWARE 0x2
83
84/* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86int parisc_narrow_firmware __ro_after_init = 1;
87#endif
88
89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100#ifdef CONFIG_64BIT
101long real64_call(unsigned long function, ...);
102#endif
103long real32_call(unsigned long function, ...);
104
105#ifdef CONFIG_64BIT
106# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108#else
109# define MEM_PDC (unsigned long)PAGE0->mem_pdc
110# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111#endif
112
113
114/**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
121static unsigned long f_extend(unsigned long address)
122{
123#ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return 0xf0f0f0f000000000UL | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return 0xffffffff00000000UL | (u32)address;
130 }
131#endif
132 return address;
133}
134
135/**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @address: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
143static void convert_to_wide(unsigned long *addr)
144{
145#ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153#endif
154}
155
156#ifdef CONFIG_64BIT
157void set_firmware_width_unlocked(void)
158{
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 convert_to_wide(pdc_result);
164 if (pdc_result[0] != NARROW_FIRMWARE)
165 parisc_narrow_firmware = 0;
166}
167
168/**
169 * set_firmware_width - Determine if the firmware is wide or narrow.
170 *
171 * This function must be called before any pdc_* function that uses the
172 * convert_to_wide function.
173 */
174void set_firmware_width(void)
175{
176 unsigned long flags;
177 spin_lock_irqsave(&pdc_lock, flags);
178 set_firmware_width_unlocked();
179 spin_unlock_irqrestore(&pdc_lock, flags);
180}
181#else
182void set_firmware_width_unlocked(void)
183{
184 return;
185}
186
187void set_firmware_width(void)
188{
189 return;
190}
191#endif /*CONFIG_64BIT*/
192
193
194#if !defined(BOOTLOADER)
195/**
196 * pdc_emergency_unlock - Unlock the linux pdc lock
197 *
198 * This call unlocks the linux pdc lock in case we need some PDC functions
199 * (like pdc_add_valid) during kernel stack dump.
200 */
201void pdc_emergency_unlock(void)
202{
203 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
204 if (spin_is_locked(&pdc_lock))
205 spin_unlock(&pdc_lock);
206}
207
208
209/**
210 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
211 * @address: Address to be verified.
212 *
213 * This PDC call attempts to read from the specified address and verifies
214 * if the address is valid.
215 *
216 * The return value is PDC_OK (0) in case accessing this address is valid.
217 */
218int pdc_add_valid(unsigned long address)
219{
220 int retval;
221 unsigned long flags;
222
223 spin_lock_irqsave(&pdc_lock, flags);
224 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
225 spin_unlock_irqrestore(&pdc_lock, flags);
226
227 return retval;
228}
229EXPORT_SYMBOL(pdc_add_valid);
230
231/**
232 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
233 * @instr: Pointer to variable which will get instruction opcode.
234 *
235 * The return value is PDC_OK (0) in case call succeeded.
236 */
237int __init pdc_instr(unsigned int *instr)
238{
239 int retval;
240 unsigned long flags;
241
242 spin_lock_irqsave(&pdc_lock, flags);
243 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
244 convert_to_wide(pdc_result);
245 *instr = pdc_result[0];
246 spin_unlock_irqrestore(&pdc_lock, flags);
247
248 return retval;
249}
250
251/**
252 * pdc_chassis_info - Return chassis information.
253 * @result: The return buffer.
254 * @chassis_info: The memory buffer address.
255 * @len: The size of the memory buffer address.
256 *
257 * An HVERSION dependent call for returning the chassis information.
258 */
259int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
260{
261 int retval;
262 unsigned long flags;
263
264 spin_lock_irqsave(&pdc_lock, flags);
265 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
266 memcpy(&pdc_result2, led_info, len);
267 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
268 __pa(pdc_result), __pa(pdc_result2), len);
269 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
270 memcpy(led_info, pdc_result2, len);
271 spin_unlock_irqrestore(&pdc_lock, flags);
272
273 return retval;
274}
275
276/**
277 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
278 * @retval: -1 on error, 0 on success. Other value are PDC errors
279 *
280 * Must be correctly formatted or expect system crash
281 */
282#ifdef CONFIG_64BIT
283int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
284{
285 int retval = 0;
286 unsigned long flags;
287
288 if (!is_pdc_pat())
289 return -1;
290
291 spin_lock_irqsave(&pdc_lock, flags);
292 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
293 spin_unlock_irqrestore(&pdc_lock, flags);
294
295 return retval;
296}
297#endif
298
299/**
300 * pdc_chassis_disp - Updates chassis code
301 * @retval: -1 on error, 0 on success
302 */
303int pdc_chassis_disp(unsigned long disp)
304{
305 int retval = 0;
306 unsigned long flags;
307
308 spin_lock_irqsave(&pdc_lock, flags);
309 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
310 spin_unlock_irqrestore(&pdc_lock, flags);
311
312 return retval;
313}
314
315/**
316 * pdc_cpu_rendenzvous - Stop currently executing CPU
317 * @retval: -1 on error, 0 on success
318 */
319int __pdc_cpu_rendezvous(void)
320{
321 if (is_pdc_pat())
322 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
323 else
324 return mem_pdc_call(PDC_PROC, 1, 0);
325}
326
327
328/**
329 * pdc_chassis_warn - Fetches chassis warnings
330 * @retval: -1 on error, 0 on success
331 */
332int pdc_chassis_warn(unsigned long *warn)
333{
334 int retval = 0;
335 unsigned long flags;
336
337 spin_lock_irqsave(&pdc_lock, flags);
338 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
339 *warn = pdc_result[0];
340 spin_unlock_irqrestore(&pdc_lock, flags);
341
342 return retval;
343}
344
345int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
346{
347 int ret;
348
349 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
350 convert_to_wide(pdc_result);
351 pdc_coproc_info->ccr_functional = pdc_result[0];
352 pdc_coproc_info->ccr_present = pdc_result[1];
353 pdc_coproc_info->revision = pdc_result[17];
354 pdc_coproc_info->model = pdc_result[18];
355
356 return ret;
357}
358
359/**
360 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
361 * @pdc_coproc_info: Return buffer address.
362 *
363 * This PDC call returns the presence and status of all the coprocessors
364 * attached to the processor.
365 */
366int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
367{
368 int ret;
369 unsigned long flags;
370
371 spin_lock_irqsave(&pdc_lock, flags);
372 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
373 spin_unlock_irqrestore(&pdc_lock, flags);
374
375 return ret;
376}
377
378/**
379 * pdc_iodc_read - Read data from the modules IODC.
380 * @actcnt: The actual number of bytes.
381 * @hpa: The HPA of the module for the iodc read.
382 * @index: The iodc entry point.
383 * @iodc_data: A buffer memory for the iodc options.
384 * @iodc_data_size: Size of the memory buffer.
385 *
386 * This PDC call reads from the IODC of the module specified by the hpa
387 * argument.
388 */
389int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
390 void *iodc_data, unsigned int iodc_data_size)
391{
392 int retval;
393 unsigned long flags;
394
395 spin_lock_irqsave(&pdc_lock, flags);
396 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
397 index, __pa(pdc_result2), iodc_data_size);
398 convert_to_wide(pdc_result);
399 *actcnt = pdc_result[0];
400 memcpy(iodc_data, pdc_result2, iodc_data_size);
401 spin_unlock_irqrestore(&pdc_lock, flags);
402
403 return retval;
404}
405EXPORT_SYMBOL(pdc_iodc_read);
406
407/**
408 * pdc_system_map_find_mods - Locate unarchitected modules.
409 * @pdc_mod_info: Return buffer address.
410 * @mod_path: pointer to dev path structure.
411 * @mod_index: fixed address module index.
412 *
413 * To locate and identify modules which reside at fixed I/O addresses, which
414 * do not self-identify via architected bus walks.
415 */
416int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
417 struct pdc_module_path *mod_path, long mod_index)
418{
419 int retval;
420 unsigned long flags;
421
422 spin_lock_irqsave(&pdc_lock, flags);
423 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
424 __pa(pdc_result2), mod_index);
425 convert_to_wide(pdc_result);
426 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
427 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
428 spin_unlock_irqrestore(&pdc_lock, flags);
429
430 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
431 return retval;
432}
433
434/**
435 * pdc_system_map_find_addrs - Retrieve additional address ranges.
436 * @pdc_addr_info: Return buffer address.
437 * @mod_index: Fixed address module index.
438 * @addr_index: Address range index.
439 *
440 * Retrieve additional information about subsequent address ranges for modules
441 * with multiple address ranges.
442 */
443int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
444 long mod_index, long addr_index)
445{
446 int retval;
447 unsigned long flags;
448
449 spin_lock_irqsave(&pdc_lock, flags);
450 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
451 mod_index, addr_index);
452 convert_to_wide(pdc_result);
453 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
454 spin_unlock_irqrestore(&pdc_lock, flags);
455
456 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
457 return retval;
458}
459
460/**
461 * pdc_model_info - Return model information about the processor.
462 * @model: The return buffer.
463 *
464 * Returns the version numbers, identifiers, and capabilities from the processor module.
465 */
466int pdc_model_info(struct pdc_model *model)
467{
468 int retval;
469 unsigned long flags;
470
471 spin_lock_irqsave(&pdc_lock, flags);
472 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
473 convert_to_wide(pdc_result);
474 memcpy(model, pdc_result, sizeof(*model));
475 spin_unlock_irqrestore(&pdc_lock, flags);
476
477 return retval;
478}
479
480/**
481 * pdc_model_sysmodel - Get the system model name.
482 * @name: A char array of at least 81 characters.
483 *
484 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
485 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
486 * on HP/UX.
487 */
488int pdc_model_sysmodel(char *name)
489{
490 int retval;
491 unsigned long flags;
492
493 spin_lock_irqsave(&pdc_lock, flags);
494 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
495 OS_ID_HPUX, __pa(name));
496 convert_to_wide(pdc_result);
497
498 if (retval == PDC_OK) {
499 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
500 } else {
501 name[0] = 0;
502 }
503 spin_unlock_irqrestore(&pdc_lock, flags);
504
505 return retval;
506}
507
508/**
509 * pdc_model_versions - Identify the version number of each processor.
510 * @cpu_id: The return buffer.
511 * @id: The id of the processor to check.
512 *
513 * Returns the version number for each processor component.
514 *
515 * This comment was here before, but I do not know what it means :( -RB
516 * id: 0 = cpu revision, 1 = boot-rom-version
517 */
518int pdc_model_versions(unsigned long *versions, int id)
519{
520 int retval;
521 unsigned long flags;
522
523 spin_lock_irqsave(&pdc_lock, flags);
524 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
525 convert_to_wide(pdc_result);
526 *versions = pdc_result[0];
527 spin_unlock_irqrestore(&pdc_lock, flags);
528
529 return retval;
530}
531
532/**
533 * pdc_model_cpuid - Returns the CPU_ID.
534 * @cpu_id: The return buffer.
535 *
536 * Returns the CPU_ID value which uniquely identifies the cpu portion of
537 * the processor module.
538 */
539int pdc_model_cpuid(unsigned long *cpu_id)
540{
541 int retval;
542 unsigned long flags;
543
544 spin_lock_irqsave(&pdc_lock, flags);
545 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
546 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
547 convert_to_wide(pdc_result);
548 *cpu_id = pdc_result[0];
549 spin_unlock_irqrestore(&pdc_lock, flags);
550
551 return retval;
552}
553
554/**
555 * pdc_model_capabilities - Returns the platform capabilities.
556 * @capabilities: The return buffer.
557 *
558 * Returns information about platform support for 32- and/or 64-bit
559 * OSes, IO-PDIR coherency, and virtual aliasing.
560 */
561int pdc_model_capabilities(unsigned long *capabilities)
562{
563 int retval;
564 unsigned long flags;
565
566 spin_lock_irqsave(&pdc_lock, flags);
567 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
568 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
569 convert_to_wide(pdc_result);
570 if (retval == PDC_OK) {
571 *capabilities = pdc_result[0];
572 } else {
573 *capabilities = PDC_MODEL_OS32;
574 }
575 spin_unlock_irqrestore(&pdc_lock, flags);
576
577 return retval;
578}
579
580/**
581 * pdc_model_platform_info - Returns machine product and serial number.
582 * @orig_prod_num: Return buffer for original product number.
583 * @current_prod_num: Return buffer for current product number.
584 * @serial_no: Return buffer for serial number.
585 *
586 * Returns strings containing the original and current product numbers and the
587 * serial number of the system.
588 */
589int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
590 char *serial_no)
591{
592 int retval;
593 unsigned long flags;
594
595 spin_lock_irqsave(&pdc_lock, flags);
596 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
597 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
598 convert_to_wide(pdc_result);
599 spin_unlock_irqrestore(&pdc_lock, flags);
600
601 return retval;
602}
603
604/**
605 * pdc_cache_info - Return cache and TLB information.
606 * @cache_info: The return buffer.
607 *
608 * Returns information about the processor's cache and TLB.
609 */
610int pdc_cache_info(struct pdc_cache_info *cache_info)
611{
612 int retval;
613 unsigned long flags;
614
615 spin_lock_irqsave(&pdc_lock, flags);
616 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
617 convert_to_wide(pdc_result);
618 memcpy(cache_info, pdc_result, sizeof(*cache_info));
619 spin_unlock_irqrestore(&pdc_lock, flags);
620
621 return retval;
622}
623
624/**
625 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
626 * @space_bits: Should be 0, if not, bad mojo!
627 *
628 * Returns information about Space ID hashing.
629 */
630int pdc_spaceid_bits(unsigned long *space_bits)
631{
632 int retval;
633 unsigned long flags;
634
635 spin_lock_irqsave(&pdc_lock, flags);
636 pdc_result[0] = 0;
637 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
638 convert_to_wide(pdc_result);
639 *space_bits = pdc_result[0];
640 spin_unlock_irqrestore(&pdc_lock, flags);
641
642 return retval;
643}
644
645#ifndef CONFIG_PA20
646/**
647 * pdc_btlb_info - Return block TLB information.
648 * @btlb: The return buffer.
649 *
650 * Returns information about the hardware Block TLB.
651 */
652int pdc_btlb_info(struct pdc_btlb_info *btlb)
653{
654 int retval;
655 unsigned long flags;
656
657 spin_lock_irqsave(&pdc_lock, flags);
658 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
659 memcpy(btlb, pdc_result, sizeof(*btlb));
660 spin_unlock_irqrestore(&pdc_lock, flags);
661
662 if(retval < 0) {
663 btlb->max_size = 0;
664 }
665 return retval;
666}
667
668/**
669 * pdc_mem_map_hpa - Find fixed module information.
670 * @address: The return buffer
671 * @mod_path: pointer to dev path structure.
672 *
673 * This call was developed for S700 workstations to allow the kernel to find
674 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
675 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
676 * call.
677 *
678 * This call is supported by all existing S700 workstations (up to Gecko).
