Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/sch_generic.c Generic packet scheduler routines.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7 * - Ingress support
8 */
9
10#include <linux/bitops.h>
11#include <linux/module.h>
12#include <linux/types.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/string.h>
16#include <linux/errno.h>
17#include <linux/netdevice.h>
18#include <linux/skbuff.h>
19#include <linux/rtnetlink.h>
20#include <linux/init.h>
21#include <linux/rcupdate.h>
22#include <linux/list.h>
23#include <linux/slab.h>
24#include <linux/if_vlan.h>
25#include <linux/skb_array.h>
26#include <linux/if_macvlan.h>
27#include <net/sch_generic.h>
28#include <net/pkt_sched.h>
29#include <net/dst.h>
30#include <trace/events/qdisc.h>
31#include <trace/events/net.h>
32#include <net/xfrm.h>
33
34/* Qdisc to use by default */
35const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
36EXPORT_SYMBOL(default_qdisc_ops);
37
38/* Main transmission queue. */
39
40/* Modifications to data participating in scheduling must be protected with
41 * qdisc_lock(qdisc) spinlock.
42 *
43 * The idea is the following:
44 * - enqueue, dequeue are serialized via qdisc root lock
45 * - ingress filtering is also serialized via qdisc root lock
46 * - updates to tree and tree walking are only done under the rtnl mutex.
47 */
48
49#define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
50
51static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
52{
53 const struct netdev_queue *txq = q->dev_queue;
54 spinlock_t *lock = NULL;
55 struct sk_buff *skb;
56
57 if (q->flags & TCQ_F_NOLOCK) {
58 lock = qdisc_lock(q);
59 spin_lock(lock);
60 }
61
62 skb = skb_peek(&q->skb_bad_txq);
63 if (skb) {
64 /* check the reason of requeuing without tx lock first */
65 txq = skb_get_tx_queue(txq->dev, skb);
66 if (!netif_xmit_frozen_or_stopped(txq)) {
67 skb = __skb_dequeue(&q->skb_bad_txq);
68 if (qdisc_is_percpu_stats(q)) {
69 qdisc_qstats_cpu_backlog_dec(q, skb);
70 qdisc_qstats_cpu_qlen_dec(q);
71 } else {
72 qdisc_qstats_backlog_dec(q, skb);
73 q->q.qlen--;
74 }
75 } else {
76 skb = SKB_XOFF_MAGIC;
77 }
78 }
79
80 if (lock)
81 spin_unlock(lock);
82
83 return skb;
84}
85
86static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
87{
88 struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
89
90 if (unlikely(skb))
91 skb = __skb_dequeue_bad_txq(q);
92
93 return skb;
94}
95
96static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
97 struct sk_buff *skb)
98{
99 spinlock_t *lock = NULL;
100
101 if (q->flags & TCQ_F_NOLOCK) {
102 lock = qdisc_lock(q);
103 spin_lock(lock);
104 }
105
106 __skb_queue_tail(&q->skb_bad_txq, skb);
107
108 if (qdisc_is_percpu_stats(q)) {
109 qdisc_qstats_cpu_backlog_inc(q, skb);
110 qdisc_qstats_cpu_qlen_inc(q);
111 } else {
112 qdisc_qstats_backlog_inc(q, skb);
113 q->q.qlen++;
114 }
115
116 if (lock)
117 spin_unlock(lock);
118}
119
120static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
121{
122 spinlock_t *lock = NULL;
123
124 if (q->flags & TCQ_F_NOLOCK) {
125 lock = qdisc_lock(q);
126 spin_lock(lock);
127 }
128
129 while (skb) {
130 struct sk_buff *next = skb->next;
131
132 __skb_queue_tail(&q->gso_skb, skb);
133
134 /* it's still part of the queue */
135 if (qdisc_is_percpu_stats(q)) {
136 qdisc_qstats_cpu_requeues_inc(q);
137 qdisc_qstats_cpu_backlog_inc(q, skb);
138 qdisc_qstats_cpu_qlen_inc(q);
139 } else {
140 q->qstats.requeues++;
141 qdisc_qstats_backlog_inc(q, skb);
142 q->q.qlen++;
143 }
144
145 skb = next;
146 }
147 if (lock)
148 spin_unlock(lock);
149 __netif_schedule(q);
150}
151
152static void try_bulk_dequeue_skb(struct Qdisc *q,
153 struct sk_buff *skb,
154 const struct netdev_queue *txq,
155 int *packets)
156{
157 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
158
159 while (bytelimit > 0) {
160 struct sk_buff *nskb = q->dequeue(q);
161
162 if (!nskb)
163 break;
164
165 bytelimit -= nskb->len; /* covers GSO len */
166 skb->next = nskb;
167 skb = nskb;
168 (*packets)++; /* GSO counts as one pkt */
169 }
170 skb_mark_not_on_list(skb);
171}
172
173/* This variant of try_bulk_dequeue_skb() makes sure
174 * all skbs in the chain are for the same txq
175 */
176static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
177 struct sk_buff *skb,
178 int *packets)
179{
180 int mapping = skb_get_queue_mapping(skb);
181 struct sk_buff *nskb;
182 int cnt = 0;
183
184 do {
185 nskb = q->dequeue(q);
186 if (!nskb)
187 break;
188 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
189 qdisc_enqueue_skb_bad_txq(q, nskb);
190 break;
191 }
192 skb->next = nskb;
193 skb = nskb;
194 } while (++cnt < 8);
195 (*packets) += cnt;
196 skb_mark_not_on_list(skb);
197}
198
199/* Note that dequeue_skb can possibly return a SKB list (via skb->next).
200 * A requeued skb (via q->gso_skb) can also be a SKB list.
201 */
202static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
203 int *packets)
204{
205 const struct netdev_queue *txq = q->dev_queue;
206 struct sk_buff *skb = NULL;
207
208 *packets = 1;
209 if (unlikely(!skb_queue_empty(&q->gso_skb))) {
210 spinlock_t *lock = NULL;
211
212 if (q->flags & TCQ_F_NOLOCK) {
213 lock = qdisc_lock(q);
214 spin_lock(lock);
215 }
216
217 skb = skb_peek(&q->gso_skb);
218
219 /* skb may be null if another cpu pulls gso_skb off in between
220 * empty check and lock.
221 */
222 if (!skb) {
223 if (lock)
224 spin_unlock(lock);
225 goto validate;
226 }
227
228 /* skb in gso_skb were already validated */
229 *validate = false;
230 if (xfrm_offload(skb))
231 *validate = true;
232 /* check the reason of requeuing without tx lock first */
233 txq = skb_get_tx_queue(txq->dev, skb);
234 if (!netif_xmit_frozen_or_stopped(txq)) {
235 skb = __skb_dequeue(&q->gso_skb);
236 if (qdisc_is_percpu_stats(q)) {
237 qdisc_qstats_cpu_backlog_dec(q, skb);
238 qdisc_qstats_cpu_qlen_dec(q);
239 } else {
240 qdisc_qstats_backlog_dec(q, skb);
241 q->q.qlen--;
242 }
243 } else {
244 skb = NULL;
245 }
246 if (lock)
247 spin_unlock(lock);
248 goto trace;
249 }
250validate:
251 *validate = true;
252
253 if ((q->flags & TCQ_F_ONETXQUEUE) &&
254 netif_xmit_frozen_or_stopped(txq))
255 return skb;
256
257 skb = qdisc_dequeue_skb_bad_txq(q);
258 if (unlikely(skb)) {
259 if (skb == SKB_XOFF_MAGIC)
260 return NULL;
261 goto bulk;
262 }
263 skb = q->dequeue(q);
264 if (skb) {
265bulk:
266 if (qdisc_may_bulk(q))
267 try_bulk_dequeue_skb(q, skb, txq, packets);
268 else
269 try_bulk_dequeue_skb_slow(q, skb, packets);
270 }
271trace:
272 trace_qdisc_dequeue(q, txq, *packets, skb);
273 return skb;
274}
275
276/*
277 * Transmit possibly several skbs, and handle the return status as
278 * required. Owning running seqcount bit guarantees that
279 * only one CPU can execute this function.
280 *
281 * Returns to the caller:
282 * false - hardware queue frozen backoff
283 * true - feel free to send more pkts
284 */
285bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
286 struct net_device *dev, struct netdev_queue *txq,
287 spinlock_t *root_lock, bool validate)
288{
289 int ret = NETDEV_TX_BUSY;
290 bool again = false;
291
292 /* And release qdisc */
293 if (root_lock)
294 spin_unlock(root_lock);
295
296 /* Note that we validate skb (GSO, checksum, ...) outside of locks */
297 if (validate)
298 skb = validate_xmit_skb_list(skb, dev, &again);
299
300#ifdef CONFIG_XFRM_OFFLOAD
301 if (unlikely(again)) {
302 if (root_lock)
303 spin_lock(root_lock);
304
305 dev_requeue_skb(skb, q);
306 return false;
307 }
308#endif
309
310 if (likely(skb)) {
311 HARD_TX_LOCK(dev, txq, smp_processor_id());
312 if (!netif_xmit_frozen_or_stopped(txq))
313 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
314
315 HARD_TX_UNLOCK(dev, txq);
316 } else {
317 if (root_lock)
318 spin_lock(root_lock);
319 return true;
320 }
321
322 if (root_lock)
323 spin_lock(root_lock);
324
325 if (!dev_xmit_complete(ret)) {
326 /* Driver returned NETDEV_TX_BUSY - requeue skb */
327 if (unlikely(ret != NETDEV_TX_BUSY))
328 net_warn_ratelimited("BUG %s code %d qlen %d\n",
329 dev->name, ret, q->q.qlen);
330
331 dev_requeue_skb(skb, q);
332 return false;
333 }
334
335 return true;
336}
337
338/*
339 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
340 *
341 * running seqcount guarantees only one CPU can process
342 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
343 * this queue.
344 *
345 * netif_tx_lock serializes accesses to device driver.
346 *
347 * qdisc_lock(q) and netif_tx_lock are mutually exclusive,
348 * if one is grabbed, another must be free.
349 *
350 * Note, that this procedure can be called by a watchdog timer
351 *
352 * Returns to the caller:
353 * 0 - queue is empty or throttled.
354 * >0 - queue is not empty.
355 *
356 */
357static inline bool qdisc_restart(struct Qdisc *q, int *packets)
358{
359 spinlock_t *root_lock = NULL;
360 struct netdev_queue *txq;
361 struct net_device *dev;
362 struct sk_buff *skb;
363 bool validate;
364
365 /* Dequeue packet */
366 skb = dequeue_skb(q, &validate, packets);
367 if (unlikely(!skb))
368 return false;
369
370 if (!(q->flags & TCQ_F_NOLOCK))
371 root_lock = qdisc_lock(q);
372
373 dev = qdisc_dev(q);
374 txq = skb_get_tx_queue(dev, skb);
375
376 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
377}
378
379void __qdisc_run(struct Qdisc *q)
380{
381 int quota = dev_tx_weight;
382 int packets;
383
384 while (qdisc_restart(q, &packets)) {
385 quota -= packets;
386 if (quota <= 0) {
387 __netif_schedule(q);
388 break;
389 }
390 }
391}
392
393unsigned long dev_trans_start(struct net_device *dev)
394{
395 unsigned long val, res;
396 unsigned int i;
397
398 if (is_vlan_dev(dev))
399 dev = vlan_dev_real_dev(dev);
400 else if (netif_is_macvlan(dev))
401 dev = macvlan_dev_real_dev(dev);
402 res = netdev_get_tx_queue(dev, 0)->trans_start;
403 for (i = 1; i < dev->num_tx_queues; i++) {
404 val = netdev_get_tx_queue(dev, i)->trans_start;
405 if (val && time_after(val, res))
406 res = val;
407 }
408
409 return res;
410}
411EXPORT_SYMBOL(dev_trans_start);
412
413static void dev_watchdog(struct timer_list *t)
414{
415 struct net_device *dev = from_timer(dev, t, watchdog_timer);
416
417 netif_tx_lock(dev);
418 if (!qdisc_tx_is_noop(dev)) {
419 if (netif_device_present(dev) &&
420 netif_running(dev) &&
421 netif_carrier_ok(dev)) {
422 int some_queue_timedout = 0;
423 unsigned int i;
424 unsigned long trans_start;
425
426 for (i = 0; i < dev->num_tx_queues; i++) {
427 struct netdev_queue *txq;
428
429 txq = netdev_get_tx_queue(dev, i);
430 trans_start = txq->trans_start;
431 if (netif_xmit_stopped(txq) &&
432 time_after(jiffies, (trans_start +
433 dev->watchdog_timeo))) {
434 some_queue_timedout = 1;
435 txq->trans_timeout++;
436 break;
437 }
438 }
439
440 if (some_queue_timedout) {
441 trace_net_dev_xmit_timeout(dev, i);
442 WARN_ONCE(1, KERN_INFO "NETDEV WATCHDOG: %s (%s): transmit queue %u timed out\n",
443 dev->name, netdev_drivername(dev), i);
444 dev->netdev_ops->ndo_tx_timeout(dev, i);
445 }
446 if (!mod_timer(&dev->watchdog_timer,
447 round_jiffies(jiffies +
448 dev->watchdog_timeo)))
449 dev_hold(dev);
450 }
451 }
452 netif_tx_unlock(dev);
453
454 dev_put(dev);
455}
456
457void __netdev_watchdog_up(struct net_device *dev)
458{
459 if (dev->netdev_ops->ndo_tx_timeout) {
460 if (dev->watchdog_timeo <= 0)
461 dev->watchdog_timeo = 5*HZ;
462 if (!mod_timer(&dev->watchdog_timer,
463 round_jiffies(jiffies + dev->watchdog_timeo)))
464 dev_hold(dev);
465 }
466}
467EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
468
469static void dev_watchdog_up(struct net_device *dev)
470{
471 __netdev_watchdog_up(dev);
472}
473
474static void dev_watchdog_down(struct net_device *dev)
475{
476 netif_tx_lock_bh(dev);
477 if (del_timer(&dev->watchdog_timer))
478 dev_put(dev);
479 netif_tx_unlock_bh(dev);
480}
481
482/**
483 * netif_carrier_on - set carrier
484 * @dev: network device
485 *
486 * Device has detected acquisition of carrier.