679 */
680int pdc_mem_map_hpa(struct pdc_memory_map *address,
681 struct pdc_module_path *mod_path)
682{
683 int retval;
684 unsigned long flags;
685
686 spin_lock_irqsave(&pdc_lock, flags);
687 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
688 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
689 __pa(pdc_result2));
690 memcpy(address, pdc_result, sizeof(*address));
691 spin_unlock_irqrestore(&pdc_lock, flags);
692
693 return retval;
694}
695#endif /* !CONFIG_PA20 */
696
697/**
698 * pdc_lan_station_id - Get the LAN address.
699 * @lan_addr: The return buffer.
700 * @hpa: The network device HPA.
701 *
702 * Get the LAN station address when it is not directly available from the LAN hardware.
703 */
704int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
705{
706 int retval;
707 unsigned long flags;
708
709 spin_lock_irqsave(&pdc_lock, flags);
710 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
711 __pa(pdc_result), hpa);
712 if (retval < 0) {
713 /* FIXME: else read MAC from NVRAM */
714 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
715 } else {
716 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
717 }
718 spin_unlock_irqrestore(&pdc_lock, flags);
719
720 return retval;
721}
722EXPORT_SYMBOL(pdc_lan_station_id);
723
724/**
725 * pdc_stable_read - Read data from Stable Storage.
726 * @staddr: Stable Storage address to access.
727 * @memaddr: The memory address where Stable Storage data shall be copied.
728 * @count: number of bytes to transfer. count is multiple of 4.
729 *
730 * This PDC call reads from the Stable Storage address supplied in staddr
731 * and copies count bytes to the memory address memaddr.
732 * The call will fail if staddr+count > PDC_STABLE size.
733 */
734int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
735{
736 int retval;
737 unsigned long flags;
738
739 spin_lock_irqsave(&pdc_lock, flags);
740 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
741 __pa(pdc_result), count);
742 convert_to_wide(pdc_result);
743 memcpy(memaddr, pdc_result, count);
744 spin_unlock_irqrestore(&pdc_lock, flags);
745
746 return retval;
747}
748EXPORT_SYMBOL(pdc_stable_read);
749
750/**
751 * pdc_stable_write - Write data to Stable Storage.
752 * @staddr: Stable Storage address to access.
753 * @memaddr: The memory address where Stable Storage data shall be read from.
754 * @count: number of bytes to transfer. count is multiple of 4.
755 *
756 * This PDC call reads count bytes from the supplied memaddr address,
757 * and copies count bytes to the Stable Storage address staddr.
758 * The call will fail if staddr+count > PDC_STABLE size.
759 */
760int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
761{
762 int retval;
763 unsigned long flags;
764
765 spin_lock_irqsave(&pdc_lock, flags);
766 memcpy(pdc_result, memaddr, count);
767 convert_to_wide(pdc_result);
768 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
769 __pa(pdc_result), count);
770 spin_unlock_irqrestore(&pdc_lock, flags);
771
772 return retval;
773}
774EXPORT_SYMBOL(pdc_stable_write);
775
776/**
777 * pdc_stable_get_size - Get Stable Storage size in bytes.
778 * @size: pointer where the size will be stored.
779 *
780 * This PDC call returns the number of bytes in the processor's Stable
781 * Storage, which is the number of contiguous bytes implemented in Stable
782 * Storage starting from staddr=0. size in an unsigned 64-bit integer
783 * which is a multiple of four.
784 */
785int pdc_stable_get_size(unsigned long *size)
786{
787 int retval;
788 unsigned long flags;
789
790 spin_lock_irqsave(&pdc_lock, flags);
791 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
792 *size = pdc_result[0];
793 spin_unlock_irqrestore(&pdc_lock, flags);
794
795 return retval;
796}
797EXPORT_SYMBOL(pdc_stable_get_size);
798
799/**
800 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
801 *
802 * This PDC call is meant to be used to check the integrity of the current
803 * contents of Stable Storage.
804 */
805int pdc_stable_verify_contents(void)
806{
807 int retval;
808 unsigned long flags;
809
810 spin_lock_irqsave(&pdc_lock, flags);
811 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
812 spin_unlock_irqrestore(&pdc_lock, flags);
813
814 return retval;
815}
816EXPORT_SYMBOL(pdc_stable_verify_contents);
817
818/**
819 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
820 * the validity indicator.
821 *
822 * This PDC call will erase all contents of Stable Storage. Use with care!
823 */
824int pdc_stable_initialize(void)
825{
826 int retval;
827 unsigned long flags;
828
829 spin_lock_irqsave(&pdc_lock, flags);
830 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
831 spin_unlock_irqrestore(&pdc_lock, flags);
832
833 return retval;
834}
835EXPORT_SYMBOL(pdc_stable_initialize);
836
837/**
838 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
839 * @hwpath: fully bc.mod style path to the device.
840 * @initiator: the array to return the result into
841 *
842 * Get the SCSI operational parameters from PDC.
843 * Needed since HPUX never used BIOS or symbios card NVRAM.
844 * Most ncr/sym cards won't have an entry and just use whatever
845 * capabilities of the card are (eg Ultra, LVD). But there are
846 * several cases where it's useful:
847 * o set SCSI id for Multi-initiator clusters,
848 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
849 * o bus width exported is less than what the interface chip supports.
850 */
851int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
852{
853 int retval;
854 unsigned long flags;
855
856 spin_lock_irqsave(&pdc_lock, flags);
857
858/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
859#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
860 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
861
862 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
863 __pa(pdc_result), __pa(hwpath));
864 if (retval < PDC_OK)
865 goto out;
866
867 if (pdc_result[0] < 16) {
868 initiator->host_id = pdc_result[0];
869 } else {
870 initiator->host_id = -1;
871 }
872
873 /*
874 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
875 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
876 */
877 switch (pdc_result[1]) {
878 case 1: initiator->factor = 50; break;
879 case 2: initiator->factor = 25; break;
880 case 5: initiator->factor = 12; break;
881 case 25: initiator->factor = 10; break;
882 case 20: initiator->factor = 12; break;
883 case 40: initiator->factor = 10; break;
884 default: initiator->factor = -1; break;
885 }
886
887 if (IS_SPROCKETS()) {
888 initiator->width = pdc_result[4];
889 initiator->mode = pdc_result[5];
890 } else {
891 initiator->width = -1;
892 initiator->mode = -1;
893 }
894
895 out:
896 spin_unlock_irqrestore(&pdc_lock, flags);
897
898 return (retval >= PDC_OK);
899}
900EXPORT_SYMBOL(pdc_get_initiator);
901
902
903/**
904 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
905 * @num_entries: The return value.
906 * @hpa: The HPA for the device.
907 *
908 * This PDC function returns the number of entries in the specified cell's
909 * interrupt table.
910 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
911 */
912int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
913{
914 int retval;
915 unsigned long flags;
916
917 spin_lock_irqsave(&pdc_lock, flags);
918 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
919 __pa(pdc_result), hpa);
920 convert_to_wide(pdc_result);
921 *num_entries = pdc_result[0];
922 spin_unlock_irqrestore(&pdc_lock, flags);
923
924 return retval;
925}
926
927/**
928 * pdc_pci_irt - Get the PCI interrupt routing table.
929 * @num_entries: The number of entries in the table.
930 * @hpa: The Hard Physical Address of the device.
931 * @tbl:
932 *
933 * Get the PCI interrupt routing table for the device at the given HPA.
934 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
935 */
936int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
937{
938 int retval;
939 unsigned long flags;
940
941 BUG_ON((unsigned long)tbl & 0x7);
942
943 spin_lock_irqsave(&pdc_lock, flags);
944 pdc_result[0] = num_entries;
945 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
946 __pa(pdc_result), hpa, __pa(tbl));
947 spin_unlock_irqrestore(&pdc_lock, flags);
948
949 return retval;
950}
951
952
953#if 0 /* UNTEST CODE - left here in case someone needs it */
954
955/**
956 * pdc_pci_config_read - read PCI config space.
957 * @hpa token from PDC to indicate which PCI device
958 * @pci_addr configuration space address to read from
959 *
960 * Read PCI Configuration space *before* linux PCI subsystem is running.
961 */
962unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
963{
964 int retval;
965 unsigned long flags;
966
967 spin_lock_irqsave(&pdc_lock, flags);
968 pdc_result[0] = 0;
969 pdc_result[1] = 0;
970 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
971 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
972 spin_unlock_irqrestore(&pdc_lock, flags);
973
974 return retval ? ~0 : (unsigned int) pdc_result[0];
975}
976
977
978/**
979 * pdc_pci_config_write - read PCI config space.
980 * @hpa token from PDC to indicate which PCI device
981 * @pci_addr configuration space address to write
982 * @val value we want in the 32-bit register
983 *
984 * Write PCI Configuration space *before* linux PCI subsystem is running.
985 */
986void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
987{
988 int retval;
989 unsigned long flags;
990
991 spin_lock_irqsave(&pdc_lock, flags);
992 pdc_result[0] = 0;
993 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
994 __pa(pdc_result), hpa,
995 cfg_addr&~3UL, 4UL, (unsigned long) val);
996 spin_unlock_irqrestore(&pdc_lock, flags);
997
998 return retval;
999}
1000#endif /* UNTESTED CODE */
1001
1002/**
1003 * pdc_tod_read - Read the Time-Of-Day clock.
1004 * @tod: The return buffer:
1005 *
1006 * Read the Time-Of-Day clock
1007 */
1008int pdc_tod_read(struct pdc_tod *tod)
1009{
1010 int retval;
1011 unsigned long flags;
1012
1013 spin_lock_irqsave(&pdc_lock, flags);
1014 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1015 convert_to_wide(pdc_result);
1016 memcpy(tod, pdc_result, sizeof(*tod));
1017 spin_unlock_irqrestore(&pdc_lock, flags);
1018
1019 return retval;
1020}
1021EXPORT_SYMBOL(pdc_tod_read);
1022
1023int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1024{
1025 int retval;
1026 unsigned long flags;
1027
1028 spin_lock_irqsave(&pdc_lock, flags);
1029 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1030 convert_to_wide(pdc_result);
1031 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1032 spin_unlock_irqrestore(&pdc_lock, flags);
1033
1034 return retval;
1035}
1036
1037int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1038 unsigned long *pdt_entries_ptr)
1039{
1040 int retval;
1041 unsigned long flags;
1042
1043 spin_lock_irqsave(&pdc_lock, flags);
1044 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1045 __pa(pdt_entries_ptr));
1046 if (retval == PDC_OK) {
1047 convert_to_wide(pdc_result);
1048 memcpy(pret, pdc_result, sizeof(*pret));
1049 }
1050 spin_unlock_irqrestore(&pdc_lock, flags);
1051
1052#ifdef CONFIG_64BIT
1053 /*
1054 * 64-bit kernels should not call this PDT function in narrow mode.
1055 * The pdt_entries_ptr array above will now contain 32-bit values
1056 */
1057 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1058 return PDC_ERROR;
1059#endif
1060
1061 return retval;
1062}
1063
1064/**
1065 * pdc_tod_set - Set the Time-Of-Day clock.
1066 * @sec: The number of seconds since epoch.
1067 * @usec: The number of micro seconds.
1068 *
1069 * Set the Time-Of-Day clock.
1070 */
1071int pdc_tod_set(unsigned long sec, unsigned long usec)
1072{
1073 int retval;
1074 unsigned long flags;
1075
1076 spin_lock_irqsave(&pdc_lock, flags);
1077 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1078 spin_unlock_irqrestore(&pdc_lock, flags);
1079
1080 return retval;
1081}
1082EXPORT_SYMBOL(pdc_tod_set);
1083
1084#ifdef CONFIG_64BIT
1085int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1086 struct pdc_memory_table *tbl, unsigned long entries)
1087{
1088 int retval;
1089 unsigned long flags;
1090
1091 spin_lock_irqsave(&pdc_lock, flags);
1092 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1093 convert_to_wide(pdc_result);
1094 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1095 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1096 spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098 return retval;
1099}
1100#endif /* CONFIG_64BIT */
1101
1102/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1103 * so I guessed at unsigned long. Someone who knows what this does, can fix
1104 * it later. :)
1105 */
1106int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1107{
1108 int retval;
1109 unsigned long flags;
1110
1111 spin_lock_irqsave(&pdc_lock, flags);
1112 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1113 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1114 spin_unlock_irqrestore(&pdc_lock, flags);
1115
1116 return retval;
1117}
1118
1119/*
1120 * pdc_do_reset - Reset the system.
1121 *
1122 * Reset the system.
1123 */
1124int pdc_do_reset(void)
1125{
1126 int retval;
1127 unsigned long flags;
1128
1129 spin_lock_irqsave(&pdc_lock, flags);
1130 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1131 spin_unlock_irqrestore(&pdc_lock, flags);
1132
1133 return retval;
1134}
1135
1136/*
1137 * pdc_soft_power_info - Enable soft power switch.
1138 * @power_reg: address of soft power register
1139 *
1140 * Return the absolute address of the soft power switch register
1141 */
1142int __init pdc_soft_power_info(unsigned long *power_reg)
1143{
1144 int retval;
1145 unsigned long flags;
1146
1147 *power_reg = (unsigned long) (-1);
1148
1149 spin_lock_irqsave(&pdc_lock, flags);
1150 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1151 if (retval == PDC_OK) {
1152 convert_to_wide(pdc_result);
1153 *power_reg = f_extend(pdc_result[0]);
1154 }
1155 spin_unlock_irqrestore(&pdc_lock, flags);
1156
1157 return retval;
1158}
1159
1160/*
1161 * pdc_soft_power_button - Control the soft power button behaviour
1162 * @sw_control: 0 for hardware control, 1 for software control
1163 *
1164 *
1165 * This PDC function places the soft power button under software or
1166 * hardware control.
1167 * Under software control the OS may control to when to allow to shut
1168 * down the system. Under hardware control pressing the power button
1169 * powers off the system immediately.
1170 */
1171int pdc_soft_power_button(int sw_control)
1172{
1173 int retval;
1174 unsigned long flags;
1175
1176 spin_lock_irqsave(&pdc_lock, flags);
1177 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1178 spin_unlock_irqrestore(&pdc_lock, flags);
1179
1180 return retval;
1181}
1182
1183/*
1184 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1185 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1186 * who knows what other platform firmware might do with this OS "hook".
1187 */
1188void pdc_io_reset(void)
1189{
1190 unsigned long flags;
1191
1192 spin_lock_irqsave(&pdc_lock, flags);
1193 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1194 spin_unlock_irqrestore(&pdc_lock, flags);
1195}
1196
1197/*
1198 * pdc_io_reset_devices - Hack to Stop USB controller
1199 *
1200 * If PDC used the usb controller, the usb controller
1201 * is still running and will crash the machines during iommu
1202 * setup, because of still running DMA. This PDC call
1203 * stops the USB controller.
1204 * Normally called after calling pdc_io_reset().
1205 */
1206void pdc_io_reset_devices(void)
1207{
1208 unsigned long flags;
1209
1210 spin_lock_irqsave(&pdc_lock, flags);
1211 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1212 spin_unlock_irqrestore(&pdc_lock, flags);
1213}
1214
1215#endif /* defined(BOOTLOADER) */
1216
1217/* locked by pdc_console_lock */
1218static int __attribute__((aligned(8))) iodc_retbuf[32];
1219static char __attribute__((aligned(64))) iodc_dbuf[4096];
1220
1221/**
1222 * pdc_iodc_print - Console print using IODC.
1223 * @str: the string to output.
1224 * @count: length of str
1225 *
1226 * Note that only these special chars are architected for console IODC io:
1227 * BEL, BS, CR, and LF. Others are passed through.
1228 * Since the HP console requires CR+LF to perform a 'newline', we translate
1229 * "\n" to "\r\n".
1230 */
1231int pdc_iodc_print(const unsigned char *str, unsigned count)
1232{
1233 unsigned int i;
1234 unsigned long flags;
1235
1236 for (i = 0; i < count;) {
1237 switch(str[i]) {
1238 case '\n':
1239 iodc_dbuf[i+0] = '\r';
1240 iodc_dbuf[i+1] = '\n';
1241 i += 2;
1242 goto print;
1243 default:
1244 iodc_dbuf[i] = str[i];
1245 i++;
1246 break;
1247 }
1248 }
1249
1250print:
1251 spin_lock_irqsave(&pdc_lock, flags);
1252 real32_call(PAGE0->mem_cons.iodc_io,
1253 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1254 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1255 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), i, 0);
1256 spin_unlock_irqrestore(&pdc_lock, flags);
1257
1258 return i;
1259}
1260
1261#if !defined(BOOTLOADER)
1262/**
1263 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1264 *
1265 * Read a character (non-blocking) from the PDC console, returns -1 if
1266 * key is not present.
1267 */
1268int pdc_iodc_getc(void)
1269{
1270 int ch;
1271 int status;
1272 unsigned long flags;
1273
1274 /* Bail if no console input device. */
1275 if (!PAGE0->mem_kbd.iodc_io)
1276 return 0;
1277
1278 /* wait for a keyboard (rs232)-input */
1279 spin_lock_irqsave(&pdc_lock, flags);
1280 real32_call(PAGE0->mem_kbd.iodc_io,
1281 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1282 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1283 __pa(iodc_retbuf), 0, __pa(iodc_dbuf), 1, 0);
1284
1285 ch = *iodc_dbuf;
1286 status = *iodc_retbuf;
1287 spin_unlock_irqrestore(&pdc_lock, flags);
1288
1289 if (status == 0)
1290 return -1;
1291
1292 return ch;
1293}
1294
1295int pdc_sti_call(unsigned long func, unsigned long flags,
1296 unsigned long inptr, unsigned long outputr,
1297 unsigned long glob_cfg)
1298{
1299 int retval;
1300 unsigned long irqflags;
1301
1302 spin_lock_irqsave(&pdc_lock, irqflags);
1303 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1304 spin_unlock_irqrestore(&pdc_lock, irqflags);
1305
1306 return retval;
1307}
1308EXPORT_SYMBOL(pdc_sti_call);
1309
1310#ifdef CONFIG_64BIT
1311/**
1312 * pdc_pat_cell_get_number - Returns the cell number.
1313 * @cell_info: The return buffer.
1314 *
1315 * This PDC call returns the cell number of the cell from which the call
1316 * is made.
1317 */
1318int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1319{
1320 int retval;
1321 unsigned long flags;
1322
1323 spin_lock_irqsave(&pdc_lock, flags);
1324 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1325 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1326 spin_unlock_irqrestore(&pdc_lock, flags);
1327
1328 return retval;
1329}
1330
1331/**
1332 * pdc_pat_cell_module - Retrieve the cell's module information.
1333 * @actcnt: The number of bytes written to mem_addr.
1334 * @ploc: The physical location.
1335 * @mod: The module index.
1336 * @view_type: The view of the address type.
1337 * @mem_addr: The return buffer.
1338 *
1339 * This PDC call returns information about each module attached to the cell
1340 * at the specified location.
1341 */
1342int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1343 unsigned long view_type, void *mem_addr)
1344{
1345 int retval;
1346 unsigned long flags;
1347 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1348
1349 spin_lock_irqsave(&pdc_lock, flags);
1350 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1351 ploc, mod, view_type, __pa(&result));
1352 if(!retval) {
1353 *actcnt = pdc_result[0];
1354 memcpy(mem_addr, &result, *actcnt);
1355 }
1356 spin_unlock_irqrestore(&pdc_lock, flags);
1357
1358 return retval;
1359}
1360
1361/**
1362 * pdc_pat_cell_info - Retrieve the cell's information.
1363 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1364 * @actcnt: The number of bytes which should be written to info.
1365 * @offset: offset of the structure.
1366 * @cell_number: The cell number which should be asked, or -1 for current cell.
1367 *
1368 * This PDC call returns information about the given cell (or all cells).
1369 */
1370int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1371 unsigned long *actcnt, unsigned long offset,
1372 unsigned long cell_number)
1373{
1374 int retval;
1375 unsigned long flags;
1376 struct pdc_pat_cell_info_rtn_block result;
1377
1378 spin_lock_irqsave(&pdc_lock, flags);
1379 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1380 __pa(pdc_result), __pa(&result), *actcnt,
1381 offset, cell_number);
1382 if (!retval) {
1383 *actcnt = pdc_result[0];
1384 memcpy(info, &result, *actcnt);
1385 }
1386 spin_unlock_irqrestore(&pdc_lock, flags);
1387
1388 return retval;
1389}
1390
1391/**
1392 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1393 * @cpu_info: The return buffer.
1394 * @hpa: The Hard Physical Address of the CPU.
1395 *
1396 * Retrieve the cpu number for the cpu at the specified HPA.
1397 */
1398int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1399{
1400 int retval;
1401 unsigned long flags;
1402
1403 spin_lock_irqsave(&pdc_lock, flags);
1404 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1405 __pa(&pdc_result), hpa);
1406 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1407 spin_unlock_irqrestore(&pdc_lock, flags);
1408
1409 return retval;
1410}
1411
1412/**
1413 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1414 * @num_entries: The return value.
1415 * @cell_num: The target cell.
1416 *
1417 * This PDC function returns the number of entries in the specified cell's
1418 * interrupt table.
1419 */
1420int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1421{
1422 int retval;
1423 unsigned long flags;
1424
1425 spin_lock_irqsave(&pdc_lock, flags);
1426 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1427 __pa(pdc_result), cell_num);
1428 *num_entries = pdc_result[0];
1429 spin_unlock_irqrestore(&pdc_lock, flags);
1430
1431 return retval;
1432}
1433
1434/**
1435 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1436 * @r_addr: The return buffer.
1437 * @cell_num: The target cell.
1438 *
1439 * This PDC function returns the actual interrupt table for the specified cell.
1440 */
1441int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1442{
1443 int retval;
1444 unsigned long flags;
1445
1446 spin_lock_irqsave(&pdc_lock, flags);
1447 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1448 __pa(r_addr), cell_num);
1449 spin_unlock_irqrestore(&pdc_lock, flags);
1450
1451 return retval;
1452}
1453
1454/**
1455 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1456 * @actlen: The return buffer.
1457 * @mem_addr: Pointer to the memory buffer.
1458 * @count: The number of bytes to read from the buffer.
1459 * @offset: The offset with respect to the beginning of the buffer.
1460 *
1461 */
1462int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1463 unsigned long count, unsigned long offset)
1464{
1465 int retval;
1466 unsigned long flags;
1467
1468 spin_lock_irqsave(&pdc_lock, flags);
1469 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1470 __pa(pdc_result2), count, offset);
1471 *actual_len = pdc_result[0];
1472 memcpy(mem_addr, pdc_result2, *actual_len);
1473 spin_unlock_irqrestore(&pdc_lock, flags);
1474
1475 return retval;
1476}
1477
1478/**
1479 * pdc_pat_pd_get_PDC_interface_revisions - Retrieve PDC interface revisions.
1480 * @legacy_rev: The legacy revision.
1481 * @pat_rev: The PAT revision.
1482 * @pdc_cap: The PDC capabilities.
1483 *
1484 */
1485int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1486 unsigned long *pat_rev, unsigned long *pdc_cap)
1487{
1488 int retval;
1489 unsigned long flags;
1490
1491 spin_lock_irqsave(&pdc_lock, flags);
1492 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1493 __pa(pdc_result));
1494 if (retval == PDC_OK) {
1495 *legacy_rev = pdc_result[0];
1496 *pat_rev = pdc_result[1];
1497 *pdc_cap = pdc_result[2];
1498 }
1499 spin_unlock_irqrestore(&pdc_lock, flags);
1500
1501 return retval;
1502}
1503
1504
1505/**
1506 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1507 * @pci_addr: PCI configuration space address for which the read request is being made.
1508 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1509 * @mem_addr: Pointer to return memory buffer.
1510 *
1511 */
1512int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1513{
1514 int retval;
1515 unsigned long flags;
1516
1517 spin_lock_irqsave(&pdc_lock, flags);
1518 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1519 __pa(pdc_result), pci_addr, pci_size);
1520 switch(pci_size) {
1521 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1522 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1523 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1524 }
1525 spin_unlock_irqrestore(&pdc_lock, flags);
1526
1527 return retval;
1528}
1529
1530/**
1531 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1532 * @pci_addr: PCI configuration space address for which the write request is being made.
1533 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1534 * @value: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1535 * written to PCI Config space.
1536 *
1537 */
1538int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1539{
1540 int retval;
1541 unsigned long flags;
1542
1543 spin_lock_irqsave(&pdc_lock, flags);
1544 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1545 pci_addr, pci_size, val);
1546 spin_unlock_irqrestore(&pdc_lock, flags);
1547
1548 return retval;
1549}
1550
1551/**
1552 * pdc_pat_mem_pdc_info - Retrieve information about page deallocation table
1553 * @rinfo: memory pdt information
1554 *
1555 */
1556int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1557{
1558 int retval;
1559 unsigned long flags;
1560
1561 spin_lock_irqsave(&pdc_lock, flags);
1562 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1563 __pa(&pdc_result));
1564 if (retval == PDC_OK)
1565 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1566 spin_unlock_irqrestore(&pdc_lock, flags);
1567
1568 return retval;
1569}
1570
1571/**
1572 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1573 * table of a cell
1574 * @rinfo: memory pdt information
1575 * @cell: cell number
1576 *
1577 */
1578int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1579 unsigned long cell)
1580{
1581 int retval;
1582 unsigned long flags;
1583
1584 spin_lock_irqsave(&pdc_lock, flags);
1585 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1586 __pa(&pdc_result), cell);
1587 if (retval == PDC_OK)
1588 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1589 spin_unlock_irqrestore(&pdc_lock, flags);
1590
1591 return retval;
1592}
1593
1594/**
1595 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1596 * @pret: array of PDT entries
1597 * @pdt_entries_ptr: ptr to hold number of PDT entries
1598 * @max_entries: maximum number of entries to be read
1599 *
1600 */
1601int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1602 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1603{
1604 int retval;
1605 unsigned long flags, entries;
1606
1607 spin_lock_irqsave(&pdc_lock, flags);
1608 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1609 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1610 __pa(&pdc_result), parisc_cell_num,
1611 __pa(pdt_entries_ptr));
1612
1613 if (retval == PDC_OK) {
1614 /* build up return value as for PDC_PAT_MEM_PD_READ */
1615 entries = min(pdc_result[0], max_entries);
1616 pret->pdt_entries = entries;
1617 pret->actual_count_bytes = entries * sizeof(unsigned long);
1618 }
1619
1620 spin_unlock_irqrestore(&pdc_lock, flags);
1621 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1622
1623 return retval;
1624}
1625/**
1626 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1627 * @pret: array of PDT entries
1628 * @pdt_entries_ptr: ptr to hold number of PDT entries
1629 * @count: number of bytes to read
1630 * @offset: offset to start (in bytes)
1631 *
1632 */
1633int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1634 unsigned long *pdt_entries_ptr, unsigned long count,
1635 unsigned long offset)
1636{
1637 int retval;
1638 unsigned long flags, entries;
1639
1640 spin_lock_irqsave(&pdc_lock, flags);
1641 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1642 __pa(&pdc_result), __pa(pdt_entries_ptr),
1643 count, offset);
1644
1645 if (retval == PDC_OK) {
1646 entries = min(pdc_result[0], count);
1647 pret->actual_count_bytes = entries;
1648 pret->pdt_entries = entries / sizeof(unsigned long);
1649 }
1650
1651 spin_unlock_irqrestore(&pdc_lock, flags);
1652
1653 return retval;
1654}
1655
1656/**
1657 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1658 * @pret: ptr to hold returned information
1659 * @phys_addr: physical address to examine
1660 *
1661 */
1662int pdc_pat_mem_get_dimm_phys_location(
1663 struct pdc_pat_mem_phys_mem_location *pret,
1664 unsigned long phys_addr)
1665{
1666 int retval;
1667 unsigned long flags;
1668
1669 spin_lock_irqsave(&pdc_lock, flags);
1670 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1671 __pa(&pdc_result), phys_addr);
1672
1673 if (retval == PDC_OK)
1674 memcpy(pret, &pdc_result, sizeof(*pret));
1675
1676 spin_unlock_irqrestore(&pdc_lock, flags);
1677
1678 return retval;
1679}
1680#endif /* CONFIG_64BIT */
1681#endif /* defined(BOOTLOADER) */
1682
1683
1684/***************** 32-bit real-mode calls ***********/
1685/* The struct below is used
1686 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1687 * real32_call_asm() then uses this stack in narrow real mode
1688 */
1689
1690struct narrow_stack {
1691 /* use int, not long which is 64 bits */
1692 unsigned int arg13;
1693 unsigned int arg12;
1694 unsigned int arg11;
1695 unsigned int arg10;
1696 unsigned int arg9;
1697 unsigned int arg8;
1698 unsigned int arg7;
1699 unsigned int arg6;
1700 unsigned int arg5;
1701 unsigned int arg4;
1702 unsigned int arg3;
1703 unsigned int arg2;
1704 unsigned int arg1;
1705 unsigned int arg0;
1706 unsigned int frame_marker[8];
1707 unsigned int sp;
1708 /* in reality, there's nearly 8k of stack after this */
1709};
1710
1711long real32_call(unsigned long fn, ...)