487 */
488void netif_carrier_on(struct net_device *dev)
489{
490 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
491 if (dev->reg_state == NETREG_UNINITIALIZED)
492 return;
493 atomic_inc(&dev->carrier_up_count);
494 linkwatch_fire_event(dev);
495 if (netif_running(dev))
496 __netdev_watchdog_up(dev);
497 }
498}
499EXPORT_SYMBOL(netif_carrier_on);
500
501/**
502 * netif_carrier_off - clear carrier
503 * @dev: network device
504 *
505 * Device has detected loss of carrier.
506 */
507void netif_carrier_off(struct net_device *dev)
508{
509 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
510 if (dev->reg_state == NETREG_UNINITIALIZED)
511 return;
512 atomic_inc(&dev->carrier_down_count);
513 linkwatch_fire_event(dev);
514 }
515}
516EXPORT_SYMBOL(netif_carrier_off);
517
518/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
519 under all circumstances. It is difficult to invent anything faster or
520 cheaper.
521 */
522
523static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
524 struct sk_buff **to_free)
525{
526 __qdisc_drop(skb, to_free);
527 return NET_XMIT_CN;
528}
529
530static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
531{
532 return NULL;
533}
534
535struct Qdisc_ops noop_qdisc_ops __read_mostly = {
536 .id = "noop",
537 .priv_size = 0,
538 .enqueue = noop_enqueue,
539 .dequeue = noop_dequeue,
540 .peek = noop_dequeue,
541 .owner = THIS_MODULE,
542};
543
544static struct netdev_queue noop_netdev_queue = {
545 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
546 .qdisc_sleeping = &noop_qdisc,
547};
548
549struct Qdisc noop_qdisc = {
550 .enqueue = noop_enqueue,
551 .dequeue = noop_dequeue,
552 .flags = TCQ_F_BUILTIN,
553 .ops = &noop_qdisc_ops,
554 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
555 .dev_queue = &noop_netdev_queue,
556 .running = SEQCNT_ZERO(noop_qdisc.running),
557 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
558 .gso_skb = {
559 .next = (struct sk_buff *)&noop_qdisc.gso_skb,
560 .prev = (struct sk_buff *)&noop_qdisc.gso_skb,
561 .qlen = 0,
562 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
563 },
564 .skb_bad_txq = {
565 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
566 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
567 .qlen = 0,
568 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
569 },
570};
571EXPORT_SYMBOL(noop_qdisc);
572
573static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
574 struct netlink_ext_ack *extack)
575{
576 /* register_qdisc() assigns a default of noop_enqueue if unset,
577 * but __dev_queue_xmit() treats noqueue only as such
578 * if this is NULL - so clear it here. */
579 qdisc->enqueue = NULL;
580 return 0;
581}
582
583struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
584 .id = "noqueue",
585 .priv_size = 0,
586 .init = noqueue_init,
587 .enqueue = noop_enqueue,
588 .dequeue = noop_dequeue,
589 .peek = noop_dequeue,
590 .owner = THIS_MODULE,
591};
592
593static const u8 prio2band[TC_PRIO_MAX + 1] = {
594 1, 2, 2, 2, 1, 2, 0, 0 , 1, 1, 1, 1, 1, 1, 1, 1
595};
596
597/* 3-band FIFO queue: old style, but should be a bit faster than
598 generic prio+fifo combination.
599 */
600
601#define PFIFO_FAST_BANDS 3
602
603/*
604 * Private data for a pfifo_fast scheduler containing:
605 * - rings for priority bands
606 */
607struct pfifo_fast_priv {
608 struct skb_array q[PFIFO_FAST_BANDS];
609};
610
611static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
612 int band)
613{
614 return &priv->q[band];
615}
616
617static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
618 struct sk_buff **to_free)
619{
620 int band = prio2band[skb->priority & TC_PRIO_MAX];
621 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
622 struct skb_array *q = band2list(priv, band);
623 unsigned int pkt_len = qdisc_pkt_len(skb);
624 int err;
625
626 err = skb_array_produce(q, skb);
627
628 if (unlikely(err)) {
629 if (qdisc_is_percpu_stats(qdisc))
630 return qdisc_drop_cpu(skb, qdisc, to_free);
631 else
632 return qdisc_drop(skb, qdisc, to_free);
633 }
634
635 qdisc_update_stats_at_enqueue(qdisc, pkt_len);
636 return NET_XMIT_SUCCESS;
637}
638
639static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
640{
641 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
642 struct sk_buff *skb = NULL;
643 int band;
644
645 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
646 struct skb_array *q = band2list(priv, band);
647
648 if (__skb_array_empty(q))
649 continue;
650
651 skb = __skb_array_consume(q);
652 }
653 if (likely(skb)) {
654 qdisc_update_stats_at_dequeue(qdisc, skb);
655 } else {
656 WRITE_ONCE(qdisc->empty, true);
657 }
658
659 return skb;
660}
661
662static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
663{
664 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
665 struct sk_buff *skb = NULL;
666 int band;
667
668 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
669 struct skb_array *q = band2list(priv, band);
670
671 skb = __skb_array_peek(q);
672 }
673
674 return skb;
675}
676
677static void pfifo_fast_reset(struct Qdisc *qdisc)
678{
679 int i, band;
680 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
681
682 for (band = 0; band < PFIFO_FAST_BANDS; band++) {
683 struct skb_array *q = band2list(priv, band);
684 struct sk_buff *skb;
685
686 /* NULL ring is possible if destroy path is due to a failed
687 * skb_array_init() in pfifo_fast_init() case.
688 */
689 if (!q->ring.queue)
690 continue;
691
692 while ((skb = __skb_array_consume(q)) != NULL)
693 kfree_skb(skb);
694 }
695
696 if (qdisc_is_percpu_stats(qdisc)) {
697 for_each_possible_cpu(i) {
698 struct gnet_stats_queue *q;
699
700 q = per_cpu_ptr(qdisc->cpu_qstats, i);
701 q->backlog = 0;
702 q->qlen = 0;
703 }
704 }
705}
706
707static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
708{
709 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
710
711 memcpy(&opt.priomap, prio2band, TC_PRIO_MAX + 1);
712 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
713 goto nla_put_failure;
714 return skb->len;
715
716nla_put_failure:
717 return -1;
718}
719
720static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
721 struct netlink_ext_ack *extack)
722{
723 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
724 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
725 int prio;
726
727 /* guard against zero length rings */
728 if (!qlen)
729 return -EINVAL;
730
731 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
732 struct skb_array *q = band2list(priv, prio);
733 int err;
734
735 err = skb_array_init(q, qlen, GFP_KERNEL);
736 if (err)
737 return -ENOMEM;
738 }
739
740 /* Can by-pass the queue discipline */
741 qdisc->flags |= TCQ_F_CAN_BYPASS;
742 return 0;
743}
744
745static void pfifo_fast_destroy(struct Qdisc *sch)
746{
747 struct pfifo_fast_priv *priv = qdisc_priv(sch);
748 int prio;
749
750 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
751 struct skb_array *q = band2list(priv, prio);
752
753 /* NULL ring is possible if destroy path is due to a failed
754 * skb_array_init() in pfifo_fast_init() case.
755 */
756 if (!q->ring.queue)
757 continue;
758 /* Destroy ring but no need to kfree_skb because a call to
759 * pfifo_fast_reset() has already done that work.