1712{
1713 va_list args;
1714 extern struct narrow_stack real_stack;
1715 extern unsigned long real32_call_asm(unsigned int *,
1716 unsigned int *,
1717 unsigned int);
1718
1719 va_start(args, fn);
1720 real_stack.arg0 = va_arg(args, unsigned int);
1721 real_stack.arg1 = va_arg(args, unsigned int);
1722 real_stack.arg2 = va_arg(args, unsigned int);
1723 real_stack.arg3 = va_arg(args, unsigned int);
1724 real_stack.arg4 = va_arg(args, unsigned int);
1725 real_stack.arg5 = va_arg(args, unsigned int);
1726 real_stack.arg6 = va_arg(args, unsigned int);
1727 real_stack.arg7 = va_arg(args, unsigned int);
1728 real_stack.arg8 = va_arg(args, unsigned int);
1729 real_stack.arg9 = va_arg(args, unsigned int);
1730 real_stack.arg10 = va_arg(args, unsigned int);
1731 real_stack.arg11 = va_arg(args, unsigned int);
1732 real_stack.arg12 = va_arg(args, unsigned int);
1733 real_stack.arg13 = va_arg(args, unsigned int);
1734 va_end(args);
1735
1736 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1737}
1738
1739#ifdef CONFIG_64BIT
1740/***************** 64-bit real-mode calls ***********/
1741
1742struct wide_stack {
1743 unsigned long arg0;
1744 unsigned long arg1;
1745 unsigned long arg2;
1746 unsigned long arg3;
1747 unsigned long arg4;
1748 unsigned long arg5;
1749 unsigned long arg6;
1750 unsigned long arg7;
1751 unsigned long arg8;
1752 unsigned long arg9;
1753 unsigned long arg10;
1754 unsigned long arg11;
1755 unsigned long arg12;
1756 unsigned long arg13;
1757 unsigned long frame_marker[2]; /* rp, previous sp */
1758 unsigned long sp;
1759 /* in reality, there's nearly 8k of stack after this */
1760};
1761
1762long real64_call(unsigned long fn, ...)
1763{
1764 va_list args;
1765 extern struct wide_stack real64_stack;
1766 extern unsigned long real64_call_asm(unsigned long *,
1767 unsigned long *,
1768 unsigned long);
1769
1770 va_start(args, fn);
1771 real64_stack.arg0 = va_arg(args, unsigned long);
1772 real64_stack.arg1 = va_arg(args, unsigned long);
1773 real64_stack.arg2 = va_arg(args, unsigned long);
1774 real64_stack.arg3 = va_arg(args, unsigned long);
1775 real64_stack.arg4 = va_arg(args, unsigned long);
1776 real64_stack.arg5 = va_arg(args, unsigned long);
1777 real64_stack.arg6 = va_arg(args, unsigned long);
1778 real64_stack.arg7 = va_arg(args, unsigned long);
1779 real64_stack.arg8 = va_arg(args, unsigned long);
1780 real64_stack.arg9 = va_arg(args, unsigned long);
1781 real64_stack.arg10 = va_arg(args, unsigned long);
1782 real64_stack.arg11 = va_arg(args, unsigned long);
1783 real64_stack.arg12 = va_arg(args, unsigned long);
1784 real64_stack.arg13 = va_arg(args, unsigned long);
1785 va_end(args);
1786
1787 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1788}
1789
1790#endif /* CONFIG_64BIT */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * arch/parisc/kernel/firmware.c - safe PDC access routines
4 *
5 * PDC == Processor Dependent Code
6 *
7 * See PDC documentation at
8 * https://parisc.wiki.kernel.org/index.php/Technical_Documentation
9 * for documentation describing the entry points and calling
10 * conventions defined below.
11 *
12 * Copyright 1999 SuSE GmbH Nuernberg (Philipp Rumpf, prumpf@tux.org)
13 * Copyright 1999 The Puffin Group, (Alex deVries, David Kennedy)
14 * Copyright 2003 Grant Grundler <grundler parisc-linux org>
15 * Copyright 2003,2004 Ryan Bradetich <rbrad@parisc-linux.org>
16 * Copyright 2004,2006 Thibaut VARENE <varenet@parisc-linux.org>
17 */
18
19/* I think it would be in everyone's best interest to follow this
20 * guidelines when writing PDC wrappers:
21 *
22 * - the name of the pdc wrapper should match one of the macros
23 * used for the first two arguments
24 * - don't use caps for random parts of the name
25 * - use the static PDC result buffers and "copyout" to structs
26 * supplied by the caller to encapsulate alignment restrictions
27 * - hold pdc_lock while in PDC or using static result buffers
28 * - use __pa() to convert virtual (kernel) pointers to physical
29 * ones.
30 * - the name of the struct used for pdc return values should equal
31 * one of the macros used for the first two arguments to the
32 * corresponding PDC call
33 * - keep the order of arguments
34 * - don't be smart (setting trailing NUL bytes for strings, return
35 * something useful even if the call failed) unless you are sure
36 * it's not going to affect functionality or performance
37 *
38 * Example:
39 * int pdc_cache_info(struct pdc_cache_info *cache_info )
40 * {
41 * int retval;
42 *
43 * spin_lock_irq(&pdc_lock);
44 * retval = mem_pdc_call(PDC_CACHE,PDC_CACHE_INFO,__pa(cache_info),0);
45 * convert_to_wide(pdc_result);
46 * memcpy(cache_info, pdc_result, sizeof(*cache_info));
47 * spin_unlock_irq(&pdc_lock);
48 *
49 * return retval;
50 * }
51 * prumpf 991016
52 */
53
54#include <linux/stdarg.h>
55
56#include <linux/delay.h>
57#include <linux/init.h>
58#include <linux/kernel.h>
59#include <linux/module.h>
60#include <linux/string.h>
61#include <linux/spinlock.h>
62
63#include <asm/page.h>
64#include <asm/pdc.h>
65#include <asm/pdcpat.h>
66#include <asm/processor.h> /* for boot_cpu_data */
67
68#if defined(BOOTLOADER)
69# undef spin_lock_irqsave
70# define spin_lock_irqsave(a, b) { b = 1; }
71# undef spin_unlock_irqrestore
72# define spin_unlock_irqrestore(a, b)
73#else
74static DEFINE_SPINLOCK(pdc_lock);
75#endif
76
77static unsigned long pdc_result[NUM_PDC_RESULT] __aligned(8);
78static unsigned long pdc_result2[NUM_PDC_RESULT] __aligned(8);
79
80#ifdef CONFIG_64BIT
81#define WIDE_FIRMWARE PDC_MODEL_OS64
82#define NARROW_FIRMWARE PDC_MODEL_OS32
83
84/* Firmware needs to be initially set to narrow to determine the
85 * actual firmware width. */
86int parisc_narrow_firmware __ro_after_init = NARROW_FIRMWARE;
87#endif
88
89/* On most currently-supported platforms, IODC I/O calls are 32-bit calls
90 * and MEM_PDC calls are always the same width as the OS.
91 * Some PAT boxes may have 64-bit IODC I/O.
92 *
93 * Ryan Bradetich added the now obsolete CONFIG_PDC_NARROW to allow
94 * 64-bit kernels to run on systems with 32-bit MEM_PDC calls.
95 * This allowed wide kernels to run on Cxxx boxes.
96 * We now detect 32-bit-only PDC and dynamically switch to 32-bit mode
97 * when running a 64-bit kernel on such boxes (e.g. C200 or C360).
98 */
99
100#ifdef CONFIG_64BIT
101long real64_call(unsigned long function, ...);
102#endif
103long real32_call(unsigned long function, ...);
104
105#ifdef CONFIG_64BIT
106# define MEM_PDC (unsigned long)(PAGE0->mem_pdc_hi) << 32 | PAGE0->mem_pdc
107# define mem_pdc_call(args...) unlikely(parisc_narrow_firmware) ? real32_call(MEM_PDC, args) : real64_call(MEM_PDC, args)
108#else
109# define MEM_PDC (unsigned long)PAGE0->mem_pdc
110# define mem_pdc_call(args...) real32_call(MEM_PDC, args)
111#endif
112
113
114/**
115 * f_extend - Convert PDC addresses to kernel addresses.
116 * @address: Address returned from PDC.
117 *
118 * This function is used to convert PDC addresses into kernel addresses
119 * when the PDC address size and kernel address size are different.
120 */
121static unsigned long f_extend(unsigned long address)
122{
123#ifdef CONFIG_64BIT
124 if(unlikely(parisc_narrow_firmware)) {
125 if((address & 0xff000000) == 0xf0000000)
126 return (0xfffffff0UL << 32) | (u32)address;
127
128 if((address & 0xf0000000) == 0xf0000000)
129 return (0xffffffffUL << 32) | (u32)address;
130 }
131#endif
132 return address;
133}
134
135/**
136 * convert_to_wide - Convert the return buffer addresses into kernel addresses.
137 * @addr: The return buffer from PDC.
138 *
139 * This function is used to convert the return buffer addresses retrieved from PDC
140 * into kernel addresses when the PDC address size and kernel address size are
141 * different.
142 */
143static void convert_to_wide(unsigned long *addr)
144{
145#ifdef CONFIG_64BIT
146 int i;
147 unsigned int *p = (unsigned int *)addr;
148
149 if (unlikely(parisc_narrow_firmware)) {
150 for (i = (NUM_PDC_RESULT-1); i >= 0; --i)
151 addr[i] = p[i];
152 }
153#endif
154}
155
156#ifdef CONFIG_64BIT
157void set_firmware_width_unlocked(void)
158{
159 int ret;
160
161 ret = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES,
162 __pa(pdc_result), 0);
163 if (ret < 0)
164 return;
165 convert_to_wide(pdc_result);
166 if (pdc_result[0] != NARROW_FIRMWARE)
167 parisc_narrow_firmware = 0;
168}
169
170/**
171 * set_firmware_width - Determine if the firmware is wide or narrow.
172 *
173 * This function must be called before any pdc_* function that uses the
174 * convert_to_wide function.
175 */
176void set_firmware_width(void)
177{
178 unsigned long flags;
179
180 /* already initialized? */
181 if (parisc_narrow_firmware != NARROW_FIRMWARE)
182 return;
183
184 spin_lock_irqsave(&pdc_lock, flags);
185 set_firmware_width_unlocked();
186 spin_unlock_irqrestore(&pdc_lock, flags);
187}
188#else
189void set_firmware_width_unlocked(void)
190{
191 return;
192}
193
194void set_firmware_width(void)
195{
196 return;
197}
198#endif /*CONFIG_64BIT*/
199
200
201#if !defined(BOOTLOADER)
202/**
203 * pdc_emergency_unlock - Unlock the linux pdc lock
204 *
205 * This call unlocks the linux pdc lock in case we need some PDC functions
206 * (like pdc_add_valid) during kernel stack dump.
207 */
208void pdc_emergency_unlock(void)
209{
210 /* Spinlock DEBUG code freaks out if we unconditionally unlock */
211 if (spin_is_locked(&pdc_lock))
212 spin_unlock(&pdc_lock);
213}
214
215
216/**
217 * pdc_add_valid - Verify address can be accessed without causing a HPMC.
218 * @address: Address to be verified.
219 *
220 * This PDC call attempts to read from the specified address and verifies
221 * if the address is valid.
222 *
223 * The return value is PDC_OK (0) in case accessing this address is valid.
224 */
225int pdc_add_valid(unsigned long address)
226{
227 int retval;
228 unsigned long flags;
229
230 spin_lock_irqsave(&pdc_lock, flags);
231 retval = mem_pdc_call(PDC_ADD_VALID, PDC_ADD_VALID_VERIFY, address);
232 spin_unlock_irqrestore(&pdc_lock, flags);
233
234 return retval;
235}
236EXPORT_SYMBOL(pdc_add_valid);
237
238/**
239 * pdc_instr - Get instruction that invokes PDCE_CHECK in HPMC handler.
240 * @instr: Pointer to variable which will get instruction opcode.
241 *
242 * The return value is PDC_OK (0) in case call succeeded.
243 */
244int __init pdc_instr(unsigned int *instr)
245{
246 int retval;
247 unsigned long flags;
248
249 spin_lock_irqsave(&pdc_lock, flags);
250 retval = mem_pdc_call(PDC_INSTR, 0UL, __pa(pdc_result));
251 convert_to_wide(pdc_result);
252 *instr = pdc_result[0];
253 spin_unlock_irqrestore(&pdc_lock, flags);
254
255 return retval;
256}
257
258/**
259 * pdc_chassis_info - Return chassis information.
260 * @chassis_info: The memory buffer address.
261 * @led_info: The size of the memory buffer address.
262 * @len: The size of the memory buffer address.
263 *
264 * An HVERSION dependent call for returning the chassis information.
265 */
266int __init pdc_chassis_info(struct pdc_chassis_info *chassis_info, void *led_info, unsigned long len)
267{
268 int retval;
269 unsigned long flags;
270
271 spin_lock_irqsave(&pdc_lock, flags);
272 memcpy(&pdc_result, chassis_info, sizeof(*chassis_info));
273 memcpy(&pdc_result2, led_info, len);
274 retval = mem_pdc_call(PDC_CHASSIS, PDC_RETURN_CHASSIS_INFO,
275 __pa(pdc_result), __pa(pdc_result2), len);
276 memcpy(chassis_info, pdc_result, sizeof(*chassis_info));
277 memcpy(led_info, pdc_result2, len);
278 spin_unlock_irqrestore(&pdc_lock, flags);
279
280 return retval;
281}
282
283/**
284 * pdc_pat_chassis_send_log - Sends a PDC PAT CHASSIS log message.
285 * @state: state of the machine
286 * @data: value for that state
287 *
288 * Must be correctly formatted or expect system crash
289 */
290#ifdef CONFIG_64BIT
291int pdc_pat_chassis_send_log(unsigned long state, unsigned long data)
292{
293 int retval = 0;
294 unsigned long flags;
295
296 if (!is_pdc_pat())
297 return -1;
298
299 spin_lock_irqsave(&pdc_lock, flags);
300 retval = mem_pdc_call(PDC_PAT_CHASSIS_LOG, PDC_PAT_CHASSIS_WRITE_LOG, __pa(&state), __pa(&data));
301 spin_unlock_irqrestore(&pdc_lock, flags);
302
303 return retval;
304}
305#endif
306
307/**
308 * pdc_chassis_disp - Updates chassis code
309 * @disp: value to show on display
310 */
311int pdc_chassis_disp(unsigned long disp)
312{
313 int retval = 0;
314 unsigned long flags;
315
316 spin_lock_irqsave(&pdc_lock, flags);
317 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_DISP, disp);
318 spin_unlock_irqrestore(&pdc_lock, flags);
319
320 return retval;
321}
322
323/**
324 * __pdc_cpu_rendezvous - Stop currently executing CPU and do not return.
325 */
326int __pdc_cpu_rendezvous(void)
327{
328 if (is_pdc_pat())
329 return mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_RENDEZVOUS);
330 else
331 return mem_pdc_call(PDC_PROC, 1, 0);
332}
333
334/**
335 * pdc_cpu_rendezvous_lock - Lock PDC while transitioning to rendezvous state
336 */
337void pdc_cpu_rendezvous_lock(void) __acquires(&pdc_lock)
338{
339 spin_lock(&pdc_lock);
340}
341
342/**
343 * pdc_cpu_rendezvous_unlock - Unlock PDC after reaching rendezvous state
344 */
345void pdc_cpu_rendezvous_unlock(void) __releases(&pdc_lock)
346{
347 spin_unlock(&pdc_lock);
348}
349
350/**
351 * pdc_pat_get_PDC_entrypoint - Get PDC entry point for current CPU
352 * @pdc_entry: pointer to where the PDC entry point should be stored
353 */
354int pdc_pat_get_PDC_entrypoint(unsigned long *pdc_entry)
355{
356 int retval = 0;
357 unsigned long flags;
358
359 if (!IS_ENABLED(CONFIG_SMP) || !is_pdc_pat()) {
360 *pdc_entry = MEM_PDC;
361 return 0;
362 }
363
364 spin_lock_irqsave(&pdc_lock, flags);
365 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_PDC_ENTRYPOINT,
366 __pa(pdc_result));
367 *pdc_entry = pdc_result[0];
368 spin_unlock_irqrestore(&pdc_lock, flags);
369
370 return retval;
371}
372/**
373 * pdc_chassis_warn - Fetches chassis warnings
374 * @warn: The warning value to be shown
375 */
376int pdc_chassis_warn(unsigned long *warn)
377{
378 int retval = 0;
379 unsigned long flags;
380
381 spin_lock_irqsave(&pdc_lock, flags);
382 retval = mem_pdc_call(PDC_CHASSIS, PDC_CHASSIS_WARN, __pa(pdc_result));
383 *warn = pdc_result[0];
384 spin_unlock_irqrestore(&pdc_lock, flags);
385
386 return retval;
387}
388
389int pdc_coproc_cfg_unlocked(struct pdc_coproc_cfg *pdc_coproc_info)
390{
391 int ret;
392
393 ret = mem_pdc_call(PDC_COPROC, PDC_COPROC_CFG, __pa(pdc_result));
394 convert_to_wide(pdc_result);
395 pdc_coproc_info->ccr_functional = pdc_result[0];
396 pdc_coproc_info->ccr_present = pdc_result[1];
397 pdc_coproc_info->revision = pdc_result[17];
398 pdc_coproc_info->model = pdc_result[18];
399
400 return ret;
401}
402
403/**
404 * pdc_coproc_cfg - To identify coprocessors attached to the processor.
405 * @pdc_coproc_info: Return buffer address.
406 *
407 * This PDC call returns the presence and status of all the coprocessors
408 * attached to the processor.
409 */
410int pdc_coproc_cfg(struct pdc_coproc_cfg *pdc_coproc_info)
411{
412 int ret;
413 unsigned long flags;
414
415 spin_lock_irqsave(&pdc_lock, flags);
416 ret = pdc_coproc_cfg_unlocked(pdc_coproc_info);
417 spin_unlock_irqrestore(&pdc_lock, flags);
418
419 return ret;
420}
421
422/**
423 * pdc_iodc_read - Read data from the modules IODC.
424 * @actcnt: The actual number of bytes.
425 * @hpa: The HPA of the module for the iodc read.
426 * @index: The iodc entry point.
427 * @iodc_data: A buffer memory for the iodc options.
428 * @iodc_data_size: Size of the memory buffer.
429 *
430 * This PDC call reads from the IODC of the module specified by the hpa
431 * argument.
432 */
433int pdc_iodc_read(unsigned long *actcnt, unsigned long hpa, unsigned int index,
434 void *iodc_data, unsigned int iodc_data_size)
435{
436 int retval;
437 unsigned long flags;
438
439 spin_lock_irqsave(&pdc_lock, flags);
440 retval = mem_pdc_call(PDC_IODC, PDC_IODC_READ, __pa(pdc_result), hpa,
441 index, __pa(pdc_result2), iodc_data_size);
442 convert_to_wide(pdc_result);
443 *actcnt = pdc_result[0];
444 memcpy(iodc_data, pdc_result2, iodc_data_size);
445 spin_unlock_irqrestore(&pdc_lock, flags);
446
447 return retval;
448}
449EXPORT_SYMBOL(pdc_iodc_read);
450
451/**
452 * pdc_system_map_find_mods - Locate unarchitected modules.
453 * @pdc_mod_info: Return buffer address.
454 * @mod_path: pointer to dev path structure.
455 * @mod_index: fixed address module index.
456 *
457 * To locate and identify modules which reside at fixed I/O addresses, which
458 * do not self-identify via architected bus walks.
459 */
460int pdc_system_map_find_mods(struct pdc_system_map_mod_info *pdc_mod_info,
461 struct pdc_module_path *mod_path, long mod_index)
462{
463 int retval;
464 unsigned long flags;
465
466 spin_lock_irqsave(&pdc_lock, flags);
467 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_MODULE, __pa(pdc_result),
468 __pa(pdc_result2), mod_index);
469 convert_to_wide(pdc_result);
470 memcpy(pdc_mod_info, pdc_result, sizeof(*pdc_mod_info));
471 memcpy(mod_path, pdc_result2, sizeof(*mod_path));
472 spin_unlock_irqrestore(&pdc_lock, flags);
473
474 pdc_mod_info->mod_addr = f_extend(pdc_mod_info->mod_addr);
475 return retval;
476}
477
478/**
479 * pdc_system_map_find_addrs - Retrieve additional address ranges.
480 * @pdc_addr_info: Return buffer address.
481 * @mod_index: Fixed address module index.
482 * @addr_index: Address range index.
483 *
484 * Retrieve additional information about subsequent address ranges for modules
485 * with multiple address ranges.
486 */
487int pdc_system_map_find_addrs(struct pdc_system_map_addr_info *pdc_addr_info,
488 long mod_index, long addr_index)
489{
490 int retval;
491 unsigned long flags;
492
493 spin_lock_irqsave(&pdc_lock, flags);
494 retval = mem_pdc_call(PDC_SYSTEM_MAP, PDC_FIND_ADDRESS, __pa(pdc_result),
495 mod_index, addr_index);
496 convert_to_wide(pdc_result);
497 memcpy(pdc_addr_info, pdc_result, sizeof(*pdc_addr_info));
498 spin_unlock_irqrestore(&pdc_lock, flags);
499
500 pdc_addr_info->mod_addr = f_extend(pdc_addr_info->mod_addr);
501 return retval;
502}
503
504/**
505 * pdc_model_info - Return model information about the processor.
506 * @model: The return buffer.
507 *
508 * Returns the version numbers, identifiers, and capabilities from the processor module.
509 */
510int pdc_model_info(struct pdc_model *model)
511{
512 int retval;
513 unsigned long flags;
514
515 spin_lock_irqsave(&pdc_lock, flags);
516 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_INFO, __pa(pdc_result), 0);
517 convert_to_wide(pdc_result);
518 memcpy(model, pdc_result, sizeof(*model));
519 spin_unlock_irqrestore(&pdc_lock, flags);
520
521 return retval;
522}
523
524/**
525 * pdc_model_sysmodel - Get the system model name.
526 * @os_id: The operating system ID asked for (an OS_ID_* value)
527 * @name: A char array of at least 81 characters.
528 *
529 * Get system model name from PDC ROM (e.g. 9000/715 or 9000/778/B160L).
530 * Using OS_ID_HPUX will return the equivalent of the 'modelname' command
531 * on HP/UX.
532 */
533int pdc_model_sysmodel(unsigned int os_id, char *name)
534{
535 int retval;
536 unsigned long flags;
537
538 spin_lock_irqsave(&pdc_lock, flags);
539 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_SYSMODEL, __pa(pdc_result),
540 os_id, __pa(name));
541 convert_to_wide(pdc_result);
542
543 if (retval == PDC_OK) {
544 name[pdc_result[0]] = '\0'; /* add trailing '\0' */
545 } else {
546 name[0] = 0;
547 }
548 spin_unlock_irqrestore(&pdc_lock, flags);
549
550 return retval;
551}
552
553/**
554 * pdc_model_versions - Identify the version number of each processor.
555 * @versions: The return buffer.
556 * @id: The id of the processor to check.
557 *
558 * Returns the version number for each processor component.
559 *
560 * This comment was here before, but I do not know what it means :( -RB
561 * id: 0 = cpu revision, 1 = boot-rom-version
562 */
563int pdc_model_versions(unsigned long *versions, int id)
564{
565 int retval;
566 unsigned long flags;
567
568 spin_lock_irqsave(&pdc_lock, flags);
569 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_VERSIONS, __pa(pdc_result), id);
570 convert_to_wide(pdc_result);
571 *versions = pdc_result[0];
572 spin_unlock_irqrestore(&pdc_lock, flags);
573
574 return retval;
575}
576
577/**
578 * pdc_model_cpuid - Returns the CPU_ID.
579 * @cpu_id: The return buffer.
580 *
581 * Returns the CPU_ID value which uniquely identifies the cpu portion of
582 * the processor module.
583 */
584int pdc_model_cpuid(unsigned long *cpu_id)
585{
586 int retval;
587 unsigned long flags;
588
589 spin_lock_irqsave(&pdc_lock, flags);
590 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
591 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CPU_ID, __pa(pdc_result), 0);
592 convert_to_wide(pdc_result);
593 *cpu_id = pdc_result[0];
594 spin_unlock_irqrestore(&pdc_lock, flags);
595
596 return retval;
597}
598
599/**
600 * pdc_model_capabilities - Returns the platform capabilities.
601 * @capabilities: The return buffer.
602 *
603 * Returns information about platform support for 32- and/or 64-bit
604 * OSes, IO-PDIR coherency, and virtual aliasing.
605 */
606int pdc_model_capabilities(unsigned long *capabilities)
607{
608 int retval;
609 unsigned long flags;
610
611 spin_lock_irqsave(&pdc_lock, flags);
612 pdc_result[0] = 0; /* preset zero (call may not be implemented!) */
613 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_CAPABILITIES, __pa(pdc_result), 0);
614 convert_to_wide(pdc_result);
615 if (retval == PDC_OK) {
616 *capabilities = pdc_result[0];
617 } else {
618 *capabilities = PDC_MODEL_OS32;
619 }
620 spin_unlock_irqrestore(&pdc_lock, flags);
621
622 return retval;
623}
624
625/**
626 * pdc_model_platform_info - Returns machine product and serial number.
627 * @orig_prod_num: Return buffer for original product number.
628 * @current_prod_num: Return buffer for current product number.
629 * @serial_no: Return buffer for serial number.
630 *
631 * Returns strings containing the original and current product numbers and the
632 * serial number of the system.
633 */
634int pdc_model_platform_info(char *orig_prod_num, char *current_prod_num,
635 char *serial_no)
636{
637 int retval;
638 unsigned long flags;
639
640 spin_lock_irqsave(&pdc_lock, flags);
641 retval = mem_pdc_call(PDC_MODEL, PDC_MODEL_GET_PLATFORM_INFO,
642 __pa(orig_prod_num), __pa(current_prod_num), __pa(serial_no));
643 convert_to_wide(pdc_result);
644 spin_unlock_irqrestore(&pdc_lock, flags);
645
646 return retval;
647}
648
649/**
650 * pdc_cache_info - Return cache and TLB information.
651 * @cache_info: The return buffer.
652 *
653 * Returns information about the processor's cache and TLB.
654 */
655int pdc_cache_info(struct pdc_cache_info *cache_info)
656{
657 int retval;
658 unsigned long flags;
659
660 spin_lock_irqsave(&pdc_lock, flags);
661 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_INFO, __pa(pdc_result), 0);
662 convert_to_wide(pdc_result);
663 memcpy(cache_info, pdc_result, sizeof(*cache_info));
664 spin_unlock_irqrestore(&pdc_lock, flags);
665
666 return retval;
667}
668
669/**
670 * pdc_spaceid_bits - Return whether Space ID hashing is turned on.
671 * @space_bits: Should be 0, if not, bad mojo!
672 *
673 * Returns information about Space ID hashing.
674 */
675int pdc_spaceid_bits(unsigned long *space_bits)
676{
677 int retval;
678 unsigned long flags;
679
680 spin_lock_irqsave(&pdc_lock, flags);
681 pdc_result[0] = 0;
682 retval = mem_pdc_call(PDC_CACHE, PDC_CACHE_RET_SPID, __pa(pdc_result), 0);
683 convert_to_wide(pdc_result);
684 *space_bits = pdc_result[0];
685 spin_unlock_irqrestore(&pdc_lock, flags);
686
687 return retval;
688}
689
690/**
691 * pdc_btlb_info - Return block TLB information.
692 * @btlb: The return buffer.
693 *
694 * Returns information about the hardware Block TLB.
695 */
696int pdc_btlb_info(struct pdc_btlb_info *btlb)
697{
698 int retval;
699 unsigned long flags;
700
701 if (IS_ENABLED(CONFIG_PA20))
702 return PDC_BAD_PROC;
703
704 spin_lock_irqsave(&pdc_lock, flags);
705 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INFO, __pa(pdc_result), 0);
706 memcpy(btlb, pdc_result, sizeof(*btlb));
707 spin_unlock_irqrestore(&pdc_lock, flags);
708
709 if(retval < 0) {
710 btlb->max_size = 0;
711 }
712 return retval;
713}
714
715int pdc_btlb_insert(unsigned long long vpage, unsigned long physpage, unsigned long len,
716 unsigned long entry_info, unsigned long slot)
717{
718 int retval;
719 unsigned long flags;
720
721 if (IS_ENABLED(CONFIG_PA20))
722 return PDC_BAD_PROC;
723
724 spin_lock_irqsave(&pdc_lock, flags);
725 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_INSERT, (unsigned long) (vpage >> 32),
726 (unsigned long) vpage, physpage, len, entry_info, slot);
727 spin_unlock_irqrestore(&pdc_lock, flags);
728 return retval;
729}
730
731int pdc_btlb_purge_all(void)
732{
733 int retval;
734 unsigned long flags;
735
736 if (IS_ENABLED(CONFIG_PA20))
737 return PDC_BAD_PROC;
738
739 spin_lock_irqsave(&pdc_lock, flags);
740 retval = mem_pdc_call(PDC_BLOCK_TLB, PDC_BTLB_PURGE_ALL);
741 spin_unlock_irqrestore(&pdc_lock, flags);
742 return retval;
743}
744
745/**
746 * pdc_mem_map_hpa - Find fixed module information.
747 * @address: The return buffer
748 * @mod_path: pointer to dev path structure.
749 *
750 * This call was developed for S700 workstations to allow the kernel to find
751 * the I/O devices (Core I/O). In the future (Kittyhawk and beyond) this
752 * call will be replaced (on workstations) by the architected PDC_SYSTEM_MAP
753 * call.