760 */
761 ptr_ring_cleanup(&q->ring, NULL);
762 }
763}
764
765static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
766 unsigned int new_len)
767{
768 struct pfifo_fast_priv *priv = qdisc_priv(sch);
769 struct skb_array *bands[PFIFO_FAST_BANDS];
770 int prio;
771
772 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
773 struct skb_array *q = band2list(priv, prio);
774
775 bands[prio] = q;
776 }
777
778 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
779 GFP_KERNEL);
780}
781
782struct Qdisc_ops pfifo_fast_ops __read_mostly = {
783 .id = "pfifo_fast",
784 .priv_size = sizeof(struct pfifo_fast_priv),
785 .enqueue = pfifo_fast_enqueue,
786 .dequeue = pfifo_fast_dequeue,
787 .peek = pfifo_fast_peek,
788 .init = pfifo_fast_init,
789 .destroy = pfifo_fast_destroy,
790 .reset = pfifo_fast_reset,
791 .dump = pfifo_fast_dump,
792 .change_tx_queue_len = pfifo_fast_change_tx_queue_len,
793 .owner = THIS_MODULE,
794 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
795};
796EXPORT_SYMBOL(pfifo_fast_ops);
797
798static struct lock_class_key qdisc_tx_busylock;
799static struct lock_class_key qdisc_running_key;
800
801struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
802 const struct Qdisc_ops *ops,
803 struct netlink_ext_ack *extack)
804{
805 void *p;
806 struct Qdisc *sch;
807 unsigned int size = QDISC_ALIGN(sizeof(*sch)) + ops->priv_size;
808 int err = -ENOBUFS;
809 struct net_device *dev;
810
811 if (!dev_queue) {
812 NL_SET_ERR_MSG(extack, "No device queue given");
813 err = -EINVAL;
814 goto errout;
815 }
816
817 dev = dev_queue->dev;
818 p = kzalloc_node(size, GFP_KERNEL,
819 netdev_queue_numa_node_read(dev_queue));
820
821 if (!p)
822 goto errout;
823 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
824 /* if we got non aligned memory, ask more and do alignment ourself */
825 if (sch != p) {
826 kfree(p);
827 p = kzalloc_node(size + QDISC_ALIGNTO - 1, GFP_KERNEL,
828 netdev_queue_numa_node_read(dev_queue));
829 if (!p)
830 goto errout;
831 sch = (struct Qdisc *) QDISC_ALIGN((unsigned long) p);
832 sch->padded = (char *) sch - (char *) p;
833 }
834 __skb_queue_head_init(&sch->gso_skb);
835 __skb_queue_head_init(&sch->skb_bad_txq);
836 qdisc_skb_head_init(&sch->q);
837 spin_lock_init(&sch->q.lock);
838
839 if (ops->static_flags & TCQ_F_CPUSTATS) {
840 sch->cpu_bstats =
841 netdev_alloc_pcpu_stats(struct gnet_stats_basic_cpu);
842 if (!sch->cpu_bstats)
843 goto errout1;
844
845 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
846 if (!sch->cpu_qstats) {
847 free_percpu(sch->cpu_bstats);
848 goto errout1;
849 }
850 }
851
852 spin_lock_init(&sch->busylock);
853 lockdep_set_class(&sch->busylock,
854 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
855
856 /* seqlock has the same scope of busylock, for NOLOCK qdisc */
857 spin_lock_init(&sch->seqlock);
858 lockdep_set_class(&sch->busylock,
859 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
860
861 seqcount_init(&sch->running);
862 lockdep_set_class(&sch->running,
863 dev->qdisc_running_key ?: &qdisc_running_key);
864
865 sch->ops = ops;
866 sch->flags = ops->static_flags;
867 sch->enqueue = ops->enqueue;
868 sch->dequeue = ops->dequeue;
869 sch->dev_queue = dev_queue;
870 sch->empty = true;
871 dev_hold(dev);
872 refcount_set(&sch->refcnt, 1);
873
874 return sch;
875errout1:
876 kfree(p);
877errout:
878 return ERR_PTR(err);
879}
880
881struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
882 const struct Qdisc_ops *ops,
883 unsigned int parentid,
884 struct netlink_ext_ack *extack)
885{
886 struct Qdisc *sch;
887
888 if (!try_module_get(ops->owner)) {
889 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
890 return NULL;
891 }
892
893 sch = qdisc_alloc(dev_queue, ops, extack);
894 if (IS_ERR(sch)) {
895 module_put(ops->owner);
896 return NULL;
897 }
898 sch->parent = parentid;
899
900 if (!ops->init || ops->init(sch, NULL, extack) == 0) {
901 trace_qdisc_create(ops, dev_queue->dev, parentid);
902 return sch;
903 }
904
905 qdisc_put(sch);
906 return NULL;
907}
908EXPORT_SYMBOL(qdisc_create_dflt);
909
910/* Under qdisc_lock(qdisc) and BH! */
911
912void qdisc_reset(struct Qdisc *qdisc)
913{
914 const struct Qdisc_ops *ops = qdisc->ops;
915 struct sk_buff *skb, *tmp;
916
917 trace_qdisc_reset(qdisc);
918
919 if (ops->reset)
920 ops->reset(qdisc);
921
922 skb_queue_walk_safe(&qdisc->gso_skb, skb, tmp) {
923 __skb_unlink(skb, &qdisc->gso_skb);
924 kfree_skb_list(skb);
925 }
926
927 skb_queue_walk_safe(&qdisc->skb_bad_txq, skb, tmp) {
928 __skb_unlink(skb, &qdisc->skb_bad_txq);
929 kfree_skb_list(skb);
930 }
931
932 qdisc->q.qlen = 0;
933 qdisc->qstats.backlog = 0;
934}
935EXPORT_SYMBOL(qdisc_reset);
936
937void qdisc_free(struct Qdisc *qdisc)
938{
939 if (qdisc_is_percpu_stats(qdisc)) {
940 free_percpu(qdisc->cpu_bstats);
941 free_percpu(qdisc->cpu_qstats);
942 }
943
944 kfree((char *) qdisc - qdisc->padded);
945}
946
947static void qdisc_free_cb(struct rcu_head *head)
948{
949 struct Qdisc *q = container_of(head, struct Qdisc, rcu);
950
951 qdisc_free(q);
952}
953
954static void qdisc_destroy(struct Qdisc *qdisc)
955{
956 const struct Qdisc_ops *ops = qdisc->ops;
957
958#ifdef CONFIG_NET_SCHED
959 qdisc_hash_del(qdisc);
960
961 qdisc_put_stab(rtnl_dereference(qdisc->stab));
962#endif
963 gen_kill_estimator(&qdisc->rate_est);
964
965 qdisc_reset(qdisc);
966
967 if (ops->destroy)
968 ops->destroy(qdisc);
969
970 module_put(ops->owner);
971 dev_put(qdisc_dev(qdisc));
972
973 trace_qdisc_destroy(qdisc);
974
975 call_rcu(&qdisc->rcu, qdisc_free_cb);
976}
977
978void qdisc_put(struct Qdisc *qdisc)
979{
980 if (!qdisc)
981 return;
982
983 if (qdisc->flags & TCQ_F_BUILTIN ||
984 !refcount_dec_and_test(&qdisc->refcnt))
985 return;
986
987 qdisc_destroy(qdisc);
988}
989EXPORT_SYMBOL(qdisc_put);
990
991/* Version of qdisc_put() that is called with rtnl mutex unlocked.
992 * Intended to be used as optimization, this function only takes rtnl lock if
993 * qdisc reference counter reached zero.
994 */
995
996void qdisc_put_unlocked(struct Qdisc *qdisc)
997{
998 if (qdisc->flags & TCQ_F_BUILTIN ||
999 !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1000 return;
1001
1002 qdisc_destroy(qdisc);
1003 rtnl_unlock();
1004}
1005EXPORT_SYMBOL(qdisc_put_unlocked);
1006
1007/* Attach toplevel qdisc to device queue. */
1008struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1009 struct Qdisc *qdisc)
1010{
1011 struct Qdisc *oqdisc = dev_queue->qdisc_sleeping;
1012 spinlock_t *root_lock;
1013
1014 root_lock = qdisc_lock(oqdisc);
1015 spin_lock_bh(root_lock);
1016
1017 /* ... and graft new one */
1018 if (qdisc == NULL)
1019 qdisc = &noop_qdisc;
1020 dev_queue->qdisc_sleeping = qdisc;
1021 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1022
1023 spin_unlock_bh(root_lock);
1024
1025 return oqdisc;
1026}
1027EXPORT_SYMBOL(dev_graft_qdisc);
1028
1029static void attach_one_default_qdisc(struct net_device *dev,
1030 struct netdev_queue *dev_queue,
1031 void *_unused)
1032{
1033 struct Qdisc *qdisc;
1034 const struct Qdisc_ops *ops = default_qdisc_ops;
1035
1036 if (dev->priv_flags & IFF_NO_QUEUE)
1037 ops = &noqueue_qdisc_ops;
1038 else if(dev->type == ARPHRD_CAN)
1039 ops = &pfifo_fast_ops;
1040
1041 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1042 if (!qdisc)
1043 return;
1044
1045 if (!netif_is_multiqueue(dev))
1046 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1047 dev_queue->qdisc_sleeping = qdisc;
1048}
1049
1050static void attach_default_qdiscs(struct net_device *dev)
1051{
1052 struct netdev_queue *txq;
1053 struct Qdisc *qdisc;
1054
1055 txq = netdev_get_tx_queue(dev, 0);
1056
1057 if (!netif_is_multiqueue(dev) ||
1058 dev->priv_flags & IFF_NO_QUEUE) {
1059 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1060 dev->qdisc = txq->qdisc_sleeping;
1061 qdisc_refcount_inc(dev->qdisc);
1062 } else {
1063 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1064 if (qdisc) {
1065 dev->qdisc = qdisc;
1066 qdisc->ops->attach(qdisc);
1067 }
1068 }
1069
1070 /* Detect default qdisc setup/init failed and fallback to "noqueue" */
1071 if (dev->qdisc == &noop_qdisc) {
1072 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1073 default_qdisc_ops->id, noqueue_qdisc_ops.id);
1074 dev->priv_flags |= IFF_NO_QUEUE;
1075 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1076 dev->qdisc = txq->qdisc_sleeping;
1077 qdisc_refcount_inc(dev->qdisc);
1078 dev->priv_flags ^= IFF_NO_QUEUE;
1079 }
1080
1081#ifdef CONFIG_NET_SCHED
1082 if (dev->qdisc != &noop_qdisc)
1083 qdisc_hash_add(dev->qdisc, false);
1084#endif
1085}
1086
1087static void transition_one_qdisc(struct net_device *dev,
1088 struct netdev_queue *dev_queue,
1089 void *_need_watchdog)
1090{
1091 struct Qdisc *new_qdisc = dev_queue->qdisc_sleeping;
1092 int *need_watchdog_p = _need_watchdog;
1093
1094 if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1095 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1096
1097 rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1098 if (need_watchdog_p) {
1099 dev_queue->trans_start = 0;
1100 *need_watchdog_p = 1;
1101 }
1102}
1103
1104void dev_activate(struct net_device *dev)
1105{
1106 int need_watchdog;
1107
1108 /* No queueing discipline is attached to device;
1109 * create default one for devices, which need queueing
1110 * and noqueue_qdisc for virtual interfaces
1111 */
1112
1113 if (dev->qdisc == &noop_qdisc)
1114 attach_default_qdiscs(dev);
1115
1116 if (!netif_carrier_ok(dev))
1117 /* Delay activation until next carrier-on event */
1118 return;
1119
1120 need_watchdog = 0;
1121 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1122 if (dev_ingress_queue(dev))
1123 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1124
1125 if (need_watchdog) {
1126 netif_trans_update(dev);
1127 dev_watchdog_up(dev);
1128 }
1129}
1130EXPORT_SYMBOL(dev_activate);
1131
1132static void qdisc_deactivate(struct Qdisc *qdisc)
1133{
1134 if (qdisc->flags & TCQ_F_BUILTIN)
1135 return;
1136
1137 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1138}
1139
1140static void dev_deactivate_queue(struct net_device *dev,
1141 struct netdev_queue *dev_queue,
1142 void *_qdisc_default)
1143{
1144 struct Qdisc *qdisc_default = _qdisc_default;
1145 struct Qdisc *qdisc;
1146
1147 qdisc = rtnl_dereference(dev_queue->qdisc);
1148 if (qdisc) {
1149 qdisc_deactivate(qdisc);
1150 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1151 }
1152}
1153
1154static void dev_reset_queue(struct net_device *dev,
1155 struct netdev_queue *dev_queue,
1156 void *_unused)
1157{
1158 struct Qdisc *qdisc;
1159 bool nolock;
1160
1161 qdisc = dev_queue->qdisc_sleeping;
1162 if (!qdisc)
1163 return;
1164
1165 nolock = qdisc->flags & TCQ_F_NOLOCK;
1166
1167 if (nolock)
1168 spin_lock_bh(&qdisc->seqlock);
1169 spin_lock_bh(qdisc_lock(qdisc));
1170
1171 qdisc_reset(qdisc);
1172
1173 spin_unlock_bh(qdisc_lock(qdisc));
1174 if (nolock)
1175 spin_unlock_bh(&qdisc->seqlock);
1176}
1177
1178static bool some_qdisc_is_busy(struct net_device *dev)
1179{
1180 unsigned int i;
1181
1182 for (i = 0; i < dev->num_tx_queues; i++) {
1183 struct netdev_queue *dev_queue;
1184 spinlock_t *root_lock;
1185 struct Qdisc *q;
1186 int val;
1187
1188 dev_queue = netdev_get_tx_queue(dev, i);
1189 q = dev_queue->qdisc_sleeping;
1190
1191 root_lock = qdisc_lock(q);
1192 spin_lock_bh(root_lock);
1193
1194 val = (qdisc_is_running(q) ||
1195 test_bit(__QDISC_STATE_SCHED, &q->state));
1196
1197 spin_unlock_bh(root_lock);
1198
1199 if (val)
1200 return true;
1201 }
1202 return false;
1203}
1204
1205/**
1206 * dev_deactivate_many - deactivate transmissions on several devices
1207 * @head: list of devices to deactivate
1208 *
1209 * This function returns only when all outstanding transmissions
1210 * have completed, unless all devices are in dismantle phase.
1211 */
1212void dev_deactivate_many(struct list_head *head)
1213{
1214 struct net_device *dev;
1215
1216 list_for_each_entry(dev, head, close_list) {
1217 netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1218 &noop_qdisc);
1219 if (dev_ingress_queue(dev))
1220 dev_deactivate_queue(dev, dev_ingress_queue(dev),
1221 &noop_qdisc);
1222
1223 dev_watchdog_down(dev);
1224 }
1225
1226 /* Wait for outstanding qdisc-less dev_queue_xmit calls or
1227 * outstanding qdisc enqueuing calls.
1228 * This is avoided if all devices are in dismantle phase :
1229 * Caller will call synchronize_net() for us
1230 */
1231 synchronize_net();
1232
1233 list_for_each_entry(dev, head, close_list) {
1234 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1235
1236 if (dev_ingress_queue(dev))
1237 dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1238 }
1239
1240 /* Wait for outstanding qdisc_run calls. */
1241 list_for_each_entry(dev, head, close_list) {
1242 while (some_qdisc_is_busy(dev)) {
1243 /* wait_event() would avoid this sleep-loop but would
1244 * require expensive checks in the fast paths of packet
1245 * processing which isn't worth it.