754 *
755 * This call is supported by all existing S700 workstations (up to Gecko).
756 */
757int pdc_mem_map_hpa(struct pdc_memory_map *address,
758 struct pdc_module_path *mod_path)
759{
760 int retval;
761 unsigned long flags;
762
763 if (IS_ENABLED(CONFIG_PA20))
764 return PDC_BAD_PROC;
765
766 spin_lock_irqsave(&pdc_lock, flags);
767 memcpy(pdc_result2, mod_path, sizeof(*mod_path));
768 retval = mem_pdc_call(PDC_MEM_MAP, PDC_MEM_MAP_HPA, __pa(pdc_result),
769 __pa(pdc_result2));
770 memcpy(address, pdc_result, sizeof(*address));
771 spin_unlock_irqrestore(&pdc_lock, flags);
772
773 return retval;
774}
775
776/**
777 * pdc_lan_station_id - Get the LAN address.
778 * @lan_addr: The return buffer.
779 * @hpa: The network device HPA.
780 *
781 * Get the LAN station address when it is not directly available from the LAN hardware.
782 */
783int pdc_lan_station_id(char *lan_addr, unsigned long hpa)
784{
785 int retval;
786 unsigned long flags;
787
788 spin_lock_irqsave(&pdc_lock, flags);
789 retval = mem_pdc_call(PDC_LAN_STATION_ID, PDC_LAN_STATION_ID_READ,
790 __pa(pdc_result), hpa);
791 if (retval < 0) {
792 /* FIXME: else read MAC from NVRAM */
793 memset(lan_addr, 0, PDC_LAN_STATION_ID_SIZE);
794 } else {
795 memcpy(lan_addr, pdc_result, PDC_LAN_STATION_ID_SIZE);
796 }
797 spin_unlock_irqrestore(&pdc_lock, flags);
798
799 return retval;
800}
801EXPORT_SYMBOL(pdc_lan_station_id);
802
803/**
804 * pdc_stable_read - Read data from Stable Storage.
805 * @staddr: Stable Storage address to access.
806 * @memaddr: The memory address where Stable Storage data shall be copied.
807 * @count: number of bytes to transfer. count is multiple of 4.
808 *
809 * This PDC call reads from the Stable Storage address supplied in staddr
810 * and copies count bytes to the memory address memaddr.
811 * The call will fail if staddr+count > PDC_STABLE size.
812 */
813int pdc_stable_read(unsigned long staddr, void *memaddr, unsigned long count)
814{
815 int retval;
816 unsigned long flags;
817
818 spin_lock_irqsave(&pdc_lock, flags);
819 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_READ, staddr,
820 __pa(pdc_result), count);
821 convert_to_wide(pdc_result);
822 memcpy(memaddr, pdc_result, count);
823 spin_unlock_irqrestore(&pdc_lock, flags);
824
825 return retval;
826}
827EXPORT_SYMBOL(pdc_stable_read);
828
829/**
830 * pdc_stable_write - Write data to Stable Storage.
831 * @staddr: Stable Storage address to access.
832 * @memaddr: The memory address where Stable Storage data shall be read from.
833 * @count: number of bytes to transfer. count is multiple of 4.
834 *
835 * This PDC call reads count bytes from the supplied memaddr address,
836 * and copies count bytes to the Stable Storage address staddr.
837 * The call will fail if staddr+count > PDC_STABLE size.
838 */
839int pdc_stable_write(unsigned long staddr, void *memaddr, unsigned long count)
840{
841 int retval;
842 unsigned long flags;
843
844 spin_lock_irqsave(&pdc_lock, flags);
845 memcpy(pdc_result, memaddr, count);
846 convert_to_wide(pdc_result);
847 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_WRITE, staddr,
848 __pa(pdc_result), count);
849 spin_unlock_irqrestore(&pdc_lock, flags);
850
851 return retval;
852}
853EXPORT_SYMBOL(pdc_stable_write);
854
855/**
856 * pdc_stable_get_size - Get Stable Storage size in bytes.
857 * @size: pointer where the size will be stored.
858 *
859 * This PDC call returns the number of bytes in the processor's Stable
860 * Storage, which is the number of contiguous bytes implemented in Stable
861 * Storage starting from staddr=0. size in an unsigned 64-bit integer
862 * which is a multiple of four.
863 */
864int pdc_stable_get_size(unsigned long *size)
865{
866 int retval;
867 unsigned long flags;
868
869 spin_lock_irqsave(&pdc_lock, flags);
870 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_RETURN_SIZE, __pa(pdc_result));
871 *size = pdc_result[0];
872 spin_unlock_irqrestore(&pdc_lock, flags);
873
874 return retval;
875}
876EXPORT_SYMBOL(pdc_stable_get_size);
877
878/**
879 * pdc_stable_verify_contents - Checks that Stable Storage contents are valid.
880 *
881 * This PDC call is meant to be used to check the integrity of the current
882 * contents of Stable Storage.
883 */
884int pdc_stable_verify_contents(void)
885{
886 int retval;
887 unsigned long flags;
888
889 spin_lock_irqsave(&pdc_lock, flags);
890 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_VERIFY_CONTENTS);
891 spin_unlock_irqrestore(&pdc_lock, flags);
892
893 return retval;
894}
895EXPORT_SYMBOL(pdc_stable_verify_contents);
896
897/**
898 * pdc_stable_initialize - Sets Stable Storage contents to zero and initialize
899 * the validity indicator.
900 *
901 * This PDC call will erase all contents of Stable Storage. Use with care!
902 */
903int pdc_stable_initialize(void)
904{
905 int retval;
906 unsigned long flags;
907
908 spin_lock_irqsave(&pdc_lock, flags);
909 retval = mem_pdc_call(PDC_STABLE, PDC_STABLE_INITIALIZE);
910 spin_unlock_irqrestore(&pdc_lock, flags);
911
912 return retval;
913}
914EXPORT_SYMBOL(pdc_stable_initialize);
915
916/**
917 * pdc_get_initiator - Get the SCSI Interface Card params (SCSI ID, SDTR, SE or LVD)
918 * @hwpath: fully bc.mod style path to the device.
919 * @initiator: the array to return the result into
920 *
921 * Get the SCSI operational parameters from PDC.
922 * Needed since HPUX never used BIOS or symbios card NVRAM.
923 * Most ncr/sym cards won't have an entry and just use whatever
924 * capabilities of the card are (eg Ultra, LVD). But there are
925 * several cases where it's useful:
926 * o set SCSI id for Multi-initiator clusters,
927 * o cable too long (ie SE scsi 10Mhz won't support 6m length),
928 * o bus width exported is less than what the interface chip supports.
929 */
930int pdc_get_initiator(struct hardware_path *hwpath, struct pdc_initiator *initiator)
931{
932 int retval;
933 unsigned long flags;
934
935 spin_lock_irqsave(&pdc_lock, flags);
936
937/* BCJ-XXXX series boxes. E.G. "9000/785/C3000" */
938#define IS_SPROCKETS() (strlen(boot_cpu_data.pdc.sys_model_name) == 14 && \
939 strncmp(boot_cpu_data.pdc.sys_model_name, "9000/785", 8) == 0)
940
941 retval = mem_pdc_call(PDC_INITIATOR, PDC_GET_INITIATOR,
942 __pa(pdc_result), __pa(hwpath));
943 if (retval < PDC_OK)
944 goto out;
945
946 if (pdc_result[0] < 16) {
947 initiator->host_id = pdc_result[0];
948 } else {
949 initiator->host_id = -1;
950 }
951
952 /*
953 * Sprockets and Piranha return 20 or 40 (MT/s). Prelude returns
954 * 1, 2, 5 or 10 for 5, 10, 20 or 40 MT/s, respectively
955 */
956 switch (pdc_result[1]) {
957 case 1: initiator->factor = 50; break;
958 case 2: initiator->factor = 25; break;
959 case 5: initiator->factor = 12; break;
960 case 25: initiator->factor = 10; break;
961 case 20: initiator->factor = 12; break;
962 case 40: initiator->factor = 10; break;
963 default: initiator->factor = -1; break;
964 }
965
966 if (IS_SPROCKETS()) {
967 initiator->width = pdc_result[4];
968 initiator->mode = pdc_result[5];
969 } else {
970 initiator->width = -1;
971 initiator->mode = -1;
972 }
973
974 out:
975 spin_unlock_irqrestore(&pdc_lock, flags);
976
977 return (retval >= PDC_OK);
978}
979EXPORT_SYMBOL(pdc_get_initiator);
980
981
982/**
983 * pdc_pci_irt_size - Get the number of entries in the interrupt routing table.
984 * @num_entries: The return value.
985 * @hpa: The HPA for the device.
986 *
987 * This PDC function returns the number of entries in the specified cell's
988 * interrupt table.
989 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
990 */
991int pdc_pci_irt_size(unsigned long *num_entries, unsigned long hpa)
992{
993 int retval;
994 unsigned long flags;
995
996 spin_lock_irqsave(&pdc_lock, flags);
997 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL_SIZE,
998 __pa(pdc_result), hpa);
999 convert_to_wide(pdc_result);
1000 *num_entries = pdc_result[0];
1001 spin_unlock_irqrestore(&pdc_lock, flags);
1002
1003 return retval;
1004}
1005
1006/**
1007 * pdc_pci_irt - Get the PCI interrupt routing table.
1008 * @num_entries: The number of entries in the table.
1009 * @hpa: The Hard Physical Address of the device.
1010 * @tbl:
1011 *
1012 * Get the PCI interrupt routing table for the device at the given HPA.
1013 * Similar to PDC_PAT stuff - but added for Forte/Allegro boxes
1014 */
1015int pdc_pci_irt(unsigned long num_entries, unsigned long hpa, void *tbl)
1016{
1017 int retval;
1018 unsigned long flags;
1019
1020 BUG_ON((unsigned long)tbl & 0x7);
1021
1022 spin_lock_irqsave(&pdc_lock, flags);
1023 pdc_result[0] = num_entries;
1024 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_GET_INT_TBL,
1025 __pa(pdc_result), hpa, __pa(tbl));
1026 spin_unlock_irqrestore(&pdc_lock, flags);
1027
1028 return retval;
1029}
1030
1031
1032#if 0 /* UNTEST CODE - left here in case someone needs it */
1033
1034/**
1035 * pdc_pci_config_read - read PCI config space.
1036 * @hpa: Token from PDC to indicate which PCI device
1037 * @cfg_addr: Configuration space address to read from
1038 *
1039 * Read PCI Configuration space *before* linux PCI subsystem is running.
1040 */
1041unsigned int pdc_pci_config_read(void *hpa, unsigned long cfg_addr)
1042{
1043 int retval;
1044 unsigned long flags;
1045
1046 spin_lock_irqsave(&pdc_lock, flags);
1047 pdc_result[0] = 0;
1048 pdc_result[1] = 0;
1049 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_READ_CONFIG,
1050 __pa(pdc_result), hpa, cfg_addr&~3UL, 4UL);
1051 spin_unlock_irqrestore(&pdc_lock, flags);
1052
1053 return retval ? ~0 : (unsigned int) pdc_result[0];
1054}
1055
1056
1057/**
1058 * pdc_pci_config_write - read PCI config space.
1059 * @hpa: Token from PDC to indicate which PCI device
1060 * @cfg_addr: Configuration space address to write
1061 * @val: Value we want in the 32-bit register
1062 *
1063 * Write PCI Configuration space *before* linux PCI subsystem is running.
1064 */
1065void pdc_pci_config_write(void *hpa, unsigned long cfg_addr, unsigned int val)
1066{
1067 int retval;
1068 unsigned long flags;
1069
1070 spin_lock_irqsave(&pdc_lock, flags);
1071 pdc_result[0] = 0;
1072 retval = mem_pdc_call(PDC_PCI_INDEX, PDC_PCI_WRITE_CONFIG,
1073 __pa(pdc_result), hpa,
1074 cfg_addr&~3UL, 4UL, (unsigned long) val);
1075 spin_unlock_irqrestore(&pdc_lock, flags);
1076
1077 return retval;
1078}
1079#endif /* UNTESTED CODE */
1080
1081/**
1082 * pdc_tod_read - Read the Time-Of-Day clock.
1083 * @tod: The return buffer:
1084 *
1085 * Read the Time-Of-Day clock
1086 */
1087int pdc_tod_read(struct pdc_tod *tod)
1088{
1089 int retval;
1090 unsigned long flags;
1091
1092 spin_lock_irqsave(&pdc_lock, flags);
1093 retval = mem_pdc_call(PDC_TOD, PDC_TOD_READ, __pa(pdc_result), 0);
1094 convert_to_wide(pdc_result);
1095 memcpy(tod, pdc_result, sizeof(*tod));
1096 spin_unlock_irqrestore(&pdc_lock, flags);
1097
1098 return retval;
1099}
1100EXPORT_SYMBOL(pdc_tod_read);
1101
1102int pdc_mem_pdt_info(struct pdc_mem_retinfo *rinfo)
1103{
1104 int retval;
1105 unsigned long flags;
1106
1107 spin_lock_irqsave(&pdc_lock, flags);
1108 retval = mem_pdc_call(PDC_MEM, PDC_MEM_MEMINFO, __pa(pdc_result), 0);
1109 convert_to_wide(pdc_result);
1110 memcpy(rinfo, pdc_result, sizeof(*rinfo));
1111 spin_unlock_irqrestore(&pdc_lock, flags);
1112
1113 return retval;
1114}
1115
1116int pdc_mem_pdt_read_entries(struct pdc_mem_read_pdt *pret,
1117 unsigned long *pdt_entries_ptr)
1118{
1119 int retval;
1120 unsigned long flags;
1121
1122 spin_lock_irqsave(&pdc_lock, flags);
1123 retval = mem_pdc_call(PDC_MEM, PDC_MEM_READ_PDT, __pa(pdc_result),
1124 __pa(pdt_entries_ptr));
1125 if (retval == PDC_OK) {
1126 convert_to_wide(pdc_result);
1127 memcpy(pret, pdc_result, sizeof(*pret));
1128 }
1129 spin_unlock_irqrestore(&pdc_lock, flags);
1130
1131#ifdef CONFIG_64BIT
1132 /*
1133 * 64-bit kernels should not call this PDT function in narrow mode.
1134 * The pdt_entries_ptr array above will now contain 32-bit values
1135 */
1136 if (WARN_ON_ONCE((retval == PDC_OK) && parisc_narrow_firmware))
1137 return PDC_ERROR;
1138#endif
1139
1140 return retval;
1141}
1142
1143/**
1144 * pdc_pim_toc11 - Fetch TOC PIM 1.1 data from firmware.