1246 */
1247 schedule_timeout_uninterruptible(1);
1248 }
1249 }
1250}
1251
1252void dev_deactivate(struct net_device *dev)
1253{
1254 LIST_HEAD(single);
1255
1256 list_add(&dev->close_list, &single);
1257 dev_deactivate_many(&single);
1258 list_del(&single);
1259}
1260EXPORT_SYMBOL(dev_deactivate);
1261
1262static int qdisc_change_tx_queue_len(struct net_device *dev,
1263 struct netdev_queue *dev_queue)
1264{
1265 struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1266 const struct Qdisc_ops *ops = qdisc->ops;
1267
1268 if (ops->change_tx_queue_len)
1269 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1270 return 0;
1271}
1272
1273int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1274{
1275 bool up = dev->flags & IFF_UP;
1276 unsigned int i;
1277 int ret = 0;
1278
1279 if (up)
1280 dev_deactivate(dev);
1281
1282 for (i = 0; i < dev->num_tx_queues; i++) {
1283 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1284
1285 /* TODO: revert changes on a partial failure */
1286 if (ret)
1287 break;
1288 }
1289
1290 if (up)
1291 dev_activate(dev);
1292 return ret;
1293}
1294
1295static void dev_init_scheduler_queue(struct net_device *dev,
1296 struct netdev_queue *dev_queue,
1297 void *_qdisc)
1298{
1299 struct Qdisc *qdisc = _qdisc;
1300
1301 rcu_assign_pointer(dev_queue->qdisc, qdisc);
1302 dev_queue->qdisc_sleeping = qdisc;
1303}
1304
1305void dev_init_scheduler(struct net_device *dev)
1306{
1307 dev->qdisc = &noop_qdisc;
1308 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1309 if (dev_ingress_queue(dev))
1310 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1311
1312 timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1313}
1314
1315static void shutdown_scheduler_queue(struct net_device *dev,
1316 struct netdev_queue *dev_queue,
1317 void *_qdisc_default)
1318{
1319 struct Qdisc *qdisc = dev_queue->qdisc_sleeping;
1320 struct Qdisc *qdisc_default = _qdisc_default;
1321
1322 if (qdisc) {
1323 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1324 dev_queue->qdisc_sleeping = qdisc_default;
1325
1326 qdisc_put(qdisc);
1327 }
1328}
1329
1330void dev_shutdown(struct net_device *dev)
1331{
1332 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1333 if (dev_ingress_queue(dev))
1334 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1335 qdisc_put(dev->qdisc);
1336 dev->qdisc = &noop_qdisc;
1337
1338 WARN_ON(timer_pending(&dev->watchdog_timer));
1339}
1340
1341void psched_ratecfg_precompute(struct psched_ratecfg *r,
1342 const struct tc_ratespec *conf,
1343 u64 rate64)
1344{
1345 memset(r, 0, sizeof(*r));
1346 r->overhead = conf->overhead;
1347 r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1348 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1349 r->mult = 1;
1350 /*
1351 * The deal here is to replace a divide by a reciprocal one
1352 * in fast path (a reciprocal divide is a multiply and a shift)
1353 *
1354 * Normal formula would be :
1355 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1356 *
1357 * We compute mult/shift to use instead :
1358 * time_in_ns = (len * mult) >> shift;
1359 *
1360 * We try to get the highest possible mult value for accuracy,
1361 * but have to make sure no overflows will ever happen.
1362 */
1363 if (r->rate_bytes_ps > 0) {
1364 u64 factor = NSEC_PER_SEC;
1365
1366 for (;;) {
1367 r->mult = div64_u64(factor, r->rate_bytes_ps);
1368 if (r->mult & (1U << 31) || factor & (1ULL << 63))
1369 break;
1370 factor <<= 1;
1371 r->shift++;
1372 }
1373 }
1374}
1375EXPORT_SYMBOL(psched_ratecfg_precompute);
1376
1377static void mini_qdisc_rcu_func(struct rcu_head *head)
1378{
1379}
1380
1381void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1382 struct tcf_proto *tp_head)
1383{
1384 /* Protected with chain0->filter_chain_lock.
1385 * Can't access chain directly because tp_head can be NULL.
1386 */
1387 struct mini_Qdisc *miniq_old =
1388 rcu_dereference_protected(*miniqp->p_miniq, 1);
1389 struct mini_Qdisc *miniq;
1390
1391 if (!tp_head) {
1392 RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1393 /* Wait for flying RCU callback before it is freed. */
1394 rcu_barrier();
1395 return;
1396 }
1397
1398 miniq = !miniq_old || miniq_old == &miniqp->miniq2 ?
1399 &miniqp->miniq1 : &miniqp->miniq2;
1400
1401 /* We need to make sure that readers won't see the miniq
1402 * we are about to modify. So wait until previous call_rcu callback
1403 * is done.
1404 */
1405 rcu_barrier();
1406 miniq->filter_list = tp_head;
1407 rcu_assign_pointer(*miniqp->p_miniq, miniq);
1408
1409 if (miniq_old)
1410 /* This is counterpart of the rcu barriers above. We need to
1411 * block potential new user of miniq_old until all readers
1412 * are not seeing it.
1413 */
1414 call_rcu(&miniq_old->rcu, mini_qdisc_rcu_func);
1415}
1416EXPORT_SYMBOL(mini_qdisc_pair_swap);
1417
1418void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1419 struct tcf_block *block)
1420{
1421 miniqp->miniq1.block = block;
1422 miniqp->miniq2.block = block;
1423}
1424EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1425
1426void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1427 struct mini_Qdisc __rcu **p_miniq)
1428{
1429 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1430 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1431 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1432 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1433 miniqp->p_miniq = p_miniq;
1434}
1435EXPORT_SYMBOL(mini_qdisc_pair_init);
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * net/sched/sch_generic.c Generic packet scheduler routines.
4 *
5 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
6 * Jamal Hadi Salim, <hadi@cyberus.ca> 990601
7 * - Ingress support
8 */
9
10#include <linux/bitops.h>
11#include <linux/module.h>
12#include <linux/types.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/string.h>
16#include <linux/errno.h>
17#include <linux/netdevice.h>
18#include <linux/skbuff.h>
19#include <linux/rtnetlink.h>
20#include <linux/init.h>
21#include <linux/rcupdate.h>
22#include <linux/list.h>
23#include <linux/slab.h>
24#include <linux/if_vlan.h>
25#include <linux/skb_array.h>
26#include <linux/if_macvlan.h>
27#include <net/sch_generic.h>
28#include <net/pkt_sched.h>
29#include <net/dst.h>
30#include <net/hotdata.h>
31#include <trace/events/qdisc.h>
32#include <trace/events/net.h>
33#include <net/xfrm.h>
34
35/* Qdisc to use by default */
36const struct Qdisc_ops *default_qdisc_ops = &pfifo_fast_ops;
37EXPORT_SYMBOL(default_qdisc_ops);
38
39static void qdisc_maybe_clear_missed(struct Qdisc *q,
40 const struct netdev_queue *txq)
41{
42 clear_bit(__QDISC_STATE_MISSED, &q->state);
43
44 /* Make sure the below netif_xmit_frozen_or_stopped()
45 * checking happens after clearing STATE_MISSED.
46 */
47 smp_mb__after_atomic();
48
49 /* Checking netif_xmit_frozen_or_stopped() again to
50 * make sure STATE_MISSED is set if the STATE_MISSED
51 * set by netif_tx_wake_queue()'s rescheduling of
52 * net_tx_action() is cleared by the above clear_bit().
53 */
54 if (!netif_xmit_frozen_or_stopped(txq))
55 set_bit(__QDISC_STATE_MISSED, &q->state);
56 else
57 set_bit(__QDISC_STATE_DRAINING, &q->state);
58}
59
60/* Main transmission queue. */
61
62/* Modifications to data participating in scheduling must be protected with
63 * qdisc_lock(qdisc) spinlock.
64 *
65 * The idea is the following:
66 * - enqueue, dequeue are serialized via qdisc root lock
67 * - ingress filtering is also serialized via qdisc root lock
68 * - updates to tree and tree walking are only done under the rtnl mutex.
69 */
70
71#define SKB_XOFF_MAGIC ((struct sk_buff *)1UL)
72
73static inline struct sk_buff *__skb_dequeue_bad_txq(struct Qdisc *q)
74{
75 const struct netdev_queue *txq = q->dev_queue;
76 spinlock_t *lock = NULL;
77 struct sk_buff *skb;
78
79 if (q->flags & TCQ_F_NOLOCK) {
80 lock = qdisc_lock(q);
81 spin_lock(lock);
82 }
83
84 skb = skb_peek(&q->skb_bad_txq);
85 if (skb) {
86 /* check the reason of requeuing without tx lock first */
87 txq = skb_get_tx_queue(txq->dev, skb);
88 if (!netif_xmit_frozen_or_stopped(txq)) {
89 skb = __skb_dequeue(&q->skb_bad_txq);
90 if (qdisc_is_percpu_stats(q)) {
91 qdisc_qstats_cpu_backlog_dec(q, skb);
92 qdisc_qstats_cpu_qlen_dec(q);
93 } else {
94 qdisc_qstats_backlog_dec(q, skb);
95 q->q.qlen--;
96 }
97 } else {
98 skb = SKB_XOFF_MAGIC;
99 qdisc_maybe_clear_missed(q, txq);
100 }
101 }
102
103 if (lock)
104 spin_unlock(lock);
105
106 return skb;
107}
108
109static inline struct sk_buff *qdisc_dequeue_skb_bad_txq(struct Qdisc *q)
110{
111 struct sk_buff *skb = skb_peek(&q->skb_bad_txq);
112
113 if (unlikely(skb))
114 skb = __skb_dequeue_bad_txq(q);
115
116 return skb;
117}
118
119static inline void qdisc_enqueue_skb_bad_txq(struct Qdisc *q,
120 struct sk_buff *skb)
121{
122 spinlock_t *lock = NULL;
123
124 if (q->flags & TCQ_F_NOLOCK) {
125 lock = qdisc_lock(q);
126 spin_lock(lock);
127 }
128
129 __skb_queue_tail(&q->skb_bad_txq, skb);
130
131 if (qdisc_is_percpu_stats(q)) {
132 qdisc_qstats_cpu_backlog_inc(q, skb);
133 qdisc_qstats_cpu_qlen_inc(q);
134 } else {
135 qdisc_qstats_backlog_inc(q, skb);
136 q->q.qlen++;
137 }
138
139 if (lock)
140 spin_unlock(lock);
141}
142
143static inline void dev_requeue_skb(struct sk_buff *skb, struct Qdisc *q)
144{
145 spinlock_t *lock = NULL;
146
147 if (q->flags & TCQ_F_NOLOCK) {
148 lock = qdisc_lock(q);
149 spin_lock(lock);
150 }
151
152 while (skb) {
153 struct sk_buff *next = skb->next;
154
155 __skb_queue_tail(&q->gso_skb, skb);
156
157 /* it's still part of the queue */
158 if (qdisc_is_percpu_stats(q)) {
159 qdisc_qstats_cpu_requeues_inc(q);
160 qdisc_qstats_cpu_backlog_inc(q, skb);
161 qdisc_qstats_cpu_qlen_inc(q);
162 } else {
163 q->qstats.requeues++;
164 qdisc_qstats_backlog_inc(q, skb);
165 q->q.qlen++;
166 }
167
168 skb = next;
169 }
170
171 if (lock) {
172 spin_unlock(lock);
173 set_bit(__QDISC_STATE_MISSED, &q->state);
174 } else {
175 __netif_schedule(q);
176 }
177}
178
179static void try_bulk_dequeue_skb(struct Qdisc *q,
180 struct sk_buff *skb,
181 const struct netdev_queue *txq,
182 int *packets)
183{
184 int bytelimit = qdisc_avail_bulklimit(txq) - skb->len;
185
186 while (bytelimit > 0) {
187 struct sk_buff *nskb = q->dequeue(q);
188
189 if (!nskb)
190 break;
191
192 bytelimit -= nskb->len; /* covers GSO len */
193 skb->next = nskb;
194 skb = nskb;
195 (*packets)++; /* GSO counts as one pkt */
196 }
197 skb_mark_not_on_list(skb);
198}
199
200/* This variant of try_bulk_dequeue_skb() makes sure
201 * all skbs in the chain are for the same txq
202 */
203static void try_bulk_dequeue_skb_slow(struct Qdisc *q,
204 struct sk_buff *skb,
205 int *packets)
206{
207 int mapping = skb_get_queue_mapping(skb);
208 struct sk_buff *nskb;
209 int cnt = 0;
210
211 do {
212 nskb = q->dequeue(q);
213 if (!nskb)
214 break;
215 if (unlikely(skb_get_queue_mapping(nskb) != mapping)) {
216 qdisc_enqueue_skb_bad_txq(q, nskb);
217 break;
218 }
219 skb->next = nskb;
220 skb = nskb;
221 } while (++cnt < 8);
222 (*packets) += cnt;
223 skb_mark_not_on_list(skb);
224}
225
226/* Note that dequeue_skb can possibly return a SKB list (via skb->next).