1145 * @ret: pointer to return buffer
1146 */
1147int pdc_pim_toc11(struct pdc_toc_pim_11 *ret)
1148{
1149 int retval;
1150 unsigned long flags;
1151
1152 spin_lock_irqsave(&pdc_lock, flags);
1153 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1154 __pa(ret), sizeof(*ret));
1155 spin_unlock_irqrestore(&pdc_lock, flags);
1156 return retval;
1157}
1158
1159/**
1160 * pdc_pim_toc20 - Fetch TOC PIM 2.0 data from firmware.
1161 * @ret: pointer to return buffer
1162 */
1163int pdc_pim_toc20(struct pdc_toc_pim_20 *ret)
1164{
1165 int retval;
1166 unsigned long flags;
1167
1168 spin_lock_irqsave(&pdc_lock, flags);
1169 retval = mem_pdc_call(PDC_PIM, PDC_PIM_TOC, __pa(pdc_result),
1170 __pa(ret), sizeof(*ret));
1171 spin_unlock_irqrestore(&pdc_lock, flags);
1172 return retval;
1173}
1174
1175/**
1176 * pdc_tod_set - Set the Time-Of-Day clock.
1177 * @sec: The number of seconds since epoch.
1178 * @usec: The number of micro seconds.
1179 *
1180 * Set the Time-Of-Day clock.
1181 */
1182int pdc_tod_set(unsigned long sec, unsigned long usec)
1183{
1184 int retval;
1185 unsigned long flags;
1186
1187 spin_lock_irqsave(&pdc_lock, flags);
1188 retval = mem_pdc_call(PDC_TOD, PDC_TOD_WRITE, sec, usec);
1189 spin_unlock_irqrestore(&pdc_lock, flags);
1190
1191 return retval;
1192}
1193EXPORT_SYMBOL(pdc_tod_set);
1194
1195#ifdef CONFIG_64BIT
1196int pdc_mem_mem_table(struct pdc_memory_table_raddr *r_addr,
1197 struct pdc_memory_table *tbl, unsigned long entries)
1198{
1199 int retval;
1200 unsigned long flags;
1201
1202 spin_lock_irqsave(&pdc_lock, flags);
1203 retval = mem_pdc_call(PDC_MEM, PDC_MEM_TABLE, __pa(pdc_result), __pa(pdc_result2), entries);
1204 convert_to_wide(pdc_result);
1205 memcpy(r_addr, pdc_result, sizeof(*r_addr));
1206 memcpy(tbl, pdc_result2, entries * sizeof(*tbl));
1207 spin_unlock_irqrestore(&pdc_lock, flags);
1208
1209 return retval;
1210}
1211#endif /* CONFIG_64BIT */
1212
1213/* FIXME: Is this pdc used? I could not find type reference to ftc_bitmap
1214 * so I guessed at unsigned long. Someone who knows what this does, can fix
1215 * it later. :)
1216 */
1217int pdc_do_firm_test_reset(unsigned long ftc_bitmap)
1218{
1219 int retval;
1220 unsigned long flags;
1221
1222 spin_lock_irqsave(&pdc_lock, flags);
1223 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_FIRM_TEST_RESET,
1224 PDC_FIRM_TEST_MAGIC, ftc_bitmap);
1225 spin_unlock_irqrestore(&pdc_lock, flags);
1226
1227 return retval;
1228}
1229
1230/*
1231 * pdc_do_reset - Reset the system.
1232 *
1233 * Reset the system.
1234 */
1235int pdc_do_reset(void)
1236{
1237 int retval;
1238 unsigned long flags;
1239
1240 spin_lock_irqsave(&pdc_lock, flags);
1241 retval = mem_pdc_call(PDC_BROADCAST_RESET, PDC_DO_RESET);
1242 spin_unlock_irqrestore(&pdc_lock, flags);
1243
1244 return retval;
1245}
1246
1247/*
1248 * pdc_soft_power_info - Enable soft power switch.
1249 * @power_reg: address of soft power register
1250 *
1251 * Return the absolute address of the soft power switch register
1252 */
1253int __init pdc_soft_power_info(unsigned long *power_reg)
1254{
1255 int retval;
1256 unsigned long flags;
1257
1258 *power_reg = (unsigned long) (-1);
1259
1260 spin_lock_irqsave(&pdc_lock, flags);
1261 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_INFO, __pa(pdc_result), 0);
1262 if (retval == PDC_OK) {
1263 convert_to_wide(pdc_result);
1264 *power_reg = f_extend(pdc_result[0]);
1265 }
1266 spin_unlock_irqrestore(&pdc_lock, flags);
1267
1268 return retval;
1269}
1270
1271/*
1272 * pdc_soft_power_button{_panic} - Control the soft power button behaviour
1273 * @sw_control: 0 for hardware control, 1 for software control
1274 *
1275 *
1276 * This PDC function places the soft power button under software or
1277 * hardware control.
1278 * Under software control the OS may control to when to allow to shut
1279 * down the system. Under hardware control pressing the power button
1280 * powers off the system immediately.
1281 *
1282 * The _panic version relies on spin_trylock to prevent deadlock
1283 * on panic path.
1284 */
1285int pdc_soft_power_button(int sw_control)
1286{
1287 int retval;
1288 unsigned long flags;
1289
1290 spin_lock_irqsave(&pdc_lock, flags);
1291 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1292 spin_unlock_irqrestore(&pdc_lock, flags);
1293
1294 return retval;
1295}
1296
1297int pdc_soft_power_button_panic(int sw_control)
1298{
1299 int retval;
1300 unsigned long flags;
1301
1302 if (!spin_trylock_irqsave(&pdc_lock, flags)) {
1303 pr_emerg("Couldn't enable soft power button\n");
1304 return -EBUSY; /* ignored by the panic notifier */
1305 }
1306
1307 retval = mem_pdc_call(PDC_SOFT_POWER, PDC_SOFT_POWER_ENABLE, __pa(pdc_result), sw_control);
1308 spin_unlock_irqrestore(&pdc_lock, flags);
1309
1310 return retval;
1311}
1312
1313/*
1314 * pdc_io_reset - Hack to avoid overlapping range registers of Bridges devices.
1315 * Primarily a problem on T600 (which parisc-linux doesn't support) but
1316 * who knows what other platform firmware might do with this OS "hook".
1317 */
1318void pdc_io_reset(void)
1319{
1320 unsigned long flags;
1321
1322 spin_lock_irqsave(&pdc_lock, flags);
1323 mem_pdc_call(PDC_IO, PDC_IO_RESET, 0);
1324 spin_unlock_irqrestore(&pdc_lock, flags);
1325}
1326
1327/*
1328 * pdc_io_reset_devices - Hack to Stop USB controller
1329 *
1330 * If PDC used the usb controller, the usb controller
1331 * is still running and will crash the machines during iommu
1332 * setup, because of still running DMA. This PDC call
1333 * stops the USB controller.
1334 * Normally called after calling pdc_io_reset().
1335 */
1336void pdc_io_reset_devices(void)
1337{
1338 unsigned long flags;
1339
1340 spin_lock_irqsave(&pdc_lock, flags);
1341 mem_pdc_call(PDC_IO, PDC_IO_RESET_DEVICES, 0);
1342 spin_unlock_irqrestore(&pdc_lock, flags);
1343}
1344
1345#endif /* defined(BOOTLOADER) */
1346
1347/* locked by pdc_lock */
1348static char iodc_dbuf[4096] __page_aligned_bss;
1349
1350/**
1351 * pdc_iodc_print - Console print using IODC.
1352 * @str: the string to output.
1353 * @count: length of str
1354 *
1355 * Note that only these special chars are architected for console IODC io:
1356 * BEL, BS, CR, and LF. Others are passed through.
1357 * Since the HP console requires CR+LF to perform a 'newline', we translate
1358 * "\n" to "\r\n".
1359 */
1360int pdc_iodc_print(const unsigned char *str, unsigned count)
1361{
1362 unsigned int i, found = 0;
1363 unsigned long flags;
1364
1365 count = min_t(unsigned int, count, sizeof(iodc_dbuf));
1366
1367 spin_lock_irqsave(&pdc_lock, flags);
1368 for (i = 0; i < count;) {
1369 switch(str[i]) {
1370 case '\n':
1371 iodc_dbuf[i+0] = '\r';
1372 iodc_dbuf[i+1] = '\n';
1373 i += 2;
1374 found = 1;
1375 goto print;
1376 default:
1377 iodc_dbuf[i] = str[i];
1378 i++;
1379 break;
1380 }
1381 }
1382
1383print:
1384 real32_call(PAGE0->mem_cons.iodc_io,
1385 (unsigned long)PAGE0->mem_cons.hpa, ENTRY_IO_COUT,
1386 PAGE0->mem_cons.spa, __pa(PAGE0->mem_cons.dp.layers),
1387 __pa(pdc_result), 0, __pa(iodc_dbuf), i, 0);
1388 spin_unlock_irqrestore(&pdc_lock, flags);
1389
1390 return i - found;
1391}
1392
1393#if !defined(BOOTLOADER)
1394/**
1395 * pdc_iodc_getc - Read a character (non-blocking) from the PDC console.
1396 *
1397 * Read a character (non-blocking) from the PDC console, returns -1 if
1398 * key is not present.
1399 */
1400int pdc_iodc_getc(void)
1401{
1402 int ch;
1403 int status;
1404 unsigned long flags;
1405
1406 /* Bail if no console input device. */
1407 if (!PAGE0->mem_kbd.iodc_io)
1408 return 0;
1409
1410 /* wait for a keyboard (rs232)-input */
1411 spin_lock_irqsave(&pdc_lock, flags);
1412 real32_call(PAGE0->mem_kbd.iodc_io,
1413 (unsigned long)PAGE0->mem_kbd.hpa, ENTRY_IO_CIN,
1414 PAGE0->mem_kbd.spa, __pa(PAGE0->mem_kbd.dp.layers),
1415 __pa(pdc_result), 0, __pa(iodc_dbuf), 1, 0);
1416
1417 ch = *iodc_dbuf;
1418 /* like convert_to_wide() but for first return value only: */
1419 status = *(int *)&pdc_result;
1420 spin_unlock_irqrestore(&pdc_lock, flags);
1421
1422 if (status == 0)
1423 return -1;
1424
1425 return ch;
1426}
1427
1428int pdc_sti_call(unsigned long func, unsigned long flags,
1429 unsigned long inptr, unsigned long outputr,
1430 unsigned long glob_cfg, int do_call64)
1431{
1432 int retval = 0;
1433 unsigned long irqflags;
1434
1435 spin_lock_irqsave(&pdc_lock, irqflags);
1436 if (IS_ENABLED(CONFIG_64BIT) && do_call64) {
1437#ifdef CONFIG_64BIT
1438 retval = real64_call(func, flags, inptr, outputr, glob_cfg);
1439#else
1440 WARN_ON(1);
1441#endif
1442 } else {
1443 retval = real32_call(func, flags, inptr, outputr, glob_cfg);
1444 }
1445 spin_unlock_irqrestore(&pdc_lock, irqflags);
1446
1447 return retval;
1448}
1449EXPORT_SYMBOL(pdc_sti_call);
1450
1451#ifdef CONFIG_64BIT
1452/**
1453 * pdc_pat_cell_get_number - Returns the cell number.
1454 * @cell_info: The return buffer.
1455 *
1456 * This PDC call returns the cell number of the cell from which the call
1457 * is made.
1458 */
1459int pdc_pat_cell_get_number(struct pdc_pat_cell_num *cell_info)
1460{
1461 int retval;
1462 unsigned long flags;
1463
1464 spin_lock_irqsave(&pdc_lock, flags);
1465 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_NUMBER, __pa(pdc_result));
1466 memcpy(cell_info, pdc_result, sizeof(*cell_info));
1467 spin_unlock_irqrestore(&pdc_lock, flags);
1468
1469 return retval;
1470}
1471
1472/**
1473 * pdc_pat_cell_module - Retrieve the cell's module information.
1474 * @actcnt: The number of bytes written to mem_addr.
1475 * @ploc: The physical location.
1476 * @mod: The module index.
1477 * @view_type: The view of the address type.
1478 * @mem_addr: The return buffer.
1479 *
1480 * This PDC call returns information about each module attached to the cell
1481 * at the specified location.
1482 */
1483int pdc_pat_cell_module(unsigned long *actcnt, unsigned long ploc, unsigned long mod,
1484 unsigned long view_type, void *mem_addr)
1485{
1486 int retval;
1487 unsigned long flags;
1488 static struct pdc_pat_cell_mod_maddr_block result __attribute__ ((aligned (8)));
1489
1490 spin_lock_irqsave(&pdc_lock, flags);
1491 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_MODULE, __pa(pdc_result),
1492 ploc, mod, view_type, __pa(&result));
1493 if(!retval) {
1494 *actcnt = pdc_result[0];
1495 memcpy(mem_addr, &result, *actcnt);
1496 }
1497 spin_unlock_irqrestore(&pdc_lock, flags);
1498
1499 return retval;
1500}
1501
1502/**
1503 * pdc_pat_cell_info - Retrieve the cell's information.
1504 * @info: The pointer to a struct pdc_pat_cell_info_rtn_block.
1505 * @actcnt: The number of bytes which should be written to info.
1506 * @offset: offset of the structure.
1507 * @cell_number: The cell number which should be asked, or -1 for current cell.
1508 *
1509 * This PDC call returns information about the given cell (or all cells).
1510 */
1511int pdc_pat_cell_info(struct pdc_pat_cell_info_rtn_block *info,
1512 unsigned long *actcnt, unsigned long offset,
1513 unsigned long cell_number)
1514{
1515 int retval;
1516 unsigned long flags;
1517 struct pdc_pat_cell_info_rtn_block result;
1518
1519 spin_lock_irqsave(&pdc_lock, flags);
1520 retval = mem_pdc_call(PDC_PAT_CELL, PDC_PAT_CELL_GET_INFO,
1521 __pa(pdc_result), __pa(&result), *actcnt,
1522 offset, cell_number);
1523 if (!retval) {
1524 *actcnt = pdc_result[0];
1525 memcpy(info, &result, *actcnt);
1526 }
1527 spin_unlock_irqrestore(&pdc_lock, flags);
1528
1529 return retval;
1530}
1531
1532/**
1533 * pdc_pat_cpu_get_number - Retrieve the cpu number.
1534 * @cpu_info: The return buffer.
1535 * @hpa: The Hard Physical Address of the CPU.
1536 *
1537 * Retrieve the cpu number for the cpu at the specified HPA.
1538 */
1539int pdc_pat_cpu_get_number(struct pdc_pat_cpu_num *cpu_info, unsigned long hpa)
1540{
1541 int retval;
1542 unsigned long flags;
1543
1544 spin_lock_irqsave(&pdc_lock, flags);
1545 retval = mem_pdc_call(PDC_PAT_CPU, PDC_PAT_CPU_GET_NUMBER,
1546 __pa(&pdc_result), hpa);
1547 memcpy(cpu_info, pdc_result, sizeof(*cpu_info));
1548 spin_unlock_irqrestore(&pdc_lock, flags);
1549
1550 return retval;
1551}
1552
1553/**
1554 * pdc_pat_get_irt_size - Retrieve the number of entries in the cell's interrupt table.
1555 * @num_entries: The return value.
1556 * @cell_num: The target cell.
1557 *
1558 * This PDC function returns the number of entries in the specified cell's
1559 * interrupt table.
1560 */
1561int pdc_pat_get_irt_size(unsigned long *num_entries, unsigned long cell_num)
1562{
1563 int retval;
1564 unsigned long flags;
1565
1566 spin_lock_irqsave(&pdc_lock, flags);
1567 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE_SIZE,
1568 __pa(pdc_result), cell_num);
1569 *num_entries = pdc_result[0];
1570 spin_unlock_irqrestore(&pdc_lock, flags);
1571
1572 return retval;
1573}
1574
1575/**
1576 * pdc_pat_get_irt - Retrieve the cell's interrupt table.
1577 * @r_addr: The return buffer.
1578 * @cell_num: The target cell.
1579 *
1580 * This PDC function returns the actual interrupt table for the specified cell.
1581 */
1582int pdc_pat_get_irt(void *r_addr, unsigned long cell_num)
1583{
1584 int retval;
1585 unsigned long flags;
1586
1587 spin_lock_irqsave(&pdc_lock, flags);
1588 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_GET_PCI_ROUTING_TABLE,
1589 __pa(r_addr), cell_num);
1590 spin_unlock_irqrestore(&pdc_lock, flags);
1591
1592 return retval;
1593}
1594
1595/**
1596 * pdc_pat_pd_get_addr_map - Retrieve information about memory address ranges.
1597 * @actual_len: The return buffer.
1598 * @mem_addr: Pointer to the memory buffer.
1599 * @count: The number of bytes to read from the buffer.
1600 * @offset: The offset with respect to the beginning of the buffer.
1601 *
1602 */
1603int pdc_pat_pd_get_addr_map(unsigned long *actual_len, void *mem_addr,
1604 unsigned long count, unsigned long offset)
1605{
1606 int retval;
1607 unsigned long flags;
1608
1609 spin_lock_irqsave(&pdc_lock, flags);
1610 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_ADDR_MAP, __pa(pdc_result),
1611 __pa(pdc_result2), count, offset);
1612 *actual_len = pdc_result[0];
1613 memcpy(mem_addr, pdc_result2, *actual_len);
1614 spin_unlock_irqrestore(&pdc_lock, flags);
1615
1616 return retval;
1617}
1618
1619/**
1620 * pdc_pat_pd_get_pdc_revisions - Retrieve PDC interface revisions.
1621 * @legacy_rev: The legacy revision.
1622 * @pat_rev: The PAT revision.
1623 * @pdc_cap: The PDC capabilities.
1624 *
1625 */
1626int pdc_pat_pd_get_pdc_revisions(unsigned long *legacy_rev,
1627 unsigned long *pat_rev, unsigned long *pdc_cap)
1628{
1629 int retval;
1630 unsigned long flags;
1631
1632 spin_lock_irqsave(&pdc_lock, flags);
1633 retval = mem_pdc_call(PDC_PAT_PD, PDC_PAT_PD_GET_PDC_INTERF_REV,
1634 __pa(pdc_result));
1635 if (retval == PDC_OK) {
1636 *legacy_rev = pdc_result[0];
1637 *pat_rev = pdc_result[1];
1638 *pdc_cap = pdc_result[2];
1639 }
1640 spin_unlock_irqrestore(&pdc_lock, flags);
1641
1642 return retval;
1643}
1644
1645
1646/**
1647 * pdc_pat_io_pci_cfg_read - Read PCI configuration space.
1648 * @pci_addr: PCI configuration space address for which the read request is being made.
1649 * @pci_size: Size of read in bytes. Valid values are 1, 2, and 4.
1650 * @mem_addr: Pointer to return memory buffer.
1651 *
1652 */
1653int pdc_pat_io_pci_cfg_read(unsigned long pci_addr, int pci_size, u32 *mem_addr)
1654{
1655 int retval;
1656 unsigned long flags;
1657
1658 spin_lock_irqsave(&pdc_lock, flags);
1659 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_READ,
1660 __pa(pdc_result), pci_addr, pci_size);
1661 switch(pci_size) {
1662 case 1: *(u8 *) mem_addr = (u8) pdc_result[0]; break;
1663 case 2: *(u16 *)mem_addr = (u16) pdc_result[0]; break;
1664 case 4: *(u32 *)mem_addr = (u32) pdc_result[0]; break;
1665 }
1666 spin_unlock_irqrestore(&pdc_lock, flags);
1667
1668 return retval;
1669}
1670
1671/**
1672 * pdc_pat_io_pci_cfg_write - Retrieve information about memory address ranges.
1673 * @pci_addr: PCI configuration space address for which the write request is being made.
1674 * @pci_size: Size of write in bytes. Valid values are 1, 2, and 4.
1675 * @val: Pointer to 1, 2, or 4 byte value in low order end of argument to be
1676 * written to PCI Config space.
1677 *
1678 */
1679int pdc_pat_io_pci_cfg_write(unsigned long pci_addr, int pci_size, u32 val)
1680{
1681 int retval;
1682 unsigned long flags;
1683
1684 spin_lock_irqsave(&pdc_lock, flags);
1685 retval = mem_pdc_call(PDC_PAT_IO, PDC_PAT_IO_PCI_CONFIG_WRITE,
1686 pci_addr, pci_size, val);
1687 spin_unlock_irqrestore(&pdc_lock, flags);
1688
1689 return retval;
1690}
1691
1692/**
1693 * pdc_pat_mem_pdt_info - Retrieve information about page deallocation table
1694 * @rinfo: memory pdt information
1695 *
1696 */
1697int pdc_pat_mem_pdt_info(struct pdc_pat_mem_retinfo *rinfo)
1698{
1699 int retval;
1700 unsigned long flags;
1701
1702 spin_lock_irqsave(&pdc_lock, flags);
1703 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_INFO,
1704 __pa(&pdc_result));
1705 if (retval == PDC_OK)
1706 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1707 spin_unlock_irqrestore(&pdc_lock, flags);
1708
1709 return retval;
1710}
1711
1712/**
1713 * pdc_pat_mem_pdt_cell_info - Retrieve information about page deallocation
1714 * table of a cell
1715 * @rinfo: memory pdt information
1716 * @cell: cell number
1717 *
1718 */
1719int pdc_pat_mem_pdt_cell_info(struct pdc_pat_mem_cell_pdt_retinfo *rinfo,
1720 unsigned long cell)
1721{
1722 int retval;
1723 unsigned long flags;
1724
1725 spin_lock_irqsave(&pdc_lock, flags);
1726 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_INFO,
1727 __pa(&pdc_result), cell);
1728 if (retval == PDC_OK)
1729 memcpy(rinfo, &pdc_result, sizeof(*rinfo));
1730 spin_unlock_irqrestore(&pdc_lock, flags);
1731
1732 return retval;
1733}
1734
1735/**
1736 * pdc_pat_mem_read_cell_pdt - Read PDT entries from (old) PAT firmware
1737 * @pret: array of PDT entries
1738 * @pdt_entries_ptr: ptr to hold number of PDT entries
1739 * @max_entries: maximum number of entries to be read
1740 *
1741 */
1742int pdc_pat_mem_read_cell_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1743 unsigned long *pdt_entries_ptr, unsigned long max_entries)
1744{
1745 int retval;
1746 unsigned long flags, entries;
1747
1748 spin_lock_irqsave(&pdc_lock, flags);
1749 /* PDC_PAT_MEM_CELL_READ is available on early PAT machines only */
1750 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_CELL_READ,
1751 __pa(&pdc_result), parisc_cell_num,
1752 __pa(pdt_entries_ptr));
1753
1754 if (retval == PDC_OK) {
1755 /* build up return value as for PDC_PAT_MEM_PD_READ */
1756 entries = min(pdc_result[0], max_entries);
1757 pret->pdt_entries = entries;
1758 pret->actual_count_bytes = entries * sizeof(unsigned long);
1759 }
1760
1761 spin_unlock_irqrestore(&pdc_lock, flags);
1762 WARN_ON(retval == PDC_OK && pdc_result[0] > max_entries);
1763
1764 return retval;
1765}
1766/**
1767 * pdc_pat_mem_read_pd_pdt - Read PDT entries from (newer) PAT firmware
1768 * @pret: array of PDT entries
1769 * @pdt_entries_ptr: ptr to hold number of PDT entries
1770 * @count: number of bytes to read
1771 * @offset: offset to start (in bytes)
1772 *
1773 */
1774int pdc_pat_mem_read_pd_pdt(struct pdc_pat_mem_read_pd_retinfo *pret,
1775 unsigned long *pdt_entries_ptr, unsigned long count,
1776 unsigned long offset)
1777{
1778 int retval;
1779 unsigned long flags, entries;
1780
1781 spin_lock_irqsave(&pdc_lock, flags);
1782 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_PD_READ,
1783 __pa(&pdc_result), __pa(pdt_entries_ptr),
1784 count, offset);
1785
1786 if (retval == PDC_OK) {
1787 entries = min(pdc_result[0], count);
1788 pret->actual_count_bytes = entries;
1789 pret->pdt_entries = entries / sizeof(unsigned long);
1790 }
1791
1792 spin_unlock_irqrestore(&pdc_lock, flags);
1793
1794 return retval;
1795}
1796
1797/**
1798 * pdc_pat_mem_get_dimm_phys_location - Get physical DIMM slot via PAT firmware
1799 * @pret: ptr to hold returned information
1800 * @phys_addr: physical address to examine
1801 *
1802 */
1803int pdc_pat_mem_get_dimm_phys_location(
1804 struct pdc_pat_mem_phys_mem_location *pret,
1805 unsigned long phys_addr)
1806{
1807 int retval;
1808 unsigned long flags;
1809
1810 spin_lock_irqsave(&pdc_lock, flags);
1811 retval = mem_pdc_call(PDC_PAT_MEM, PDC_PAT_MEM_ADDRESS,
1812 __pa(&pdc_result), phys_addr);
1813
1814 if (retval == PDC_OK)
1815 memcpy(pret, &pdc_result, sizeof(*pret));
1816
1817 spin_unlock_irqrestore(&pdc_lock, flags);
1818
1819 return retval;
1820}
1821#endif /* CONFIG_64BIT */
1822#endif /* defined(BOOTLOADER) */
1823
1824
1825/***************** 32-bit real-mode calls ***********/
1826/* The struct below is used
1827 * to overlay real_stack (real2.S), preparing a 32-bit call frame.
1828 * real32_call_asm() then uses this stack in narrow real mode
1829 */
1830
1831struct narrow_stack {
1832 /* use int, not long which is 64 bits */
1833 unsigned int arg13;
1834 unsigned int arg12;
1835 unsigned int arg11;
1836 unsigned int arg10;
1837 unsigned int arg9;
1838 unsigned int arg8;
1839 unsigned int arg7;
1840 unsigned int arg6;
1841 unsigned int arg5;
1842 unsigned int arg4;
1843 unsigned int arg3;
1844 unsigned int arg2;
1845 unsigned int arg1;
1846 unsigned int arg0;
1847 unsigned int frame_marker[8];
1848 unsigned int sp;
1849 /* in reality, there's nearly 8k of stack after this */
1850};
1851
1852long real32_call(unsigned long fn, ...)
1853{
1854 va_list args;
1855 extern struct narrow_stack real_stack;
1856 extern unsigned long real32_call_asm(unsigned int *,
1857 unsigned int *,
1858 unsigned int);
1859
1860 va_start(args, fn);
1861 real_stack.arg0 = va_arg(args, unsigned int);
1862 real_stack.arg1 = va_arg(args, unsigned int);
1863 real_stack.arg2 = va_arg(args, unsigned int);
1864 real_stack.arg3 = va_arg(args, unsigned int);
1865 real_stack.arg4 = va_arg(args, unsigned int);
1866 real_stack.arg5 = va_arg(args, unsigned int);
1867 real_stack.arg6 = va_arg(args, unsigned int);
1868 real_stack.arg7 = va_arg(args, unsigned int);
1869 real_stack.arg8 = va_arg(args, unsigned int);
1870 real_stack.arg9 = va_arg(args, unsigned int);
1871 real_stack.arg10 = va_arg(args, unsigned int);
1872 real_stack.arg11 = va_arg(args, unsigned int);
1873 real_stack.arg12 = va_arg(args, unsigned int);
1874 real_stack.arg13 = va_arg(args, unsigned int);
1875 va_end(args);
1876
1877 return real32_call_asm(&real_stack.sp, &real_stack.arg0, fn);
1878}
1879
1880#ifdef CONFIG_64BIT
1881/***************** 64-bit real-mode calls ***********/
1882
1883struct wide_stack {
1884 unsigned long arg0;
1885 unsigned long arg1;
1886 unsigned long arg2;
1887 unsigned long arg3;
1888 unsigned long arg4;
1889 unsigned long arg5;
1890 unsigned long arg6;
1891 unsigned long arg7;
1892 unsigned long arg8;
1893 unsigned long arg9;
1894 unsigned long arg10;
1895 unsigned long arg11;
1896 unsigned long arg12;
1897 unsigned long arg13;
1898 unsigned long frame_marker[2]; /* rp, previous sp */
1899 unsigned long sp;
1900 /* in reality, there's nearly 8k of stack after this */
1901};
1902
1903long real64_call(unsigned long fn, ...)
1904{
1905 va_list args;
1906 extern struct wide_stack real64_stack;
1907 extern unsigned long real64_call_asm(unsigned long *,
1908 unsigned long *,
1909 unsigned long);
1910
1911 va_start(args, fn);
1912 real64_stack.arg0 = va_arg(args, unsigned long);
1913 real64_stack.arg1 = va_arg(args, unsigned long);
1914 real64_stack.arg2 = va_arg(args, unsigned long);
1915 real64_stack.arg3 = va_arg(args, unsigned long);
1916 real64_stack.arg4 = va_arg(args, unsigned long);
1917 real64_stack.arg5 = va_arg(args, unsigned long);
1918 real64_stack.arg6 = va_arg(args, unsigned long);
1919 real64_stack.arg7 = va_arg(args, unsigned long);
1920 real64_stack.arg8 = va_arg(args, unsigned long);
1921 real64_stack.arg9 = va_arg(args, unsigned long);
1922 real64_stack.arg10 = va_arg(args, unsigned long);
1923 real64_stack.arg11 = va_arg(args, unsigned long);
1924 real64_stack.arg12 = va_arg(args, unsigned long);
1925 real64_stack.arg13 = va_arg(args, unsigned long);
1926 va_end(args);
1927
1928 return real64_call_asm(&real64_stack.sp, &real64_stack.arg0, fn);
1929}
1930
1931#endif /* CONFIG_64BIT */