227 * A requeued skb (via q->gso_skb) can also be a SKB list.
228 */
229static struct sk_buff *dequeue_skb(struct Qdisc *q, bool *validate,
230 int *packets)
231{
232 const struct netdev_queue *txq = q->dev_queue;
233 struct sk_buff *skb = NULL;
234
235 *packets = 1;
236 if (unlikely(!skb_queue_empty(&q->gso_skb))) {
237 spinlock_t *lock = NULL;
238
239 if (q->flags & TCQ_F_NOLOCK) {
240 lock = qdisc_lock(q);
241 spin_lock(lock);
242 }
243
244 skb = skb_peek(&q->gso_skb);
245
246 /* skb may be null if another cpu pulls gso_skb off in between
247 * empty check and lock.
248 */
249 if (!skb) {
250 if (lock)
251 spin_unlock(lock);
252 goto validate;
253 }
254
255 /* skb in gso_skb were already validated */
256 *validate = false;
257 if (xfrm_offload(skb))
258 *validate = true;
259 /* check the reason of requeuing without tx lock first */
260 txq = skb_get_tx_queue(txq->dev, skb);
261 if (!netif_xmit_frozen_or_stopped(txq)) {
262 skb = __skb_dequeue(&q->gso_skb);
263 if (qdisc_is_percpu_stats(q)) {
264 qdisc_qstats_cpu_backlog_dec(q, skb);
265 qdisc_qstats_cpu_qlen_dec(q);
266 } else {
267 qdisc_qstats_backlog_dec(q, skb);
268 q->q.qlen--;
269 }
270 } else {
271 skb = NULL;
272 qdisc_maybe_clear_missed(q, txq);
273 }
274 if (lock)
275 spin_unlock(lock);
276 goto trace;
277 }
278validate:
279 *validate = true;
280
281 if ((q->flags & TCQ_F_ONETXQUEUE) &&
282 netif_xmit_frozen_or_stopped(txq)) {
283 qdisc_maybe_clear_missed(q, txq);
284 return skb;
285 }
286
287 skb = qdisc_dequeue_skb_bad_txq(q);
288 if (unlikely(skb)) {
289 if (skb == SKB_XOFF_MAGIC)
290 return NULL;
291 goto bulk;
292 }
293 skb = q->dequeue(q);
294 if (skb) {
295bulk:
296 if (qdisc_may_bulk(q))
297 try_bulk_dequeue_skb(q, skb, txq, packets);
298 else
299 try_bulk_dequeue_skb_slow(q, skb, packets);
300 }
301trace:
302 trace_qdisc_dequeue(q, txq, *packets, skb);
303 return skb;
304}
305
306/*
307 * Transmit possibly several skbs, and handle the return status as
308 * required. Owning qdisc running bit guarantees that only one CPU
309 * can execute this function.
310 *
311 * Returns to the caller:
312 * false - hardware queue frozen backoff
313 * true - feel free to send more pkts
314 */
315bool sch_direct_xmit(struct sk_buff *skb, struct Qdisc *q,
316 struct net_device *dev, struct netdev_queue *txq,
317 spinlock_t *root_lock, bool validate)
318{
319 int ret = NETDEV_TX_BUSY;
320 bool again = false;
321
322 /* And release qdisc */
323 if (root_lock)
324 spin_unlock(root_lock);
325
326 /* Note that we validate skb (GSO, checksum, ...) outside of locks */
327 if (validate)
328 skb = validate_xmit_skb_list(skb, dev, &again);
329
330#ifdef CONFIG_XFRM_OFFLOAD
331 if (unlikely(again)) {
332 if (root_lock)
333 spin_lock(root_lock);
334
335 dev_requeue_skb(skb, q);
336 return false;
337 }
338#endif
339
340 if (likely(skb)) {
341 HARD_TX_LOCK(dev, txq, smp_processor_id());
342 if (!netif_xmit_frozen_or_stopped(txq))
343 skb = dev_hard_start_xmit(skb, dev, txq, &ret);
344 else
345 qdisc_maybe_clear_missed(q, txq);
346
347 HARD_TX_UNLOCK(dev, txq);
348 } else {
349 if (root_lock)
350 spin_lock(root_lock);
351 return true;
352 }
353
354 if (root_lock)
355 spin_lock(root_lock);
356
357 if (!dev_xmit_complete(ret)) {
358 /* Driver returned NETDEV_TX_BUSY - requeue skb */
359 if (unlikely(ret != NETDEV_TX_BUSY))
360 net_warn_ratelimited("BUG %s code %d qlen %d\n",
361 dev->name, ret, q->q.qlen);
362
363 dev_requeue_skb(skb, q);
364 return false;
365 }
366
367 return true;
368}
369
370/*
371 * NOTE: Called under qdisc_lock(q) with locally disabled BH.
372 *
373 * running seqcount guarantees only one CPU can process
374 * this qdisc at a time. qdisc_lock(q) serializes queue accesses for
375 * this queue.
376 *
377 * netif_tx_lock serializes accesses to device driver.
378 *
379 * qdisc_lock(q) and netif_tx_lock are mutually exclusive,
380 * if one is grabbed, another must be free.
381 *
382 * Note, that this procedure can be called by a watchdog timer
383 *
384 * Returns to the caller:
385 * 0 - queue is empty or throttled.
386 * >0 - queue is not empty.
387 *
388 */
389static inline bool qdisc_restart(struct Qdisc *q, int *packets)
390{
391 spinlock_t *root_lock = NULL;
392 struct netdev_queue *txq;
393 struct net_device *dev;
394 struct sk_buff *skb;
395 bool validate;
396
397 /* Dequeue packet */
398 skb = dequeue_skb(q, &validate, packets);
399 if (unlikely(!skb))
400 return false;
401
402 if (!(q->flags & TCQ_F_NOLOCK))
403 root_lock = qdisc_lock(q);
404
405 dev = qdisc_dev(q);
406 txq = skb_get_tx_queue(dev, skb);
407
408 return sch_direct_xmit(skb, q, dev, txq, root_lock, validate);
409}
410
411void __qdisc_run(struct Qdisc *q)
412{
413 int quota = READ_ONCE(net_hotdata.dev_tx_weight);
414 int packets;
415
416 while (qdisc_restart(q, &packets)) {
417 quota -= packets;
418 if (quota <= 0) {
419 if (q->flags & TCQ_F_NOLOCK)
420 set_bit(__QDISC_STATE_MISSED, &q->state);
421 else
422 __netif_schedule(q);
423
424 break;
425 }
426 }
427}
428
429unsigned long dev_trans_start(struct net_device *dev)
430{
431 unsigned long res = READ_ONCE(netdev_get_tx_queue(dev, 0)->trans_start);
432 unsigned long val;
433 unsigned int i;
434
435 for (i = 1; i < dev->num_tx_queues; i++) {
436 val = READ_ONCE(netdev_get_tx_queue(dev, i)->trans_start);
437 if (val && time_after(val, res))
438 res = val;
439 }
440
441 return res;
442}
443EXPORT_SYMBOL(dev_trans_start);
444
445static void netif_freeze_queues(struct net_device *dev)
446{
447 unsigned int i;
448 int cpu;
449
450 cpu = smp_processor_id();
451 for (i = 0; i < dev->num_tx_queues; i++) {
452 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
453
454 /* We are the only thread of execution doing a
455 * freeze, but we have to grab the _xmit_lock in
456 * order to synchronize with threads which are in
457 * the ->hard_start_xmit() handler and already
458 * checked the frozen bit.
459 */
460 __netif_tx_lock(txq, cpu);
461 set_bit(__QUEUE_STATE_FROZEN, &txq->state);
462 __netif_tx_unlock(txq);
463 }
464}
465
466void netif_tx_lock(struct net_device *dev)
467{
468 spin_lock(&dev->tx_global_lock);
469 netif_freeze_queues(dev);
470}
471EXPORT_SYMBOL(netif_tx_lock);
472
473static void netif_unfreeze_queues(struct net_device *dev)
474{
475 unsigned int i;
476
477 for (i = 0; i < dev->num_tx_queues; i++) {
478 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
479
480 /* No need to grab the _xmit_lock here. If the
481 * queue is not stopped for another reason, we
482 * force a schedule.
483 */
484 clear_bit(__QUEUE_STATE_FROZEN, &txq->state);
485 netif_schedule_queue(txq);
486 }
487}
488
489void netif_tx_unlock(struct net_device *dev)
490{
491 netif_unfreeze_queues(dev);
492 spin_unlock(&dev->tx_global_lock);
493}
494EXPORT_SYMBOL(netif_tx_unlock);
495
496static void dev_watchdog(struct timer_list *t)
497{
498 struct net_device *dev = from_timer(dev, t, watchdog_timer);
499 bool release = true;
500
501 spin_lock(&dev->tx_global_lock);
502 if (!qdisc_tx_is_noop(dev)) {
503 if (netif_device_present(dev) &&
504 netif_running(dev) &&
505 netif_carrier_ok(dev)) {
506 unsigned int timedout_ms = 0;
507 unsigned int i;
508 unsigned long trans_start;
509
510 for (i = 0; i < dev->num_tx_queues; i++) {
511 struct netdev_queue *txq;
512
513 txq = netdev_get_tx_queue(dev, i);
514 trans_start = READ_ONCE(txq->trans_start);
515 if (netif_xmit_stopped(txq) &&
516 time_after(jiffies, (trans_start +
517 dev->watchdog_timeo))) {
518 timedout_ms = jiffies_to_msecs(jiffies - trans_start);
519 atomic_long_inc(&txq->trans_timeout);
520 break;
521 }
522 }
523
524 if (unlikely(timedout_ms)) {
525 trace_net_dev_xmit_timeout(dev, i);
526 netdev_crit(dev, "NETDEV WATCHDOG: CPU: %d: transmit queue %u timed out %u ms\n",
527 raw_smp_processor_id(),
528 i, timedout_ms);
529 netif_freeze_queues(dev);
530 dev->netdev_ops->ndo_tx_timeout(dev, i);
531 netif_unfreeze_queues(dev);
532 }
533 if (!mod_timer(&dev->watchdog_timer,
534 round_jiffies(jiffies +
535 dev->watchdog_timeo)))
536 release = false;
537 }
538 }
539 spin_unlock(&dev->tx_global_lock);
540
541 if (release)
542 netdev_put(dev, &dev->watchdog_dev_tracker);
543}
544
545void __netdev_watchdog_up(struct net_device *dev)
546{
547 if (dev->netdev_ops->ndo_tx_timeout) {
548 if (dev->watchdog_timeo <= 0)
549 dev->watchdog_timeo = 5*HZ;
550 if (!mod_timer(&dev->watchdog_timer,
551 round_jiffies(jiffies + dev->watchdog_timeo)))
552 netdev_hold(dev, &dev->watchdog_dev_tracker,
553 GFP_ATOMIC);
554 }
555}
556EXPORT_SYMBOL_GPL(__netdev_watchdog_up);
557
558static void dev_watchdog_up(struct net_device *dev)
559{
560 __netdev_watchdog_up(dev);
561}
562
563static void dev_watchdog_down(struct net_device *dev)
564{
565 netif_tx_lock_bh(dev);
566 if (del_timer(&dev->watchdog_timer))
567 netdev_put(dev, &dev->watchdog_dev_tracker);
568 netif_tx_unlock_bh(dev);
569}
570
571/**
572 * netif_carrier_on - set carrier
573 * @dev: network device
574 *
575 * Device has detected acquisition of carrier.
576 */
577void netif_carrier_on(struct net_device *dev)
578{
579 if (test_and_clear_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
580 if (dev->reg_state == NETREG_UNINITIALIZED)
581 return;
582 atomic_inc(&dev->carrier_up_count);
583 linkwatch_fire_event(dev);
584 if (netif_running(dev))
585 __netdev_watchdog_up(dev);
586 }
587}
588EXPORT_SYMBOL(netif_carrier_on);
589
590/**
591 * netif_carrier_off - clear carrier
592 * @dev: network device
593 *
594 * Device has detected loss of carrier.
595 */
596void netif_carrier_off(struct net_device *dev)
597{
598 if (!test_and_set_bit(__LINK_STATE_NOCARRIER, &dev->state)) {
599 if (dev->reg_state == NETREG_UNINITIALIZED)
600 return;
601 atomic_inc(&dev->carrier_down_count);
602 linkwatch_fire_event(dev);
603 }
604}
605EXPORT_SYMBOL(netif_carrier_off);
606
607/**
608 * netif_carrier_event - report carrier state event
609 * @dev: network device
610 *
611 * Device has detected a carrier event but the carrier state wasn't changed.
612 * Use in drivers when querying carrier state asynchronously, to avoid missing
613 * events (link flaps) if link recovers before it's queried.
614 */
615void netif_carrier_event(struct net_device *dev)
616{
617 if (dev->reg_state == NETREG_UNINITIALIZED)
618 return;
619 atomic_inc(&dev->carrier_up_count);
620 atomic_inc(&dev->carrier_down_count);
621 linkwatch_fire_event(dev);
622}
623EXPORT_SYMBOL_GPL(netif_carrier_event);
624
625/* "NOOP" scheduler: the best scheduler, recommended for all interfaces
626 under all circumstances. It is difficult to invent anything faster or
627 cheaper.
628 */
629
630static int noop_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
631 struct sk_buff **to_free)
632{
633 __qdisc_drop(skb, to_free);
634 return NET_XMIT_CN;
635}
636
637static struct sk_buff *noop_dequeue(struct Qdisc *qdisc)
638{
639 return NULL;
640}
641
642struct Qdisc_ops noop_qdisc_ops __read_mostly = {
643 .id = "noop",
644 .priv_size = 0,
645 .enqueue = noop_enqueue,
646 .dequeue = noop_dequeue,
647 .peek = noop_dequeue,
648 .owner = THIS_MODULE,
649};
650
651static struct netdev_queue noop_netdev_queue = {
652 RCU_POINTER_INITIALIZER(qdisc, &noop_qdisc),
653 RCU_POINTER_INITIALIZER(qdisc_sleeping, &noop_qdisc),
654};
655
656struct Qdisc noop_qdisc = {
657 .enqueue = noop_enqueue,
658 .dequeue = noop_dequeue,
659 .flags = TCQ_F_BUILTIN,
660 .ops = &noop_qdisc_ops,
661 .q.lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.q.lock),
662 .dev_queue = &noop_netdev_queue,
663 .busylock = __SPIN_LOCK_UNLOCKED(noop_qdisc.busylock),
664 .gso_skb = {
665 .next = (struct sk_buff *)&noop_qdisc.gso_skb,
666 .prev = (struct sk_buff *)&noop_qdisc.gso_skb,
667 .qlen = 0,
668 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.gso_skb.lock),
669 },
670 .skb_bad_txq = {
671 .next = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
672 .prev = (struct sk_buff *)&noop_qdisc.skb_bad_txq,
673 .qlen = 0,
674 .lock = __SPIN_LOCK_UNLOCKED(noop_qdisc.skb_bad_txq.lock),
675 },
676};
677EXPORT_SYMBOL(noop_qdisc);
678
679static int noqueue_init(struct Qdisc *qdisc, struct nlattr *opt,
680 struct netlink_ext_ack *extack)
681{
682 /* register_qdisc() assigns a default of noop_enqueue if unset,
683 * but __dev_queue_xmit() treats noqueue only as such
684 * if this is NULL - so clear it here. */
685 qdisc->enqueue = NULL;
686 return 0;
687}
688
689struct Qdisc_ops noqueue_qdisc_ops __read_mostly = {
690 .id = "noqueue",
691 .priv_size = 0,
692 .init = noqueue_init,
693 .enqueue = noop_enqueue,
694 .dequeue = noop_dequeue,
695 .peek = noop_dequeue,
696 .owner = THIS_MODULE,
697};
698
699const u8 sch_default_prio2band[TC_PRIO_MAX + 1] = {
700 1, 2, 2, 2, 1, 2, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1
701};
702EXPORT_SYMBOL(sch_default_prio2band);
703
704/* 3-band FIFO queue: old style, but should be a bit faster than
705 generic prio+fifo combination.
706 */
707
708#define PFIFO_FAST_BANDS 3
709
710/*
711 * Private data for a pfifo_fast scheduler containing:
712 * - rings for priority bands
713 */
714struct pfifo_fast_priv {
715 struct skb_array q[PFIFO_FAST_BANDS];
716};
717
718static inline struct skb_array *band2list(struct pfifo_fast_priv *priv,
719 int band)
720{
721 return &priv->q[band];
722}
723
724static int pfifo_fast_enqueue(struct sk_buff *skb, struct Qdisc *qdisc,
725 struct sk_buff **to_free)
726{
727 int band = sch_default_prio2band[skb->priority & TC_PRIO_MAX];
728 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
729 struct skb_array *q = band2list(priv, band);
730 unsigned int pkt_len = qdisc_pkt_len(skb);
731 int err;
732
733 err = skb_array_produce(q, skb);
734
735 if (unlikely(err)) {
736 if (qdisc_is_percpu_stats(qdisc))
737 return qdisc_drop_cpu(skb, qdisc, to_free);
738 else
739 return qdisc_drop(skb, qdisc, to_free);
740 }
741
742 qdisc_update_stats_at_enqueue(qdisc, pkt_len);
743 return NET_XMIT_SUCCESS;
744}
745
746static struct sk_buff *pfifo_fast_dequeue(struct Qdisc *qdisc)
747{
748 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
749 struct sk_buff *skb = NULL;
750 bool need_retry = true;
751 int band;
752
753retry:
754 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
755 struct skb_array *q = band2list(priv, band);
756
757 if (__skb_array_empty(q))
758 continue;
759
760 skb = __skb_array_consume(q);
761 }
762 if (likely(skb)) {
763 qdisc_update_stats_at_dequeue(qdisc, skb);
764 } else if (need_retry &&
765 READ_ONCE(qdisc->state) & QDISC_STATE_NON_EMPTY) {
766 /* Delay clearing the STATE_MISSED here to reduce
767 * the overhead of the second spin_trylock() in
768 * qdisc_run_begin() and __netif_schedule() calling
769 * in qdisc_run_end().
770 */
771 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
772 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
773
774 /* Make sure dequeuing happens after clearing
775 * STATE_MISSED.
776 */
777 smp_mb__after_atomic();
778
779 need_retry = false;
780
781 goto retry;
782 }
783
784 return skb;
785}
786
787static struct sk_buff *pfifo_fast_peek(struct Qdisc *qdisc)
788{
789 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
790 struct sk_buff *skb = NULL;
791 int band;
792
793 for (band = 0; band < PFIFO_FAST_BANDS && !skb; band++) {
794 struct skb_array *q = band2list(priv, band);
795
796 skb = __skb_array_peek(q);
797 }
798
799 return skb;
800}
801
802static void pfifo_fast_reset(struct Qdisc *qdisc)
803{
804 int i, band;
805 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
806
807 for (band = 0; band < PFIFO_FAST_BANDS; band++) {
808 struct skb_array *q = band2list(priv, band);
809 struct sk_buff *skb;
810
811 /* NULL ring is possible if destroy path is due to a failed
812 * skb_array_init() in pfifo_fast_init() case.
813 */
814 if (!q->ring.queue)
815 continue;
816
817 while ((skb = __skb_array_consume(q)) != NULL)
818 kfree_skb(skb);
819 }
820
821 if (qdisc_is_percpu_stats(qdisc)) {
822 for_each_possible_cpu(i) {
823 struct gnet_stats_queue *q;
824
825 q = per_cpu_ptr(qdisc->cpu_qstats, i);
826 q->backlog = 0;
827 q->qlen = 0;
828 }
829 }
830}
831
832static int pfifo_fast_dump(struct Qdisc *qdisc, struct sk_buff *skb)
833{
834 struct tc_prio_qopt opt = { .bands = PFIFO_FAST_BANDS };
835
836 memcpy(&opt.priomap, sch_default_prio2band, TC_PRIO_MAX + 1);
837 if (nla_put(skb, TCA_OPTIONS, sizeof(opt), &opt))
838 goto nla_put_failure;
839 return skb->len;
840
841nla_put_failure:
842 return -1;
843}
844
845static int pfifo_fast_init(struct Qdisc *qdisc, struct nlattr *opt,
846 struct netlink_ext_ack *extack)
847{
848 unsigned int qlen = qdisc_dev(qdisc)->tx_queue_len;
849 struct pfifo_fast_priv *priv = qdisc_priv(qdisc);
850 int prio;
851
852 /* guard against zero length rings */
853 if (!qlen)
854 return -EINVAL;
855
856 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
857 struct skb_array *q = band2list(priv, prio);
858 int err;
859
860 err = skb_array_init(q, qlen, GFP_KERNEL);
861 if (err)
862 return -ENOMEM;
863 }
864
865 /* Can by-pass the queue discipline */
866 qdisc->flags |= TCQ_F_CAN_BYPASS;
867 return 0;
868}
869
870static void pfifo_fast_destroy(struct Qdisc *sch)
871{
872 struct pfifo_fast_priv *priv = qdisc_priv(sch);
873 int prio;
874
875 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
876 struct skb_array *q = band2list(priv, prio);
877
878 /* NULL ring is possible if destroy path is due to a failed
879 * skb_array_init() in pfifo_fast_init() case.
880 */
881 if (!q->ring.queue)
882 continue;
883 /* Destroy ring but no need to kfree_skb because a call to
884 * pfifo_fast_reset() has already done that work.
885 */
886 ptr_ring_cleanup(&q->ring, NULL);
887 }
888}
889
890static int pfifo_fast_change_tx_queue_len(struct Qdisc *sch,
891 unsigned int new_len)
892{
893 struct pfifo_fast_priv *priv = qdisc_priv(sch);
894 struct skb_array *bands[PFIFO_FAST_BANDS];
895 int prio;
896
897 for (prio = 0; prio < PFIFO_FAST_BANDS; prio++) {
898 struct skb_array *q = band2list(priv, prio);
899
900 bands[prio] = q;
901 }
902
903 return skb_array_resize_multiple(bands, PFIFO_FAST_BANDS, new_len,
904 GFP_KERNEL);
905}
906
907struct Qdisc_ops pfifo_fast_ops __read_mostly = {
908 .id = "pfifo_fast",
909 .priv_size = sizeof(struct pfifo_fast_priv),
910 .enqueue = pfifo_fast_enqueue,
911 .dequeue = pfifo_fast_dequeue,
912 .peek = pfifo_fast_peek,
913 .init = pfifo_fast_init,
914 .destroy = pfifo_fast_destroy,
915 .reset = pfifo_fast_reset,
916 .dump = pfifo_fast_dump,
917 .change_tx_queue_len = pfifo_fast_change_tx_queue_len,
918 .owner = THIS_MODULE,
919 .static_flags = TCQ_F_NOLOCK | TCQ_F_CPUSTATS,
920};
921EXPORT_SYMBOL(pfifo_fast_ops);
922
923static struct lock_class_key qdisc_tx_busylock;
924
925struct Qdisc *qdisc_alloc(struct netdev_queue *dev_queue,
926 const struct Qdisc_ops *ops,
927 struct netlink_ext_ack *extack)
928{
929 struct Qdisc *sch;
930 unsigned int size = sizeof(*sch) + ops->priv_size;
931 int err = -ENOBUFS;
932 struct net_device *dev;
933
934 if (!dev_queue) {
935 NL_SET_ERR_MSG(extack, "No device queue given");
936 err = -EINVAL;
937 goto errout;
938 }
939
940 dev = dev_queue->dev;
941 sch = kzalloc_node(size, GFP_KERNEL, netdev_queue_numa_node_read(dev_queue));
942
943 if (!sch)
944 goto errout;
945 __skb_queue_head_init(&sch->gso_skb);
946 __skb_queue_head_init(&sch->skb_bad_txq);
947 gnet_stats_basic_sync_init(&sch->bstats);
948 spin_lock_init(&sch->q.lock);
949
950 if (ops->static_flags & TCQ_F_CPUSTATS) {
951 sch->cpu_bstats =
952 netdev_alloc_pcpu_stats(struct gnet_stats_basic_sync);
953 if (!sch->cpu_bstats)
954 goto errout1;
955
956 sch->cpu_qstats = alloc_percpu(struct gnet_stats_queue);
957 if (!sch->cpu_qstats) {
958 free_percpu(sch->cpu_bstats);
959 goto errout1;
960 }
961 }
962
963 spin_lock_init(&sch->busylock);
964 lockdep_set_class(&sch->busylock,
965 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
966
967 /* seqlock has the same scope of busylock, for NOLOCK qdisc */
968 spin_lock_init(&sch->seqlock);
969 lockdep_set_class(&sch->seqlock,
970 dev->qdisc_tx_busylock ?: &qdisc_tx_busylock);
971
972 sch->ops = ops;
973 sch->flags = ops->static_flags;
974 sch->enqueue = ops->enqueue;
975 sch->dequeue = ops->dequeue;
976 sch->dev_queue = dev_queue;
977 sch->owner = -1;
978 netdev_hold(dev, &sch->dev_tracker, GFP_KERNEL);
979 refcount_set(&sch->refcnt, 1);
980
981 return sch;
982errout1:
983 kfree(sch);
984errout:
985 return ERR_PTR(err);
986}
987
988struct Qdisc *qdisc_create_dflt(struct netdev_queue *dev_queue,
989 const struct Qdisc_ops *ops,
990 unsigned int parentid,
991 struct netlink_ext_ack *extack)
992{
993 struct Qdisc *sch;
994
995 if (!try_module_get(ops->owner)) {
996 NL_SET_ERR_MSG(extack, "Failed to increase module reference counter");
997 return NULL;
998 }
999
1000 sch = qdisc_alloc(dev_queue, ops, extack);
1001 if (IS_ERR(sch)) {
1002 module_put(ops->owner);
1003 return NULL;
1004 }
1005 sch->parent = parentid;
1006
1007 if (!ops->init || ops->init(sch, NULL, extack) == 0) {
1008 trace_qdisc_create(ops, dev_queue->dev, parentid);
1009 return sch;
1010 }
1011
1012 qdisc_put(sch);
1013 return NULL;
1014}
1015EXPORT_SYMBOL(qdisc_create_dflt);
1016
1017/* Under qdisc_lock(qdisc) and BH! */
1018
1019void qdisc_reset(struct Qdisc *qdisc)
1020{
1021 const struct Qdisc_ops *ops = qdisc->ops;
1022
1023 trace_qdisc_reset(qdisc);
1024
1025 if (ops->reset)
1026 ops->reset(qdisc);
1027
1028 __skb_queue_purge(&qdisc->gso_skb);
1029 __skb_queue_purge(&qdisc->skb_bad_txq);
1030
1031 qdisc->q.qlen = 0;
1032 qdisc->qstats.backlog = 0;
1033}
1034EXPORT_SYMBOL(qdisc_reset);
1035
1036void qdisc_free(struct Qdisc *qdisc)
1037{
1038 if (qdisc_is_percpu_stats(qdisc)) {
1039 free_percpu(qdisc->cpu_bstats);
1040 free_percpu(qdisc->cpu_qstats);
1041 }
1042
1043 kfree(qdisc);
1044}
1045
1046static void qdisc_free_cb(struct rcu_head *head)
1047{
1048 struct Qdisc *q = container_of(head, struct Qdisc, rcu);
1049
1050 qdisc_free(q);
1051}
1052
1053static void __qdisc_destroy(struct Qdisc *qdisc)
1054{
1055 const struct Qdisc_ops *ops = qdisc->ops;
1056 struct net_device *dev = qdisc_dev(qdisc);
1057
1058#ifdef CONFIG_NET_SCHED
1059 qdisc_hash_del(qdisc);
1060
1061 qdisc_put_stab(rtnl_dereference(qdisc->stab));
1062#endif
1063 gen_kill_estimator(&qdisc->rate_est);
1064
1065 qdisc_reset(qdisc);
1066
1067
1068 if (ops->destroy)
1069 ops->destroy(qdisc);
1070
1071 module_put(ops->owner);
1072 netdev_put(dev, &qdisc->dev_tracker);
1073
1074 trace_qdisc_destroy(qdisc);
1075
1076 call_rcu(&qdisc->rcu, qdisc_free_cb);
1077}
1078
1079void qdisc_destroy(struct Qdisc *qdisc)
1080{
1081 if (qdisc->flags & TCQ_F_BUILTIN)
1082 return;
1083
1084 __qdisc_destroy(qdisc);
1085}
1086
1087void qdisc_put(struct Qdisc *qdisc)
1088{
1089 if (!qdisc)
1090 return;
1091
1092 if (qdisc->flags & TCQ_F_BUILTIN ||
1093 !refcount_dec_and_test(&qdisc->refcnt))
1094 return;
1095
1096 __qdisc_destroy(qdisc);
1097}
1098EXPORT_SYMBOL(qdisc_put);
1099
1100/* Version of qdisc_put() that is called with rtnl mutex unlocked.
1101 * Intended to be used as optimization, this function only takes rtnl lock if
1102 * qdisc reference counter reached zero.
1103 */
1104
1105void qdisc_put_unlocked(struct Qdisc *qdisc)
1106{
1107 if (qdisc->flags & TCQ_F_BUILTIN ||
1108 !refcount_dec_and_rtnl_lock(&qdisc->refcnt))
1109 return;
1110
1111 __qdisc_destroy(qdisc);
1112 rtnl_unlock();
1113}
1114EXPORT_SYMBOL(qdisc_put_unlocked);
1115
1116/* Attach toplevel qdisc to device queue. */
1117struct Qdisc *dev_graft_qdisc(struct netdev_queue *dev_queue,
1118 struct Qdisc *qdisc)
1119{
1120 struct Qdisc *oqdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1121 spinlock_t *root_lock;
1122
1123 root_lock = qdisc_lock(oqdisc);
1124 spin_lock_bh(root_lock);
1125
1126 /* ... and graft new one */
1127 if (qdisc == NULL)
1128 qdisc = &noop_qdisc;
1129 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1130 rcu_assign_pointer(dev_queue->qdisc, &noop_qdisc);
1131
1132 spin_unlock_bh(root_lock);
1133
1134 return oqdisc;
1135}
1136EXPORT_SYMBOL(dev_graft_qdisc);
1137
1138static void shutdown_scheduler_queue(struct net_device *dev,
1139 struct netdev_queue *dev_queue,
1140 void *_qdisc_default)
1141{
1142 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1143 struct Qdisc *qdisc_default = _qdisc_default;
1144
1145 if (qdisc) {
1146 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1147 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc_default);
1148
1149 qdisc_put(qdisc);
1150 }
1151}
1152
1153static void attach_one_default_qdisc(struct net_device *dev,
1154 struct netdev_queue *dev_queue,
1155 void *_unused)
1156{
1157 struct Qdisc *qdisc;
1158 const struct Qdisc_ops *ops = default_qdisc_ops;
1159
1160 if (dev->priv_flags & IFF_NO_QUEUE)
1161 ops = &noqueue_qdisc_ops;
1162 else if(dev->type == ARPHRD_CAN)
1163 ops = &pfifo_fast_ops;
1164
1165 qdisc = qdisc_create_dflt(dev_queue, ops, TC_H_ROOT, NULL);
1166 if (!qdisc)
1167 return;
1168
1169 if (!netif_is_multiqueue(dev))
1170 qdisc->flags |= TCQ_F_ONETXQUEUE | TCQ_F_NOPARENT;
1171 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1172}
1173
1174static void attach_default_qdiscs(struct net_device *dev)
1175{
1176 struct netdev_queue *txq;
1177 struct Qdisc *qdisc;
1178
1179 txq = netdev_get_tx_queue(dev, 0);
1180
1181 if (!netif_is_multiqueue(dev) ||
1182 dev->priv_flags & IFF_NO_QUEUE) {
1183 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1184 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1185 rcu_assign_pointer(dev->qdisc, qdisc);
1186 qdisc_refcount_inc(qdisc);
1187 } else {
1188 qdisc = qdisc_create_dflt(txq, &mq_qdisc_ops, TC_H_ROOT, NULL);
1189 if (qdisc) {
1190 rcu_assign_pointer(dev->qdisc, qdisc);
1191 qdisc->ops->attach(qdisc);
1192 }
1193 }
1194 qdisc = rtnl_dereference(dev->qdisc);
1195
1196 /* Detect default qdisc setup/init failed and fallback to "noqueue" */
1197 if (qdisc == &noop_qdisc) {
1198 netdev_warn(dev, "default qdisc (%s) fail, fallback to %s\n",
1199 default_qdisc_ops->id, noqueue_qdisc_ops.id);
1200 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1201 dev->priv_flags |= IFF_NO_QUEUE;
1202 netdev_for_each_tx_queue(dev, attach_one_default_qdisc, NULL);
1203 qdisc = rtnl_dereference(txq->qdisc_sleeping);
1204 rcu_assign_pointer(dev->qdisc, qdisc);
1205 qdisc_refcount_inc(qdisc);
1206 dev->priv_flags ^= IFF_NO_QUEUE;
1207 }
1208
1209#ifdef CONFIG_NET_SCHED
1210 if (qdisc != &noop_qdisc)
1211 qdisc_hash_add(qdisc, false);
1212#endif
1213}
1214
1215static void transition_one_qdisc(struct net_device *dev,
1216 struct netdev_queue *dev_queue,
1217 void *_need_watchdog)
1218{
1219 struct Qdisc *new_qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1220 int *need_watchdog_p = _need_watchdog;
1221
1222 if (!(new_qdisc->flags & TCQ_F_BUILTIN))
1223 clear_bit(__QDISC_STATE_DEACTIVATED, &new_qdisc->state);
1224
1225 rcu_assign_pointer(dev_queue->qdisc, new_qdisc);
1226 if (need_watchdog_p) {
1227 WRITE_ONCE(dev_queue->trans_start, 0);
1228 *need_watchdog_p = 1;
1229 }
1230}
1231
1232void dev_activate(struct net_device *dev)
1233{
1234 int need_watchdog;
1235
1236 /* No queueing discipline is attached to device;
1237 * create default one for devices, which need queueing
1238 * and noqueue_qdisc for virtual interfaces
1239 */
1240
1241 if (rtnl_dereference(dev->qdisc) == &noop_qdisc)
1242 attach_default_qdiscs(dev);
1243
1244 if (!netif_carrier_ok(dev))
1245 /* Delay activation until next carrier-on event */
1246 return;
1247
1248 need_watchdog = 0;
1249 netdev_for_each_tx_queue(dev, transition_one_qdisc, &need_watchdog);
1250 if (dev_ingress_queue(dev))
1251 transition_one_qdisc(dev, dev_ingress_queue(dev), NULL);
1252
1253 if (need_watchdog) {
1254 netif_trans_update(dev);
1255 dev_watchdog_up(dev);
1256 }
1257}
1258EXPORT_SYMBOL(dev_activate);
1259
1260static void qdisc_deactivate(struct Qdisc *qdisc)
1261{
1262 if (qdisc->flags & TCQ_F_BUILTIN)
1263 return;
1264
1265 set_bit(__QDISC_STATE_DEACTIVATED, &qdisc->state);
1266}
1267
1268static void dev_deactivate_queue(struct net_device *dev,
1269 struct netdev_queue *dev_queue,
1270 void *_qdisc_default)
1271{
1272 struct Qdisc *qdisc_default = _qdisc_default;
1273 struct Qdisc *qdisc;
1274
1275 qdisc = rtnl_dereference(dev_queue->qdisc);
1276 if (qdisc) {
1277 qdisc_deactivate(qdisc);
1278 rcu_assign_pointer(dev_queue->qdisc, qdisc_default);
1279 }
1280}
1281
1282static void dev_reset_queue(struct net_device *dev,
1283 struct netdev_queue *dev_queue,
1284 void *_unused)
1285{
1286 struct Qdisc *qdisc;
1287 bool nolock;
1288
1289 qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1290 if (!qdisc)
1291 return;
1292
1293 nolock = qdisc->flags & TCQ_F_NOLOCK;
1294
1295 if (nolock)
1296 spin_lock_bh(&qdisc->seqlock);
1297 spin_lock_bh(qdisc_lock(qdisc));
1298
1299 qdisc_reset(qdisc);
1300
1301 spin_unlock_bh(qdisc_lock(qdisc));
1302 if (nolock) {
1303 clear_bit(__QDISC_STATE_MISSED, &qdisc->state);
1304 clear_bit(__QDISC_STATE_DRAINING, &qdisc->state);
1305 spin_unlock_bh(&qdisc->seqlock);
1306 }
1307}
1308
1309static bool some_qdisc_is_busy(struct net_device *dev)
1310{
1311 unsigned int i;
1312
1313 for (i = 0; i < dev->num_tx_queues; i++) {
1314 struct netdev_queue *dev_queue;
1315 spinlock_t *root_lock;
1316 struct Qdisc *q;
1317 int val;
1318
1319 dev_queue = netdev_get_tx_queue(dev, i);
1320 q = rtnl_dereference(dev_queue->qdisc_sleeping);
1321
1322 root_lock = qdisc_lock(q);
1323 spin_lock_bh(root_lock);
1324
1325 val = (qdisc_is_running(q) ||
1326 test_bit(__QDISC_STATE_SCHED, &q->state));
1327
1328 spin_unlock_bh(root_lock);
1329
1330 if (val)
1331 return true;
1332 }
1333 return false;
1334}
1335
1336/**
1337 * dev_deactivate_many - deactivate transmissions on several devices
1338 * @head: list of devices to deactivate
1339 *
1340 * This function returns only when all outstanding transmissions
1341 * have completed, unless all devices are in dismantle phase.
1342 */
1343void dev_deactivate_many(struct list_head *head)
1344{
1345 struct net_device *dev;
1346
1347 list_for_each_entry(dev, head, close_list) {
1348 netdev_for_each_tx_queue(dev, dev_deactivate_queue,
1349 &noop_qdisc);
1350 if (dev_ingress_queue(dev))
1351 dev_deactivate_queue(dev, dev_ingress_queue(dev),
1352 &noop_qdisc);
1353
1354 dev_watchdog_down(dev);
1355 }
1356
1357 /* Wait for outstanding qdisc-less dev_queue_xmit calls or
1358 * outstanding qdisc enqueuing calls.
1359 * This is avoided if all devices are in dismantle phase :
1360 * Caller will call synchronize_net() for us
1361 */
1362 synchronize_net();
1363
1364 list_for_each_entry(dev, head, close_list) {
1365 netdev_for_each_tx_queue(dev, dev_reset_queue, NULL);
1366
1367 if (dev_ingress_queue(dev))
1368 dev_reset_queue(dev, dev_ingress_queue(dev), NULL);
1369 }
1370
1371 /* Wait for outstanding qdisc_run calls. */
1372 list_for_each_entry(dev, head, close_list) {
1373 while (some_qdisc_is_busy(dev)) {
1374 /* wait_event() would avoid this sleep-loop but would
1375 * require expensive checks in the fast paths of packet
1376 * processing which isn't worth it.
1377 */
1378 schedule_timeout_uninterruptible(1);
1379 }
1380 }
1381}
1382
1383void dev_deactivate(struct net_device *dev)
1384{
1385 LIST_HEAD(single);
1386
1387 list_add(&dev->close_list, &single);
1388 dev_deactivate_many(&single);
1389 list_del(&single);
1390}
1391EXPORT_SYMBOL(dev_deactivate);
1392
1393static int qdisc_change_tx_queue_len(struct net_device *dev,
1394 struct netdev_queue *dev_queue)
1395{
1396 struct Qdisc *qdisc = rtnl_dereference(dev_queue->qdisc_sleeping);
1397 const struct Qdisc_ops *ops = qdisc->ops;
1398
1399 if (ops->change_tx_queue_len)
1400 return ops->change_tx_queue_len(qdisc, dev->tx_queue_len);
1401 return 0;
1402}
1403
1404void dev_qdisc_change_real_num_tx(struct net_device *dev,
1405 unsigned int new_real_tx)
1406{
1407 struct Qdisc *qdisc = rtnl_dereference(dev->qdisc);
1408
1409 if (qdisc->ops->change_real_num_tx)
1410 qdisc->ops->change_real_num_tx(qdisc, new_real_tx);
1411}
1412
1413void mq_change_real_num_tx(struct Qdisc *sch, unsigned int new_real_tx)
1414{
1415#ifdef CONFIG_NET_SCHED
1416 struct net_device *dev = qdisc_dev(sch);
1417 struct Qdisc *qdisc;
1418 unsigned int i;
1419
1420 for (i = new_real_tx; i < dev->real_num_tx_queues; i++) {
1421 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1422 /* Only update the default qdiscs we created,
1423 * qdiscs with handles are always hashed.
1424 */
1425 if (qdisc != &noop_qdisc && !qdisc->handle)
1426 qdisc_hash_del(qdisc);
1427 }
1428 for (i = dev->real_num_tx_queues; i < new_real_tx; i++) {
1429 qdisc = rtnl_dereference(netdev_get_tx_queue(dev, i)->qdisc_sleeping);
1430 if (qdisc != &noop_qdisc && !qdisc->handle)
1431 qdisc_hash_add(qdisc, false);
1432 }
1433#endif
1434}
1435EXPORT_SYMBOL(mq_change_real_num_tx);
1436
1437int dev_qdisc_change_tx_queue_len(struct net_device *dev)
1438{
1439 bool up = dev->flags & IFF_UP;
1440 unsigned int i;
1441 int ret = 0;
1442
1443 if (up)
1444 dev_deactivate(dev);
1445
1446 for (i = 0; i < dev->num_tx_queues; i++) {
1447 ret = qdisc_change_tx_queue_len(dev, &dev->_tx[i]);
1448
1449 /* TODO: revert changes on a partial failure */
1450 if (ret)
1451 break;
1452 }
1453
1454 if (up)
1455 dev_activate(dev);
1456 return ret;
1457}
1458
1459static void dev_init_scheduler_queue(struct net_device *dev,
1460 struct netdev_queue *dev_queue,
1461 void *_qdisc)
1462{
1463 struct Qdisc *qdisc = _qdisc;
1464
1465 rcu_assign_pointer(dev_queue->qdisc, qdisc);
1466 rcu_assign_pointer(dev_queue->qdisc_sleeping, qdisc);
1467}
1468
1469void dev_init_scheduler(struct net_device *dev)
1470{
1471 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1472 netdev_for_each_tx_queue(dev, dev_init_scheduler_queue, &noop_qdisc);
1473 if (dev_ingress_queue(dev))
1474 dev_init_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1475
1476 timer_setup(&dev->watchdog_timer, dev_watchdog, 0);
1477}
1478
1479void dev_shutdown(struct net_device *dev)
1480{
1481 netdev_for_each_tx_queue(dev, shutdown_scheduler_queue, &noop_qdisc);
1482 if (dev_ingress_queue(dev))
1483 shutdown_scheduler_queue(dev, dev_ingress_queue(dev), &noop_qdisc);
1484 qdisc_put(rtnl_dereference(dev->qdisc));
1485 rcu_assign_pointer(dev->qdisc, &noop_qdisc);
1486
1487 WARN_ON(timer_pending(&dev->watchdog_timer));
1488}
1489
1490/**
1491 * psched_ratecfg_precompute__() - Pre-compute values for reciprocal division
1492 * @rate: Rate to compute reciprocal division values of
1493 * @mult: Multiplier for reciprocal division
1494 * @shift: Shift for reciprocal division
1495 *
1496 * The multiplier and shift for reciprocal division by rate are stored
1497 * in mult and shift.
1498 *
1499 * The deal here is to replace a divide by a reciprocal one
1500 * in fast path (a reciprocal divide is a multiply and a shift)
1501 *
1502 * Normal formula would be :
1503 * time_in_ns = (NSEC_PER_SEC * len) / rate_bps
1504 *
1505 * We compute mult/shift to use instead :
1506 * time_in_ns = (len * mult) >> shift;
1507 *
1508 * We try to get the highest possible mult value for accuracy,
1509 * but have to make sure no overflows will ever happen.
1510 *
1511 * reciprocal_value() is not used here it doesn't handle 64-bit values.
1512 */
1513static void psched_ratecfg_precompute__(u64 rate, u32 *mult, u8 *shift)
1514{
1515 u64 factor = NSEC_PER_SEC;
1516
1517 *mult = 1;
1518 *shift = 0;
1519
1520 if (rate <= 0)
1521 return;
1522
1523 for (;;) {
1524 *mult = div64_u64(factor, rate);
1525 if (*mult & (1U << 31) || factor & (1ULL << 63))
1526 break;
1527 factor <<= 1;
1528 (*shift)++;
1529 }
1530}
1531
1532void psched_ratecfg_precompute(struct psched_ratecfg *r,
1533 const struct tc_ratespec *conf,
1534 u64 rate64)
1535{
1536 memset(r, 0, sizeof(*r));
1537 r->overhead = conf->overhead;
1538 r->mpu = conf->mpu;
1539 r->rate_bytes_ps = max_t(u64, conf->rate, rate64);
1540 r->linklayer = (conf->linklayer & TC_LINKLAYER_MASK);
1541 psched_ratecfg_precompute__(r->rate_bytes_ps, &r->mult, &r->shift);
1542}
1543EXPORT_SYMBOL(psched_ratecfg_precompute);
1544
1545void psched_ppscfg_precompute(struct psched_pktrate *r, u64 pktrate64)
1546{
1547 r->rate_pkts_ps = pktrate64;
1548 psched_ratecfg_precompute__(r->rate_pkts_ps, &r->mult, &r->shift);
1549}
1550EXPORT_SYMBOL(psched_ppscfg_precompute);
1551
1552void mini_qdisc_pair_swap(struct mini_Qdisc_pair *miniqp,
1553 struct tcf_proto *tp_head)
1554{
1555 /* Protected with chain0->filter_chain_lock.
1556 * Can't access chain directly because tp_head can be NULL.
1557 */
1558 struct mini_Qdisc *miniq_old =
1559 rcu_dereference_protected(*miniqp->p_miniq, 1);
1560 struct mini_Qdisc *miniq;
1561
1562 if (!tp_head) {
1563 RCU_INIT_POINTER(*miniqp->p_miniq, NULL);
1564 } else {
1565 miniq = miniq_old != &miniqp->miniq1 ?
1566 &miniqp->miniq1 : &miniqp->miniq2;
1567
1568 /* We need to make sure that readers won't see the miniq
1569 * we are about to modify. So ensure that at least one RCU
1570 * grace period has elapsed since the miniq was made
1571 * inactive.
1572 */
1573 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1574 cond_synchronize_rcu(miniq->rcu_state);
1575 else if (!poll_state_synchronize_rcu(miniq->rcu_state))
1576 synchronize_rcu_expedited();
1577
1578 miniq->filter_list = tp_head;
1579 rcu_assign_pointer(*miniqp->p_miniq, miniq);
1580 }
1581
1582 if (miniq_old)
1583 /* This is counterpart of the rcu sync above. We need to
1584 * block potential new user of miniq_old until all readers
1585 * are not seeing it.
1586 */
1587 miniq_old->rcu_state = start_poll_synchronize_rcu();
1588}
1589EXPORT_SYMBOL(mini_qdisc_pair_swap);
1590
1591void mini_qdisc_pair_block_init(struct mini_Qdisc_pair *miniqp,
1592 struct tcf_block *block)
1593{
1594 miniqp->miniq1.block = block;
1595 miniqp->miniq2.block = block;
1596}
1597EXPORT_SYMBOL(mini_qdisc_pair_block_init);
1598
1599void mini_qdisc_pair_init(struct mini_Qdisc_pair *miniqp, struct Qdisc *qdisc,
1600 struct mini_Qdisc __rcu **p_miniq)
1601{
1602 miniqp->miniq1.cpu_bstats = qdisc->cpu_bstats;
1603 miniqp->miniq1.cpu_qstats = qdisc->cpu_qstats;
1604 miniqp->miniq2.cpu_bstats = qdisc->cpu_bstats;
1605 miniqp->miniq2.cpu_qstats = qdisc->cpu_qstats;
1606 miniqp->miniq1.rcu_state = get_state_synchronize_rcu();
1607 miniqp->miniq2.rcu_state = miniqp->miniq1.rcu_state;
1608 miniqp->p_miniq = p_miniq;
1609}
1610EXPORT_SYMBOL(mini_qdisc_pair_init);